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Meaning

Cylindrical coordinates

Purely elastic normal strains
Purely elastic normal stresses
Purely elastic shear stresses
Pure elastic shear strains
Young's modulus and shear modulus
Poisson's ratio

Displacement in r, & , and z directions,
respectively

Elastic normal strains
Elastic normal stresses
Elastic normal strains
Elastic shear stresses
Plastic shear strains

Plastic shear stresses
Plastic normal stresses
Plastic normal strains

Stress intensity

Strain intensity

Yield stress at uniaxial tension
Elastic strain energy density

Plastic strain energy density
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Meaning

Total strain energy

Work of external forces

Potential energy of the system

Half of major axis of the crack
Distance measured from the crack tip
Dimensionless load

Angle measured at the crack tip
Generalized modulus of plastic deformation
Maximum principal stress

Medium stress

Critical stress

Surface energy

Specific surface energy

Dimensionless crack length



CHAPTER I
INTRODUCT ION

l1.1. Historical Background

With the increasing attention to failure problems over the
last half century went a growing interest in the fracture process
in materials. Many previous investigators have studied the elastic
distributions around the cracks basing on the idea of Inglis ZP1_7*
who in 1913 was the first to study an internal crack by use of the
elliptical bounding surfaces. Probably the most important concept
put forth in this field was Griffith's hypothesis / 2/ of a brittle
fracture which was published in 1921. Employing the idea of Inglis
and the principle of conservation of energy, Griffith derived a
theoretical formula for the critical stress at the crack tip and a
criterion for crack instability.

A simplification of the energy method as initiated by Griffith
has been given by Irwin Z—S_7 who analyzed the energy exchange in the
immediate vicinity of the crack tip. Later Sander 174;7 expressed
the Griffith-Irwin criterion for crack extension in the form of a con-
tour integral. Meanwhile substantial work was done by Sneddon 1_5_7
and by Sack 1—6_7 in Great Britain. They have derived expressions

for the critical stress around a penny-shaped crack in an elastic

*¥Bracketed numbers refer to the references.



solid. In the United States, Westergaard 1—12_7 initially introduced
the complex variable technique into three-dimensional problems, and
Williams ZP14_7 gave a supplement on the problem of cracks by working
out relations for antisymmetric cases.

The energy point of view of fracture phenomena has been widely

and successfully developed by contemporary scientists, such as Orowan
/[ 7/, Mtt /8_/, Berry / 9_/, Goodier and Field / 10_/, and Dugdale
[~ll_7, etc.

It is of interest to note that there exist different points of
view concerning the magnitudes of stresses around the crack tip.
However, all investigators are unanimous in the assertion that near.
the origin of the crack there is a very high stres¢ concentration.

It is quite obvious that these ultimate stresses may lead not only

to the development of the crack, but also to changes in the material
itself. Therefore, the elastic-plastic energy criterion was developed.
The work done by Olesiak and Wnuk 1_17_7, and by Wnuk Z—IS, 16_7 can

be considered the major step into the extension of energy consideration
to elastic-plastic materials. In those works, various types of frac-
tures were discussed on the basis of energy consideration, and a new
model of a crack with associated plastic zones extending from the tip
of the crack was developed. An equation for critical stress at the
crack tip was also developed. The difference between elasticity and

plasticity in fracture mechanics has not been yet adequately clarified.



To the author's knowledge, we are now in a period when higher-
strencth materials, new design ideas, and pressures from the com-
petition demand an ability to plan for fracture safety in situations
where past experience is very limited. If fracture mechanics is to
be used in the design of structures, a better understanding of the
mechanism of crack extension is indispensable. In this thesis, a
new idea about the elastic-plastic stress distribution at the crack
tip is introduced. A modification of the elastic-plastic boundary
due to the crack-tip-shifting phenomenan is investigated. Also, a
set of equations governing the elastic-plastic stress and energy
distribution close to thc¢ fracture front are derived in the thesis.
Finally, a modified fracture criterion is presented to make the

thesis complete.

1.2. Thesis Outline

In the study of fracture mechanics in solids, the major interest
centers around the crack tip zone. A penny-shaped crack having the
diameter 2L is introduced for investigation. As mentioned, there will
exist a plastic zone due to the high stress concentration and it is
located at the crack tip. A plausible explanation for such plastic
behavior develops from continuum mechanics. It has been shown ZP18_7'
that the density, and consequently the volume, does not change even
for very large plastic deformations. Thus, in the plastic range, a

material can be considered as incompressible, (see Appendix I).



In Chapter II, the elastic and plastic stress compcnents are
postulated within the accuracy of certain unknown parameters. The
generalized Hooke's law is employed for the elastic region, while the
plastic stress and strain components are obtained through the appli-
cation of the Huber-Mises-Hencky plasticity condition and the Hencky-
Ilyushin constitutive equations. The stress analysis results in
equations (2.3.1) and (2.3.7a) indicate there is an inverse square-root
stress singularity at the '"shifted" crack leading edge. This stress
singularity is the driving force for the crack tip to propagate. The
common elastic-plastic stress components along the boundary have been
derived in equations (2.5.13-18). The deviatoric stress components
which govern the yielding condition are given by equations (2.4.1)
and (2.4.2). All these distributions are shown in plots.

With increasing applied load, for instance for tension perpen-
dicular to the crack surface, a small plastic zone develops at the
leading edge of the crack. Within this zone stresses are required to
obey the plasticity equations. Some crack tip investigations indicated
the interesting fact that the apparent tip of the crack is shifted with
respect to the true crack front. The shifting distance under the
antiplane shear condition was found by Rice 1—19;7. Interestingly it
was equal to the half of the plastic zone dimension.

Our own investigation of the crack tip shifting effect for
the tensile fracture mode of equation (3.3.4) agrees well with

Rice's observation at least for one particular case of Q = o



Equation (3.3.4) is believed to be the unified equation of the crack
tip shifting distance. It is valid for different strengths of
singularity § .

In Chapter IV, after evaluating the energy densities, with the
application of minimum potential energy principle, the generalized
elastic-plastic modification factor "A" which was introduced in
Chapter II, can be determined. The final result in equation (4.3.10)
shows that the factor "A" is a function of Poisson's ratio as well
as the dimensionless load X. . Also, the effect of the type of
stress singularity is discussed.

