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VM Processes State Detection by Hypervisor Tracing

Hani Nemati∗, and Michel R. Dagenais†

Department of Computer and Software Engineering,
Polytechnique Montreal, Quebec, Canada

Email: {∗hani.nemati,†michel.dagenais}@polymtl.ca

Abstract—The diagnosis of performance issues in cloud
environments is a challenging problem, due to the different
levels of virtualization, the diversity of applications and their
interactions on the same physical host. Moreover, because of
privacy, security, ease of deployment and execution overhead,
an agent-less method, which limits its data collection to the
physical host level, is often the only acceptable solution.

In this paper, a precise host-based method, to recover wait
state for the processes inside a given Virtual Machine (VM), is
proposed. The virtual Process State Detection (vPSD) algorithm
computes the state of processes through host kernel tracing.
The state of a virtual Process (vProcess) is displayed in an
interactive trace viewer (Trace Compass) for further inspection.
Our proposed VM trace analysis algorithm has been open-
sourced for further enhancements and for the benefit of other
developers. Experimental evaluations were conducted using a
mix of workload types (CPU, Disk, and Network), with different
applications like Hadoop, MySQL, and Apache. vPSD, being
based on host hypervisor tracing, brings a lower overhead
(around 0.03%) as compared to other approaches.

Keywords-Wait Analysis, Virtual Process, Virtual Machine,
Cloud, Performance Analysis

I. INTRODUCTION

Cloud computing has been a vector for innovation, pro-
viding much better flexibility and greater resource uti-
lization effectiveness, as compared to traditional computer
systems organizations. It reduces hardware capital expenses
by sharing existing resources among co-located VMs. The
modularity of VMs also increases reliability by symplifying
backup, redundancy and disaster recovery. It provides good
performance by more easily upgrading to the latest genera-
tion of hardware[1]. However, cloud users may experience
difficult to diagnose performance degradations. The reasons
for application performance degradation, when running on
a VM, can be categorized as follows.

1) Heavy load of an application inside the VM.
2) Contention with other applications inside the VM.
3) Contention with other co-located VMs.
4) Cloud platform failures.

The first reason is when a process brings a heavy load
but the VM does not have enough resources. It increases
the wait time for those resources. If it only impacts the
processes inside the VM, we categorize this as a local
impact. Conservative resource booking is a technique to
mitigate the impact of heavy load in a VM, but it could
waste resources if they remain unused. As result, it increases
the costs for the cloud provider.

The second reason is when two or more processes within
a VM compete for resources. This leads to processes slow-
downs inside the VM but may not have a global impact on
other co-located VM. In these first two cases, the owner of
the VM should ask for more resources or ask for an elastic
VM. An elastic VM enables the VM to increase or decrease
its capacity (e.g. number of cores, memory) based on its
needs, in order to optimize the response time and minimize
the cost. On the other hand, having an elastic VM is more
challenging and complex to manage.

The third case is when two or more VMs share the same
resources. Cloud users may experience a performance degra-
dation due to resource contention and interference between
VMs. Interferences between VMs manifest themselves as
latencies in response time of processes inside VMs.

The fourth case is when there is a hardware failure in the
a physical machine. It impacts all the VMs at the same time
and causes performance degradation on all VMs using the
same hardware.

The first two cases could be managed by the owner of
the VM, since he has access to the VM and knows the
behaviour of the processes. The other cases need to involve
the infrastructure provider. The problem is that each user
does not know anything about the virtualization layer, and
many issues, even for the first two cases, could happen
because of the virtualization layer. Thus, there is a need
for a technique to detect all four cases from the host side
and to find out whether the problem has a global or local
impact.

The best way to anticipate the needed resources is to
investigate the significant processes inside the VM and
analyze their needs. The significant processes are the ones
which use the most resources, compared to other processes.
Then, the IaaS provider could detect when and why a process
is waiting.

This paper focuses on the wait analysis of processes inside
the VMs, without accessing the VMs internally. The Virtual
Process State Detection (vPSD) algorithm is being intro-
duced and can detect the different states of a process inside a
VM. Our technique can inspect the buried information in the
vCPU thread and convert it to meaningful knowledge about
the processes running on the vCPU. It can detect when and
why a process inside the VM is waiting for a resource. It
also can find out the sensitivity of processes inside the VM
to a specific resource. We benchmarked our technique to find
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different issues for well-known applications (e.g., Hadoop,
MySQL, and Apache Web Server) with different resource
usage signatures.

