
Titre:
Title:

R-SHT: A state history tree with R-Tree properties for analysis and
visualization of highly parallel system traces

Auteurs:
Authors: Loïc Prieur-Drevon, Raphaël Beaumonte et Michel R. Dagenais

Date: 2018

Type: Article de revue / Journal article

Référence:
Citation:

Prieur-Drevon, L., Beamonte, R. & Dagenais, M. R. (2018). R-SHT: A state history
tree with R-Tree properties for analysis and visualization of highly parallel system
traces. Journal of Systems and Software, 135, p. 55-68.
doi:10.1016/j.jss.2017.09.023

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/4214/

Version: Version finale avant publication / Accepted version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: CC BY-NC-ND

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title: Journal of Systems and Software

Maison d’édition:
Publisher: Elsevier

URL officiel:
Official URL: https://doi.org/10.1016/j.jss.2017.09.023

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/322959783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://publications.polymtl.ca/4214/
https://doi.org/10.1016/j.jss.2017.09.023
http://publications.polymtl.ca/

Z

R-SHT: a State History Tree with R-Tree Properties for Analysis and
Visualization of Highly Parallel System Traces

LOÏC PRIEUR-DREVON, Polytechnique Montréal
RAPHAËL BEAMONTE, Polytechnique Montréal
MICHEL R. DAGENAIS, Polytechnique Montréal

Understanding the behaviour of large computer systems with many threads and cores is a challenging
task. Dynamic analysis tools such as tracers have been developed to assist programmers in debugging and
optimizing the performance of such systems. However, complex systems can generate huge traces, with
billions of events, which are hard to analyze manually. Trace visualization and analysis programs aim to
solve this problem. Such software needs fast access to data, which a linear search through the trace cannot
provide. Several programs have resorted to stateful analysis to rearrange data into more query friendly
structures.

In previous work, we suggested modifications to the State History Tree (SHT) data structure to correct its
storage and memory usage. While the improved structure, eSHT, made near optimal external memory usage
and had internal reduced memory usage, we found that query performance, while twice as fast, exhibited
scaling limitations.

In this paper, we proposed a new structure using R-Tree techniques to improve query performance. We
explain the hybrid scheme and algorithms used to optimize the structure to model the expected behaviour.
Finally, we benchmark the data structure on highly parallel traces and on a demanding trace visualization
use case.

Our results show that the hybrid R-SHT structure retains the eSHT’s optimal disk usage properties while
providing several orders of magnitude speed up to queries on highly parallel traces.

CCS Concepts: •Information systems → Multidimensional range search; B-trees; •Theory of
computation → Sorting and searching; •Software and its engineering → State systems; Dynamic
analysis; Massively parallel systems;

Additional Key Words and Phrases: Data Structures, Tree, Stateful Analysis

ACM Reference Format:
Loïc Prieur-Drevon, Raphaël Beamonte, Michel R. Dagenais, 2017. R-SHT: a State History Tree with R-Tree
Properties for Analysis and Visualization of Highly Parallel System Traces ACM Trans. Model. Perform.
Eval. Comput. Syst. X, Y, Article Z (June 2016), 29 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Understanding the runtime behavior of complex computer systems is a daunting task. Trac-
ing is one of many runtime analysis methods used to instrument and collect data on systems
and applications. Compared to logging, tracers have much lower overhead and can produce
hundreds of thousands of events per second, at nanosecond precision, providing extremely
detailed information on kernel, process and hardware states.

This research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC),
Prompt, Ericsson and EfficiOS under grant CRD-468687-14.
Author’s addresses: L. Prieur-Drevon (loic.prieur-drevon@polymtl.ca), R. Beamonte
(raphael.beamonte@polymtl.ca) and M. R. Dagenais (michel.dagenais@polymtl.ca) are with the
Computer and Software Engineering Department, Polytechnique Montreal, C.P.6079, Station Downtown,
Montréal, Québec, Canada, H3C 3A7
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 2016 Copyright held by the owner/author(s). 2376-3639/2016/06-ARTZ $15.00

DOI: 0000001.0000001

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

Z:2 L. Prieur-Drevon et al.

Tracers produce trace files, a series of chronological events, which are optimized for low
overhead and data storage but challenging for human operators to understand. A number
of software solutions, called trace visualizers, have been developed to facilitate the under-
standing of these files by providing graphical visualizations, statistics and detailed analysis
of certain use cases. These programs perform stateful analysis, that transform event-based
data structures into state-based structures, and reorganize data from lists to trees, for faster
access.
Indeed, when traces reach gigabyte or terabyte size, efficient data structures are important

for maintaining sustainable performance levels for analysis, and low latency for interactive
visualizations. Said data structures must be able to scale horizontally – for tracing programs
over a large duration – as well as vertically – for tracing systems with many processors,
threads and resources.
Among the existing data structures, some are optimized for disk storage, build time

or perhaps query performance. When working on trace visualization, the latter is fairly
important. R-Trees are a family of data structures used to index multi-dimensional data
sets and offer excellent query performance.
In previous work [Prieur-Drevon et al. 2016], we presented a self-defined tree structure,

optimized for external memory storage and with satisfactory query performance. However,
we found that query performance scaled linearly to the number of components in the system,
which led to slowdowns for the analysis of systems with many threads for example.
In this paper, we propose an enhanced, configurable build algorithm that reorganizes data

in the sub-trees so that they reflect properties of an efficient R-Tree.
This paper is organized as follows. First we cover related research on trace visualizers

and underlying data structures in section 2. Then we present the architecture of the current
data structure in section 3 as well as that of the evolutions we suggest in sections 4 and 5.
In section 6, we model the behavior of the query algorithms before benchmarking them on
real-life traces in section 7. Finally, we conclude and suggest future work.

2. RELATED WORK
2.1. Trace visualizers
In this section, we compare open source trace visualizers that deal with stateful analysis
and have a documented data structure to store this information.

Jumpshot [Chan et al. 2008] is the visualization component for the MPI Parallel Environ-
ment software package. It displays the nodes’ states evolutions over time and the messages
that they have exchanged. Jumpshot uses the slog2 format to reduce the cost of accessing
trace data. When using the MPE tracing framework for MPI, users have the option for a
state based logging format, in which the tracer directly produces state intervals, as opposed
to event based tracing, which produces a list of timestamped events. However, Jumpshot is
focused on MPI visualization and doesn’t provide detailed analysis capabilities.

Paraprof [Geimer et al. 2007] uses tracing and profiling techniques to summarize infor-
mation, allowing it to scale well to HPC applications. It stores data in a CUBE [Geimer
et al. 2007] data structure, which is based around a Cube data model, with one dimension
for metrics, another for programs and a third dimension for the system. When in memory,
Paraprof stores its data as a double level map of vectors, keyed by the metric, then the call
path and finally the process number. Despite all its capabilities, Paraprof does not provide
stateful information on the systems’ performance, rather focusing on metrics.

Aftermath [Pop and Cohen 2013] provides visualization and analysis for traces from task-
parallel work-flows. As part of the OpenStream project, it relies heavily on aggregation of
trace points from the application as well as the runtime, and performance counters. Its
creators state that the software can scale up to traces of several gigabytes in size while

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:3

remaining fast thanks to the use of augmented interval trees as a backend. However, After-
math stores the entire trace in memory, thus limiting its scalability.
Google has built tracing into Chromium [Google 2013] to help developers identify slow-

downs originating from either JavaScript, C++, or other bottlenecks. The visualizer easily
scales to the number of threads used by chrome and the flame-graphs of some deep call
stacks. Withal, Chromium Tracing is obviously restricted to analyzing Chrome’s perfor-
mance, yet shows the appeal of tracing and analysis for diversified applications.

Pajé ViTE[Coulomb et al. 2012] is developed for Pajé or OTF traces from parallel or
distributed applications. It can scale to display millions of events per view and large com-
puting clusters by storing trace events in a balanced binary tree, which is however limited
by the size of the main memory.

Trace Compass [Côté and Dagenais 2016] is the extensible trace visualizer and analyzer
for traces generated by the LTTng [Desnoyers and Dagenais 2006b] tracer and other tracing
tools. It is built using the Eclipse framework and uses State History Trees (SHT) to store
state data in a query-efficient structure. It supports a number of different trace formats and
offers comprehensive analysis modules. Because of its flexibility, it is equally effective for
analysing real-time programs running on a single system, as it is with multi-threading, DSP
and GPU architectures, and distributed or virtualized systems.
Distributed systems, which rely on the MPI standard also have a number of dedicated

tools to analyse their specificities.
HPCTraceviewer is the visualization component in the HPCToolkit, it is used for perfor-

mance measurement and analysis on large supercomputers. By relying on a client/server
architecture, it avoids moving gigabytes of trace files and benefits from the computing power
and memory of MPI nodes to process raw data.
The VampirTrace [Müller et al. 2007] visualizer relies on a client/server architecture

with parallel servers to scale up to reading large distributed traces. The nodes interact
via standard MPI primitives and precompute the required information before sending the
results over to the client.