The critical stress is evaluated in Chapter V by using the
energy components from Chapter IV and the principle of energy balance.
The result presented by equation (5.3.10) is found to deviate from
the one obtained by Sack and Sneddon Zf6,5_7 for a purely elastic
solid. The discrepancy is particularly pronounced for a crack length
of order K%C / v? or less, where Ky~ denotes the Irwin K-factor. Of
course our result is only an approximation but it indicates a trend.
For a crack length equal to the characteristic length %ﬁ K?C / Y2,
the critical stress for the elastic-plastic solid becomes a constant,
while for a purely elastic solid the critical stress approaches
infinity. This is shown in Figure 22.

In the last part of this thesis, Chapter VI, the important

summary of results is presented along with an engineering discussion

of the applicability of the thesis.



The supplementary analyses of the coefficient of lateral plastic
deformation and reduced crack tip shifting distance are included in

Appendix I and II.



CHAPTER 1II
ELASTIC AND PLASTIC ANALYSES AROUND THE PENNY-SHAPED CRACK

The stress and strain components of the elastic and plastic
regions around the crack tip will be derived for a particular geometry.
The geometry chosen here is that of an infinitely large body, as
shown in Figure 1, having a central circular crack of diameter 2L.

The elastic body is loaded with stress P, in the Z-direction at an
infinite edge. A cylindrical coordinate system (r, z, @ ) is used.
The initial crack will remain stationary or tend to extend. The ex-
perimental evidence indicates that there is a plastic region developed
in the very vicinity of the crack tip. Our aim in this paper is to
determine theoretically the shape of this region and the amount of
energy dissipated therein. After a kinematically admissible strain
field 1s chosen, the remaining free parameters will be determined by
use of the variational extreme principle. The critical stress which
precipitates the catastrophic fracture, will be derived from an
energy balance criterion, which is similar in form to the Griffith
equation except for the new corrcction term. The term results from
the plastic ¢ .ergy dissipation expended on the irreversible deforma-
tion in the vicinity of the crack front. As this approach is based
upon the dominant singularity only, it should be noted, that the
validity of t*e correction term appearing in the fracture criterion

is restricted to small values of load to yield stress ratio.



It will be shown that when the ratio of applied load to the yield
stress tends to zero our result reduces to the Griffith classical

formulas.

2.1. Postulation of Strain Components in Elastic Region

Sneddon's solution for purely elastic stress field is used in
postulating new elastic and plastic strains in the front of the crack
tip. The elastic stress distribution found by Sneddon 1—5_7 in the

immediate vicinity of the fracture front is

OCT = ZPO(——) (— cos g + = cos ¢) + O(gg)

T JL 28
O, = iio(_-) (2 2 cost 1) + o(s—%)
°%, = 2oL )PC cos t - L coshy + o) L (2.1.1)
= 2% G sing cos X+ o8

QE;GZ:CL(;Z e g

where Py denotes the stress applied perpendicular to the crack surface

in the Z-direction, & is the ratio of the coordinate 8»1 to the half
1

crack length L (see Figure 1). The term 0(S$%¥) vanishes for $— o

and is assumed to be negligibly small in the entire considered region,

i.e. close to the crack front.
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Knowing the stress components, we may apply the gencralized

s law to find the elastic strain distribution
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After some manipulation, the corresponding elastic strains are

as
Oér = 592_(_735;)(2_1 P (4 cos ¥ &3 own X muDh )

e pg(?i-:/)(osl) 2.0=0
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where

h=1-2)

or re-writing equation (2.1.3) in a shortened form, we have

o *.5
éo—‘lx
o e
62'-/2_5
K
f)/zr::zgif

10

(2. L-3al)

[- (2.1.4)

where, by comparing with equation (2.1.3) and equations (2.1.4), the

values of K-factor and the angular functions are

_ Po(1+2)

R(Y) = 4h cos

B(¢y) =o0

Z(Y) = 4h cos

ZR(p)

2 E

¢y
2

3
- 2 sin sh1y

4 3y
5+ 2 sin 5 sin ¢

.3y .
4 sin 5 51n$

t  (2.1.5)
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As we have mentioned, the classical stress and strain analyses
by Sneddon, true for a purely elastic solid, are not descriptive to
the real material behavior. Therefore we shall investigate certain
stress and strain fields which will better account for both the
elastic and plastic behavior of the material due to the high stress
concentration at the crack tip.

Here, let us postulate the strains outside the plastic zone
but still close to the crack tip; only the dominant singularity
term is taken into account. Using the tensorial notation based on

the Sneddon's strain field %5 150 We have

e L 28 Lo
€y= 255,07 €u L

We assume that although the angulsr distributions R, 6, Z
and ZR do not change, they are shifted away from the crack tip by a
certain distance &,. The amplitude EA will be left as a free
parameter subject to determination. The elastic modification factor
and crack tip shifting distance will be investigated in the following
chapters.

The tensorial relationship in (2.1.6) is expanded in the fol-

lowing way

ec € AK R(?)

E Bals Ve, )T

>

-
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g €AK
e, = 1 © (
E T RENE T 2
@ = €AK 5 [
e, —[2(8_80)_722(\;:) (2. 057}

&

e _ AK 1
)lzr_[z(s_so)Jz ZR(LP)

e e
ke s /92:0 :

2.2. Postulation of Strain Components in the Plastic Region

A similar approach can be applied in dealing with the strain

components in the plastic region.
Invoking the experimental evidence gathered by Gerberich and
Swedlow 1—20_7, we may postulate plastic strains in the following way

Pa 75
p _-AJ25 o
€ij=7¢gf  Eij (2.2.1)

The strength of singularity g in the above equation may vary

between g = 4 for a limiting case of a purely brittle solid and A= 1

for a perfectly elastic-plastic solid. The intermediate values of

@ correspond to a certain amount of strain-hardening,

c.f. Hutchinson 1_21_7.

W= b = 4,

In expanded forms equation (2.2.1) reads

p

perz% R (¢)
p

pee=s—“;< o (¢)
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P
pe‘;z:—SAfp'Sz (¢) (2.2.2)

PAK
p[YZr= <F ZR(¢)

%};9: %f;2=10 d

For convenience in further derivations, let us assume the elastic

and plastic modification factors have the same value, therefore
‘A=Pa=a (2.2.3)

This constant A will be called the generalized elastic-plastic

modification factor in the following chapters.

2.3. Derivation of the Stress Components in Elastic and Plastic Regions
By applying the generalized Hooke's law and substituting the

functions R, ©, Z and ZR, the stresses for the elastic region take

the form
- . A | 5
*0, =B L 205 8 T G eos 5+ 5 e0s B
1
oy = 2BAS o(s - 5,) T Haveos )
-x 5 ¥ 3 54
=TT L AS - 50T G oos 5o o0s ) (2:3.0)

“C,e= 2;2& /28 g,)J*ila'(% sin ¥ cos %)

e e _
’C}o: 'T:az =

#

Here Y is the yield stress of the material at unlIaxial tension.

