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Wait analysis of Virtual Machines using host kernel tracing

Hani Nemati∗, Geneviève Bastien†, and Michel R. Dagenais‡

Department of Computer and Software Engineering,
Polytechnique Montreal, Quebec, Canada

Email: {∗hani.nemati,†genevieve.bastien,‡michel.dagenais}@polymtl.ca

Abstract—An agent-less method to understand virtual ma-
chines (VMs) behavior its evolution during the VM life-cycle is
an essential task for IaaS provider. It allows the IaaS provider
to better scale the VMs resources by properly allocating the
physical resources. On the other hand, because of privacy,
security, ease of deployment and execution overhead issues,
the method presented limits its data collection to the physical
host level, without internal access to the VMs.

We propose a host-based, precise method to recover wait
states for the virtual CPUs (vCPUs) of a given VM. The
Wait Analysis Algorithm (W2A) computes the state of vCPUs
through the host kernel trace. The state of vCPUs is displayed
in an interactive trace viewer (TraceCompass) for further
inspection. Our proposed VM trace analysis algorithm has been
open-sourced for further enhancements and to the benefit of
other developers. Our new technique is being evaluated with
representative workloads, generated by different benchmarking
tools. These approaches are based on host hypervisor tracing,
which brings a lower overhead (around 0.03%) as compared
to other approaches.

Keywords-Virtual Machine; Performance Analysis; Wait
Analysis; Elasticity;

I. INTRODUCTION

Cloud computing is one of the latest revolution in com-
puting, where many computer services move from local
physical servers to the cloud environment. The diagnosis
of performance problems for the cloud environment is a
challenging problem, due to the different virtual layers and
the variety of applications. The isolation offered by VMs
provides some security benefits, such as reducing the threats
from buggy application to infect the system underneath.
Similarly, the system underneath also should not be able to
access the VMs because of safety and confidentiality issues.
As a result, for analyzing and debugging VMs, an agentless
mechanism is needed.

Agentless VM tracing, collects traces from the host hy-
pervisor without installing any tracing agent on each VM
- which makes the agentless approach easier to manage
than agent-based VM tracing. Tracing software installation
is only required on the host hypervisor. It also avoids the
additional overhead caused by each tracing agent in the
VMs. Anyway, most of the time, the cloud provider does not
have access to VMs internally due to user privacy. Therefore,
it cannot easily obtain any useful information for debugging
and troubleshooting.

Moreover, most applications need to dynamically adjust
the resource capacity based on their demand, and therefore
the Infrastructure as a Service (IaaS) provider should provi-
sion resources based on the VMs needs. Accordingly, there is
a need for a technique to understand the reasons for waiting
within VMs. Thus, the technique should do the analysis
from the host hypervisor, to be able to provision adequately
resources for the VMs. Scaling up or scaling down should
not be premature. The IaaS should be able to anticipate the
service needs.

The best way to anticipate the needed resources is to
investigate wait states for the VMs. The IaaS provider could
detect when and why a VM is waiting. A VM mainly waits
for four reasons. If the VM vCPU is woken up by a timer
interrupt, it indicates that a timer fired inside the VM. It
could be because of scheduler ticks, which means the VM
does not have anything to run. It also could be because of
a timer that an application sets. If the vCPU is woken up
by another vCPU, it indicates that a process was waiting for
another process. A vCPU could be woken up by network
interrupts. It shows that the VM is waiting for an incoming
packet. The VM could also wait for disk, when the vCPU
is woken up by a disk interrupt.

It is a difficult task to analyze a wait state that occurred
inside a VM. The reasons are multi-fold. First, in most
cases, the cloud provider does not have access to the VMs
due to high monitoring overhead costs and user privacy.
Secondly, the overhead of tracing inside VMs may cause
conflicts with applications.

Our main goal in this paper is to understand the wait time
for the vCPUs of a given VM, to investigate performance is-
sues and to provision resources capacity, in order to improve
response time. Our technique is mainly being developed for
IaaS providers that do not have access to the VM internally.
Host kernel tracing allows to find out the wait states for the
vCPUs. There is no need to modify the hypervisor in order
to get wait states. Since our technique only needs a few
tracepoints to be enabled, a low overhead can be achieved.

