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CHAPTER I
INTRODUCT ION

Most activities are undertaken with the intent to optimize some-
thing. In business and industrial organizations the goal is frequent-
ly to maximize profit or minimize costs; Although this seems straight
forward, the complexity of the relations have made simple mathematical
solutions impossible. Increasingly, it has been found that major
segments of the total management decision structure can be represented
by a set of mathematical constraints! and a mathematical objective
function.2 These constraints can be solved such that the objective
function is optimized through the power of techniques such as linear
and nonlinear programming.

Linear programming is advantageously being currently applied in
many industrial and business fields, including the following:

1. Product Allocation.

2. Distribution and Shipping.

3. Market Research.

lConstraints are represented as equalities or inequalities and
could be broadly classified as follows:
a. Limitations on the usage -of the resources available.
b. ' Inter-.lationship between these resources.
c. Conditions required to be fulfilled by the totality of
the resources (1).

2Objective function is usually formulated in economic terms:
Maximizing profit or minimizing cost. Minimizing risk, and partition-
ing large problems into subproblems are the recent developments,
involving more complex objectives (1).



4, Job and Salary Evaluation.
5. Blending of Ingredients.
6. Material handling.

7. Production Planning.

8. Trim Scheduling.

9., ‘Traffic Analysis.

10. Production Scheduling and Inventory Control.

11. Structural Design.

Mathematical models with either nonlinear constraints, nonlinear
objective function or both, have been in certain cases approximated
and solved (2). Nonlinear problems with convex objective function and
linear constraints have been reduced to linear programming problems
whose objective function approximates the convex function (3).

A major task in the development of realistic linear program-
ming models is the determination of the accuracy and reliability of
the numerical values for the relations and constraints. Further, it
may be necessary to examine the behaviour of the solutions when the
input data differ from the chosen values, or may even be stochastic
in nature. In these cases the problem is considered as a parametric
programming problem. The areas in which the parameters can be varied
are:

1. 'Coefficients of restrictions.

2, Coefficients of objective functions.

3. Limitations of constraints.



One of the powers of the solution tecﬁniques is that, unlike
simultaneous equations, the number of constraining equations and the
number of variables do not neéd to be equal. This raises additional
problems as well as raising the possibility of multiple solutions.

Solutions to linear programming problems can be obtained by

trial and error, simplex calculations and analog computer simulation.

Trial and Error Method.

If the system of inequalities is treated as a system of equalities
the resulting sets of equations can be solved simultaneously. To do
this the excess variables must be equated to zero or excess constraints
must be ignored.

The set of solutions would include all possible intersections
of two or more constraints. The solution which violates restrictions
would need to be rejected and the objective function computed for all
remaining vertices to obtain the optimum answer. If the number of
variables and constraints are large, the number of solutions is larger
and the computations very long and tedious. Obviously, parametric
programming cannot be easily conducted using this method, because the

total computations involved would be prohibitively long.

Simplex Method.

The host successful and best known general procedure for optimal
solution of linear sets of inequalities is the simplex method or its

modifications; used in conjunction with high speed digital computers.



The simplex method uses the slack variables as its starting
basis or solution and then proceeds to find a series of new basis.
All variables, including the'slack variables, are considered as
candidates in the formation of each new basis. The net gain (or
‘reduction in cost penalty) per unit associated with all nonbasis
variables -are calculated. The variablé with the largest net gain
per unit used, is then selected for the new basis. For every new
variable selected, an old one is deleted. This process of selecting
a new variable and deleting an old one is called pivot selection.
Once the new basis is selected the entire procedure is repeated,
until the objective function is optimized.

Mathematically speaking, the simplex method utilizes the
technique of matrix3 inversion directed by the coefficients of the
objective function.

Figure 1.1 illustrates the flow diagram of the simplex method
as used on digital computers.

A geometric interpretation of the simplex method is that an
objective point starts from the origin of the convex polyhedron,
formed by the constraints of the problem. With every pivot selection
the objective point is moved from one corner to another adjacent
corner in a manner such that at each step the objective function is

increased (or decreased in case of minimizing).-

3Matrix formed by the coefficients of the constraint equations.
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The simplex method enables the optimum solution to be attained
in a finite number of steps, the exact number depending upon the num-
ber of variables and constraints involved in the problem; but never
more than twice as many steps as there are constraints. Most problems
solved by this method requirera great deal of relatively simple
arithmetic computation. Hence the digital computer with its high
internal computing speed is an excellent aid in their solution. It
is unsurpassed in its ability to solve large problems in a reasonable
length of time. Unfortunately, procedures for conducting parametric
programming and sensitivity analysis are not equally well developed.
The digital computer using the simplex method seeks the solution in
a step by step numerical calculation, and changes in the input data

require complete new solutions.

Analog Computer Simulation.

Analog computers are normally assoclated with the solutions of
dynamic or time variant problems. We shall not be really making use
of this common feature, but instead the dynamic error reduction asso-
ciated with negative feedback. When the error reduction is combined
with the concept of the objective function as a driving force, we in
fact have an analog steepest ascent procedure.

In the analog computer approach, an objective point is gener-

ated in the convex polyhedron formed by the constraints, and forced



to travel along the gradient of function to be optimized, until it
strikes a barrier. The point then experiences an additional force
at right angles to the barrier; As a result the point travels along
the varrier to the solution vertex where the objective function takes
on an optimum value.

The analog computer solves the prdblem in a dynamic fashion
and each input data can be represented by a potentiometer setting.

The high computing speeds available are ideally suited for investiga-
ting the effect of parametric changes. The analog computer model

makes possible the use of the analyst's judgement and creative reason-
ing during the investigation, since he can see immediately the results
of his decisions and its effect on the validity of the problem solution.
Moreover the analog computer model can also be used to find "optimal"
combinations of the input data for achieving desired results.

"Only a limited number of references as can be found in the sub-
ject area of solving linear programming by using analog computers."
Jackson (4) discusses the potential of analog computers in the field of
operations research. In addition to the linear programming model, he
illustrates the role of analog computation in simulating economic and
stochastic models. Pyne (5) gives a general procedure to solve linear
programming problems on an analog computer. He also provides a method
for calcuiatirg the various elements (resistances and voltages) to repre-

sent a specific set of constraints and an objective function. However,

4Hyperplane, corresponding to a constraint of the problem. .



he does not develop the model beyond the elementary stage nor demon-
strate how the model can be applied to parametric programming. Further
he does rot use the model to obtain the information found in the

index row of the final simplex tableau.

The.object of this investigation is to use the general purpose
analog computer to simulate a linear prbgramming problem and to ex-
tend the gercral purpose model developed by Pyne, to handle parametric
programming, sensitivity analysis, and post-optimum analysis. More-
over, it is also intended to demonstrate how the information provided

by the index row of the simplex tableau could be made available from

this dynamic analog model.



CHAPTER II
THE ANALOG COMPUTER

A review of the procedure of operation of the analog computer
and its components, enables a better visualization of the use of the
analog computer in the solution of convex polyhedron sets.