The dimensionless load is defined as

243647
S

ITY LIRBABRY
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Po

P (2.3.2)

Again, note that the shift distance éSO, the singularity strength
ﬂ and generalized elastic-plastic modification factor A are yet unknown
and they are subject to determination in later chapters.

In deriving the plastic stresses, since Hooke's law is no longer
applicable in plastic region, we have to make use of some non-linear
theorems of the theory of plasticity. If we choose to apply the
Hencky-Ilyushin theory, then the plastic stress-strain relations are
given as follows

per _ pee =g (pCYr _ po/a)

péa g pezzﬁ (po,e _po,z)
b (2.343)

péz o Per:ﬁ (pc; —pdr)

Zgjé/zr = pTCzr

where f = 4 (r,8,z) is a function named the generalized modulus of
plastic deformation 1—18_7.

In the elastic region and at the boundary between both regions the

value of # is a constant, i.e.

g =L (2.3.4)

In order to solve equations (2.3.3) for plastic stresses, we

will have to introduce more relationships. First of all we employ the

criterion given by Huber-Mises-Hencky according to which "yielding
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takes place whenever the stress intensity pcji reaches the yield

stress Y of the material at simple tension", or mathematically,
P =4 p P, y2 . (P P o 2 L (P P 2
O =L Eoe )™ oy »lg,) £ 0dsee el
P 2 . P, 2 .P, 2y75_
+6 ( Tre ™ /(;z + zr )—7 = X (2.3.5)

Second, the dilatational stress-strain relation in the theory
of elasticity can be applied equally well in plasticity for small

strains, i.e.

AE o o o)
pdr by pdg + pO/z = 1Dl ( Cp b Ea (= Z) (2.3.6)

With equations (2.2.2) and the six equations from (2.3.3), (2.3.5) and
(2.3.6) in which five of them are independent, we can solve for the

plastic stress components.
After some mathematical manipulation, we obtain the plastic

stresses as follows

P_A
pdr - % /[ ggo/[ (1+») (4 cos %‘) + RYT)' (-3 sin ¢ sin ':ig‘l‘

+ 2 h cos %)_7
PoA
pde ::—13[;_770? (1+2) (4 cos "_g‘) - ﬁ (4 h cos %)_7



P,A
poJz G % [ gﬂ;)z (1+2) (4 cos %‘) + r_n_(l{_)(3 sin ¢ sin '3'24"‘
+2 h cos %;)_7 (2 8i7)
pfzr_ r};) sin L}! cos géﬁ

O
a
I
=
N

where the notations are

I

2 1
(3 sin2ql T G %)2

m(y)
folse . i)

1

h 1-22/

Equations (2.3.7) are the general forms for plastic stresses.
For the strength singularity ?equal to 4, the plastic stresses in

the plastic region close to the boundary become

Po,r: 3[/—1 (1+2) (4 cos —) +—'—"'"5

(-3 sin y sin %W- + 2 h cos —g—)]

p Pohl L
Te = 3 [ j:?[- (1+2)) (4 cos 5) - m(y )"
(4 h cos ??)-7 > 2=8.7)

PS, = 5 £ A (142) (4 cos B) + 5Ty

(3 sin Y sin §,2‘£ + 2 h cos %)_7
3¢
pfer ) sin k*’

p/[re = p/EBZ =
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In making a comparison among the results of equations (2.1.1),
(2.3.1) and (2.3.7a), the stress component pCf has beeén taken ‘as an
z

example and plotted in Figure 2.

2.4. Deviatoric Stress Components

Equations (2.3.7a) determine the plastic stresses close or along
the boundary. In this section we will work out the deviatoric stress
components which in fact govern the yielding process.* Using (2.3.7a)

we can write the components of the plastic stress deviator as follows

po'r—pg’e :ﬁ-\({-—)(ﬂsin\y sin'%’)‘+6hcos'g-)

Pde - pdz = 3—m%{w (-3 sin ‘~}’ sin %P- - 6 h cos -\'2)—)
p(jz = p(jr ~— E—E%$7 (6 sin y sin ééié / (2.4.1)

p‘(:zr = 5‘;%@7 (3 sin ¥ sin égi)

p/Cre = pﬁz: 0

The graphical distributions of these deviatoric stresses are
shown in Figure 3, 4, 5 and 6. It is seen that the singular terms

do cancel out and the deviatoric stress is therefore constant for a

fixed value of ¢ .

*P. W. Bridgeman Z—25_7 has demonstrated that the hydrostatic
part of the stress tensor even at very high normal pressures has little
influence on the yielding process.
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Similarly, the elastic deviatoric stress components can be de-
rived from equations (2.3.1). Here the singular terms do not cancel
and we recover the classical singularity of the inverse square-root
type. The difference between these expressions and Sneddon's solution

is in the shifting distance S() and the modification factor A.

| = 3
*0 - Oy =2 [ 88 )T LG S2u) it

+ L cos %?_;7

ede -eo’z=g;—f—\A[2(5— SO)J%[(QJ/—%) cos 3

1 5¢
+ = L
COs >

(2ada2)
-+ 1 b s Y
°S, - 0= B LS - 5T [Fos T -3 cos I

e{zr = %‘&-\— [ 2( 8- SO)JT (?12' sin § cos 3—;")

e e
Tf}e - Tf;z =0

For a better comparison, the third deviatoric component has been

plotted in Figure 7.

2.5. Matching the Elastic and Plastic Stresses at the Elastic-Plastic
Boundary

To check the elastic and plastic stresses just derived, let us

investigate the stresses in both regions as given by equations (2t
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and (2.3.7a). At the elastic-plastic boundary &, = 8*(l¥), the

stresses evaluated should of course satisfy the matching condition,

namely,

°0’.. | =Po.. (2.5.1)

Analytically, we may investigate the elastic stress intensity
ed-=J‘[Y%S _eG,)2+(ed _ed)2+(e<j _ed)2
i J7 £ e e 2 2 i
e - 2, e 2y 7>
- ( Tra 5 fez i Tzr )—7 (2'5‘2)

After substituting the values for elastic stresses from equations

(2.3.1), we have the final elastic stress intensity
e YAN -
di:—;z—[z(é—éo)]dm('l)) (2.5.3)

According to the yielding criterion in the theory of plasticity,

this stress intensity should reach the yield stress Y when & = S*,

that is

of o1 =Y (2.5.4)