Our main contributions in this paper are: First, we pro-
pose a fine-grained VM processes state analysis based on
host tracing. All the tracing and analysis phase is hidden
to the VMs. Therefore, there is no need for internal access
within VMs, which is not allowed in most situations because
of security reasons. Secondly, we use our technique to
identify different issues for well-known applications like
Hadoop TeraSort, MySQL, and Apache web server. Thirdly,
we implemented a graphical view for processes inside VMs.
Our graphical view presents a timeline for each process, with
different states along with their interactions with the Virtual
Machine Monitor (VMM).

The remainder of this paper is structured as follows.
Section II reviews the related work. Section III explains
different available states for the VM processes. In section
IV, we present the algorithm used to detect different states
of processes inside the VM. Section V demonstrates our
experimental results. We also compare our method with
other available methods in terms of overhead in sub-section
V-E. Section VI concludes the paper with directions for
future investigations.

II. RELATED WORK

In this section, we review the available techniques for
monitoring and debugging VMs.

Virtual Machine Introspection (VMI) is a technique to
analyze the memory of a given VM to detect the state of the
VM from outside. It has mostly been used for security thread
analysis or simple VM monitoring. LibVMI[2] is an open-
source library for analyzing the VM memory space. Other
VMI tools like in [3][4] have been used to detect security
threads. Analyzing memory space is time-consuming, espe-
cially if the memory space of the VM is large. On the other
hand, none of the VMI tools target performance analysis in
terms of resource usage and resource contention.

Yasuhiko in [5] proposed a performance monitoring tech-
nique for on-line applications. They sniff network packets to
estimate the application response time. This technique works
for the VMs which have network intensive applications. It
could not be applied for other types of VM workloads.

J. Taheri et al. in [6] introduced an approach to predict
the performance of virtual machine applications based on
hypervisor metrics. They use a sensitivity analysis of VMs
to cloud resources to predict their throughput. Their method
is based on monitoring the whole VM and does not provide
information about each process inside the VM. Furthermore,
it also could not show exactly when and why the VM is
waiting for a resource.

A technique to detect global fault and local fault has been
proposed in [7]. In this paper, resource over-commitment
could be detected by tracing each and every VM using

Figure 1. vProcess states

LTTng. As it is shown in sub-section V-E the overhead for
tracing each VMs is much more than with our proposed
method.

An adaptive SLA-based elasticity method has been pro-
posed in [8]. In their method, the IMS network Call Setup
Delay is being used as an end-to-end metric to scale up and
scale down the number of CPU cores and their frequency.
Their method is based on CPU scaling and does not provide
any information about the disks or the network.

The work closest to ours, which motivated the current
research, is presented in [9]. In this paper, they present
a technique to find the active path for the threads along
different machines. They could distinguish different states
like wait for disk, network, timer, and task. Their approach
could be applied for VMs but it would need to trace each
VM. Then, they have to synchronize the traces from each
VM to search through all threads and find the active path.

To the best of our knowledge, there is no pre-existing tech-
nique to analyze the state of the processes inside the VM.
Our technique can uncover many issues inside VMs without
internal access. Moreover, compared to other solutions, our
method brings less overhead, and simplifies deployment in
terms of tracing, since it limits its data collection to the host
hypervisor level.

III. VPROCESS STATES

Intel-VT (and similarly AMD-V) supports two operating
modes: Root mode and non-Root mode. Non-privileged
instructions of VMs are executed as non-Root mode, and
privileged instructions are executed as root mode (at a
higher privilege level). The transitions between root mode
and non-root mode are called Virtual Machine Extensions
(VMX) transitions. In each VMX transition, the environment
specifications of the VMs and the hypervisor are stored in an
in-memory Virtual Machine Control Structure (VMCS)[10].
By analyzing VMCS structures, a lot of information about
running VMs can be recovered.



