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ABSTRACT

OPTIMIZATION-BASED FAST-FREQUENCY SUPPORT IN LOW INERTIA POWER

SYSTEMS

UJJWOL TAMRAKAR

2020

The future electrical energy demand will largely be met by non-synchronous

renewable energy sources (RESs) in the form of photovoltaics and wind energy. The lack

of inertial response from these non-synchronous, inverter-based generation in microgrids

makes the system vulnerable to large rate-of-change-of-frequency (ROCOF) and

frequency excursions. This can trigger under frequency load shedding and cause cascaded

outages which may ultimately lead to total blackouts. To limit the ROCOF and the

frequency excursions, fast-frequency support can be provided through appropriate control

of energy storage systems (ESSs). For proper deployment of such fast-frequency control

strategies, accurate information regarding the inertial response of the microgrid is

required.

In this dissertation, a moving horizon estimation (MHE)-based approach is first

proposed for online estimation of inertia and damping constants of a low-inertia microgrid.

The MHE also provides real estimates of the noisy frequency and ROCOF measurements.

The estimates are employed by a model predictive control (MPC) algorithm that computes

control actions to provide fast-frequency support by solving a finite-horizon, online

optimization problem. The combined MHE-MPC framework allows an ESS operator to

provide near-optimal fast-frequency support as a service. The framework maintains the



xvi

desired quality-of-service (limiting the ROCOF and frequency) while taking into account

the ESS lifetime and physical limits. Additionally, this approach avoids oscillatory

behavior induced by delays that are common when using low pass filter and traditional

derivative-based (virtual inertia) controllers with high gains. Through simulation results, it

has been shown that the proposed framework can provide near-optimal fast-frequency

support while incorporating the physical limits of the ESS. The MHE estimator provides

accurate state and parameter estimates that help in improving the dynamic performance of

the controller compared to traditional derivative-based controllers. Furthermore, the

flexibility of the proposed approach to achieve desired system dynamics based on the

desired quality-of-service has also been demonstrated.
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CHAPTER 1 INTRODUCTION

The demand for clean energy in the modern power system is on the rise, driven by

factors such as fuel prices, grid codes, laws, and regulations. Renewable energy sources

(RESs) like photovoltaic (PV) and wind energy are now gradually starting to dominate the

energy generation mix, replacing traditional generation sources, such as coal and

nuclear [1]. The popularity of distributed PV plants further escalates the penetration of

renewables in the modern power system. The global installation of wind and PV

generation exceeded 400 GW and 200 GW, respectively, by the end of 2015 [2]. Countries

like Ireland and Germany already have annual RES penetrations of more than 20% [3]. In

Denmark, wind power alone can meet 40% of the country’s instantaneous electricity

demand, which is the highest among all countries. The rapid development of RES is

causing the modern power grid to gravitate towards an inverter-dominated system from a

rotational generator-dominated system, as illustrated in Figure 1.1. PV systems and most

modern wind turbines are interfaced through inverters. Although this is advantageous

from the point-of-view of harvesting RES, the inverter-based generation does not provide

any mechanical inertial response and hence compromises frequency stability [3]–[5].
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Figure 1.1. Evolution towards an inverter-dominated power system.

1.1 Multi-timescale Frequency Control in Power Systems

To maintain the power generation and load balance, various control actions are

implemented in a power system over multiple time-frames as illustrated in Figure 1.2. The

governor response is the primary control action which takes place within the first few

seconds (typically 1–30 s) of a frequency event and aims at reducing the frequency

deviation. The automatic generation control (AGC) is the secondary control action that

takes place within minutes (typically 1–30 minutes) and restores the system frequency to

the nominal value. The tertiary control action is the reserve deployment when actions are

taken to get the resources in place to handle present or future disturbances in the system.

Whenever there is an imbalance between the generation and consumption in a power

system, the generators cannot respond instantaneously to balance the system. The kinetic

energy stored in the rotors is responsible for counteracting this imbalance through inertial

response until the primary frequency control has been activated.
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Figure 1.2. Multi-timescale frequency control in power systems.

As conventional generators are displaced by RES, the inertial response also

decreases. This leads to an increased rate-of-change-of-frequency (ROCOF), and a

low-frequency nadir (minimum frequency point) in a very short time. The primary

frequency control cannot respond within the small time frame (typically less than 10 s) to

arrest the system frequency change. This period is highlighted as section AB in

Figure 1.2. It is clear from the figure that in systems with lower inertia, the frequency

nadir is considerably lower along with a high ROCOF. Such situations can lead to tripping

of frequency relays (causing under-frequency load shedding (UFLS)) and, in the worst

case, may lead to cascaded outages [6], [7]. The solution to such scenarios is to provide

fast-frequency support through virtual inertia in the system. The basic requirements of a

virtual inertia system are that it has to operate in a very short time interval (typically less

than 10 s) and in an autonomous fashion. Deployed appropriately, virtual inertia systems

would enhance system stability and enable greater penetration of RESs.
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1.2 Recent Trends and Frequency Events Due to Low Inertia

Recent reports and studies have shown frequency stability to be a matter of

significant concern due to the lack of inertial response from RESs. The independent

system operator (ISO), Electricity of Reliability Council of Texas (ERCOT) has reported a

continuous decline in the inertial response of its system and recommends additional

inertial response [8], [9]. Figure 1.3 illustrates the change in frequency in the ERCOT

interconnection for two time periods for the same amount of generation loss. The change

in frequency per generation loss is increasing yearly, and this trend is highly correlated

with the increased RES penetration over the same time period. ERCOT has also

implemented an inertia monitoring and forecasting tool to manage inertia in the ERCOT

system. The tool uses the inertia parameter of each synchronous generator and it’s

ON/OFF status to estimate the current inertia in the ERCOT system [10]. This allows the

ERCOT’s system operators to plan and procure fast-frequency services. Similarly, the

European Network of Transmission System Operators for Electricity (ENTSO-E) has

reported increased frequency violations in the Nordic grid correlated with increased RES

penetration [11]. As a consequence, the inertial response from wind turbines is now

mandatory in many countries [12], [13] and the trend is extending towards PV plants as

well.



5

Figure 1.3. Increase in frequency changes in ERCOT connection due to generation loss.

Recently, there have been several power system outages that have been reported due

to frequency events in the power system. For example, on August 9th, 2019 a power

outage in Great Britain affected around 1 million people for 15 -45 minutes [14]. Two

subsequent large generation losses caused the frequency of the system to dip below the

UFLS setting of 48.8 Hz. This led to the shedding of critical infrastructures such as

rail-transit systems and hospitals. The non-synchronous generation at the time of the event

was around 50%. Reports concluded that the lack of inertial response to the frequency

event was the main cause of the outage and the Great Britain power system did not have

enough fast-frequency services procured. Similarly, in September 2018 there was a major

power outage in Southern Australia which affected around 850,000 people. In this case,

multiple wind-farms tripped due to severe storm resulting in loss of more than 450 MW in

less than 7 s. The frequency of the system thus plummeted in absence of fast-frequency

support which led to a cascaded outage in the system [15]. Thus there is a strong practical

relevance to research on fast-frequency support mechanisms through virtual inertia

systems which were academic in the past.
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1.3 Frequency Limits in Low Inertia Power Systems

Microgrids have been identified as the best option to integrate RESs in terms of

flexibility and reliability [16]–[18]. The microgrids can be operated in three possible

modes: grid-connected, islanded or isolated. A microgrid is said to have been islanded

when a microgrid that is grid-connected disconnects from the grid, either in a planned

fashion or due to a fault/disturbance in the main grid. In the isolated mode of operation,

the microgrid is designed such that it is never connected to the grid. Regardless, these

microgrid systems represent weak power systems and the high penetration of inertia-less

PV and wind energy systems has a severe effect on the frequency stability [19]. The rapid

changes in the generation can cause frequency variations in the system that are outside

standard limits and compromise the stability of the system.

Figure 1.4 shows the recommended standard frequency range for grid-connected

and isolated/islanded microgrids. In the grid-connected mode, the frequency is controlled

by the main grid and the frequency deviations are relatively small. However, this scenario

is slowly changing with increased integration of large-scale inertia-less generation. IEEE

recommends a tight frequency operating standard of ±0.036Hz for grid-connected

systems. The North American Reliability Corporation (NERC) recommends triggering

the first level of UFLS when the system frequency drops below 59.3 Hz (for a nominal

frequency of 60 Hz for the US power grid). The activation of UFLS is the last automated

reliability measure to counteract frequency drop and re-balance the system [20]. NERC

recommended control actions that include disconnecting the generator if the frequency

drops below 57 Hz or rises above 61.8 Hz [21]. The European Norm EN50160 also
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imposes similar tight ranges for grid-connected microgrid systems. There are no specific

standards defined for frequency limits for isolated microgrid systems. This is highly

dependent on the generation and the load mix in a particular microgrid system. From a

generator point-of-view, frequency standards like the ISO 8528-5 standard [22] can

provide a guideline for the frequency limits. With the small amount of SG in isolated

microgrids, the frequency excursions and ROCOF are greater and the need for virtual

inertia is of high importance. In such isolated microgrids, to implement virtual inertia

either dedicated energy storage systems (ESS) can be used [23], [24], or inertia can be

emulated by operating PV/wind below their maximum power point (MPP) [25], [26].

However, the allowable frequency nadirs and ROCOFs in the microgrids in

islanded/isolated conditions may be relaxed compared to grid-connected operation. This

will be especially vital for the design of virtual inertia systems for isolated microgrids as

these microgrids often have limited energy resources and relaxing the frequency operating

region would result in significant energy savings, lower ESS lifetime degradation, and

reduction in power ratings of power electronic systems.
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Figure 1.4. Frequency standards for microgrid systems [21], [22], [27].

1.4 Energy Storage Systems for Fast-Frequency Support

Numerous ancillary services can be provided to the grid through ESSs. Figure 1.5

summarizes the major services showing the power range and the time-scale of the service.

Frequency regulation, load leveling, and energy arbitrage are some of the main

applications. Apart from this, other applications such as RES forming, RES following and

volt/var support have also been discussed in the literature [28]. In the shorter time-scale

applications like fast-frequency support through virtual inertia, frequency/watt function

and frequency regulation the high rate of power exchange in short intervals (high

ramp-rates) will have a higher impact on the ESS lifetime [29]. Similarly, when ESSs are

used for a longer-scale application like load leveling and/or arbitrage the
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depth-of-discharge or overcharging may have a more significant impact on the ESS

lifetime rather than the ramp-rates [30]. To maintain power quality in the present scenario,

the Federal Energy Regulatory Commission (FERC) issues different orders such as the

FERC Order No. 755, 784 and 890 which allow ESS participation in ancillary services.

Such mandates allow for a market structure that compensates these fast-frequency

services. The participation of ESSs in such services, however, imparts large stresses on

the storage medium due to high charging/discharging currents, which can degrade both the

power and capacity of ESSs over their lifetime.

Figure 1.5. Grid ancillary service from ESSs.

1.5 Motivation and Objectives

Fast-frequency support is a power-intensive service and can result in large power

demands and ramp-rates from the energy medium, which can have a substantial negative

impact on the ESS lifetime [29]. The ESS operator needs to provide frequency support to

minimize the ROCOF and the frequency deviation while minimizing the impact on the

ESS. Furthermore, there are ESS physical constraints to be considered, such as limits on
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peak power and/or ramp-rates. This motivates the need to design a framework for an ESS

operator to be able to dispatch the ESS unit based on the desired frequency

quality-of-service (QoS) required in the microgrid (reduction in ROCOF and frequency

deviation) and the incentives required to provide the QoS for such a

frequency-as-a-service in the market.

The objective of this dissertation is to develop a near-optimal fast-frequency support

framework for low-inertia microgrids through the use of ESSs. The developed framework

should be:

• Flexible to change performance based on resources available to the ESS operator

and the desired level QoS.

• Able to incorporate physical constraints of the ESS such as peak-power limits and

ramp-rate limits.

• Adaptable to change in system inertia and damping constants.

1.6 Dissertation Outline and Contributions

The dissertation is divided into three major chapters. Chapter 2 introduces the basic

concepts of fast-frequency support and virtual inertia. A brief review of existing trends

and techniques in emulating virtual inertia and fast-frequency support is presented. This is

followed by a detailed comparison between the different techniques and a method to

achieve similar dynamic performance from the described techniques using common

time-constants is proposed. Chapter 3 introduces a novel mechanism for online

estimation of the inertia and damping constant of a microgrid system using local

measurements. The inertia of the system can change based on the number of synchronous
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generators that are online which in turn depends on renewable energy penetration. Thus

an estimate of the inertia constant of the system will allow for improved control strategy

and protection schemes. Finally, in Chapter 4 a model predictive fast-frequency support

mechanism combined with a moving horizon estimation is presented. The model

predictive control performs near-optimal control actions based on a defined cost-function.

The conclusions of the dissertation are summarized in Chapter 5.

The main contributions of this dissertation are as follows:

• Reviewed and compared existing techniques and trends for virtual inertia and

fast-frequency support.

• Developed a moving horizon estimation (MHE) based approach for online

estimation of inertia and damping constant of a microgrid system using local

measurements from a phase-locked-loop (PLL).

• Developed a model predictive control (MPC) approach to provide near-optimal

fast-frequency support. The mechanism provides flexibility to control the frequency

dynamics as desired and incorporate the physical constraints of the system within

the control formulation.