The combination of equations (2.5.3) and (2.5.4) gives

v=YA ;o5 o) T nd) j (2.5.5)
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Solving this equation for 5*, we have

S = So+-12-[/'%\m(~p)_72 (2.5.6)

#*

This is the sought-for relation for the elastic-plastic
boundary. However, the crack tip shifting distance enters here as

a yet unknown function.
On the other hand, the plastic stress intensity of the Huber-

Mises-Hencky's yielding criterion in equation (2.3.5) can be derived in

the form of
"oy ==l L -6)% 4 (0- D) + (2 - D)
+ 6 (ZR)szé%,- m(y) (2.5.7)

Solving for the generalized modulus of plastic deformation, we obtain

= 2K () (2.5.8)

Recalling that the generalized modulus from equation (2.3.4) is

a constant along the boundary, we rewrite (2.5.8) as follows

ol = = %Aig“; m(y) (2.5.9)
$= s,

This is the additional relationship defining 8*. Substituting

equation (2.5.6) into equation (2.5.9), we have
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X . 20K m(Y)
oG~ (2.5.10)
2G 2
Y {80+%[%m(&}’)_72j
which we can solve for the crack shifting distance $ o
A
So:[;A_tL\m(‘}’)Jl/P -%[ﬁz_ m(\”)]2 (2.5.11)

By substituting the value of Sc)from equation (2.5.11) back to

equation (2.5.6), we end up with the final expression for &y
AN 1/p
=/ = n(y) (2.5.12
§ =L iy )
and for B =4,
S =[-A-£‘m(ti’)_72 (2.5.12a)
* 7T

With the value of S*,as in equation (2.5.12a), we may match the de-
rived stresses in equations (2.4.1) and equations (2.4.7). Noting
the strength singularity ﬁ =4, it can be verified that along the

boundary & = &y, the elastic stresses are idemticadl tewsheplastic

stresses, namely

o, | = "o, _5_(2_\;’{7 (Fcos 3 +3¢c S'5_2&) (258213}
» = S* §= *
ede,_poz _avy oY (2.5.14)
= P m\y 82 e



2% AL B BTN, O s
= dz _m(4 cos — - 7 cos 2)
b g, F=28y

_ . : 3Y
eT:rZ = P1f;z = E?qrj sin y cos —5—
£= 5, 525,

Also, the mean stress which is defined as

eO/:

m

C, + 0, + °c,)

W=

pdm = % (pdr i pd@ M pdz)

can be shown to match along the boundary:

4Y(1+2/
ec{m 5 p({m , :157% Yy) cos %;
- 8= S« = & %
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(2.5.15)

(2.5.16)

PN )

¢2.5-18)

Here the values of m({y ) and $y are given by equations (2.3.7b) and

(2.5.12a), respectively.

To complete this section, the distributions of these common

stress components along the elastic-plastic boundary are illustrated

in Figures 8, 9, 10, 11 and 12.

2.6. Stress Analysis Based on the Maximum Principal Stress Criterion

After finishing the stress and strain analyses in this chapter

through the Huber-Mises-Hencky criterion, we shall include the method
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of finding stress components based on the maximum principal stress.
According to earlier researchers, the Huber-Mises-Hencky criterion
works well for metals however the maximum principal stress criterion
may be justified better for solids exhibiting a fiber-like structure
as for instance high-linear polymers.

In order to find the principal stresses, we have to find the

roots of the following cubic equation

1
Cf"d&» 0, ’ZET

0, € -G O =0 (2:6.1)
/CZI" Os 6 'Olz

The roots are found to be

Co )

Z-(O,r 2)2 +,C _7 062.6.2)

Let us denote the largest root of the equation (2.6.2) as 7,

therefore
+ Oy - S 1
S O/—— [(—ﬂ—2 ’Cizjg (2.6.3)

By substituting the elastic stress components from equation {3k 3-1)

. e
into (2.6.3), and denoting it as cfl, we have
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eO/l = X';L-"‘)\ /[ 2(S5- 5,)_7-"1"— (2 cos ﬂ;‘ + siny ) (2.6.4)

Equating equation (2.6.4) to a positive constant multiple of the

yielding stress, okY, along the elastic-plastic boundary, that is

eO‘l =Xy (2.6.5)
S = S,X.

and solving for <S*, we get
/ 2(§* - 80)_7%— & (% ) {cos ’lg" +siny ) (2.6.6)

The plastic stress field is obtained by sulstituting equation-
(2.6.6) into the elastic stress distribution given by equation (2.3.1).

The final forms are

— —_+_
5 oV . 4 CO_S_Z 7 Cos =,
dr=o<
Y :
cos-—2-+51n\+)
Y

oy 2 2 cos 2

"%

4 2 v (2.6.7)
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. re: p/(;z =0

The plastic stress distributions in equations (2.6.7) are
plotted in Figures 13, 14 and 15.

Figure 16 illustrates the comparison between the stress dis-
tribution for the pure elastic range and for the elastic-plastic range
as it results from the maximum principal stress criterion. It has been
shown that the maximum principal stress criterion works better in
polymers where the density change at the fracture front is consider-

able due to the crazing process. The crazing process is governed by

o]



CHAPTER III

INVESTIGATION OF CRACK TIP SHIFTING DISTANCE, ELASTIC-PLASTIC

BOUNDARY AND STRENGTH SINGULARITY

In this chapter the equations for the crack shifting distance
50, elastic-plastic boundary S,eand strength singularity @ are de-

rived and discussed.

3.1. Derivation of Crack Shifting Distance and Elastic-Plastic
Boundary for the Case of £ = 4.

Recalling equation (2.5.11), we see that the distance So is a

function of angle Y and strength singularity ﬁ s thait ks
&,=85, (¢, 8) LR
The full expression for 50 is
A
S (¥,8) =L 52 7 -3 L ) 7P (3.1.2)

Let us investigate the value of the crack shifting distance E;o

at the lower value of ? =4, i.e. for a quasi-brittle material.

Thus

S.(§.3) =+ L5 n(§)7° (3-1.3)

and from equation (2.5.12a), we have

o. (Po1) = £ 57 ()7 (3.1.4)
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After comparing equations (3.1.3) and (3.1.4), we have
1
S5,(¥s3) =5 S (¢,3) (3.1.5)

This mrans that in the case of ?:z-%, the crack shifting dis-
tance is one half of the critical distance measured from the crack tip
to the elastic-plastic boundary. The result we have arrived at in this

section agrees well with earlier observations by Hult and McClintock

/[ 22/ and J. Rice / 19 /.