Table I
EVENTS AND THEIR PAYLOAD BASED ON HOST KERNEL TRACING

(vec0 = Disk, vec1 = Task, vec2 = Net, vec3 = T imer)

# Events # Events
1 sched_out(vCPU0) 17 inj_virq(vec2)
2 sched_out(vCPU1) 18 enter_quest(CR3 P#4)
3 inj_virq(vec0) 19 inj_virq(vec0)
4 sched_in(vCPU0) 20 inj_virq(vec0)
5 inj_virq(vec0) 21 enter_quest(CR3 P#3)
6 enter_guest(CR3 P#3) 22 inj_virq(vec1)
7 sched_out(vCPU0) 23 enter_quest(CR3 P#2)
8 sched_in(vCPU1) 24 sched_out(vCPU1)
9 inj_virq(vec1) 25 sched_in(vCPU1)
10 enter_quest(CR3 P#1) 26 inj_virq(vec1)
11 sched_out(vCPU1) 27 enter_quest(CR3 P#1)
12 inj_virq(vec2) 28 sched_out(vCPU0)
13 sched_in(vCPU0) 29 inj_virq(vec3)
14 inj_virq(vec2) 30 enter_quest(CR3 P#4)
15 enter_quest(CR3 P#5) 31 sched_out(vCPU1)
16 sched_in(vCPU1)

Figure 1 shows different states of a vProcess and the con-
ditions to reach those states. In [11][12][13], we proposed
several techniques to understand the different states of a
vProcess when it is running at any virtualization level. In
this paper, our focus is to discover the reason for being Idle,
for each process.

A vProcess can be woken up for the following reasons.
First, a process inside the VM sets a timer and the timeout
occurred (Timer Interrupt). Second, a process inside the VM
is awakened by another process (IPI Interrupt). Third, a
process inside the VM is woken up by a remote task over
a socket (Network Interrupt). Fourth, a process inside the
VM is waiting for the disk (Disk Interrupt). The interrupt
later injected into the VM reveals the reason for the Idle
state.

IV. VIRTUAL PROCESS STATE DETECTION ALGORITHM
(VPSD)

In this section, we propose an algorithm to understand the
wait states for the vProcesses using the host trace. Before
introducing the Virtual Process State Detection Algorithm
(vPSD), we explain a very simple algorithm to detect the
running state for vCPUs of a VM. The VMs vCPUs are
like a normal userspace process, from the host perspective.
Like other processes, the sched_out event shows that
the thread related to a vCPU is scheduled out from the
physical CPU (pCPU) and goes into the Idle State. The
next sched_in event shows that the thread related to the
vCPU is being scheduled in and the state changes from Idle
to Running. This algorithm is simplistic and cannot detect
the reason for the Idle state for a specific VM. Figure 2 (
top ) shows an example of this algorithm using the events
from Table I. Much information is buried within the vCPUs
thread. This information can be revealed by analyzing the
interaction between the host hypervisor and VM OS. Our
technique leverages existing static tracepoints inside the host

hypervisor, along with our new added tracepoints, to convert
the tracing information into meaningful visualization.

The vPSD algorithm can reveal the exact reason for the
Idle State for each process and show the significant processes
inside the VM. vPSD is illustrated with an example in Figure
2. When receiving the sched_out event, the vProcess
sate goes to Wait for Reason. The key idea is that the
event indicating the cause for the Idle state is unknown a
priori. The state of vProcess can be changed to the exact
reason later, when the interrupt is injected into the VM.
Event #3 shows that the Disk thread injects a disk interrupt
into the VM. Then, the vCPU is scheduled in (Event #4)
and injects the received interrupt into the VM (Event #5).
Then, enter_guest depicts that the VM is going to non-
Root mode to run vProcess #CR3. The CR3 value (page
table address) is being used as unique identifier for each
vProcess in the VM. Moreover, the reason for waiting of
vProcess #CR3 can be updated to disk, since vec0 is the irq
vector for the disk interrupt. When receiving Event #9, the
process #1 Wait for Reason state changes to Task (vec1 is
the irq vector for IPI interrupts). Other states are built by
examining the injected interrupt, when execution resumes
(running state) for each vCPU. Surprisingly, vCPU0 was
running without any sched_out event from Event #13 to
#28. At the beginning, Process #5 was running and then
Process #2 was scheduled in. This happens when the VM
scheduler has many processes ready to run in its queue.

