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Performance Analysis Using Automatic Grouping
Isnaldo Francisco de Melo jr∗, Abderrahmane Benbachir§ and Michel Dagenais¶

Department of Computer and Software Engineering, Polytechnique Montreal, Quebec, Canada
Email: {∗isnaldo-francisco.de-melo-junior, §abderrahmane.benbachir, ¶michel.dagenais}@polymtl.ca

Abstract—Performance has become an important and difficult
issue for software development and maintenance on increasingly
parallel systems. To address this concern, teams of developers use
tracing tools to improve the performance, or track performance
related bugs. In this work, we developed an automated technique
to find the root cause of performance issues, which does not
require deep knowledge of the system. This approach is capable
of highlighting the performance cause, using a comparative
methodology on slow and fast execution runs. We applied the
solution on some use cases and were able to find the specific
cause of issues. Furthermore, we implemented the solution in a
framework to help developers working with similar problems.

I. INTRODUCTION

Software performance is a major concern for software
development. Various studies highlight the use of tools such
as debugging and tracing to help with performance problems.
These tools can be used to improve performance or detect
performance issues. One example of performance issues is
the comparison of similar executions of the same program,
in the same configuration setting. An example was found in
[1]. After executing several times the same query operation
on MongoDB, a free open-source database framework, the
performance decreased abruptly. A further investigation lead
to the root cause of this performance issue, which was the
wait-cpu time.

For this kind of performance problem, which is related to
the execution inside a real system, the current solutions are
to debug or to trace the program. The first one, debugging,
is to locate the code and problematic executions, directly in
the source code, by executing the code in a test environment
using breakpoints. However, some debugging tools require
the reproduction of the exact issue to trigger the same code
mechanisms, while it is necessary to stop (and thus delay) the
execution of the program while debugging.

On the other hand, tracing generates an execution log of a
software, that consists essentially of an ordered list of events.
An event is generated when a certain code path is executed,
the location being called a tracepoint. Each event consists of
a timestamp, a type and some arbitrary payload. Tracepoints
can be embedded in the code in two ways: statically or
dynamically inserted. The latter, dynamic tracing, enables the
possibility to add tracepoints without modifying the source
code, and the former requires the modification of the source
code and subsequent recompilation. Besides, tracing can be
performed at the kernel and at the user-space level [2].

Unlike debugging, it is possible to trace a program without
interrupting it. Yet, there is some overhead caused by its usage.

A good tracer needs to minimize the disturbance of the running
program to be a useful tool for analysis. LTTng [3], developed
by Mathieu Desnoyers, has this minimal level of impact on the
system, and consequently allows to trace the user-space and
the kernel space with minimal interference. LTTng, allows
the analysis of task interactions, with each other and with
the operating system. Locating and analyzing performance
problems is not a trivial activity, because of the potentially
large trace size, since more events generate more information
to be gathered and analyzed. After collecting the data with
the tracer, it is necessary to analyze the software behaviour
through some mechanism, for instance the call graph [4].
A call graph is a representation of the stack frames of the
software and can be built using different techniques. This
analysis process requires expert knowledge and deep analysis
of the system, since it is (largely) a manual process.

Through tracing mechanisms, it is possible to build a
dynamic model of the software, for instance a call tree.
Moreover, tracing allows the possibility to add performance
measurements to this structure, as shown in [5].

In summary, from the enhanced data structure described
above, and considering the lack of an automated solution to
solve problems as the stated above, it is possible to build
a solution that records several software properties at run
time, e.g. hardware cpu metrics as cache misses, page faults
or software metrics as well. Moreover, using some specific
grouping mechanisms, it is possible to find root causes of
several performance issues using a comparative approach.

This paper introduces an automated solution for grouping
metrics, using the call context tree, to find performance related
issues. Then, we applied this technique to different use cases,
to analyze their performance problems. Finally, we discuss
the drawbacks of this technique and the possible solutions
to overcome them, aiming to apply this analysis to complex
software systems.

Our research aims to investigate the following research
questions;

• RQ 1: How can we build an efficient and flexible model
for performance comparison?

• RQ 2: How to automate the performance analysis on
several runs using performance counters?

• RQ 3: How accurate are the obtained results ?

This paper is organized as follows The related work
is presented in section II. In section III, we present the
methodology used followed by the use case section IV. Next



we talk about some limitations in V and finally the conclusion
VI including future directions.

