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CHAPTER I 

INTRODUCT ION 

1.1. Historical Background 

With the increasing attention·to failure problems over the 

last half century went a growing interest in the fracture process 

in materials. Many previous investigators hav� studied the elastic 

distributions around the cracks basing on the idea of Inglis LlJ* 
who in 1913 �as the first to study an internal crack by use of the 

elliptical bounding surfaces. Probably the most important concept 

put forth in this field was Griffith's hypothesis L2J of a brittle 

fracture which was published. in 1921. Employing the idea of Inglis 

and the principle of conservation of energy, Griffith derived a 

theoretical formula for the critical stress at the crack tip and a 

criterion for crack instability. 

A simplification of the energy method as initiated by Griffith 

has been given by Irwin L3J who analyzed the energy exchange in the 

immediate vicinity of the crack tip. Later Sander L4J expressed 

the Griffith- Irwin criterion for crack extension in the form of a con­

tour integral. Meanwhile substantial work was done by Sneddon L5J 
and by Sack L6J in Great Britain. They have derived expressions 

for the critical stress around a penny-shaped crack in an elastic 

*Bracketed numbers refer to the references. 



solid. In the United States, Westergaard ['"12J initially introduced 

the complex variable technique into three-dimensional problems, and 

Williams {'"14J gave a supplement on the problem of cracks by working 

out relations for antisymmetric cases. 

The energy point of view of fracture phenomena has been widely 

and successfully developed by contemporary scientists, such as Orowan 

L7J, Mott ['"sJ, Berry L9J, Goodier and Field ['"10J, and Dugdale 

£11J, etc. 

It is of interest to note that there exist different points of 

view concerning the magnitudes of stresses around the crack tip. 

However, all investigators are unanimous in the assertion that near . 

the origin of the crack there is a very high stress concentration. 

It is quite obvious that these ultimate stresses may lead not only 

2 

to the development of the crack, but also to changes in the material 

itself. Therefore, the elastic-plastic energy criterion was developed. 

The work done by Olesiak and Wnuk ['"11J, and by Wnuk Ll5, 16J can 

be considered the major step into the extension of energy consideration 

to elastic-plastic materials. In those works, various types of frac­

tures were discussed on the basis of energy consideration, and a new 

model of a crack with associated plastic zones extending from the tip 

of the crack was developed. An equation for critical stress at the 

crack tip was also developed. The difference between elasticity and 

plasticity in fracture mechanics has not been yet a�equately clarified. 



To the author's knowledge, we are now in a period when higher­

stren0th materials, new design ideas, and pressures from the com­

petition demand an ability to plan for fracture safety in situations 

where past experience is very limited. If fracture mechanics is to 

be used in the design of structures, a better understanding of the 

mechanism of crack extension is indispensable. In this thesis, a 

new idea about the elastic-plastic stress distribution at the crack 

tip is introduced. A modification of the elastic-plastic boundary 

due to the crack-tip-shifting phenomenan is investigated. Also, a 

set of equations governing the elastic-plastic stress and energy 

distribution close to the fracture front are derived in the thesis. 

Finally, a modified fracture criterion is presented to make the 

thesis complete. 

1. 2. Thesis Outline 

In the study of fracture mechanics in solids, the major interest 

centers around the crack tip zone. A penny-shaped crack having the 

diameter 2L is introduced for investigation. As mentioned, there will 

exist a plastic zone due to the high stress concentration and it is 

located at the crack tip. A plausible explanation for such plastic 

behavior develops from continuum mechanics. It has been shown LlBJ · 

that the density, and consequently the volume, does not change even 

for very large plastic deformations. Thus, in the plastic range, a 

material can be considered as incompressible, (see Appendix I). 

3 
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In Chapter I I, the elastic and plastic stress components are 

postulated within the accuracy of certain unknown parameters. The 

generalized Hooke's law is employed for the elastic region, while the 

plastic stress and strain components are obtained through the appli­

cation of the Huber-Mises-Hencky plasticity condition and the Hencky­

Ilyushin constitutive equations. The stress analysis results in 

equations (2.3. 1) and (2. 3. 7a) indicate there is an inverse square-root 

stress singularity at the "shifted" crack leading edge. This stress 

singularity is the driving force for the crack tip to propagate� The 

common elastic-plastic stress components along the boundary have been 

derived in equations (2. 5. 13-18). The deviatoric stress components. 

which govern the yielding condition are given by equations (2. 4. 1) 

and (2. 4. 2). All these distributions are shown in plots. 

With increasin� applied load, for instance for tension perpen­

dicular to the crack surface, a small plastic zone develops at the 

leading edge of the crack. Within this zone stresses are required to 

obey the plasticity equations. Some crack tip investigations indicated 

the interesting fact that the apparent tip of the crack is shifted with 

respect to the true crack front. The shifting distance under the 

antiplane shear condition was found by Rice L19J. Interestingly it 

was equal to the half of the plastic zone dimension. 

Our own investigation of the crack tip shifting effect for 

the tensile fracture mode of equation (3.3.4) agrees well with 

Rice's observation at least for one particular case of � = ½• 



EquQtion (3. 3. 4) is believed to be the unified equation of the crack 

tip shifting distance. It is valid for different strengths of 

singularity � • 

In Chapter IV, after evaluating the energy densities, with the 

application of minimum potential energy principle, the generalized 

elastic-plastic modification factor "A" which was introduced in 

Chapter I I, can be determined. The final result in equation (4. 3.10) 

shows that the factor "A" is a function of Poisson's ratio as well 

as the dimensionless load >,.__ .  Also, the effect of the type of 

stress singularity is discussed. 

The critical stress is evaluated in Chapter V by using the 

energy components from Chapt_er IV and the principle of energy balance. 

The result presented by equation (5. 3. 10) is found to deviate from 

the one obtained by Sack and Sneddon L6,5J for a purely elastic 

solid. The discrepancy is particularly pronounced for a crack length 

2 2 of order K IC / Y or less, where KIC denotes th� Irwin K-factor. Of 

course our result is only an approximation but it indicates a trend. 

For a crack length equal to the characteristic length t� Kie/ v
2, 

the critical stress for the elastic-plastic solid becomes a constant, 

while for a purely elastic solid the critical stress approaches 

infinity. This is shown in Figure 22. 