This dissertation provides a summary of the research performed during the Ph.D.

program. A listing of all the publications during the Ph.D. program is presented at the end

of this dissertation.
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CHAPTER 2 CONCEPTS OF VIRTUAL INERTIA AND CLASSIFICATION

Virtual inertia is a combination of control algorithms, RESs, ESSs, and power

electronics that emulates the inertia of a conventional power system. The concept of

virtual inertia is summarized in Figure 2.1. The core of the system is the virtual inertia

algorithm that presents the various energy sources interfaced to the grid through power

electronics converters as synchronous generators. Most modern wind turbines are

operated as variable speed wind turbines and interfaced through back-to-back converters,

completely decoupling the inertia from the grid. Similarly, PV systems and ESSs have a

DC-DC converter and an inverter in the front-end and do not contribute to the inertial

response by default [31]. Virtual inertia systems based on current/voltage feedback from

the inverter output generate appropriate gating signals to present these resources as

synchronous generators from the point-of-view of the grid [32].

Figure 2.1. Concept of virtual inertia.
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2.1 Chapter Objectives and Contributions

The main objective of this chapter is to provide a detailed literature review on the

current state-of-the-art of fast-frequency support in power system through the use of

virtual inertia. The specific contributions are:

1. Proposed a classification for the various fast-frequency support topologies in the

literature.

2. Developed a framework to design and analyze different fast-frequency support

topologies through common time-constants and inertia constants.

2.2 First Generation of Virtual Inertia Systems

Although the basic underlying concepts are similar among the various topologies in

the literature, the implementation is quite varied based on the application and desired level

of model sophistication. Some topologies try to mimic the exact behavior of the

synchronous generators through a detailed mathematical model that represents their

dynamics. Other approaches try to simplify this by using the simplified swing equation to

approximate the behavior of synchronous generators, while others employ an approach

that makes the inverter units responsive to frequency changes in the power system. This

chapter discusses the various topologies that have been proposed in the literature.

Figure 2.2 shows a general classification of various topologies that are available in the

literature for virtual inertia implementation. The most relevant literature related to

topologies is also listed. Among the listed topologies, the synchronverter, the Ise lab’s

topology, the virtual synchronous generator (most popular in literature from each
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classification), and the droop control were selected for a detailed description. A brief

description of the remaining topologies is also provided.

Virtual Iner-
tia Systems

Inducverters [56]

Virtual Oscil-
lator Control

[53], [54],[55]

Droop based
approach [16],

[18], [52]

Frequency-power
response based

Virtual Synchronous
Generators [49],
[7], [50], [51]

VSYNC [46],
[47],[48]

Swing equation based
Synchronous

Power Controller
[43], [44], [45]

Ise Lab’s Topology
[39], [40], [41], [42]

Synchronous gen-
erator model based

KHI Lab’s
Topology [38]

IEPE’s Topology [37]

VISMA Topol-
ogy [35], [36]

Synchronverters
[33], [34]

Figure 2.2. Classification of different topologies used for virtual inertia implementation.
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2.2.1 Synchronverters: A Synchronous Generator Model-based Topology

Synchronverters operate the inverter-based units as synchronous generators (SGs)

representing the same dynamics from the point-of-view of the grid [33]. This is based on

the notion that such a strategy allows traditional operation of the power system to be

continued without major changes in the operational structure. The topology is well

developed in the literature by Q.C. Zhong [57]. A frequency drooping mechanism is used

to regulate the power output from the inverter similar to how the SG regulates its power

output [58]. The following basic equations are used to capture the dynamics of the SG:

Te = M f i f < i, s̃inθ > (2.1)

e = θ̇M f i f s̃inθ (2.2)

Q =−θ̇M f i f < i, c̃osθ > (2.3)

where Te is the electromagnetic torque of the synchronverter, M f is the magnitude of the

mutual inductance between the field coil and the stator coil, i f is the field excitation

current, θ is the angle between the rotor axis and one of the phases of the stator winding, e

is the no load voltage generated, and Q is the generated reactive power. In Equations (2.1)

and (2.3), 〈·, ·〉 represents the standard inner product of two vectors in R3. The three-phase
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stator current, i, s̃inθ , and c̃osθ are vectors defined as follows:

i =


ia

ib

ic

 ; s̃inθ =


sinθ

sin(θ − 2π

3 )

sin(θ − 4π

3 )

 ; c̃osθ =


cosθ

cos(θ − 2π

3 )

cos(θ − 4π

3 )

 (2.4)

Equations (2.1), (2.2), and (2.3) are first discretized and then solved in each control cycle

in a digital controller to generate the gating signals for the distributed energy resource

(DER) unit under consideration. Figure 2.3a shows the basic schematic of the

synchronverter. The dashed box represents the control part of the synchronverter, the

details of which are illustrated in Figure 2.3b. The inverter output current and grid voltage

are the feedback signals utilized to solve the differential equations within the controller.

Additionally, the continuous reference active and reactive power that the synchronverter

needs to inject/absorb to/from the DC bus can be set along with desired moment of inertia

J and damping factor Dp. The selection of these parameters is crucial from the

point-of-view of the stability of the system as shown in [59]. The control inputs are the

mechanical torque, Tm and M f I f , which can be generated through the reference active and

reactive power, respectively. The frequency and voltage loops, as indicated in Figure 2.3b,

are used to generate the control inputs. The outputs of the controller are the voltage

amplitude e and the phase command θ for the pulse width modulator (PWM).
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(a) (b)

Figure 2.3. Synchronverter Topology: (a) Overall schematic showing operating principle.
(b) Detailed control diagram showing the modeling equations.

The underlying equations of a synchronverter topology form an enhanced PLL

(sinusoid-locked loop), making it inherently capable of maintaining synchronism with the

terminal voltage [60]. Single-phase variants of the synchronverter have also been designed

in [61]. The basic version of synchronverter requires a PLL to initially synchronize with

the grid, however, the use of PLLs in weak grids is known to be prone to

instabilities [62]–[64]. To counteract this, self-synchronized synchronverters are

introduced in [34]. The synchronverter topology has also inspired the operations of

rectifiers as synchronous motors [65] which helps in obtaining an inertial response from

the load side of the power system. Moreover, the voltage-source based implementation

means that synchronverters can be operated as grid forming units, and ideally suited for

inertia emulation from inverter units that are not connected with the main grid. The fact

that the frequency derivative is not required for the implementation is a major advantage

as derivative terms often induce noise in the system. Although the synchronverter can
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replicate the exact dynamics of an SG, the complexity of the differential equations used

can result in numerical instability. Moreover, a voltage-source based implementation

means there is no inherent protection against severe grid transients, which may result in

need of external protection systems for safe operation.

2.2.2 Ise Lab’s Topology: A Swing Equation-based Topology

The topology developed by Ise lab for virtual inertia implementation is similar to

the synchronverter approach described previously, but instead of using a full detailed

model of the SG, the topology solves the power-frequency swing equation every control

cycle to emulate inertia [39]. The schematic diagram of the topology illustrating the

operating principle is shown in Figure 2.4a. The controller senses the inverter output

current i and the voltage of the point of connection v, and computes the grid frequency ωg

and active power output of the inverter Pout . These two parameters are inputs to the main

control algorithm block along with Pin which is the prime mover input power [40]. Within

the control algorithm, the swing equation given by Equation (2.5) is solved every control

cycle thus generating the phase command θ for the PWM generator. The typical swing

equation of an SG is:

Pin−Pout = Jωm(
dωm

dt
)+Dp∆ω (2.5)

∆ω = ωm−ωg (2.6)

where Pin, Pout , ωm, ωg, J, and Dp are the input power (similar to the prime mover input

power in a SG), the output power of the inverter, virtual angular frequency, grid/reference

angular frequency, moment of inertia, and the damping factor, respectively. A model of
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the governor, as shown in Figure 2.4b, is utilized to compute the input power Pin based on

the frequency deviation. The governor is modeled as a first-order lag element with gain K

and time-constant Td . P0 represents continuous power reference for the inverter unit. The

delay in the governor model leads to higher ROCOF and thus higher frequency nadirs as a

consequence. The voltage reference e can be generated through Q− v droop approach as

described in [41].

(a) (b)

Figure 2.4. Ise Lab’s Topology: (a) Overall schematic showing operating principle. (b)The
governor model to compute input power.

Similar to the synchronverter, the derivative of frequency is not needed to

implement the control algorithm. This is highly beneficial as frequency derivatives are

known to introduce noise in the system which makes the system difficult to control.

Additionally, this topology can be used to operate inverters as grid forming units.

However, problems related to numerical instability remain, which along with improper

tuning of parameters J and Dp, can lead to oscillatory system behavior [40].

2.2.3 Virtual Synchronous Generators: A Frequency-Power Response-based Topology

The main idea behind virtual synchronous generators (VSG) is to emulate the

inertial response characteristics of an SG in an inverter system, specifically the ability to

respond to frequency changes [51], [66]. This emulates the release/absorption of kinetic
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energy similar to that of an SG, thus presenting the inverter as a dispatchable source [67],

[68]. This dynamic control is based on the derivative of the frequency measurement and

behaves similarly to inertial power release/absorption by an SG during a power imbalance.

Thus, the VSG is a dispatchable current source that regulates its output based on system

frequency changes. This is one of the simplest approaches to implement virtual inertia in

inverters as it does not incorporate all the detailed equations involved in an SG. However,

operating multiple inverter units as current sources are known to result in instability [69].

Figure 2.5. Virtual synchronous generator topology.

The output power of the VSG converter is controlled using Equation (2.7):

PV SG = KD∆ω +KI
d∆ω

dt
(2.7)

where ∆ω and d∆ω

dt represent the change in angular frequency and the corresponding

rate-of-change. KD and KI represent the damping and the inertial constant, respectively.

The damping constant is similar to the frequency droop and helps return the frequency to a

steady-state value and reduce the frequency nadir. The inertial constant arrests the

ROCOF by providing fast dynamic frequency response based on the frequency derivative.
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This feature is especially important in an isolated grid where the initial ROCOF can be

very high, leading to unnecessary triggering of protection relays. The VSG topology is

illustrated in Figure 2.5. A PLL is used to measure the change in system frequency and

ROCOF [67]. Then, using Equation (2.7), the active power reference for the inverter is

computed. The current references are then generated for the current controller based on

this reference power. The topology illustrated here assumes a direct-quadrature (d-q)

based current control approach, but any other current control techniques ( [70]) may be

used. For d-q control, d-axis current reference can be calculated as [71]:

I∗d =
2
3
(
VdPV SG−VqQ

V 2
d +V 2

q
) (2.8)

The q-axis current reference is set to zero as it is assumed that only the active power is

being controlled. The current controller based on the grid current feedback generates the

gate signals to drive the inverter. Thus, the inverter behaves as a current-controlled voltage

source inverter [7], [70].

This topology is used by the European VSYNC research group [48], [67] and has

demonstrated the effectiveness of inertia emulation using VSG topology through real-time

simulations [46] and several field tests [72]. In [71], experimental verification of the

topology is presented for remote microgrid applications. The VSG topology has also been

widely employed for virtual inertia emulation from wind systems as reported in [47], [73].

The main drawback of this topology is that it may not be suitable to be implemented in

islanded modes where the virtual inertia unit has to operate as a grid forming unit.

Accurate measurement of the frequency derivative through PLLs can be challenging for
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this kind of implementation [74]. The performance of PLLs can degrade and compete

against each other, especially in weak grids [56], [75]. PLL systems are known to show

steady-state errors and instability especially in weak grids with frequency variations,

harmonic distortions, and voltage sags/swells [62]–[64]. With traditional virtual inertia

controllers, a low pass filter (LPF) is used to filter out PLL measurement noise. The delay

caused by the LPF is known to cause instability, especially under high controller gain

values [76]. Thus, using an LPF with low cut-off frequencies limits the controller gains

and the effectiveness of the controller in providing fast-frequency support. In [77], it was

shown that the problems with instability are even more pronounced when a

proportional-integral (PI) controller is used to implement the inner-current control loop of

the inverter. Accordingly, a VSG requires a robust and sophisticated PLL for a successful

implementation [78]. Another disadvantage of the VSG approach is that the derivative

term used to compute the ROCOF makes the VSG sensitive to noise which can lead to

unstable operation.

2.2.4 Droop-based Approaches

The approaches described so far try to mimic or approximate the behavior of SGs to

improve the inertial response of inverter-dominated power systems. Different from these

techniques, the frequency-droop based controllers that have been developed for

autonomous operation of isolated microgrid systems [79], [80]. Based on the assumption

that the impedance of the grid is inductive, the frequency droop is implemented as:

ωg = ω
∗−mp(Pout−Pin) (2.9)
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where ω∗ is the reference frequency, ωg is the local grid frequency, Pin is the reference set

active power, Pout is the measured active power output from the DER unit, and mp is the

active power droop. Similarly, the voltage-droop is implemented as:

vg = v∗−mq(Qout−Qin) (2.10)

where v∗ is the reference voltage, vg is the local grid voltage, Qin is the reference set

reactive power, Qout is the measured reactive power output from the DER unit, and mq is

the reactive power droop.

The schematic of a frequency-droop controller based on Equation (2.9) is shown in

Figure 2.6. Often a low pass filter is used when measuring the output power to filter out

high-frequency components from the inverter [16]. In the literature [75], [81], it has

already been shown that the use of this filter makes the droop-based control approximate

the behavior of virtual inertia systems. The proof was first presented by Arco et al. [75]

and is repeated here for convenience.

Figure 2.6. Schematic for frequency droop control.
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Based on the schematic of Figure 2.6:

Pout = (1+Tf s)
{

1
mp

(ωg−ω
∗)+Pin

}
(2.11)

Rearranging,

Pin−Pout =
1

mp
(ω∗−ωg)+Tf .