3.2. Derivation of Crack Shifting Distance and Elastic-Plastic
Boundary for the Case of 2 = 1.

A more justified value of ﬁ, at least for an ideally elastic-
plastic solid is A= 1. The derivations and discussion are presented
in this sec'ion.

From equation (3.1.2), for A= 1, we have the shifting distance
A X 1 A 2
S,(¢,1) = [7 m(y)/ -3 [;z_ m(y)_/ to.2.1)

and from equation (2.5.12), for 6:: 1, we get the elastic-plastic

boundary as

S (1) = 5F m(y) (3.2.2)

3.3. Plots and Discussion of General Results

The graphical representation of the crack shifting distance S’o

and elastic-plastic boundary $4 for the cases of ﬂ = 4 and 5:: 1
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are given in Figure 17 and Figures 18, 19, 20, respectively. Let us

summarize here the important results of this chapter.

S, -5 =38 wnp) 7 (3.3.1)
and
o, = [%m(q;) 7uE (3. 3:9%

With equations (3.3.1) and (3.3.2), we conclude now that
1 c2p
S*—SO_QS*
or

R é— 5? (3.3.4)

This relates the crack tip shifting distance to the dimension of the
elastic-plastic boundary for any given value of the strength singu-

larity ﬂ.

It is seen that in the case of =%, equation (3.3.4) will

give the same result as equation (3.1.5), that is

5,15

u (3.3.5)

In the case of 5 = 1, equation (3.3.4) gives the same value as

equation (3.2.1) or
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(3.3.6)

As we mentioned in Chapter II, the strength of the singularity
may vary in the interval of &+ = é < 1, the lower value being
appropriate for high strain hardening, while ﬁ approaches unity for
zero strain hardening (see Hutchinson 1—21_7 b,

Since S: is small compared to S*, we can conclude that the
crack tip shifting distance .So changes from about half of the
plastic zone size when B = # to almost full value of the plastic
zone dimension when £ = 1.

All the intermediate values of the strength singularity will

lead to a crack tip shifting distance enclosed within the interval

}$,<s =8, @)



CHAPTER 1V
INVESTIGATION OF THE ELASTIC-PLASTIC MODIFICATION FACTOR

The modification factor "A" is determined by the application of
the minimum potential energy principle. It is found that the value
of factor "A" depends on A_, i.e. the ratio of load to yield stress;
it is also shown that when X_ tends to zero, the factor "A" tends

to unity which agrees with the result obtained by Sneddon for a

purely elastic solid.

4.1. Evaluation of Energy Densities
The total strain energy of an ideally homogenous, isotropic
and elastic-plastic material can be expressed in the following form:

Total Strain Energy = (Total Elastic Energy) +
(Total Plastic Energy) (4.1.1)

Or expressed in terms of energy components,

Total Strain Energy = Z—(Elastic Energy of Whole Region)
- (Elastic Energy in Plastic Region)_/
+ (Total Plastic Energy in Plastic
Region) (441;2)

Mathematically,

U= U, + U (4.1.3)
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or in terms of energy components,

== /—Jf(e + &y ) dv - /[ (eu + €u ) dV;7

V=-co

¥ [f(puv +Pu) vy (4.1.4)
Y

where, from [723_7, the volume energy density u, and the distortional

energy density us in the elastic and plastic regions are given by the

following relations

e _ 3(1-22) (edr + °ctfy + edz)g
My T g 3
t (4.1.5)
e 201+y) . 8052
Hgls 3 2E 4
p —§£1_2V! (polr+po/6+po’z )2 s
Uy = 2E 3
2 (4.1.6)
_ 2(1+Y I
p“f‘ £3 l(yPei 2E

i

where the elastic stress intensity and plastic strain intensity are

defined as

2 2 e 2
°qy =4 (o - o) + (0, - o)+ (T, -0y

+ 6 (e‘C12~a + eﬁiz + efri)jg (4. 1)

p p 2 p _P 2
S = J_1+)J)[(é Eo) t( €y €Y

+ (pez _ Per)Q + g(pfrg + p)/zf o p/e,?)J (4.1.8)
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Equation (4.1.4) is an exact expression for the energy relation;
however, we may simplify this equation by proper physical interpre-
tation.

First, the elastic energy of the whole region in Sneddon's

solution was

-+ ao

2
u = f oy gy = 81z ) L7 P (4.1.9)

o 3E

-

For our case, we sh. 1ld put the proper half crack length as the sum
of L and the reduced shifting distance (see Appendix II), and replace B,

by the product (AP,). Therefore the reduced elastic energy becomes

2
U = A2 8(1-2)2) (5 L0 8red)3 Po
red 3E

= Uy (1 + 3 Speq) (4.1.10)

where the reduced crack tip shifting distance Esred is derived in

Appendix II.

Second, we have shown that the total elastic energy consists
of two parts, the elastic energy of the whole region and the elastic
energy in the plastic region. However, under practical conditions, the
component of the elastic energy in the plastic region is relatively small
and negligible compared to the elastic energy of the whole region. |

Hence we may conclude that the total elastic energy is represented by

the reduced elastic energy

(B21,1m)
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Similarly, in dealing with the total plastic energy in the plastic
region, the distortional part of energy is much more effective than the

volume energy component. After neglecting the volume energy component,

we have
co P
Up = j u. dv (4.1.12)
“r

Finally, the total energy in equation (4.1.4) is reduced to

U= Ug + Uy = Upgq + J’puf av (4.1.13)

¥

It is noticed that neglecting the reduction of elastic energy in
the plastic region will tend to increase the total energy in equation
. (4.1.4); however, neglecting the addition of the volume energy component
will decrease the total energy. Therefore, it is believed that due
to the mutual compensation of these neglected parts, the result in
equation (4.1.13) is a reasonable approximation.

The plastic energy in equation (4.1.12) can be evaluated from
integration in the whole plastic region. The distorsional plastic

energy density can be obtained from (4.1.6); therefore

U ?jpuf av
P Vv

P
2
:J Eﬁl—;ﬂl (v Pe, - %E) av (4.1.14)

e
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The plastic strain intensity is taken from equation (4.1.8),

p Pe P 2 p P 2 p L - 2
€. = _/—(1+p)[( €. )T+ (Pes-"e) + e, - 'e.)

