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Abstract—With the increase of cloud infrastructure complexity,
the origin of service deterioration is difficult to detect because
issues may occur at the different layer of the system. We
propose a multi-layer tracing approach to gather all the relevant
information needed for a full workflow analysis. The idea is to
collect trace events from all the cloud nodes to follow users’
requests from the cloud interface to their execution on the
hardware. Our approach involves tracing OpenStack’s interfaces,
the virtualization layer, and the host kernel space to perform
analysis and show abnormal tasks and the main causes of latency
or failures in the system. Experimental results about virtual
machines live migration confirm that we are able to analyse
services efficiency by locating platforms’ weakest links.

Index Terms—Cloud, OpenStack, QEMU, Tracing, LTTng.

I. INTRODUCTION

Many cloud environments are based on OpenStack, a large
collection of services that makes it difficult to track down
errors for system administrators. Identifying and understand-
ing any failed operation requires the gathering of execution
data from logs and then analysis of the interaction of the
modules involved in this specific task. Performance latency
may be caused by factors like bugs in code, an inappropriate
configuration of the systems or hardware troubles which
are often imperceptible. Systems tracing grants fine-grained
analysis of the cloud components as it provides precise data
about resources’ state changes, and allows observing the delay
occurring between any request and response and understanding
the internal logic of these systems [6]
The investigation starts by knowing what kind of activity was
operated from users’ interfaces to the kernel of the machine
where the task is running. Indeed we need to know which
applications or services are involved in the task degradation
and on which host they are located. That is why it is important
to have enough information about the cloud nodes by reporting
their whole work. We propose to trace hosts user space and
kernel space, correlate their outputs and provide illustration
about their behaviour. This paper aims to analyse cloud
infrastructure and furnish meaningful reports to understand
any activity latency.

The contribution is as follows:
• Instrumentation and tracing of OpenStack nova project
• Multi-level analysis model to get cloud system data
• vitualization views to detect and understand performance

issues in nova
• Virtual machines live migration performance survey

The remainder of this paper is organized as follows. Section
II describes the related work. OpenStack nova service analysis
is introduced in section III. Section IV is focused on middle
layer investigation and Section V is about low levels tracing
and analysis. Finally, section VI presents some experimental
results.

II. RELATED WORK

Increasing interest in cloud computing has lead to the devel-
opment of many tools for monitoring and troubleshooting like
OSprofiler [17]. OSprofiler is a library used to trace python
applications and to get events from OpenStack services. For
each request, it generates one trace about services’ actions.
The data is extracted to build a call-tree that shows the request
flow and gives an estimation of the task performance. But its
usage is not suitable when the latency is due to some issues
in the host operating system.

Mi et al. [13] propose a way to locate performance issues
within applications logs. They record information during the
execution of requests to retrieve the behaviour of the worker.
From any request which induces service degradation, they aim
to pick up the abnormal function. This method is extended
by Ruben [1] which addresses the problem of analysing
tasks workflows and service orchestration in the cloud. In
his approach, python applications are instrumented by adding
some codes to be executed during task processing. He presents
data-flow views illustrating service dependencies based on file
calls. However, this method is not sufficient to represent the
cloud infrastructure: collected data are not enough because the
work is focused on the management software written in python
and not on the whole computer.

Montes et al. [9] introduced the idea of monitoring levels
in a virtualized environment. They proposed a taxonomy and
a tool called GMonE to cover all cloud components’ analyses.
Their work defines, according to the platform infrastructure,
different interfaces for both providers and consumers to fulfill
their management decision and to guarantee the QoS specified
in the service level agreement. Following this concept, Mar-
quezan et al. [12] deal with the problem of identifying which
management actions need to be performed in the cloud during
a specific task. They proposed a method to display records
in a three-dimensional data space instead of looking at them
as isolated reports. They provided diagrams that reveal the
situation leading into some conflicting management actions.



The concept does not define how data are collected but rather
proposes a way to analyse them as a single block by defining
some metrics for the virtualization layer and the physical one.
Information is collected from different layers of the computing
node to make more efficient decisions. Nemati et al. [15] [16]
proposed a technique to analyse the VM’s behaviour by tracing
the host kernel. Their work is limited to display what actions
are appropriate for the cloud owner. But in this paper, we plan
to show how to dig into the cloud based systems to get detailed
information for troubleshooting and performance analysis.