1
mp

.s.ω∗ (2.12)

This equation is of a similar form of the virtual synchronous generator described in

Equation (2.7). The exact approximation is as follows:

KI = Tf .
1

mp
(2.13)

KD =
1

mp
(2.14)

Hence, the filters used for power measurements in these controllers constitute a

delay which is mathematically equivalent to virtual inertia, while the droop gain is

equivalent to damping. However, the traditional droop-based systems described by

Equations (2.9) and (2.10) are known to have slow transient response. Moreover, the

inductive grid assumption may not always be valid. Methods to improve the droop

controllers, such as using virtual output impedance [16] or improving dynamic behavior

of the droop scheme, have been proposed. In [12] and [82], a technique to emulate virtual

inertia by a modified droop approach was also presented.
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2.3 Other Topologies

Some other topologies that have been proposed in the literature are — virtual

synchronous machine, referred to as “VISMA” in the literature, Institute of Electrical

Power Engineering (IEPE’s) topology, Kawasaki Heavy Industries (KHI) lab’s topology,

synchronous power controllers (SPC), virtual oscillators, inducverters, etc. The basic

concept of inertia emulation remains the same in all these techniques. The VISMA

topology as proposed in [35] uses d−q (synchronous reference frame) based

mathematical model of a synchronous machine in a digital controller. Instantaneous

measurements of the grid voltage are used to compute the stator currents of the virtual

machine and these currents are injected through a hysteresis current control approach

using a power inverter. To improve robustness, a three-phase model has been proposed in

[36] over a d−q based model. This is especially effective under unsymmetrical load

conditions or rapid disturbances in the grid. A comparison between the VISMA algorithm

implemented as a current source versus a voltage source has also been performed in [37].

The VISMA model implemented as a voltage source is referred to as IEPE’s topology in

the literature [32]. Instead of using voltage as input as with the VISMA topology, IEPE’s

topology uses the DER output current as input and generates reference voltages for the

virtual machine. The IEPE topology is better suited for islanded operation, but transient

currents, particularly during the synchronization processes when operated in grid

connected mode, can be difficult to deal with. In the KHI topology, instead of using a

detailed dynamic model of SG an equivalent governor and automatic voltage regulator

(AVR) model are implemented in a digital controller to generate voltage amplitude and
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phase reference for the virtual machine [38]. The reference is then used to generate

current references based on an algebraic-phasor representation of the SGs.

Another popular topology for virtual inertia implementation is the SPC as proposed

in [43]. The general structure of the control algorithm is similar to the structure proposed

in the Ise lab’s topology, but instead of operating the converter as a voltage-controlled

system or a current-controlled system, it implements a cascaded control system, with an

outer voltage loop and an inner current control loop through the use of a virtual

admittance. In general, such a cascaded control structure provides inherent over-current

protection during severe transient operating conditions. This is lacking in other open-loop

approaches such as synchronverters or the Ise lab’s topology [83] described previously.

SPC also avoids the discontinuities encountered in solving the mathematical models, thus

making the system more robust against numerical instabilities. The nested loop structure,

however, does entail complexity in tuning the control system parameters. Furthermore, at

its core instead of using the swing equation for inertia emulation, a second-order model

with an over-damped response is proposed. This helps to reduce the oscillations in the

system [45]. Improved forms of this second-order model were presented in [44], [45].

Inducverters [56] are one of the recent topologies that have been proposed which

tries to mimic the behavior of induction generators instead of SGs. This method has the

advantage of auto-synchronization without a PLL [84]. A virtual-inertia based static

synchronous compensator (STATCOM) controller was proposed in [81] which behaves

like a synchronous condenser. The virtual inertia controller was used to exploit the fact

that no PLL is required, hence providing improved voltage regulation compared to

traditional STATCOMs with PLL units. Virtual oscillator controller (VOC) is another
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approach where, instead of mimicking synchronous/induction generators, a non-linear

oscillator is implemented within the controller to synchronize DER units without any

form of communication [53], [54]. This approach is particularly beneficial for a grid

largely dominated with DERs, as the controller is intrinsically able to maintain

synchronism and share the total system load [55].

2.3.1 Summary of Topologies

A summary table which highlights the key features and weakness of various virtual

inertia control topologies is presented in Table 2.1.

Table 2.1. Summary of Virtual Inertia Control Topologies

Control Technique Key Features Weaknesses

Synchronous genera-

tor

model based

• Accurate replication

of SG dynamics

• Frequency derivative

not required

• PLL used only

for synchronization

• Numerical instabil-

ity

concerns

• Typically voltage-

source

implementation; no

over-current protec-

tion
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Table 2.1. Summary of Virtual Inertia Control Topologies

Control Technique Key Features Weaknesses

Swing equation

based

• Simpler model

compared to SG

based model

• Frequency derivative

not required

• PLL used only

for synchronization

• Power and frequency

oscillations

• Typically voltage-

source

implementation; no

over-current protec-

tion

Frequency-power

response based

• Straightforward

implementation

• Typically current-

source implementa-

tion;

inherent over-current

protection

• Instability due

to PLL, particularly

in

weak grids

• Frequency derivative

required, system

susceptible to noise
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Table 2.1. Summary of Virtual Inertia Control Topologies

Control Technique Key Features Weaknesses

Droop-based

approach

• Communication-less

• Concepts similar to

traditional droop

control in SGs

• Slow transient

response

• Improper transient

active power sharing

2.4 Design Procedures and Simulation Results

In this section, three of the major virtual inertia topologies were simulated in a

diesel generator based remote microgrid system. The design procedures and simulation

results presented are aimed to supplement the concepts of virtual inertia topologies. Three

of the topologies — the synchronverter, the Ise lab’s topology, and the VSG — were

implemented and their performance was studied in a common benchmark. Moreover, a

procedure is provided to choose appropriate parameters for the virtual inertia systems.

The three virtual inertia systems were designed in a common framework so that the

different parameters used are more relatable to each other. To this end, constants in each

topology were selected such that the virtual inertia system injects/absorbs the same

amount of active power for a given frequency change. Moreover, the inertial constant and

the damping constant have the same proportion and were related through a time constant

Tf of 0.01 s in all the simulations. This led to inertia constant H of 1 s in all simulation

cases for the virtual inertia unit. The schematic used for the virtual inertia simulation
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benchmark is shown in Figure 2.7. The generator was rated at 13 kVA, while the PV unit

was rated at 6 kWp [71]. A separate, dedicated inverter unit rated at 10 kW was used as

the virtual inertia unit. In all the cases, the steady-state power output from the inverter was

set to 1000 W. It was assumed that the DC side of the inverter was connected to a 400 V

DC source which remained constant in all the simulations.

Figure 2.7. Schematic diagram of the virtual inertia simulation benchmark.

2.4.1 Design of synchronverter topology

The main parameters to be computed to implement a synchronverter are the moment

of inertia J and the damping factor Dp. The parameter Dp can be calculated using

Equation (2.15) from [33].

Dp =−
∆T
∆ω

=− ∆P
ωg∆ω

(2.15)
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Once Dp was calculated, the moment inertia J was computed using the desired time

constant for the system, τ f :

τ f =
J

Dp
(2.16)

In this case, Dp was calculated to be 14.072 assuming ∆P of 100% (10 kW) for 0.5%

change in the angular frequency (1.885 rad/s). Then for a time-constant of 0.01 s, the J

value was calculated to be 0.140. The inertia constant from the synchronverter is:

H =
Jω2

g

2Prated
= 1s (2.17)

The frequency and ROCOF of the system after a step-increase of 2 kW on the load, with

and without the synchronverter, are presented in Figure 2.8a and 2.8b, respectively. The

dip in frequency and the ROCOF of the system were reduced with the addition of the

synchronverter, as expected. The additional inertia from the synchronverter increased the

settling time for the frequency compared to when there was no synchronverter in the

system. As shown in Figure 2.8c, the synchronverter increases its active power output in

response to the frequency event much like the behavior of an SG.
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(a)

(b) (c)

Figure 2.8. Simulation results from a Synchronverter: (a) System frequency after a step-
increase of 2 kW load. (b) ROCOF after a step-increase of 2 kW load. (c) Increase in
inverter power in response to system frequency decrease.

2.4.2 Design of Ise Lab’s topology

For the design of the Ise lab’s topology, the same values for the constants J and Dp

that were calculated for synchronverter in Section 2.4.1 were used. For the

implementation of the governor model, a K value of 0.01 with a time delay Td of 0.16 s

was used. The frequency and ROCOF of the system after a step-increase of 2 kW on the

load, with and without the Ise lab’s system, is presented in Figure 2.9a and 2.9b,

respectively. The dip in the frequency and the ROCOF of the system was reduced with the

addition of the virtual inertia unit, as expected. The additional inertia from the virtual
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inertia system increased frequency settling time compared to the case without the virtual

inertia system. The settling time, however, was higher than with the synchronverter.

Figure 2.9c shows the power injected by the inverter during the step-load increase. There

is a short transient at 50 s, which was a consequence of numerical oscillation in solving

the swing equation. The peak-power injected was similar to that of the synchronverter, but

the time taken for the power to return to the steady-state value of 1000 W was much

longer, leading to a larger energy usage from the DC side.

(a)

(b) (c)

Figure 2.9. Simulation results from ISE lab’s topology: (a) System frequency after a step-
increase of 2 kW load. (b) ROCOF after a step-increase of 2 kW load. (c) Increase in
inverter power as a response to system frequency decrease.
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2.4.3 Design of virtual synchronous generator topology

For implementing the VSG topology, the main parameters to be designed are the

inertia constant KI and the damping constant KD. The parameter KD can be calculated

using:

KD =
∆P

ωg∆ω
(2.18)

Once KD was calculated, the inertia constant KI was computed using the desired time

constant for the system, τ f :

τ f =
KI

KD
(2.19)

In this case, the damping constant, KD, was calculated to be 14.07, assuming ∆P of 100%

(10 kW) for 0.5% change in the angular frequency (1.885 rad/s). Then, for a time-constant

of 0.01 s, the KI value was calculated to be 0.14. The inertia constant from the VSG is:

H =
KIω

2
g

2Prated
= 1s (2.20)
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(a) (b)

(c)

Figure 2.10. Simulation results from a Virtual Synchronous Generator: (a) System fre-
quency after a step-increase of 2 kW load. (b) ROCOF after a step-increase of 2 kW load.
(c) Increase in inverter power as a response to system frequency decrease.

The frequency and ROCOF of the system after a step-increase of 2 kW on the load,

with and without the VSG, is presented in Figure 2.10a and 2.10b, respectively. The dip in

frequency and the ROCOF of the system were reduced with the addition of the VSG, as

expected. As with the previous cases, the additional inertia from the VSG slowed the

system down, and the settling time for the frequency was increased compared to the case

without virtual inertia. The peak-power injected was slightly higher than that of the

synchronverter and Ise lab’s topology. However, the time taken for the power to return to

the steady value of 1000 W was much longer than for the synchronverter leading to a
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larger energy usage from the DC side.

2.4.4 Summary of Simulations Results

The simulation results are summarized in Table 2.2 in terms of parameters like the

minimum frequency, maximum ROCOF, settling time, peak power, and energy exchange.

The settling time is defined here as the time required for the frequency to return to and

stay within ±0.25 Hz of the final steady-state frequency after a disturbance. The energy

exchange was calculated over the time period where the inverter exchanges power with the

system. With all three topologies, the minimum frequency and ROCOF were reduced by

similar amounts. The peak power delivered by the inverter varied slightly, with the highest

value of 1929 W for the VSG topology. The most pronounced differences were in the

settling time for the frequency and the energy exchange. Compared to systems with no

virtual inertia, the settling time has increased in all three cases. This was expected as

adding virtual inertia slows down the frequency dynamics. The ISO8528-5 standard for

generators sets recommends a settling time of 10 s [22]. The settling time, however,

increased to 13.2 s with synchronverter and an even higher value of 17.7 s and 17.9 s with

the Ise lab’s and VSG respectively. This led to a relatively higher energy exchange in

these two topologies of 3.8 Wh and 4.9 Wh compared to that 0.8 Wh with the

synchronverter. Moreover, there was a short-energy recovery period in the power plot of

the synchronverter as seen in Figure 2.8c which led to a lower energy exchange estimate

for the synchronverter.
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Table 2.2. Performance comparison of synchronverter, Ise lab’s and virtual synchronous
generator topologies.

Parameter No VI Synchronverter Ise Lab VSG

Minimum Frequency 57.3 Hz 58.1 Hz 58.6 Hz 58.3 Hz
Maximum ROCOF 1.9 Hz/s 1.5 Hz/s 1.6 Hz/s 1.7 Hz/s

Settling time 11.3 s 13.2 s 17.7 s 17.9 s
Peak power delivered 0W 1825 W 1800 W 1929 W

Energy exchanged 0 Wh 0.8 Wh 3.8 Wh 4.9 Wh

Therefore, by appropriate selection of the parameters for the topologies through the

time constant Tf and/or the inertia constant H, similar inertial response can be achieved in

terms of frequency deviation reduction and power exchange from the inverter. Based on

the topology, the exact dynamics represented by the system may vary. The selection of a

particular topology depends on the application and the desired level of replication of the

dynamics of the SG. Topologies like the synchronverter and the Ise lab’s topology may be

more suitable for isolated power systems as they can operate autonomously as grid

forming units. The VSG topology, on the other hand, behaves more like a grid following

unit with added inertial response capabilities and is more suited towards interconnected

operations. The synchronverter or Ise lab’s topology is more suitable for a closer

approximation of SG dynamics. If the main aim, however, is to make the DER unit

responsive to frequency changes, the VSG approach provides a far simpler

implementation.

2.5 Second Generation: Optimization of Virtual Inertia Systems

The first generation of virtual inertia systems in the literature focused on developing

novel topologies for emulation of inertia using power electronic converters. These

topologies have matured since and recently the field is more focused on improving and
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optimizing the performance of these topologies from the point-of-view of enhanced

dynamics, stability, and minimizing energy storage requirements.