The pseudocode for the vPSD algorithm is depicted in
Algorithm 1. The vPSD algorithm receives a sequence of
events as input and updates the vProcess state for each VM.
Event sched_in shows when a vCPU is running on a
pCPU. When a vCPU is scheduled in, it saves the start
time to find out later which vProcess is being scheduled
in 2. By contrast, when a vCPU is scheduled out, it sets
vProcess #CR3 Status as Waiting for Reason (Line 4) which
will be updated later with the waiting cause. The event
enter_guest depicts which vProcess is running on the
vCPU and updates the state of vProcess to running (Line
8). In case the event is inj_virq, the vec field in this
event is compared with the Task, Timer, Disk, and Network
interrupt number. The unknown state is updated based on
the vec number.

V. PERFORMANCE EVALUATION AND USESCASES

In this section, we evaluate our wait analysis technique for
analyzing the behavior of VMs and detecting related issues.
First, we formulate the wait for resources for each process
and VM, and then we use it to detect significant processes
and their needs.

Wait for disk is shown in Equation 1. Here fDisk
i,j and

TDisk
i,j are the time fraction and average wait time that

Process #j of VM #i waits for disk, respectively. TTotal
i,j is

the total execution time for process #j in VM #i.



Figure 2. vProcess state detection using vPSD algorithm

Algorithm 1: Virtual Process State Detection (vPSD)
Algorithm

1 if event == sched in then
2 Save Start Time for the vCPU;
3 else if event == sched out then
4 Query previous stored CR3 for vCPU;
5 Save End Time for Process #CR3;
6 Set Process #CR3 Status as Waiting for Reason;
7 else if event == enter quest then
8 Save running process #CR3 for vCPU;
9 Query Start Time for the vCPU;

10 Set Process #CR3 Status as Running;
11 else if event == inj virq then
12 Query End Time for Process#CR3
13 if vec == Task Interrupt then
14 Update Wating for Reason State for Process

#CR3 as Task;
15 else if vec == Timer Interrupt then
16 Update Wating for Reason State for Process

#CR3 as Timer;
17 else if vec == Disk Interrupt then
18 Update Wating for Reason State for Process

#CR3 as Disk;
19 else if vec == Network Interrupt then
20 Update Wating for Reason State for Process

#CR3 as Network;
21 else if vec == Unknown then
22 Update Wating for Reason State for Process

#CR3 as Unknown;

WDisk
i,j =

fDisk
i,j TDisk

i,j

TTotal
i,j

× 100 (1)

Sometimes Process #j waits to receive a packet. This
could be because of a slow network or a failure in the
network stack. Equation 2 shows the wait for network. Here
fNet
i,j and TNet

i,j are the fraction of time and average wait time
that Process #j of VM #i waits for network, respectively.

WNet
i,j =

fNet
i,j TNet

i,j

TTotal
i,j

× 100 (2)

Sometimes a process communicates with another one in
order to take advantage of the task parallelism. Although
it can increase the performance of applications, it can be
surprisingly difficult to get good performance. Equation 3
represents the time that a Process #j of VM #i is idle because
it was waiting for another task to finish. fTask

i,j and TTask
i,j

are the fraction of time and average wait time that Process
#j of VM #i waits for another task to finish something,
respectively.

WTask
i,j =

fTask
i,j TTask

i,j

TTotal
i,j

× 100 (3)

A VM process could be awakened by a timer interrupt,
which indicates that a timer expired inside the VM. It could
be because of scheduler ticks, which means that the VM
does not have anything to run. It also could be because of a
timer that an application sets. This could make a vCPU idle
for a long time. Equation 4 represents the time that a vCPU
is idle because it was waiting for a timer to be fired. fTimer

i,j

and TTimer
i,j are the fraction of time and average wait time

that Process #j of VM #i waits for a timer, respectively.



WTimer
i,j =

fTimer
i,j TTimer

i,j

TTotal
i,j

× 100 (4)

Total percentage of waiting time for VM #i with process
p is computed in equation 5.

Twait
i =

p∑
j=1

WDisk
i,j +WNet

i,j +WTask
i,j +WTimer

i,j (5)

When waiting for a task or timer, the VM does not wait
for a resource. As a result, the vCPU is unused and can be
allocated to another VM.