II. RELATED WORK

In this section we will present the basic principles of
current tools used to find performance issues. The related
work has been divided into: Data collection and Analysis
tools as described below.

From the perspective of Data Collection, there are two main
tools related to this work, LTTng and Linux Perf Events.

The first, LTTng, Linux Trace Toolkit Next Generation [3],
is a tracer that can record events from the Linux kernel and
from user space applications into a single trace. It is also
designed to have a minimal overhead on traced systems. It is
therefore well suited to our goal of collecting all the factors
that contribute to the execution time of tasks in a production
environment.

The second, Linux Perf Events, is a profiler tool for
Linux 2.6+ based systems that abstracts away CPU hardware
differences in Linux performance measurements and presents
a simple command-line interface. Perf is based on the perf
events interface, exported by recent versions of the Linux
kernel. This article demonstrates the perf tool through sample
runs [6]. It is possible to record both software and hardware
events [7].
It is interesting to highlight that the Perf tool can be used to
record profiles on a per-thread, per-process and per-cpu basis
[8].

There are two main Analysis tools related to this work,
TraceCompare and Trevis.
The first tool, TraceCompare, was developed in the DORSAL
laboratory [9]. It creates an enhanced Calling Context Tree to
measure the metrics from specific segments of a trace. Those
segments are defined by the user as sequences of Begin and
End. This tool was developed to compare traces of executions
and it uses a javascript front-end and the tibeebeetles library
[10] as back-end. To do this CPU profiling comparison, the
GUI tools provide Differential flame graphs, [11]. It was
able to find problems in the write function of MongoDB
after several runs. However, TraceCompare requires expert
knowledge and also some statically significant metrics for the
analysis [1].

The second tool, from Lugano University, Trevis [12], is
a visualization and analysis framework. It was developed to
study the CCT produced by another tool called FlyBy. Like
TraceCompare, it relies on a Calling Context Tree (CCT),
on the caller-callee relationship. Trevis is a visualization and
analysis framework that allows the users to play with the
CCTs by applying several methods. However, this tool relies
on human interaction, which occurs at the stage of FlyBy,
to label the slower executions. FlyBy provides thereafter a
failure report, containing this information that can later be

used in Trevis to be analyzed.

A third related tool is Spectroscope, which uses statistical
and high level analysis. It was in fact designed to find
changes in behaviour, not specific anomalies, and it was used
to find problems in two versions (or periods) of Google Ursa
Minor distributed software. Specifically for this software, five
problems are described. It uses Startdust as end-to-end tracer
and it added some overhead on Ursa Minor performance,
depending the operation.
It uses the Perl language, and MATLAB for the statistical
comparison of normal and problematic periods. DOT is used
for plotting visualization graphs. The statical comparison used
is the Kolomogrov-Smirnov test, which is a non-parametric
test for mutation identification that compares the shapes
and distribution of mathematical functions and later uses a
ranking system for mutation identification.
Spectroscope uses the Normalized Discounted Cumulative
Gain (NDCG) for the performance evaluation, which is a
range from 0.0 to 1.0. Spectroscope is similar to Pip [13] and
TAU [14].

Finally, Introperf is a tool that uses system stack traces
to generate a Performance Annotated CCT, called PA-CCT.
Then, it ranks the latencies and compares them [15]. The
intent of this tool is to be used in a post-development
stage. It was implemented using Windows ETW[16]. The
article explains the latency inference algorithm used for this
calculation. They used this approach to avoid the requirement
of source code availability, or application modification.

The use cases proposed in this work are related to regression
analysis, where the performance of a software application
decreases when comparing a new version to an older one.
Similar cases were studied by [17] and [18], which focus on
use cases related to the software Dell DVD Store. The first
work used a hierarchical clustering approach, while the second
work used a control chart approach.

III. APPROACH

In this section, we discuss the solution developed, starting
with an overview data structures, followed by the grouping
mechanism algorithms, and then the clustering algorithms and
the overall methodology. The approach can be summarized as
follows:

A. Recording the executions

We record the program execution using LTTng, a low
overhead tracer especially suitable for this type of research.
The trace is also recorded with performance metrics such as in-
structions, cache-misses, page-faults, and scheduling switches
by using the perf counters tools in Linux. Because we generate
the tree through a tracing approach, it is possible to record
runtime information about the system [2]. It is recorded using
the lttng feature add-context, which gives the possibility to
add performance counters samples in the trace session such as



cache misses, page faults and branch misses. This technique
was also explored in the work of [1] and [19].

