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virtFlow: Guest Independent Execution Flow
Analysis Across Virtualized Environments

Hani Nemati∗, and Michel R. Dagenais†
Department of Computer and Software Engineering,

Polytechnique Montreal, Quebec, Canada
Email: {∗hani.nemati,†michel.dagenais}@polymtl.ca

Abstract—An agent-less technique to understand virtual ma-
chines (VMs) behavior and their changes during the VM life-
cycle is essential for many performance analysis and debugging
tasks in the cloud environment. Because of privacy and security
issues, ease of deployment and execution overhead, the method
preferably limits its data collection to the physical host level,
without internal access to the VMs. We propose a host-based,
precise method to recover execution flow of virtualized environ-
ments, regardless of the level of virtualization. Given a VM,
the Any-Level VM Detection Algorithm (ADA) and Nested VM
State Detection (NSD) Algorithm compute its execution path
along with the state of virtual CPUs (vCPUs) from the host
kernel trace. The state of vCPUs is displayed in an interactive
trace viewer (TraceCompass) for further inspection. Then, a new
approach for profiling threads and processes inside the VMs
is proposed. Our proposed VM trace analysis algorithms have
been open-sourced for further enhancements and to the benefit
of other developers. Our new techniques are being evaluated
with workloads generated by different benchmarking tools. These
approaches are based on host hypervisor tracing, which brings a
lower overhead (around 1%) as compared to other approaches.

Index Terms—Execution flow analysis, nested virtual machine,
performance analysis, tracing, reverse engineering.

I. INTRODUCTION

Virtualization is an emerging technology that enables on-
demand access to a pool of resources through a Pay as Use
(PaU) model. Sharing resources plays an important role in
cloud computing. Many enterprises are beginning to adopt
VMs in order to optimally utilize their resources. Despite its
merits, debugging, troubleshooting, and performance analysis
of such large-scale distributed systems still are a big challenge
[1].

This challenge often becomes more complicated when,
because of security issues, the infrastructure provider does
not have access to the VMs internally. Thus, in the case
of performance issues, the Infrastructure as a Service (IaaS)
provider cannot provide useful insight. Moreover, the IaaS
provider scheme could give the cloud user the ability of
managing and using their own hypervisor as a VM (Nested
VM). In this case, the diagnosis of added latency and response
time of Nested VMs is quite complex, due to different levels
of code execution and emulation.

Contemporary use of nested VMs is more for the purpose
of software scaling, compatibility, testing and security. In
addition, many network services may be virtualized (as the
main goal of NFV) and hosted on nested VMs. Software

as a Service (SaaS) providers are the best clients of nested
virtualization. SaaS providers encapsulate their software in a
nested VM on an existing cloud infrastructure (e.g., Google
Cloud and Amazon AWS). To show how recently nested VMs
are becoming important, we analyzed the latest commits for
KVM in the Linux Kernel (from Kernel version 4.9 to 4.10).
As the latest commits [2] show, 51% are directly related to
adding new features or improving performance for nested
VMs.

On the other hand, cloud applications become more com-
plex, where their workload may vary due to time and geo-
graphic location. Thus, cloud computing lets the end-users
scale resources quickly. For example, Figure 1 shows the
execution latency for the same workloads. As shown, the
execution time is not the same for each run (e.g., 342 ms,
699 ms, 351 ms). The average for 100 executions of the
same workload is 443 ms, with a standard deviation of 116
ms. As a real use case, we did the same experiment on
an Amazon EC2 t2.micro instance. In this experiment, the
maximum and minimum execution time were 786 ms and
448 ms, respectively. We expect the execution time for the
same workload should be almost the same. The execution
time for the same task is sometimes different and the VM
has the illusion of running all the time. To investigate the
cause of latency, we traced the VM, but we could not find any
meaningful information. In this case, the cause might be a
physical resource contention, on the host, which is not visible
by tracing at the VM level.

However, the analysis of the variation in response time of
VMs is quite complex due to the cost of monitoring, security
issues, and different levels of code execution. Hence, for
such a complex environments, there is a need to elaborate
more sophisticated techniques for performance analysis of
virtualized environments.

This paper proposes an efficient technique to analyze the
performance of any level of VMs, in any level of virtualization,
without internal access. We propose, implement, and evaluate
a technique to detect performance reductions along with many
useful metrics for analyzing the behavior of VMs. In particular,
we trace the host hypervisor to detect VMs and nested VMs
and the different states of their running processes and threads.
Our technique can investigate the root cause of latency in the
VM by just tracing the host. A massive amount of information
is buried under the vCPUs of the VMs. This information could



be revealed by analyzing the interaction between the host
hypervisor, VM hypervisors, and nested VMs. Our technique
leverages existing static tracepoints inside the host hypervisor
along with our new added tracepoint, to convert the tracing
information to meaningful visualization.

To the best of our knowledge, there is no pre-existing
efficient technique to analyze the performance of any level
of VMs in any level of virtualization. Notably, the required
technique should troubleshoot unexpected behavior of VMs
in any level, without internal access due to security issues and
extra overhead.
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Fig. 1: Execution latency (ms) for the same workload

Our main contributions in this paper are: First, our methods
limit their data collection to the physical host level, without
internal access to VMs. All the tracing and analysis parts are
hidden to the VMs and also nested VMs. As a result, VMs
and nested VMs are not being accessed during the analysis.
This is critical since, in most situations, due to security
reasons, accesses to the VMs are restricted. Second, our
analysis, which is based on host hypervisor tracing, enables
the cloud administrator to differentiate different states (e.g.,
Executing Nested VM code, Guest Hypervisor Code, and Host
Hypervisor Code) of nested VMs. Third, we propose a method
to detect different states of processes and threads, not only
inside the VMs but also inside nested VMs. This method
can profile processes and threads inside the VMs and nested
VMs. Fourth, we evaluate the cost of added overhead (around
1%) due to tracing the host and compare it to other existing
approaches.

Fifth, we experiment on actual software (e.g., Hadoop) to
study the behavior of VMs regarding the overcommitment
of resources and other possible problems. Furthermore, we
implemented different graphical views as follows: first, a
graphical view for vCPU threads from the host point of view.
It presents a timeline for each vCPU with different states of
the VM; second, we developed a graphical view for nested
VMs which shows the vCPU threads of nested VMs with its
level of code execution and states. Third, we implemented a

process view which shows the different states of threads, along
with the execution time for each.

The rest of this paper is organized as follows: Section
II presents a summary of other existing approaches for an-
alyzing and debugging VMs. Section III introduces some
background information about nested virtualization technology
and presents the different states of applications inside the
nested VMs and their requirements. Section IV presents the
algorithm used to detect nested VMs from vCPU threads of
the VM. It also explains how we can find the different states of
vCPUs of VMs and nested VMs. A new approach for thread
analysis inside the VMs, without tracing the guest OS, is
illustrated in this section. Section V presents our experimental
results along with the architecture used in our paper. We
also propose other methods for the performance analysis of
VMs and Nested VMs, and we compare these approaches
in terms of overhead, ease of use, and limitation, in section
VI. Section VII concludes the paper with directions for future
investigations.