In the last part of this thesis, Chapter V I, the important 

summary of results is presented along with an engineering discussion 

of the applicability of the thesis. 

5 



The supplementary analyses of the coefficient of lateral plastic 

deformation and reduced crack tip shifting distance are included in 

Appendix I and I I. 

6 



CHAPTER II 

ELASTIC AND PLASTIC ANALYSES AROUND THE PENNY-SHAPED CRACK 

The stress and strain components of the elastic and plastic 

regions around the crack tip will be derived for a particular geometry. 

The geometry chosen here is that of an infinitely large body, as 

shown in Figure 1, having a central circular crack of diameter 2L. 

The elastic body is loaded with stress P0 in the Z-direction at an 

infinite edge. A cylindrical coordinate system (r, z, e) is used. 

The initial crack will remain stationary or tend to extend. The ex­

perimental evidence indicates that there is a plastic region developed 

in the very vicinity of the crack tip. Our aim in this paper is to 

determine theoretically the shape of this region and the amount of 

energy dissipated therein. After a kinematically admissible strain 

field is chosen, the remaining free parameters will be determined by 

use of the variational extreme principle. The critical stress which 

precipitates the catastrophic fractuTe, will be derived from an 

energy balance criterion, which is similar in form to the Griffith 

equation except for the new correction term. The term results from 

the plastic E 1ergy dissipation expended on the irreversible deforma­

tion in the vicinity of the crack front. As this approach is based 

upon the dominant singularity only, it should be noted, that the 

validity of t1-e correction term appearing in the fracture criterion 

is restricted to small values of load to yield stress ratio. 



It will be shown that when the ratio of applied load to the yield 

stress tends to zero our result reduces to the Griffith classical 

formulas. 

2,1. Postulation of Strain Components in Elastic Region 

Sneddon's solution for purely elastic stress field is used in 

postulating new elastic and· plastic strains in the front of the crack 

tip. The elastic stress distribution found by Sneddon L5J in the 

immediate vicinity of the fracture front is 

0
cfe = 2P0( 1 

)
½

( . «f') - - 2 v cos-
7f. 2s 2 

1 

+ 0(�2) 

8 

o
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2 

1 cos5lf) + o(�) 4 2 (2. 1. 1) 

0
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rz /[ 2.& 2 
sin r cos 3Y' ) + 0($,�} 2 

where Po denotes the stress applied perpendicular to the crack surface 

in the Z-direction, S is the ratio of the coordinate S 1 to the half 
1 

crack length L (see Fig�re 1). The term 0 ( � 2) vanishes for � - o 

and is assumed to be negligibly small in the entire considered region, 

i. e. close to the crack front. 



Knowing the stress components, we may apply the generalized 

Hooke's law to find the elastic strain distribution 

oce 1 ro 
c:. =EL 09 
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t/ re E l re 

o
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(2.1.2) 

After some manipulation, the corresponding elastic strains are 

found as 
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where 

h = 1 - 2V 

or re-writing equation (2.1. 3) in a shortened form, we have 

o K E = -. R (  UJ) r j2S T 

o K )I zr = )2S ZR ( � ) 

10 

(2. 1. 3a) 

(2. 1. 4) 

where, by comparing with equation (2.1. 3) and equations (2. 1. 4), the 

values of K-factor and the angular functions are 

R ( tp) 
'P 3'1' 

= 4h cos 2 - 2 sin 2 sin f 

S('f) =O 

( ) 
tp . 31/J . ,h Z � = 4h cos 2 + 2 sin 2 srn T 

ZR (tv) · 3'-I' · ill 
1 = 4 sin 2 sin T 



As we have mentioned, the classical stress and strain analyses 

by Sneddon, true for a purely elastic solid, are not descriptive to 

the real material behavior. Therefore we shall investigate certain 

stress and strain fields which will better account for both the 

elastic and plastic behavior of the material due to the high stress 

concentration at the crack tip. 

Here, let us postulate the strains outside the plastic zone 

but still close to the crack tip; only the dominant singularity 

term is taken into account. Using the tensorial notation based on 

0 the Sneddon's strain field E .. , we have lJ 

11 

e E .. lJ 
(2. 1.6) 

We assume that al though the angula-.c distributions R, e, Z 

and ZR do not change, they are shifted away from the crack tip by a 

certain distance b O • The amplitude A will be .left as a free 

parameter subject to determination. The elastic modification factor 

and crack tip shifting distance will be investigated in the following 

chapters. 

The tensorial relationship in (2. 1.6) is expanded in the fol-

lowing way 

e
E = 

r 

l 
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(2.1.7) 

e v e \/ 0 Pre = d 0z = 

2. 2. Postulation of Strain Components in the Plastic Region 

A similar approach can be applied in dealing with the strain 

components in the plastic region. 

Invoking the experimental evidence gathered by Gerberich and 

Swedlow L20J, we may postulate plastic strains in the following way 

E. .. lJ 

The strength of singularity � in the above equation may vary 

between p = ½ for a limiting case of a purely brittle solid and � = 1 

for a perfectly elastic-plastic solid. The intermediate values of 

� correspond to a certain amount of strain-hardening, � ::: � � 1, 

c. f. Hutchinson L21J. 

In expanded forms equation (2. 2. 1) reads 

PE 
PAK R ( � ) r =� 

l PE= e 
PAK e cf) = 
�tl 



13 

(2. 2.2) 

p PAK 
Yzr = �/ ZR ( f ) 

Py = Py = O # re rJ Bz 

For convenience in further derivations, let us assume the elastic 

and plastic modification factors have the same value, therefore 

This constant A will be called the generalized elastic-plastic 

modification factor in the following chapters. 

2. 3. Derivation of the Stress Components in Elastic and Plastic Regions 

By applying the generalized Hooke's law and substituting the 

functions R, f), Z and ZR, the stresses for the elastic region take 

the form 

= 
2YA"-L 
/t 

e 2YAA... r J __ J .. (1 3 � 
:-.r" - ,7(.. L 2 (  S - & 0 ) 

2 -2 sin 'f cos -2 ) 
L.zr-

e _,,,,., e-1"" 0 LrQ = L e z = 

Here Y is the yield stress of the material at uniaxial tension. 