The analog computer consists of a number of electronic units
called operational amplifiers_ used in conjunction with simple
resistor-capacitor circuits. In addition, specialized devices like
diodes, potentiometers, relays and function generators are used as
auxiliary equipment for the simulation of linear and nonlinear pro-
gramming problems. As the name suggests, solutions to problems by
the analog computer are accomplished by analogy. The computer is
programmed such that the equations of the problem have the same mathe-
matical form as the circuit equations. Because of parallel logic, the
problems are dynamically solved, rather than iterative. 1In linear
programming problems, input voltages will represent physical quantities
such as machine hours and sales limitations while the output voltages
represent the rumber of units to be produced. The magnitudes of the
voltages are related to the numerical values of the physical quanti-
ties, by use of scale factors. The computer operates in a continuous

fashion with respect to time.
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The DC Amplifier

The DC amplifier is the most fundamental building block of the
electronic analog computer. It is essentially a high gain (lO4 - 108)
direct current amplifier. It can be made to perform the basic mathe-
matical operations such as inversion, summation, multiplication by
constants, and integration when used in conjunction with appropriate
input and feedback impedances.

The conventional way of representing an amplifier is by a tri-
angle with base at the input end and apex at the output end as shown

in Figure 2.1

Input [:::>——'——-—“~ Output

Figure 2.1 Symbol- Amplifier

In the simple circuit shown in Figure 2.2, Ry is called the
feedback resistor and Rij is called the input resistor. The output eg

is given by

—ﬁ—ei N [2.1_7

El

Figure 2.2 Operational Amplifier
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If Ry is equal to Ry we have a circuit for an inverter and eq 1is

equal to - ej.

The Summing Amplifier

When an operational amplifier uses a feedback resistor and
multiple input resistors as shown in Figure 2.3 and 2.3a, 1t becomes a
summer. The network consists of input resistors Rj,Rp,----,Rp, One
for each voltage being summed and a single feedback resistor, Rf.
The output voltage, eop is equal to the negative of the algebraic sum

of the modified input voltages e],ep,==-=s€n?

R Re_

ey = Zﬁ 61 + feQ t om——— = Rt Zf2_2§7

n

or ey =-Rf ;%; 172.257
1=

i

or e

n
0 , 21:9161 [ 2.2¢/
1=

Rf
where g; = g, with dimensions of pure number, is called the gain of the
i
ith input; the summation being taken over all inputs.
The conventional symbol for a summing amplifier with gains

91599s-===,9, 1s shown in Figure 2.3a on page 12.

The Summing Integrator
When a capacitor is used as the feedback element for an operation-
al amplifier, as shown in Figure 2.4 and 2.4a, it is called a summing

integrator. The circuit consists again of the input resistors



— T
RiE| |
e, (T3] ] N\\\\\\\
/

|

Rf Rf Re
=~ (Fy 1 * Ry 2+ - * 7. o)

Figure 2.3 Summing Amplifier

91
e
g

€5 o 2

H €o

| 9n
N .
& = - (g1 ey tgpep+--=-+g,ep)

Figure 2.3a Summing Amplifier

12



t=0 Eg
-
Cs

P en
o*‘cfcf (R, *&, * = *R, ) 9t *+5

Figure 2.4 Summing‘Integrator

— f(glel+92e2+———-+gnen)d-t+Eo
0

Figure 2.4a Summing Integrator

243637
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R1,Rp,----,Rp with the feedback resistor replaced by a capacitor.
The output voltage eo is equal to the negative of the integral with
respect to time of the algebraic sum of the modified input voltages

€15€0y=="=y€n3

t
. 1 f e1 , e2 €n :
o= -2 [(E+2 4+ o0+ at +E [ 2.3a/
Cs 8 Ry Ry 3
t
or € T~ Jr(glel + ggey *+ === +gpep) dt + K [2.30_/
0
where 9; = E%ﬁf with dimension of number divided by time are called
i

gains of the integrator.

Specialized Devices
Diodes. The introduction of diodes into analog computer netiork
permits the :cpresentation of many types of complex restrictions.

Figure 2.5 shows the symbolic notations for diodes.
+ + .

Plate
C.) Cathode !

Figure 2.5 Symbol-Diodes

Diodes may be thought of as undirectional devices with current

flow allowed in the forward (plate to cathode) direction and blocked
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in the opposite direction. A diode can be back-baised by placing a
voltage source in series, to allow conduction at voltages other than

Zero.

The use of Diodes in a Switchihq Circuit. Diodes are frequently used

in switching circuits. The switching circuit shown in Figure 2.6 has

properties which can be described as follows:

=0 when e =0 Zﬁ2.4a;7

e, = E when e; <0 [ 2.40_/

given Ry > Rgiode, forward

When ej is positive, the lower diode conducts; and since the

forward resistance, Rgiode, forward 1S negligible compared to the in-

put resistance, ., €o is zero volts. When ej 1is negative the upper

diode conducts the bais voltage, E.

Positive Output Integrators. If a diode is connected across a summing

integrator as shown in Figure 2.7 on page 17, the output of the network

is restricted to positive values only. The diode D prevents the out-
n
put from becoming negative. This is because when Y e; is positive
i=1
the capacitor, Cg is bypassed, and the forward resistance of the diode

A : n
being negligible, the output of the network is zero. When }E e; 1is
‘ . i=1



-+

)

Ra = Rdiode,

0 volt when

D
il

E volts  when

®
11

Figure 2.6 Switching Circuit

e

forward
i= 0
< 0

16



w2 [\
: l/ " e
]
H
e e
<i aD
t
lf &1 e2+ +en +
=g (R*m, - *tR ) dt+E 20
0
Figure 2.7 Positive Output Intégrator
t=o0 Eg
-+
P D Gy
Cs
11
LA
-eo
gy
—o=e
Ex
t
1 opoe1 o2 en
€0 = 7 C¢ j'(1¥1+R2+-_—~+Rn)dt’LEOE ®x
o

Figure 2.7a .Baised Positive Output Integrator
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negative the diode offers a very high resistance and the feedback

capacitor conducts, thus integrating and giving a positive output.

. :
L (el 82+ +—-—e)dt+E [ 2.5/
e = e i .
o Cs Rl R,

e,=0

If the diode is back-baised in a manner as shown in Figure 2.7a
on page 17, the output voltage, e, is forced to be greater or equal

to the variable bais voltage, e

X
1 t e e en

eoz—-c_- le+R2+~_—-+E.)dt+EO [2'6_7

e = e

o— X

Coefficient Potentiometers. The coefficients appearing in most problem

equations are not whole numbers. It is unwieldy and impractical to
represent coefficients which are not convenient whole numbers by the
use of input gains, g; (the g; ratio) alone, because of the infinitely
large number of resistance vaiues that would be required.

The general circuit equation for the network shown in Figure

2.8 and 2.8a can be expressed as

R R R

Re £ :
eo = - (preg R+ P22 Ry * ===~ *+ Pnen R %) [ 2.75_7
= - (pyeyGp + ppeglp *+ ===~ + ppenGp) L 2.6 ]

where Bs

]
Hh

1
],
,'-'. '_h



P1%]
e
1 Yo —d
Py
"pre l\
g —y P2 —~
| 2 -
|
]
\
\ Pnén
h —s —[Fn
Pn
T
Rf Rf Rf
eo = - ( p1e1 =% +poep = + ---= * ppenTx )
R R R
1 2 n
where E; is larger than the desired value.
R.
i

Figure 2.8 Circuit Showing use of Potentiometer

el ] Gl
o~ P2 Q7]
)
s \
] €9
H @
en l. pn O n
6o = = ( pyejGyp + pyesly + ==== + pre,Gp)

where G; is larger than the desired value.

