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Tracing and profiling machine learning dataflow applications on GPU

Pierre Zins
Ecole Polytechnique Montral
Montreal, Quebec H3T 1J4

pierre.zins@polymtl.ca

Abstract—In this paper, we propose a profiling and trac-
ing method for dataflow applications with GPU acceleration.
Dataflow models can be represented by graphs and are widely
used in many domains like signal processing or machine
learning. Within the graph, the data flows along the edges,
and the nodes correspond to the computing units that process
the data. To accelerate the execution, some co-processing units,
like GPUs, are often used for computing intensive nodes. The
work in this paper aims at providing useful information about
the execution of the dataflow graph on the available hardware,
in order to understand and possibly improve the performance.
The collected traces include low level information about the
CPU, from the Linux Kernel, as well as high-level information
about the dataflow model. This is followed by post-mortem
analysis and visualization steps in order to enhance the trace
and show useful information to the user. To demonstrate the
effectiveness of the method, it was evaluated for TensorFlow,
a well-known machine learning library that uses a dataflow
computational graph to represent the algorithms. We present
a few examples of machine learning applications that can be
optimized with the help of the information provided by our
proposed method.

I. INTRODUCTION

Achieving very high performance is an essential aspect
of computing systems. The improvement in traditional CPU
performance has recently slowed down. Indeed, techniques
used to improve the performance like increasing the CPU
clock frequency and adding more memory cache have
reached a limit. Therefore, newer improvements largely
consist in using highly parallel computing environments
to achieve better performance. Heterogeneous architectures
have emerged, in which traditional CPUs get support from
co-processing units like GPUs, FPGAs or DSPs. With the
appearance of General Purpose GPU (GPGPU), GPUs
are no longer only intended for graphical applications [1].
They are increasingly used for general purpose computations.

In order to benefit from these new parallel architectures,
the dataflow model has become very popular. It is a
data-centric model and can be represented as a graph, where
nodes are the operations that are applied to the incoming
data, and edges represent the flow of data. It is used in
different domains like signal processing [2], [3], [4], [5]
and image [6] or video processing [7]. New languages
based on this approach have also been developed [8], [9],
[10] and [11]. They are inherently parallel and therefore
well adapted to heterogeneous platforms. In the machine
learning domain, Krizhevsky, Sutskever and Hinton [12]
demonstrated the advantages of using GPUs to implement
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deep learning models for images. Consequently, the dataflow
model became popular in this field as well and libraries
like Theano [13], [14] and TensorFlow [15], [16], [17] use
it to jointly program the CPU and GPU. In order to insure
maximum performance, we need to be able to analyze the
execution of the dataflow application. The challenge here is
to evaluate the execution on all the available hardware and
insure that we maximize their usage.

Tracing and profiling are two techniques that can help
to identify several types of problems, like deadlocks, bugs,
bottlenecks or inefficient hardware usage. Applying them to
the CPUs cores, either on the kernel side or the user side,
is a task already well explored and has demonstrated its
efficiency in the past [18] and [19]. However, in the case
of heterogeneous architectures, it is not sufficient, as we
also need to collect information about the co-processing units
used.

In this work, we focus on the case where the CPU gets
support from a GPU. Profiling a GPU is usually possible
thanks to GPU vendors tools like CodeXL for AMD,
Nsight for Nvidia and Graphic Performance Analyzer for
Intel. They target specifically the GPU and do not provide
information about the CPU. For that, the integration with an
external element or method is necessary but seems difficult,
because the internal characteristics of these tools are not
documented or published. The offered visualizations are
also specifically defined and cannot be modified. Moreover,
it is not possible to develop new views according to the user
needs. Furthermore, each tool is limited to the hardware of
a specific vendor. Therefore, it is not possible to achieve
a general solution based on one of these tools that can
work with GPUs from different vendors. Finally, the goal
of profiling and tracing dataflow applications is to propose
a unified view, gathering information from every device,
as well as developing specialized views focused on some
key points like the memory consumption or the memory
transfers between the devices. The flexibility required for
that purpose is not available in the tools proposed by the
GPU vendors.

In this work, we evaluated our method with Tensor-
Flow. This library uses an efficient dataflow approach and
is designed for heterogeneous architectures, and GPUs in
particular. The choice was also motivated by its very high
performance and popularity in the machine learning domain.
In this paper, we propose a profiling and tracing method



for dataflow applications that use a GPU. Several elements
are analyzed and we obtain, as a result, a detailed trace of
the execution of the dataflow application. We maintain a
very low overhead, to minimize the impact on the studied
application. We developed appropriate views and analyses
that are highly beneficial for users.

The originality of our work resides in the combination of
information from several layers and from all the computing
units involved. In our approach, we combine low-level in-
formation related to the Operating System or the GPU, with
mid-level information from several libraries, and high-level
knowledge about the dataflow model. As a result, we obtain
a trace containing a rich set of events. Different analyses
and visualizations allow users to obtain useful information
in order to guide their optimization efforts.

The paper is organized as follows. First, we describe
existing work in the domain of CPU, GPU and dataflow
systems tracing and profiling. Then, we explain the different
parts of the method. In section 3, we apply our method
to different TensorFlow applications. We show in particular
how the views obtained can help a user to understand
the performance and suggest optimizations. After that, we
evaluate the proposed method for TensorFlow by computing
its overhead on different platforms. Finally, we conclude and
suggest some possible directions for future work.

II. RELATED WORK

The related work section is composed of three subsections.
We start by describing existing work on tracing and profiling
the CPU. Thereafter, we cover GPU profiling and, finally, we
look at existing work about dataflow model analysis.

A. CPU tracing and profiling

Tracing is a technique that consists in recording some
events during the execution of an application. This process
aims to impose a minimal overhead, compared to a normal
execution of the application. Obviously, this depends
strongly on the number of collected events. Tracing is
well-known for performance analysis and several tools have
already been developed in this regard. Most of them are
intended to work on GNU/Linux. Indeed, tracing often
involves a static instrumentation of the source code and,
therefore, open-source projects are more suitable. In spite of
being more limited, tracing in closed-source environments
is also possible, like ETW for Windows. Profiling is another
technique for performance analysis and corresponds to the
process of gathering some metrics about the execution of an
application. For example, monitoring the memory usage of
a device, or sampling hardware performance counters refer
to profiling. In the next paragraphs, we present the main
tools for CPU tracing and profiling.

1) strace: Strace is a Linux tool that can trace all the
system calls as well as the signals received by a process.
This tool is relatively popular due to its ease of use.
Therefore, it is a powerful option for troubleshooting Linux
systems and is often chosen by system administrators.

However, its poor performance and the high overhead
introduced is a major drawback.

2) Perfand Ftrace: Perf and Ftrace are two solutions
integrated directly into the Linux Kernel for performance
analysis.

With Perf, the entire system (userspace and kernel space)
can be statistically profiled. For example, performance coun-
ters from the CPU can be collected. Static instrumentation of
the source code and dynamic instrumentation using kprobes
and uprobes, respectively for kernel and userspace tracing,
are also available.

Ftrace [20] is a tracing framework for the Linux Kernel
and contains several tracers to collect different information.
Originally designed for static instrumentation, new features
were gradually added, including dynamic tracing of kernel
functions using kprobes. Filtering is also available and
allows the user to collect only some specific information.
Ftrace is managed with a special file system, named TraceFS.

3) LTTng: LTTng is a Linux tool for kernel side and
userspace side tracing [21]. Unlike Ftrace and Perf, its
kernel tracer module is loaded at the start of the tracing
subsystem and is not part of the Linux kernel. LTTng
has been developed to support the tracing of multithreaded
applications. The overhead introduced is lower than with
other tools [?]. Collecting events with LTTng, produces a
trace in CTF format (Common Tracer Format). This stan-
dardized binary format was developed with the objective of
optimizing the trace writing performance and the compact-
ness. Babeltrace is the main tool to read and write CTF
traces, and Trace Compass offers a flexible visualization and
analysis environment. Due to its ease of use and its high-
performance multi-level tracing capabilities, we used LTTng
in this work.

B. GPU tracing and profiling

Tracing GPUs consist in two main parts. The first
part provides information about the GPU activity but is
performed on the CPU. It consists in collecting all the
function calls to the GPU libraries like CUDA or OpenCL.
This part can be performed by some of the tools described
previously. The second part consists in gathering the
timestamps of every GPU related event: GPU kernels,
memory copies, and synchronization barriers. Profiling the
GPU is also possible by collecting performance counters.
The latter represent useful metrics that can give insights
into the performance of a GPU kernel function executed on
a GPU.