The dimensionless load is defined as 

243647 
SOUTH T 
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(2. 3. 2) 

Again, note that the shift distance S 0, the singularity strength 

� and generalized elastic-plastic modification factor A are yet unknown 

and they are subject to determjnation in later chapters. 

In deriving the plastic stresses, since Hooke's law is no longer 

applicable in plastic region, we have to make use of some non-linear 

theorems of the theory of plasticity. If we choose to apply the 

Hencky-Ilyushin theory, then the plastic stress-strain relations are 

given as fol lows 

1P ,J _ r1. P-C 2 d' zr - P zr 

where y5 = y5 (r,e,z) is a function named the generalized modulus of 

plastic deformation [""1sJ. 

In the elastic region and at the boundary between both regions the 

value of y5 is a constant, i. e . 

. � = 1 
2G 

In order to solve equations (2.3. 3) for plastic stresses, we 

will have to introduce more relationships. First of ail we employ the 

criterion given by Huber-Mises-I-Iencky according to which "yielding 



takes place whenever the stress intensity P.-<. reaches the yield 
Vl 

stress Y of the material at simple tension'', or mathematically, 

+ 6 (P--,,--- 2 + P--r 2 + P-,-- 2)J2- == y Lre Lez Lzr 

Second, the dilatational stress-strain relation in the theory 

of elasticity can be applied equally well in plasticity for small 

strains, i.e. 

15 

With equations (2.2.2) and the six equations from (2.3. 3), (2.3.5) and 

(2.3.6) in which five of them are independent, we can solve for the 

plastic stress components. 

After some mathematical manipulation, we obtain the plastic 

stresses as follows 

+ 2 h cos �)J 
2 

sin 
31}1 f sin 2 
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where the notations are 

3ll' cos 2 

2 2� If l + 4 h cos -)2 
2 l (2.3.7b) 

Equations (2. 3. 7) are the general forms for plastic stresses. 

For the strength singularity � equal to ½, the plastic stresses in 

the plastic region close to the boundary become 

� y 
(1+.V) (4 cos 2) + m (�) 

(-3 sin� sin�� + 2 h cos f)J 
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1 r P oA 'I' Y 
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(2. 3. 7a) 
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In making a comparison among the results of equations (2. 1.1), 

(2. 3. 1) and (2.3.7a) , the stress component Pcf has been taken as an 
z 

example and plotted in Figure 2. 

2.4. Deviatoric Stress Components 

17 

Equations (2.3-7a) determine the plastic stresses close or along 

the boundary. In this section we will work out the deviatoric stress 

components which in fact govern the yielding process.* Using (2. 3.7a) 

we can write the components of the plastic stress deviator as follows 

p()i - p_,. 8 Uz 

p
() - p

(J z r 

p-Czr 

P-Cre 

y 
3 m(f) (-3 

y (6 3 m (�) 
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3 4' tlJ 
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3�) 2 

3
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2 

(2. 4.1) 

The graphical distributions of these deviatoric stresses are 

shown in Figure 3, 4, 5 and 6. It is seen that the singular terms 

do cancel out and the deviatoric stress is therefore constant for a 

fixed value oft• 

*P. w. Bridgeman ["'2sJ has demonstrated that the hydrostatic 
part of the stress tensor even at very high normal pressures has little 
influence on the yieldjng process. 
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Similarly, the elastic deviatoric stress components can be de­

rived from equations (2.3.1) . Here the singular terms do not cancel 

and we recover the classical singularity of the inverse square-root 

type. The difference between these expressions and Sneddon's solution 

is in the shifting distance b 
O 

and the modification factor A. 

+ l cos 5
\JJ J 4 2 

+ l  cos 5 '1JJ 
4 2 

e e 
�re = Lez = O 

cos 2 
1 52'-J>J 2 cos 

For a better comparison, the third deviatoric component has been 

plotted in Figure 7. 

2. 5. Matching the Elastic and Plastic Stresses at the Elastic-Plastic 
Boundary 

To check the elastic and plastic stresses just derived, let us 

investigate the stresses in both regions as given by �quations (2.3.1) 



and (2. 3.7a). At the elastic-plastic boundary S-x- = �-x-(f), the 

stresses evaluated should of course satisfy the matching condition, 

namely, 

Analytically, we may investigate the _elastic stress intensity 

19 

After substituting the values for elastic stresses from equations 

(2.3.1), we have the final elastic stress intensity 

According to the yielding criterion in the theory of plasticity, 

this stress intensity should reach the yield stress Y when c3 = � *' 
that is 

The combination of equations (2.5. 3) and (2. 5.4) gives 

(2.5. 5) 



20 

Solving this equation for S *' we have 

C C 1 r 'AA. J2 C = 0 + - L - m ( llJ ) 
7(- O 2 /C T (2. 5.6) 

This is the sought-for relation for the elastic-plastic 

boundary. However, the crack tip shifting distance enters here as 

a yet unknown function. 

On the other hand, the plastic stress intensity of the Huber­

Mises-Hencky' s yielding criterion in equation (2. 3.5) can be derived in 

the form of 

Solving for the generalized modulus of plastic deformation, we obtain 

(2.5. 8) 

Recalling that the generalized modulus from equation (2. 3�4) is 

a constant along the boundary, we rewrite (2.5. 8) as follows 

d __ .1_ __ 2PJ< ( f ) ( ) JU p m 2.5. 9 2G Y �* �= b * 

This is the additional relations0ip defining �*. Substituting 

equation (2. 5.6) into equation (2. 5.9) ,  we have 



L _ 2AK m( LP) 
2

G - y { &o + ½ £"!).c1' m('J')ft 

which we can solve for the crack shifting distance � 0 

21 

l A'A.. 2 - 2 L -;c- m(f )J (2. 5. 11) 

By substituting the value of S O from equation (2. s. 11) back to 

equation (2. 5. 6), we end up with the final expression for E,* 

and for � = ½, 

(2. 5. 12a) 

With the value of �* as in equation (2. 5.12a) , we may match the de­

rived stresses in equations (2. 4. 1) and equations (2. 4. 7) . Noting 

the strength·singularity � = ½, it can be verified that along the 

boundary S = � *' the elastic stresses are identical to the plastic 

stresses, namely 

e6 / p,_-, / 4 VY � 
e = u e = 

m ( f) cos 2 
$:=�* �=�* 

(2. 5. 13) 

(2. 5. 14) 



Also, the mean stress which is defined as 

P() == 1 (P-<' + P_/ + P.-/) m 3 u r Ue <.J z 

can be shown to match along the boundary: 

cos .!£.. 
2 

22 

( 2. 5. 15) 

( 2. 5. 16) 

(2. 5. 17) 

(2. 5. 18) 

Here the values of m (  f) and £* are given by equations (2. 3. ?b) and 

( 2. 5. 12a), respectively. 