ScalaTrace [Noeth et al. 2009] relies on local and global compression to reduce the sizes
of MPI traces dramaticaly and preprocess trace comparison. This results in constant size
or sublinear growth sizes compared to the number of nodes.
However, when working on huge traces, the aforestated software cannot afford to query

directly the trace itself, as the query length could grow linearly with the trace size. This is
why such programs transform traces into other data structures that are more efficient for
querying. Most programs choose to store "stateful" data, i.e., one object per state [Ezzati-
Jivan and Dagenais 2012]. For example, the state of the Attribute "thread/42/Status" could
be "Sleep" between two specific time-stamps.

2.2. Stateful Data Structures
In this section, we compare the data structures used by aforementioned trace visualizers
and generic data structures used for multidimensional data. The following structures focus
on query performance.

B-Trees [Comer 1979] were one of the first index structures developed to accelerate
accesses to external memory data structures. B-Trees extend binary search trees by giving
each node between d and 2d keys as well as d + 1 to 2d + 1 pointers to children nodes,
in which case the tree is of order d. All the values in the sub-tree referenced by the ith
pointer are larger than the ith key and smaller than the (i+ 1)th.

Multi-version B-Trees [Becker et al. 1996] store data items of the type <
key, tstart, tend, pointer > where key is unique for every version and tstart, tend are the
version numbers for the item’s lifespan. It has a number of B-Tree root nodes that each
stand for an interval of versions. Each operation (insertion or deletion) creates a new ver-

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

Z:4 L. Prieur-Drevon et al.

sion. Versioning uses live blocks which duplicate the open intervals of the old block and
have free space to store future values.

Interval Trees [Cormen 2009] are tree structures designed to efficiently find time inter-
vals that overlap a certain timestamp. Different implementations of interval trees exist in
the literature. Aftermath for example, uses Augmented Interval Trees [Har-Peled 2011]
which are based on ordered tree structures. These are typically binary trees or self-balancing
binary search trees, where the interval start time is used for ordering. Each node is "aug-
mented" with the latest end time of the associated sub-tree. Knowing the end times of
the sub-tree tells the algorithms which nodes they can skip when searching for intervals.
The Centered Interval Tree implementation is similar to a binary search tree, with each
node using a time t as a key such that all the intervals in the left node end before t, all the
intervals in the right node start after t, and the node contains all intervals overlapping t.
The tree is balanced when the left and right sub-trees contain a similar number of intervals.
Segment Trees [Berg et al. 2008] are especially efficient for retrieving segments that overlap
a certain value. Segment Trees are based on binary search trees, with nodes defined by the
range they span, called "interval". Each segment may have several pointers in the tree, in
the shallowest possible nodes, such that these nodes’ intervals span the segment but that
the parent’s interval does not span the segment.

ee l

ee l 1

ee l 2

t

Fig. 1: Representation of the slog2 data structure [Chan et al. 2008]

The slog2 data structure [Chan et al. 2008] uses a balanced binary tree structure keyed
by time. Each node is defined by a start and end time, such that children nodes’ durations
are half that of their parent’s. Moreover, sibling nodes’ times cannot overlap and the root
node’s duration is that of the trace. Intervals fit in the shortest node that can contain
both their end and start time. As nodes and state intervals cannot overlap, the challenge
is finding the right depth (leaf node length) to obtain a high fill ratio. Figure 1 shows a
representation of that data structure.
The State History Tree (SHT) [Montplaisir-Goncalves et al. 2013] structure was de-

signed with event-based trace analysis and visualization storage in mind. Stateful analysis
results, in the form of state intervals: < key, timestart, timeend, value >, are stored in the
tree in a single pass through the trace. The SHT is also designed to perform well on rotating
media, so each node is mapped to a block on external memory. SHTs support the creation of
new keys assigned to a state machine and the update of said states. SHT nodes are defined
by their start and end times, such that all the intervals stored in a node must be included
in these bounds. Moreover a child’s bounds must be included in its parent’s and cannot
overlap between siblings. The SHT’s construction begins with a single leaf node, siblings
and parents are added as nodes are filled. The SHT’s structure and limitations are further
discussed in section 3.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:5

2.3. R-Trees
R-Trees [Guttman 1984] are used to store multidimensional data. The points stored in each
node are mandatorily included in the node’s Minimum Bounding Rectangle (MBR), a hyper-
rectangle which bounds the points on each dimension of the tree. Children nodes’ MBRs
are included in their parent’s MBR. The challenge is to minimize the volume or overlap
of these MBRs in order to limit the number of nodes that need to be searched during
queries. Structuring the tree is usually done during the insertion phase. When inserting a
new point, the algorithms select the best node into which insert new points, usually the
ones with MBR that overlap the point, or require the least enlargement to contain it. When
nodes overflow, i.e. the number of points they contain exceeds a pre-defined threshold, the
node is "split", creating two child nodes into which points are assigned. R-Trees can be used
for spatio-temporal data by assigning the time to one dimension.

2.3.1. R-Tree Node Splitting. Guttman originally proposed 3 bi-partition algorithms for the
R-Tree:

(1) The linear / sort-based algorithm sorts points along a dimension and then splits the
resulting list in half.

(2) The quadratic / seed-based algorithm finds the two most distant points (seeds) in a
node then associates the other points to the seed which is the closest.

(3) The exponential / exhaustive split algorithm explores all the possible combinations and
chooses the one with the lowest coverage or overlap.

Node splitting is a vast subject of research and a number of algorithms have been proposed
to extend this approach.
For instance, Double-Sorting [Korotkov 2012] offers the query performance of Guttman’s

quadratic split at the cost of the linear split. It searches for points whose coordinates can
divide the node with minimal overlap. This algorithm based on two sortings allegedly offers
better splitting on complicated datasets.
The Packed R-Tree [Roussopoulos and Leifker 1985] extends Guttman’s linear sorting

to trees with more than 2 children, sorting N points along one dimension, then packing
them into bNn c consecutive groups of n points. This process is carried out recursively until
the groups have the desired number of points or desired number of subgroups.
The cR-tree [Brakatsoulas et al. 2002] considers that node-splitting is a clustering prob-

lem, which can extend further than to 2 children. The authors use MacQueen’s popular
k-means [MacQueen 1967] algorithm in order to split nodes into multiple children.

2.3.2. R-Tree Variants. R+-Trees [Sellis et al. 1987] are variants of the R-Tree in which
sibling nodes have no overlap. Indeed, the node splitting algorithm allows rectangles to be
split, then inserted into several nodes.

R∗-Trees [Beckmann et al. 1990] attempt to minimize overlap and coverage by reinserting
points from overflowing nodes into the tree, thus reducing the effect of the initial order of
the points on the tree’s structure. Node split is deferred, in order to ensure that the resulting
nodes’ fill is higher. Finally, R*-Trees use a topological split that minimizes overlap.
The Hilbert R-Tree [Kamel and Faloutsos 1994] is an R-Tree variant in which points

are ordered and grouped according to their value along the Hilbert curve or other space-
filling curves. The fractal properties of these curves tend to group close points together,
thus minimizing the overlap and area of nodes.

Historical R-Trees (HR-Trees) [Nascimento and Silva 1998] are a modification of R-
Trees to support versioning, by building an R-Tree for each timestamp and sharing common
nodes with links between trees. This is efficient when there are few modifications between
a small number of versions.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

Z:6 L. Prieur-Drevon et al.

The MV3R-Tree [Tao and Papadias 2001] combines a Historical R-Tree – for the infrequent
state changes and a 3D R-Tree – for the shorter lived states, to benefit from the properties
of each tree on the type of data they are better suited for.