Figure 2.8a Circuit Showing use of Potentiometer

19
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Thus by varying the value of the potentiometer setting Ps and
fixing Ri*‘(such that Rf/Ri* is an integer), the desired value of the

input gain can be achieved.

Analog Computer Approach to Solve Simultaneous Eguations

The method used to solve linear and nonlinear programming
problems on the analog computer is the variation of the general form
used to solve simultan:-ous algebraic equations. A review of the ana-
log computer approach to solve simultaneous equations would enable a
better understanding of the steepest ascent technique.

A set of algebraic equations can be written in the form

n

Z ajk - by =0 (j = 1,2,-==-4n) [2-8_7
k=1

The most obvious way to solve these sets of equations on an
analog computer would be té use a set of n summers to perform the
desired summation of the n equations. The variables XjsXpy====,Xp
would then be generated implicitly by connecting the outputs to each

input as shown in Figures 2.9 and 2.9a. Each summer represents one

equation in the form

. bi ajl 2i,i-1 23,34l ain T
e i THE L L s . N . R = eee = T X %
i aj; as s 1 aji i-1 854 i+l asgy n

Additional sign changers are required for negative coefficients.
This method is quite restricted and not recommended because of
stability considerations. That is, in some sets of simultaneous equa-

tions, solutions overload the amplifiers in attempting to reach a

finite solution.



1
by /a1
xzk a]“/a]]
!
x, & 31n/a1
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Figure 2.9 General Computer Program to Solve n Simultaneous Equations

by 1/813_ .
1
X2 a12/""?1‘1:-
_b2‘_ l/a22
2
*] %21/%9)

Figure 2.9a Complete Computer Program to Solve Simultaneous Equations

((agpxg +appXe = Py 3 apyXp +agpXp = by )
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Perfect Integrator Method for Solving Simultaneous Equations.

The method of perfect integrators uses the technique of minimi-
zing the sum of the squares of the residual errors. The use of per-
fect integrators ensures that all residual errors due to the computer
set up would be driven to zero.

If for the jth equation the error, ej is expressed as

n
ej = ZajXg - bj (7 = 1,2,====4n) L2410 7
k=1
It can be provedl that the derivative of x) with respect to time
is given by

dx n
E—Ek = - K za. e. (k = 1529""'",“) [2°ll_7

dx
therefore | —K dt —> xp as ej—+ 0 (k = 1,2y,====4n
d+

j = 1,2,==-~,n) [2-12_7

The resulting computer set up is shown in Figures 2.10 and 2.10a.
With time the residual errors are driven to zero and the system

automatically balances itself, thus outputing the variables xj

(k = 1,2,——-—,]’]).

This method can also be verified? to be the method of steepest

ascent.

lJackson, A. S. (4) pp. 341-342 gives the mathematical proof for this
eXpression. i

2 s : hematical proof for thi
Fifter, S. (6) v.3 pp. 847-854 gives the mathematical p s
verification. :



—— - ——
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621 r];n -bn‘_—-ﬂﬁ%
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Figure 2.10 General Program for Solving n Simultaneous Equations
By Integrator Method

Ke, an)

Figure 2.10a Complete Program of Integrato: Method for Solving two
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CHAPTER III

PHYSICAL SYSTEM O THE LINEAR PROGRAMMING MODEL AND SOLUTION

OF ITS MATHEMATICAL MODEL ON THE ANALOG COMPUTER

The analog computer is generally used to solve the mathematical
model representing a physical system. The linear programming model
consists of two types of equations, the constraints and the objective
function. The analog can be considered to consist of an objective
point of the function, Z,being generated in the convex polyhedron
formed by the constraints of the problem. A maximizing force forces
the movement of this objective point such that an incremental change
in the displacement of the objective point will produce maximum
change in the objective function. The objective function is contin-
uous and single valued within the convex polyhedron. The maximum is
thus accomplished by forcing the objective point to travel along the
gradient of the objective function until the optimum value is reached.

- Whenever the objective point is driven outside the convex poly-
hedron, at least one restriction is violated. The objective point is
then subjected to a strong additional constraint force, acting at
right angles to the hyperplane, associated with the restriction vio-
lated. The net result is that the objective point moves along the

hyperplane in a zig-zag fashion to the solution vertex, where the

objective function attains its maximum, value.
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This method is a variation of the method of steepest ascent in
that the objective point travels along the gradient of the function
and the optimum solution is directed by the objective function under
the influence of additional constraint forces.

The concepts involved in this physical system can be best

i1lustrated through a simple two-dimensional linear programming

problem.

maximize Z = X1 + 2x2

subject to Rl H Xo = 2
R, ¢ 5x; + 3xy = 15
R3 H 3Xl - 4)(2 ) 12
Rg ¢ X1 = 0
R5 P Xy = 0

A graphical representation of this problem is shown in Figure 3.1.
The convex polyhedron OABCD (ALLOWED SPACE) is seen to be
bounded by five hyperplanesl, R1,RpsR3 and two non-negative re-
straints, R4 and Rg. If the objective point is initially started at
the origin 0, the point travels along the path indicated in dotted
lines, until it strikes the first barrier, AB. The driving force is

still applied, the point thus moves along the barrier AB in a zig-zag

e

lin two dimensions a hyperplane is a line.
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Figure 3.la Motion of the Objecting
, Point When it Strikes
Barrier ( AB )
CONSTRAINT
FORCE

2 R ledisesd: ©
N~
N e CONSTRAINT
N N /
N\ ~ FORCE
X : X
3 ~

@ —\Q\\ ~ 4 ~

N ‘/\ ALLOWED SPACE RESTRICTED SPACE
\

3‘$~\ / ~ ~ ~ (EQ

N MAXIMIZING ?ORCE\K vz ~
s x; LAY ~ CONSTRAINT
3 3x ' ~ E FORCE
N ax ~ ~ 4
Q // 1 \‘\flm- ™~
NS g . N
Yy~ &,
Yy 1 T~ ~
N ~

N/ ~

Figure 3.1 Dynamical Analoéy of the Linear Prog:amming Problem
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fashion and shown in Figure 3.la, until it reaches the barrier vertex,
B. This point corresponds to the point where the objective function,
Z can attain the maximum alloWed value.

If the objective point is initiated from an arbitrary point, Y
inside the polyhedron such as shown in Figure 3.2, the path travelled
by the poiht along the barriers is indicated in dotted lines. Further,
it is possible to initialize the objective point at any point out-
side the polyhedron, because the constraint forces, E, immediately
force the point bock into the allowed space.