The contributions are as follows: First, An algorithm
based on host hypervisor tracing to detect wait states for
vCPUs. Second, A graphical view for vCPUs to display the
states of vCPUs, which can be used to study the behavior of
the VMs. Third, Experiments on actual software to study
the behavior of VMs, according to the waits for resources.



Forth, Agentless Performance Analysis method that adds
less overhead as compared to existing methods.

The rest of this paper is organized as follows: Section
II presents a summary of other existing approaches for
analyzing and debugging VMs. Section III explains the
algorithm used to detect wait states for the VMs from vCPU
threads of the VM. It also explains how we can find the
different states of the vCPUs of the VMs. Section IV states
our experimental results along with the architecture used
in our paper. We compare our approach with the existing
approach in terms of overhead in section V. Section VI
concludes the paper with directions for future investigations.

II. RELATED WORK

In this section, we survey the available techniques for
monitoring and debugging VMs.

Virtual Machine introspection (VMI) is a fine-grained
technique to analyze the running state of a VM from outside
of the VM. This technique has been used for security threat
analysis or simply to monitor VMs. VMI techniques scan
the VM memory space to extract useful information. For
example, they can parse kernel space memory to build a
process table map and combine it with the VMCS structure
to analyze the VM. LibVMI [1] is an open source library that
provides APIs for analyzing the memory space of the VMs.
Several VMI tools like [2][3] have been developed to detect
malware and security threats. The memory space analysis
is a time-consuming task and the overhead of analysis
increases when the VM memory space is large. On the other
hand, none of the VMI tools target performance analysis of
the VM in terms of resource usage and resource contention.

A technique to detect VM faults has been proposed in
[4]. They could investigate the local and global impact
of faults by tracing each and every VM with LTTng [5].
Their approach, however, needs to trace each VM, which
significantly increases the overhead on the VMs. Indeed, as
we will see in subsection V, the overhead of tracing VMs
is much larger than with our proposed method.

Performance counters and Linux tools like iostat have
been used in Novakovic et al. [6]. Linux provides some
performance monitoring tools, such as vmstat and iostat,
which gather statistics by reading proc files. Parsing and
analysing the output of these tools bring overhead to the
VMs.

A vCPU state detection algorithm based on host hyper-
visor is proposed in [7],[8], and [9]. They built different
states for the running processes and threads. Their technique
can investigate the root cause of latency for application
executions. In their approach, they do not provide any
additional information when the VM is Idle. In [10], a multi-
layers vCPU state detection has been proposed. Biancheri et
al. in [11] extended this to multi-layer VM analysis. In their
approach, VMs and the Host hypervisor should be traced,
which adds more overhead.

Table I
EVENTS AND THEIR PAYLOAD BASED ON HOST KERNEL TRACING

# Events # Events
1 wake_up(disk_thread) 10 sched_in(vCPU0)
2 sched_out(vCPU0) 11 sched_out(vCPU1)
3 sched_out(vCPU1) 12 inj_virq(vec2)
4 inj_virq(vec1) 13 sched_out(vCPU0)
5 sched_in(vCPU0) 14 inj_virq(vec3)
6 inj_virq(vec1) 15 sched_in(vCPU0)
7 sched_in(vCPU1) 16 inj_virq(vec3)
8 sched_out(vCPU0) 17 sched_in(vCPU1)
9 inj_virq(vec2) 18 inj_virq(vec4)

An adaptive SLA-based elasticity method has been pro-
posed in [12]. In their method, an end-to-end metric is used
to scale up and scale down the resources. Their method is
based on CPU scaling and does not provide any information
about the disks or the network.

The work closest to ours, which motivated the current
research, is presented in [13]. They proposed a technique to
find the active path for the threads along different machines.
The authors could refine the state for a preempted thread into
the wait for disk, wait for timer, wait for task or wait for
network states. In their case, they traced each VM. After
tracing, they synchronize the traces from each VM. Then,
they search through all threads to find the active path.