2.5.1 Second Generation of Synchronverters

Improved versions of the synchronverter have been proposed in [81, 82] which

makes the synchronverter more robust and allows for a more accurate dynamic

representation of SGs. One of the main improvements (among others) in [85] is virtually

increasing the filter inductance of the synchronverter, which improved the stability

compared to the original synchronverter. This modification allowed for improved control

over the response speed of the frequency loop proposed in [33]. In a similar theme, an

auxiliary loop around the frequency-loop was proposed in [86] which allowed for free

control of the response speed of synchronverter. This auxiliary loop did not affect the

steady-state drooping mechanism of the synchronverter which is very desirable. By

changing the inertia constant J and a different tunable constant D f , the desired response

speed was achieved. In [87], a synchronverter with analytically determined bounds for

frequency and voltage was introduced. In traditional synchronverters, saturation units

were employed for this purpose, but such an approach can lead to instability due to

wind-up. Instead, analytically determined bounds based on the system parameters were

proposed to improve stability.

2.5.2 Second Generation of Ise Lab’s Topology

In the traditional Ise lab’s topology, active power oscillation during the inertia

emulation has been identified as one of the major concerns [40]. Typically, during a

frequency event, the DER unit needs to release/absorb a high amount of power, which



39

may exceed their power ratings. This is not a problem for conventional SGs as they have

inherently overrated operation capabilities. But in the case of inverters, the switches have

to be over-sized to handle such peak power, leading to an increase in inverter size and,

consequently, cost [63]. In [40], an alternating moment of inertia emulation approach was

proposed to make the system less susceptible to such oscillations. The J parameter was

changed based on the relative “virtual angular velocity” and its rate of change. The

proposed alternating moment of inertia approach not only stabilized the system under

consideration but other nearby virtual inertia units as well. Similarly, in [87] another

technique of adjusting the “virtual stator reactance” of the virtual inertia unit has also been

proposed to reduce such active power oscillations. This approach was somewhat similar to

the approach described for synchronverters in [85]. The technique was also found to aid in

proper transient active power-sharing when operating multiple virtual inertia units in a

microgrid environment. In [88], a particle swarm optimization technique was developed to

properly tune the parameters of the system and achieve smooth transitions after a

disturbance when operating multiple virtual inertia units. article swarm optimization

technique was developed to properly tune the parameters of the system and achieve

smooth transitions after a disturbance when operating multiple virtual inertia units.

2.5.3 Second Generation of Virtual Inertia Systems

In terms of improvement in VSG topologies, some researchers have developed

techniques to try to minimize the frequency nadirs/peaks in the system at the expense of

higher energy usage and peak transient power exchange through the virtual inertia systems

[87, 88]. Other researchers, meanwhile, have focused on reducing the energy storage
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requirements and limiting peak transient power in virtual inertia systems even though it

leads to slightly higher frequency nadirs/peaks [24], [49]. A self-tuning VSG was

developed in [49] using an online optimization technique to tune the KI and KD

parameters of the VSG control algorithm to minimize the frequency excursions, the

ROCOF, and the power flow through the ESS. Although the frequency excursions were

slightly higher in the case of the self-tuning algorithm, the power flow through the ESS

was reduced by 58%. Moreover, the technique used less energy per Hz of frequency

reduction than a constant parameter VSG.

On a similar note of energy-saving, an online neural-network-based controller was

proposed in [24]. It used adaptive dynamic programming (ADP) based approach to

optimize the system and minimize energy usage while limiting transient power. The

controller supplemented the power references generated by the main VSG algorithm to

improve the dynamics of virtual inertia as shown in Figure 2.11a. The proposed ADP

controller used a neural network structure with two different networks — an action

network and a critic network as shown in Figure 2.11b. The idea behind the design of the

critic network was to adapt its weight such that the optimal cost function J∗(X(t)) satisfies

the Bellman principle of optimally as given by:

J∗(X(t)) =min
u(t) {J

∗(X(t +1))+ r(X(t))−Uc} (2.21)
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(a)

(b)

Figure 2.11. Modified Virtual Synchronous Generator using Adaptive Dynamic Program-
ming (a) Overall schematic of the controller. (b) The action and critic neural network-based
structure.

where r(t) is the reinforcement signal for the critic network and Uc is a heuristic term used

to balance. The input to the supplementary ADP controller was the state vector X(t)

where the elements were the frequency error and the one and two time-step delayed

frequency error signals. Based on a reinforcement learning approach, the ADP controller
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generated auxiliary power reference signals PADP to return the frequency to its steady-state

value faster and as a consequence reduced the energy exchange as explained in [24]. The

main concern with adding virtual inertia to the system is that it can increase the frequency

settling time, leading to increased energy exchange from the ESS, which subsequently

shortens the life of the ESS. The online controller was able to reduce the frequency settling

time and the transient peak power. Figure 2.12a (extracted from the paper [24]) shows the

frequency of a PV-hydro system under step load changes with and without the ADP

controller. The frequency excursion was slightly higher than using constant parameter

VSG, but there was a reduction in the frequency settling time. This led to lower energy

usage and lower transient power as observable in Figure 2.12b. Table 2.3 summarizes the

improvement achieved in [24] through ADP-based virtual inertia controller.

(a) (b)

Figure 2.12. Comparison of traditional VSG controller with the online learning based
controller: (a) Frequency of the system for step load changes. (b) Power exchange with the
system [24].
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Table 2.3. Performance comparison of the system without VI, simple VSG based and ADP
based VSG [24]

Parameter No VI Simple VSG ADP based VSG

Peak Power for Event A 0 W 2184 W 1979 W
Settling time for Event A 12.6s 35.1s 31.3 s
Peak Power for Event B 0 W -2235 W -2029 W
Settling time for Event B 11.1 s 29.1 s 26.6 s
Energy delivered (Wh) 0 Wh 8.2 Wh 6.2 Wh

Net energy exchanged (Wh) 0 Wh 1.6 Wh 0.9 Wh

A similar online learning controller was proposed for virtual inertia implementation

in a double fed induction generator based system in [89]. In this case, the controller was

trained to restrict the frequency excursions to a minimum while maintaining the rotor

speed of the double fed induction generator within a safe operating range, rather than

saving the energy flow from ESS. Other techniques to optimize the virtual inertia have

been proposed in [90] using Linear-quadratic-regulator (LQR) and in [91] using fuzzy

logic to minimize frequency deviations and ROCOF.

2.6 Third Generation of Virtual Inertia Systems

The three distinct generations of research focus and trends in virtual inertia are

summarized in Fig. 2.13. The first generation of research was focused on the development

of novel topologies and the second generation was focused on improving the existing

topologies as discussed in detail in Sections 2.4 and 2.5. In the third generation, the

research focus has shifted towards system-level coordination. Various aspects of

deployment ranging from inertia estimation, coordination of multiple units with virtual

inertia and optimal placement are being studied. As the penetration of RESs increases the

inertia of a power system, which in the past was assumed to be constant, will become
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time-variant. System inertia estimation will be critical for planning purposes and

deployment of adaptive frequency support strategies and protection schemes. Several

research has also been proposed which study the optimal placement of virtual inertia in a

power system and developing market mechanisms for fast-frequency support through

virtual inertia [11], [92].

Figure 2.13. Generations of virtual inertia systems.

2.7 Chapter Conclusions

Numerous topologies for virtual inertia implementation which constitutes the “first

generation” of virtual inertia systems were identified. It was shown that fundamentally the

objective of all the topologies is to provide fast-frequency support through power

electronic converters which are in a continuous decline in low-inertia power systems. The

appropriate topology can be selected based on the required architecture (current source or

voltage source implementation) and the desired level of sophistication in emulating the

exact behavior of SGs. For example, for replication of the exact dynamics of SGs,
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topologies such as the synchronverter, VISMA and inducverters can be used. More

simplistic topologies like Ise lab’s topology, SPC can be used if an approximate replication

is sufficient. The VSG approach, on the other hand, is more suitable when the objective is

to provide just the fast-frequency support without emulating the exact behavior of SGs.

An important takeaway through the literature review was that the droop based controllers,

which were regarded as a separate control method for inverter systems, are fundamentally

similar to virtual inertia systems as formalized by the literature pointed out.

Next, the second generation of virtual inertia systems with a focus on the

optimization of existing virtual inertia topologies was reviewed. Such algorithms can

prevent degradation of ESS lifetime and allow reduced curtailment of RES units that

participate in the inertial response. Furthermore, the enhancements help in improved

dynamics and overall stability.
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CHAPTER 3 INERTIA AND DAMPING CONSTANT ESTIMATION BASED ON

MOVING HORIZON ESTIMATOR

The inertia of modern power systems is in continuous decline due to the increased

utilization of RESs displacing traditional rotational synchronous generation. Low inertia

power systems are prone to large ROCOF following a power imbalance, causing large

frequency deviations as a result. Proper assessment of the system inertia is of critical

importance for system operators to deploy effective strategies to supplement the lost

inertia. The inertial response of a power system is the product of instantaneous

release/absorption of power, typically from synchronous generators in response to a power

imbalance (measured as the deviation in frequency from nominal). The inertia of a power

system is thus dependent on the synchronous generators that are online at any given time.

With non-synchronous generation sources such as PVs and wind continuously displacing

the traditional generators, it is challenging to estimate the inertia of a power system at any

given time [93]. The variable nature of these RESs adds another degree of uncertainty as

the inertia constant of the power system becomes time-varying [94]. Furthermore,

recently RESs have been deployed with characteristics that can emulate inertia as

well [95], [96]. Hence, the inertial response from RESs also needs to be accounted for

when estimating the system inertia.

To counteract the decline in system inertia, fast-frequency support through virtual

inertia emulation has been proposed. These strategies use ESSs to inject/absorb power

into/from the power system in response to a frequency event much like the inertial

response from a synchronous generator. When deploying such strategies, an energy
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reserve is required to emulate the inertial behavior. This could come in the form of ESSs

and/or curtailed operation of RESs [97]. For a system operator, accurate knowledge of the

inertial and damping behavior of the system is required to coordinate appropriate control

strategies and protection schemes. Furthermore, it is also imperative for the system

operator to have enough reserves in place for any plausible contingency in the

system [98]. Situational awareness regarding the inertial response available in the system

is critical information for the system operator.

3.1 Previous Work on Inertia Estimation

Most methods proposed in the literature for inertia estimation are offline

(post-event), developed for large interconnected power systems [93], [99]–[102]. In these

methods, the data from large disturbances in a power system are logged and, after

significant signal-processing used to estimate the inertia constant. For example in [99], the

inertia constant of the system is estimated by solving the swing equation based on the

frequency transient measurements. A polynomial approximation with respect to time is

applied to the transient frequency measurements to isolate the oscillations and noise in the

measurement. The damping of the system has been neglected in this approach.

Furthermore, these techniques are known to be susceptible to the identification of the

exact time of frequency event onset and the order of the polynomial approximation [100].

System identification approaches using ambient frequency measurements have also been

developed [93], however, these techniques require computationally expensive offline

processing to extract the explicit value of the inertia constant. Although beneficial in

traditional-synchronous generation based power systems, offline estimation approaches
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are not suitable for real-time adaptive control systems/protection schemes as the

information may arrive late. Furthermore, there may be cases where the system operator

does not provide enough visibility/information regarding the inertial response of all the

sources in the power system. For the stochastic and low-inertia nature of future power

systems, online estimation of system inertia and damping constants is essential.

Several online approaches have been presented in the literature. Online estimation

of system parameters such as inertia and damping of the power system provides insights

into designing adaptive control systems and protection systems, such as UFLS [103].

Moreover, this allows system operators to optimize the resources to maintain the

reliability and resiliency of the power system [98]. An online technique using frequency

measurements from phasor measurement units (PMUs) was proposed in [104]. The

proposed method again uses the swing equation as the basis to determine the inertia

constant. A sliding window-based approach is utilized to filter the noisy measurements.

In [105], online identification of inertia response of a system is performed using a system

identification approach on PMU recordings. Statistical methods based on Markov

Gaussian models have also been explored, but they require significant offline training and

calibration [94].

3.2 Chapter Objectives and Contributions

In the case of microgrids, PMU measurements may not be readily available; hence,

a technique that depends on local measurements is required. The main contribution of this

chapter is the design of an online inertia estimation technique for ESSs deployed in low

inertia microgrids to provide the ESS system operator with situational awareness of the
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inertial response of the microgrid. The proposed technique utilizes an MHE approach that

relies only on local measurements from a PLL of an ESS. A non-intrusive active power

excitation signal is used to induce small changes in the frequency of the microgrid. Even

under significantly noisy PLL measurements, it is demonstrated that the proposed

technique can estimate the time-varying system inertia and damping constant. Inertia

estimation using the proposed technique may have wide applications in –

• Adaptive frequency support mechanisms and protection system design,

• Offline tuning of existing control strategies,

• Design of novel control strategies for fast-frequency support, and

• Stability analysis of low inertia power systems.

3.3 Modeling of Microgrid Frequency Dynamics

The objective of this section is to develop a simple-predictive model that defines the

microgrid system dynamics due to changes in the ESS power output. The simplified

model makes several simplifying assumptions and is not a comprehensive representation

of microgrid system dynamics. Such an approximate model is desired for the MHE/MPC

to reduce computational cost and ensure optimization convergence. Both the MHE and the

MPC are formulated as quadratic programs (QP) which ensures convexity and allows the

use of an efficient solver for the optimization problems [106]. All the simulation results

are later validated using the detailed microgrid system dynamic models.

We consider that rotational generation is the main power source and the renewable

generators supplement the power demand. This allows the frequency dynamics to be
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modeled using the swing equations based on the concept of an equivalent generator [107].

The frequency dynamics of the entire microgrid (possibly with several generators) can

thus be represented with a single equivalent generator with appropriate parameter

approximation. One can then estimate the inertia and damping constant of this equivalent

generator to estimate the overall inertia and damping constant of the microgrid.