II. RELATED WORK

In this section, we survey the available tools for monitoring
VMs and briefly propose an approach for using them to
analyze nested VMs.

Until recently, virtualization on commodity servers used to
be complex and slow due to machine emulation and on-the-fly
binary translation of privileged instructions. In due time, with
the introduction of Hardware-assisted virtualization (Intel-VT
and AMD-V), the overhead and complexity were reduced.
It allows the execution of non-privileged VMs directly on
the physical CPU. It also provides better memory and I/O
management for assigning I/O devices to VMs.

Nested VMs are also supported by Intel and AMD proces-
sors. There are two types of hypervisors that support Nested
VMs: those that are Closed source and those which are Open
source. Information about how Closed source hypervisors
(e.g., hyper-V and VMware’s hypervisor) work is not public.
VMware is one of the leading hypervisors. Workstation 8,
Fusion 4, and ESXi 5.0 (or later) offer nested virtualization.
The client can run guest hypervisors at level 1 [3]. As a result,
VMware supports one level of nested virtualization. Hyper-
V, like VMware, supports one level of virtualization. Some
hypervisors are Open source like Xen, and KVM. Nested VMs
were suppoprted on Xen since the introduction of HVM guest
in Xen 3.0. Similar to KVM, Xen supports one level of nested
VM [4]. Kernel-based Virtual Machine is one the most used
hypervisor and is well supported by Linux. It also supports
one level of nested virtualization.

CloudVisor [5] provides a transparent security monitor for
the whole VM by using a nested VM. It adds an extra layer to
the Virtual Machine Monitor (VMM) to intercept privileged
instructions and to protect the VM with cryptography. McAfee
Deep Defender [6] is another example of nested VM use.
For security reasons, it has its own Virtual Machine Monitor.
Furthermore, one of the features in Windows 7 for professional
and ultimate editions is the XP mode [7]. In this mode, a VM



runs Windows XP for compatibility reasons. Thus, Windows
7 users can execute Windows XP applications without any
change. Correspondingly, the XP mode will be run in a nested
VM if Windows 7 is running in a VM.

Ravello systems [8] has implemented a high-performance
nested virtualization called as HVX. It allows the user to run
unmodified nested VMs on Google cloud and Amazon AWS,
without any change whatsoever. Nested virtualization is also
being used for Continuous Integration (CI). CI integrates code,
builds modules and runs tests when they are added to the
larger code base. Because of security and compatibility issues,
the building and testing phases should be run in an isolated
environment. CI service providers can execute each change
immediately in a nested VM.

Several monitoring and analysis tools, like AWS Cloud-
Watch [9] and Cisco Cloud Consumption Service [10], have
been enhanced for practical use. Most of them are closed-
source and information about how they monitor VMs is a
secret. Based on our knowledge, there is no tool for debugging
and analyzing different levels of virtualization without internal
access.

AWS CloudWatch [9] is a closed-source performance mon-
itoring tool that can report CPU, Network, Memory, and
Disk usage for Amazon EC2 cloud. Ceilometer [11] is the
metering, monitoring and alarming tool for OpenStack. Both
tools provide basic metrics for physical CPUs like CPU time
usage, average CPU utilization, and number of vCPUs for each
VM. Although they could provide information for one level
of virtualization, in case of nested VMs they can not provide
any information.

Novakovic et al. [12] relies on some performance counters
and Linux tools like iostat for monitoring VMs. Linux pro-
vides some performance monitoring tools, such as vmstat and
iostat, which gather statistics by reading proc files. Parsing
the output data from these Linux tools adds overhead. In the
case where these tools for nested VMs are used, the added
overhead could be significant.

In [13] [14], the authors implemented guest-wide and host-
wide profiling, which uses Linux perf to sample the Linux ker-
nel running the KVM module. It allows profiling applications
inside the guest by sampling the program counter (PC) from
perf. After PCs are retrieved from perf, they are mapped to
the binary translated code of the guest to find out the running
time for each function inside the VMs. To have a more precise
profiler, the sampling rate should be increased, which causes
more overhead to the VMs. Khandual et al. in [15] presents
Linux perf based virtualization performance monitoring for
KVM. They benefit from counting the occurrence of different
events in the guest to detect anomalies. In their work, they need
to access each VM, which is not possible most of the time
because of security issues and overhead. While increments
to values of some event counters could be an indicator of a
problem in the guest, it cannot show the exact problem and
associated time. In [16], the authors developed a CPU usage
monitoring tool for KVM, relying on ”perf kvm record”. By
profiling all CPUs, they could monitor the CPU usage of VMs

and the total CPU usage of the hypervisor. In their work, they
needed to profile the guest kernel and host kernel at the same
time. They were capable of finding the overhead introduced
by virtualization for VMs as a whole, but they cannot measure
it for each VM separately.

Wang in [17] introduced VMon, monitoring VM interfer-
ence using perf. From all the available CPU metrics, they used
the Last Level Cache (LLC) as an indicator of over commit-
ment of CPU. They showed that LLC has a direct relationship
with performance degradation. LLC could be an indicator
of CPU over commitment for CPU intensive workloads, but
the result will be different when memory intensive tasks are
running in the VM. Analyzing nested VMs has been addressed
in [18]. They proposed a technique to analyze nested VMs
using hypervisor memory forensics. Their tool can analyze
nested VM setups and corresponding hypervisors but does not
provide any information about nested VMs states and their
execution.

PerfCompass [19] is the only trace-based VM fault detection
tool for internal and external faults. It can detect if the fault
has a global or local impact. As part of their implementation,
they trace each and every VM with LTTng [20]. The data is
eventually used to troubleshoot VMs and find out problems
like latency in I/O, memory capacity problems and CPU
capacity problems. Their approach, however, needs to trace
each VM, which significantly increases the overhead on the
VMs. Their approach can be ported to nested VMs by tracing
each nested VM. Nonetheless, as we will see in subsection
VI-A, the overhead of tracing nested VMs is much larger than
with our proposed method.

The work closest to ours, which motivated the research
presented in this paper, is presented in [21]. They proposed a
technique to investigate different states of VMs. The authors
could find the preempted VMs along with the cause of
preemption. In their case, they trace each VM and also the host
kernel. After tracing, they synchronize the trace from each VM
with that from the host. Then, they search through all threads
to find preempted threads. Biancheri et al. in [22] extended
multi-layer VM analysis. Although this work can be used for
nested VMs, the extra efforts required, (tracing the VMs and
Nested VMs, synchronizing the traces, finding preempted VMs
by searching all available threads in the host and VMs), are
all time-consuming.

Early results of this work are presented in [23] [24] [25].
In these papers, we propose a technique to understand the
behavior of up to one level of nested VMs. To the best of
our knowledge, there is no pre-existing efficient technique to
analyze the performance of any level of VMs. Our technique
could uncover many issues inside VMs without internal access.
Moreover, comparing our method with other possible solutions
shows less overhead, and ease of deployment in terms of
tracing, since it limits its data collection to host hypervisor
level.