To the best of our knowledge, there is no pre-existing
efficient technique to analyze the state of the vCPUs. Our
technique can uncover many issues inside VMs without
internal access. Moreover, compared to other solutions, our
method offers less overhead and ease of deployment, in
terms of tracing, since it limits its data collection to the
host hypervisor level.

III. WAIT ANALYSIS ALGORITHM (W2A)

In this section, we propose an algorithm to understand
the wait states for the VMs using the host trace. Before
introducing the Wait Analysis Algorithm (W2A), we explain
a very simple algorithm to detect the running state for
vCPUs of a VM. This algorithm uses sched_out and
sched_in events to find out whether the VM is in the
Running or Idle State. Figure 1 ( top ) shows an exam-
ple of this algorithm using the events from Table I. The
sched_out event shows that the vCPU is scheduled out
from the physical CPU (pCPU) and goes into the Idle State.
The next sched_in event shows that the vCPU is being
scheduled in and the state changes from Idle to Running.
This algorithm is simplistic that cannot detect the reason of
Idle state for a specific VM.

Using the W2A algorithm, the exact reason for the Idle
state can be detected. W2A is illustrated with an example
in Figure 1. When receiving the sched_out event, the
vCPU sate goes to unknown. The key idea is that the event
indicating the cause of the Idle state is unknown a priori. The
interrupt later injected into the VM reveals the reason for



Figure 1. vCPU states using W2A algorithm

the Idle state. The vCPU can be woken up for the following
reasons. First, a process inside the VM sets a timer and
the time-out occurred (Timer Interrupt). Second, a process
inside the VM wakes up by another process (IPI Interrupt).
Third, a process inside the VM is woken up by a remote
task over a socket (Network Interrupt). Fourth, a process
inside the VM is waiting for the disk (Disk Interrupt). The
sched_in(vCPU0) event shows that vCPU0 is scheduled
in but the reason for being idle is still unknown. With the
inj_virq(vec1) event (the 6th event), the unknown state
changes to the Disk state, since vec1 is the irq vector for
the disk interrupt. The sched_in(vCPU1) scheduled in
the vCPU1 and the reason for being idle is unveiled when
receiving inj_vriq(vec2). As vec2 is irq the vector for
IPI interrupts, the unknown state changes to the Task state.
Other states are built by examining the injected interrupt,
when execution resumes (running state) for each vCPU.

The pseudocode for the W2A algorithm is depicted in
Algorithm 1. The W2A algorithm receives a sequence of
events as input and updates the vCPU state for each VM.
Event sched_in shows when a vCPU is ruuning on a
pCPU. When a vCPU is scheduled in, its state changes to
running (Line 2). In contrast, when a vCPU is scheduled out,
it goes to the unknown state (Line 4) which will be updated
later with the waiting cause. In case the event is inj_virq,
the vec field in this event is compared with the Task, Timer,
Disk, and Network interrupt number. The unknown state is
updated based on the vec number.

IV. USE-CASES

In this section, we evaluate our wait analysis technique for
analyzing the behavior of VMs and detecting related issues.

Algorithm 1: Wait Analysis Algorithm (W2A)

1 if event == sched in then
2 vCPUj = Running;
3 else if event == sched out then
4 vCPUj = Unknown ;
5 else if event == inj virq then
6 if vec == Task Interrupt then
7 Update Unknown State for vCPUj to Task;
8 else if vec == Timer Interrupt then
9 Update Unknown State for vCPUj to Timer;

10 else if vec == Disk Interrupt then
11 Update Unknown State for vCPUj to Disk;
12 else if vec == Network Interrupt then
13 Update Unknown State for vCPUj to Network;

A. Analysis Architecture

We have chosen the Kernel-based Virtual Machine
(KVM), under the control of OpenStack, as experimental
setup. KVM is the most commonly used hypervisor for
Openstack[14]. For the userspace part of the hypervisor, we
installed QEMU to execute the OS support for the VM.
Our architecture is shown in Figure 2. As we can see,
events are gathered by our tracer (LTTng) from the host
hypervisor first, and then the events are sent to the trace
analyzer (TraceCompass). For the prototype implementation
on Linux, we used LTTng as the tracer. The host kernel
and KVM module are instrumented by different static trace-
points. LTTng gathers the events from the KVM module and
kernel space, and sends them to the analyzer. Trace Compass
is an open source software for analysing traces and logs.