3.3.1 Frequency Event Characterization

A power imbalance causes the system frequency to deviate from its steady-state

value. Figure. 3.1 shows the typical frequency evolution of a power system in response to

a frequency event. In this case, when the net electrical load in the system increases (or a

loss of generation occurs), the frequency drops as the mechanical power from generators

takes time to counteract the imbalance. The initial ROCOF depends on the inertial

response of the system [108]. In isolated power systems, the system inertia can be

particularly low and cause large ROCOF that may trigger frequency relays, which can

cut-off power system components [96]. Based on the magnitude of the initial ROCOF, the

frequency reaches a nadir ωnadir after time tn from the start of the frequency event. The

maximum ROCOF is denoted by ω̇max in Figure. 3.1. Hence, during the initial few

seconds, the inertial response of the power system is responsible for minimizing the

frequency deviation in the system until the frequency control mechanisms bring the

frequency back to normal values. The time taken for the frequency to return to its

steady-state value is defined as the recovery/settling time.
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Figure 3.1. Characterization of power system frequency after an event.

3.3.2 Inertia and Damping Constant

When subjected to a disturbance, the generators in a microgrid experience small

variations over an average frequency. The average frequency is defined for the center of

inertia of the system as follows:

ω =
∑

n
i=1 Hiωi

∑
n
i=1 Hi

(3.1)

where n represents the total number of generators in the microgrid, Hi represents the

inertia constant of the ith generator, and ωi is the angular frequency of the ith generator.

Similarly, the total inertia constant of the system H can be defined as:

H =
∑

n
i=1 HiSi

∑
n
i=1 Si

(3.2)

where Si is the apparent power rating of the ith generator. To model the frequency

dynamics of an isolated microgrid system, a multi-machine system can be modeled by a

single equivalent generator as shown in Fig. 3.2 [58]. The linearized swing equation of

microgrid frequency dynamics is given by [58]:



52

M∆ω̇ +D∆ω = ∆Pm−∆P (3.3)

where ∆ω̇ is the ROCOF, M is the equivalent system inertia constant, D is the equivalent

system damping constant. Similarly, ∆Pm and ∆P are the change in the total mechanical

power and the ESS power output in per unit (p.u.). The net load change ∆Pl is assumed to

be a disturbance from the point-of-view of the ESS unit. Also, as this is an isolated

microgrid the tie-line power flows are not modeled [20].

3.3.3 Modeling of the Frequency Control Loops

The typical frequency control loops in an isolated power system are shown in

Figure. 3.2. The primary frequency control is implemented through governors in the

system to stabilize the frequency change. The secondary frequency controller then

removes the steady-state error as described in [58]. The type of governor and the

dynamics of the turbine itself affect the dynamics of the frequency response of the system.

It is assumed that in general the turbine-governor dynamics and the secondary control

loop can be represented by the following set of differential equations [109]:

Tg∆Ṗm +∆Pm =−R−1
∆ω +∆Ps (3.4)

∆Ps =−Ki∆δ (3.5)

where Tg is the turbine-governor time constant of the aggregated generators, R is the

aggregated droop constant, Ki represents the integral gain of the secondary control loop,

∆Ps is the secondary power which models the equivalent effect of AGC in the system, and



53

∆δ is the integral of the rotor speed of the equivalent generator. The turbine-governor

dynamics model used may be more complex if the system is dominated by other

generation types. The proposed estimation technique remains equally applicable to other

modeling assumptions.

Figure 3.2. Block diagram of the isolated power system.

Based on (3.3), (3.4), and (3.5) the following differential equation describing the overall

frequency dynamics of the isolated power system can then be derived:

∆
...
δ =−

(
D
M

+
1
Tg

)
∆δ̈ −

(
D

MTg
+

1
RpMTg

)
∆δ̇ − Ki

MTg
∆δ − 1

MTg
∆P− ∆Ṗ

M
(3.6)

If the derivative term of the input ∆Ṗe is neglected, the state-space representation of the

differential equation is given by:

ẋ = Ax+Bu (3.7)

y =Cx+η (3.8)
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where

ẋ =


∆δ̇

∆ω̇

∆ω̈

 ,∆u = ∆P

and,

A =


0 1 0

0 0 1

− Ki
MTg

−
(

D
MTg

+ 1
RpMTg

)
−
(

D
M + 1

Tg

)



B =


0

0

−1
MTg

C =


1 0 0

0 1 0

0 0 1


The measurement noise is represented by η . The derivative term in (3.6) is neglected to

simplify the predictive model to be used by the MHE and the MPC framework. As only an

approximate predictive model is required, this assumption does not significantly impact

the performance of the proposed control framework.

3.4 Moving Horizon Estimation and Problem Formulation

In this chapter, the a priori model described in Equation (3.8) is used, combined

with online measurements for frequency and ROCOF from a PLL of an ESS to identify

the equivalent inertia and damping constant of the system. There are various approaches

to perform state and parameter estimation of dynamic systems such as Kalman filters and

extended/unscented Kalman filters [110], [111]. Most of these techniques make an

assumption on the noise distribution of the measurement signals. Particle filters have also



55

been widely discussed for online state and parameter estimation of dynamic systems.

Particle filters are known to be sensitive to errors in the initial guess, and thus may have

larger convergence times [112]. Furthermore, if there are physical constraints on the

estimated parameters these techniques lose their theoretical framework [113]. In this

section, the fundamental concept of MHE is first introduced. This is followed by the

problem formulation when implementing MHE for inertia and damping constant

estimation.

3.4.1 Concepts of Moving Horizon Estimation

MHE is an online optimization-based estimation technique. In MHE, past

measurements are collected over a finite horizon and then the state and parameters at the

current sampling time are estimated based on minimizing a cost-function while satisfying

the constraints on the states and the parameters. Several related work [112], [114]–[117]

show the wide applicability of MHE in linear and non-linear systems. Recent advances in

efficient algorithms and computational advances have made real-time implementation of

these dynamic optimization problems feasible [113], [118], making MHE suitable for

embedded applications. The concept of MHE is illustrated in Figure. 3.3. The crosses (x)

represent the measurements taken from the system while the circles (o) are the predicted

system output based on a predictive model. A measurement window of fixed length L is

shifted one-step ahead in each sample time. At the initialization stage, the window is

initially empty so the window starts to move once the appropriate amount of data is

collected. Now, in each sample time, an optimization problem is solved to estimate the

state and parameters at the current sampling time. This is done by minimizing a
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cost-function that is formulated to minimize the error between the measurements and the

predicted output. As the window moves forward, the newest measurement is incorporated

into the estimation window while the oldest measurements are removed. The moving

window allows the MHE to approximate a full-information estimator [113] while

maintaining computational tractability.

Figure 3.3. Basic concept of moving horizon estimation.

3.4.2 Formulation of Moving Horizon Estimator

The MHE which will be implemented in an ESS is formulated in this section. Let us

define L as the backward time-horizon and xk = [∆δk ∆ωk ∆ω̇k]
> as the states of the

system and yk as the measured output at the discrete-time instant k, the MHE problem will

take the following form:
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minimize
x̂,∆ p̂,M̂,D̂

JL :=
q

∑
k=q−L

(Cd x̂k− yk)
>V (Cd x̂k− yk)+

q−1

∑
k=q−L

(∆p̂k−∆pk)
>W (∆ p̂k−∆pk)

(3.9a)

subject to

x̂k+1 = Ad x̂k +Bd∆ p̂k ∀k ∈ {q−L, . . . ,q−1} (3.9b)

Mmin ≤ M̂ ≤Mmax (3.9c)

Dmin ≤ D̂≤ Dmax (3.9d)

where JL is the cost-function to minimized, yk is a vector representing the measured states.

The measured power output (the excitation signal injected by ESS) is denoted by p̃k while

∆p̂k represents the estimated power output from the ESS unit. The discretized state-space

matrices Ad , Bd , and Cd are obtained using the Zero-Order Hold (ZOH) method. The

output matrix is defined as Cd = diag(1,1,1). Constraint (4.2b) defines the predictive

model used by the MHE while constraints (4.2c) and (4.2d) limits the search range of the

estimates to realistic values.

The cost function consists of two terms weighted by matrices V and W . The matrix

V is defined as follows:

V =


0 0 0

0 V22 0

0 0 V33

 (3.10)

The matrix W has only one term as there is only a single input. The first term in the cost
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function JL penalizes the difference between the measured outputs and the predicted

outputs using the elements V22 and V33 of the weighting matrix V . Similarly, the second

term accounts for actuation errors [119]. Solving this optimization problem at each

sampling time yields the state estimates x̂k and parameter estimates M̂ and D̂. The MHE

estimator also yields ∆p̂k which is the estimated power output from the ESS.

3.4.3 Implementation of Moving Horizon Inertia Estimator

The MHE is implemented using the ACADO Toolkit for MATLAB [120]. ACADO

for MATLAB is an open-source toolbox that provides a general framework to implement

dynamic optimization problems such as MHE. The flowchart presenting the online

estimation procedure is shown in Figure. 3.4. Every time a new estimate is desired the

microgrid frequency dynamics are excited using an excitation signal ∆pk (a pulse train

signal). The frequency of acquiring these new estimates will depend on the application.

Once the time horizon L and the sampling time is defined, the MHE samples the

frequency and ROCOF measurements from the PLL of the ESS at each sampling instant

during excitation. The MHE does not produce an estimate until the first L data points are

collected. After the first L data-points, any new subsequent data point is fed into the

estimator while the oldest measurement is neglected. The MHE solver is then

implemented to estimate the true states (the frequency and the ROCOF) and the

parameters (the inertia and the damping constant). In subsequent iterations, the latest

estimate is used as the initial guess of the state and the parameters for that particular time

instant. This is done as ACADO uses an iterative solver that converges faster with an

accurate initial guess.
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Figure 3.4. Flowchart representing the procedures for online moving horizon estimation
with ACADO Toolbox.

3.5 Simulation Setup

3.5.1 Simulation Benchmark

We consider a power system that is modeled based on the description provided in

Section 3.3. The setup used for the simulation case study is shown in Figure. 3.5 and was

implemented in MATLAB/Simulink. Table 3.1 specifies the parameters that were used for

the simulation. These are typical parameters for a power system as described in [58]. An

excitation signal ∆pk is used to perturb the frequency of the system. A pulse train with an

amplitude of 0.1 p.u and a frequency of 0.5 Hz is used as shown in Figure. 3.6. This
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excitation signal can be generated from the ESS where the proposed estimator will be

implemented. The amplitude of the excitation signals also has an impact on the

performance of the estimator. In this case, for the level of noise considered in the

measurements, a pulse train of amplitude 0.1 p.u. (i.e., 10% of the total size of the system)

was found to be sufficient. Reducing the amplitude below 10% of the microgrid size

deteriorates the parameter estimates, especially as the noise on the measurement increases.

This pulse train limited the frequency deviations to 4×10−3 p.u. (0.240 Hz) and the

maximum ROCOF to 0.012 p.u./s (0.72 Hz/s) as shown in the bottom two plots of

Figure. 3.6. These variations under a controlled environment are acceptable in

microgrids [22].

Figure 3.5. Simulation setup used in MATLAB/Simulink. The moving horizon estimator
is implemented using ACADO Toolkit.
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Figure 3.6. A snapshot of the excitation signals used to perturb the system frequency along
with corresponding changes in frequency and ROCOF. The inertia constant of the system
is assumed to change from 10 s to 5 s at a simulation time of 25 s.

It is assumed that a PLL is used to measure the signals ∆ωk and ∆ω̇k. For the size of

the power systems considered, the measurements at any one location are sufficient as the

observed inertia constant would remain relatively the same regardless of the measurement

point. The measurements from the PLL are typically quite noisy especially in low-voltage

microgrid systems due to factors such as unbalanced operations, harmonics. Hence, to

check the performance of the MHE under noisy measurement conditions, different types

of measurement noise are added to these signals. There has been no consensus on the

measurement noise distribution of PLLs and PMUs in the literature. Different studies

provide inconclusive evidence on the suitable distribution to be used for estimation

approaches [121], [122]. Thus, the proposed technique is tested under different noise
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characteristics. First, the performance of the algorithm is validated when there is no

measurement noise. Then, the performance of the technique is also tested for noise with

different amplitudes and distribution characteristics. The signals ∆ωk and ∆ω̇k are the

inputs to the MHE solver along with the excitation signal ∆pk. Based on these local

measurements from the PLL the MHE solver generates the frequency estimate ∆ω̂k, the

ROCOF estimates ∆ ˆ̇ωk along with estimates for the inertia constant M̂ and damping

constant D̂ of the power system.

Table 3.1. Summary of Simulation Parameters

Parameter Values

Inertia constant (M) 10 s
Damping coefficient (D) 1.5%
Speed regulation droop (Rp) 5%
Turbine-Governor time constant (Tg) 0.2 s
Sample time 0.02 s

3.5.2 Setup for the MHE using ACADO

The MHE was implemented using the ACADO toolkit. The ACADO toolkit

generates a MEX (Matlab Executable File) that can be used to call the MHE solver at

every sampling instant within the Simulink environment. The following setting was used

when implementing the MHE solver based on the formulation described in Equation (4.1).