III. VM AND NESTED-VM MACHINE STATES

Intel-VT (and similarly AMD-V) supports two operating
modes, root mode and non-root mode for executing hypervisor
code and VM code, respectively. Furthermore, non-privileged
instructions of VMs are executed as non-root mode, and
privileged instructions are executed as root mode (at a higher
privilege level). The transaction between root mode and non-
root mode is called Virtual Machine Extensions (VMX) transi-
tion. In each VMX transition, the environment specifications
of the VMs and the hypervisor are stored in an in-memory
Virtual Machine Control Structure (VMCS) [26].

Fig. 2: Two-Level VMs (Nested VM) Architecture for VMX

In the transition between root mode to non-root mode,
the state of the hypervisor is saved into VMCS and the
environment specifications of the VM are loaded. This is also
called a VM entry. On the other hand, in the transition between
non-root mode to root mode, the state of the VM is saved
into VMCS and the state of the hypervisor is loaded. This is
called a VM exit. The Exit reason is a field in the VMCS
that changes during a VM exit. It shows the reason for exiting
from non-root mode to root mode.

Figure 2 shows a two-level architecture for nested VMs. In a
two-level architecture, executing any privileged instruction by
level two (nested VMs) returns to the host hypervisor (L0). In
this case, the VM hypervisor (L1) has the illusion of running
the code of the nested VM (L2) directly on the physical CPU.
However, privileged instructions of nested VMs should be
handled by the highest privileged level. Since L1 is not the
highest privileged level, L0 handles it. As a result, whenever
any hypervisor level or VM executes privileged instructions,
the L0 trap handler is executed. This VMX emulation can go
to any level of nesting.

Usually, there is one pointer to a VMCS structure for each
vCPU (VMCS′01 in Figure 2) of each VM. However, for
two level of VMs, there are three VMCS structures for each
vCPU (VMCS12, VMCS02, and VMCS01 in Figure 2). The
VM hypervisor uses VMCS12 to contain the environment
specifications of vCPU of a nested VM. As we mentioned
before, the code of a nested VM can be executed directly
on the host hypervisor. In this case, the host hypervisor
prepares VMCS02 to save and to store the state of vCPUs
of nested VMs at each VM exit and VM entry. Moreover, the

host hypervisor creates VMCS01 to execute the code of the
VM hypervisor. From the host perspective, VMCS12 is not
valid (Called shadow VMCS), but the host hypervisor benefits
from that to update some fields in VMCS02 for each VMX
transition. For other vCPUs, there are other VMCS structures
that save the environment specifications of the vCPUs.

Figure 3 shows different states of a vCPU and the conditions
to reach those states. In both root and non-root states, the
vCPU is in running mode. In contrast, in the Preempted, Wait,
and Idle states, the vCPU is not executing any code. The
Preempted state is when the vCPU is being scheduled out by
the host CPU scheduler without notifying the guest OS. The
Idle state is when the vCPU is being scheduled out voluntarily
by sending the hlt signal from the guest OS. In the Wait state,
the vCPU thread is waiting for the physical CPU for being free
to schedule in. Figure 4 presents different states of a process
inside a two-level VM. In general, a process inside a two-
level VM could be in either of these states: host hypervisor
as VMX root (known as L0), VM hypervisor as VMX non-
root (known as L1), Nested VM as VMX non-root (known
as L2), Preemption in L1, Preemption in L0, Wait, and Idle.
Executing any privileged instruction causes a VM exit all the
way down to the host hypervisor. There are two possible ways
of handling any privileged instruction. Along the first handling
path, L0 handles the instruction and forwards it to L1. In this
case, L0’s code is executed in root mode and L1’s code is
run in non-root mode. Eventually, L1 handles the exit reason
and launches L2 in non-root mode. Launching or resuming a
VM in L1 causes an exit to L0. Then, L0 handles the exit
reason and launches the VM. Along the other possible path,
L0 directly forwards the control to L2. In this scenario, the
exit reason is transparent for L1, since it happens somewhere
else in the host hypervisor level [27]. A process of a nested
VM is in the Running mode when it is in the L0, L1, or L2

state. By contrast, the physical CPU is not running code of
a nested VM if its state is either Preemption L0, Preemption
L1, or Waiting state. This can add an unexpected delay to
nested VMs, since the nested VM user is not aware of being
preempted or waiting for a physical CPU. Figure 5 depicts the
states of a process inside a n-level nested VM. As shown, a
process could be preempted in any level of virtualization, and
privileged instructions in the code of Nested VMs could be
handled in any level of virtualization. Therefore, new states
for preemption in any level, and VMX non-root in any level,
are added to process state transitions.

IV. NESTED VM ANALYSIS ALGORITHMS

In this section, we propose three algorithms to analyze VMs.
First: Any-Level VM Detection Algorithm (ADA) to detect
nested VMs, at an arbitrary depth from the vCPU thread of a
VM. Second: Nested VM State Detection (NSD), to uncover
the different states of vCPUs for the nested VMs. Third: Guest
(Any-Level) Thread Analysis (GTA) which is a thread-level
and process-level execution time profiling algorithm.

Our algorithms analyze some events that are collected by
tracing the host hypervisor. Tracing is a very fast system-wide



Fig. 3: Virtual Machine Process State
Transition

Fig. 4: Two-Level VMs Process State
Transition
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Fig. 6: vCPU states using different algorithms

TABLE I: Sequence of events from the host related to Figure
6

# Event Payload
1 wake up comm=vcpu thread
2 sched switch comm=vcpu thread, pCPU=0
3 vm entry vcpu = 0, CR3 = cr3, SP = sp
4 vm exit exit = exit reason
5 vm entry vcpu = 0, CR3 = cr3, SP = sp’
6 vm exit exit = vm resume
7 vm entry vcpu = 0, CR3 = cr3’, SP = sp”
8 vm exit exit = exit reason
. . .
. . .
. . .
20 vm exit exit = hlt
. . .
. . .
. . .
26 vm exit exit = hlt

logging mechanism. An event is generated by the tracer when
it encounters an enabled tracepoint at run-time. Events can
carry some information like a timestamp and a payload. The
payload holds extra information about an event. For example,
the payload of a context switch event contains the pCPU and
name of the two switched tasks. A timestamp is recorded as
time of an event, upon encountering the tracepoint.

A. Any-Level VM Detection Algorithm (ADA)

In this subsection, we propose an algorithm to detect
execution flows for arbitrary depths of nesting from the vCPU
thread of a VM in the host. Before introducing Any-Level VM
Detection Algorithm (ADA), we explain a very simple VMX
root and non-root state detection algorithm called as Entry-
Exit Algorithm (EEA). Executing any privileged command
in the VM (in any level) causes an exit to the hypervisor
host (VMX root or L0) which is labeled as vm_exit event.
After handling the privileged command in VMX root mode,



the VM enters the VMX non-root mode which is called
as vm_entry event. EEA uses vm_entry and vm_exit
events to find out whether the code of the VM is running or
the code of the host hypervisor. This algorithm is simplistic
and could not detect other virtual levels. Figure 6 shows an
example of EEA algorithm using the events from L0 (EEA-
L0). The states are built using the sequence of events which
are shown in Table I. The wake_up event shows that vCPU0
is woken up and it goes to the Wait state. The next event
is sched_switch, which shows that the vCPU0 is being
scheduled in and the state changes to L0 (VMX root). When
receiving the vm_entry event, the state changes to L1 (VMX
non-root) and then vm_exit changes the state to L0. This
algorithm could not reveal if the VMX non-root mode is L1,
L2, L3, etc.