2.3.3. External Memory R-Trees. The Small-Tree-Large-Tree (STLT) [Chen et al. 1998]
method makes it possible to bulk load points into a tree while reducing the time during
which it is unavailable for queries. It proceeds by creating a new R-Tree on the side – the
Small-Tree – into which the points are loaded. Then, this tree is inserted into the optimal
position of the main tree – the Large-Tree. This approach works particularly well for skewed
data.
The Generalized R-Tree Bulk-Insertion Strategy (GBI) [Choubey et al. 1999] gen-

eralizes the STLT approach for less skewed data. The data to bulk load is split into clusters
and outliers with a variation of the K-means algorithm. Each cluster is bulk loaded sep-
arately with the STLT method, while the outliers are inserted as single points into the
tree.
The Buffer R-Tree [Biveinis et al. 2007] takes avantage of the system’s main memory

to reduce external memory I/O, by delaying insertions or deletions to the external memory
structure until a certain number of operations can be bulk executed in a more efficient
fashion.
In this paper, we propose a scalable data structure, which has performance gains compared

to previous implementations, is well suited to parallel systems, and offers much improved
query times.

3. LIMITATIONS OF THE STATE HISTORY TREE
In this section, we briefly present the implementation of the State History Tree (SHT) [Mont-
plaisir et al. 2013], a data structure designed for state storage on external memory, and detail
the issues that it encounters when dealing with highly parallel traces.

3.1. Structure of the State History Tree (SHT)
The State History Tree (SHT) [Montplaisir-Goncalves et al. 2013] is suited for storage of
stateful information that is computed while reading through the trace. It is used for tracking
the states of various state machines over the duration of a trace. For example, it is possible
to know the status of a process at any time in the trace, when analysing a Linux kernel trace.
Trace events produce the transitions in the state machine, and stateful analysis computes
the states between transitions, before storing them in the SHT. During the trace analysis,
events are processed in chronological order, therefore we track unclosed states with their
start times. Every time an event changes a state, we write the ending state interval to
external memory and update the current state value and start time.
The stored data takes the form of intervals, which consist of an attribute key, a start

time, an end time and a value: < key, timestart, timeend, value >. The start and end times
are specified with a nanosecond granularity. The attribute key is a unique identifier for the
object whose state we are tracking. The value is the payload of the interval which can be
a null, a boolean, an integer, a long or a character string. For each attribute, there are
contiguous intervals from the beginning until the end of the trace.
The SHT is composed of nodes created as the tree is built. A node is defined by a unique

sequence number, a start time and an end time. They have a header which contains the
sequence numbers of their parent as well as the sequence numbers and start times of their
children, for search. Each node is mapped to blocks on storage media, and can therefore
store a limited number of intervals. As the serialized size of intervals can vary on the type
of value they carry, this number is not fixed. The maximum number of children in a SHT
node is limited – usually to 50 – and its capacity is limited to 64kB. The unique sequence
numbers of the nodes represent the position of their block in the history tree file.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:7

Fig. 2: Build steps of the State History Tree using an incremental process [Montplaisir et al.
2013]

The tree is built in a single pass upon performing the state analysis of a trace. As events in
the trace are in chronological order, the resulting intervals are generated and inserted with
increasing end times. The tree’s construction starts from a single node, that has the same
start time as the trace. The rightmost branch of the tree is kept in main memory so that
intervals can be efficiently inserted into them while the rest of the nodes are kept serialized
in external memory until it is necessary to read from them. As a node’s time range must be
included in its parent, start times of the nodes in the rightmost branch increase from the
leaf to the root node as shown in Figure 2. Therefore intervals are inserted into the deepest
node with a start time smaller than that of the interval. Once a node nodefull has reached
the maximum number of children or interval capacity, all the rightmost children from itself
to the leaf have their end times set to that of the last interval which was inserted timelast
and are written to external memory. If the node nodefull has a parent, the rightmost branch
is rebuilt with nodes starting at timelast + 1 to ensure that the tree is balanced. If nodefull
was the root node, a new node, starting at the start time of the trace, becomes the new
root node.

3.2. Shortcomings on analysis of large systems

Full Core Node
Empty Core Node
Full Leaf Node

Fig. 3: Schematization of a State History Tree with many attributes

We encountered traces for systems with a large number (30000) of threads, which had
a reasonable size (less than 100Mb), yet created a large SHT file with inefficient storage
usage (around 9% of the storage space reserved by the many nodes is actually used to store
interval data). Moreover, these traces brought our visualization software to a halt, leading
to further investigation.
Since we store intervals from the tree’s start time for every attribute (such as threads),

the SHT has many intervals that begin at the SHT’s start time. The SHT’s design imposes
that intervals that begin at the SHT’s start time fit in the left most node. Therefore, a
trace for a many-threaded program leads to a very deep tree compared to a well balanced,
high fan-out tree. Indeed, the depth of the tree increases when we try to insert an interval
beginning at the tree’s start time and it cannot fit into the deeper non filled nodes, as its
start time is earlier than theirs. Therefore, it can only fit in the root node and, when the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

Z:8 L. Prieur-Drevon et al.

root node is full, another depth level is added. In the case of our trace with many threads,
the tree was 206 nodes deep, whereas an efficiently loaded tree for the same data should
have been 5 nodes deep.
We have a very deep tree but most intervals fit in leaf nodes, therefore the branches

are mostly empty from the leftmost node to the leaves. As the SHT nodes are mapped to
external memory blocks, many empty nodes means a very low storage usage rate. As queries
on an SHT search down a branch for which the nodes cover the queried time, and most
intervals are stored in the leaf nodes, the average query takes a long time.
Therefore, we can compute the depth d of a SHT with many attributes, as d = A

n , with
A the number of attributes and n the average number of attributes that fit per node. This
differs from the depth of a packed, balanced tree d = dlogc(Nn)e, of degree c with N

n nodes,
N being the number of intervals in the tree.
Likewise the number of nodes of a comb tree, such as the one in Figure 3 will be(
A
n − 1

) (A
n−1

2 + c
)
instead of Nn .

Because the tree is very deep and the State System stores its "in progress" branch in
memory, the SHT construction may even crash with a JVM OutOfMemoryError on the
deepest trees.

4. THE OVERLAPPING STATE HISTORY TREE

Time

Parent

Child 1 Child 2K
ey

(a) Representation of consec-
utive nodes in SHT

Time

Parent

Child 1 Child 2K
ey

(b) Representation of overlap-
ping nodes in oSHT

Time

Parent

Child 1
Child 2

K
ey

(c) Representation of en-
hanced nodes in eSHT

Fig. 4: Comparison of the relations between sibling nodes of SHT (left), oSHT (middle) and
eSHT (right)

4.1. Overlapping SHT structure
The overlapping SHT structure has been introduced as the enhanced State History Tree
(eSHT) [Prieur-Drevon et al. 2016]. This structure fixes the original SHT’s tendency to
degenerate into combs in cases with many attributes.
As explained above, imposing that sibling nodes’ time ranges be consecutive causes the

tree to degenerate into combs. The consecutive (non overlap) constraint is shown in Fig-
ure 4(a). We do away with this constraint and use the first inserted interval’s start time as
the new node’s start time. The removal of this constraint ensures that intervals inserted in
the future fit into the leaf nodes, which in turn prevents the tree’s depth from degenerating.
However, the overlap shown in Figure 4(b) requires modifications to the data structure and
algorithms.
Because sibling nodes overlap, we modify the query algorithm – described in Algorithm 1

– to query on sub-trees instead of branches. The different search algorithms are represented
respectively in Figure 5(b) and 5(a). In order to query the correct sub-tree, the children’s

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:9

end times are added to their parent node’s header, alongside their start times. A node’s
time range must still be included in its parents time range.
There are a number of benefits to allowing the nodes to overlap. We can now fit a large

number of attributes that cover the same time ranges, which is typical for highly parallel
trace analysis, without degenerating into a list. Therefore, the tree should be shallower, so
queries may be shorter and the build would use less memory. There should also be far less
empty nodes, so better use of storage space would be made, reducing the number of writes
when building the tree (and consequently, build times).

4.2. Enhanced State History Tree
We now consider the data we are handling as multidimensional (time and key), so we
add key bounds to the header. These describe the minimum and maximum keys for the
intervals stored in the node, as shown in Figure 4(c). The core nodes’ headers also store
their children’s bounds, to help narrow down the number of nodes searched during a query.
As was the case with the time bounds, a nodes key bounds must also be included in its
parents bounds. For example, if a core node’s header says that one of it’s sub-trees has
bounds [tmin, tmax] for the time and bounds [kmin, kmax] for the keys, there is no point in
searching it for a key ks such that ks < tmin or ks > tmax. We call enhanced State History
Tree (eSHT) the overlapping State History Tree with added key bounds.

4.3. Search algorithms
The SHT can be queried for the state of one or all attributes at a time t.
—A single query for key k at time t returns the interval for key k that overlaps t. The single

queries search down the branch of the tree that overlaps t until they find the interval
with the correct key and time range.