To complete this section, the distributions of these common 

str�ss components along the elastic-plastic boundary are illustrated 

in Figures 8, 9, 10, 11 and 12. 

2. 6. Stress Analysis Based on the Maximum Principal Stress Criterion 

After finishing the stress and strain analyses in this chapter 

through the Huber-Mises-Hencky criterion, we shall include the method 



of finding stress components based on the maximum princ ipal stress. 

According to ear l ier researchers ,  the Huber-Mises-Hencky criter ion 

works well for metals however the maximum principal stress criterion 

may be justified better for sol ids exhibiting a fiber-like structure 

as for instance high-linear polymers. 

In order to f ind the principal stresses, we have to find the 

roots of the following cubic equation 

o ,  -Crz 

0 == 0 

--C zr' o ,  6 - d'z 

The roots are found to be 

Let us denote the largest root of the equation (2. 6. 2) as 0"1, 

therefore 

-/ C>r + dz r
( 

cr'r - Oz
)

2 + �
2 � 

\Jl == 2 + L 2 L rz_/ 

By substituting the elastic stress components from equation (2. 3 . 1) 
e 

into (2 . 6. 3), and denoting it as 01, we have 
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Equating equation (2. 6. 4 )  to a positive constant multiple of the 

yielding stress, o<. Y, along the elastic-plastic boundary, that is 

and so lving for b* , we get 
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The plastic stress field is obtained by su1- stituting equation· 

(2. 6.6 ) into the elastic stress distribution given by equation (2. 3. 1 ) .  

The final forms are 

cos � + sin 4' 
2 

tf 
p

er:

_ 2Y . 2 »  cos 2 
V of... 'I' • 1IJ cos 2 + sin 1 

� cos 'I' l cos 5 'l' 
p 

(J = 2Y . 4 2 4 2 

2 o/.. cos � + sin f 

1 . 1 \J  cos 3lf S J.n 1 
P'(, = .J:f__ • 2 . _2_ 

zr o< cos � + sin f 
2 



p.....,--- - P_.-r 0 l re le z 

The plastic stress distributions in eq11ations (2.6. 7 )  are 

plotted in Figures 13, 14 and 15. 
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Figure 16 illustrates the comparison between the stress dis­

tribution for the pure elastic range and for the elastic-plastic range 

as it results from the maximum principal stress criterion. It has been 

shown that the maximum principal stress criterion works better in 

polymers where the density change at the fracture front is consider­

able due to the crazing process. The crazing process is governed by 



CHAPTER III 

INVESTIGATION OF CRACK TIP SHIFTING DISTANCE, ELASTIC-PLASTIC 

BOUNDARY AND STRENGTH SINGULARITY 

In this chapter the equations for the crack shifting distance 

S 0 , elastic-plastic boundary � *  and strength singularity � are de­

rived and discussed. 

3.1. Derivation of Crack Shifting Distance and Elastic-Plastic 
Boundary for the Case of � = ½• 
Recalling equation (2.s.11), we see that the distance �o is a 

function of angle lj) and strength singularity � , that is 

( 3 .  1 .  1 )  

The full expression for £ 0 is 

(3.1.2) 

Let us investigate the value of the crack shifting distance � o 

at the lower value of � = ½, i . e. for a quasi-brittle material. 

Thus 

( 3 .  L 3 )  

and from equation (2.s.12a), we �ave 

( 3 . 1 . 4 )  
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After comp aring equ at ions  ( 3 . 1 . 3 ) and ( 3 . 1 . 4 ) ,  we have 

Th is  me ans that in the case  o f  f = ½, the crack sh i ft ing  d i s ­

tance is  one h a l f  o f  the crit ical  di stance measured from the crack t ip 

to the e l astic-p l ast i c  boundary . The resu lt we have arrived at in thi s  

sect ion agree s  we l l  with e arl ier obse_rvations by Hult  and McCl intock 

L22J and J .  Rice  [19J .  

3 . 2 . Derivat ion o f  Crack Sh i ft ing Distance and Elastic-Pl ast i c  
Boundary for the Case  of  f = 1 .  

A more j usti f ied value o f  {? ,  at least  for an ide a l ly e l astic­

p l astic  sol id i s  / =  1 .  The derivat ions and d i s cu s s io n  are pre sented 

in th i s  sec ·'.·. ion . 

From equ at ion ( 3 . L 2) ,  for /3 = 1 ,  we h ave the sh i ft in g  d i stance 

r ( rA A- ( )J _
2
1 r.p.__;- m ( uJ ) ·J2 

a, o  'f , l ) = L 7[ m f - L / '- I 

and from equat ion  ( 2 . 5 . 1 2 ) ,  for � = 1 ,  we get the el a s t i c -p l astic  

boundary as  

3 . 3 . Plots  and Dis cu s s ion of  General Results  

The graph i c a l  repre sentat ion of  the  crack shi fting d i stance S 0 

and e l astic-p lastic  bound ary � * for the cases  o f  P z ½ and f = l 



are given in Figure 17 and Figures 18, 19, 20, respectively. Let us 

summarize  here the impoTtant results of this chapter. 

and 

With equations (3.3.1 )  and (3.3. 2), we conclude now that 

or 

This relates the crack tip shifting .distance to the dimension of the 

elastic-plastic boundary for any given value of the strength singu­

larity P • 

It is seen that in the case of f =½, equation (3. 3.4) will 

give the same result as equation (3. 1. 5 ) ,  that is 

In the case of � = 1, equation (3.3.4)  gives the same value as 

equation (3. 2. 1 ) or 
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As we mentioned in Chapter I I, the strength of the singularity 

may vary in the interval of ½ != e � 1, the lower value being 

appropriate for high strain hardening, while f approaches unity for 

zero strain hardening (see Hutchinson L21J ). 