3, Py2 P2 ,Py2 9%
i 2 ( )/;a . )/;r = 191;2)—7
After substituting strain components from (2.2.2), we have

"€, = Bayg L9+ 027+ zm)? + ST

The angular functions are obtained from equations (2.1.5);

hence the final plastic strain intensity is given by

24K - 2 2 2 % <
'€, =y sF [3siny +4(1-22) cos” 3 7% (4.1.15)
or using the shortened notation, we have
Pe . = YAN (L (4.1.15a)
€, = >E (5 m(y sl .1 S8)

The differential volume s slhiown in Figure 21 is
av=27 (L + & cosy ) & d &) dy

where gl = LS

and the integration limits are

1= &), (¥)



Hence, the integration in equation (4.1.14) becomes

arc &» 2
U :j J Y(égy)[?ﬁ\cﬁ. (é;.)? m('-”)-l]

p

o

"L+ & cosy) 22 § d§ dy (4% 16}

A brief summary.of equations for evaluating energy components

is presented here for convenience of further derivation:

_ 8§1-z)2) L3 po2

o 3E

U, =U. 8% (1+3 8,

2
v jj””") 22 (38 nw) - 17
L+ Sy cosy)r 2 &) d &) dy

¥ €4:1.07)

4.2. Application of Principle of Minimum Potential Energy
As in the theory of elasticity 1_23_7, the potential energy M

of the system is defined as
M=u-w (4.2.1)

where U is the potential energy of deformation and -W represents the
potential energy of the external forces acting on the body if the
potential energy of these forces for the unstressed condition is
taken to be zero.

The principle of minimum potential energy states that, "the

stable equilibrium state of a system is that for which the potential



energy of the system attains the minimum", i.e. the first

variation of M vanishes:
GMN=SwWw-w=o0 (4.2.2)

The operator " $" means partial differentiation with respect to the
assumed system parameters.

Before we apply the principle of potential energy, as given by
equation (4.2.2), the potential energy of deformation U must be
evaluated from equations (4.1.17); the change in potential energy of

external forces 1s evaluated as

W= STi u; ds (4.2.3)

5
where T; are the tractions applied to the surface of the solid,

uj is the kinematically admissible displacement field, and S denotes

the part of the body surface on which the forces T; are applied.

Equstion (4.2.3) can also be written in an expanded form

as

W= S(Tr u, + Tg ug + T, u,) dS (4.2.4)

S

For our loading condition
T =Te=0, T, =Py

and

u, # 0, u, T uge= 0 for z =0

36



then equation (4.2.4) becomes

W=jPOuZdS
)

where dS = 2 >z rdr; thus

&
W=27x _S. PO U, rdr
o

4.3. Evaluation of the Factor "A" for Quasi-brittle Solids

The value of the amplitude "A" for brittle solids, i.e.

S

(4.2.5)

(4.2.53a)

5 = &, is evaluated in this section by applying the minimum potential

energy principle as discussed in the previous section.

From equations (4.1.17), the elastic energy is

2
Ug =AU, (1 +38_ )

where the reduced crack shifting distance we have from the Appendix II

iss

1N 3~f§'H% Py 2 2
gl‘gd( P:—Z) - 2'/—2—/[—2 AS A

Therefore the elast’'c energy is

U ( B=3) =AU, 1 +0 2 A0

where

£4.351)



.
& = 23 (I
17 2[5 7z~ (4.3.1a)

= 16 2 416 4
H(Y) =1 + 3 (1-20)° + F (1-20)

The total plastic energy as given by equation (4.1.17) is

4*2 ))
Up—J J( Y(1+ ) [QA’/L Ll€ o(9) - 1.7

(L + %l cosy ) 27z S, dS; dy

After integrating with respect to %l’ we get

1 ce27z
Up ( B= ) = 2ELCER) (@AL [T,y
5 27
’g{od“}’ ot J )5 a¢)

where the elastic-plastic boundary is given by equation (3.1.4), i.e.

S, =18 = EA%)2 1 n2(y)

After substituting and performing the integration, we have the final

result as follows

S +2))y21L3 4
(f=%) = 15(14E7i2 H(Y) (AR)

In a shorter form,

4 2
Up = C3 U, A A (4:3.9)
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Hence it is seen that the energy dissipated in the plastic zone is

proportional to the fourth power of the load ratio. Also, A = PO/Y
2 2

since uy o= A_.

Symbols used in Equation (4.3.2) are

T 8(1- %) L3, 2

o - 3E

c =45 H(V )

3= 2

32 7 2(1- ) r (4.3.2a)
H(Y) = 1 +22 (1-20)2 + 16 (10p)
9 =
r,

As we know the total sirain energy is the sum of elastic and

plastic energies, or

U=Ug + U,

=u, [0+ (¢ +cy) At AR (4.3.3)

The potential energy attributed to the external forces may be
obtained from equation (4.2.5a). However, instead of tedious inte-
gration we may apply the result of Sadeghi Zf24;7 that the external

work 1s twice the elastic energy divided by A; therefore,

w=2Lu =u_ (2a+2 2 A9 (4.3.4)

el L

With equations (4.3.3) and (4.3.4) and from equation (4.2.2) we
are ready to apply the principle of the minimum potential energy and

finally to evaluate the factor "A".
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Thus

Sr7-¢ A % U, + Up) - 2 Ue_7 =0 (4.3.5)

We substitute the elastic and plastic energy components and

write equation (4.3.5) in an expanded form

/7 J
9A = DA / UO(A2 + Cy At A2+ Cs 2% A?)

3,2
Ug (28 + 20, A% 22)7
=0
After differentiation, we get

2 2 2yse
(A-1) -3C; A" A" + (20 +2C5) A A" =0 (4.3.6)

This cubic equation we shall solve by approximation method. Let

us express the sought-for factor A as a function of A_ in the follow-

ing way

A2

1l

1 +2Al/,\_2+ (A§+2A2) A4+ .- (4.3.7)

2 4
A= 1 +3a A2+ (37 +38y) AT+ e

Substituting (4.3.7) into (4.3.6) and neglecting the terms of order

higher than 2_4, we get

(A; - C + 2C3) A° + (ay +6Cy B) A Eg | (4.3.8)
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Now, we solve for A; and A, by letting the coefficients of the terms
1 2

,\? and ,&f to be equal to zero, respectively. We have

_ _ 2 (4.3.9)
A2 = - 6C3 Al = - 6Cl C3 + 12 C3
where the constants are
b
= A3 1R () 4
il = 2 Enz
Cy= 45 H (&) » (4.3.9a)

32 7° (1- W)

_ 16 2 16 4
H(Y) =1+ 22 (1-20)2 + 22 (1-20) y

The final expression for the modification factor in the case

of A =% has the following form

973 Hyf(y) 45 H (/) 2
L 2[2 72 16 722 (1-2) 7 A

_ 133 H (V) 2 /3 %) 45 H (&) 4
16 7% (1-2) L 22 772 16 772 (1-w) A

-1+

-
Il

To be more specific, let us consider two extreme cases:

a) For an incompressible solid, ./ = +; then equation (4.3.10)
gives

4
A=1 - 0.011 )\2+O-018 A T oass

b) For 2= 0, we have
A=1-0.097 A2 +0.372 A% + ...
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From the general solution in equation (4.3.10), it is found that
the value of the factor A is a function of the ratio of load to yield
stress and the Poisson ratio. Whenever X\ tends to zero, the value
of A is unite which agrees with the result of Sneddon. The correction
terms appearing in (4.3.10) are small, therefore it may be concluded
that the major influence of the plastic zone on the stress distribution
around the fracture front can be attributed to the crack tip shifting

distance, as discussed earlier.