In another example, we use the events from the VM in level
1 and then run the EEA algorithm. The result of this example
is shown in Figure 6 as EEA-L1. As shown, the states are
built incorrectly since the exit from L2 goes directly to L0,
and L1 does not receive any event.

Using the ADA algorithm, the exact level of code execution
can be detected. The ADA algorithm is illustrated with an
example in Figure 6. When receiving the sched_switch
event, the vCPU status goes to L0. The vm_entry event
changes the status to L1 and the CR3 value of the guest is
stored as the expected hypervisor CR3. CR3 points to the
page directory of a process in any level of virtualization,
and could be used as an unique identifier of a process. The
next event, vm_exit, modifies the status of vCPU to L0
and, since the exit reason is not vm resume, it pops the CR3
value from expected hypervisor stack. Upon receiving the 5th
event, the vCPU status changes to L1 again. The vm_exit
with exit reason vm resume shows that the VM is running
a nested VM inside. In this case, the expected hypervisor
CR3 is marked as the CR3 of the hypervisor in L1. The next
vm_entry(Event #7), changes the status of vCPU to L2. As
mentioned, executing any privileged instruction in any level
of nested VM causes an exit to L0. Therefore, the vm_exit
modifies the vCPU state to L0. The algorithm uses the marked
CR3 to distinguish between L1 and L2.

The pseudocode for the ADA algorithm is depicted in
Algorithm 1. The ADA algorithm receives a sequence of
events as input and updates the vCPU state. In this algorithm,
we uses an array of List of hypervisors for level n. The
candidates[m] (m is the level of nesting available) variable
is an array of stacks which holds the hypervisor candidate for
level n. In case the event is wake_up, the state of the vCPU
is modified to the Wait state (Line 11). The most important
event, sched_switch, shows when a vCPU is running on
a pCPU. When a vCPU is scheduled in, it goes to the L0
state (Line 15) to load the previous state of the VM from
the VMCS. It also updates the lastCR3 hash map to unkown
(Line 16) since there is no previous process running on the
VM. In contrast, when a vCPU is scheduled out, it goes to
either the Idle state (Line 20) or the preempted state (Line 22).
The getLastExit(vCPU) function returns the last exit for

existing vCPU. If the last last exit is hlt, which means that
the VM runs the idle thread, the state will be modified as
Idle. In other cases of exit reason, it will be changed to the
preempted state. When receiving a vm_entry event, the state
of the vCPU is adjusted to VMX non-root state. First, it uses
the getCandidateLevel() function to find out the level
of entry. The getCandidateLevel() function uses CR3,
lCR3 (last hypervisor CR3), and a HashMap variable (levels)
to find out the level of code execution for CR3. It compares
CR3 with the available hypervisor lists in all levels to find
out if the CR3 belongs to an hypervisor. In case CR3 is not
found in the hypervisor list, it checks lCR3 to find out the
last level of code execution (Line 26). The last exit reason is
compared if it is VMRESUME or VMLAUNCH (Line 28).
If the condition is true, it means that the VM in level n is
running another VM. As a result, the last CR3 that was pushed
to the hypervisor candidate list will be popped (Line 30), and
will be added to hypervisors list in level n (Line 32). If the
condition is false, the CR3 will be pushed to the candidate
list for level n (Line 38). After calculating the level at the end
of this event the state of vCPU will be updated to Ln (Line
39). Receiving any vm_exit changes the status to L0 (Line
42). We implemented the proposed algorithm in TraceCompass
[28] as a new graphical view for vCPU threads inside the host,
and vCPUs inside the VM. The vCPU state is stored in a tree
shaped data based named State History Tree (SHT). In the next
section, we present the results of some experiments using the
ADA algorithm.

B. Nested VM State Detection Algorithm (NSD)

As mentioned in the previous section, each vCPU could be
in one of VMX root, VMX non-root Lk, Preemption Lk, Wait,
or Idle states. Among the aforementioned states, only in the
VMX non-root Ln (n is the last level of code execution) state
is the actual code of the nested VM being executed directly on
a physical CPU. Other states increase completion time of the
task inside a nested VM. As a result, finding these states lets
the cloud administrator diagnose their VMs and nested VMs
better. When a VM or nested VM does not have any code to
execute, it exits with the hlt exit reason. If and only if a VM or
nested VM is scheduled out from a pCPU without exiting with
the hlt reason, it implies preemption. By observing where this
preemption occurs, we are able to distinguish whether it was
preempted by the scheduler of the VM or host. For example,
in Figure 6, event #20 (vm exit) with exit reason hlt shows
that the process inside the nested VM does not have any code
to run, and the scheduler of the VM runs the idle thread (Event
#26). As a result, the scheduler of the host schedules out the
vCPU thread from the pCPU.

The Nested VM State Detection (NSD) algorithm is shown
in Algorithm 2. The Ln preemption detection happens when
the NSD receives the vm_entry event. It first inquires
whether the CR3 value is a CR3 of the process, and if it
was changed or not (Line 14). If the condition is true and the
last exit reason is not hlt, the vCPU is being preempted by
another process in Ln. Using the NSD algorithm, the cloud



Algorithm 1: Any-Level VM Detection Algorithm (ADA)
Input : Trace T
Output: State of vCPUs

1 Initialization
2 VCPUs ←− {inital tid}
3 HashMap levels, lastCR3;
4 List hypervisorsList[m] ;
5 Stack candidates[m];
6 Main Procedure
7 for all event e ∈ T do
8 j = getVMvCPU(e.tid);
9 if e.type is wake up then

10 if tid == vCPU tid
j then

11 vCPUState
j = Wait ;

12 else if e.type is sched switch then
13 k = getVMvCPU(prev tid);
14 if next tid == vCPU tid

j then
15 vCPUState

j = L0 ;
16 putLastCR3(vCPU tid

j ,unknown);
17 if prev tid == vCPU tid

k then
18 last exit = getLastExit(vCPU tid

k ) ;
19 if last exit == hlt then
20 vCPUState

k = Idle ;
21 else
22 vCPUState

k = Preempted L0
23 else if e.type is vm entry then
24 last exit = getLastExit(vCPU tid

j ) ;
25 lCR3 = getLastCR3(vCPU tid

j ) ;
26 n = getCandidateLevel(CR3,lCR3) ;
27 hypervisors = getHypervisorsList(n);
28 if last exit == VMRESUME or VMLAUNCH

then
29 cHyperviors = getCandidateStack(n);
30 hCR3 = cHyperviors.pop();
31 if !hypervisors.contains(hCR3) then
32 hypervisors.add(hCR3) ;
33 putHypervisorList(n,hypervisors) ;
34 levels.put(hCR3,n);
35 levels.put(CR3,n+1) ;
36 n ++;
37 if !hypervisors.contains(CR3) then
38 putCandidateStack(n,CR3) ;
39 vCPUState

k = Ln ;
40 else if e.type is vm exit then
41 putLastExit(vCPUj , exit reason) ;
42 vCPUState

j = L0 ;

43 Utilities
44 Function getCandidateLevel(currentCR3, lastCR3):
45 int n;
46 if lastCR3 == unknown then
47 n = 0;
48 else
49 n = levels.get(currentCR3);
50 return n;

infrastructure provider could detect if the VM in any level is
being preempted, by another VM or process in any level of
nested virtualization.