Total fraction of running Process #j of VM #i is calculated
in Equation 6. More scheduling activity in a vCPU causes
more virtualization overhead, as the VM must read and
update the VMCS structure from the pCPU.

fTotal
i,j = fTask

i,j + fTimer
i,j + fDisk

i,j + fNetwork
i,j (6)

A. Analysis Architecture

We have chosen the Kernel-based Virtual Machine
(KVM), under the control of OpenStack, as experimental
setup. KVM is the most commonly used hypervisor for
Openstack[14]. For the userspace part of the hypervisor, we
installed QEMU to execute the OS support for the VM.
Our architecture is shown in Figure 3. As we can see,
events are gathered by our tracer (LTTng) from the host
hypervisor first, and then the events are sent to the trace
analyzer (TraceCompass). For the prototype implementation
on Linux, we used LTTng as the tracer. The host kernel
and KVM module are instrumented by different static trace-
points. LTTng gathers the events from the KVM module and
kernel space, and sends them to the analyzer. Trace Compass
is an open source software for analyzing traces and logs.
It has some pre-built views, especially for LTTng [15]. We
prototyped our wait analysis tool as a separate view in Trace
Compass.

For our analysis, three events should be enabled
in LTTng: sched_switch to find out the running
states, kvm_inj_virq to update the wait states and
vcpu_enter_guest to find out which process is running
on the vCPU.

The process identifier (PID) and process name of each
thread inside the guest is not directly accessible from host
tracing. The only information which can be uncovered by
host tracing about the threads inside the VMs, is written in
CR3. Indeed, CR3 points to the page directory of a process
in the virtual machine. In each VMX transition, we retrieve
the CR3 value of a VM using a new tracepoint. We added
the new tracepoint, vcpu_enter_guest, to extract the
CR3 register from the guest area of the VMCS. To have
more information about processes inside the VMs, we need
to map CR3 to the PID and process name. This is not strictly
necessary, since CR3 is a unique identifier for processes, but

Table II
EXPERIMENTAL ENVIRONMENT OF HOST AND GUEST

Host Environment Guest
Environment

CPU Intel(R) i7-4790 CPU @
3.60GHz Three vCPUs

Memory Kingston DDR3-1600 MHz,
32GB 3 GB

OS Ubuntu 15.10 (Kernel
4.2.0-27)

Ubuntu 15.10
(Kernel 4.2.0-27)

Qemu v2.5 v2.5
LTTng v2.8 v2.8

Figure 3. Architecture of our implementation

it is more convenient and human readable if we can map the
process information inside the guest with the information we
get from the vcpu_enter_guest tracepoint.

Our experimental setup is described in Table II. The
analysis is performed with the following steps: 1) Start
LTTng on the host. 2) Run the VMs of interest. 3) Stop
LTTng. 4) Run the analyses. 5) Display the results in Trace
Compass.

B. UseCase 1 - Disk Issue

Predicting VM workloads is a big challenge. Sometimes,
cloud users set the VM resource cap too low, which causes
inadequate resource allocation (local impact on applica-
tions). In another case, the cloud administrator over-commits
the resources and shares among too many VMs (global
impact on VM). In both cases, these problems cause latency
for the VMs. Most Cloud providers like Amazon limit the
resource usage for each VM in order to prevent important
performance reductions due to sharing resources. For exam-
ple, the IO size is capped at 256 KiB for SSD volumes and
1024 KiB for HDD volumes in Amazon EC2 instances, with
a certain number of I/O operations per second allowed [16].
There is a trade-off between setting resource limits too low
and too high. When the resource limit is too low, the VM
waits for the resource most of the time.

In our first experiment, we use Hadoop TeraSort to
sort a huge amount of randomly generated data. Hadoop
TeraSort tasks are a combination of CPU-intensive job and
IO intensive job. In this test, each row is 100 bytes; thus the
total amount of data written to disk is 100 times the number



Figure 4. Two slaves running Hadoop TeraSort 5GB- VM-Slave1 response is late because of wait for Disk
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Figure 5. Frequency of wait for disk for Slave 1 and Slave 2 - P1-1:
2039963648, P1-2: 869769216, P1-3: 2046287872, P2-1: 2029756416, P2-
2: 877412352, P2-3: 886243328