It has some pre-built views, especially for LTTng [15]. We
prototyped our wait analysis tool as a separate view in Trace
Compass.

For our analysis, two events should be enabled in LT-
Tng: sched_switch to find out the running states and
kvm_inj_virq to update the wait states. Our experimen-
tal setup is described in Table II. The analysis is performed
according to the following steps: 1) Start LTTng on the host.
2) Run the VMs of interest. 3) Stop LTTng. 4) Run the
analyses. 5) Display the results in Trace Compass.

Table II
EXPERIMENTAL ENVIRONMENT OF HOST, AND GUEST

Host Environment Guest
Environment

CPU Intel(R) i7-4790 CPU @
3.60GHz Two vCPUs

Memory Kingston DDR3-1600 MHz,
32GB 3 GB

OS Ubuntu 15.10 (Kernel
4.2.0-27)

Ubuntu 15.10
(Kernel 4.2.0-27)

Qemu v2.5 v2.5
LTTng v2.8 v2.8

Figure 2. Architecture of our implementation

B. Use-Case 1

In the first experiment, a Remote Procedure Call (RPC)
server and client are written to experiment the effect of
waiting for network for a RPC server and client. The RPC
client sends a command to the RPC server to calculate 1000
Fibonacci numbers and executes every 10 ms. We use the
tc traffic shaper to manipulate the traffic control settings.
The traffic shaper is applied to the virtual network interface
to increase the network latency by 5 ms. Figure 3 shows
the graphical representation of the vCPU state. The green
intervals indicate the running state for vCPUs and the purple
intervals are network waits. Our vCPU view also depicts
that, after receiving the response from the RPC server, the
RPC client sets a timer for 10 ms.

We also observed the effect of the network delay on the
RPC server and client. The RPC client waits for 10 ms for
the network to receive the response (5 ms delay of RPC

client network + 5 ms delay of RPC server network). The
RPC server waits for 20 ms to receive the new request from
the RPC client (5 ms delay of RPC client network + 5 ms
delay of RPC server network + 10 ms timer between each
request).

In another experiment, the RPC server and RPC client are
executed when there is natural network latency. Since both
VMs are on the same host, the latency between the two VMs
is less than 1 ms. Figure 4 depicts the state of vCPUs for
both VMs. As shown, the RPC client receives the response
from the RPC server immediately and does not wait for the
network. The RPC server waits for 10 ms to receive the new
request, since the RPC client sends a new request every 10
ms.

Figure 3. Wait analysis of vCPU with network issue

Figure 4. Wait analysis of vCPU without network issue

C. Use-Case 2

Most Cloud providers like Amazon limit the resource us-
age for each VM in order to prevent important performance
reductions due to sharing resources. For example, the I/O
size is capped at 256 KiB for SSD volumes and 1024 KiB
for HDD volumes in Amazon EC2 instances, with a certain
number of I/O operations per second allowed [16]. There
is a trade-off between setting resource limits too low and
too high. When the resource limit is too low, the VM waits
for the resource most of the time. By contrast, setting a high



resource cap could cause resource contention with other VM
instances. In this subsection, we analyze these two cases and
present how our technique could detect these issues.

In the first experiment, the Linux dd command has been
used to write a random file to the disk. The host is traced
by LTTng and our technique is used to detect the wait time
for the vCPU. The results showed that vCPU of the VM is
waiting all the time for the disk. In this case, the disk I/O
was limited to read and write 2048 kB/s. Figure 5 shows
that the vCPU is waiting for the disk to finish. In another
experiment, the Linux dd command is executed in two VMs
at the same time to write a random file to the disk. The host
is being traced and the result is shown in Figure 6. As the
graphical view shows, the two VMs are waiting for disk and
there is contention between the two VMs in order to use the
shared disk.