—A full query at time t returns all the intervals (one per key) that overlap t. Full queries
search the entire branch that overlaps t, and add all the intervals that overlap t – one
per attribute – to a list

Concurrent accesses are handled by using a shared-exclusive lock for the current states and
one shared-exclusive lock per node.

(a) Representation of a branch search
as used by SHT

(b) Representation of a sub-tree search
as used by eSHT

Fig. 5: Comparison of tree search between SHT (left) and eSHT (right)

Unlike for SHT and slog2, queries on eSHTs cover a sub-tree, and not just a branch in
the tree, since there are potentially several children nodes that contain the relevant time.
Therefore, each core node contains an index on the start and end times of each of its children

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

Z:10 L. Prieur-Drevon et al.

to determine which sub-tree to explore. The method node.getChildren(t) produces a list
of node’s children which contain time t in Algorithm 1. The node.getInterval(k, t)
method retrieves the interval intersecting t with key k when it exists in node.

ALGORITHM 1: Single State Query
function singleQuery(key, time)

interval← null
/* rootNode is the tree’s root node. */
queue← List(rootNode)
while interval = null do

node← queue.pop()
if node.type() = CoreNode then

queue.addAll(node.getChildren(key, time))
end
interval← node.getInterval(key, time)

end
return interval

end

4.4. Comparison of query bounds with SHT
The State History Tree aims for query performance, so we consider that the number of
nodes searched per query is a good measure of the data structure’s query efficiency. We
will theoretically compare the number of nodes searched for queries on our enhanced State
History Tree to the original one.

time

at
tr
ib
ut
es

interval

Fig. 6: Schematization of the intervals in a Tree

The theoretical intervals used for comparison are represented in Figure 6. That tree is of
duration T and contains A different attributes. Each attribute is split into I equal intervals
through the trace. Intervals from different attributes are offset by T

AI . The order of the
Attributes is shuffled. Each node can store up to n attributes and have up to c children.
On the SHT, queries search down a branch, as explained in 4.3, therefore the upper bound

is the tree’s depth. With our comparison trace set, with its large number A of attributes,
we will reach the comb situation. The query bound for SHT QSHT can thus be formulated
in this way:

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:11

QSHT =
⌈
A

n

⌉
As for the eSHT, we need to determine the number of nodes which overlap the queried

time. The query bound QeSHT for eSHT can then be expressed as the following:

QeSHT ≤ h+
(
A+ n

n+ 1

)
×
(

1− c−h

1− c−1

)
With h being the depth of the eSHT and c the maximum number of children per node.

Considering that, in our example, all the data is in the leaf nodes, we can use the standard
formula [Becker et al. 1996] to compute the tree’s height h:

h = logc

(
AI

n

)
We approximate QeSHT by computing the required number of nodes to fit A intervals.

Due to the algorithm used to build eSHT and our worst case theoretical trace, all the
intervals reside in leaf nodes. As intervals are inserted by increasing end times, the node
duration D is:

D = T

I
+ n× T

AI

Where T
I is the interval duration, for the average interval, i.e. neglecting border effects

for the first and last intervals of each attribute. We call Θ the number of nodes in the tree
which overlap a time t. It can be computed as the ratio of the node duration D over node
offset ∆t:

Θ = D

∆t
Which is then:

Θ =
T
I + n× T

AI

(n+ 1)× T
AI

And can be reduced to:

Θ = n+A

n+ 1
However, we also have to consider the core nodes which have to be searched to reach the

leaves from the root node. Knowing that each core node can reference up to c children, we
deduce the following relation:

QeSHT =
h∑
i=0

⌈
Θ
ci

⌉
And then develop the upper bound for QeSHT :

QeSHT ≤
h∑
i=0

(
Θ
ci

+ 1
)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

Z:12 L. Prieur-Drevon et al.

That can then be reduced to the following:

QeSHT ≤ Θ× 1− c−h

1− c−1 + h

While this is slightly larger than the query on a SHT, the average query size on an eSHT
is half that of the upper bound, as the intervals are uniformly spread over the possible DFS
or BFS search path.
Meanwhile, on the SHT, most branches are empty, as seen in Figure 3. We can compute

the average depth of intervals in the tree, knowing that intervals are either in the left most
nodes, in the deepest core nodes, or in the leaf nodes. If we consider:

—H as the height of the tree
—Nleaf = c(H − 1) as the number of leaf nodes, of depth H
—Ncore = (H − 1) as the number of core nodes, of depth H − 1
—Nleft = (H − 2) as the number of left nodes, with increasing depths from 0 to H − 2.

We can express the average depth of nodes containing intervals as the following:

davg =
∑
d∑
N

Which can be developed as:

davg =
∑
i∈leaf d+

∑
i∈core d+

∑
i∈left d

Nleaf +Ncore +Nleft

And thus:

davg =
∑H−2
i=0 i+ (H − 1)2 + c(H − 1)H
H − 2 +H − 1 + c(H − 1)

As we know that H � 1, the equation can finally be reduced to:

davg ' H
Therefore, the average eSHT query on traces with many attributes is close to twice as

fast as the average SHT query.

4.5. Query scalability limitations
In early results, we modeled the behavior of the SHT and the eSHT and found the number
of nodes that needed to be searched for queries. We found an upper bound of An nodes, with
A being the number of attributes and n the average number of intervals per node. This
upper bound was similar for both trees and the average single query was only twice as fast
in the case of the eSHT, as can be seen in Figure 7.
To try and understand why the eSHT does not speed up single queries more than twofold,

we look at the key range covered by the key bounds discussed in Section 4.2. We define the
key range by the difference between each node’s minimum and maximum key.
The key range histogram in Figure 8 shows that the key range distribution is sub-optimal.

Indeed, if the intervals had been arranged efficiently in the tree, the range would have been
minimized for deeper nodes and only shallower nodes would have contained the entire range.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:13

105 106

102

103

104

105

106

Number of attributes

Q
ue
ry

T
im

e
(µ
s)

eSHT − single
SHT − single
eSHT − full
SHT − full

Fig. 7: Comparison of SHT and eSHT query times for traces with many attributes

0 0.5 1 1.5
·105

0

50

100

150

Key Range

N
um

be
r
of

N
od

es

Fig. 8: Key range histogram for 10k thread trace using eSHT

5. R-SHT MODEL, STRUCTURE AND ALGORITHMS
In this section, we propose a modification inspired by R-Trees. To prove its relevance and
performance gains, we develop a model to describe the data structure’s behavior and quan-
tify the expected performance gains.

5.1. R-Tree qualities for the SHT
In early results, we suggested considering the SHT as a two dimensional data structure, with
the time and attribute dimensions. However, indexing the key values provided only minor

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

Z:14 L. Prieur-Drevon et al.

gains on search performance, compared to more optimized R-Trees in particular. Queries
on R+-Tree structures [Sellis et al. 1987] search through as many nodes as the tree is deep.
This was due to a sub-optimal organization of intervals in the nodes : the average node
covered a wide range of attributes. As the MBR overlap remained high (Figure 9), single
queries were only slightly narrowed down.

end

key
start

Parent
Child

Fig. 9: Default oSHT Split

To improve the query performance we want to provide the properties of an optimal R-
Tree to the SHT. However, [Montplaisir-Goncalves et al. 2013] has shown that Guttman
R-Trees had worse insertion performance than the SHT, due to chronic re-balancing and
was ill suited to large traces. Indeed, frequent re-balancing required in memory processing
for performance reasons, while large traces would not fit in main memory.
Therefore we propose a R/SHT hybrid using Small-Tree-Large-Tree and Bulk Loading

techniques. We consider using the eSHT structure for the upper nodes and buffering shorter
intervals before inserting them into R-Trees in the lower level nodes.

time

de
pt
h eSHT

R-Trees

Fig. 10: R-SHT hybrid structure

5.2. Build Algorithm
The build algorithm works similarly to the eSHT, with intervals with earlier start times
inserted into shallower nodes. However, intervals starting later than the deepest SHT node
go into a temporary buffer. This buffer has the capacity of an eSHT of the same depth, so
that the intervals can be mapped to eSHT nodes once built.
Algorithm 2 presents the algorithm that we use to move intervals from the R-Buffer into

the eSHT when the buffer is full. This algorithm works top down, from the R-Buffer’s root

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:15

ALGORITHM 2: Top Down Buffer to R-SHT copy algorithm
function rBuild(intervals, node, height)

if node = LEAF then
node.insert(intervals)

else
node.insert(intervals.outliers())
for cluster ∈ intervals.cluster() do

rBuild(cluster, new child(), height− 1)
end

end
end

node level, to the leaf node level, and allows for additional flexibility by choosing the most
relevant outliers and cluster methods.