of rows (i,e., to write 100MB of data, 1 million rows should
be used). The 5GB of random data is being generated by
Hadoop TeraGen and is being sorted by Hadoop TeraSort.
We conducted our experiment on a cluster where each VM
had 3 vCPUs with 3 GB of memory. One VM is designated
as master and 2 VMs are configured as Slaves. The Hadoop
version was 2.8.1 and Java version was 8. We used the
YARN framework for job scheduling and resource manage-
ment. We realized that sometimes the execution time for
sorting 5GB of data is larger than expected. We investigated
further and found out that node VM-Slave 1 finishes its
associated task after other nodes. The same job is submitted
again and the host is traced with LTTng. In our investigation
with LTTng and vPSD (shown in Figure 4), we found that
node VM-Slave 1 is waiting more for disk, compared to
other VM-slaves. VM-Slave 1 is compared with VM-Slave
2 by looking at their processes. We found that both VMs
have three significant processes and, since VM-Slave 1 waits
more for disk, it responds later to the Hadoop Master. Table
III represents the percentage of wait for different resources
(WDisk

i,j , WNet
i,j , WTask

i,j , and WTimer
i,j ). As shown, wait

for disk (WDisk
i,j ) for Slave-1 is larger than for Slave-2.

Moreover, Figure 5 shows the frequency of wait for Disk
and Network, for Slave-1 and Slave-2. Slave-1 waits more
for disk as compared to Slave-2.

The reason could be putting the Disk cap too low, or co-
locating with other IO intensive VMs in the same resource
group. In this case, the issue was a limitation on disk usage.

In order to show how our technique could find out

Table III
WAIT ANALYSIS OF HADOOP TERASORT

Processes Root non-Root Task Timer Disk Net
2039963648 0.004 1.499 54.040 43.512 0.198 0.217
869769216 0.001 0.979 39.938 56.978 1.251 0.700
2046287872 0.004 3.125 57.357 38.022 0.766 0.283
2029756416 0.002 1.898 36.508 60.883 0.098 0.340
877412352 0.001 0.970 24.947 72.767 0.029 1.130
886243328 0.005 8.350 85.240 5.588 0.003 0.258

contention between VMs on the same resource, the Linux
dd command with sync has been used to write a random
file to the disk. In this experiment, the VM is on a SSD and
there is no cap on disk usage. We found out that writing
takes more time than expected.

Using vPSD, we found out that the two VMs are waiting
for disk and there is contention between the two VMs
in order to use the shared disk. Figure 6 represents the
contention between the two VMs. VM1 has 6 significant
processes and VM2 has 7 significant processes. As it is
shown, two VMs request disk access at the same time and
wait to complete the request.

C. UseCase 2 - Network Issue

In the second experiment, a Remote Procedure Call (RPC)
server and client are written to experiment the effect of
waiting for network for a RPC server and client. The RPC
client is put in VM2 and it sends commands to the RPC
server to execute every 10 ms. The command that we send is
a program to calculate 1000 Fibonacci numbers. We use the
tc traffic shaper to manipulate the traffic control settings.
The traffic shaper is applied to the virtual network interface
to increase the network latency by 25 ms for the RPC client
and by 30 ms for the RPC server. Figure 7 depicts the
graphical representation of the vProcess state. The green
intervals are the running state, the purple intervals are wait
for network, and light blue intervals are wait for timer. As
shown, the significant process in these two VMs waits for
network most of the time.

In another experiment, the RPC server and RPC client are
executed when there is a natural network latency. Figure 8
shows the state of vProcess for both VMs. Since both VMs
are in the same host, the delay between the two VMs is less
than 1 ms. As shown, the server immediately responds to
incoming requests from the RPC client. Table IV represents
the percentage of wait for RPC server and client. The wait



Figure 6. Wait analysis of vProcess when there is resource contention between two VMs

Figure 7. Wait analysis of vProcess with network issue

Figure 8. Wait analysis of vProcess without network issue

Table IV
WAIT ANALYSIS OF RPC SERVER AND CLIENT

Processes Root non-Root Task Timer Disk Net
443887616 0.001 1.140 49.246 12.783 0.0 36.751
743825408 0.001 1.246 48.023 27.978 0.0 22.643
894611456 0.006 1.743 49.639 37.677 0.0 10.298
2035716096 0.003 1.109 57.443 33.142 0.0 7.975

for network increases when there is a delay between the
RPC server and the RPC client.

D. UseCase 3 - Sensitivity Analysis

Cloud providers now host millions of VMs to fulfill large
scale applications and cloud services. Co-locating several
VMs in the same host leads to performance reduction for
sensitive VMs, which could decrease tremendously their
QoS. It is important to understand the behavior of appli-
cation inside the VM and to quantify their sensitivity to a
specific resource. We use tracing and the vPSD algorithm to
identify the sensitivity of a VM to its allocated resources.