III. OPENSTACK NOVA TRACING

In this section we explain how to investigate the high-level
layer and the type of information we are able to get from nova
services.
A. Nova tracing design

Tracing nova fulfills two purposes: debugging services and
host behaviour surveying. As nova is composed of many
services, we have a lot of log files to investigate in order
to pinpoint possible causes of failures. But, for the end users
who in most cases are not involved in the nova development
process, finding the cause of an issue when a task goes wrong
can become a difficult operation. And when they succeed
in detecting the failed task, another trouble will be finding
which factors lead to that problem. However requests from and
responses to guests are essential to locate any deficiency and to
recover VMs states and the task repartition among computing
devices. To report about works’ disruption, we proceed to the
instrumentation of only interesting methods like those related
to virtual machine life cycle. Our work is based on nova
logging activity so adding trace points is just as simple as
writing log in python script. Thereby tracing process benefits
from current logs describing the system components’ states.
We standardised the log format to make output investigation
less difficult while we provide the most interesting information
to help for easy monitoring and debugging. In this work,
we choose to write the logs in JSON format and retrieve
values about event types and instance objects which define
the different attributes of the virtual machinesTable-I displays
a short list of events we prescribe for nova analysis; more
events and the tracing requirement can be find in [2]. Usually
in a cloud environment we have more nodes running nova
services so we must collect logs from all of them and be sure
that log traces are synchronised.

sub-services events

nova-compute instance.create.{start/end}
nova-compute instance.power_off.{start/end}
nova-scheduler scheduler.select_destinations.{start/end}
nova-conductor provider_fw_rule.{start/end}

nova-driver libvirt.find.migration.min.data.{start/end}
nova-network allocate.network.instance.{start/end}
nova-network lease_fixed_ip.instance.{start/end}

TABLE I
NOVA EVENTS [SHORT LIST]

B. Nova Trace Analysis

All the high-level views are based on the attribute-tree
defined in Fig-1. They are created using TraceCompass which

Fig. 1. Nova System Attribute Tree

generates a "state provider" [14] to relate the behaviour of the
resource reported in the trace collection. Each attribute node
represents a system resource: in this model, we consider ’VM
State’ to represent the current condition of the virtual machine
and ’Service Task’ state to describe the service activity. Our
analysis views give a detailed illustration of the cloud high-
level infrastructure.

• VM state investigation: we mainly focus our audit on
virtual machines, services and physical resources. As the
user requests impact the virtual machine, knowing the
current state of the guest is a good way to deduce services
failures when instance state does not change as expected.
The instance can take many states as defined in Table-II
according to the activity executed on the guest through
nova-compute service. The VM state view (Fig-2) shows
the state by time interval of each instance in the cloud
system.

• Services performance analysis: We investigate functions
processing by providing some performance measure-
ments: the time to execute an operation. With the service
view (Fig-3) we estimate nova main tasks efficiency like
scheduling process to show the performance of filter
algorithms which select the compute node where to
launch the guest. We are able to check load balancing
among services by detecting inactive workers thanks to
services output in the view.

• Survey request flow: Network congestion or messaging
hub bottlenecks will reduce task efficiency. We have to
check activity process to ensure that no service is waiting
unnecessarily for another and verify that the request is
handled as expected by the workers.

• Troubleshooting: Nova components generate logs (Fig-
3) that depend on the fault severity like debug, warning,
error. For each critical log, we pinpoint the request flow
leading to that fault by identifying the sensitive operation.
Then we can identify the critical function and start
debugging.

• Resource consumption: The quantity of available com-
puting resources in the traced environment gives us a
good appreciation of service behaviours and platform
resource usage. We fully instrumented nova compute-



manager to get precise report about resource usage in
such a way that we get data for creation, update or
deletion of any virtual device. Based on this information,
we provided graphs about virtual machines repartition per
host, VCPU usage, and ram reservations.

Information of OpenStack layer are not really accurate and we
need more details from system low levels. In the next section
we explain how to survey virtualization layer based on QEMU
feature.

Fig. 2. Nova Instance State Changes

VM State Description
BUILDING It proves that the VM creation start; block device

and volume are mapped to the VM instance and the
network IP is assigned.

ACTIVE Shows that any operation on the VM lifecycle is
complete, and VM is fully running.

STOPPED related virtual machine is not using the computing
resource anymore, all the memory is stocked in the
physical storage.

RESIZED VM is stopped and is not running on the source node
but is running on the destination node. VM is located
on two different hosts at the same time, waiting for
a commit.

MIGRATING VM is migrating from one host to another, this state
is different from resizing because the VM at the
source is not stopped during the task.

ERROR Something goes wrong during the operation, VM
state is unrecoverable.