Figure 5. Wait analysis of vCPU for a slow disk

Figure 6. Wait analysis of vCPU when there is resource contention between
two VMs

D. Use-Case 3

In this subsection, Linux kernel 4.13 is being compiled
with different make targets and the VMs boot-up is being
analysed. We have added two vCPUs to our VMs (4 vCPUs)
in order to better show the effect of waiting for resources.
In the first experiment, the Linux kernel is being compiled
with the allmodconfig target. The allmodconfig target creates
a kernel configuration with all possible modules. It builds
a heavyweight Linux kernel and the boot-up time increases
significantly. As Figure 7 shows, the total boot-up time for
this non-optimized kernel is 50.15 sec. Since the kernel is
very large, the vCPU waits for the disk for 13.51 sec and

also waits for other tasks to finish their job for 49.55 sec
(for 4 vCPUs). Moreover, waiting for the timer consumes
69.74 seconds, since nothing is executed and scheduling-
clock ticks are needed. There are some unknown states for
the vCPUs that our technique could not detect because it
is in the early stage of boot-up (before launching the init
process). In this boot-up step, there is no device assigned
to the VM. As a result, our technique could not detect the
vCPU state.

In another experiment, the Linux kernel was compiled
with the localmodconfig target. The localmodconfig target
usually discovers the kernel minimal useful configuration
and disables any module that is not being loaded. In this
case, the Linux kernel is lighter (semi-optimized) and it
boots up faster. As shown in Figure 7, the boot-up time,
wait for disk and wait for task are 15.6 sec, 7.07 sec and
16.66 sec, respectively.

In another experiment, the VM with optimized kernel is
moved to a Solid-State Drive (SSD). As expected, on a
SSD drive, the VM boots up faster (5.22 sec) because of
the shorter disk wait. As the results show, the larger kernel
increases the boot-up time mostly because of waiting for
I/O. Figure 7 depicts that more I/O waiting implies more
waiting for task, and as a result more waiting for timer.

Using W2A, the IaaS provider could tune the allocated
resources based on VM needs. They could find out the
reason for waiting and solve the issue by provisioning that
specific resource.
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Figure 7. Wait analysis of VM boot-up

V. ANALYSIS COST

In this section, the overhead of W2A is compared with the
Critical Path Analysis (CPA) as proposed in [13]. In order to
compare the two approaches, we enabled the tracepoints that
were needed for the CPA approach, and we traced the VMs.
Also, it is worth mentioning that our new W2A algorithm
needs only to trace the host. As shown in Table III, the



Table III
MY CAPTION

Benchmark Baseline CPA W2A Overhead
CPA W2A

File I/O (ms) 450.92 480.38 451.08 6.13% 0.03%
Memory (ms) 612.27 615.23 614.66 4.81% 0.01%
CPU (ms) 324.92 337.26 325.91 3.65% 0.30%

critical path analysis approach adds more overhead in all
tests, since it needs to trace the VMs. We used the Sysbench
benchmarks to reveal the overhead of both approaches, since
sysbench is configured for Memory, Disk I/O and CPU
intensive evaluations. Our approach has negligible overhead
for CPU and Memory intensive tasks at 0.3% or less.

VI. CONCLUSION

Widespread study and deployment of performance anal-
ysis for VMs has led to the deployment of different ap-
proaches to debug and troubleshoot the VMs. However, for
the wait analysis in the context of VMs, the current moni-
toring and analysis tools do not provide enough information
about VMs for effective debugging and troubleshooting. In
this paper, we address the issue of efficiently analyzing the
behavior of such VMs. Our technique can detect different
wait states along with their root causes. Our approach is
based exclusively on host hypervisor tracing, which adds less
overhead as compared to other approaches. Our benchmarks
show that the added overhead in our approach was around
0.3%. In contrast, the overhead of other approaches ranged
from 3.65 to 6.13%. We also proposed a way to effectively
visualize the different states of vCPUs for the VMs. This
graphical view shows the timing at high-resolution for all the
VM executions. Our technique has been tested for different
types of workload to investigate performance issues. As
future work, our current technique can be enhanced to
further investigate interferences between VMs and predict
the exact amount of desirable scale up or scale down for the
resources.
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