In order to show how our algorithm could find the sensi-
tivity of a VM to its resource, Apache2 and MySQL were
used. To benchmark the sensitivity of Apache to the network
performance, the tc command is being used to add a delay
to the virtual interface of a VM. Moreover, to benchmark
the sensitivity of MySQL to disk, the VM is being limited to
read and write 512 KB/s. Table V shows the total duration of
each state, in percentage, for the Apache and MySQL life-
cycle. As shown, Apache is highly sensitive to the network
performance and MySQL is not very sensitive to disk. The
proportion of waiting for network for Apache-0 ( Apache
with natural network latency ) is 1.5 % as compare to 15%

Table V
WAIT ANALYSIS OF DIFFERENT APPLICATIONS, TO FIND OUT THE

SENSITIVITY OF A VM TO A SPECIFIC RESOURCE

Processes Root non-Root Task Timer Disk Net
Apache-0 0.075 38.536 46.945 4.947 0.0 1.545
Apache-50 0.092 18.900 53.405 3.412 0.002 15.016
Apache-100 0.052 11.952 54.067 6.439 0.004 22.270
MySQL-0 0.257 85.393 11.395 2.908 0.0 0.045
MySQL-512 0.003 83.000 15.774 0.873 0.004 0.0

Table VI
FREQUENCY OF WAIT FOR DIFFERENT APPLICATIONS, TO FIND OUT THE

SENSITIVITY OF A VM TO A SPECIFIC RESOURCE

Processes fTask fTimer fDisk fNetwork fTotal

Apache-0 13161 108 0 586 13855
Apache-50 96667 4764 4 79654 181090
Apache-100 99078 10257 11 118307 227654
MySQL-0 694 62 0 3 759
MySQL-512 393 40 1 0 434

for Apache-50 ( Apache with 50 ms network latency),22%
for and Apache-100 ( Apache with 100 ms network latency).
Another interseting result is depicted in Table VI which
shows the frequency of waiting for a resource. Apache-100
waits 16 times more than Apache-0. The result shows that
the Apache web server is highly sensitive to network latency.

MySQL is also being studied. Surprisingly, MySQL is less
sensitive to Disk than we expected. Wait for disk does not
increase from MySQL-0 ( no-limit on disk) to MySQL-512
( Limited to write or read no more than 512 KB/s).

As demonstrated, our technique could detect which appli-
cation in the VM is sensitive to a specific resource.



Table VII
OVERHEAD ANALYSIS OF VPSD AS COMPARED TO CPA

Benchmark Baseline CPA vPSD Overhead
CPA vPSD

File I/O (ms) 450.92 480.38 451.08 6.13% 0.03%
Memory (ms) 612.27 615.23 614.66 4.81% 0.01%
CPU (ms) 324.92 337.26 325.91 3.65% 0.30%

E. Analysis Cost

In this section, the overhead of vPSD is compared with
the Critical Path Analysis (CPA), as proposed in [9]. In order
to compare the two approaches, we enabled the tracepoints
that were needed for the CPA approach, and we traced
the VMs. Also, it is worth mentioning that our new vPSD
algorithm needs only to trace the host. As shown in Table
VII, the critical path analysis approach adds more overhead
in all tests, since it needs to trace the VMs. We used
the Sysbench benchmarks to reveal the overhead of both
approaches, with sysbench configured for Memory, Disk I/O
and CPU intensive evaluations. Our approach has negligible
overhead for CPU and Memory intensive tasks at 0.3% or
less.

VI. CONCLUSION

Virtualization in the Cloud leads to increased overall re-
source utilization, but raises concerns over resource sensitive
VMs. Different approaches for debugging and troubleshoot-
ing the VMs were proposed. However, for the process wait
analysis, in the context of VMs, the current monitoring
and analysis tools do not provide enough information. We
developed a novel host-based process state detection algo-
rithm that can not only find the state of running processes
but also recover the reason for being idle. Our approach is
based exclusively on host hypervisor tracing, which adds less
overhead as compared to other approaches. Our overhead
analysis shows that the overhead of our approach is almost
10 times less than for other approaches. We conducted
several experiments over well-known applications to find
out different issues and discover sensitive applications in the
VMs. As future work, our current technique can be enhanced
to further investigate interferences between processes in
VMs and predict the exact amount of desirable scale up
or scale down for the resources.
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