1) Nvidia nvprof and Nsight: Nsight is a performance
analysis environment developed by Nvidia for their GPUs.
It offers debugging but also profiling capabilities with
nvprof. The latter can be used inside Nsight or directly
in a command-line version. A lot of information about the
GPU can be collected: CUDA API function calls, the begin-
ning and end times of asynchronous events like GPU kernels



or memory copies and performance counters. Nvidia is also
going to release shortly three new tools for performance
analysis. The first one is a system-wide performance analysis
tool called Nsight Systems. Nsight Compute is the
second one and focuses on GPU kernels profiling. The
last tool is Nsight Graphics and concerns graphics
applications.

Nvidia tools present several limitations. First, the results
of a profiling session are in a binary and proprietary format
that is intended to be used within the Nsight environment
only. Moreover, these tools focus on the analysis of the
GPUs, which is insufficient in our context. Finally, the
visualizations offered are strictly defined and cannot be
modified, extended or improved by users.

2) CodeXL: CodeXL is a suite of profiling tools designed
for AMD hardware. Like Nsight, this tool offers profiling
and debugging opportunities. It is available as a standalone
application on Linux and also as a Visual Studio extension
on Windows. CodeXL offers several features like OpenCL
API profiling, APU/CPU/GPU power profiling, performance
counters collection and graphics API tracing (OpenGL,
Vulkan, and DirectX). Internally, it uses different tools and
libraries like RCP (Radeon Compute Profiler) or
GPA (GPU Performance API).

Like the Nvidia tools, they target exclusively the GPUs,
and the proposed views cannot be modified. Therefore,
CodeXL lacks flexibility and it might be difficult for a user
to integrate it into a tracing and profiling environment.

C. Dataflow profiling

In the two previous subsections, we described existing
tools for tracing and profiling the CPU as well as the GPU.
This subsection presents work focused on analyzing dataflow
models. Canale et al. [22] described a new method based on
Petri nets for optimizing and representing dataflow programs.
A heuristic algorithm has also been developed to find an
optimal buffer size for data streams. This approach provides a
relatively high level analysis of dataflow programs, and they
demonstrated its efficiency to optimize well-known stream-
ing applications like JPEG or MPEG decoding. Janneck,
Miller and Parlour [23] presented some techniques for ana-
lyzing the execution of dataflow programs. They introduced
the notion of causation traces, as well as some analysis
techniques that can be applied. As for the previous work, they
illustrated the benefit of their technique with streaming ap-
plications like MPEG-4 decoders. Casale Brunet, Mattavelli
and Janneck [24] explained another dataflow trace analysis to
optimize signal processing algorithms. The effectiveness of
the technique is demonstrated with two examples : MPEG-
4 SP and AVC/H.264 video decoders. Mysore et al. [25]
developed a data tagging method at ISA level. The latter can
be compared to medical techniques that consist in injecting
a radioactive substance into a human to detect heart disease,
for example. Their work is focused on dataflow systems and
allows a user to collect information at different layers, from

the kernel of the operating system up to the applications.
However, the introduced overhead is problematic, and the
visualization of the results is a challenge because of the
amount of information collected. Finally, Osmari et al. [26]
described Smart Trace, a trace analysis tool specialized for
parallel and especially dataflow traces. The authors presented
a set of dataflow-centered visualizations and analyses and
showed the efficiency of each.

III. PROPOSED METHOD

In this section, we discuss the concepts and principles
of the proposed method. We start with a presentation of
TensorFlow. We quickly explain some principles and key
elements of this library. We also mention some technical
constraints and limitations when using it with a GPU. Then,
we continue with a description of the instrumentation of
TensorFlow. After this, we present different steps to get
information about the GPU activity. Once all the data has
been collected, we address the traces post-processing steps.
Finally, we present the views and analysis developed to
visualize the results.

A. TensorFlow concepts

This research work aims at profiling machine learning
dataflow applications that use GPU acceleration. The pro-
posed method is general but, in order to apply the work
on a concrete example, we decided to use TensorFlow. It is
therefore useful to explain some concepts about this library.

Developing an application with TensorFlow usually in-
volves two distinct steps. First, the user combines several
operations to create the computation graph of the model. The
second step is just the execution of this graph. When training
a model, a backward pass is usually involved in order to up-
date the weights of the model. From a dataflow perspective,
this pass is not problematic and simply represents additional
nodes in the graph. Globally, the training process requires
many executions of the model with different data as input.

TensorFlow use a specific object called Session to manage
the graph. This object offers a method named Run that can
trigger one execution of the graph. From a practical point of
view, the user calls many times the run method of the unique
Session object, each time with new input data. Each call starts
one execution of the graph with the provided input data.
Thus, the whole training process is composed of a succession
of graph executions. Our work mostly targets the training
step, as it is the most demanding in terms of computation
and duration, but the inference step can also be analyzed
just as well. The only difference with the training step is the
absence of the backward pass, which has no effect it terms
of tracing or profiling.

B. TensorFlow with a GPU

Using TensorFlow with GPUs adds some technical con-
straints. Indeed, as the vast majority of machine learning
libraries, the official support for GPUs in TensorFlow is done
with CUDA, which means that it is only usable with Nvidia
hardware. Two main efforts exist in order to support GPUs



from other vendors. They are still in development and not
entirely up-to-date with the official version of TensorFlow.

The first possibility concerns AMD GPUs, through ROCm,
an open-source platform for GPU-enabled high-performance
computing developed by AMD [27]. This platform is based
on HSA (Heterogeneous System Architecture) [28], a hard-
ware and software stack that allows the different computing
units, like CPUs or GPUs, to cooperate efficiently. Sev-
eral other open-source libraries from AMD are used like
HIP (Heterogeneous-Compute Interface for Portability), a
CUDA-like single source C++ API for GPU programming,
and HC (Heterogeneous Compute), a lower-level C++ API
for accelerated GPU computing.

The second option is more general and consists in a new
SYCL backend for TensorFlow [29]. SYCL [30] is a specifi-
cation from the Khronos Group that provides an abstraction
layer on top of OpenCL. It brings several improvements
like the support for modern C++ and the single source
programming feature. This solution is supposed to work with
a wide variety of GPUs and is not limited to AMD or Nvidia
GPUs.

Apart from some technical details, the general idea re-
mains the same, on all platforms and with the three imple-
mentation versions of TensorFlow. In the next subsections,
we present the different parts of the proposed method.

C. TensorFlow instrumentation

Dataflow applications can usually be seen as a graph
composed of nodes that represent operations, and edges on
which the data flows. In order to profile efficiently those
types of applications, we need to have access to the graph.
Therefore, an instrumentation of the library that implements
the dataflow model is necessary. In this paper we evaluate
our method with TensorFlow. Therefore we describe different
key parts of it but the general idea of the instrumentation can
easily be ported to other libraries.

From a technical point of view, we opted for LTTng for
its efficiency and flexibility. Moreover, the resulting trace
is in the binary Common Trace Format (CTF) which aims
at high performance, especially for writing the trace. When
tracing an application, events are recorded each time an
LTTng tracepoint is hit. Therefore, the instrumentation is
essential and the tracepoints should be inserted carefully at
strategic locations in the source code of TensorFlow. We
discuss the main elements that should be profiled in the case
of a dataflow application.

1) Session: In a dataflow application, the execution con-
sists in feeding some data to the input nodes of the graph
which triggers the execution of every node in the graph until
the output nodes. Every time a node has received all its
inputs, it can start computing. Feeding data to the graph,
and then retrieving the final results, can be considered as
one iteration. Since in a dataflow application new data is
continuously fed to the graph, it is necessary to have a
general insight of the current state of the dataflow model.
Knowing the beginning and the end of every iteration is
therefore essential. In TensorFlow, an iteration corresponds

to one call to the Run function of the Session object, as
described in subsection III-A. Therefore, our instrumentation
deals with these two elements.

2) Operations: In order to profile dataflow applications,
we need to trace the different operations that process the data
flow. Indeed, they define the behavior of the application. One
operation, represented by a node in the graph, performs the
same processing continuously on the incoming data. Four
main informations should be collected about operations:

1) the processing beginning time

2) the processing end time

3) the device to which the operation is assigned. In this

work, two options are possible, either the CPU or the
GPU.
4) the type of the operation: synchronous or asyn-
chronous.
Usually, most of the computation nodes are assigned to the
GPU, because of its higher computation capabilities. In this
case, little work is executed on the CPU: preparing the
execution with data transfers for example and sending work
to the GPU. All the computation happens on the GPU and
therefore this component should constitute a priority in the
profiling process. The internal instrumentation of the GPU
access library is not sufficient to collect the real execution
times of the operations executed on the GPU, and this issue
is discussed in subsection III-E.

3) Scheduling: In order to understand the behavior of a
dataflow execution, it can be interesting to have an insight
into how all the operations in the graph are scheduled.
Indeed, in many cases, including TensorFlow, several nodes
are assigned to the same computing unit and can be ready
at the same time. It is therefore important to know how the
library decides which node to execute.