The matrices defining the system dynamics Ad and Bd in constraint (4.2b) are obtained

based on the system parameters defined in Table 3.1. These are discretized matrices

obtained by applying a zero-order hold method on the A and B matrices described in

Equation (3.8) and using a sampling time of 0.02 s. The dynamics of the parameters are

assumed to be constant within a relatively short sampling time of 0.02 s as defined by
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constraint (4.2c). Finally, constraint (4.2d) is used to limit the search range of the

parameter estimates to realistic values. In the particular case, it is assumed that the inertia

constant m lies between 1 s and 20 s while the damping constant d can vary between 0.5%

and 2%. The weighting matrix V is set based on the co-variance of the measurement

noise. If g represents the co-variance of the measurement noise on the states, the

weighting matrix is to V = diag(0,g−0.5,g−0.5). The weighting matrix W , is set to a value

of 1000 as excitation signal is not expected to have significant actuation errors. This

ensures that there is a relatively higher weight on the noise that is expected to be small in

the cost-function. This ensures that all the terms in the cost-function contribute relatively

equally to the optimal value and badly scaled problems can be avoided. The final

parameter that needs to be set is the backward time-horizon L. The selection of this

parameter depends on the time-scale of the dynamics of interest (in this case the inertial

response of the system) and the amount of noise in the measured signals, which will be

discussed in the subsequent sections.

3.6 Results and Analysis

The performance of the MHE is first evaluated assuming that there is no noise in the

measurement signals. Figure. 3.7 shows the performance of the MHE when estimating the

inertia and the damping constant of the system. Initially, the inertia constant of the system

is 10 s and the damping constant is 1.5%. It is assumed that these are unknown quantities.

The inertia constant of the system is changed from 10 s to 5 s at a simulation time of 25 s

while the damping constant remains constant throughout the simulation. The change in

inertia could be a result of a generation loss in the microgrid or a rotational generator
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going off and being supplemented by a PV system without any inertial response. The

initial guesses supplied to the online estimator were – 2 s for M̂ and 2% for D̂. The

backward time-horizon L was set to 25 samples (0.5 s) in this case. Once initialized, the

MHE waits for 25 samples before providing the first estimate. The MHE then estimates

the true value within 3–4s. The MHE was able to estimate both the inertia and damping

constant accurately when there was no measurement noise involved. When the inertia

constant of the system changes to 5 s at the simulation time of 25 s, the MHE estimates

the new value fairly quickly within 2-3 s. During this time, there is a slight error in the

damping constant, but the MHE converges back to the true estimate within 3 s. Thus the

MHE was able to estimate a drastic change in the inertia constant within 3 s. This

illustrates the applicability of the proposed method in real-time control of ESS for

fast-frequency services.
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Figure 3.7. Inertia constant and damping constant estimate along with the true values for
different levels of measurement noise. The noise distribution is assumed to be Gaussian.

The root mean square error (RMSE) is calculated to quantify the accuracy of the

estimates. The RMSE is computed as follows:

RMSE =

√
1
n

n

∑
i=1

(γi− γ̂i) (3.11)

where n denotes the total number of data-points, γi and γ̂i are the true and estimated values

of the parameters. For the different simulation cases illustrated in Figure 3.7 the RMSE is

listed in Table 3.2. For both parameter estimates M̂ and D̂, two sets of RMSE values are

reported (first when M = 10s and second when M = 5s). In the first case (Set 1), the
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RMSE is calculated between a simulation time of 10 s and 20 s. Similarly in the second

case (Set 2), the RMSE is calculated over the data between 30 s and 40 s. The RMSE

increases when there is an increase in the noise levels (decrease in the signal-to-noise

ration (SNR)). For SNR = 55dB, increasing the time-horizon to 50 resulted in a significant

reduction in RMSE. In all three cases, the RMSE is reduced (indicating improved

estimates) for Set 2 compared to Set 1. This is because when the inertia constant of the

system was reduced to 5s the excitation signal caused larger changes in the frequency and

ROCOF.

Table 3.2. RMSE for Different Noise Levels

Simulation
Cases

Set 1: 10 s- 20 s Set 2: 30 s- 40 s
M̂ D̂ M̂ D̂

SNR = 75 dB (L = 25) 0.255 0.272 0.079 0.162
SNR = 55 dB (L = 25) 0.819 1.523 0.227 0.471
SNR = 55 dB (L = 50) 0.715 0.739 0.179 0.391

3.6.1 Estimation with Gaussian Noisy Measurements from PLL

In this case, the performance of the MHE is evaluated in the presence of

measurement noise from the PLL. Initially, it is assumed that the measurement noise has a

Gaussian distribution. The performance was evaluated for different noise levels.

Measurement noise that had a mean of 0 and different levels of co-variance was added to

the measurements. The performance of the estimator was tested for co-variance of 1e-8,

1e-7, and 1e-6 corresponding to SNR of 75, 65, and 55 dB, respectively. These are typical

SNR metrics found for PLL measurements in the literature [123]. Figure. 3.7 shows the

performance of the estimator when the measurement noises correspond to SNR of 75 dB

and 55 db. The estimates are compared against the case when there was no measurement
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noise in the system.

In both cases, the MHE was able to track the true inertia constant of the system

although with small variations around the true value. However, the variations are small

and provide sufficient accuracy to be used with adaptive control and protection schemes.

A closer inspection shows that increasing the noise in the measurements offsets the

estimates especially in the case of the damping constant estimate. It should be noted here

that the horizon time had to be increased from 25 to 50 samples when the measurement

noise was increased from a SNR of 75 dB to 55 dB.

3.6.2 Effect of Estimation Time Horizon on Parameter Estimates

Next, the effect of increasing the estimation time horizon on the parameter estimates

is analyzed. For this, the measurement noise from PLL was assumed to have a co-variance

of 1e-7 (SNR = 65 dB). Again, we assume the measurement noise has a Gaussian

distribution. Using L < 25 did not provide good parameter estimates resulting in large

deviations from the true values. Hence, Figure 3.8 shows the inertia and damping constant

estimate starting from L = 25. Increasing the time horizon greatly improves the accuracy

of the estimates. For instance, with L = 25 there are large variations in the inertia constant

estimate around the true value. The damping constant estimate shows significant

deviations compared to the true value. However, increasing the time horizon to 50 and 75

samples significantly improves both the inertia and the damping constant estimates. The

RMSE for different time-horizons discussed in Figure 3.8 is summarized in Table 3.3.

Increasing the time horizon however, increases the computation cost of the estimator.

Thus a balance needs to be found on the length of the selected prediction horizon based on
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the level of measurement noise and computation resources available.

Figure 3.8. Improvement in inertia constant and damping constant estimate along with an
increase in the prediction horizon.

Table 3.3. RMSE for Different Time Horizons (The SNR is 65 dB in the all cases and the
measurement noise distribution is assumed to be Gaussian.)

Simulation
Cases

Set 1: 10 s- 20 s Set 2: 30 s- 40 s
M̂ D̂ M̂ D̂

L = 25 0.485 0.661 0.142 0.335
L = 50 0.273 0.285 0.062 0.229
L = 75 0.121 0.271 0.035 0.163

3.6.3 Estimation with Non-Gaussian Noisy Measurements from PLL

Contradicting conclusions have been made in the literature in regards to the

distribution of the measurement noise from PLLs and PMUs. Furthermore, measurement
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error distribution can vary through time with changes/deterioration of PTs, CTs, and

change in communication channels [122]. This is where traditional estimation techniques

such as Kalman filters and/or extended Kalman filters may fail. The deviation of the

measurement noise distribution is characterized using the skewness and kurtosis metrics.

The skewness of a dataset is defined as the measure of the lack of symmetry. A Gaussian

distribution whose probability density function (pdf) is perfectly symmetrical will have a

skewness of 0. If the right-hand tail of a dataset (when analyzing its pdf) is longer than the

left-hand tail, then skewness is positive and negative otherwise. Similarly, kurtosis

measures the combined weight of the tails relative to the rest of the distribution. Kurtosis

for a Gaussian distribution is equal to 3.

In this case, the performance of the proposed estimator is evaluated for different

measurement noise distributions. Figure 3.9 shows the inertia and the damping constant

estimates with skewness of +1 and kurtosis of 7. The measurement noise distribution

compared against a Gaussian distribution of the same mean and covariance is shown in

Figure 3.9 (a). Figures. 3.9(b) and (c) show the inertia and damping constant estimation,

respectively. The estimation is also compared when the estimation was performed with

Gaussian distributed measurement noise. Although the MHE can still estimate the inertia

and the damping constant, there is an increase in the variation in both estimates. A similar

observation can be made when the measurement noise has a negative skewness in

Figure 3.10. These results illustrate that the MHE performs well regardless of the

distribution in the measurement noise. The RMSE for these two cases are listed in Table

3.4.
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Figure 3.9. Estimates with a non-Gaussian distribution (Mean = 0, Co-variance=1e-7,
Skewness = +1, Kurtosis = 7. (a) The pdf of the measurement noise. (b) Inertia constant
estimate. (c) Damping constant estimate.

Figure 3.10. Estimates with a non-Gaussian distribution (Mean = 0, Co-variance=1e-7,
Skewness = -1, Kurtosis = 7. (a) The pdf of the measurement noise. (b) Inertia constant
estimate. (c) Damping constant estimate.



71

Table 3.4. RMSE when the measurement noise is assumed to be non-Gaussian

Simulation
Cases

Set 1: 10 s- 20 s Set 2: 30 s- 40 s
M̂ D̂ M̂ D̂

Skewness = +1, Kurtosis = 7 (SNR = 55 dB) 0.516 0.749 0.314 0.375
Skewness = -1, Kurtosis = 7 (SNR = 55 dB) 0.702 0.801 0.230 0.158

3.7 Chapter Conclusions

A technique to estimate the inertia and the damping constant of the system using a

MHE was introduced. The proposed technique was able to provide the estimate in

real-time for an ESS to facilitate the deployment of fast-frequency support strategies. The

estimates were obtained from local noise PLL measurements. A non-intrusive excitation

signal was used to perturb the frequency of the system to perform the estimates. The MHE

showed good performance under typical PLL measurement noise amplitudes and

distributions. Since there has not been a clear consensus on the measurement noise

distribution for frequency measurements the ability of the estimator to work on different

noise distributions is a major contribution. In the future, the proposed technique will be

tested in a realistic benchmark. The proposed framework lays a basis for implementing

adaptive frequency support which will be explored in the future.
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CHAPTER 4 OPTIMIZATION-BASED FAST-FREQUENCY ESTIMATION AND

SUPPORT OF LOW INERTIA MICROGRIDS

Modern microgrids are incorporating a large share of inverter-based renewable

generation that in general do not provide any inertial response. As large amounts of PV

and/or wind generation are integrated through power electronic inverters, the traditional

rotational generation-based microgrids are being transformed into inverter-based

systems [7], [124]. As a result, fast-frequency dynamics are more prevalent in such

low-inertia microgrids. During frequency events, the ROCOF are large causing significant

frequency deviations. This can trigger protection systems, such as UFLS, and can lead to

cascaded outages throughout the system and eventually cause a total blackout. Control

strategies deployed using ESSs interfaced through power electronic inverters can provide

fast-frequency support for these low-inertia microgrids to maintain stability and reliability.

4.1 Previous Work on Optimal Fast-Frequency Support Strategies

Traditionally to provide fast-frequency support in low-inertia microgrids, techniques

based on the derivative of the measured frequency have been proposed [108], [125]. More

specifically, the power output of the ESS inverter is controlled based on the derivative of

the frequency. This is referred to as virtual inertia in the literature as it replicates the

inertial response from rotational generators in a power system. As has been shown in [97],

[126], these controllers are difficult to tune and susceptible to instability due to noisy

frequency measurements from PLLs. To address this issue, a number of optimal frequency

control techniques have been proposed in the literature. These control techniques provide

fast-frequency support by reducing frequency deviations and the ROCOF, while
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minimizing the energy/power consumption.

Numerous fast-frequency support mechanisms for low-inertia power systems have

been proposed in the literature [127], [128]. Techniques to optimize the performance in

terms of reducing energy/power requirements for frequency support have been widely

studied. Different machine learning/black-box approaches have been proposed to optimize

the performance of the fast-frequency controllers. The main objective of these approaches

are to reduce the frequency deviations and the ROCOF while minimizing the peak power

and/or the energy usage. Several methods based on fuzzy logic [129], [130], neural

networks [131], and reinforcement learning [24], [89] have been proposed. These methods

can be computationally expensive and as the system parameters change, require complex

re-training.

Approaches based on predictive models of the system have also been proposed,

using the swing equation of the power system as the predictive model. A predictive

controller was developed in [49] to provide dynamic frequency support using an ESS.

However, the method was limited to one-sample time ahead predictions which limited the

performance as the system dynamics were not captured over a longer time horizon. A

technique using explicit MPC was proposed in [132] to provide frequency support. In this

approach, the control actions were analytically computed offline and the control actions

were limited to a lookup table, reducing the flexibility of the controller to changing system

conditions. LQR techniques have also been developed in the literature [90], [109], but

these approaches are limited as they do not provide the flexibility to be reconfigured

online as needed and cannot handle physical system constraints.

Other techniques to improve performance use a heuristic “alternate/flexible inertia”
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method where the gains of the controller are adjusted based on the acceleration of the

frequency [133], [134]. Although such techniques have been shown to achieve faster

settling times and reduced energy usage, they are also known to be prone to

oscillations [134]. Hence, most techniques in the literature rely on black-box models or

short-horizon predictions with limited flexibility to optimize the fast-frequency support

mechanism. The proposed MHE-MPC framework allows for improved control flexibility

and optimization over longer prediction horizons.

4.2 Chapter Objectives and Contributions

In this chapter, a flexible approach that uses MPC and MHE is formulated to enable

an ESS to provide fast-frequency support. MPC allows the system operator to achieve

near-optimal control actions (based on a defined cost-function) while having the ability to

incorporate ESS constraints into the control framework. Additionally, the ESS operator

has the flexibility to change dynamic behavior of the system by intuitive adjustment of the

weighting parameters. For instance, if there are sufficient incentives in the market

mechanisms, the ESS operator can select weighting parameters such that significant

reduction in ROCOF is provided even at the expense of battery degradation.