Having obtained an optimum solution sensitivity analysis can be
applied. Parametric programming deals with the behaviour of this
dynamical system when the slope of the objective function and thé
slope or position of the constraint hyperplanes are varied. To vary
these parameters, it is necessary to change the value of the coef-
ficients. An analog computer, where coefficients are determined by
potesitiometer settings, and in which the solution is found dynami-
cally from any point in space, should be ideally suited for paramet-

ric programming and sensitivity analysis.

Mathematical Model

To develop the mathematical relations involved in the analog
computer solution of linear programming problems, the constraints and
objective function are defined in terms of variables and constants.

The interaction of the forces is then expressed in terms of these

variables and constants.
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The maximizing force 1is expressed as‘a gradient of the objeétive

function vector and directed towards the constraint hyperplanes.
When the solution point strikes any hyperplane under the action

of this maximizing force, the hyperplane responds through a Kronecker
delta to supply a strong constraint vector acting at right angles to
itself. The result is that the point moves along the boundary of the
convex polyhedron in the direction of the projection of the gradient
vector on that hyperplane. This motion continues until all the vec-
tors acting are balanced. This occurs at the solution vertex, where
the objective function attains its optimum value.

The concepts of development of a mathematical model for solving
linear programming problems on an analog computer was originally il-
lustrated by Pyne (5). This discussion, with extensions, follows the

one presented by Pyne.

A general form of linear programming problem is formulated as:
maximize Z = Cix; *+ Coxop + -== + Cyxg + --- + ChXn [3.la_7
subject to a set of m constraints

Apyxq + Apoxp + === * Apxg F-mm F Appxp S0 /[ 3.1b 7/

Ao1x] + Apoxp + ===+ Aggxg + -== + AopXp = bo

Aspxq + Ajoxg + ===+ A ¥ o7+ AgnXn T Bj

]
I

Ap1xy + Apoxo * === F Amk¥k + === * ApnXn = bp



plus a set of non-negative constraints

1

This set of equations can be expressed as:

Xl X2
maximize Z = EI + co
subject to

Xl g X2
b1/a11 *1/A12
X1 XD
+

bo/as1” P2/A0s

]

]

1

1

1
X1 X2
bj/Ajl+ bj/Aj2 +

]

]

]

1

]
Xl X2

+

bm/An1" Pm/ A

——— -

-

Xk

Ck

/Ao

Xk
bj/Ajk +
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bm/Amk
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This set of equations can be further simplified as:

n
maximize g=
k=1

: n
subject to z
k=1

%:
k=1

]

1

]

1

1

I

n
k=1

1

1

]

]

1

i
" L

w Cy =
ere k Ck
ask

% <1
Ak
ko<1
3ok
o<1
ajk

b=
= Zl (3 = 1,2,====,m

k =

Z§.3a_7

/3.3b /
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Denominator coeff’cients are used as they then directly represent
the intercept of a hyperplane with one of the n axes.

The variables, X]j;Xo,====3X|s====3Xp May be considered as co-

ordinates of a solution point in the n - dimensional Euclidean space.

The coefficient, ajk,then represents the intercept of the jth hyper-
plane with the kth co-ordinate axis and the equation 1—3.3b_7 repre-
sents a convex polyhedron (hypervolume) in the n - space bounded by
m hyperplanes.

The objective function is continuous and single valued within
the convex polyhedron. A gradient vector is defined as VZ. If
i1,ips====,ik,----,ip are unit vectors in the direction of the n

co-ordinate axes, then

32

n n
_y 9%z . _ 1.
= E g k7B ) [a47

The vector VZ is a constant acting normally to the hyperplanes

of equal values of the objective function, and pointed in the direction

of the steepest ascent, regardless of its location.

In order to represent the constraint forces associated with
each of the m restrictions, we define m vectors, Ej (5 = 1,2,====,m)

acting normally to the hyperplanes'and directed towards the convex

polyhedron. Thus each hyperplane acts as a barrier to the maximizing.

force vector.
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To compute the comporents of Ej (5), it should be first noted
that the linearly independent vectors, given by equation Z—B.S;Z

are parallel to the jth hypefplane;i.e.,they lie on the hyperplane

n

X
X =1
- k=1 35k
Ul = (aJlil - 83212) [3.5_7
upy = (ajpiy - ajzig)

%3 (ajn—lin—l - ajnin)

The vector Ej has the property that the inner product with each
vector of the set, equation 153.5_7, vanishes and also that it is
directed away from the jth hyperplane toward the allowed space. There-

fore it can be expressed in terms of its n components as

ip o ix in

E:i == (— +=5 4 oo + —  + comm + — 3.6
. (ajl 432 @ik ?jn) a6/

Each of the m constraints can be defined in terms of Kronecker delta

notation 87, &,s -==» O p

8j =0 when nzf_]g < 1 [3_7_7
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The vector of representing the forces acting on the objective

point can then be expressed as follows
m
f=KZ+ Y BjEj £3:8
J=e :

where K is a constant

Expressing f in terms of components we have
£= f5) + 50, + —mem F Fd b oo £ 3.9 /

The kth component of f can then be expressed as

m 8_
K _ ¥ =1
], = o /3.107

The magnitude of the vector f or its kth component depend on the
co-ordinates of the objective point because of the presence of the

Kronecker deltas in equation Zﬁ3.8_7 and 1_3.10_7. As long as the
objective point is inside the convex polyhedron it is subjected only
to the maximizing vector KVZ. Whenever it travels outside the convex

polyhedron its motion is governed by bdfh, the maximizing vector, KVZ
and the constraint vector, Ej.

The position of the objective point can be denoted by the vector

T = x1) Foxply Fommmm gl Foommm Xy £ 8sli-7
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and its velocity in the n-dimensional space is then the vector

) |
v =gt [3.127

-

where t is the time

The velocity of the objective point can also be expressed as

N

£ | Fa.1s .7

where Y is a constant scalar
Equation / 3.13_/ describes the motion of the objective function
as the solution is approached. The solution is the value which r
finally attains. From equation [_3,10_7 the kth component of equation
1—3.1347 can be written as
dx - L] 48-
= = 7(% - j_E;:l-a—ji ) /[ 3.147
As stated earlier, the objective point travels through the con-
vex polyhedron with a velocity ),K V Z until it strikes a constraint
hyperplane such as the jth hyperplane. The motion of the vectors ex-
pressed as the two parts of equation 173.8_7; the gradient and the
constraint vector acting normally to the jth hyperplane. If the con-
straint vector, Ej is always greater than the normal component of
K V Z, the point is driven back into the polyhedron. The vector, E

then vanishes, and the gradient forces the point again out of the
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polyhedron. In this way the objective point travels along the
boundary of the convex polyhedron in a zig-zag fashion until the

optimal vertex is reached.

Solution of Mathematical Modelvon Analog Computer

Solution of the mathematical model on the analog computer is
obtained by simultaneously solving the set of differential equations
and the attendant algebraic.expressions of the model. The variables
X9 Xps==="s X s """ "5 Xy are represented on the analog computer by cor-
responding voltages el,e2,-———,ek,————en. These voltages are
proportional to the corresponding original variables on a convenient
scale. The given set of relations between the original variables are
expressed by an analogous set of relations between the voltages.

The analog computer network required to solve the linear pro-
gramming model could be considered to be a modification of the
'Integrator Method' approach used to solve simultaneous equations on
the analog computer as explained in Chapter II.