Collecting all the beginning and end timestamps of every
operation in the graph already brings some information about
the scheduling, but we can go deeper. To do that, we need to
understand the inner working of TensorFlow, and especially
how it schedules the nodes. This part is totally dependent on
the library used to implement dataflow applications.

The TensorFlow scheduling mechanism uses a threadpool
and two different types of queues: ready and inline_ready.
‘When a node finished its execution, the result is available and
the successors of the node in the graph are activated. When a
new node is ready, it is first enqueued into the ready queue
and TensorFlow continuously schedules the nodes from it.
Two options are possible. If the node selected from this
queue is expensive, it is dispatched to the thread-pool in a
new thread to be executed. Otherwise, the node is considered
as inexpensive and is put into the inline_ready queue to
be executed directly within the current thread. TensorFlow
usually considers nodes executed on the GPU as inexpensive,
because they consume very few resources on the CPU where
the scheduler runs.

In terms of instrumentation, it represents three elements.
First, we want to know the nodes scheduled from the ready
queue. Secondly, we would like to follow all the operations
executed from the inline_ready queue. Finally, it can be



interesting to know which nodes are activated by each
completed node.

4) Memory: The data-centric characteristic of a dataflow
model makes memory usage another essential aspect. In this
model, data is continuously fed to the graph and flows along
the graph edges. As a result, we need to have information
about memory usage. This is even more crucial in the case of
machine learning applications in which the data considered
is usually tensors (multidimensional matrices) that can be
very large. It is important to have information about this for
the CPU cores, but even more for the GPUs as their memory
is a relatively scarce resource, typically much smaller than
the CPU RAM. Two elements are analyzed :

o Memory allocations and deallocations
o Memory transfers between the devices

In order to use a GPU, a developer generally needs platforms,
libraries or frameworks like CUDA or OpenCL. All of them
provide some API functions in order to program the GPU.
In particular, a few functions offer the possibility to allocate
memory on the host (CPU) or on the device (GPU) and to
transfer data between them. The idea here is to locate all the
calls to these specific functions in the analyzed application
and to instrument them. If the application provides an
internal wrapper around these functions like in TensorFlow,
the instrumentation process becomes easier. If we consider
memory allocations and deallocations, we usually deal with
four different functions :

1) Allocate on the Host

2) Deallocate on the Host
3) Allocate on the Device
4) Deallocate on the Host

Instead of calling these functions very frequently, many
applications choose to allocate all the available memory on
the device at initialization time. Then, the allocated memory
is simply managed by an internal allocator. This depends on
the library that implements the dataflow model.

If we consider TensorFlow, it uses an internal allocator
called BFC Allocator that implements the Best Fit with
Coalescing algorithm. This allocator is used for every device
(CPU or GPU), and simply adds another level of instrumen-
tation, as we need to find all the functions related to memory
allocation and memory deallocation within this allocator.
Inside TensorFlow, the BFC Allocator is a simple version
of the Doug Lea’s malloc (dlmalloc) [31] and splits all
the memory into several chunks. They represent a memory
fragment of a specific size. Moreover, chunks are stored into
bins which are collections of similar-size free chunks. This
allocator is supposed to keep fragmentation to a minimum.
Thus, in order to have a finer-grained analysis of memory
management inside TensorFlow, we instrumented this allo-
cator. As a result, we can bring three statistics out.

1) Global statistics for the allocator, with several metrics:
the number of bytes in use, the number of allocations,
the maximum number of bytes in use and the largest
allocation.

2) Chunks statistics which monitor the chunks usage.

Several metrics are available: the total number of
chunks, the number of used chunks and the number
of free chunks. It also follows the number of bytes
used and, unlike the global statistics, it can differentiate
the number of bytes used and the number of bytes
requested. The difference can be explained by the
restrictions for the chunk sizes to certain values, which
can be bigger than the real allocation request. With
that information, we can also compute the number of
wasted bytes.

3) Bins statistics: These monitor all the bins by giving the
number of chunks in each bin and the corresponding
number of bytes.

As mentioned before, memory transfers between devices are
also important. When using GPUs, a memory transfer is
considered as a command sent to the device to either read
or write data. The first case is for memory copy from the
Device (GPU) to the Host (CPU) and the second represents
a memory copy from the Host (CPU) to the Device (GPU).
Moreover, they are usually performed asynchronously by
the DMA unit of the GPU, in order to overlap with the
computation and consequently hide some latencies. To track
them, we collect all the calls to the API functions that cause
memory transfers. As for memory allocation, we need to
locate all the calls to the corresponding API functions and
instrument them. The instrumentation here has two purposes:

1) Getting the duration of the call by adding a tracepoint
just before and just after the call

2) Getting the amount of data involved in the memory
transfer

If the memory transfer is performed synchronously, the
duration obtained actually corresponds to the time spent to
copy the data between the two devices. However, if the
copy is asynchronous, the duration only represents the time
required to launch a command to the GPU and not the actual
duration of the transfer. Getting the real duration of the
memory transfers is addressed in section III-E.

5) GRPC: In this work, we focused on dataflow models
executed on a single machine. However, it is also possible
to distribute the execution on several machines. In this case,
the graph is partitioned on several hosts. In addition, each
host is free to offer a GPU to accelerate the execution of
certain dataflow nodes. Profiling distributed dataflow models
is possible with local profiling on each machine, and the pos-
sibility to jointly visualize the traces from several machines.
In order to enhance the information and to highlight some
key points, we also instrumented the code that allows the
dataflow models to be distributed on several machines. In
the case of TensorFlow, the implementation is based on two
elements: gRPC, an open-source and high performance RPC
framework, and protocol buffers, a serializing tool to encode
the data exchanged over the network. During the execution, if
two connected nodes are assigned to two different machines,
a tensor request is sent by one machine and the second
machine computes the tensor and sends the response back
to the first machine.



Figure 1 presents an example of a graph with 7 nodes
shared among two machines. The first machine can process
all the nodes until node E, as they do not require any external
element. However, to compute node E, the first machine
needs the output of node G which is assigned to the second
machine. Therefore, to continue the execution, machine 1
sends a tensor request to machine 2. Once the request has
been received, machine 2 starts the computation to get the
result from node G and then sends it back to machine 1.
Nodes F and G could be computed in advance by machine
2, or only when their results are required. This is mainly
the difference between as soon as possible and as late as
possible scheduling. In the first case, as soon as all the inputs
of a node are ready, it is computed, whereas in the second
case, the node is executed only when its output is required.

Finally, in this work, we proposed an instrumentation that
shows the time spent by one machine waiting for a tensor
from another machine. Moreover, we are able to track the
size of the request and the tensor response exchanged by the
machines over the network.

|—|m acﬂi_ni;‘f,. Input data
A
1
B
s ‘machine 2|
‘f E)
-
(D) ensorrenes ="
\ Tensor 1'351:'

Result

Fig. 1: Distributed dataflow example : the graph is shared
among two machines and data is fed to two input nodes (A
and F). The computation of node E (assigned to machine 1)
needs the result of node G (assigned to machine 2). There-
fore, a tensor exchange between the machines is required.

D. API tracing

As we have seen in the previous subsection, a static
instrumentation of the application that provides the dataflow
model is necessary to get information related to the dataflow
model itself. However, it is not sufficient as information
about the GPU activity is missing. In order to have a general
method to be aware of the GPU usage, we decided to trace

the API of the library used to program the GPU. This brings
important information about the GPU usage by the dataflow
model. When a node performs work related to the GPU, we
want to know which API functions were called and how long
they took. Three methods exist for that:

1) Profiling callbacks: this consists in setting an asyn-
chronous callback called at the end of each API
function. This allows to get the name of the function as
well as the start and end time of the call. For example,
CUPTIL, a profiling library from Nvidia, provides this
type of callback for CUDA, and allows a user to
programmatically collect API function timestamps and
durations.

2) API instrumentation: this method requires access to the
library used to program the GPU. In this case, adding
two tracepoints to each function of the API is sufficient
to collect the beginning and end time of the API call.
For example, this can be implemented for the HSA
API into the runtime of the ROCm platform.

3) The last possibility is based on interception and is
quite similar to the previous option but less intrusive. It
consists in writing a library that re-implements all the
functions from the API and simply calls the real API
functions inside each of them. As in the previous so-
lution, each call to the real API function is surrounded
by two tracepoints to collect the beginning and end
times of the call. This new library is simply preloaded
in the system, with the LD_PRELOAD environment
variable, and intercepts all the calls to the library used
to program the GPU. This technique was already used
for HSA [32] and OpenCL [33].