CHAPTER V
MODIFICATION OF FRACTURE CRITERION

Because of different approaches in evaluating the energy compo-
nents in the very vicinity of the crack tip, we may expect different
results for the critical stress opening the crack. A new value for the
critical stress at which the crack will start to propagate is obtained
from a modified fracture criterion. Our result is comparable to the
Griffith-Irwin criterion for large cracks, but it deviates considerably
from the classical solution in the range of crack length close to the
"characteristic" length. The latter is found to be proportional to -

the square of the ratio of the critical K-factor to the yield stress Y.

S5.1. The Energy Balance at the Crack Tip

The explanation of a fracture on the basis of the energy balance
of a cracked body was given by Griffith. Irwin arrived at the same
fracture criterion through the calculation of the work done locally
at the crack tip during a small virtual increase in crack length.

We shall now consider Irwin's approach and make use of the
energy components in Chapter IV. Let us investigate the effects of
a small, virtual change of the crack tip position AL. The elastic-
plastic region at the crack tip will undergo a small distortion and
the forces acting on it will do work. There will be a certain amount

of the external work AW which can be evaluated from eguation (4.3.4).
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A certain amount of this dissipated work is transformed into
another form of free energy. This portion of energy will be called
SE, or surface energy which is necessary to create the new surface.
The remaining energy is stored as the strain energy Ug or dissipated
as the plastic work UP within the plastic region. The whole process
is assumed to take place slowly and isothermally, so that the in-
volved kinetic energy and other possible sources of energy dissi-
pation are small and negligible.

From the first law of thermodynamics, the energy balance can

be expressed in the following incremental form

W= AL U+ A SE (Sr sl )

where AQL denotes the differential operator 53
5.2. Evaluation of Energy Components

The incremental form of equation (5.1.1) can be written in the

form of partial differentiation as

JSE
3 {(5.2:1)

\Y
=
\V}
—

i
Q
e

2

The component of external work can be obtained from eguation

(4.3.4), and we have

o2 1
@ Ll — 5.2, 2
W= 2(!) 0] 2A U ( )
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The total energy of the elastic and plastic regions is given by

equation (4.1.13),

e2 p

US Upeq + j ug dv (5.2.3)
‘P

The surface energy is defined as the product of the area and

the specific energy. Mathematically,
SE = 2 71)'17 (5.2.4)

where L is the half crack length, ty’denotes the specific surface

energy and the factor 2 exists due to symmetry.

.5.3. Modified Fracture Criterion for Quasi-brittle Solids

A modified fract  re criterion will be derived for quasi-brittle
solids, i.e. for ﬂ = 2. The generalized energy balance equation
is used to generate the criterion.

By substituting equations (5.2.4), (5.2.2) and (5.2.3) into

equation (5.2.1), we have

2 w-u -u)=2

5T . o) ST SE 5.8:18

Or substituting the expanded forms from equations (4.3.1), (4.3.2)

and (4.3.4), equation (5.3.1) becomes

2 4 2 4 2y 2 &
(28 +2c, A3 A% - A% -C & AT -Cy A )\)a—LU—f—LSE

Al



After performing the differentiation, we have

[ (28 - A%) + (2c) A3 - cp A% - gy A A2 T

8(1-2)12 2
C 5 Po =4 7z ) L

This we can solve for the critical stress

| 1
Bl =
© J(2AA2) ¥ (20, A3 - CL A% - C3 A ) A2
SO TTEY  7° (5.3.2)
2(1-22)L

It should be noted, however, that P, is also implicit in the dimen-
sionless load A_. We shall therefore proceed to resolve (5.3.2)

1
with respect to P,. We recognize Z— 5??L%f§§£.472 as Grififiith, criithl=

cal stress Pg. For small A, the square root
' D 3 4 4 2 %
/(A -A") +(2€; A" -Cl A -C3A) A/ *

can be expanded if we recall that the following relations are true

for the factor A

2 4
A=1+A N + Ay ATt

2 4
A2:l+2Al/\_2+(A1 +2A)) Aot

3 2 2+ 4+ooo
AT =143 XT * (34 38 ) A

4 2 2 4+.oo
AT =1+ aap p0 (6 AT F4 M) X

46
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Grouping and neglecting the terms of order higher than )\?, we get

, L
[ (2 - A%) + (2¢) A% - cpa* - ¢y at) )\ 277
i

[ 1+ (c - Cy) >\2"""_7_‘3

Cy

- C3 2
o' S -+
5 A

]

I

(-

Let @ =C; - Cp, then equation (5.3.2) becomes

P = (1 - 'g )\2) P (5.3.2]
where
4=/ 9 /5 HE () _45H (V) 7 (5.3.3a)

2[2 ;2 32 712(1- V)

From equation (5.3.3), we will work out a curve of dimensionless
critical load Pg.pst /Y versus dimensionless crack L/L*.

Equation (5.3.3) can be written as
. Q 2y Pg
= = 2 He3e4

which we solve with respect to ) _. The solution

Pg L /G2
= e 53.5
)kcrit Y L1 2 (Y) g7 ( )
or simply
=p [ 1-1 (Eg)z g/ (5.3.6)
Perit = Fo 2 \Y




is the sought-for final expression for the critical load opening the
crack. It is seen that for the vanishingly small ratios of Pg /Y,

equation (5.3.5) reduces to the well-known Griffith-Sneddon-Sack

formula. The correction factor

1. _7ZTEY . 95 45H
2Y 2(1-22) L L2722 © 32 7201-0) J

plays a significant role only for the crack length sufficiently small.