B. Generating the data structure

For this process, we need to divide the traces in segments
corresponding to different instances to compare. For example,
to compare different instances of file openings, the system
call sys open and sys exit may be used as delimiters. In this
process we aim to construct comparable information using
Enhanced Calling Context Tree (ECCT), where each node
represents a call, and the information and metrics associated
with this call are stored within the nodes. A delta of the entry
and the exit for each metric is recorded in the node.

Calling contexts are very important for a wide range of
applications such as profiling, debugging, and event logging.
Most applications perform expensive stack walking to recover
contexts [20]. The resulting contexts are often explicitly repre-
sented as a relatively bulky sequence of call sites. The goal of
calling context encoding is to uniquely represent the current
context of any execution point using a small number of integer
identifiers (IDs). This data structure was introduced by [21]
and reused by [22] and [23]. In this work we aggregate data,
related to the performance, in the Calling Context Tree, which
brings the concept of enhanced structure. The aggregated data
is related to the performance metrics. The data is added to the
tree nodes and enables offline analysis. Figure 1 demonstrates
the difference between the dynamic tree and the calling context
tree.
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Figure 1: Dynamic Call Graph vs Enhanced Calling Context
Tree

The construction of the ECCT involves reading the trace
and simultaneously building the nodes, as the trace data is
processed in order. It is necessary to delimit the boundaries of
the nodes in the tree. Therefore, specific events must be set as
start and end points of the nodes. Depending on the case, it
may be easier to construct a simpler ECT, instead of ECCT.
Consequently, it is necessary to demultiplex the events in the
trace. To do so, the trace must provide a way to identify
the start and end points of each execution instance. For this
process there are two approaches:
The first is to use existing events from the Linux ker-
nel. As an example, the syscall exit accept event (gener-
ated when a connection is accepted on a socket) and the

syscall entry shutdown event (generated when a connection
is closed) correctly delimit requests received by an Apache
server. The second is to use LTTng-UST probes, statically
inserted in the source code. Different probe types can be
used to delimit different execution types. In that way, the
delimitation of the nodes can be achieved.

The advantage of the first approach is to use existing
events, and thus no access to the source code is required.
The advantages of the second is that no kernel knowledge
is required to use this process.

Figure 2 demonstrates the mechanism used to create the
ECCT from the trace file.
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Figure 2: Enhanced Calling Context creation from trace data

After the construction of the tree, the grouping mechanisms,
described in the next sections, can be applied.

C. Auto grouping - Elbow method

One method to quantitatively measure the number of groups
is the elbow method. This method compares the sum of
squared errors (SSE), considering several numbers of groups
from the classification used. The elbow method gives the
possibility to use the SSE to find the elbow value, which can
be defined as a value at which the SSE changes its behaviour
abruptly. In our cases, the elbow value is when the SSE stop
decreasing substantially.

However, the elbow method does not guarantee a perfect
match in cases where the data is well distributed. Instead, the
analysis of the SSE can give a smooth curve and the best value
for the number of groups is not precisely defined. For cases
like these, we developed another clustering based on the mean
distance of the data.

Heuristic Evaluation: To compare the SSE values, we
needed also to execute a heuristic function which compares the
different values of the SSE, to compute the Elbow. Therefore,
we use this approach to compare several runs of classifications
and extract the one with the smallest squared errors. The
heuristic used is to take as optimal group the biggest gap in
an array of SSE values.

Figure 3 shows an illustration of the SSE and the elbow
value. The elbow value is the number that marks the change



in the path of the function. In our case the number of groups

is 2.
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Figure 3: Elbow method: SSE Comparison

Figure 4 shows the SSE differences considering several

number of groups. This image clearly shows the biggest gap

between some groups, but since we are assuming that the data

has gaps, we are not using one as the optimal number.

Figure 4: Automated clustering of the executions into 3 groups

D. Association among the Groups

The clustering of metrics is just one part of the approach,

since a rule of groups needs to be applied to find the specific

cause for the discrepancy between the executions. To solve

this problem, and find the cause of the difference, we applied

a set association rule after the grouping mechanism. Therefore,

using a set exclusion, we can find the metric that is responsible

for the elapsed time. The association rule is illustrated in Table

I, which describes a metric X and the elapsed time comparison.