Being able to collect all the function calls related to
the GPU is important but not sufficient. Indeed, when a
node offloads some tasks to the GPU, the CPU thread that
enqueues the work to the GPU queue usually continues
directly and does not wait for the GPU to finish the queued
work. In this way, the majority of the GPU kernels and
memory copies performed by the GPU are asynchronous,
and the API tracing will not help to get information about
them. As seen in the next subsection, the API tracing should
be supplemented with a specific profiling of the GPU.

E. GPU profiling

Tracing the API can effectively give insights about the
GPU activity. However, the timestamps collected are only
meaningful from a CPU point of view. In order to have a
complete understanding of the execution, we need to get in-
sight into all the asynchronous operations. These operations
represent the real work performed by the GPU.

Asynchronous events can be of three types:

1) GPU kernels which represent the computation per-
formed by the GPU

2) Memory copies, representing the memory transfers
between the devices (CPU, GPU)

3) Barriers which constitute synchronization points be-
tween the device (GPU) and the host (CPU)



In order to collect the beginning and end times for each
asynchronous event, we need to use profiling functions
offered by the GPU platform. Each platform offers a varying
number of options at different abstraction levels.

o High level: In this case, two options exist. The first
one consists in registering a callback which is called
after the completion of each asynchronous operation.
Inside the callback, the start and end timestamps can be
retrieved. Registering a callback is often available with
external profiling libraries like CUPTI or directly pos-
sible in the GPU API like OpenCL. The second option
consists in a profiling function that directly returns the
timestamps for all the GPU kernels or memory copies
executed within an application. This method usually
requires to enhance the original behavior of the GPU
queue with profiling capabilities, in order to save the
information about all the operations executed.

o Low level: Sometimes, collecting GPU information can
also be performed at a lower level like the HSA level.
For that, low level profiling functions are used and
neither callbacks nor profiling capabilities of the queue
are required. For example, this is possible inside the HC
(Heterogeneous Compute) library developed by AMD.

Combining all this information (dataflow model API, GPU
access API, GPU profiling) results in a significant amount
of data. After tracing the application and collecting events,
we need to post-process the trace. This step is detailed in
the next subsection.

FE. Post-processing

For this step, we are using Babeltrace and its Python
bindings to easily read, post-process and write the CTF
traces. Two steps are considered.

1) Building a fully coherent trace: As seen before, most
of the computational intensive nodes are offloaded to the
GPU, if available. The desired information about the GPU is
the beginning and end times of the GPU kernels execution
and memory copies. Unfortunately, it can only be collected
asynchronously, once the GPU kernel or the memory copy
is finished. Therefore, in the instrumentation, we use a
temporary event and store the beginning and end timestamps
of the GPU operation inside it. The real timestamp of this
temporary event is not meaningful regarding the execution
of the dataflow model, as it represents the moment when the
GPU information was collected. From it, two new events are
created during the post-processing phase. One corresponds
to the beginning of the operation and the second to the end.
Finally, we need to sort all the events according to their
timestamp, since the time of a CTF trace should always
increase monotonically. The pseudocode of the reordering
algorithm is shown in Algorithm 1

A second concern is to insure that all the GPU-related
events are coherent with the CPU-related events. Indeed, the
same clock should be used. As LTTng is using the Linux
Clock Monotonic, we insure that all the events in the trace
are converted to this time base. Depending on the library
used to program the GPU, some synchronization work might

Algorithm 1 Asynchronous events reordering algorithm

events: a list containing all the events of the trace
procedure REORDERASYNCEVENTS(events)

for event in events do

if event.type == gpukernel or

memory_copy or event.type == barrier then
5: start_event <— new Event
6: start_event.timestamp <— event.begin_time
7
8

hrlidi S e

event.type ==

end_event < new Event
: end_event.timestamp <— event.end_time
9: for field in event.fields do

10: start_event[ field] < event| field]
11: end_event| field] < event[ field]
12: end for

13: Add start_event to events

14: Add end_event to events

15: Remove event from events

16: end if

17: end for

18: Sort events

19: end procedure

be required. With OpenCL, for example, the timestamps
returned by the profiling functions have no specific reference
and cannot be converted into a CPU time. For this reason,
we need a synchronization method to connect GPU and CPU
events.

When we are profiling OpenCL on the CPU for the API
calls, and on the GPU for the kernel timestamps, we can get
the information described in Figure 2.
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Fig. 2: OpenCL profiling: Several events happen on both
devices and the corresponding timestamps can be collected
and used for synchronization

We can solve the synchronization problem by using this
information and applying techniques like the Convex Hull
algorithm presented by Poirier (2010) [34], or the more
efficient version of Jabbarifar (2013) [35].

2) Matching GPU related events with the dataflow graph:
The second post-processing step aims at relating the GPU
operations with the dataflow model. The computation ap-
proach of a GPU is that GPU kernels are enqueued into
one or several queues and then the hardware schedules and
executes the kernels from the queues. Moreover, a dataflow
model usually contains many nodes and each can offload
work to the GPU. Therefore, it is important to match the
GPU kernels with the nodes in the dataflow graph. This can
be implemented as a post-processing task once all the events
have been collected. One limitation of this method is the



supposition that a unique queue is used to feed work to the
GPU. It can be decomposed into two parts:

1) First we match all the function calls that enqueue
kernels inside the GPU queue with the nodes in the
graph. By using the beginning and end timestamps of
the nodes in the graph, we can determine for each
function call that launches a GPU kernel, the current
node being executed at this moment.

2) The second part is matching the function call that
enqueues kernels into the GPU queue and the real
execution of the GPU kernel. For this purpose, we
assumed that only one queue was used, and therefore
the order of the API calls and the order of the GPU
kernel executions are the same.

Finally, by combining the two parts, we are able to match
all the kernels executed on the GPU with their corresponding
node in the dataflow graph. After these two post-processing
steps, the trace is coherent and its analysis and visualization
can start. The pseudocode for the matching algorithm is
available in Algorithm 2

Algorithm 2 Nodes and GPU kernels matching algorithm

1: events: a list containing all the events of the trace
2: procedure MATCHNODESWITHGPUKERNELS(events)
3: curr_gpu-op < None
4: curr_launch_cmd < None
5: for event in events do
6: if event.type == gpu_operation_begin then
7: curr_gpu-op < event.name
8: else if event.type == gpu_operation_end then
9: curr_gpu-op <— None
10: else if event.type == launch_kernel_begin then
11: if curr_gpu_op == None then
12: Error, a launch command requires a current gpu oper-
ation
13: else
14: curr_launch_cmd.op-name <— curr_gpu_-op.name
15: end if
16: else if event.type == gpu_kernel_begin then
17: if curr_launch_cmd == None then
18: Error, a GPU kernel begin event requires a current
launch command
19: else
20: event.op_name < curr_launch_cmd.op_name
21: end if
22: end if
23: end for

24: end procedure

G. Analysis and Visualization

In order to profile and trace a dataflow application, the
first requirement is to collect the necessary information.
After, we also need to develop appropriate and helpful
visualizations to display all the events in the best possible
way to help identifying performance issues. For that, we
developed three main elements that will be detailed later:
a Callstack view, XY charts, and statistics. As the created
trace is in the CTF format, Trace Compass is the best choice
for the visualization. Indeed, it is a complete interactive
visualization tool aiming at performance analysis of systems.
Originally, it focused on operating systems analysis but was

extended for different kinds of systems. Moreover, as an
open-source software, it can be easily enhanced for all kinds
of needs. The main way to develop new views is with
Java views, but Kouame [36] introduced a new possibility
called XML Analysis. This allows the user to rapidly develop
declaratively new trace visualization views and to underline
the most important parts. In our work we decided to use this
option.

1) Callstack view: The Callstack view is the main part of
the visualization and provides an insight into the execution
of the dataflow application. It shows the state of many
elements that are grouped into categories corresponding to
the different characteristics of the dataflow model. Moreover,
it can display nested calls or states by showing several lines.
For example, one iteration of the dataflow model corresponds
to feeding one batch of data to the graph and retrieving the
result from the output nodes. This is a crucial information
that should appear when visualizing the trace. Here are the
main elements shown in the Callstack view :

« The execution of each node in the dataflow graph with
the distinction between the nodes assigned to the CPU
and the ones processed by the GPU.

o The beginning and end of all the calls to the functions
of the libraries used to program the GPU (CUDA, HIP,
HSA, OpenCL, ...)

e GPU related operations: kernels, asynchronous memory
copies or synchronization barriers

o Information about the scheduling of all the operations
in the graph.

With this information, the user is directly aware of the
matching between the nodes of the computation graph and
the physical units. Moreover, this view can be combined with
Tensorboard that can graphically display the computation
graph and help to understand the Callstack view.