5.3. Clustering Algorithm
As explained in [Choubey et al. 1999], the choice of the outliers and clustering functions
in Algorithm 2 plays an important role in determining in which node the intervals will be
inserted.
We consider the intervals from Figure 6. There are at most n

δq intervals per attribute in
a node, with δq the node’s attribute range and n the number of intervals per node. The
time span δt of node’s MBR is the sum of complete intervals’ durations and offsets between
attributes:

δt = n

δq

T

I
+ δq × T

AI

With T the total trace duration, A the total number of attributes and I the number of
intervals per attribute.
We want to minimize the nodes’ area:

min(δq × δt) = min
((

n+ δq2

A

)
× T

I

)
Which is equivalent to minimizing δq.

end

key
start

Parent
Child

Fig. 11: Splitting the R-Tree Buffer along the key dimension

Therefore, the splitting which minimizes the nodes’ area minimizes the range along the
query dimension. We move longest intervals into the parent node as outliers, since they
are not accounted for by the model and naturally go into the shallower nodes in SHTs and
following implementations. The remaining intervals are sorted by their key, and consecutive
sub-ranges are mapped to sub-trees.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

Z:16 L. Prieur-Drevon et al.

Figure 11 shows the split performed by the key sort algorithm, with the red plane sepa-
rating the longest intervals, which go into the parent node, from the shorter intervals, which
go into the children. Finally, the green planes show the split along the key dimension.

5.4. 2D Queries
When we need to extract data from the tree for multiple timestamps and multiple attributes
at those timestamps, the current solution was to use single or full queries. Such approaches
respectively mean multiple requests or a request that returns unneeded intervals. We thus
introduce 2D queries to make extracting data from the tree faster. These queries take as
arguments a list of keys and either a time range or a list of timestamps, depending on the
requirement. They return a map, where each queried key’s associated value is the ordered
lists of intervals matching the query:
Map(key -> intervalList) 2Dquery(keyList, timeList)
Map(key -> intervalList) 2Dquery(keyList, start, end)

The query is executed recursively from the root node. The time and key lists are narrowed
down from the parent’s to the child’s bounds by using binary searches. Sub-trees which
bounds do not contain any element from the time and key lists are not searched. The
outcome of these queries is to execute a single search of the tree that returns all of the
required intervals and only the required intervals.

6. PERFORMANCE
In this section we look at how much faster we can make the single queries, full queries and
2D queries with the R-SHT compared to a typical eSHT or SHT. We use the intervals model
from Figure 6, stored in an R-SHT with a R-Tree section of depth r, up to c children per
node and n intervals per node.
For all the models on R-SHT, determining the number of nodes searched will consist in

computing how many nodes are searched in the upper / eSHT levels and how many nodes
are searched in each of the R-Trees of the structure:

SR−SHT = Se + nR × SR
With Se, the number of nodes searched in the upper / eSHT levels of the tree, nR the

number of R-Trees searched and finally SR, the number of nodes searched per R-Tree.

6.1. Single queries
The number of R-Trees that are queried during a single query is the number of R-Trees
that overlap the queried time. The R overlap for any time is the R-Tree’s duration DR over
the R offset δtR:

nR = DR

δtR

With the R-Tree’s duration being the sum of all the intervals’ two-by-two offsets and a
full interval duration:

DR = cr−1n
T

AI
+ T

I

And the R offset being the sum of all the intervals’ two-by-two offsets:

δtR = cr−1n
T

AI

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:17

Therefore nR is:

nR = cr−1n+A

cr−1n

The number of nodes searched in the eSHT levels Se is also the same, whichever R-Tree
clustering algorithm is chosen. The eSHT levels are logc(AIn)− r nodes deep. We compute
the overlap for a specific time for every level considering each node’s duration Dd to be that
of it’s sub-tree.

Dd = min
(
ch−dn

T

AI
+ T

I
, T

)
And the level’s offset δtd is the sum of the sub-tree’s intervals’ offsets:

δtd = ch−dn
T

AI

Therefore, the number of nodes searched in the eSHT levels is the total number of nodes
that overlap t in the eSHT levels, or the sum of overlaps per level:

Se =
h−r∑
d=0

Dd

δtd

Which can be developed as:

Se = 1 +
h−r∑
d=1

ch−dn+A

ch−dn

That can be computed as:

Se = h− r + A

n

c(c−r − c−h)
c− 1

And is approximately equal to:

Se ' h− r + c−r
A

n

For single queries on an R-SHT built with the key-sort algorithm, the intervals have been
sorted by their key, so we know into which R-Tree branch to search, as there are fewer
intervals per attribute in the R-Tree than can fit into a node.

SR =
⌊
r + cr−1

A

⌋
Therefore, the total number of nodes that must be searched in the full tree is:

SR−SHT = h− r + c−r−1A

n
+ cr−1n+A

cr−1n

⌊
r + cr−1

A

⌋
Which approximates to:

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

Z:18 L. Prieur-Drevon et al.

SR−SHT ' h+ A(1 + r)
cr−1n

This is faster than on the SHT for which the number of nodes to be searched is A
n , as the

R-SHT’s height h is orders of magnitude smaller than A
n and c >> r

6.2. 2D Query
There are too many argument combinations to compute the average complexity of the 2D
queries introduced in section 5.4. We can however try to determine the number of nodes
searched in the worst case scenario.
The main advantage of the 2D query is that even for long lists of queried keys and times,

it will never search a node more than once. Therefore, its upper bound is the number of
nodes in the tree:

bound = AI

n

When the key and time lists are very sparse, e.g. with respectively k and t items, the
worst case is similar to returning each interval with a single query SQ:

sparse_bound = k × t× SQ
We modeled the 2D queries’ performance to be faster than that of the equivalent single

or full queries to extract the equivalent information.

6.3. Full queries
Full queries return the states of all the intervals intersecting a specified timestamp t, there-
fore the SeSHT and nR values for these queries are the same as for single queries.
However, on the key-sort R-SHT, the SR value becomes equal to the number of nodes

in the R-Tree levels. Indeed, by sorting intervals by keys, we end up spreading intervals
overlapping t over the entire sub-tree.

SR = cr

Therefore, we see that full queries on an R-SHT will be noticeably longer than on a SHT:

SR−SHT = h− r + c−r
A

n
+ cr−1n+A

cr−1n
× cr−1

Which approximates to:

SR−SHT ' h− r + cr−1 + A

n

R-SHT does not aim to speed up the full queries, as they are an inefficient implementation
and can easily be replaced by single or 2D queries. The previous model shows that they are
indeed slower than on the SHT, which searches A

n nodes.

6.4. Impact of the buffer size
We use the height of the R-Buffer as the degree to which the organization of the data
structure will be optimized. The higher said tree, the faster the queries, at the cost of
longer optimization and tree build process.
However the required depth of the R-Buffer is linked to the key range, which is rarely

known in advance. We deal with this situation by increasing the height of the buffer during

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:19

time

de
pt
h

Fig. 12: Increasing the depth of the R-Tree buffer during construction

the tree construction, when the maximum key exceeds a certain threshold. As can be seen
in Figure 12, the height can be increased once the current R-Tree’s parent is full, and a new
parent needs to be initialized. This new parent will be the root node of the new, deeper
R-Tree.
We can define the threshold such that consistent query performance is maintained,

whichever the attribute range, once we know the theoretical query performance relative
to the attribute range A and R-Tree buffer’s height r.

Knowing that the single queries complexity is SeSHT ' h − r + dc−r An e, we must find r
such that we search the same number of nodes for all values of A. We want that:

SR−SHT (A) ≤ SSHT (Aarb)
With Aarb an arbitrary number of attributes chosen to reflect satisfactory SHT performance.
That can be developed:

h+ c−r−1A

n
≤ Aarb

n
+ r

From which we compute:

r =
⌈
logc

(
A

n

)⌉
The benefits of increasing the depth of the buffer only when needed are that we no longer

need to determine the depth in advance. Furthermore, trees with fewer attributes, which
require less optimization, can be built faster than if the depth was hard-coded or computed
otherwise.