In case of the linear programming model the number of summing
amplifiers, (m) may be equal to, greater or less than the number of inte-
grators, (n) which are limited to positive output only. Moreover, the
solution point is directed by the objective function, and associated
with each of the m constraint equations is a switch, to supply a con-
straint voltage when the equation is violated. However, the networks

of both the integrator method and analog computer approach for solving
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linear programming problems use the method of error 'reduction by nega-
tive feedback and apply the method of steepest ascent to attain the

final solution.

To solve the mathematical equations of the linear programming
problem on the analog computer, it is best to divide the analog com-
puter circuitry into the following four types of network systems

2

1. A set of n 'positive output' summing integrators®“ to solve the n

differential equations and output the n variables, X1 9Xps==""s

Xp s == ==Xp*

2. A set of m summing amplifiers3 to equate the m restrictions,
n
3. A set of m switches?, one for each of the m restrictions, to apply
the constraint force, Ej (J = 1,2,----,m) when the objective

point reaches the constraint hyperplane.

4. A set of invertors5 as required by negative coefficients.

These network systems are interconnected in a manner as shown

in Figure 3.3. "

2Figures 2.7 and 2.7a on page 17 describe this circuit and its proper-

ties.
SFigures 2.3 and 2.3a on page 12 describe this circuit and its proper—’

ties.
4Figure 2.6 on page 16 describes this circuit and its properties.

5Figure 2.2 on page 10 describes this circuit and its properties.
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The logic of the circuitry can best be understood by studying
the output voltages of the various network elements, and how their
simultaneous operation leads to the solution»of the equation of
motion as described by equation Z¢3.l4_7.

The output of the kth integrator is given by

t
l_/'('BVRJrVl P2 i +———Vm)d1,
I ; S b
k Cs g Ry " Tk Tok ) Tk

39

Volts /3.3 )

when the capacitor, Cg is initially discharged.‘

The output of the jth summing amplifier is

Vb
v. = -R -
3 £ | Rp =1 Tjk

The output, Vj of the jth switch will vary in a manner such

that

n
by T 2Ky vorts [3.16_7

V: =0 when v: = 0 1_3.l7a_7

Using Kronecker delta notation, we have

n

V: = E volts when vy < o - 1_3.l7b;7

e
8; =10 when Yy X < R | / 3.18a_/

k=1 Tik ~— b

2
I

k=1 Tik

ek Vb
1 when 3: o T Ry : / 3.18b 7
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The output of the jth switch can then be described as
Vs = 84E volts . /3.19. 7

If equation Zﬁ3.15;7 is differentiated with respect to time, we have

d 1 Bva iV oV Vg
dt "Cf Rk rik Tok' 77 Ty’ U ok
Volts per second [f§.2047

Introducing the symbolism described by equations 1_3.17_7,
173.18;7 and Z—2.19“7, the equation describing the computation per-

formed by the circuitry of Figure 3.3 can be written as

dek 1 BVR n 8 !
— = e (2 - E —1) Volts per second 2.01
dt Ce ( Ry j§1 Tik L 7

whereas equation [—3.14;7 which describes the desired motion of the
objective point of function, Z is
m 8
ka _I_<_ 2 Rocasl
== Y(Ck - = ajk) / 3.14 repeated /

Equations / 3.14_/ and / 3.21_/ are identical in form. The
circuitry of Figure 3.3 can thus perform the computations of equation
153.14;7 by proper selection of the computing resistors and supply
voltage values.

When the circuit is initially started witﬁ the capacitors, Cs
discharged, the ey (k = 1,2,----,n) vdltages are zero and hence the
outputs of the m summing amplifiers, vj (3 = 1,2,-=-=,m) are positive

ViR
(Vj - b f) and the V (3 = 1,2,----,m) voltages are zero.
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The result is that the ey voltages start increasing with time
in the positive direction until the v voltages are equal -to or less
than zero. As soon as an ey voltage increases to a value such as to
cause any of the V3 voltages to become negative, a voltage E is
épplied by the corresponding switchj; thereby reducing the value of
the ep volfages. In this manner the circuit voltages balance with

time, giving positive output voltages, ex corresponding to each

integrator, while satisfying the conditions

n
z E-l-(- = —\{p- (j = 1,2,===-4n)
k=1 Tik Rp

for each of the m amplifiers.

Machine Variables and Scale Factors

The analog computer will establish mathematical relations not
between the original variables Xj,Xp,====,Xys====,X,, but between the
voltages ej,€n,====5€Ks="""5€pn; simulating these variables. It is
therefore necessary to establish a set of pelations describing .the
transformation of the given problem va%iables and parameters to
machine voltages and settings, respectively.

Defining a set of scale factors Sy such that

By = Ska (k = 1923"‘"",n). [3-22_7
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Substituting for X} in equations Z¢3.7;7 and [ﬁ3.l4~7, we have

S,

J

I

0 when

1 when

n

z,

k=1

n

k=1 °k3jk

de
I NI
and (dt - (Ck -

Sk

5 )
=1

ek §
SkaJk -

®k
b

aJk

/2285 7

ZF3-23bQ7

[ 3.247

multiplying both sides of equation Zf3.23a;7 and Z_3.23b_7 by

YQ we have
Rp

Il

S

J

3.

J

1

0 when

1 when

=

1L Ms

eka

ore———
SkajtRp =

exVy =

SkajkRp

/[ 3.25a_/

[/ 3.250 7

where as the circuit equations as given by equation Z~3.l8_7 is

Bj:

0

1

when

when

>
=1

k

A Mo

e \'%
Zk < §2
Ts5k b
oo OB
Tk Rp

ZfB.lBa repeated~7

/ 3.18b repeated_/

Comparing equations Z—3.18_7 and [ﬁ3;25_7 we have the relation de-

scribing the transformation of the matrix variables, asy to input

resistances, rjk'

— b

T.y = a.,S, =
k k“k

J J VR

R

- [ 3.26_7
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substituting for ajx from equation 1_3.26~7 into equation 1—3.2447

2
dey VSR, KBV, W ), |
at = B, RySeep - &2 Tk ) [3.217

The circuit as given by equation Zf3.21_7 is

: V. m .
o 1 B %8

gt = & T- / 3.21 repeated /
j=1 Jjk

My
o)
.

for the two equations to be identical we must have

R = USpcy /[ 3.28 7

here U = ki
where = KEVb

EVy,

and 7 =_0 2 [3‘29_7

CeRpSy

The analogy is complete through equations 173.26_7, 1_3.28;7

and ZP3.2QJ7.

The input resistance, Rz, of the switches is not critical, but
should be much greater than the forward resistance of the diodes. A
convenient value is 1 megohm or larger.

Although the value of the constraint voltage, E is not critical,

it should be equal to the computer reference voltage, VR,or greater,to~
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assure that the constraint voltage will always be greater than the
component of the driving force normal to any hyperplane. This avoids
any possible break-through of the constraints by the objective point.
Equation / 3.16_/ shows that if the e} (k = 1,2,----,n) voltages
representing variables are all zero, the output of each summing
amplifier Will start at Epgxs if Rf and Rp are chosen in the ratio

R, E
L =, ax /3.30_7

Rpb  Vp

For parametric programming it is preferable to have V, approximately
equal to half the value of Vp, so that the constraints values, bj
(3 =1,2,----,m) can be varied over a wide range in either directions.