Another important information concerns the execution of
the operations on different devices. In the case of a CPU,
we can easily identify the number of threads and the CPU
cores used for the execution. This information is available in
the Callstack view and the Resource view and require Linux
Kernel tracing. In the case of an operation offloaded to the
GPU, we provide textual information within the Callstack
view about the division of the work. The dimension of the
grid and the work groups for each GPU kernel are available.
With a GPU, we are not able to have precise information
about the GPU cores involved for the execution of a specific
GPU kernel. The device manages the mapping between the
kernel and the GPU cores by itself. Moreover, all the cores
are usually identical and, even if some optimizations may
be possible, they have very little impact on the performance
compared to memory transfers or an efficient work division
(grid dimension, work group dimension).

2) XY charts: Memory consumption is a key element for
a data-centric model and XY charts are well adapted for
that. When too much memory is required by an application,
TensorFlow simply returns an error. It is therefore essential to
know the memory consumption of each node of the graph.



By combining a XY chart representing the memory con-
sumption with the Callstack view described before, the user
can directly spot the nodes responsible. Several XY charts
can be developed, depending on the analysis performed on
the dataflow model.

In our case, with TensorFlow, a first one shows the
memory allocations for each device. As explained before,
only following the memory allocations performed by Ten-
sorFlow might not be sufficient, especially for the GPU, as
it usually allocates all the available memory at the application
initialization time. Thus, an additional set of three views
display more detailed information about the BFC allocator:
one for the global allocator statistics, one for the chunks
usage and one for the bins statistics.

For memory transfers, a XY chart is also more appropriate
and displays the information in a better way, as compared
to a Callstack view. Therefore, a specific view displaying all
the asynchronous memory transfers was also developed.

Finally, when using TensorFlow in a distributed mode, a
critical part is the communication between the machines. As
most of the communication is for tensor exchanges, knowing
the size of these tensors is important. Before being sent over
the network, the tensor values are encoded and, by adding
a single tracepoint in the encoding function, we collect the
size of every tensor sent to another machine. A XY chart
representing these sizes helps the user to directly identify
the expensive tensor transfers between machines.

3) Statistics: Another possibility to show useful informa-
tion about the execution of a dataflow model is to compute
some statistics. This can help to quickly determine which
operations in the graph took the longest time for their
execution. It also allows a user to compare the execution time
of a node over several executions of the graph. Obviously,
in order to find the longest operations in the graph, we need
to take into account the work that each node might have
offloaded to the GPU. For that, we can benefit from the
second post-processing step described earlier, whose goal
is to associate each GPU kernel with the corresponding
computation node in the dataflow graph. Apart from the
duration of the execution of each node, another interesting
information is the latency of the nodes in the dataflow
model. Within the computation graph, a node can start being
executed when all its inputs are ready. Thus, we can compute
a metric representing the latency of each node by comparing
the moment when the last input of a node has finished and
the moment when the node actually started to be executed.
In terms of implementation, we used Babeltrace to read the
CTF trace, Python to compute the statistics and the results
are exported into a CSV file.

H. Additional information

The goal of profiling a dataflow model is to understand the
execution of the application but also to see the interactions
between the different devices and to insure that all the
hardware resources are used efficiently. For this purpose, two
additional information can be useful and are detailed here.

1) Linux Kernel tracing: Even if some operations can
offload work to the GPU and benefit from an acceleration,
the global execution of the graph is managed by the CPU,
possibly on several cores. Therefore, kernel traces can en-
hance the userspace traces of the application and help to
analyze the parallelism aspect of the computation. This is
also helpful to understand the I/O operations performed by
the application. With the proposed method, it is possible to
collect kernel traces and display them jointly with all the
events from the userspace level. Two major views exist to
display the kernel traces.

o Control Flow View: It shows the state (running, waiting
for CPU, blocked on /O, ...) of every thread that was
running during a tracing session.

« Resource View: It shows the state and the frequency of
every CPU core, as well as the software and hardware
interrupts.

The Linux Kernel traces complete our analysis environment
with information from a low level layer and help users to
identify and understand performance issues.

2) Performance counters: The second element addresses
the performance of the GPU. The main purpose of getting
support from a GPU is to speed up operations that involve
heavy computation. Still today, tracing precisely the execu-
tion of a kernel on the GPU is not possible and the only
way to insure a good performance for the GPU kernels is
by collecting performance counters. They represent hardware
metrics that provide information about the execution of a
kernel on the GPU. For example, we can collect counters
representing the average number of vector or scalar ALU
instructions executed per work-item, the number of wave-
fronts, the total size of data written to or fetched from the
GPU memory, or the percentage of fetch, write, atomic and
other instructions that hit the data cache. These metrics give
an insight into GPU kernels executions and can be helpful
to ensure efficient hardware usage.

Usually, the profiling tools from the GPU vendors offer
the possibility to get the performance counters for each GPU
kernel of an application. In our case, we used and adapted
the work of Margheritta [32] to collect the counters for every
kernel invoked by the application. The result consists in a
table with the rows representing the kernels and the columns
the different metrics.

The analysis process is relatively easy for applications in-
volving a few kernels. However, in our case, dataflow models
usually entail a large number of GPU kernels, especially if
we consider several executions of the graph. Therefore, we
need a way to connect each kernel and the associated metrics
to the node in the graph that invoked the kernel. We also
need to have a time reference for each kernel as, during the
profiling phase, GPU kernels can be executed several times.
All of this was solved and implemented using Babeltrace and
Python scripts.

IV. EVALUATION

After detailing the proposed profiling and tracing method,
we evaluated its performance on a few concrete dataflow



applications. Our implementation prototype was designed for
TensorFlow, so all the examples are TensorFlow applications.

A. Triplet loss example

The first example is an application for face recognition
that uses the triplet loss with TensorFlow, to learn good
embedding of faces [37]. If we apply the tracing and profiling
method described previously, we obtain the trace shown in
Figure 3.

The view represents the beginning of an execution of the
computational graph. As a reminder, one execution of the
graph is equivalent to one call of the run() function of a
TensorFlow Session and corresponds to feeding the graph
with one batch of data, computing all the nodes in the graph
and getting the result. For such dataflow applications, a trace
usually shows the same pattern repeated several times. Each
instance corresponds to one execution of the dataflow graph.
Focusing on execution is a good start for the analysis.

The bottom line represents the state of the graph, if it is
being executed or not. The top line corresponds to the GPU
kernels executions, and all the lines in the middle represent
the execution of some CPU-assigned nodes of the graph. For
the sake of clarity, we hid all other information. We can see
that the time between the beginning of the graph execution
and the moment when the GPU actually starts to work is
quite long. Even more interesting, we can notice that during
this time the CPU is processing numerous nodes serially,
without parallelism. Indeed, we have several threads but they
are processed serially on a unique CPU core.

== Duration : 4.2 ms [ mod- " ma.- m... mo]
GPU kernels
i 1
Execution of Each line
CPU-assigned represents
LIS A oSt o
T

[[IRR [ e | b

1
S

graph execution 87 graph execution 88

= s e p—

[ UL R I

Fig. 3: Initial application: the beginning of the 88" execution
of the graph is shown. The GPU waits for a significant time
before starting its job, and the CPU seems to inefficiently
process some nodes during this time.

To continue the analysis, we can zoom in to know pre-
cisely what are these nodes, as shown in Figure 4.

We can distinguish a pattern, formed out of two sequences
of operations, that is repeated many times. The first sequence
contains DecodeRaw, Cast, Reshape and Truediv nodes and
the second contains DecodeRaw, Reshape and Toint32 oper-
ations. As they are assigned to the CPU, and are executed
before the GPU started to work, we can naturally suspect
that they correspond to a pre-processing step on the input

data. By looking at the source code, we can notice that
these sequences of operations correspond respectively to
the decode_image() and decode_label() functions and that
both are passed as an argument to the map() function
that applies them on images and labels. According to the
TensorFlow documentation, the map() function offers an
argument num_parallel_calls that allows to parallelize the
processing on several CPU threads. Using this argument can
reduce the time needed for this pre-processing step. Figure
5 shows the results after having set this argument to 8, the
number of CPU logical cores of our machine. The resulting
trace proves that the pre-processing has been parallelized on
8 threads, and the duration is now only 2 ms compared to
the initial 4.2 ms.

However, we can see that the performance is still not
optimal. Indeed, when the GPU starts its job (the top line),
the CPU (lines in the middle) is idle. This offers the
possibility to implement pipelining, so that the CPU could
already pre-process the input data that will be fed into the
GPU at the next execution of the graph. Indeed, nodes of the
graph that are entirely executed on the CPU can naturally
process data while the GPU is used by the computational
intensive nodes. In this way, the data may be almost directly
ready for the GPU for each execution of the graph.