Since �: .is small compared to �-1f' , we can conclude that the 

crack tip shifting distance S0 changes from about half of the 

plastic zone size when f = ½ to almost full value of the plastic 

zone dimension when f = 1 .  

All the intermediate values of the strength singularity will 

lead to a crack tip shifting distance enclosed within the interval 
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(3. 3.7) 



CHAPTER IV 

INVESTIGATION OF THE ELASTIC-PLAST IC MODIFICATION FACTOR 

The modification factor "A" is determined by the application of 

the minimum potential energy principle. It is found that the value 

of factor "A" depends on >--.., i.e. the ratio of load to yield stress; 

it is also shown that when >-- tends to zero, the factor "A" tends 

to unlty which agrees with the result obtained by Sneddon for a 

purely elastic solid. 

4 .1. Evaluation of Energy Densities 

The total strain energy of an ideally homogenous, isotropic 

and elastic-plastic material can be expressed in the following form : 

Total Strain Energy = (Total Elastic Energy) + 
(Total Plastic Energy) 

Or expressed in terms of  energy components, 

Total Strain Energy = L(Elastic Energy of Whole Region) 

( 4 . 1 . 1 )  

- (Elastic Energy in Plastic Region)J 
+ (Total Plastic Energy in Plastic 

Region) ( 4 .  1 . 2 )  

Mathematically, 

(4 . 1 . 3) 



or in terms of energy components, 
�a:, 

U = [" J(eu
v 

+ eu
f ) dV - 1  (eu

v + eu
f) dVJ 

v�-� � 

+ LJ(Pu + Pu )  d VJ 
V f 

Vp 
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(4 . 1 . 4 )  

where, from L23J, the volume energy density uv and the distortional 

energy ?ensity uf in the elastic and plastic regions are g iven by the 

following relations 

eu = 2(l+J)) • 
e (S'i2 

f 3 2E 

Pu = 3(1 - 2  }}) tc( r -+-

V 2E 
· p  0:, + P cf'z 

3 

Pu = f 
2(1

;
J/) 

(f € i 
y2 - -) 
2E 

(4 . 1 . 5) 

) 2 

( 4 . 1 . 6 ) 

where the elastic stress intensity and plastic strain intensity are 

defined as 

1 
e 2  e 2  e

-C
2

J
2 

+ 6 ( L re + Lez + r z )  ( 4 . 1 . 7 ) 

(4 . 1 . 8 )  
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Equation (4. 1 . 4 )  is an exact expression for the energy relation ; 

however, we may simplify this equat ion by proper physical interpre­

tation . 

First, the elastic energy of the whole region in Sneddon ' s  

solution was 
+ ca:,  

U
O 

:= J O
U 

8 (1- »2) L3 
p

2 
dV = ____ ___._ __ _ 

3E ( 4 . 1 . 9 ) 

- ca::>  

For our case, we sh - · ld put the proper half crack length as the sum 

of L and the reduced shifting distance (see Appendix I I), and replace p0 

by the product (AP0 ) .  Therefore the reduced elastic energy becomes 

u 
red = A2 8 (1- .V2) (L + L cS red) 3 P0

2 

3E 

( 4 . 1 . 1 0 ) 

where the reduced crack tip shifting distance Sred is derived in 

Appendix I I. 

Second, we have shown that the total elastic energy consists 

of two parts, the elastic energy of the whole region and the elastic 

energy in the plastic region. However, under practical conditions, the 

component of the elastic energy in the plastic region is relatively small 

and negligible compared to the elastic energy of the whole region. 

Hence we may conclude that the total elastic energy is represented by 

the reduced elastic energy 

(4 .1.11)  
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Similarly , in dealing with the total plastic energy in the plastic 

region, the distortional part of energy is much more effective than the 

volume energy component. After neglecting the volume energy component, 

we have 

up � j p Ur dV  

"'r 
Finally, the total energy in equation - (4. 1.4) is reduced to 

u 

(4. 1. 12) 

(4. 1. 13) 

It is noticed that neglecting the reduction of elastic energy in 

the plastic region will tend to increase the total energy in equation 

. (4. 1.4) ; however, neglecting the addition of the volume energy component 

will decrease the total energy. Therefore, it is believed that due 

to the mutual compensation of these neglected parts, the result in 

equation (4. 1. 13) is a reasonable approximation • . 

The plastic energy in equation (4. 1. 12) can be evaluated from 

integration in the whole plastic region. The distorsional plastic 

energy density can be obtained from (4. 1. 6) ; therefore 

(4. 1. 14) 



The plastic strain intensity is taken from equation (4. 1. 8 ) ,  

After substituting strain components from (2. 2. 2) , we have 

The angular functions are obtained from equations (2. 1. 5 } ; 

hence the final plastic strain intensity is given by 
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· 
2AK · 2 

= (l+.V) $'3 L3 sin 'f 2 2 � l 
+ 4 (1-2 .V )  cos 2 J 2 (4. 1. 15) 

or using the shortened notation, we have 

(4. l. 15a) 

The differential volume o.s shown in Figure 21 is 

where �l = L S 

and the integration limits are 

0 ::!= bl
� 

Sl ( f )  

0 � r �  2 7(. 



Hence, the integrat j on in  equation (4. 1.14) becomes 

zn:. � 2 
up 

= 
J 

J Y ( ;; ,v l ,["2�2"-- ( k/ m ( f ) - 1 J 
0 

0 

(4. 1 . 16) 

A brief iummary . of equations for evaluating energy components 

is presented here for convenience of further derivation : 

u 
0 

= 8(1- JJ 2) L 3 Po 
2 

3E 

4.2. Application of Principle of. Minimum Potential Energy 

(4. 1. 17) 

As in the theory of elasticity £23J, the potential energy n 

of the system is defined as 

n = u - w 

where U is the potential energy of deformation and -W represents the 

potential energy of the external forces acting on the body if the 

potent ial energy of these forces for the unstressed condition is 

taken to be zero. 