MHE provides the MPC algorithm accurate estimates of the frequency and ROCOF

of the system (i.e., state), given noisy measurements. These real-estimates facilitate

control actions that avoid the oscillatory behavior observed with traditional

derivative-based (virtual inertia) controllers due to interaction with PLLs. With traditional

virtual inertia controllers, a LPF is used to filter out PLL measurement noise. The delay

caused by the LPF is known to cause instability, especially under high controller gain
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values [76]. Thus, using a LPF with low cut-off frequencies limits the controller gains and

the effectiveness of the controller in providing fast-frequency support. In the proposed

framework, a PLL without a LPF is used as the MHE performs the necessary filtering and

prevents the aforementioned oscillatory behavior when providing fast-frequency support.

This chapter is an extension of MPC-based fast-frequency support presented in [96].

In this chapter, this framework is extended framework with MHE, and the combined

framework is tested in a realistic test system from Cordova, Alaska. The contributions of

the chapter are as follows:

1. Designed a fast-frequency support framework that achieves the required

performance while incorporating physical constraints of the ESS.

2. Developed a flexible mechanism for an ESS operator to change fast-frequency

performance based on available reserves and market requirements/incentives.

3. Improved stability performance compared to traditional virtual inertia controllers

through the use of MHE.

4.3 Proposed MHE-MPC Framework

The proposed MHE-MPC framework is shown in Figure 4.1. The proposed

framework consists of two distinct modules – the MHE and the MPC. The MHE performs

state estimation based on noisy frequency and ROCOF measurements from a PLL. The

state estimates are then used in the model of the MPC to generate control signals for the

ESS. The MPC uses an approximate predictive model representing the system’s frequency

dynamics and generates near-optimal ESS control actions based on a defined
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cost-function. The cost-function typically consists of several terms that penalize the states

(frequency and ROCOF) and/or the ESS power output. By tuning weights in the

cost-function, a system operator can change the dynamic performance of the controller

based on the desired QoS. Additionally, physical constraints of the ESS such as

peak-power limits and/or ramp-rate limits can be formulated within the MPC framework.

One of the main challenges with existing fast-frequency support techniques is that a PLL

must be supplemented with a LPF to account for measurement noise. The dynamics of

such PLLs with LPFs can cause oscillatory behavior, especially at higher control gains, as

illustrated in a number of relevant work in the literature [76], [97], [126]. The MHE

module allows the use of a PLL without a LPF, thus the combined framework can prevent

oscillatory response in the system.

Figure 4.1. Proposed MHE-MPC framework for fast-frequency support. The MHE pro-
vides state estimates for the frequency and ROCOF from noisy PLL measurements while
the MPC provides ESS control signals to provide fast-frequency support.

The frequency dynamics model derived in Section 3.3.3 will be used as the

predictive model. Both the MHE and the MPC is formulated as a quadratic program (QP)

problem which ensures convexity and allows the use of a simple solver for the
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optimization problem [106].

4.3.1 Formulation of Moving Horizon Estimation

Let us define L as the length of the backward time horizon. Also, at a discrete time

instant k, xk = [∆δk ∆ωk ∆ω̇k]
> defines the states of the system and yk is the measured

output. The MHE problem then takes the following form:

min
x̂,∆ p̂

JL :=
q

∑
k=q−L

(Cd x̂k− yk)
>V (Cd x̂k− yk)+

q−1

∑
k=q−L

(∆p̂k−∆pk)
>W (∆p̂k−∆pk)

(4.1a)

subject to

x̂k+1 = Ad x̂k +Bd∆p̂k ∀k ∈ {q−L, . . . ,q−1} (4.1b)

The measured power output from the ESS unit is denoted by ∆pk. The discretized

state-space matrices Ad , Bd , and Cd are obtained using the Zero-Order Hold (ZOH)

method. The cost function to be minimized is JL while V and W are the weighting

matrices. The matrix V is defined as V = diag(0,V22,V33) (the element associated with the

∆δk is set to zero as this is not used). The matrix W has only one term as there is only a

single control signal. The first term in the cost function JL penalizes the difference

between the measured outputs and the predicted outputs using the elements V22 and V33 of

the weighting matrix V . Similarly, the second term accounts for actuation errors [119]

which is achieved by proper selection of the weighting matrix W . Solving this

optimization problem at each sampling time yields the state estimates x̂k and the estimate
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of the applied control signal ∆p̂k.

4.3.2 Formulation of Model Predictive Control

Let us define T as the length of the forward time-horizon. For the MPC formulation,

since the objective is to minimize the ∆ω and ∆ω̇ , the states of the system for a given time

instant k is re-defined as xk = [∆ωk ∆ω̇k]
> and the matrices Ad , Bd and Cd are redefined

accordingly. The proposed MPC formulation will then take the following form:

min
∆p

JT :=
q+T−1

∑
k=q

(
x>k Qxk +∆p>k R∆pk

)
+ x>q+T Q f xq+T (4.2a)

subject to

xk+1 = Adxk +Bd∆pk ∀k ∈ {q, . . . ,q+T −1} (4.2b)

|∆pk| ≤ Pmax ∀k ∈ {q, . . . ,q+T −1} (4.2c)

‖∆pk+1−∆pk‖∞
≤ E ∀k ∈ {q, . . . ,q+T −1} (4.2d)

where JT is the cost-function to be minimized, and Q and R are the weighting matrices

corresponding to the state estimates and the control signal respectively. The weighting

matrix Q is defined as Q = diag(Q11,Q22). The element Q11 is used to penalize change in

frequency, and the element Q22 is used to penalize the ROCOF. The matrix R is used to

penalize the control effort (i.e., the power output from the ESS). The R matrix in this case

has only a single element as ESS output power is the only control action. Similarly, Q f is

a terminal cost weighting matrix. We assume that Q f is equal to Q throughout the chapter.

More details on the choice of the terminal cost and time-horizon can be found in [135]. At
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each discrete time instant k, the first element obtained from solving the optimal control

problem over the forward time-horizon is applied to the system. The system dynamics are

incorporated within the constraint (4.2b) of the above MPC formulation. Similarly, (4.2c)

limits the power output of the ESS to Pmax. The ramp-rate of the ESS power output is

limited to E by (4.2d).

4.4 Simulation Setup

4.4.1 Benchmark

To test the proposed control framework, the remote microgrid test system from

Cordova, Alaska, was modified as shown in Figure 4.2(a). Only two substations are

considered – the ORCA 12.47 kV substation with three diesel generators (ORCA 3,

ORCA 4, and ORCA 5) and the Humpback Creek 12.47 kV substation, where a 1 MW

PV system is connected. The implementation of the governor and excitation systems of

the generators is shown in Figure 4.2(b). The parameters used are – Rp = 5%, Ki = 20,

Tg = 0.2s, Rq = 5%, kv = 0.1, and Tv = 0.05s. The same parameters are used for the

controllers of all three generators. Detailed parameters used to model each generator are

listed in Table 4.1. All the generators are operated in droop mode. ORCA 3 provides AGC

to bring the system frequency back to the nominal value after the primary control action to

automatically restore the remaining generators to their scheduled values [58].

Table 4.1. Generator Parameters

Xd X
′
d Xd

′′ Xq Xq
′′ Xl T

′
d0 T

′′
d0 T

′′
q0

ORCA 3 1.38 0.23 0.12 0.76 0.12 0.10 3.20 0.04 0.04

ORCA 4 1.38 0.23 0.12 0.76 0.12 0.10 3.20 0.04 0.04

ORCA 5 1.76 0.46 0.25 1.06 0.25 0.05 4.34 0.04 0.06
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A 3 MW ESS is connected to the ORCA substation. The proposed MHE-MPC

control framework is implemented on this ESS. The ESS can be utilized to perform a

wide-array of grid ancillary services in different time scales, with fast-frequency support

being the application discussed in this work. The inverter in the ESS is modeled using

three independent current-controlled voltage sources, which allows the system to be

analyzed without modeling the DC-link dynamics and/or harmonics. These dynamics are

much faster than the frequency dynamics which are the main concern of this work. A

PI-type-2 controller as described in [136] is used to implement the current controllers

which control the output of the current-controlled voltage sources. The ESS is interfaced

through an LC filter with an inductance L f = 10mH and capacitance C f = 3.3µF . A PLL

measures the change in frequency ∆ω and ROCOF ∆ω̇ for the MHE-MPC framework

which then generates the reference power/current for the current controller. The PV plant

is modeled as controlled current sources and has no frequency dynamics associated with

it. This reduces the overall inertial response of the microgrid system.
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Figure 4.2. Modified test system of Cordova, Alaska.

4.4.2 Configuration for the MHE-MPC Framework

The configuration for the MHE-MPC framework is described in this section. A

sampling time 0.02 s was used for both the MHE and MPC modules. For the MHE, the

backward time-horizon L is set to 10 samples. This allows the MHE to track the fast

changes in the ROCOF, providing accurate estimates while keeping computational cost

low. It is common practice to tune the weighting matrix based on the co-variance of the
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measurement noise. If g represents the co-variance of the measurement noise on the

states, the weighting matrix is to V = diag(0,g−0.5,g−0.5). The weighting matrix W is set

to a high value of 1000 as there is no significant difference between the control signal and

the actuation signal. If there are significant actuation errors the value of W can be

decreased accordingly. For the MPC module, the forward time-horizon T is set to 50

samples. For the sampling time of 0.02s, this puts the forward time-horizon at 1 s which

matches the typical range of the frequency dynamics of concern in the system. The

weighting matrix is varied based on the simulation analysis being performed and is

described in subsequent sections.

Both the MHE and the MPC modules are formulated using the ACADO

Toolkit [120] for MATLAB, which is an open-source toolbox to implement dynamic

optimization problems. The test system was implemented in MATLAB/Simulink (using

the Simscape Power Systems library), and the parameters for the predictive model were

estimated using an offline least square estimator but could be estimated online using an

approach described in Chapter 3. The ACADO Toolkit generates a MATLAB Executable

file that can be called from within Simulink to implement the MHE-MPC framework to

provide fast-frequency support.

4.5 Results and Analysis

In this section, the performance of the MHE in estimating the frequency deviation

and ROCOF of the system is first illustrated. This is followed by analysis of the proposed

combined framework, which is illustrated in terms of the operational flexibility, capability

to handle ESS constraints, and performance improvement under noisy measurement
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conditions. All simulation results are presented in p.u. with frequency and ROCOF

normalized against a 60 Hz base while the power is normalized against a 3 MVA base. In

all the cases, it is assumed that system base load is 3 MW (1 p.u.) to begin with, and there

is a 2 MW (0.75 p.u.) change in the system load at 5 s.

4.5.1 Performance of the MHE

The performance of the MHE is illustrated in Figure 4.3. The measurements from

the PLL are assumed to have measurement noise with a Gaussian distribution of mean 0

and co-variance 10−7, equivalent to a SNR of 65 dB, which is typical for PLL

measurements [123]. The PLL measurement is then fed into the MHE without any filters.

The performance of the MHE is compared to the filtered frequency and ROCOF obtained

from using a second-order Butterworth-type LPF with cut-off frequency fc of 5 Hz and a

damping ratio ξ of 0.707 in Figure 4.3(a).

Figure 4.3. Frequency and ROCOF of the microgrid system estimated using the MHE. The
estimates are compared against the noisy PLL measurements and the measurement from
LPFs.

As stated earlier, a lower fc introduces significant delay in the measurement and
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makes the closed-loop system more susceptible to oscillatory behavior. This delay is

critical when measuring the ROCOF, as the controller needs to detect and respond to fast

changes to provide adequate fast-frequency support. A low cut-off frequency of 5 Hz is

required to properly filter out noise in the frequency measurements in Figure 4.3(a), but

this leads to a significant delay in the ROCOF measurement as shown in Figure 4.3(b).

The proposed MHE, however, is able to estimate both the frequency and ROCOF without

significant delay. The frequency estimate has similar performance as compared to the case

when using a LPF. With the ROCOF estimate, even though there is only a slight reduction

in the measurement noise, the fact that there minimal delay in the estimate helps to

maintain system stability. Avoiding this delay prevents oscillatory behavior in the system.

4.5.2 Performance: Operational Flexibility

The performance of the MPC in terms of providing operational flexibility for the

ESS operator is illustrated here. The elements of the Q matrix, Q11 and Q22 are varied

from 0.1 to 1 in steps of 0.1. Increasing Q11 penalizes the change in frequency ∆ω , while

increasing Q22 penalizes the ROCOF ∆ω̇ . The R matrix, which penalizes the control

signal, is kept constant at a low value of 0.001 so that there is only a small penalty on the

control action from the MPC. The maximum frequency change, maximum ROCOF and

the peak-power injected by the ESS for different weighting constants are illustrated in the

heatmaps shown in Figure 4.4. Figure 4.4(a) shows that increasing Q11 reduces the

frequency deviation in the system by a significant amount. Increasing Q22 at a constant

value of Q11, however, does not result in much variation in the frequency deviation as

expected. On the other hand, increasing Q22 results in significant reduction in the ROCOF
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as shown in Figure 4.4(b). Increasing Q11 and/or Q22 thus increases the power demand

from the ESS.

(a) (b) (c)

Figure 4.4. Heatmaps illustrating the variation of different system parameters based on the
selection of Q11 and Q22. (a) Maximum frequency change. (b) Maximum ROCOF. (c)
Peak power output from ESS.

Figure 4.5 shows how the dynamics of the frequency, ROCOF and the ESS power

outputs change depending on the selection of the weighting parameters. For the case when

Q11 = 0.1 and Q22 = 0.5, since there is a higher penalty on the ROCOF deviation, a

significant reduction in the system ROCOF can be observed. This, however, results in a

higher peak-power output from the ESS. On the other hand, for the case when Q11 = 0.5

and Q22 = 0.1 the reduction in ROCOF is lower and thus the peak-power usage is also

lower. Finally, the dynamics of the system based on variation of R is shown in Figure 4.6.