Algorithm 2: Nested VM State Detection (NSD) Algo-
rithm
Input : Trace T
Output: State of vCPUs

1 Main Procedure
2 for all event e ∈ T do
3 j = getVMvCPU(e.tid);
4 if e.type is sched switch then
5 else if prev tid == vCPU tid

j then
6 last exit = getLastExit(vCPU tid

j ) ;
7 if last exit == hlt then
8 vCPUState

j = Idle ;
9 else

10 vCPUState
j = Preempted L0 ;

11 else if e.type is vm entry then
12 lCR3 = getLastCR3(vCPU tid

j ) ;
13 last exit = getLastExit(vCPU tid

j ) ;
14 if last exit != hlt and lCR3 != CR3 then
15 n = levels.get(CR3);
16 vCPUState

j = Preempted Ln ;

C. Guest (Any-Level) Thread Analysis (GTA)

As we mentioned in the previous section, in each transition
between root mode and non-root mode, the processor state
is saved in the VMCS fields. The guest state is stored in
the guest-state area in each vm_exit and is loaded from
the guest-state area at each vm_entry. Also, the host state
is retrieved at each vm_exit. The instruction pointer (IP),
stack pointer (SP) and control registers (CR) are some of the
registers that are modified during each transition in the VMCS
guest-state area.

The process identifier (PID) and process name of each
thread inside the guest are not directly accessible from host
tracing. The only information which can be uncovered by host
tracing about the threads inside the VMs is written in CR3
and SP. CR3 and SP can identify the process and thread,
respectively. Indeed, CR3 points to the page directory of a
process in any level of virtualization. All threads of a process
use the same page directory, therefore switching between two
threads within the same process does not change the CR3
value. SP points to the stack of the thread inside the VM.
As a result, by retrieving these two identifiers, we can find
out which thread is executing on a vCPU. To have more
information about threads inside the VMs or Nested-VMs, we
need to map CR3 and SP to the PID and process name. This is
not strictly necessary, since CR3 and SP are unique identifiers
of threads, but it is more convenient and human readable if we
can map the process info inside the guest with the information
we get from the vm_entry trace point.



The Guest (Any-Level) Thread Analysis (GTA) is illustrated
in Algorithm 3. When the event is vm_entry, the stack
pointer and CR3 of that thread are gathered from the VMCS
guest state, and the process information of the VM is updated.
If the mapping information from the VM is available, the CR3
and SP values are converted to the name of the process and
threads (Line 9). With vm_entry and vm_exit events, it
queries the state of the vCPU to update the state of the process
and thread running on that vCPU (Line 6,13).

Algorithm 3: Guest (Any Level) Thread Analysis (GTA)
Input : Trace T
Output: State of Processes

1 Main Procedure
2 for all event e ∈ T do
3 j = getVMvCPU(e.tid);
4 if e.type is vm entry then
5 n = getProcessLevel(CR3,lCR3) ;
6 Status = Query the status of vCPUj ;
7 ProcessCR3

n = Status ;
8 if Mapping == TRUE then
9 Map SP and CR3 with process memory map

of VM ;
10 Change the status of Thread to VMX

non-root ;
11 else if e.type is vm exit then
12 n = getProcessLevel(CR3,lCR3) ;
13 Status = Query the status of vCPUj ;
14 ProcessCR3

n = Status ;
15 if Mapping == TRUE then
16 Map SP and CR3 with process memory map

of VM ;
17 Change the status of Thread to Status ;

V. USE-CASES

This section covers a variety of known problems for the
VMs that our technique could detect. First, the GTA algorithm
is being evaluated to profile VM threads and processes. Then,
we evaluate our VM tracing technique for the case of detect-
ing issues for different resource types like CPU (subsection
V-C), Memory (subsection V-D), and I/O (subsection V-E).
Furthermore, different OS types (Linux and Windows) in VM
levels are being compared in terms of overhead.

A. Analysis Architecture

Our approach is independent of the Operating System
(OS) and could work on different architectures using Intel
or AMD processors. Due to good nesting support, we have
chosen KVM under the control of OpenStack, which is the
most commonly used hypervisor for Openstack [29]. Our
experiments with nested VMs is limited to one level of nesting
because of KVM. For the userspace part of the hypervisor,
we installed Qemu to execute the OS support for the VM.
We also use the same architecture for nested VMs and VM

hypervisors. Our architecture is shown in Figure 7. As we
can see, events are gathered by our tracer (LTTng) from the
host hypervisor first, and then the events are sent to the trace
analyzer (TraceCompass). Our experimental setup is described
in Table II. The Qemu version is 2.5 and the KVM module is
based on Linux kernel 4.2.0-27.

TABLE II: Experimental Environment of Host, Guest, and
NestedVM

Host Environment Guest
Environment

Nested VM
Environment

CPU Intel(R) i7-4790 CPU @
3.60GHz Two vCPUs Two vCPUs

Memory Kingston DDR3-1600 MHz,
32GB 3 GB 1 GB

OS Ubuntu 15.10 (Kernel
4.2.0-27)

Kernel
4.2.0-27

Kernel
4.2.0-27

Qemu v2.5 v2.5 -
LTTng v2.8 v2.8 v2.8

Host Kernel 
Trace

KVM Module 
Trace

LTTng

TraceCompass

Openstack

Virtual Machine

VM KernelKVM Module

Host KernelKVM Module

Nested
VM #1

Hardware

Nested
VM #n

Fig. 7: Architecture of our implementation

The analysis is performed according to the following steps
:

1) Start tracing on the host;
2) Run the VMs of interest;
3) Stop tracing;
4) Run the analyses;
5) Display the result in the interactive viewer;
Among the available Linux tracers, we choose a lightweight

tracing tool called the Linux Tracing Toolkit Next Generation
(LTTng) [20] due to its low overhead kernel and userspace
tracing facilities. Furthermore, in Linux, the KVM module is
instrumented with static tracepoints and LTTng has appropriate
kernel modules to collect them. Therefore, LTTng is particu-
larly suitable for our experiment, since it collects Linux kernels
and KVM module events with a low impact on VMs. We
also added our own tracepoint (vcpu enter guest) to retrieve
the CR3 and SP values from the VMCS structure, on each
VMX transition, using kprobe. After the relevant events are
generated and collected by LTTng, we study those with the
trace analyzer, as elaborated in the next subsection. The events
required for the analysis and the instrumentation method, along
with their name in LTTng, are shown in Table III.

We implemented our event analyzers as separate modules
in TraceCompass [28]. TraceCompass is an Open-source soft-



TABLE III: Events required for analysis

Category Event LTTng Event Method
scheduler sched switch sched switch tracepoint
scheduler wake up sched wakeup tracepoint
hypervisor vm exit kvm exit tracepoint
hypervisor vm entry kvm entry tracepoint
hypervisor vcpu enter guest kprobe

ware for analyzing traces and logs. It provides an extensible
framework to extract metrics, and to build views and graphs.