The principle of minimum potential energy states that, "the 

stable equilibrium state of a system is that for which the potential 
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energy of the system attains the minimum" ,  

variation of n van ishes: 

<;, n = � ( U  - W )  = 0 

i. e • the first 

The operator " � " means partial di fferentiation with respect to the 

assumed system parameters. 

Before we apply the principle of potential energy, as given by 

equation (4.2. 2), the potential energy of deformation U must be 

evaluated from equations (4. 1. 17); the change in potential energy of 

external forces is evaluated as 

W = j Ti u i dS 

where T i are the tractions appl ied to the surface of the solid, 

ui is the k inematically admissible displacement field, and S denotes 

the part of the body surface on which the forces Ti are appl ied. 

as 

Equ � ition (4.2. 3) can also be written in an expanded form 

W = j ( Tr ur + r9 u 9 + T 
2 

u
2

) dS  

s 
For our loading condition 

and 

u 6 = 0 for z 0 
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then equation (4.2.4) becomes 

w 
= I P0 

u
2 

dS 

s 
where dS = 2 n rdr; thus 

4. 3. Evaluation of the Factor "A" for Quasi-brittle Solids 

The value of the amplitude "A" for brittle solids, i. e. 
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� = ½, is evaluated in this section by applying the minimum potential 

energy principle as discussed in the previous section. 

From equations (4.1.17),  the elastic energy is 

where the reduced crack shifting distance we have from the Appendix I I  

is 

Therefore the elast � c  energy is 

where 

l 



The total plastic energy as 

:h(. � · - J ) '•y Z(l+ ;J) 
Up - 3E 

0 0 

• (L + �l cos 'f ) ·  

given by equation (4.1.17) is 

L2:c_?... 
(�l / m(  f ) - 1J 

2 7C �l d � l d f 

After integrating with respect to � 1, we get 

(4.3.la) 

where the elastic-plastic boundary is given by equation (3.1.4), i.e. 

After substituting and performing the integration, we have the final 

result as follows 

In a shorter form ., 

38 



Hence it is seen that the energy dissipated in th� plastic zo�e is 

proportional to the fourth power of the load ratio. Also, � =  P0/Y 

since 
2 

u O o,& � • 

Symbols used in Equation (4. 3.2) are 

U = 
8 ( 1- )_)

'Z ) L 3P o 
2 

o 3E 

C = 45 H(.V ) 3 32 fi. 2 (1- .U) 

H ( V) = 1 + 16 (1-2 .V ) 2 + 1§. (l-2 .v )4 

Cf q 

As we know the total strain energy is the sum of elastic and 

plastic  energies, or 

u = u + u e p 

= uo l A
2 

+ (Cl + C3) A
4 A 2J 

The potential energy attributed to the external forces may be 

obtained from equation (4. 2. 5a). However, instead of tedious inte­

gration we may apply the result of Sadeghi L24J that the external 

work is twice the elastic energy divided_ by A; therefore, 

With equations (4.3. 3) and (4.3. 4 )  and from equation (4. 2. 2) we 

are ready to apply the principle of the minimum potential energy and 

finally to evaluate the factor "A" • 
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Thus 

� n = · b L ( A2 
U8 + up ) - 2A U8J = o 

We substitute the elasti c and plastic energy components and 

write equation (4.3.5) in an expanded form 

Jn � 2 4 2 4 . J A = �· A L U0 ( A  + C1 A 'll- + c3 A �2 ) 

- U0 ( 2A + 2C1 A3 �2 )J 

= 0 

After differentiation, we get 

2 2 2 3 
( A - 1 ) - 3C l 'IL A + ( 2c1 + 2c3 ) X A = 0 (4.3. 6 )  

This cubic equation we shall solve by approximation method. Let 

us express the sought-for factor A as a function of  .A. in the follow­

ing way 

A 2 = 1 + 2A '1\.. 2 + ( A 2 + 2A ) --:::l. 4 + • • • 
1 1 2 

A3 = 1 + 3A1 ?-.2 + (3Ai + 3A2) :iL4 
+ • • ·  

(4. 3. 7) 

Subst ituting (4. 3. 7) into (4. 3 . 6 )  and neglecting the terms of order 

higher than � 4 , we get 

(4. 3. 8) 
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Now, we solve for A1 and A2 by letting the coeffitients of the terms 

,A..2 and � to be equal to zero, respectively. We have 

A1 = c1 - 2c3 

A2 = - 6C3 A1 = - 6C1 c3 + 12 c; 

where the constants are 

_ Cf l3 H2 (.V )  Cl - 2 J2 n. 2 

C3 = 45 H b2) ) 
32 7[_ ( 1- .V) 

H (  V) = 1 + 16 (1-2 .v)2 + 16 (l-2v) 4 

Cf q 

The final expression for the modification factor in the case 

of p =½ has the following form 

135 H (.V) -
16 7C z (1- .v) 

45 H ( V) J A_ 2 
16 7£,2 ( 1 - V )  

'? � H *( JJ) ( ) L ;..._,:..
J

...;:;._.;.. " ;,..__.i.---'-- _ 45 H J/ J � + . • .  2 f2 ;7[ 2 16 7[.2 (1-.V) 
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(4. 3.10) 

To be more specific, let us consider two extreme cases : 

a) For an incompressible solid, ).,) =½; then equation (4. 3.10) 
gives 

2 4 
A = 1 - o . on >-.:. + o . orn A_ + 

b) For )) =  0, we have 

A =  1 - 0. 0Cf7 A..2 + 0. 372 A._4 + · · · 
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From the general solution in equation (4. 3. 10), it is found that 

the value of the factor A is a function of the ratio of load to yield 

stres�; and the Poisson ratio. Whenever A tends to zero, the value 

of A is unite which agrees with the result of Sneddon. The correction 

terms appearing in (4.3. 10). are small, therefore it may be concluded 

that the major influence of the plastic zone on the stress distribution 

around the fracture front can be attributed to the crack tip shifting 

distance, as discussed earlier . 