7. RESULTS
In this section we look into the performance results of the SHT, eSHT and R-SHT on trace
analysis workloads.

7.1. Test Environment
All experiments were conducted on an Intel Core i7 3770 @ 3.4GHz with 16 GB RAM, a
Samsung 850 PRO-Series 512GB Solid State Drive, using Eclipse version 4.5.1 and Open-
JDK version 1.8.0_66. The trace files were generated using LTTng version 2.7.0 and the
Debian Linux kernel version 4.5.0-2-amd64. We set the kernel’s maximum PID value to 222

up from its default value of 215, so that each process will have a unique PID. The trace files
contain the detailed execution trace at kernel level, including all the system calls, schedul-
ing events and interrupts. For the following benchmarks, we traced a burn program, which
creates many parallel threads, leading to many attributes in the State System.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

Z:20 L. Prieur-Drevon et al.

We use Trace Compass’ Kernel Analysis to perform our benchmarks and generate the
History Trees. This analysis reads all the events from the trace and tracks various attributes
by storing them in the SHT. In particular, there are several attributes stored for each thread
and CPU of the analyzed system. This means that the bigger the trace is, and the more
activity there was on the system during the trace, the bigger the generated SHT will be.
This analysis will thus allow us to perform a thorough comparison between the original
SHT (labelled SHT in the following experiments), the enhanced SHT (labelled eSHT) and
R-SHT metrics. We will compare R-SHTs of heights from 2 to 4 (labelled R2, R3 and R4),
as well as the variable height R-SHT (labelled vR), with maximum height of 4.
For our scalability benchmarks, we generate the traces in table I, to demonstrate the

scalability of our solution to traces with many threads for example.

Table I: Scalability trace set specifications

threads # events size
160 7266 600K
336 13133 772K
736 19979 1004K
1600 27722 1.3M
3440 57721 2.3M
7424 122552 4.4M
16000 273666 8.9M
34464 585565 19M
74256 1263257 40M
160000 2721160 85M
344704 5917942 184M
742640 12619069 390M
1600000 27159383 839M
3447088 58640566 1.8G

7.2. Case Study: Control Flow View
We look into how the R-SHT can be exploited to make Trace Compass faster. In particular,
Time Graph views, such as the one in Figure 13, which show the states of a list of attributes
through time, require either many queries to obtain the required intervals or more complex
ones that cover a larger time range.

Table II: Comparison of the History Trees for the many-threads trace

Build (ms) Depth Size (MiB)

SHT 1 925 ± 353.1 45 86.31
oSHT 1 812 ± 332.9 3 21.87
eSHT 1 762 ± 345.4 3 21.44

R2 6 604 ± 727.9 3 20.87
R3 8 926 ± 1 485 3 20.81
vR 6 546 ± 387.4 3 21.00

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:21

Fig. 13: The Control Flow View, a Time Graph View in Trace Compass

We consider the many-threads trace from the Trace Compass test package. It is a 7.73
MiB trace from LTTng 2.8 with 240644 events. The resulting Kernel Analysis generates
741492 intervals, for 50598 attributes with a raw size of 18.62 MiB. We compare the build
times, depth and file size for each implementation of the History Tree in Table II. As the
R-SHTs are 3 nodes deep, we do not consider R4 as it is indistinguishable from R3. The
original SHT stands out by its excessive depth and file size.
We look into two metrics related to displaying the Control Flow View: PsTree is the time

to build the process tree on the left hand column of the Control Flow View, which requires
each thread’s PPID and Exec_name. Zoom is the total time for an automated sequence
of scrolling and zooming the View, including the query to the State History Tree and the
post processing of the returned states. The sequence begins by filling in the states for a
completely zoomed out view (i.e. the trace timeline fills the entire width of the view), then
geometrically zooms in ten times, and horizontally scrolls from the beginning to the end of
the trace.
For each of those metrics, we compare three querying strategies: Full is the currently

implemented strategy. It does a full query for every horizontal pixel. Between each full
query, the returned values are used to build the PsTree and render the threads’ statuses.
Single does single queries for each thread’s PPID and Exec_name for the PsTree and does
single queries for the visible processes when zooming. 2D does a query which returns all the
PPID and Exec_name for the threads in one pass and another query per zoom to return a
downsampled set of the visible processes’ statuses.
The current implementation, which we will use as a baseline, is the SHT with full queries.

The 2D query is able to extract all the required information to populate either the PsTree
or the States in a single pass of the tree. Because the key dimension is defined from the
eSHT version onwards, we cannot provide such results for SHT and oSHT.
As expected, the full query is the most efficient with the SHT, as that is the implemen-

tation for which said query has to search through the least number of nodes.
However, the PsTree phase requires information from every thread. These keys are spread

out over the attribute range, and concern relatively few intervals. Therefore, it is better
suited to the 2D queries, as Table III shows. Indeed the 2D query is bounded by the number
of nodes in the tree. The full query implementation would search entire SHT branches or
the full R3 tree for every horizontal pixel.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

Z:22 L. Prieur-Drevon et al.

Table III: Gains over SHT for displaying data in a Control Flow View. (mean ± standard
deviation) on 10 executions.

Query Type PsTree (ms) Zoom (ms)

SHT
full 5 360 ± 645.9 29 880 ± 547.6

single 21 210 ± 860.4 15 300 ± 314.1
oSHT

full 6 536 ± 849.4 26 860 ± 715.8
single 19 500 ± 588.1 15 000 ± 143.3

eSHT
full 6 168 ± 396.0 30 310 ± 1 432

single 940.6 ± 80.41 6 894 ± 122.6
2D 226.8 ± 25.61 4 408 ± 174.9

R2
full 19 220 ± 4 143 42 310 ± 487.3

single 1 882 ± 43.35 7 861 ± 123.1
2D 136.3 ± 28.57 3 950 ± 183.1

R3
full 65 590 ± 11 730 267 000 ± 9 780

single 914.9 ± 48.34 6 995 ± 168.9
2D 118.4 ± 53.09 4 422 ± 870.4

vR
full 17 100 ± 7 261 40 970 ± 2 878

single 1 969 ± 55.73 8 183 ± 261.0
2D 135.7 ± 58.38 4 041 ± 170.7

As for the zooming phase, the full query implementation is always the slowest while the
single queries are slower than the 2D queries. Moreover the zooms are the fastest on R2
and vR trees. While this trace triggers R3 when built with the vR algorithm, this happens
rather late and therefore does not influence the tree structure too much.

7.3. Storage usage
We see in Figure 14 that the size for the classic SHT would be proportional to the square of
the number of attributes. Sizes for the eSHT and R-SHTs are aligned with the raw size of the
intervals that are being stored, with a slight overhead for the header information. Therefore,
the data structure no longer wastes space when stored in external memory. Because of the
SHT’s inefficient serialization, we could not fit it in external memory for traces producing
more than 2.1× 106 attributes, whereas the other implementations executed properly until
4.5× 106.

7.4. Tree Depth
We see in Figure 15 that the depth of the classic SHT would be proportional to the number
of attributes. Depths for the eSHT and R-SHTs are closer to those of packed and balanced
trees. As the latest branch is kept in memory before being serialized, this results in sub-
stantial memory savings during the build process. Moreover, we no longer have long empty
branches as we had in Figure 3.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:23

104 105 106
100

101

102

103

104

105

Attributes

Si
ze

(M
iB
)

SHT oSHT eSHT R2
R3 R4 vR Raw

Fig. 14: Comparison of external memory usage for different SHT variants

7.5. Single Query
While the eSHT does not make queries significantly faster, Figure 16 shows how the reduc-
tion of node overlap along with increasing the R-Tree buffer depth reduces the single query
search time.
Moreover, the depth increase of the R-buffer with the variable height implementation is

clearly visible, with query times similar to R = 2 until Attributes ≈ 2 × 106 then close to
R = 3 for Attributes = 4× 106 and on.

7.6. Full Query
In Figure 17 , the move from SHT to eSHT does not impact the full query performance,
as the same number of nodes remains to be searched. Meanwhile, the effect of the R-SHT,
grouping intervals with the same attributes, at the cost of similar time range groupings,
significantly reduces the full query performance.

7.7. 2D Query
We benchmarked the 2D query on its ability to extract a sparse set of 100 keys on a set of
2000 timestamps. We compare how much time it would have taken to query the same data
with single or full queries. We do not represent the full queries on the vR tree, as we saw
in the previous section that they are slower than on the eSHT.
We see in Figure 18 that the 2D query approach is faster than repeated single queries on

both eSHT and vR trees. Moreover, both types of queries are faster on the vR tree.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

Z:24 L. Prieur-Drevon et al.