B. Thread-level and Process-level Execution Time Profiling

We implemented the GTA algorithm in TraceCompass as a
new graphical view for threads inside the VM. To examine our
algorithm, we wrote two C programs that calculate Fibonacci
numbers in a busy loop. We named them Fibo and cpu burn.
We used ssh to connect to the VM. The Fibo program is run
and, after 1 second, the cpu burn program is run. Figure 8
shows the resource view of the host and the VM thread view
at the same time. We see that first a vCPU thread runs on
pCPU1 and, after 1 second, another vCPU thread executes on
pCPU0. We traced the host hypervisor and we used the GTA
algorithm. The VM Thread view displays the threads running
on these two pCPUs at that time. We observe that the Fibo
program was running on pCPU1 and cpu burn was executing
on pCPU0. As this result shows, the GTA algorithm could
profile a process in a VM or Nested VM, without internal
access.

The analysis of our tool reveals that just enabling the
sched_switch tracepoint inside the guest adds almost 3%
overhead to the guest execution. We claim that our approach
adds a much lower, mostly negligible, overhead to the VM
when the process information is dumped once during the
whole trace.

C. CPU Cap and CPU Overcommitment Problem

Predicting VM workloads is a big challenge. Sometimes,
cloud users set the VM CPU cap too low, which causes inad-
equate CPU allocation. In another case, the cloud administrator
overcommits CPU resources and shares among too many VMs.
In both cases, these problems cause latency for the VMs. In
our first experiment (S1-DiffGrp), we use Hadoop to calculate
the nth binary digit of pi by using the Bailey Borwein Plouffe
(BBP) formula. Any digit of pi can be calculated by BBP
without calculating prior numbers. Therefore, calculating pi
could be split into different tasks and could be mapped to
several nodes. We conducted our experiment on a cluster
where each VM had 2 vCPUs with 3 GB of memory. One VM
is designated as master and 3 VMs are configured as Slave.
All VMs are assigned to different resource groups in order
to reduce the interference between VMs. In our experiment,
each resource group had 2 physical CPUs (pCPU) and 6 GB
of memory. The Hadoop version was 2.7 and Java version
was 8. We used the YARN framework for job scheduling
and resource management, and the Docker Container Executor
(DCE) to allow the YARN NodeManager launching YARN

containers and running user code. During our experiment,
the Hadoop resource manager created 8 containers on each
slave node and the Hadoop application manager submitted
8 tasks to each of them. A job to calculate 500 digits of
pi is submitted and is split into 24 maps. We realized that
sometimes the execution time for calculating pi is more than
expected. We investigated further and found out that node
VM-Slave 2 finishes its associated task after other nodes (the
application manager was in node VM-Slave 4). The same job
is submitted again and the host is traced with LTTng. In our
investigation with LTTng and NSD (shown in Figure 9), we
found that node VM-Slave 2 is using more CPU compared to
other VM-slaves. VM-Slave 2 is compared with VM-Slave 3
by looking at their processes (GTA Algorithm). Based on the
comparison, VM-Slave 3 had 8 active processes, but VM-Slave
2 had 9 active processes. Comparing processes of VM-Slave 2
and VM-Slave 3 shows that process with CR3 5263425536 is
not a Hadoop container and uses one CPU most of the time.
This process could be another application that is scheduled to
run at a specific time (e.g., update). In this scenario, Hadoop
containers should share vCPU with another application inside
the VM-Slave 2, which is the cause for the delay in finishing
associated task.

In the second experiment (S2-SameGrp), we used the same
configuration except that we put two VM-Slaves (VM-Slave
1 and VM-Slave 2) in the same resource group. We observed
that the tasks submitted to VM-Slave 1 and VM-Slave 2 took
more time to be completed (around 49% increase). The results
of S2-DiffGrp and S2-SameGrp are shown in Table IV. We
investigated the reason by using the NSD and found that VM-
Slave 1 and VM-Slave 2 are preempting each other most of
the time. The reason is that the tasks submitted to both VM-
Slaves were a CPU intensive job and VMs fought for existing
CPUs.

TABLE IV: Completion time for Hadoop VM-Slaves in dif-
ferent scenarios.

Scenario VM name Completion
Time (sec)

Usage
Time (sec)

Preemption
Time (sec)

VM-Slave 1 27.5 46.832 0.102
S2-DiffGrp VM-Slave 2 35.6 70.795 0.104

VM-Slave 3 26.7 49.144 0.238
VM-Slave 1 53.917 55.971 13.89

S2-SameGrp VM-Slave 2 53.328 53.532 13.47
VM-Slave 3 27.904 54.756 0.141

As discussed, preemption could happen in any level of
virtualization, which is a cause of latency. In this new scenario,
we show how our analysis could reveal unexpected delays
in nested VMs. For these experiments (S3-Nest1VM), we
configure our testbed as explained in section V-A. Sysbench is
set to run 60 times and compute the first 1000 prime numbers.
After each task execution, it waits for 600 ms and then re-
executes the task. We start a VM with two vCPUs and a nested
VM with two vCPUs inside. We pin the nested VM vCPUs to
the vCPU 0 of the VM and we pin the vCPUs of the VM to



Fig. 8: Control flow view of threads inside the virtual machine

Fig. 9: Three slaves running one submitted task- VM-Slave 2
responses late to each task

the pCPU 0 of the host. We do this to ensure that the code of
nested VMs executes on pCPU 0. As expected, the execution
time for the same task should be almost equal. On average,
the completion time for finding the first 1000 prime numbers
is 327 ms, with a standard deviation of 8 ms.

In the next experiment (S4-Nest2VM), we launch two
nested VMs in VM testU1. Both nested VMs have two vCPUs
that are pinned to vCPU 0 and vCPU 1 of the VM. The
rest of the configuration is kept the same as in the previous
experiment, with the exception of Sysbench executing in
the nested VM2, being configured to wait 1 sec after each
execution. We start Sysbench at the same time for both nested
VMs and we start tracing the nested VM1 with LTTng. In
our investigation with LTTng, we realized that the execution
time for the same task varied more than expected. Figure
10 shows the execution time for the same load. We see that
it varies between 339 and 661 ms. The execution time for
60 executions of the same load is 465 ms with a standard
deviation of 120 ms. To investigate the cause of the execution
time variation, we traced the host and used our NSD algorithm
to detect the different states of nested VMs. Figure 11 shows
the result of our analysis as a graphical view. By tracing only
the host, we first detect that the testU1 VM is running two
nested VMs. Then, we further find out when the code of each
nested VM is running on the physical CPU. By looking at the
view, we can infer that, during the execution, two nested VMs
are preempting each other several times. For more details, we
zoom in a section where the two nested VMs are preempting
each other, and can observe the events along with fine-grained
timing. This preemption occurs at the VM hypervisor level and

is more or less imperceptible by the host hypervisor.

In another experiment (S5-2VM1NestVM), we turn off one
of the nested VMs and launch two other VMs in the host.
The VMs and Nested VM are configured as before, except
that now we set Sysbench to wait 800 ms after each execution
in the VMs. Our investigation shows that the completion time
on average for 60 runs of the same load on the nested VM is
453 ms, with a standard deviation of 125 ms. We traced the
host hypervisor and exploit our NSD algorithm to investigate
the problem further. As Figure 12 shows, the nested VM
inside VM testU1 is being preempted. In this experiment, the
preemption occurs at the host hypervisor level, when VMs are
preempting each other.