TABLE II
NOVA INSTANCE STATES

IV. VIRTUALIZATION LAYER TRACING

In this paper, the middle layer corresponds to the virtual-
ization layer which is known as the hypervisor [19]. We use
QEMU [18] on top of KVM [11]. QEMU is a hardware device
emulator which provides a virtual interface for physical disk
and network resources usage. KVM is included in the Linux
kernel and uses the hardware extension to accelerate the task
and supports guests to run unmodified OS images.

Fig. 3. Services log output

This level performs memory abstraction and achieves the
mapping of the guest memory to the physical one. In such

environments, the guest does not have direct access to the
host memory. On top of that, the virtualization layer provides,
with the help of the CPU abstraction mechanism, some VCPUs
(virtual CPU) for each VM. However, that process requires
trapping critical operations in the VMM so that the resource
access would be unified in the host to guarantee the stability of
the system [10]. But, non-sensitive instructions of VM are run
directly to improve the performance. Otherwise, it also handles
the multiplexing operation of I/O requests of the virtual
machine on the physical host. By tracing QEMU with LTTng
we get all these internal activities and find the memory leaks or
the memory access contention between virtual machines and
figure out how QEMU handles their requests to the hardware.
We analyse middle layer information of the VM by using
QEMU events following the attribute tree described in Fig-
4. We identify virtual machine main activity and their sub-
tasks which provide more details about their current behaviour.
The operation provided by qemu can be VM creation, live
migration or VM destruction. In this work, we use current
trace-points of QEMU application. Here we contribute by
defining some metrics and algorithms for TraceCompass to
generate graphs and views. These algorithms and the list of
events we use to survey guest migration is available at [2].

Fig. 4. Nova System Attribute Tree

V. KERNEL LAYER TRACING

In this section, we address low-layer tracing using LTTng
for physical devices investigation. Giraldeau et al. [7] show
how to understand services stagnation by analysing kernel
traces to find the source of bottlenecks. They were able to
pinpoint any latency due to network or CPU contention. Their
work can be extended to OpenStack nova workers which
interact to handle consumers’ requests. After knowing which
service is concerned with an issue from high layers, we can
explain its task performances with kernels trace investigation.
So any service which waits unnecessarily for another can be
detected if we know its workflow. Both services and virtual
machines are viewed from the kernel traces as processes
shared resources. That is why we can analyse them as regular
processes which use computing resources and get their con-
sumption based on system metrics as introduced by Desnoyers
[5] and Giraldeau [8]. Processes of the host compete with
each other to use the CPU and when one of them gets the
CPU for a long time, it impacts other processes’ execution
time and performance because they stayed in long blocking
state waiting their turn. That mechanism causes resource
sharing interferences which has a bad effect upon virtual



machines applications. We consider three main factors when
we investigate kernel processes’ efficiency:
CPU utilization - waittime: total time the process was waiting
for the CPU. A process with high priority monopolised the
CPU for such a long time that other processes have to wait
until it has finished its task. And cpuusage: is the time the
process uses the CPU, it will give an idea of how much the
virtual machine is consuming in the whole system.
Memory usage - gives the memory usage per service or guest
process and more accurate information about memory leaked
when a virtual host is using memory pages without releasing
them.
I/O access statistics - provides the I/O operation latency, net-
work and disk access. A lot of features for resource utilization
analysis are available in LTTng and Tracecompass tools to
analyse the kernel of the host and get fine-grained information
to explain system usage and show service degradation.

VI. EXPERIMENTS:LIVE MIGRATION CASE

In this section, we perform some experiments about VM
live migration and the way we record the traces of our cloud
installation and achieve execution analysis. The trace used in
this paper is available online [2]. Live migration is a technique
to move a virtual machine from one host to another physical
device. Among the virtualization technologies, it is one of the
most important providing resiliency and resource availability
in the cloud environment. This operation is used in many
cases to reach performance objective. For example, when the
guest workload increases, migration operation will relocate it
in a new host with more resources to reach its demand. Live
migration analysis requires the gathering and the correlation of
the information from the three layers both on the source, the
destination, and the controller host. On nova side, migration
is performed as described by Fig-5.

i. select destination host (controller): finds compatible
destination hosts in the cloud environment. These phys-
ical machines must support the virtual machine param-
eters and pass the filtering process. Scheduling service
will pick up one of them as a destination host.

ii. start migration process (source host): starts migration
on the source host and alarms the destination to be ready
for the operation.

iii. pre-migration step (destination host): gets the block
device and network information of the instance and
prepares to setup network on the destination.

iv. migration monitoring (source host): contacts QEMU to
proceed the migration and pulls QEMU monitor to get
the operation state until it finishes or fails. Rollback the
process if the migration time exceeds the default interval
time specified or if the migration fails.

v. post-migration (source host): detaches the volume con-
nection to the instance, disables network address, un-
plugs virtual network interface on the source host, cleans
up and updates nova database.

vi. post-dest-migration (destination host): sets up a net-
work on the destination host and updates instance in-

formation; the virtual machine is fully running on the
destination.