CHAPTER V 

MODIF ICATION OF FRACTURE CR ITER ION 

Because of different approaches in evaluating the energy compo­

nents in the very vicinity of the crack tip, we may expect different 

results for the critical stress opening the crack. A new value for the 

critical stress -at which the crack will start to propagate is obtained 

from a modified fracture criterion. Our result is comparable to the 

Griffith- Irwin criterion for large cracks, but it deviates considerably 

from the classical solution in the range of crack length close to the 

"characteristic" length. The latter is found to be proportional to · 

the square of the rat io of the critical K-factor to the yield stress Y. 

5.1. The Energy Balance at the Crack Tip 

The explanation of a fracture on the basis of the energy balance 

of a cracked body was given by Griffith. Irwin arrived at the same 

fracture criterion through the calculation of the work done locally 

at the crack tip during a small virtual increase in crack length. 

We shall now consider Irwin's approach and make use of the 

energy components in Chapter IV. Let us investigate the effects of 

a small, virtual change of the crack tip position A L. The elastic­

plastic region at the crack tip will undergo a small distortion and 

the forces acting on it will do work. There will be a certain amount 

of the external work 6 W which can be evaluated from equation ( 4. 3. 4) . 



A certain amount of this dissipated work is transformed into 

another form of free energy. This portion of energy will be called 

SE, or surface energy which is necessary to create the new surface. 

The remaining energy is stored as the strain energy U e or dissipated 

as the plastic work U
p 

within the plastic region. The whole process 

is assumed to take place slowly and isothermally, so that the in­

volved kinetic energy and other possible sources of energy dissi­

pation are small and negligible. 

From the first law of thermodynamics, the energy balance can 

be expressed in the following incremental form 

. L W = 6
L 

U + .6L 
SE 

where �
L 

denotes the differential operator 
�
d
L

. 

5.2. Evaluation of Energy Components 

( 5 .  1 .  1 )  

The incremental form of equation (5.1.1) can be written in the 

form of partial differentiation as 

The component of external work can be obtained from equation 

(4.3. 4) ,  and we have 

44 



The total energy of the elastic and plastic regions is given by 

equation (4.1.13), 

j pu f  dV 

Vp 

The surface energy is defined as the product of the area and 

the specific energy. Mathematically, 

where L is the half crack length, J"' denotes the specific surface 

energy and the factor 2 exists due to symmetry • 

. 5.3. Modified Fracture Criterion for Quasi-brittle Solids 

A modified fract · re criterion will be derived for quasi-brittle 

solids, i. e. for p = � - The generalized energy balance equation 

is used to generate the criterion. 

By substituting equations (5. 2. 4), (5. 2. 2) and (5. 2.3) into 

equation (5. 2.1), we have 

45 

a a (w - U - Up) = _;-1 SE 
J L  e o 

(5. 3.1) 

Or substituting the expanded forms from equations (4. 3.1), (4. 3. 2) 

and (4. 3. 4), equation (5. 3 . 1) becomes 



A fter per forming the dif ferentiation, we have 

L (2A - A2) + (2C1 A3 - C1 A4 - C3 A4) �2 J 

• s(1- v2)L2 
P

2 _ 
E o - 4 .n )' L  

Th is we can solve for the critical stress 

·L n E J' J2 

2 (1- .v2)L 

..I 

• 

It should be noted, however , that P0 is also implicit in the dimen-. 

sionless load >.,_. 

with respect to P0 • 

We shall therefore proceed to resolve ( 5. 3.2) 

.,n. E/ .1.. 
We recognize L 

( 2) 
J 2 as Griffith cri ti-

2 1- .V L 
cal stress PG· For small >-... ,  the square root 

can be expanded if we recall that the following relations are true 

for the factor A 

2 4 
A = 1 + A 1 A.. + A2 A + . . .  

2 2 2 4 
A = 1 + 2A1 A + (A1 + 2A2) A_ + • • • 

A
3 = 1 + 3A1 >-..._2 + (3A1

2 + 3A )  A
4 + . . • 

A
4 = 1 + 4A1 ;C + (6 A1 

2 + 4 A2) � + • • • 
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Grouping and neglecting the terms of order higher than ;..._2, we get 

where 

Let ¢ = C1 - C2, then equation (5. 3. 2) becomes 

p = (1 _ &2. \ 2) p o 2 /"- G 

¢ = L 
9 ./3 H2 ( J) ) 

2 J2  7[ 2 

45 H (l/) J 
32 n 2 ( 1- .v ) 

(5. 3. 3a) 

From equation (5. 3. 3), we will work out a curve of dimensionless 

critical load Pcrit /Y versus dimens ionless crack L/L*. 

Equation (5. 3. 3) can be written as 

which we solve with respect to A_ .  The solution 

or s i mply 

p r 1 (_g)2 r1.. J 
p cri t 

= p G L l - 2 Y y.; (5. 3. 6) 
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is the sought- for f inal e xpression for the cr itical load opening the 

crack. It is seen th nt for the vanish i ngly smal l ratios of PG /Y, 

equation (5. 3. 5) reduces to the well -known Gr iffith-Sneddon-Sack 

formula. The correct ion factor 

1 

.1.__ � E Y • 1...J.. I'S W 
2 Y 2 ( 1 - .v2 ) L L 2 12  n_2 

45H 
32 7[2(1 - l) ) J 

plays a significant role only for the crack length sufficiently small. 

From Irwi n  [3J we may define the stress concentration factor 

E quation (5.3. 6) becomes the 

Pcr it 

If we introduce now a character istic length 

Kc 2 
L = --­* 

2 7C Y2 

then equation ( 5. 3. 7) gives 

pcr it 

S imilarly , it can be shown that 

PG = (2L* )½ 
y L 

(5. 3. 7) 

( 5.3. 8 ) 

( 5. 3 .9 ) 
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By substituting equation (5. 3. 9)  into (5. 3. 8 )  and denoting the dimen­

sionless crack . length by 'S , :S = L/L�-, we get 
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Pcrit = (2 (l _ gf_ ) y J s 5 (5.3. 10 ) 

where the value of ¢ is given by equation (5. 3.3a).  For ..V =  0. 3 

we have-

0 I = 0. 373 

.V = o .  3 

(5. 3. lOa) 

The comparison of the result of equation (5. 3.10) and the 

classical Griffith criterion is shown in Figure 22. 