The grouping on Metric X divides the data into two groups,

and those groups are intrinsically related to the elapsed time

group.

The association rule can be applied in an arbitrary classifi-

cation algorithm with several different dimensions. Thus, the

association can be defined as a heuristic to find the root cause

of problems, using grouping or clustering algorithms.

A matrix of groups correlation can be constructed to better

understand the relations among the groups.

Group A Group B Group C

Group A - 75% 100%

Group B 75% - 65%

Group C 100% 65% -

Table I: Association of groups through Apriori algorithm

E. Accuracy of the model
The association will identify the group of metrics that are

related with slow and fast runs. However, there is a possibility

of false positives and false negatives. The accuracy of the

model is related to the size of the groups, i.e. that all slow

executions will be in one group, even though the related metric

identified as the reason covers more runs than the associated

group. In summary, if the groups overlap, range of values for

the main metric and slow executions, no false positives or false

negatives were found. However, the correlation (overlap) does

not mean causality for the performance problem, it is only

an indication factor. In this matter, the used statistics are an

indicator of underlying causes, which require some comple-

mentary analysis to be confirmed. In other words, although

two groups might overlap, therefore they are associated, they

might not be causality related. A specific example could be a

periodic interference in the CPU frequency in a software that

has an indexing issue (thus root are the cache misses). With

similar cases, a simple classification algorithm would not be

enough for correct distinction on the root cause.

F. Overview
In summary, the methodology can be described as follows:

First, we trace a program using statically or dynamically

embedded tracepoints. Then, we read the trace and build a

CCT record, along with the performance metrics. Then, we

run the clustering techniques and the association rules, which

indicate the possible cause for any performance issue.
From the point of view of the grouping techniques, the

current more reliable technique still requires some human

analysis of the data, which consumes time and prevents au-

tomation. This motivates the development of the auto grouping

technique, which combines an heuristic evaluation.
This methodology can be applied to other scenarios, e.g.

any software or cpu metric, different OS, different loads and

framework or configuration specific, since it is independent

from the implementation. Besides, it is also independent from

the grouping algorithm, since it is an heuristic and not an

algorithm. Combined with the Apriori algorithm, the grouping

technique can provide strong insights into complex cases.

IV. USE CASES

A. Cache Optimization in Server Application
A server application, using the well known PHP content-

management framework Drupal, caches requested data to



improve the access time to its content. However, we observed
that after 100 requests, the request response time increased
dramatically. Yet, no change was introduced in the software
or hardware system, which is difficult to understand, as shown
in Figure 5.
Drupal implements a caching mechanism which intends to
improve the access performance. In some executions, we no-
ticed the influence of the compile time, which is an infrequent
behavior of PHP.

In fact, PHP is an interpreted language but for optimization
reasons the Php runtime engine interprets an intermediary form
of code pre-compiled. On versions 4 and 5, part of the AST,
abstract syntax tree, is deleted. On later version the OPcache
is used for cache optimization, and after some runs we can
observe the periodic slowdown.

First, we instrumented the PHP runtime and the Apache
server, to be able to measure its behavior. Our approach was to
execute several times a request for a server. While running it,
we recorded the tracing data. Then, we executed our clustering
analysis and classified the data into several groups, to study
their behavior. Using this approach, it was possible to track
infrequent issues in the execution. Indeed, if we have one or
two groups with a totally different behavior, it is possible to
compare their properties.

From the collected data, we applied the auto-classification,
which showed mainly two groups for comparison. The solution
was able to display that, on the fast group, no time was
spent on caching or PHP compilation time. However, in slow
executions, there was a considerable amount of time spent
on compilation time and caching, about 49%, as shown with
the black bars in Figure 5. The approach was able to show
the impact of disk access overhead related to the caching
mechanism.
The problem was the naive implementation of the cache
replacement strategy. When the cache is full, its whole content
is simply flushed and must be built again for the most part.
Therefore, every approximately 100 requests, the cache would
fill and the server spent much more time than on the previous
requests, as shown in Figure 5. The results are summarized in
Table II.