A convenient method exists for transforming‘the variables of the
given problem to machine variables.

The original e iations 1_3.1347 and [_B.Ib;7 are normalized and
expressed in the form given by equations [—3.3a;7 and Z—3-3b_7. The
procedure is illustrated by Tables 3.1 and 3.2.

For each column of Table 3.2, the largest coefficient, aj<is

selected and the corresponding scale factors Sy (k = 1,2,====,n) are

calculated using the relation

VPR
S = =t ‘ /[ 3.31_7
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Xl X2 ...... Xn
| A1 A1 eeees Arp by
] 1 ] 1 ]
1 1 1 ] 1
Rm Arnl Am') ooooo Amn bm
z C; o o
TABLE 3.1 Transformation Table 1
3 Kp. i . . *n
R a117P1/A14 L) V/ SPRLTEE 1n"P1/A;
R a217P2/An; a20%b/App v e azn=P2/Ap
1 ] 1 1
] ] 1 1
Ry am1™Pm/Ap1 o™ Pm/ Ao+ - amn™Pm/ A
Z Cl:l/Cl 02~1/C2 ces e cn=l/c n
TABLE 3.2 Transformation Table 2

e1=5S1x1 e0=SoX2..... en=SnXn
Siall S08190 eeene. Shain
S1a12 Spapp e Sna2n

1 1 1

1 ] ]
Slaml S2am2 ------ Snamn
Sic1 50C ceeenn.n Sncn

TABLE 3.3 Transformation Table 3
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®n

FLISS191 18y

217512218 /vy,

Tm1=S12m1Rp/vy

T12752312Rp /v -

T22752a00Rp /yy - ¢

rm2:S2am2Rb/Vb"

T1n=Sn31nRp/vy)

Ton=SnaonRp/vy,

Tmn~SnamnRb/vy,

7%

R1=USjc3

TABLE 3.4 Transformation Table 4

Input resistances rjp represent the matrix coefficients Ajx

(j:l52a""""5m

k:lgzg""—"',m)-

The resistances Ry represent the objective function coefficients

Ck (k:l,2,—-——,n).

The input voltages minus Vj represent the constraints

bj

(3=1,2,----,m).
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Each column of Table 3.2 is then multiplied by its corresponding
scale factor Si, to obtain the array as shown in Table 3.3. The
array shown in Table 3.4 represents the computer input resistances
T35k (j = 1,2,----,m k = 1,2,----,n) and Ry (k = 1,2,----,n); and
ié obtained by multiplying each a - element of the array (Table 3.3)
by BE and eéch of the C - element of the objective function by a

Vb
constant, U, so that the resulting resistances, Ry,will be convenient

in size.
The values given in the array of Table 3.4 are then the fixed

input resistive values for the program shown in Figure 3.3 on

page 38.

Extension of the Basic Program to Conduct Parametric Programming

For conducting parametric programming it is necessary to be able
to vary the slope of the objective function (parameters Ck), the slope
of the constraint hyperplanes (parameters Ajk) and the position of the
hyperplanes (parameters bj). This can be accomplished by representing
these parameters by potentiometer settings rather than fixed input
resistors, throughout the basic model (Figure 3.3 on page 38).

If feedback impedances of one megohm and one microfarad be used

for each of the m 'summing amplifiers' and n 'positive output inte-

grators' respectively, the various input gains (955 and gy) would be

then equal to the reciprocal of the value of the input resistors

(rjk and Ry)
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. .

gk = Rk (k:1,2’-—_—,n) [3.328__7
1 .

95k ~ T5k (5=1,2,----,m k=1,2,-===,n) [3-32]0_7

Table 3.5 on page 49 gives the array of the various input gains
required to represent the given problem, and Figure 3.4 on page 50
illustratesvthe circuitry.

Each of the input gains, gy and g5 are then obtained by choos-
ing a suitable higher fixed input gain Gy and ij and using it in
conjunction with a potentiometer with a setting Px and Pjk» respective-

ly given by the relations.

gk = PkG (k=1,2,=----,n) Z73-33a_7

gik = pikGik  (3=1,2,====»m k=1,2,====,m) / 3.33b_/

It is preferable to choose a value of Gy and ij such that py
Pjk will have a value near 0.5. This will enable the various param-
eters to be varied through a wide range of values.

Table 3.6 gives the array of the various fixed input gains
Z_Gk_7 and Zﬁij_7 used in conjunction with potentiometer setting (py)
and (pjk), respectively. The supply voltage V, representing the
constraint value bj (j:l,2,-———,m) are available via potentiometers
in almost .all analog computers.

Moreover, if each of the n positive output'integrators are back-

baised6 by a variable voltage supply Vg (k=1,2,----,m), equal to

6Figure 2.7a on page 17 describes this circuit and its properties.
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V) 9)771/7q 9571/, 91,71/
= = -
Vo 9,,=1/7 ) 9,,"1/7,, 9, =L/7
] 1 ]
] 1 1
] 1 ]
Vin gmlzl/‘rml Im2 l/rm2 gmnzl/rmn
Z* 91=1/R; 95=1/Ry «.... 9,=1/R,

TABLE 3.5 Transformation Table 5

el 92 > o o & o en
Vi | 9;:=(P11)5G11 9157(P10)5Gy5 .0 91, (Ry )56y
Vo | 951=(Po1)3G01 9557 (Pon)sGny -+ 9= (Pp )56y
1 1 1
1 1 " 1
] 1 ]
Vi gml:(pml)’Gml gm2:(pm2)’Gm2" gmn:(pmn)’Gmn
Z% gl:(Pl)aGl 92:(P2)’G2 <. gn:(Pn),Gn

TABLE 3.6 Transformation Table 6
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or greater than restrictions can be applied to each variable. By
extension, variables whose optimum value is zero can be introduced by
forcing a positive value. It is also possible to study the effect
of increasing the value of the variables beyond the optimum by forcing
.the variable beyond this point, if all other restrictions allow.

Each of the variables ey (k = 1,2,----,n) 1is combined with a

corresponding gain of

gek (k = 1,2,----,n) in a summer’, Su-Z where

gek = —]:L = pekGek (k = 1,2,————,n) [3.34_7

where L is any constant, chosen such that the output voltage, Z¥* is
within the maximum permissible value of the computer.

The value of the objective function Z, is then given by the

relation
Z = 7Z¥L [3.35_7

Figure 3.5 gives the complete analog computer program to conduct

parametric programming.

7Figure 2.3a on page 12 describes this circuit and its properties.



Figure 3.5 General Analog Computer Program for Conducting Parametric
Programming ' :

52
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Each parameter C» Ajk and bj of the given problem is repre-
sented by a potentiometer setting. Hence, variation of parameters is
accomplished by the manipulation of the appropriate potentiometer.

The ability to manipulate the parameters of a dynamic model implies
‘that it would be ideally suited for parametric programming and
sensitivify analysis.