CHAPTER VI 

CONCLUDING REMARKS 

The essential points of this thesis may now be summarized as 

follows : 

1. Engineering experience has demonstrated that most serious structure 

failures arise from unexpected extensions of pre-existing cracks 

or crack-like flaws. In practical applications the penny-shaped 

crack geometry can be considered whenever the flaws found inside 

the mater ial or on the material surface have the form of a circu­

lar defect. 

2. The results given in Chapter I I  describe the elastic and plastic 

analyses in an elastic-plastic solid containing an in itial crack 

of 2L diameter. The Huber-Mises-Hencky plasticity condition has 

been employed to explain the ductile behavior of metals. 

3. The stress analysis in sect ion (2. 6) based on the maximum princi­

pal stress criterion, is believed to be more justified for solids 

exhibiting a fiber-like structure such as high-linear (glass-like ) 

polymers. 

4. The mathematical infinite stress frequently referred to as the 

stress singularity at the crack tip is physically inadmissible. 

The idea of removing this singularity has been discussed in  

Chapter I I. We  did not completely succeed in removing the 

singularity in all cases; the quasi-brittle solid (for which 



� = ½) inherits the elastic type of singularity for the normal 

stresses, but the deviatoric components of the stress tensor are 

finite at the crack tip (see Figure 2). For an ideally elastic­

plastic solid in which the plastic strains behave as 1/$ , 

where S is the distance measured from the crack tip, we obtain 

a singularity-free stress distribution around the crack tip 

(see Figure 16). 

5. Equation (3. 3. 3) and equation (3. 3.4) are the derived formulae 

which govern the amount of crack tip shifting distance and the 

size of the elastic-plastic boundary. 

6. It is found in Chapter IV, equation (4. 3.10), that the value of . 

the elastic-plastic modification factor "A" is a function of the 

ratio of load to yield stress ( A). Whenever the dimensionless 

load ).._ tends to zero, the value of "A" approaches unity which 

agrees with the classical result of Sneddon. 

7. The modified critical stress precipitating a fracture as found in 

Chapter V is smaller than that given by Sack and Sneddon for a 

purely elastic solid. It compares well with the Irwin theory 
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of fracture except for very small crack lengths at which the 

plastic energy dissipation becomes the dominant controlling factor. 

8. This thesis discusses fracture in inelastic solids from the 

theoretical point of view. We believe intensive experimental 

evidence should be gathered before recommending our findings for 

the purpose of practical applications in specific engineering 

areas. 
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9. In general, the tensile crack toughness depends upon the amount of 

elastic constraint around the plastic zone. On the basis of 

fracture mechanics it can be said that a material would achieve 

optimum strength if it were fine in surface texture with coarse 

grain interior. 

10. The practical goal of fracture mechanics is not only to prevent 

failure but also to raise the efficiency in the control of fabri­

cation and quality control. A capability for optimization 

estimates which include fracture strength should be the ultimate 

goal. Therefore , the essential idea suggests that improvements 

in the fracture control require careful control of fabrication and 

repc ir procedures to mitigate such defects as weld and heat 

affected zone cracks and the development of brittle micro­

structures, and also various forms of mechanical damage during 

production, such as tool marks · and gouges. 



APPENDIX I 

COEFFICIENT OF LATERAL DEFORMATION IN ELASTIC AND PLASTIC REGIONS 

Since the coefficient of lateral deformation in elasticity, or 

Poisson's ratio is defined as 

or 

LI =  Unit lateral contraction 
Unit axial elongation 

V = - € (latera l) 
E (axial ) 

we may define the coefficient of lateral deformation in  the pl astic 

reg ion l)l in a similar way as 

- E  lateral 
E. axial 

Let us consider the case of a rod under uniaxial tension, O'
x

· 

The corresponding strain  will be E
x' as shown in Figure 23, then the 

other strains are 

Applying the dilational stress-strain relation 

E + E + E 
X y Z 

1-2 U ( CJ _ ,< _ (5 ) E X u y z 



substitut ing the s tress and strain components, we obtain 

E ( 1 .:. 2 2} ) 
= 1 -2 .v  <1 

X E X 

From this equation we may solve for the general form for the 

coefficient of lateral deformation as 

)) 1 = 1 
2 

1 -2.V (J X 
2E € x  

If the stressed rod is with in elastic region we have the stress­

strain relation from Hooke's law as 

E E  

Then 

, , 1  _ l_ _ 1 - 2 ].)  
V - 2 2 

This result checks with the definition of Poisson' s ratio. 

If the strain is large enough to be in the plastic region, from 

the Huber-Mises-Hencky yield criterion we get 

After substitution, we end up with the final form as 
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Th . t . 1 d . . b . - '\ 1 O y 
1 

-3 
is equa 10n s p otte 1n  F igure 23 y assuming v = .3, � - 0 

for mild steel. The graph shows the conclusion "At large strains 

in the plastic region, an initial ly elastic solid tends to be incom­

pressible, that is V 1 ___. -}". 
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APPENDIX I I  

EVALUAT ION OF REDUCED CRACK TIP SHIFTING DISTANCE 

The reduced crack tip shifting distance is defined as the 

diameter o f  a circle in which the area enclosed by the circle is equal 

to the area of the plastic region influenced by the real crack tip 

shifting distance . 

The area enclosed by the circle of reduced crack tip shifting 

distance is 

AREA - 1 7[ c 2 
- 4 ° red 

( A I I- 1 ) 

The area of the plastic region influenced by the real crack tip 

shifting distance i s  

Equating equations (AI I-1) and (AI I-2) gives 

1 C 2 -1 2n.1�( 4' )c 
4 7l 0red - d f & d 0 

0 0 

( A I I-2)  

(AII- 3) 

From equation (AI I-3) , we solve for reduced crack tip shifting distance 

and have 

( A I I-4 )  



S u bst i tut ing  b0 from e 9u a t i on ( 3 . 1 . 3 ) and i ntegrat i ng equ at i on 

(AI I -4 ) , we o bt a i n  

(AI I -5 ) 

wher e 

Th , va lue o f S r e d  evalu ated i n  equ at i on ( AI I -5 )  i s  u s e d  i n  

Chapter I V  for  der iv i ng r e duced  e l a s t i c  e ner gy Ured · 
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