Table II: Grouping results relating the caching with the slow
executions groups

Executions

Fast executions Slow executions

Use of caching and no

PHP compilation time

Time in caching or

compilation time

B. Software Regression in OpenCV
The Open Source Computer Vision Library (OpenCV) is an

open source computer vision and machine learning software
library. This library is used in different problems in computer
vision such as image tracking. In this section, we will bench-
mark the Optical Flow algorithms, which are the most evolving
features in the recent years.
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Figure 5: Overhead introduced by I/O for caching on each 100
of requests, The white bars are the request response time and
the dark bars represent the PHP compilation time.

The Optical Flow, implemented as the Lucas-Kanade algo-
rithm, aims to correlate the apparent motion of objects between
two consecutive frames. From some examples in the book [24],
this method can be tested with two images, showing how they
differ. Regressions can be caused by a series of changes in
the code. Doing tests, we found a relevant regression in the
Optical Flow function.
Figure 6 explores the regressions in this function, showing the
performance of both versions according to the window size. It
is interesting to highlight the fact that the performance of the
newer version is better than the previous one until a certain
point, where the previous version overpasses the newer one.

Our approach was to run the software several times, record-
ing performance metrics using Linux Perf Events. The elapsed
time to track the performance is also used in the classification.
The runs were related with several versions of OpenCV until
a regression was found between versions 2.3.0 and 2.3.1; the
latest version was around 5 times slower than others.

We used the approach described above, where the nodes of
the tree have the frames of the OpenCV function calls. After
carefully analyzing the data, the nodes for the newer version,
considering all the other metrics, had more instructions. Thus,
there was an association between the longer duration with
more instructions.
Later, we verified the existence of a conditional statement
differing from one version to another, which makes the
slower version execute more instructions. This behaviour was
originally reported in [25]. The total number of commits
on those two versions were about 250 commits. Using this
technique, we were able to reduce the scope of the significant
difference to a few lines of code, and unit tests can be added
easily to trigger specifically this cause, after knowing that it
was a cache misses problem.

In the Table III the Pearson correlation (R) of the variables
is presented, which shows that many metrics are directly
proportional, i.e. R bigger than 0.75. This mean that the
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Figure 6: Optical Flow Performance Regressions

Table III: Correlation among metrics

Inst.
Cache

misses

Page

faults

Sched

switches
Prefetching

Instructions 1 - - - -

Cache misses 0.957 1 - - -

Page faults 0.999 0.956 1 - -

Sched switches 0.022 0.004 0.0004 1 -

Prefetching 0.996 0.969 0.995 0.014 1

development of models using those metrics, for example linear
or multilinear models, is not adequate and consequently the
comparison of groups, in a pair-wise approach, can be applied.

V. THREATS TO USABILITY

This section discusses the threats to the validity of our study.
Time analysis: Our approach is based on comparing several
clusters, to take the best grouping according to the SSE,
which requires a comparatively long period of time. Our study
aims to use an automated non-supervised clustering method,
thus the analysis time is a minor factor if it reduces the
human analysis time. The analysis required just a few minutes,
between building the ECCT tree and classifying the metrics.
Another highlight is that the analysis is made offline, so the
time will not influence the performance of the software and
does not require stopping the software development.
Quantity of groups: Since the automated heuristic used can
generate a high number of groups, this can increase the
difficulty of the evaluation.

VI. CONCLUSION

In conclusion, this research developed a solution that
showed the possibility of using clustering mechanisms, with-
out human intervention, to find causes of performance prob-
lems. As a contribution for developers, this paper introduces
the visualization tool for the Calling Context Tree, with Flame
Graphs and Auto Cluster mechanisms.
The clustering data was built through a bottom-up analysis on
collected stack traces, from recorded trace data on ECCTs.
This data structure was implemented in the CCT View, inside
the Trace Compass framework, and provides several run-time
properties of the studied software.
Our work was able to find causes of performance issues
without human intervention, and can be applied to other cases
to find other problems. The implementation as part of the
Trace Compass framework aims to apply this approach for
more cases and large scale software analysis.

As future work, we plan to expand our investigation by us-
ing non-linear models to track regression problems in different
software versions [26]. This can be used as an automated test
to find software regressions. An example of possible models
are feed-forward networks, also called deep learning networks.
The models need to be able to characterize specifically non-
linear dependencies and be able to be used without labeled
data.
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