The transformation from the parameters of the problem to the
corresponding potentiometer setting or vice-versa is accomplished by
a set of relations illustrated by the transformation tables 1 to 6.
The speed of the solution is influenced by the potentiometer setting
B

The values of the n variables Xxj,Xp,=-=---,X, are obtained at
the output of the n integrators, Int-k (k = 1,2,----,n). The values"
of the slack variables, Wj (3 =1,2,----,m) are obtained at the out-
put of the m summers, Suj (j =1,2y----,m). The value of the objective
function, Z is obtained at the output of the summer, Su-Z.

The following are the equations describing the transformation

of the output from the machine voltages to original variables of the

given problem.

oy, = ok (k = 1,25====4n) [3-36_7
Sk
Wy = .‘ﬁi\_k;f.é (3 = 1,2,----,m) L 8.:37 .7
b

Z = 7Z¥L 1—3.35 repeated;7
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Additional Computational Aids

1.

If the voltage - Vp of the jth summer, Su-j is increased by one
volt, the corresponding jth restriction, bj is relaxed by

bs/Vp units.

Any variable xy not appearing in the optimum solution can be
introduéed into the solution by back-baising the corresponding
integrator, Int-k with the variable voltage, Vg.

To shift the hyperplanes parallel to itself inward, lower the
voltage applied to Gp of the corresponding summer from a value
Vi, to the required lower voltage; and to shift it outward, in-
crease the voltage applied.

To minimize instead of maximize the objective function, apply
+Vg instead of -VR to the integrators.

To interchange the 'allowed' and restricted regions for any con-
straint hyperplane, reverse input and output terminals of the
switching amplifier.

Negative coefficient among the a's must be treated by introducing
an invertor in the corresponding paths. Since each such coef-
ficient enters the circuit twice, with input voltages, ey and Vj,

from the output of the integrator and switch respectively, two

sign changers are required for each negative coefficient.

A negative coefficient in the objective function is handled by

using an invertor at the appropriate integrator input.
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If the integrating capacitors are all started from a discharged
condition, the objective point will start its motion from the
origin. Whenever it is desirable to start the objective point
from any other initial condition, it can be done by introduging

appropriate initial voltages on the integrating capacitors.
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CHAPTER 1V
TESTING OF THE MODEL

The model illustrated in Chapter III was tested by solving a
fhree dimensional numerical linear programming problem by both the
simplex method on the digital computer and the analog computer ap-
proach -on the analog computer.

Considering the linear programming problem:

maximize Z= lOX]_ = 15X2 + 8)(3
subject to Rl : *5xq + X5 + X3 = 100
: + = 15

R3 H 2Xl + 3X2 + '5X3 f 200

The solution to this problem as provided by the digital computer
using the simplex method is illustrated by the final simplex tableau
shown in Table 4.1.

The positive index numbers under the body 0, 1.57 and O indicate
the algebraic decrease that would occur in the objective function, Z,

if one more unit of x1, xp and x3 respectively, were introduced in the

solution.
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TABLE 4.1

FINAL SIMPLEX TABLEAU OF PROBLEM / 4.1 /

10-0 15-0 8-0 0-0 00 0-0
Basie Xq X5 X Wl W2 W3
X3 57.143 0-0 0-286 1-0 1-143 00 -0-286
Wo 64-268 0-0 1.571 0-0 0-286 1-0 -0-571
X] 85:714 1-0 1-429 0-0 -0-286 0-0 0+571
Index Row 0-0 1-57 0-0 629 0-0 3-43
————— Body= = = = = = = ~ldentity=.~ = =

Optimum Solution is Z = 1314-.285
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A}

The positive index numbers under the identity, 6:29, O and 3-43
represent the algebraic increase possible in the objective function,
Z if the restricting constants, 100, 150 and 200 respectively, were
relaxed by one unit.

This optinum solution ( x; = 86-714, X, = 0, x5 = 57:143 and
Z, = 1314-285) was accomplished in the seventh iteration.

To represent the problem given by equation [74.1_7 in an analog
computer model, it is necessary to determine the various coefficient
elements of the program. This can best be accomplished by following
the procedure illustrated by Tables 3.1 to 3.6.

These calculations for the given problem are shown in Tables
4.2 through 4.7.

The analog computer program to simulate the given problem is

given in Figure 4.1 on page 63, incorporating the values of the co-

efficient elements as given by Table 4.7 on page 64.

The program was run on the 'EASE BERKELEY' analog computer and
eight sets of readings were tabulated as given in Table 4.8 on page
64, in terms of machine parameters and yariables; and Table 4.9 on
page 65, in terms of variables and parameters of the given problem,

to demonstrate the ability of the analog computer solution to do

parametric programming.
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TABLES ILIUSTRATING THE TRANSFORMATION OF THE COEFFICIENTS

OF THE PROBLEM TO MACHINE SETTINGS

X1 ) X3 b
Ry b 1 1 100
Ro 1 3 150
R3 2 3 5 200
Z 10 15 8

TABLE 4.2 Transformation Table - 1

Xy X5 X3
R, 200 100 100
150 50
R, |
R, 100 6666 400
. 1/10 /15 1/g

TABLE 4.3 Transformétion Table - 2
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Choosing the feedback impedances Ry = 1 meghohm and Cg = 1 microfarad

and Vp = 50 volts and having Epgx = 100 volts.

Input resistances Ry are given by equation 1—3.30_7

EQ - Emax

Rf Vb
_100x1 _

R, = =55 = 2M

Scale factors for xj, X, and xj are determined from equation Zﬁ3.31_7

Sxy = Ry, (max ajl)
Sx. = 50x1
1~ 2x200
-1
le =5

VR
$Xp = R (max asg)
2 7 Rp(max aj2)
Sx,. = 50x1
2 2x100
-1
Sxy, = %

ViR ¢

Sxg = ZRb(max aj3)

_ 50x1
SX3 = 5x400
i

e =9

multiplying each column of Table 4.3 by the corresponding scale factors,

we have
1 _a o

e; = gX1 Bg = 459 €3 = 16%3
25 g5 6.25
18.75 12.5
12.5 16.66 25

1 A 1

80 60. 128

TABLE 4.4 Transformation Table - 3



To obtain the various input resistive values, each a - element
Rp 1
is multiplied by Vg = 55 and each ¢ - element by a convenient factor,

o=
_.Xl %X2 .ll'gx3
Vi 11/ 1M 25M
Vo -75M -5M
V3 -5M -66M 1M
z - 75M 1 - 469M

TABLE 4.5 Transformation Table - 4

Since the feedback impedances, Rf and Cg are chosen to be equal
to unity, the input gains are given by the reciprocals of their cor-

responding input resistances as shown in Table 4.6.

_ 4 & e 5
€1 = gX1 S5 = 4%9 €3 = 16X3
V] 1 1 4
Vo 1-33 )
V3 2 1.5 1
7 1-33 1 5.13

TABLE 4.6 Transformation Table - 5
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Each of the input gains of Table 4.6 are then represented by a
potentiometer in conjunction with a higher input gain using equations

/ 3.33a_/ and/3.33b_/, as shown in Table 4.7.