In the next experiment (S6-2VM2NestVM), we launch
another nested VM inside VM testU1 (NestedVM 2). We also
start VM testU2 and set Sysbench to find the first 1000 prime
numbers, like in the previous experiment. In this experiment,
each VM and nested VM have one CPU and all CPUs are
pinned to pCPU 0. We start the test at the same time for
the VM and all nested VMs. As a result of this experiment,
we find that the completion time for the same task varies a
lot. On average, the execution time for each task takes 651
ms, compared to 327 ms in the first experiment. Moreover,
the standard deviation for 60 Sysbench runs was 371 ms. We
investigated the cause of this problem by executing the NSD
algorithm. Figure 13 shows that nested VMs were preempting
each other along with VM testU2. In this test, we have
preemptions from L0 and L1, which cause serious delays in
the completion time of tasks. It is worth mentioning that none
of these observed preemptions, at any level, are detectable with
conventional state-of-the-art tools.

There is a trade-off between CPU utilization and preemp-
tion. As CPU utilization increases, more preemptions occur.
IaaS providers wish to increase resources utilization to gain
profit while maintaining a high QoS to stay in the business.
Overcommitment of CPUs may cause serious latencies for
VMs. Therefore, preemption can be one of the most important
factors in the service level agreement (SLA) between the VM
user and the Cloud provider. Using our analysis, the cloud
provider could find out when preemption occurs and which
VM is preempting others more.



Fig. 10: Execution time of the prime thread (CPU view)

Fig. 11: Resource view of CPU for two nested VMs inside VM testU1 by host tracing - L1 Level Preemption

Fig. 12: Resource view of CPU for one nested VM inside VM testU1 preempted by testU2 by host tracing - L0 Level
Preemption

Fig. 13: Resource view of CPU for two different nested VMs inside VM testU1 preempted by VM testU2 and each other by
host tracing - L0 and L1 Levels Preemption

D. Memory Overcommitment Problem

In this section, we represent how overcommitting the mem-
ory could increase the latency in VMs. Real-time informa-
tion delivery, which uses in-memory storage, is an emerg-
ing topic that comes with cloud computing technology. In-
memory databases are faster than disk-optimized databases,
since access to memory is faster than disk. MemSQL, Redis,
and Memcached are examples of in-memory data storage.
Github, Twitter, and Flickr use different in-memory storage
applications on top of cloud infrastructures to deliver real-
time information to their users [30]. In this experiment, we
show the ability of our technique to detect memory problems.
Each vm_exit event has a reason, which is written in the

exit reason field. For example, if a syscall_read executes
in the VM, it causes a vm_exit with exit reason of 30, which
is I/O instruction [26]. The frequency of each different exit
reason contains a lot of information about the instructions
running in the VM. For example, a high frequency of exit
reason 30 shows intense I/O activity in a VM.
EPT violation is another vm_exit reason that changes the
state of the vCPU from VMX non-root to root. It occurs when
a VM attempts to access a page that is not allowed by the EPT
paging structure, known as a VM page fault. IaaS providers
overcommit virtual resources to maximize utilisation and thus
use fewer servers. However, sometimes overcommitting virtual
resources saturates the resources and causes some issues for



VMs. In order to find out frequent exit reasons, we wrote an
analysis that could determine the more frequent exit reasons
and the associated execution duration. This analysis can help
us to guess the behavior of the thread running in the VM and
uncover any undue latency.

The same architecture as described in section V-C is
being used for our new experiment. We wrote a C program
that writes random numbers into 1GB of memory, named
eat mem. This program executes frequently in VM1, VM2,
and VM3. We also wrote another program that randomly
executes a small CPU intensive task inside VM4 and VM5.
Furthermore, in order to overcommit the memory, we
modified the eat mem program to use 25 GB of RAM in
the host. The result of our experiment is found in Table
V. We observed that VM1, VM2, and VM3 suffered more
from overcommitting the memory since they were executing
a memory intensive program. VM1, VM2, and VM3 were
executing eat mem for 1.5s in average, but 15% of their
time is wasted in average, because of overcommitting the
memory. Also, we can infer that VM1 is suffering more
from memory overcommitment. Our technique is also able to
detect memory overcommitment inside a VM. We could find
out memory overcommitment over any level of virtualization
by using the NSD algorithm.

TABLE V: Execution time for different VMs when the host
is suffering from Memory overcommitment.

VM name Execution
Time(ms)

Freq EPT
Violation

Violation
EPT Time(ms)

Percentage(%)

VM1 1329.0 3554 237.4 17.8
VM2 1834.5 18801 260.5 14.2
VM3 1332.4 15288 141.2 10.6
VM4 1169.1 0 0 0
VM5 1857.8 30 0.2 0

E. Overhead of Virtualization Layer for Different Types of
Workload

In this section, the latency added to the applications inside
a VM in any level is discussed. In addition, two possible ways
of handling any privileged instruction are studied. For the first
handling path, where L0 handles the instruction and forwards
it to L1, we wrote an application to read 32 sectors of the
disk. This type of workload is I/O intensive and needs nu-
merous interactions between the different virtualization layers.
For another possible path, where L0 handles the privileged
instruction and then directly executes the VM code, we used
our Fibo application to calculate 10000 Fibonacci numbers.
We execute these applications inside a VM and a Nested VM.
Figure 14 depicts the percentage of the elapsed time in the
different layers of virtualization. When a VM or a nested VM
runs a CPU-intensive job, the percentage of application code
executing is much higher than handling privileged instructions
(around 99%). As can be inferred from this figure, in this
case, the nested VM rarely exits to L0 and updates L1. In
contrast, the VM exits to L0 and then enters L1 to update the

necessary information when it is executing an I/O intensive
job. In average, in our experiment for a nested VM, our
application runs 26.31% of the time, and otherwise executes
code of different levels of the hypervisor (around 73%).
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Fig. 14: Overhead of Virtualization for different types of
workload

In another experiment, an RPC server and client are written
to experiment the effect of wake-up latency on applications
inside VMs and nested VMs. In this experiment, our RPC
server could accept any command from the RPC client and
executes it. The RPC client sends a sleep(0.1) command to
the RPC server to execute every 100 ms. This causes our RPC
server to run frequently. As Figure 15 shows, for a nested VM
the added overhead is higher than for a VM without nesting.
The reason is that different layers of virtualization need to be
updated.
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Fig. 15: Average wake up latency for Nested VMs and VMs

F. Overhead of Virtualization for Different Operating Systems

In this subsection, we present the results of virtualization
overhead imposed by different levels of virtualization, when
the OS in the VM is not Linux. The added overhead, imposed
by the different layers of virtualization is,

OVMj
=

n−1∑
i=0

TLi
(1)



Where TLi
is the elapsed time in different levels of hypervi-

sors. The utilisation rate of the application running inside the
VM is calculated in Equation 2. It is defined as the time when
the actual code of the VM is running divided by total time of
running an application on the pCPU.