104 105 106

101

102

103

Attributes

Tr
ee

de
pt
h

SHT oSHT eSHT R2
R3 R4 vR

Fig. 15: Comparison of tree depth with different SHT variants

7.8. Build Time
As the move from SHT to eSHT strongly reduces the number of nodes that need to be
created and written to external media, the eSHT build is much faster than the R-SHT’s,
as can be seen in Figure 19. However, the R-SHT optimizations resort to sorting a list of
intervals as long as the R-Tree buffer’s capacity, which increase the build time.

8. CONCLUSION
In this paper, we have presented two new evolutions of the State History Tree (SHT) data
structure.
The first variant, the enhanced State History Tree (eSHT), addresses the issue of scal-

ability when systems with many threads are analyzed. It focuses on near-optimal storage
usage and tree depth, both of which impact the build time of the tree.
The second variant, R-SHT, focuses on query performance, which the shift from SHT

to eSHT did not significantly improve. R-SHT uses R-Tree techniques to more efficiently
organize the data in the tree structure, so that it is faster to retrieve. Moreover, we suggest
a data-driven method to adjust the level of optimization so that query times remain below
a threshold, regardless of the number of attributes.
We modeled the data structures’ behaviors, showing the gains on query performance

with different levels of optimization. We put the new implementations to trial by analysing
highly parallel traces to show the benefits on query performance. Finally, we studied the
implementation of the data structure in the Trace Visualization and Analysis software Trace
Compass, finding significant gains (at least 7×) in the time it took to retrieve and render
complex views.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:25

104 105 106

101

102

103

104

105

Attributes

Si
ng

le
Q
ue
ry

T
im

e
(µ
s)

SHT oSHT eSHT R2
R3 R4 vR

Fig. 16: Comparison of single query performance with different SHT variants

We find that the R-SHT is up to three orders of magnitude faster for single queries and 2D
queries than the SHT and eSHT for traces with more than one million attributes. However,
it is less efficient on full queries, but we showed that using full queries to populate views is
less efficient than the others.
We believe that these new structures, especially the R-SHT, will enable the analysis and

visualization of traces to scale to highly parallel systems with millions of threads or cores.
Moreover, vR solves the problem of determining the optimization level, by changing it on
the fly according to the data properties.
Future work could use Mip-Mapping techniques to store a summary of the more detailed

information stored in the structure, as to reduce the computation required at less zoomed-in
levels.

References
Elke Achtert, Hans-Peter Kriegel, and Arthur Zimek. 2008. ELKI: A Software System for Evaluation of

Subspace Clustering Algorithms. In Proceedings of the 20th International Conference on Scientific
and Statistical Database Management (SSDBM ’08). Springer-Verlag, Berlin, Heidelberg, 580–585.
DOI:http://dx.doi.org/10.1007/978-3-540-69497-7_41

L Arge, KH Hinrichs, J Vahrenhold, and JS Vitter. 2002. Efficient Bulk Operations on Dynamic R-Trees1.
Algorithmica 33 (2002), 104–128.

Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter Widmayer. 1996. An
Asymptotically Optimal Multiversion B-tree. The VLDB Journal 5, 4 (Dec. 1996), 264–275.
DOI:http://dx.doi.org/10.1007/s007780050028

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. 1990. The R*-tree: An Effi-
cient and Robust Access Method for Points and Rectangles. SIGMOD Rec. 19, 2 (May 1990), 322–331.
DOI:http://dx.doi.org/10.1145/93605.98741

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

http://dx.doi.org/10.1007/978-3-540-69497-7_41
http://dx.doi.org/10.1007/s007780050028
http://dx.doi.org/10.1145/93605.98741

Z:26 L. Prieur-Drevon et al.

104 105 106

102

103

104

105

106

107

Attributes

Fu
ll
Q
ue
ry

T
im

e
(µ
s)

SHT oSHT eSHT R2
R3 R4 vR

Fig. 17: Comparison of full query performance with different SHT variants

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008. Computational Geometry:
Algorithms and Applications (3rd ed. ed.). Springer-Verlag TELOS, Santa Clara, CA, USA, Chapter 10.

Tim Bird. 2009. Measuring function duration with ftrace. In Proceedings of the Linux Symposium. Citeseer,
47–54.

Laurynas Biveinis, Simonas Šaltenis, and Christian S Jensen. 2007. Main-memory operation buffering for
efficient R-tree update. In Proceedings of the 33rd international conference on Very large data bases.
VLDB Endowment, 591–602.

Sotiris Brakatsoulas, Dieter Pfoser, and Yannis Theodoridis. 2002. Revisiting R-Tree Construction Princi-
ples. In Proceedings of the 6th East European Conference on Advances in Databases and Information
Systems (ADBIS ’02). Springer-Verlag, London, UK, UK, 149–162. http://dl.acm.org/citation.cfm?id=
646046.676614

Anthony Chan, William Gropp, and Ewing Lusk. 2008. An Efficient Format for Nearly Constant-Time
Access to Arbitrary Time Intervals in Large Trace Files. Scientific Programming 16, 2-3 (2008), 155–
165.

Li Chen, Rupesh Choubey, and Elke A. Rundensteiner. 1998. Bulk-insertions into R-trees Using the
Small-tree-large-tree Approach. In Proceedings of the 6th ACM International Symposium on Ad-
vances in Geographic Information Systems (GIS ’98). ACM, New York, NY, USA, 161–162.
DOI:http://dx.doi.org/10.1145/288692.288722

Rupesh Choubey, Li Chen, and Elke A. Rundensteiner. 1999. GBI: A Generalized R-Tree Bulk-Insertion
Strategy. In Proceedings of the 6th International Symposium on Advances in Spatial Databases (SSD
’99). Springer-Verlag, London, UK, UK, 91–108. http://dl.acm.org/citation.cfm?id=647226.719080

Douglas Comer. 1979. Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (June 1979), 121–137.
DOI:http://dx.doi.org/10.1145/356770.356776

Thomas H Cormen. 2009. Introduction to algorithms (3 ed.). MIT Press, Chapter 14.
Antonio Corral, Michael Vassilakopoulos, and Yannis Manolopoulos. 2001. The Impact of Buffering on

Closest Pairs Queries Using R-Trees. In Proceedings of the 5th East European Conference on Advances
in Databases and Information Systems (ADBIS ’01). Springer-Verlag, London, UK, UK, 41–54. http:
//dl.acm.org/citation.cfm?id=646045.676587

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

http://dl.acm.org/citation.cfm?id=646046.676614
http://dl.acm.org/citation.cfm?id=646046.676614
http://dx.doi.org/10.1145/288692.288722
http://dl.acm.org/citation.cfm?id=647226.719080
http://dx.doi.org/10.1145/356770.356776
http://dl.acm.org/citation.cfm?id=646045.676587
http://dl.acm.org/citation.cfm?id=646045.676587

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:27

104 105 106

103

104

105

106

107

108

109

Attributes

Q
ue
ry

T
im

e
(µ
s)

eSHT : Full eSHT : Single eSHT : 2D
vR : Single vR : 2D

Fig. 18: Comparison of full, single and 2D queries to extract the same data on eSHT and
vR-SHT

Kevin Coulomb, Augustin Degomme, Mathieu Faverge, and François Trahay. 2012. An open-source tool-
chain for performance analysis. In Tools for High Performance Computing 2011. Springer, 37–48.

Mathieu Côté and Michel R. Dagenais. 2016. Problem Detection in Real-Time Systems by Trace Analy-
sis. Advances in Computer Engineering 2016 (2016), 12. DOI:http://dx.doi.org/10.1155/2016/9467181
Article ID 9467181.

Mathieu Desnoyers and Michel Dagenais. 2006a. OS tracing for hardware, driver and binary reverse engi-
neering in Linux. CodeBreakers Journal 1, 2 (2006).

Mathieu Desnoyers and Michel R Dagenais. 2006b. The LTTng tracer: A low impact performance and
behavior monitor for GNU/Linux. In OLS (Ottawa Linux Symposium), Vol. 2006. Citeseer, 209–224.

David Eppstein, Michael T. Goodrich, and Jonathan Z. Sun. 2005. The Skip Quadtree: A Simple Dy-
namic Data Structure For Multidimensional Data. (June 2005). http://www.ics.uci.edu/~eppstein/
pubs/EppGooSun-SoCG-05.pdf Presentation at the 21st ACM Symp. on Computational Geometry,
Pisa, June 2005.

Naser Ezzati-Jivan and Michel R Dagenais. 2012. A stateful approach to generate synthetic events from
kernel traces. Advances in Software Engineering 2012 (2012), 6.