_1 - g =
2] = 851 €5 = 4%o G R T
Vi (+5), 2 (+5), 2 (-4), 10
V2 ('66)’ 2 ('5), 4
V3 (-4), 5 («75), 2 (-5), 2
z" (+66), 2 (+5)s.2 (-53), 4

TABLE 4.7 Transformation Table - 6

The input gains of the summer, Su-Z are calculated using

equation / 3.34 /.

Choosing the value L = 100

- = . = '8 l
9e1 = T 8 = (-8),

ge2




Analog Computer Program for Parametric Programmi
of Problem ZF4-1 O D

Figure 4.1

63
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An explanation of the readings in Tables 4.8 and 4.9 will enable
a better understanding of the procedure of perturbating the model.
Row 1 gives the solution of the original problem.
Row 2: The variable xp, not in the optimum solution,was introduced
into the solution by means of the back-baised supply voltage, Vgo.
This solution indicates that the objective function, Z reduces by 1-5
units for every x, unit that enters the solution.
Row 3: The restriction R; was relaxed by 10 units, using the variable
supply Vi;. The objective function increased by about 65 units, indica-
ting an increase in objective function by 6.5 units for every addition-
al unit of by available.
Row 4: The restriction R, was relaxed by 30 units, using the supply
Vi,o- The objective function value remained the same, indicating zero

increase in objective function for every additional unit of by
available.
Row 5: The restriction R4 was relaxed by 50 units, using supply Vi 5.

The objective function increased by about 100 units, indicating an in-

crease in objective function by 4 units for every additional unit of

by available.

The above set of 5 readings agree with those provided by the

simplex tableau given by Table 4.1 on page 57.

Row 6: The objective function coefficient, Cp was changed to 18 by

manipulating potentiometer po- Reading 6 gives the solution with this

new parameter.
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Row 7: The matrix coefficient A » was changed from a value of 3 to 2,
by manipulating potentiometers p32. Readingv7 gives the solution
with this new parameter.

Row 8: Objective function coefficients, Cy» Coy and C3 were all
simultaneously changed and the solution obtained. Thus illustrating
that any combination of changes can be represented on this model.

In sensitivity analysis it is often required to determine the
range of any given parameter for which the problem, as originally
stated, remains optimal. This can be accomplished on this model by
merely varying the appropriate potentiometer until the basis of the
solution changes. The sensitivity of the objective function of the
given problem was checked with regard to implicit parameters in the

ncighborhood of the optimal vertex, and found in terms of potentio-

meter readings as follows:

‘6 = pp =135 -0=pp=-5; -2gpzsl

which in terms of actual variables is

with Cy restricted by the appropriate bounds, the basis remains opti-

mal but the value of the objective function changes.
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CHAPTER V
SUMMARY AND CONCLUSIONS

A linear programming model can be effectively simulated on the
énalog computer by considering the dynamics of an objective point
driven by a maximizing force along the gradient of the objective
function hyperplane within the convex polyhedron, formed by the
restrictions of the problem. Each restriction is represented as a
barrier or hyperplane, with which is associated a constraint force.
When the objective point is initiated anywhere within the polyhedron,
it travels through the convex polyhedron along the gradient of the
objective function until it strikes a hyperplane. It then travels
along the boundary of the convex polyhedron and finally settles down
at a vertex, the n co-ordinates of which represent the values of the
n variables which constitute the optimum solution.

On the analog computer model it is possible to represent each
parameter of the given problem by a potentiometer reading. Using
this dynamic model the analog computer with its fast operating time
immediately seeks new solutions to the problem as the parameters are
varied, without the necessity of returning to the initial conditions.

The analog computer is thus ‘a powerful tool for conducting
parametric programming and sensitivity analysis.'

In addition to solving a programming problem the model (figure

3.5 page 52 ) can be used to provide additional information regarding

the given problem.



The effect of relaxing any restriction, bj on the optimum sol-
ution, can be studied by increasing the corresponding variable
voltage supply - Vi, of the jth summer, Su-j. With an increase
in one volt of - V,, the restriction bj is relaxed by bj/Vb
units.

The effect of introducing a variable Xks not in the optimum sol-
ution or increasing its value beyond that given by the optimum
solution, can be studied by introducing the back-baising voltage,
Vg of the corresponding integrator, Int-k. By introducing one
additional volt of Vg, 1/Sy units of x, are forced into the
solution.

The slope of the objective function hyperplane can be varied by
manipulating the potentiometers, pp (k = 1,2,---~,n).

The slope of the constraint hyperplanes can be varied by manipu-

lating the potentiometers, pjx (j = 1,2,--==ym k = 1,2,----,n).
The values of the slack variables, Wj (4 = 1,2,----,m) are ob-
tained at the output, vj of the m summers, Su-j (3 = 1,2,===—,m)
and is given by N

Wj:-\ils—bi—R—b

The objéctive point can be initiated anywhere within or outside
the convex polyhedron by introducing.appropriate initial voltages

on the integrating capacitors, Cy; of the integrators, Int-k

(ke = 1,2,----,n). When the objective point is initiated outside

69
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the polyhedron, it is immediately driven inside by the constraint
voltages of the hyperplanes, it then proceeds along the boundary
of the convex polyhedron to the optimal vertex.

7. A break-through by the objective point at a hyperplane-barrier
occurs when the component of AVp (0 < A <1 ) normal to any
hyperpiane, is greater than the constraint voltage, E. A con-
dition E = VR would therefore prevent any possible break-through
at a hyperplane-barrier.

8. A case of degeneracy can be recognized if the output Z*, of the
summer Su-Z remains constant while the variables X1 3Xpe====sXp
continue to change values slowly.

9. Most optimum solutions were reached within one minute and accuracy
obtained was within + 5 percent. This is more than the accuracy
of the input data generally available for economic studies.

10. The various voltages at the output of the summer, Su-j
(j = 1,2,----,m) closest to zero correspond to those of the
restrictions which actually determine the solution vertex. It is
then possible to obtain solutions to the desired accuracy by
solving these corresponding n simultaneous equations.

Mathematical programming problems with nonlinear restrictions

can be simulated on the analog computer by using more elaborate

equipments like function generators. However, using the procedure

described in this thesis, any particularAset of initial conditions

will always produce the same solution, which might not be the optimum
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solution. Hence, there is a need to apply the analog computer ap-
proach to study nonlinear programming problems and related search
techniques.

Another class of problems in the field of operations research
is statistical linear programming, which involves the concepts of
probability. That is, it involves phenomena that, although describ-
able on a long term basis with various degrees of certainty, cannot
be predicted on an instantaneous basis. Variables involved in such
a system are called as stochastic variables.

Four situations can occur:

1. Objective function coefficients, Cj may be stochastic.

2. Matrix elements, Ajk may be stochastic.

3. Constraint constants, bj may be stochastic.

4, Combination of these values may be stochastic.

Ideally, we would like to symbolize and analyse a system where
some or all the values are subject to statistical fluctuation; given
the probability distribution of the fluctuation of these parameters.

An analog computer approach to this problem needs to be investi-

gated because statistical quantities can be represented on an analog

computer by a time-varying voltage.
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