UVMj
=

TLn∑n
i=0 TLi

(2)

In this experiment, we used Qemu-KVM as hypervisor. In
Qemu-KVM, two levels of nested virtualization are imple-
mented and the main thread of Qemu-KVM is responsible
for reacting to events that are dispatched to event handlers. If
the received event is an I/O event, the task will be submitted
to worker threads. Otherwise, the main thread wakes up
the vCPU thread and injects the event as an interrupt to
the vCPU. We tested our method for a simple C program,
named as Fibo, that calculates 10000 Fibonacci numbers. We
executed our Fibo program on one level of virtualization and
two levels of virtualization. Furthermore, to show that our
method works for any VM OS, we tested the Fibo program
on the Windows and Linux OS. We observed that running
the Fibo program on Windows takes more time than on
Linux, for both one level and two levels of virtualization. We
investigated this further with our thread analyzer and found
out that a specific thread named System is running periodically
inside Windows. The System process inside Windows OS is
responsible for handling interrupts. We also discovered that
the main thread of Qemu-KVM injects interrupts periodically
to the VM, and the System process inside Windows handles
it. Further investigation showed that the injected IRQ is the
timer interrupt which we did not observe when using Linux.
Newer Linux VM on the Qemu-KVM hypervisor uses the
kvm-clock as paravirtual clock device. When the guest starts,
it creates a memory page that shares the kvm-clock data
with the hypervisor. The hypervisor constantly updates the
clock data with the time information. Therefore, the guest
does not need to use a local APIC timer interrupt on each
CPU to generate the scheduler interrupt. Contrary to Linux
VM, Windows VM on KVM uses periodic RTC clocking
that requires interrupt rescheduling for time keeping. When
running Windows, this paravirtualization optimisation is not
programmed in Windows, and even if the VM is idle, the main
thread of Qemu-KVM injects timer interrupt almost every 15.6
ms. Otherwise, when a program is running, the main thread
of Qemu-KVM injects the timer interrupt more frequently. As
a result, more computing power will be wasted. We did this
experiment 10 times and the average of our results is depicted
in Table VI. In the case of Nested Windows, the VM frequently
exits from L2 to L1, and then, to resume the nested VM, it
goes to L1 to update VMCS12. The added overhead is mainly
because of the injected timer update interrupt. We can see that
the utilization rate decreases from 98.5% to 69.5% when we
use a nested Windows VM. Using nested VMs with Linux
for CPU intensive tasks does not add much overhead to the
execution of our jobs. As we observed, the nested VM adds
0.1% overhead to the execution of our Fibo program.

TABLE VI: Execution time for Fibo program on different
levels of virtualization and different Operating Systems.

Experiment TL0

(ms)
TL1

(ms)
TL2

(ms)
U
(%)

O
(ms)

Nested-Linux 18.779 4.728 1539.45 98.5 23.507
Nested-Windows 439.864 283.582 1653.62 69.5 723.446

VM-Linux 5.623 1512.18 - 99.6 5.623
VM-Windows 216.362 1569.1 - 88.1 216.362

Host 1508.75 - - 1 -

VI. EVALUATION

A. virtFlow Overhead Analysis

In this subsection, we compare two other existing ap-
proaches with the NSD algorithm in terms of added overhead
to the nested VMs.

The first approach is to trace the host and guest hypervisors
(L1L0) and then use the method that is proposed in [23].
Another technique is to trace both hypervisors and each
nested VM (L2L1L0) [22]. In both approaches, the cloud
administrator needs the authorization to access each VM and
Nested VM. Table VII presents the added overhead to the
nested VMs for the different algorithms. We configured the
Sysbench benchmark to study the overhead by running 60
times CPU, Disk I/O, and Memory intensive evaluations. To
evaluate the network overhead, iperf is being configured.
Then, we averaged all results, to avoid unexpected latencies
in our analysis. We enabled all the necessary events for
each analysis. It is worth mentioning that other approaches
need to access VMs and nested VMs, as compared to our
new proposed approach which is purely a host hypervisor-
based algorithm. As shown in the table, our approach adds
less overhead to the nested VMs, since it only traces the
host hypervisor. In the CPU, Memory, and Network intensive
workloads, we add negligible overhead. For the I/O intensive
evaluation, the overhead is 34.6 %, which is expected since
LTTng is also using the same Disk to store the trace. Indeed,
the performance of a disk degrades significantly when two
processes compete to access the disk, since each may have
an efficient sequential access load, but the mix of the two
becomes an inefficient seemingly random access load. This is
a well-known problem and using a separate disk for storing
the trace data is recommended whenever I/O bound processes
are being traced.

TABLE VII: Comparison of our approach and the other multi-
level tracing approaches in term of overhead for synthetic
loads

Benchmark Baseline L2L1L0 L1L0 NSD Overhead(%)
L2L1L0 L1L0 NSD

File I/O (ms) 546 809 773 735 48.2 41.5 34.6
Net I/O (GB) 50.2 12.7 33.3 48.2 28.65 6.72 3.98
Memory (ms) 497 505 503 502 1.6 1.2 1

CPU (ms) 334 351 340 339 4.9 1.8 1.4



B. Ease of Deployment

Our technique for analyzing VMs uses a few (four events)
host hypervisor tracepoints. Other available methods ( [22]
and [21]), trace each relevant VM and the host. In the
absence of a global clock, between the host and each VM,
a synchronization method must be used. A big challenge of
synchronization methods is that they need extra events in order
to be sufficiently precise. This adds extra overhead to the VMs
and host. It also increases the completion time for the analysis
part. Our method does not need any synchronization, since it
receives all the events from the same clock source in the host.
It could be implemented on other OS types, since it only needs
to enable the events illustrated in Table III.

C. Limitations

Our technique is limited to the host data, and guest OS
specific information is not accessible with our method. For
example, our technique could not detect a container in a VM,
but it could show it as a separate process using the GTA
algorithm. In contrast, other trace-based methods ( [22] and
[21]) provide more useful insights about running processes
and their interaction with the guest kernel.

VII. CONCLUSION

Nested virtualization is frequently used for software scaling,
compatibility, and security in industry. However, in the nested
virtualization context, current monitoring and analysis tools
do not provide enough information about VMs for effective
debugging and troubleshooting. In this paper, we address
the issue of efficiently analyzing the behavior of such VMs.
Our technique can detect different problems along with their
root causes in nested VMs and their corresponding VMs.
Furthermore, our approach can uncover different levels of
code execution among all the host and nested VMs layers.
Our approach is based exclusively on host hypervisor tracing,
which adds less overhead as compared to other approaches.
Our benchmarks show that the added overhead in our ap-
proach was around 1%. In contrast, the overhead of other
approaches ranged from 1.2 to 4.9%. We also proposed a way
to effectively visualize the different levels of code execution
in nested VMs along with their state. These graphical views
show the timing at high-resolution of all VMs and nested VMs
executions. Our technique is being tested for different types of
guest OS to investigate performance issues. As future work,
our current technique can be enhanced to further investigate
interferences between VM and nested VMs. It could be used
to understand the cause of waiting for each process inside the
VM. In addition, based on the extracted metrics, we could
group VMs and Nested VMs based on their behavior.
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