TensorFlow enables this with the prefetch() function that
can be applied to the dataset. Setting its argument to /
insures that one batch of data is always ready to be fed
to the GPU. Figure 6 presents the trace with the map and
prefetch optimizations. It is now clear that some nodes
are executed on the CPU while the GPU is processing other
nodes. Obviously, the duration between the beginning of the
session and the moment when the GPU starts working has
significantly decreased to 790 s which corresponds to an
improvement by more than 5X.

As a training process with TensorFlow is made of many
executions of the graph, the gain in time can be important.
If we consider 500000 executions of the graph, we can
quickly compute the time spent for pre-processing the data
and estimate the gain:

¢ Original program: 500000 x 0.0042 = 2100 seconds

= 35 minutes

e Optimized program: 500000 x 0.000790 = 395 seconds

= 6 minutes 35 seconds
It is clear that the optimized program uses the available
hardware much more efficiently, which saves time.

B. Compute-bound example

As a second use case, we analyze the execution of a
convolutional neural network, a very popular model when
dealing with images. Figure 7 shows the trace obtained with
the proposed method.

We notice here that the GPU seems to be used all the time.
This behavior is desired when a CPU gets support from a
GPU, since it indicates that the application fully benefits
from the computing power of the GPU. In this case, we
are clearly compute-bound, which reduces the improvement
possibilities. However, we can still go deeper and use one of



First pattern : Decode Label

Second pattern : Decode Image

Fig. 4: CPU-assigned pre-processing operations: The CPU processes many times these two sequences of nodes before the

GPU starts.
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Fig. 5: Execution with the first optimization: setting
num_parallel_calls to 8. The processing done on the CPU
has been parallelized and is more efficient now. Significant
time was saved.

the proposed analysis scripts that compute statistics about the
traces. One script returns statistics about the most demanding
GPU kernels in terms of duration. The results, presented in
Table I show the mean duration for each kernel, as well as the
number of times they are executed during the whole trace.
As expected, GPU kernels related to convolutions took the
most time. However, the Maxpool nodes are also noticeable
in terms of duration and frequency.

Since we know that we are compute-bound, we need to
reduce the amount of computation to improve the execution
of the dataflow graph. We thus target the most demanding
nodes. In a paper called Striving for simplicity: The All
Convolutional Net, Springenberg et al [38] explained that
under some conditions we can replace a Convolution +
Maxpool layer by a Strided Convolution, without
affecting the learning capabilities of the model. Using a
strided convolution insures that the shape of the tensor after
the convolution is the same as the shape of the tensor after the
convolution and maxpool operations. The authors explained
that no difference in final accuracy can be perceived for
many image recognition benchmarks. Therefore, it is worth
considering this optimization in a compute-bound situation.

The Figure 8 presents the evolution of the loss and the
accuracy for both cases (convolution + maxpool and
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Fig. 6: Execution with the two optimizations: setting
num_parallel_calls to 8 and prefetch to 1. In addition to the
parallelization of CPU work, pipelining has been added and
increases again the performance.

GPU kernels

——

—

—

J 269 ms -
- >
0x585 X586 Ox587

—— I

3 graph executions

Fig. 7: Initial execution with the convolution and maxpool
operations. The GPU seems to be in use all the time.

strided convolution) when using a basic convolu-
tional neural network to classify the MNIST digits. As we
can see, the learning capabilities of the model are almost not
affected.

Figure 9 shows the trace at the exact same moment if we
replace the convolution and maxpool nodes with a single
strided convolution node. Previously, three executions of
the graph took 269 ms, compared to 131 ms now, which
represents a 2X benefit. As for the first example, we can
do a quick estimation of the gain in terms of duration. If we
consider 10000 executions of the graph, we get the following:

« Original Convolution and Maxpool: 10000 x0.269+3 =
897 seconds = 15 minutes

e Strided convolution : 10000 x 0.131 + 3 = 437 seconds
= 7 minutes 12 seconds

In spite of a very small accuracy reduction, the time benefit
is significant and this optimization can be suitable in many
cases. This example concerns a training phase executed on
a computer, but we can imagine an inference phase on a
mobile device with lower computation resources, where a
compute-bound situation is likely. In such a case, the model
is expected to make predictions with a very low latency,



TABLE I: Most demanding nodes of the graph. Several of
them are related to the MaxPool operations.

Rank Kernels Mean Occur. Std. dev.
duration (ns) (ns)
1 ApplyAdam 1440119 42 238911
2 ReluGrad 1281214 14 2833
3 MaxPoolGrad 986000 14 4520
4 BiasAdd 982400 15 208916
5 MatMul 916267 15 8218
6 Relu 860133 15 3403
7 Conv2D_1 849733 45 1189160
8 MatMul._1 747714 14 7639
9 MaxPool_1_grad 586357 14 29274
10 Conv2D_1_BackpropFilter 574943 70 1140131
11  MaxPool 547533 15 45908
12 BiasAddGrad 521643 14 22292
13 Conv2DBackpropFilter ~ 518786 28 514392
14 BiasAdd-1 446467 15 1928
15  Relu-1 429800 15 3390
16  BiasAdd_1_grad 272500 14 14912
17 MaxPool_1 272500 14 14913
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Fig. 8: Evolution of the accuracy and the loss after 1000
iterations. The accuracy loss caused by the use of strided
convolutions with no maxpool layer is subtle.

and considering this kind of optimization may help. The
activation functions of the network may present a similar
case. Some of them are more demanding in terms of com-
putation, like “tanh”. With the proposed method, we can
easily understand the limiting elements and then possibly
consider alternatives like "ReLu”, if we are compute-bound.

C. Distributed Dataflow graph

With this work, we also support dataflow models dis-
tributed on several machines. It corresponds to the distributed
learning option in TensorFlow. In this example, we used
a convolutional neural network that is distributed on two
machines. This technique is named in-model parallelism.
The second possibility, named between-model parallelism, is
not explored here but consists in replicating the same graph
on several machines to learn in parallel. Finding the best
partition of the graph for the device assignment is a difficult
problem and there is currently no automatic way for that.
Mayer R, Mayer C and Laich [39] addressed this difficult
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Fig. 9: Execution with the strided convolution. The GPU is
still used all the time, but the duration of 3 executions of the
graph has been reduced.

problem by proposing and evaluating different strategies.
Mirhoseini et al. [40] proposed an algorithm, based on
machine learning techniques, to assign each node of the
graph to a specific device.

In our case, the model contains 2 convolutional layers and
1 fully connected layer. We first decided to divide the graph
as follows:

o The first convolutional layer is assigned to the first
machine.

o The second convolutional layer and the fully connected
layer are assigned to the second machine.

For this example, we focus on the forward pass and the
effects of the machine boundary between the first and second
convolutional layers.

As explained in section III, the tracing and profiling
happen on both machines, and the post-processed traces are
gathered in one machine for the analysis and visualization
step. Linux Kernel traces are collected at the same time and
are necessary in order to synchronize the traces. The result
is shown in Figure 10.

The view on top corresponds to the Callstack view of
an execution of the graph. We can see the GPU kernels
executed on the first machine, which correspond to the first
convolutional layer (2D convolution and maxpool nodes). In
the view, the execution of the kernels on the GPU always
involves two lines, unless we are using TensorFlow with
CUDA (like in the two previous examples). The purpose of
the top line is to show the real names of the kernels and the
line below presents the nodes of the graph responsible for
the execution of the GPU kernel. The long line in the middle
represents a wait time for the second machine. It starts when
the second machine sends the request to the first computer
for the result of the first maxpool layer, and ends when the
result has arrived on the second computer and can be used
as the input for the second convolutional layer.

The XY chart under the Callstack corresponds to the tensor
encoding. Before being sent over the network, tensor values
are encoded and the line represents the time spent for this,
as well as the amount of data that is sent. The encircled
operations on the right, prove that the second machine
actually received the data. They correspond to asynchronous
memory copies from the host (CPU RAM) to the device
(GPU memory) on the second machine. The amount of data
sent by the first machine corresponds to the amount of data
copied into GPU memory on the second machine: 51380224
bytes. Moreover, we can compute the same result with the
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Fig. 10: Distributed execution of a CNN on 2 machines - first experiment. Machine 1 executes the first convolutional layer
and the machine 2 asks for the result. Once received, machine 2 can compute the second convolutional layer and the dense
layer. The XY chart at the bottom shows the size of the tensors exchanged between the machines.

shape of the tensor after the first maxpool operation and the
batch size: 2048 x 14 x 14 x 32 x 4 = 51380224. Around
600 ms is spent to transfer the result between the machines.
As the time required to send the tensor represents a large
percentage of the execution time (around 2 s), we decided
to change the partition of the graph.

In a second experiment, both convolutional layers are
assigned to the first machine, and the fully connected layer
to the second machine, as shown in Figure 11.