From Irwin 1_3_7 we may define the stress concentration factor

as

KC: pG,7]_L
Equation (5.3.6) becomes the

g K
Perit = PG ( s -L— ) (Brs. 74

If we introduce now a characteristic length

K2

L = ——

X omy?

then equation (5.3.7) gives

(8. 378)1°

Similarly, it can be shown that

1
L (5.3.9
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By substituting equation (5.3.9) into (5.3.8) and denoting the dimen-

sionless crack length by ¥, § = L/Ly, we get

P git. [2
CY "J;;(l - g) (5.3.10)

where the value of @ is given by equation (5.3.3a). For 2= 0.3

we have

o] ‘ 0.373 (5.3.10a)
2 =0.3

The comparison of the result of equation (5.3.10) and the

classical Griffith criterion is shown in Figure 22.



CHAPTER VI

CONCLUDING REMARKS

The essential points of this thesis may now be summarized as

follows:

1.

Engineering experience has demonstrated that most serious structure
failures arise from unexpected extensions of pre-existing cracks
or crack-like flaws. 1In practical applications the penny-shaped
crack geometry can be considered whenever the flaws found inside
the material or on the material surface have the form of a circu-
lar defect.

The results given in Chapter II describe the elastic and plastic
analyses in an elastic-plastic solid containing an initial crack
of 2L diameter. The Huber-Mises-Hencky plasticity condition has
been employed to explain the ductile behavior of metals.

The stress analysis in section (2.6) based on the maximum princi-
pal stress criterion, is believed to be more justified for solids
exhibiting a fiber-like structure such as high-linear (glass-like)
polymers.

The mathematical infinite stress frequently referred to as the
stress singularity at the crack tip is physically inadmissible.
The idea of removing this singularity has been discussed in
Chapter II. We did not completely succeed in removing the

singularity in all cases; the quasi-brittle solid (for which



Bl

@=:%Q inherits the elastic type of singularity for the normal
stresses, but the deviatoric components of the stress tensor are
finite at the crack tip (see Figure 2). For an ideally elastic-
plastic solid in which the plastic strains behave as 145 3

where & is the distance measured from the crack tip, we obtain
a singularity-free stress distribution around the crack tip

(see Figure 16).

Equation (3.3.3) and equation (3.3.4) are the derived formulae
which govern the amount of crack tip shifting distance and the
size of the elastic-plastic boundary. |

It is found in Chapter IV, equation (4.3.10), that the value of
the elastic-plastic modification factor "A" is a function of the
ratio of load to yield stress (A). Whenever the dimensionless
load A_ tends to zero, the value of "A" approaches unity which
agrees with the classical result of Sneddon.

The modified critical stress precipitating a fracture as found in
Chapter V is smaller than that given by Sack and Sneddon for a
purely elastic solid. It compares well with the Irwin theory

of fracture except for very small crack lengths at which the
plastic energy dissipation becomes the dominant controlling factor.
This thesis discusses fracture in inelastic solids from the
theoretical point of view. We believe intensive experimental
evidence should be gathered before recommending our findings for

the purpose of practical applications in specific engineering

areas.



10.

2

In general, the tensile crack toughness depends upon the amount of
elastic constraint around the plastic zone. On the basis of
fracture mechanics it can be said that a material would achieve
optimum strength if it were fine in surface texture with coarse
grain interior.

The practical goal of fracture mechanics is not only to prevent
failure but also to raise the efficiency in the control of fabri-
cation and quality control. A capability for optimization
estimates which include fracture strength should be the ultimate
goal. Therefore, the essential idea suggests that improvements

in the fracture control require careful control of fabrication and
rep.ir procedures to mitigate such defects as weld and heat
affected zone cracks and the development of brittle micro-
structures, and also various forms of mechanical damage during

production, such as tool marks and gouges.



APPENDIX I

COEFFICIENT OF LATERAL DEFORMATION IN ELASTIC AND PLASTIC REGIONS

Since the coefficient of lateral deformation in elasticity, or

Poisson's ratio is defined as

)= Unit lateral contraction
Unit axial elongation

or

_ —€(lateral)
Y € (axial)

we may define the coefficient of lateral deformation in the plastic

: 1 . ..
region ))° in a similar way as

)y, 1 _-€&llateral)
= " e laxial]

Let us consider the case of a rod under uniaxial tension, g .
The corresponding strain will be € ,, as shown in Figure 23, then the

other strains are

€,=-VU €,

1
_)) Ex

il

(=

z

Applying the dilational stress-strain relation

1Y,
éx+éy+éz_'-_E__(O’X—dY—dZ)



substituting the stress and strain components, we obtain

€, 1-2))=122 4

From this equation we may solve for the general form for the

coefficient of lateral deformation as

1 _1_1-2Y (Ogx
Y= 2k ex

Nl

If the stressed rod is within elastic region we have the stress-

strain relation from Hooke's law as

='E
EE{ éx
Then
1 1 1-22)
Y=z-"7% =V

This result checks with the definition of Poisson's ratio.
If the strain is large enough to be in the plastic region, from

the Huber-Mises-Hencky yield criterion we get
p s p _ =
O; =Cx O3=Y¥ Ox=Y

After substitution, we end up with the final form as

1-2 X,
By 'k

N 1=

V' =

54



. . . . M
This equation s plotted in Figure 23 by assuming 2= 0.3, § = 10

for mild steel. The graph shows the conclusion "At large strains
in the plastic region, an initially elastic solid tends to be incom-

pressible, that is J)l—'é—".



APPENDIX II
EVALUATION OF REDUCED CRACK TIP SHIFTING DISTANCE

The reduced crack tip shifting distance is defined as the
diameter of a circle in which the area enclosed by the circle is equal
to the area of the plastic region influenced by the real crack tip

shifting distance.

The area enclosed by the circle of reduced crack tip shifting

distance 1is

1 2
== II-
AREA = 277 &7, (AII-1)

The area of the plastic region influenced by the real crack tip

shifting distance is

o7 S(¥)
AREA:jd‘I’ ] §d & (AII-2)
0 0
Equating equations (AII-1) and (AII-2) gives
5(¢)
1 2 _ 27T A ATI-
WA Sred—/ dy $dd ( 3)
o o

From equation (AII-3), we solve for reduced crack tip shifting distance

and have

1 27 1
gred i (;[,2_) [ gi ("P)dq)]z (AII-2)

(o]



Substituting E;o from equation (3.1.3) and integrating equation

(AII-4), we obtain

5rw (ﬁ_;)_3ﬁ§W]u)A2Ag

2T o3 72 (AII-5)

where
H(y) =143 122)” + 3 (1-22)°

Tk value of § 4 evaluated in equation (AII-5) is used in

Chapter IV for deriving reduced elastic energy Ured®
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