R. A. Finkel and J. L. Bentley. 1974. Quad Trees a Data Structure for Retrieval on Composite Keys. Acta
Inf. 4, 1 (March 1974), 1–9. DOI:http://dx.doi.org/10.1007/BF00288933

M. Geimer, B. Kuhlmann, F. Pulatova, F. Wolf, and B. Wylie. 2007. Scalable Collation and Presentation of
Call-Path Profile Data with CUBE. NIC series, Vol. 38. John von Neumann Institute for Computing,
Jülich, 645–652. http://juser.fz-juelich.de/record/58173 Record converted from VDB: 12.11.2012.

Inc Google. 2013. Web Tracing Framework. (2013). http://google.github.io/tracing-framework/
Antonin Guttman. 1984. R-trees: A Dynamic Index Structure for Spatial Searching. In Proceedings of the

1984 ACM SIGMOD International Conference on Management of Data (SIGMOD ’84), Vol. 14. ACM,
New York, NY, USA, 47–57. DOI:http://dx.doi.org/10.1145/602259.602266

Sariel Har-Peled. 2011. Geometric approximation algorithms. Vol. 173. American mathematical society
Providence. 348–354 pages.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

http://dx.doi.org/10.1155/2016/9467181
http://www.ics.uci.edu/~eppstein/pubs/EppGooSun-SoCG-05.pdf
http://www.ics.uci.edu/~eppstein/pubs/EppGooSun-SoCG-05.pdf
http://dx.doi.org/10.1007/BF00288933
http://juser.fz-juelich.de/record/58173
http://google.github.io/tracing-framework/
http://dx.doi.org/10.1145/602259.602266

Z:28 L. Prieur-Drevon et al.

104 105 106

103

104

105

Attributes

B
ui
ld

T
im

e
(m
s)

SHT oSHT eSHT R2
R3 R4 vR

Fig. 19: Comparison of build time with different SHT variants.

Ibrahim Kamel and Christos Faloutsos. 1994. Hilbert R-tree: An Improved R-tree Using Fractals. In Proceed-
ings of the 20th International Conference on Very Large Data Bases (VLDB ’94). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 500–509. http://dl.acm.org/citation.cfm?id=645920.673001

A. Korotkov. 2012. A new double sorting-based node splitting algorithm for R-tree. Programming and
Computer Software 38, 3 (May 2012), 109–118. DOI:http://dx.doi.org/10.1134/S0361768812030024

G. G. Lai, D. Fussell, and D. F. Wong. 1993. HV/VH Trees: A New Spatial Data Struc-
ture for Fast Region Queries. In Design Automation, 1993. 30th Conference on. 43–47.
DOI:http://dx.doi.org/10.1109/DAC.1993.203917

Scott T. Leutenegger and Mario A. López. 2000. The Effect of Buffering on the Perfor-
mance of R-Trees. IEEE Trans. on Knowl. and Data Eng. 12, 1 (Jan. 2000), 33–44.
DOI:http://dx.doi.org/10.1109/69.842248

J. MacQueen. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. Uni-
versity of California Press, Berkeley, Calif., 281–297. http://projecteuclid.org/euclid.bsmsp/1200512992

Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N Papadopoulos, and Yannis Theodoridis. 2010.
R-trees: Theory and Applications. Springer Science & Business Media.

Alexandre Montplaisir, Naser Ezzati Jivan, Florian Wininger, and Michel Dagenais. 2013. Efficient Model
to Query and Visualize the System States Extracted from Trace Data. In Runtime Verification - 4th
International Conference, RV 2013, Rennes, France, September 24-27, 2013. Proceedings. 219–234.
DOI:http://dx.doi.org/10.1007/978-3-642-40787-1_13

A. Montplaisir-Goncalves, N. Ezzati-Jivan, F. Wininger, and M.R. Dagenais. 2013. State History Tree: An
Incremental Disk-Based Data Structure for Very Large Interval Data. In Social Computing (SocialCom),
2013 International Conference on. 716–724. DOI:http://dx.doi.org/10.1109/SocialCom.2013.107

Aouatef Mrad, Samatar Ahmed, Sylvain Hallé, and Éric Beaudet. 2013. Babeltrace: A collection of trans-
ducers for trace validation. In Runtime Verification. Springer, 126–130.

Matthias S. Müller, Andreas Knüpfer, Matthias Jurenz, Matthias Lieber, Holger Brunst, Hartmut Mix, and
Wolfgang E. Nagel. 2007. Developing Scalable Applications with Vampir, VampirServer and Vampir-

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

http://dl.acm.org/citation.cfm?id=645920.673001
http://dx.doi.org/10.1134/S0361768812030024
http://dx.doi.org/10.1109/DAC.1993.203917
http://dx.doi.org/10.1109/69.842248
http://projecteuclid.org/euclid.bsmsp/1200512992
http://dx.doi.org/10.1007/978-3-642-40787-1_13
http://dx.doi.org/10.1109/SocialCom.2013.107

R-SHT: a State History Tree with R-Tree Properties for Analysis and Visualization of Highly Parallel System TracesZ:29

Trace.. In PARCO (2009-02-16) (Advances in Parallel Computing), Christian H. Bischof, H. Mar-
tin Bücker, Paul Gibbon, Gerhard R. Joubert, Thomas Lippert, Bernd Mohr, and Frans J. Pe-
ters (Eds.), Vol. 15. IOS Press, 637–644. http://dblp.uni-trier.de/db/conf/parco/parco2007.html#
MullerKJLBMN07

Mario A. Nascimento and Jefferson R. O. Silva. 1998. Towards Historical R-trees. In Proceedings of the
1998 ACM Symposium on Applied Computing (SAC ’98). ACM, New York, NY, USA, 235–240.
DOI:http://dx.doi.org/10.1145/330560.330692

Michael Noeth, Prasun Ratn, Frank Mueller, Martin Schulz, and Bronis R. de Supinski. 2009. ScalaTrace:
Scalable compression and replay of communication traces for high-performance computing. J. Parallel
and Distrib. Comput. 69, 8 (2009), 696 – 710. DOI:http://dx.doi.org/10.1016/j.jpdc.2008.09.001 Best
Paper Awards: 21st International Parallel and Distributed Processing Symposium (IPDPS 2007).

Antoniu Pop and Albert Cohen. 2013. OpenStream: Expressiveness and Data-flow Compilation of OpenMP
Streaming Programs. ACM Trans. Archit. Code Optim. 9, 4, Article 53 (Jan. 2013), 25 pages.
DOI:http://dx.doi.org/10.1145/2400682.2400712

Loïc Prieur-Drevon, Raphaël Beamonte, Naser Ezzati, and Michel Dagenais. 2016. Enhanced State History
Tree (eSHT) : a Stateful Data Structure for Analysis of Highly Parallel System Traces. In 2016 IEEE
International Congress on Big Data. IEEE. DOI:http://dx.doi.org/10.1109/BigDataCongress.2016.19

Gururaj S. Rao. 1978. Performance Analysis of Cache Memories. J. ACM 25, 3 (July 1978), 378–395.
DOI:http://dx.doi.org/10.1145/322077.322081

Nick Roussopoulos and Daniel Leifker. 1985. Direct Spatial Search on Pictorial Databases Using Packed
R-trees. SIGMOD Rec. 14, 4 (May 1985), 17–31. DOI:http://dx.doi.org/10.1145/971699.318900

Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. The R+-Tree: A Dynamic Index for
Multi-Dimensional Objects. In Proceedings of the 13th International Conference on Very Large Data
Bases (VLDB ’87). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 507–518. http://dl.
acm.org/citation.cfm?id=645914.671636

Yufei Tao and Dimitris Papadias. 2001. The mv3r-tree: A spatio-temporal access method for timestamp
and interval queries. In Proceedings of Very Large Data Bases Conference (VLDB), 11-14 September,
Rome.

Received June 2016; revised xxxx 2016; accepted xxxx 2016

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. X, No. Y, Article Z, Publication date: June 2016.

http://dblp.uni-trier.de/db/conf/parco/parco2007.html#MullerKJLBMN07
http://dblp.uni-trier.de/db/conf/parco/parco2007.html#MullerKJLBMN07
http://dx.doi.org/10.1145/330560.330692
http://dx.doi.org/10.1016/j.jpdc.2008.09.001
http://dx.doi.org/10.1145/2400682.2400712
http://dx.doi.org/10.1109/BigDataCongress.2016.19
http://dx.doi.org/10.1145/322077.322081
http://dx.doi.org/10.1145/971699.318900
http://dl.acm.org/citation.cfm?id=645914.671636
http://dl.acm.org/citation.cfm?id=645914.671636