Again the application is traced and profiled and the result
is compared with the first experiment, shown in Figure 12.
We can recognize a similar pattern as before, but also note
that the time spent for the communication has been reduced
to 273.8 ms. Obviously, this is related to the size of the
data exchanged between the machines. Applying a second
maxpool operation decreases the size of the tensor, which
results in a total size of: 2048 X 7 x 7 x 4 = 25690112
bytes.

Knowing that, we can conclude that the second way of
splitting the graph may be more suitable, as the duration of
the communication decreased. Since the dataflow model is
supposed to be executed many times, the gain can be very
important regarding the complete training process. Moreover,
here the focus is on a single data transfer between the ma-
chines and only for the forward pass. In a real optimization

Machine 1 -+

r  Machine 1

O

Machine 2~

Fully
connected
layer

connected
layer

Fully ‘

‘ } Machine 2

Fig. 11: Division of the graph for both experiments.

Experiment 1 Experiment 2

process, we should have considered all the data transfers
between the machines and also for the backward pass.

Through this example, we showed that the view obtained
with the proposed tool is helpful and brings valuable in-
formation to the user. The user can see a detailed trace of
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the execution: where each operation is executed, how much
data is transferred, the transfer direction, the time spent in
communication, etc.

In our case, the two machines were similar, but this
information can be even more valuable if the two or more
machines have different characteristics (GPU vs no GPU)
and capabilities (number and frequency of the CPU and
GPU cores, memory, ...). For this simple example, only two
machines were used but the proposed tool can handle large
distributed clusters of machines.

D. Inference example

Dataflow graphs are usually intended to be executed many
times, but there are a few exceptions. For example, an
inference step with machine learning model may consist
of a single execution of the graph. On mobile devices, for
example, we can have a trained model to classify flowers
and want to know the name of a flower in one new image.
Figure 13 shows the Callstack view obtained if we trace and
profile the application.

The first thing we notice is that the time spent by the
execution of the dataflow graph only represents a fraction of
the total execution time. 1.4 s is spent before the execution

of the graph. With the Kernel Memory Usage view of Trace
Compass, we can also see the amount of RAM memory used
by the application. This is represented by the bottom line
in the XY chart and is around 800 MB at the beginning
of the graph execution. In the Callstack view, we do not
have real information about what is happening before the
beginning of the execution of the graph. This is therefore
a good example where the Linux Kernel tracing is useful.
With this information, we see that a thread was processing
and made several system calls (in blue). If we zoom in, we
note that many of these are pread calls, which suggests that
the application spends a lot of time reading a file.

We know that the application has to load the trained
model and the learned weights before being able to make
predictions. Looking at the source code, we can find a
LoadGraph() function. As the profiling environment is very
flexible, it is easy to quickly instrument this function and
to display the result in the Callstack view, together with all
the other elements. The instrumentation of LoadGraph() is
separated in two:

o Reading binary: the first small rectangle (red) in figure
15
o Creating a new session: the largest rectangle (blue) in
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Fig. 14: Kernel traces of the inference step. We can detect a lot of pread system calls. They correspond to the loading of
the model file.

figure 15 previously.
o As the duration of the graph execution did not change,
the total duration of the application gets the same

reduction as the loading step: 2.76 s (2.88 s previously)

We can also measure that the LoadGraph() function call
lasted around 400 ms. Figure 15 shows the result and proves

that this function indeed took some time. ) s
Through this example, another advantage of our method is

pointed out. In addition to a precise profiling of the dataflow
graph, we can also benefit from other useful information like
the Linux Kernel traces as well as the possibility to easily
integrate an external instrumentation of the application.

TensorFlow proposes a complete and well-documented
performance guide that introduces a way to load model
files more efficiently. This method is a memory mapping
technique that maps directly the file into RAM memory. This
prevents allocating memory on the heap and then copying
bytes from the file into this allocated space. When using this
method, we get the result shown in Figure 16 and we can
note a few elements:

E. Memory management example

The last example is about specific situations where the
memory management of the dataflow model is problematic.

o The total time spent before the beginning of the graph
execution has been reduced to 1.28 s (1.4 s previously)

e The duration of the LoadGraph() function (reading
binary + creating a new session) has decreased to 284
ms (400 ms previously).

o The kernel memory usage of the dataflow application
is now around 450 MB, as compared to 800 MB

When the majority of the nodes are GPU-accelerated and
the dataset can fit into the GPU memory, one large memory
copy is probably more efficient than several smaller copies.
With TensorFlow, we can imagine an example where the
computation graph simply consists of a square operation on a
matrix (square of the matrix element-wise) and a reduce_sum
operation that sums all the elements of the matrix. The
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also decreased at the beginning of the graph execution, compared to the first version of the application.

classic technique consists in feeding a batch of data to the
computational graph in TensorFlow at the beginning of each
graph execution. Moreover, as the computation nodes of the
graph are assigned to the GPU, the data is also copied from
the CPU to the GPU. Figure 17 shows the profiling and
tracing of one execution of the graph.
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Fig. 17: Normal execution using feed_dict argument. An
important percentage of the execution is dedicated to a
large memory transfer from the RAM memory to the GPU
memory.
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We clearly notice that there is a long memory copy from
the Host (CPU) to the Device (GPU), and that it took much
more time than the computation part that follows. The square
and sum operations are indeed relatively quickly computed
on the GPU and this emphasizes the long time spent in the
memory copy. At each execution, a new batch of data is
created from the dataset and given to the graph as input.
Thus, this phenomenon repeats at each execution of the
graph, which means that a very large percentage of the total
application time is related to memory copies from the CPU
to the GPU.

If the dataset is not too large and can fit into the GPU
memory, another option may be more efficient. It consists
in copying the whole dataset once to the GPU memory and
then adding a new node into the dataflow graph that creates
the batches from the whole dataset. In spite of requiring
additional time to perform the copy of the dataset once, all
the executions of the graph afterward are much faster, as
shown in Figure 18.

Almost all the execution time is now dedicated to the
computation part performed by the GPU, and the total time
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Fig. 18: After the optimization with a slice operation and a
unique large memory copy. Now, the whole dataset is copied
to the GPU memory at the application initialization. Conse-
quently, the data batches are already in the GPU memory for
all the graph executions. Therefore, each execution is much
faster and consists mostly in GPU kernels processing.

of one execution has decreased by a factor of 10X compared
to the original solution. Obviously, this factor does not take
into account the additional large memory copy added at
the beginning of the application. However in spite of this,
the second option remains advantageous and the speed-up
of the whole application simply depends on the number of
executions of the graph. The more executions we have, the
more beneficial the second solution is. In this example, we
showed the utility of this work, when the execution of the
dataflow model is hindered by memory transfers.

V. OVERHEAD ANALYSIS AND DISCUSSION

In section III, we described the proposed profiling and
tracing method for dataflow applications. In section IV,
we demonstrated its efficiency by applying it to a few
examples. The results showed that appropriate analyses and
visualizations of the collected traces are valuable. They can
help a user to improve the performance of an application. The
analysis and optimization processes are usually performed on
one or a few executions of the graph, that is why the amount
of time saved may not seem significant at first. However, if
we run the whole dataflow application, feeding thousands or
millions of batches of data to the graph, the time saved can
become very important.

When profiling or tracing applications, one key point is
the overhead of this operation. It represents a percentage
of additional time required when tracing and profiling, as
compared to a normal execution of the application. Tables III,
IV, V, VI, VII and VIII show the results for two applications:

e A 2-layer autoencoder used to compress and then re-
construct MNIST digit images

e A convolutional neural network to classify MNIST
digits with 2 convolutional layers and 1 fully connected
layer

We measured the overhead on the 3 supported platforms for
TensorFlow: ROCm, CUDA and SYCL. For each of them,
we evaluated the overhead with different tracing and profiling
targets.

« Baseline: no tracing or profiling
o Dataflow: collects events related to the dataflow model
only

o API: collects functions entry and exit for the GPU API
used (HSA, HIP, CUDA, SYCL)

o GPU events: collects GPU related events (kernels, mem-
ory copies, usually performed asynchronously)

e Full user: collects dataflow, API and GPU events to-
gether

o Full user and kernel: collects dataflow, API, GPU events
and all LTTng Linux kernel events together

When using the ROCm platform, our implementation offers
three methods to collect GPU related events: by instrument-
ing the HC library, using interception mechanisms or by
analyzing the HC log output. We did the measurements for
each of them.

The tracing and profiling process was performed for 500
steps, for both applications, and each was profiled 100 times
to compute a mean duration. We chose these number of steps
to keep an execution time around a few seconds. Usually,
even 10 to 20 steps are sufficient for the performance
analysis, as a dataflow model involves the same computation
repeatedly performed on new data.