When a high value of R = 0.1 is used, since there is a higher cost in the control, the power

output from the ESS and the energy usage is limited. However, this means there is only a

slight reduction in the frequency deviation and ROCOF. When the R value is reduced to

0.01 and 0.001 the power/energy usage increases and leads to higher reductions in

frequency deviation and ROCOF.
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Figure 4.5. Frequency, ROCOF, and peak power output of ESS for different values of Q.
(a) Change in system frequency. (b) System ROCOF. (c) Power output from ESS.
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Figure 4.6. Frequency, ROCOF, and peak power output of ESS for different values of R.
(a) Change in system frequency. (b) System ROCOF. (c) Power output from ESS.

The weighting parameters thus provides an intuitive mechanism for the system

operator to control the frequency dynamics of the microgrid, either manually or as part of

a market mechanism. Based on the ESS power availability, system inertia, and market

incentives, the ESS operator can select appropriate weighting parameters. For instance, if

the system inertia is particularly low at any given instance, the ESS operator can increase
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Q22 to put more emphasis on reducing the large ROCOF that occurs in low-inertia

situations to prevent large frequency transients and prevent system UFLS. Similarly, ESS

operator can prevent battery degradation by controlling the R parameter. Thus, the ESS

and microgrid operators can find a balance between frequency QoS (depending on the

microgrid consumers) and the battery life degradation in the MHE-MPC framework. This

mechanism also allows the ESS operator to deploy fast-frequency support as a service for

the microgrid.

4.5.3 Performance: Constraints Handling

The proposed MHE-MPC framework allows the microgrid or ESS operator to

impose constraints based on available resources, QoS incentives in the market, or to

provide multiple market services. For this particular analysis, it is assumed that the ESS

operator has limited the power output of the unit to 0.1 p.u. (0.3 MW). Figure 4.7 shows

the change in frequency, ROCOF and the power output from the ESS for three cases –

with no fast-frequency controller, a constrained controller, and an unconstrained

controller. In all cases, the same settings were used for both the MHE and the MPC

modules. For the MHE, the settings described in Section 4.4.2 are used, while for the

MPC the weights are set to Q = diag(0.1,0.9).
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Figure 4.7. Comparison of constrained versus unconstrained system operation. The peak-
power output is constrained to 0.1 p.u. in this case.

The reduction in frequency deviation is highest when there are no constraints in the

formulation, as shown in Figure 4.7(a). Similarly, the ROCOF is also least for the

unconstrained case as illustrated in Figure 4.7(b). However, significant reductions come at

the cost of a larger peak-power injection of 0.5 p.u. (1.5 MW) from the ESS, as shown in

Figure 4.7(c). Furthermore, the energy usage per frequency event is also higher. All of
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these factors could degrade the ESS lifetime and impact other ESS services (e.g.,

arbitrage). However, with constrained operation the ESS operator can inherently include a

constraint on the peak-power of the ESS within the formulation, which limits the control

action generated by the MPC to 0.1 p.u. (0.3 MW) as shown in Figure 4.7(c). With

peak-power limited, the reduction in frequency deviation and the ROCOF is lower

compared to the unconstrained case, but this results in lower power/energy usage and

longer ESS lifetime.

4.5.4 Performance: Stability Improvement

To highlight the advantage of the MHE module, two sets of simulations are carried

out. In the first case shown in Figure 4.8(a) the measurements from the PLL with a LPF

are used by the MPC. A second-order Butterworth-type LPF with a cut-off frequency fc of

5 Hz is employed. The parameters of the PLL are set to kPLL
i = 92 and kPLL

d = 4232 [76].

In the second case, shown in Figure 4.8(b), the PLL measurements are directly fed to the

proposed MHE-MPC framework. It should be noted that in Figure 4.8(b), the PLL does

not include a LPF as the MHE provides the filtered estimates. For the same weighting

parameters, Q = diag(0.1,0.9) and R = 0.0001, the frequency and the ROCOF for the two

cases are shown in Figure 4.9. Due to the delay caused by the LPF, the system shows

oscillatory when the MHE module is not used.
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Figure 4.8. Simulation setups to analyze the advantage of the MHE module. (a) MPC with
measurements from PLL with LPF. (b) Proposed combined MHE-MPC. (c) Traditional
virtual-inertia controller with measurements from PLL with LPF.

Figure 4.9. Frequency, ROCOF and peak power output of ESS with and without the MHE
module for the same weighting parameters.

Next, the performance of the proposed framework is compared against a traditional

VI controller with simulation setup shown in Figure 4.8(c). The same LPF with cut-off
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frequency fc of 5 Hz is employed to filter noisy measurements. As an example, the

proportional gain of the controller kV I
i is set to 15 while the derivative gain kV I

d is set to 25.

These gains are tuned such that the VI controller has a similar response as the proposed

MHE-MPC framework with the weighting parameters sets to Q = diag(0.1,0.9) and

R = 0.0001. Using the PLL with LPF under these high gains leads to oscillatory behavior

in the frequency and ROCOF as shown in Figure 4.10. To further illustrate the fact that the

oscillatory behavior is in fact due to the delay from LPF, the same simulation was

performed without a LPF (under the assumption that there was no measurement noise).

Without the LPF, the system does not show oscillatory behavior under the same gains and

shows similar performance as the proposed MHE-MPC framework. These simulations

highlights that the LPF delay can lead to oscillatory response and the use of MHE can

enhance the system dynamic performance.

Figure 4.10. Frequency, ROCOF and peak power output of ESS when using a traditional
virtual inertia controller versus the proposed MHE-MPC framework.
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4.6 Computational Tractability

Although approaches such as MPC and MHE had seen limited practical applications

in the past, advancements in computational capabilities of low-cost embedded controllers

and significant research in development fast real-time solvers pave the path to utilize these

approaches for fast-frequency support mechanisms which require fast execution times in

the range of milliseconds. One of the main advancement has been the development of

what is known as real-time iteration approach in literature to efficiently solve MHE and

MPC in dynamic systems[137], [138]. This approach reduces the computational burden

by limiting the sequential programming method used to solve the optimization problem to

one iteration per sample [118]. Furthermore, several code-generation tools to implement

these predictive control and estimation approaches on embedded hardware through

efficient code-generation have received significant attention allowing milliseconds or even

microseconds level implementation [139]. By optimizing aspects of memory access,

cache usage and exploiting the problem’s specific structure, efficient codes can be

generated for embedded application. The ACADO code-generation tools, for instance, can

generate highly efficient C code for embedded applications by implementing a custom

real-time iteration scheme. ACADO code-generation tool has been already demonstrated

in a number of real-world experiments that require execution times in the range of

milliseconds or microseconds [140]–[142]. Future work should incorporate testing these

in low-cost hardware.
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4.7 Chapter Conclusions

A control framework for fast-frequency support in low-inertia microgrids was

developed. The framework combined a MHE with MPC to achieve a flexible framework.

Through simulations performed in a low-inertia test system, it was illustrated that the

MHE can estimate the change in frequency and ROCOF of the system from noisy PLL

measurements. This allowed the fast-frequency support to be provided in conjunction with

the MPC to achieve significant reductions in frequency deviation and ROCOF without any

oscillatory phenomenon as with the traditional virtual inertia controllers. The flexibility of

the proposed MHE-MPC fast-frequency support framework through tuning the weighting

matrices allows the ESS or microgrid operator to tune the QoS provided, allowing the

trade-off between performance and battery degradation. It was also shown that the

proposed framework can incorporate physical operating constraints of an ESS, such as

peak-power limits. As an added benefit, properly setting this constraint, allows the ESS

owner to provide stacked services to the microgrid, and maximize revenue over the battery

lifetime.
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The rapid development of renewable energy sources (RESs) is causing the modern

power grid to gravitate towards an inverter-dominated system from a rotational

generator-dominated system. The inverter-based generation does not provide any

mechanical inertial response, and hence compromises the frequency stability of the

system. This leads to increased rate-of-change-of-frequency (ROCOF), and

high-frequency nadirs in the power system. Such situations can lead to tripping of

frequency relays causing under-frequency load shedding (UFLS) and, in the worst case,

may lead to cascaded outages. Fast-frequency support provided by emulating virtual

inertia through energy storage systems (ESSs) can limit the ROCOF and keep the

frequency within safe limits.

Fast-frequency support is a power-intensive service and can result in large power

demands and ramp-rates from the energy medium, which can have a substantial negative

impact on the ESS lifetime. The ESS operator needs to provide fast-frequency support to

minimize ROCOF and frequency deviation while minimizing the impact on the ESS.

Furthermore, there are physical constraints to be considered, such as limits on peak power

and/or ramp-rates. It is thus favorable for the ESS operator to be able to dispatch the ESS

unit based on the desired frequency quality-of-service (QoS) required in the microgrid

(limiting the ROCOF and frequency) and the incentives required to provide the QoS for

such a frequency-as-a-service in the market. In this dissertation, an optimization-based

fast-frequency support mechanism is developed for low inertia power systems. The
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developed framework has the flexibility to change dynamic performance based on

resource availability and the desired level of QoS. Furthermore, the framework can

incorporate the physical constraints of the ESS such as peak-power limits and ramp-rate

limits. To ensure the framework can adapt to changing system parameters (inertia and

damping constant) an online estimator is also developed.

Proper assessment of the system inertia is of critical importance for system

operators to deploy effective strategies to supplement the lost inertia. With

non-synchronous, inverter-based generation sources as photovoltaics (PVs) and wind

continuously displacing the traditional generators, it is challenging to estimate the inertia

of a power system at any given time. Recently RESs have been deployed with

characteristics that can emulate inertia as well. So, the inertial response from RESs also

needs to be accounted for when estimating the inertia. All the aforementioned factors

indicates a need for real-time inertia estimation technique. Estimating the inertia and

damping constant will aid a system operator to deploy adaptive fast-frequency support

strategies. Such situational awareness is imperative for the system operator to have

enough reserves in place for any plausible contingency in the system.

In Chapter 2, a literature review of the current state-of-the-art of virtual inertia and

fast-frequency support implementation techniques is presented. The major topologies are

compared and classified. Through literature review and simulations of some selected

topologies, it is shown that similar inertial response can be achieved by relating the

parameters of these topologies through time constants and inertia constants, although the

exact frequency dynamics may vary slightly. The suitability of a topology depends on

control system architecture and the desired level of detail in the replication of the
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dynamics of synchronous generators. The techniques are classified into three distinct

generations which highlight the evolution and trends in the literature related to

fast-frequency support mechanisms in the literature.

Next, in Chapter 3, for online estimation of inertia and damping constant of a

system, an approach using moving horizon estimation (MHE) is developed. Based on the

frequency measurements obtained in response to a non-intrusive excitation signal from an

ESS, the two system constants are estimated using local measurements from the ESS

phase-locked loop. The proposed MHE formulation is tested in a simulation model, and

the technique estimated the unknown inertia and damping constant of the system within

10% of the true value under moderate measurement noise. Estimates provided by the

proposed method can be utilized for applications such as fast-frequency control, adaptive

protection schemes, and planning and procurement of spinning reserves.

Finally, in Chapter 4, a framework that allows the ESS operator to provide

fast-frequency support as a service is proposed. The framework maintains the desired QoS

while considering the ESS lifetime and physical limits. The framework utilizes MHE to

estimate the frequency deviation and ROCOF from noisy PLL measurements. These

estimates are employed by a model predictive control (MPC) algorithm that computes

control actions by solving a finite-horizon, online optimization problem. Additionally, this

approach avoids oscillatory behavior and instability induced by delays that are common

when using low pass filters and traditional derivative-based (virtual inertia) controllers

with high gains. MATLAB/Simulink simulations on a modified benchmark from Cordova,

Alaska, shows the effectiveness of the MHE-MPC approach to reduce frequency

deviations and ROCOF of a low inertia microgrid.
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This dissertation was limited to developing the foundations to deploy fast-frequency

support mechanisms using the concept of the QoS framework. Concepts from cloud

computing can be borrowed to further expand on this framework. A possible

implementation scenario can be where service level agreements specifying QoS targets

(such as maximum ROCOF and minimum frequency nadir) can be developed between the

service provider (the ESS) and the microgrid system operator for a given microgrid power

imbalance. The ESS operator can then utilize estimates of inertia constant of the

microgrid to find the right trade-off between the agreed QoS and its operational cost. The

service level agreements might also include economic penalties in case the agreed QoS is

violated. Further research would be required to develop appropriate mechanisms to deploy

market mechanisms that will support this proposed framework.

5.2 Future Work

Future work should include testing the developed inertia and damping constant

estimator in a real power system benchmark. The framework can be extended to estimate

inertia and damping constant of multi-area power systems. This may require updating the

underlying frequency dynamics model used. The assumption in implementing the MHE

framework has been that the inertia constant and the damping constant remains constant

during the MPC’s control horizon. With multiple distributed units in multi-area power

systems participating in fast-frequency support this assumption may not hold true and is

worth investigating in future research.

The proposed optimization-based MHE-MPC framework can be validated in a

realistic scenario through power-hardware-in-the-loop simulations. Currently, the
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formulation does not incorporate a detailed model of an ESS. Incorporating a real model

of ESS through power-hardware-in-the-loop testing while including limits of

state-of-charge, peak-power limits and/or limits can further help to validate the proposed

framework. Finally, long-term simulations that can highlight how the proposed framework

can help in limit battery degradation will further emphasize the advantages of this

proposed framework.
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method for real-time optimization of nonlinear dae processes,” in Nonlinear model
predictive control, Springer, 2000, pp. 245–267.
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