When using TensorFlow with the SYCL backend, a long
initialization time appears. This time is constant, whether
the application is profiled or not. Therefore, we do not want
to consider it when evaluating the overhead. To solve this
problem, we run the applications 1000 and 500 times and
then we subtract the results. We thus obtain the duration
for 500 executions of the graph. As the initialization time is
significant, we measure the duration of 25 executions only.
We did not run Linux Kernel Tracing in this case since the
number of collected events would be too large.

The hardware and software configurations used for the
three cases are described in Table II.

TABLE II: Hardware and software configuration

CUDA ROCm SYCL
TensorFlow 1.6.0 1.0.1 1.6.0-rcO
version
GPU library CUDA 9.0 ROCm 1.7 ComputeCpp
0.7.0
oS Ubuntu 16.04 Ubuntu 16.04 Ubuntu 16.04
CPU Intel Intel Intel
7-6700HQ i7-4770 i7-4790
GPU Nvidia AMD Nano | AMD Nano
GTX950M R9 R9
RAM 16 Go 32 Go 32 Go
DDR3 DDR3 DDR3
GPU memory 2 Go 4 Go 2 Go

First, we notice that the overhead depends on the applica-
tion profiled, the information collected, the platform used
and also the profiling method used to collect the GPU-
related events. For each platform and example, the standard
deviation of the execution time stays low, which means that
the introduced overhead does not vary much if we analyze
the application several times. In addition, the convolutional
neural network (Tables VI, VII and VIII) adds a lower
overhead compared to the autoencoder (Tables III, IV and
V). This is explained by the fact that this application is
more demanding in terms of computation and involves longer



TABLE III: Benchmark : Autoencoder - ROCm platform

Mean time

Baseline (s) 2.89279
Standard Deviation (s) 0.03541
Dataflow (s) 3.00744
Standard Deviation (s) 0.00880
Overhead (%) 3.96332
HSA API (s) 2.94353
Standard Deviation (s) 0.01060
Overhead (%) 1.75403
HIP API (s) 2.89744
Standard Deviation (s) 0.00611
Overhead (%) 0.16095

HC | Interception HC log
GPU events (s) 3.06181 3.12895 3.25691
Standard Deviation (s) 0.01230 0.01060 0.02303
Overhead (%) 5.84278 8.16376 | 12.58710
Full user (s) 3.40731 3.42743 3.64602
Standard Deviation (s) 0.02388 0.02200 0.03131
Overhead (%) 17.78624 18.48200 | 26.03825
Full user and kernel (s) 3.54567 3.54247 3.94711
Standard Deviation (s) 0.02141 0.02462 0.04787
Overhead (%) 22.56919 22.45873 | 36.44666

TABLE IV: Benchmark : Autoencoder - CUDA

Mean time
Baseline (s) 2.17631
Standard Deviation (s) 0.07928
Dataflow (s) 2.20101
Standard Deviation (s) 0.08597
Overhead (%) 1.13495
CUDA API (s) 2.99804
Standard Deviation (s) 0.09566
Overhead (%) 37.75800
GPU events (s) 2.89840
Standard Deviation (s) 0.10709
Overhead (%) 33.17962
Full user (s) 3.01081
Standard Deviation (s) 0.07300
Overhead (%) 38.34465
Full user and kernel (s) 3.17335
Standard Deviation (s) 0.02782
Overhead (%) 4581318

GPU kernels. The execution of the kernels takes a long
time and does not change whether we are profiling or not
the application. Therefore, in relative terms, the introduced
overhead is lower than with the autoencoder application.
Obviously, the more information we want to collect, the
higher the overhead, whatever platform and application is
used.

One noticeable difference between CUDA, ROCm and
SYCL is the tracing of the GPU API. Tracing HSA, HIP or
OpenCL introduces a very little overhead compared to the
CUDA API. That can be explained by the method used, since
for HSA, HIP and OpenCL we use a direct instrumentation
of the libraries whereas tracing the CUDA API is based on
asynchronous callbacks from CUPTI.

In general, the overhead stays reasonable and does not
cause problems. Indeed, the worst case in our benchmark is
for the Autoencoder application on CUDA, when everything
is profiled even the Linux Kernel. In that case, the overhead is
around 45% which represents approximately one additional
second compared to the original execution. Thus, as long

TABLE V: Benchmark : Autoencoder - SYCL

Mean time
Baseline (s) 4.284931
Standard Deviation (s) 0.61585
Dataflow (s) 4.43434
Standard Deviation (s) 0.80273
Overhead (%) 3.48670
OpenCL API (s) 4.81206
Standard Deviation (s) 0.74740
Overhead (%) 12.3020
GPU events (s) 4.45832
Standard Deviation (s) 0.45399
Overhead (%) 4.04637
Full user (s) 4.98725
Standard Deviation (s) 0.70198
Overhead (%) 16.39053

TABLE VI: Benchmark : Convolutional Neural Network -
ROCm platform

Mean time

Baseline (s) 6.28211
Standard Deviation (s) 0.02720
Dataflow (s) 6.45524
Standard Deviation (s) 0.05460
Overhead (%) 2.75592
HSA API (s) 6.39036
Standard Deviation (s) 0.05124
Overhead (%) 1.72311
HIP API (s) 6.31373
Standard Deviation (s) 0.01151
Overhead (%) 0.50327

HC | Interception HC log
GPU events (s) 6.57057 6.74910 6.98326
Standard Deviation (s) 0.07752 0.02644 0.04407
Overhead (%) 4.59173 7.43362 | 11.16100
Full user (s) 6.92828 7.20157 7.46502
Standard Deviation (s) 0.02821 0.03647 0.04229
Overhead (%) 10.82588 14.63612 | 18.82978
Full user and kernel (s) 7.06968 7.37097 7.84885
Standard Deviation (s) 0.02615 0.03128 0.04228
Overhead (%) 12.53670 17.33266 | 24.93972

as the profiling and tracing process stays relatively short,
the overhead of our method is acceptable. Usually, we never
trace and profile during a longer period for two reasons.

o Collecting events for a few executions of the graph is
enough to analyze the performance, as the output trace
shows a repeated pattern.

o A longer tracing and profiling session creates a very
large trace which is longer to post-process and visualize.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a profiling and tracing method
intended for dataflow applications using GPUs. We detailed
each part, collecting the events, post-processing the trace and
visualizing the results. We also showed that combining all the
information together can bring very useful insight. With that,
a user is able to understand the performance of an application
and detect bottlenecks, in order to optimize the application
and achieve better performance with the same hardware. We
demonstrated the efficiency of the method by implementing
it for the machine learning library TensorFlow and executing
several examples. As we have shown, a distributed execution
of a dataflow program on several machines can also benefit



TABLE VIL:

Benchmark : Convolutional Neural Network -
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CUDA

Mean time
Baseline (s) 14.52255
Standard Deviation (s) 0.02383
Dataflow (s) 14.63282
Standard Deviation (s) 0.06344
Overhead (%) 0.75930
CUDA API (s) 15.64714
Standard Deviation (s) 0.02333
Overhead (%) 7.74377
GPU events (s) 15.37674
Standard Deviation (s) 0.05243
Overhead (%) 5.88187
Full user (s) 15.83518
Standard Deviation (s) 0.08649
Overhead (%) 9.03860
Full user and kernel (s) 16.16528
Standard Deviation (s) 0.02145
Overhead (%) 16.58716

TABLE VIII: Benchmark : Convolutional Neural Network -
SYCL

Mean time
Baseline (s) 23.25167
Standard Deviation (s) 1.59658
Dataflow (s) 23.56750
Standard Deviation (s) 2.34649
Overhead (%) 1.35835
OpenCL API (s) 23.59335
Standard Deviation (s) 3.39059
Overhead (%) 1.46952
GPU events (s) 23.69699
Standard Deviation (s) 1.76584
Overhead (%) 1.91522
Full user (s) 23.87534
Standard Deviation (s) 1.81709
Overhead (%) 2.68227

from this work. Finally, the flexibility of the method and
implementation, as well as its open-source orientation, help
to use, adapt, improve and extend the work proposed in this

paper.

As future work, it will be interesting to implement the
method for other systems. For example, the signal processing
domain usually involves dataflow computation models with
several co-processing units like GPUs but also DSPs and
FPGAs. The post-processing and the visualization steps
could also be improved. First, all the processing of the trace
is single-threaded and implemented in Python. In order to
deal well with traces containing a larger number of events,
we could improve these scripts using a more appropriate
language like C or C++ and some parallelism. In terms of
visualization, new views could also be developed depend-
ing on the user needs and the application. Finally, some
additional work could be conducted on the GPU and the
distribution of the work on all its cores. Currently, no detailed
information is available about the different cores involved in
the computation of a GPU kernel; this could lead to new
optimizations.

this research possible.
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