Fig. 5. Nova Live Migration activity

Nova-compute service pulls the hypervisor to get the current
state of the migration process. As migration is handled by
QEMU, nova does not have access to migration internal state,
so when something goes wrong, nova cannot find what is
happening but will perform a rollback task by releasing the
resource and cleaning up the destination machine.

Fig. 6. Live Migration: Qemu steps

We complete these high-level information with QEMU
events for more details about the operation. Qemu proceeds
to the migration in three steps (Fig-6): during the first step,
all the memory is moved to the destination. In iteration copy
phase, the dirty memory is transferred in several rounds until
there is not enough dirty-data and then the virtual machine is
stopped at the source, the memory is moved and the VM is
resumed at the destination: that is the stop-and-copy phase. To
improve the performance analysis, we define some sub-steps
for each of them [Fig-6]: load stage when the memory is
loaded by QEMU, compress stage describes the compression
of the memory, transfer step happened when memory is sent
to the destination.

Live migration has to deal with a lot of challenges that
can reduce the QoS of applications running inside the virtual
machine. Moreover increasing the number of guests in a host
leads VMs to concurrently compete for physical resources
utilization which causes service degradation. Bloch et al.
[3] identify some interferences in cloud environment which
possibly produce a bad effect upon a live migration process.

• Co-location interference - VM migration requires extra
usage of the CPU and the bandwidth to move guest data.
Unfortunately, the productivity of applications running
inside the physical host will be reduced.

• Network interference - network I/O virtualization suffers
from virtual interruptions to guests VMs. Moreover, mi-
gration bandwidth usage degrades communication among
VMs.

• Resources interference - migration reduces resource avail-
ability and raises CPU or memory contention. At the



destination, a memory space will be assigned to the newly
created VM and that operation will disturb the existing
VMs. However, live migration will take more time to
complete if there is not enough spare CPU.

In this paper we performed two experiments on virtual ma-
chines live migration and report its efficiency according to
these challenges. There are several parameters used to ap-
preciate live migration like the Migration time which refers
to the total time used to copy the device memory from one
physical host to another and resume it. The downtime is the
time interval when VM is not running during the stop-and-
copy step. Clark [4] demonstrates that downtime is critical
as it may cause service disruption. In the literature, migration
downtime is estimated by pulling the virtual machine interface
until it responds but that is not accurate. Here we get the
downtime by deducing it from the Qemu event. The downtime
is related to stop and copy time in our Qemu activity view(Fig-
7). We are able to estimate with high efficiency, memory copy
stages and down time. For these live migration experiments
we proceed according to the following steps: (a)-start tracing
OpenStack nova, QEMU, kernel of the controller, source
and destination host using LTTng stream to collect trace
files automatically on a specified node. (b)-run live migration
process. (c)-stop tracing after migration complete. (d)-upload
trace in Tracecompass to synchronize and generate the view.

Operation experiment1 experiment2 experiment3

SELECTdest 11.22ms 13.611ms 31.69ms
PRE-MIGRtime 494.60ms 524.23ms 234.33ms

POST-MIGRtime 2.55ms - 3.56ms
POSTDESTMIGRtime 111.19ms - 372.47ms

TOTALMIGRtime 166.12sec - 169.320sec
DOWNTIME unknow - unknow

MIGR-ENDstate ok failed ok
TABLE III

EXPERIMENTS PERFORMANCE RESULTS FROM HIGH LEVEL

A. Experiment-1

We proceed to the first test by migrating a virtual machine
and retrieving all possible trace from the nodes’ three layers.
We reduce the environment’s activity to be sure that no
process will interfere with the migration task. Table-III shows
the result we get from the high-level layer about the main
parameter. As expected, downtime is unknown at this stage,
that is why we need QEMU level trace. Performance of the
first experiment serves as the benchmark when studying other
experiments. Fig-7 describes all the stage of the migration, the
number of the copy-round and the downtime estimation.

B. Experiment-2

Here we analyse the impact of VM interferences during
live migration. We try to migrate a VM co-located with four
virtual machines which have a high demand in resource: To
increase the interference we use a stress tool for these guests.
The migration succeeds but takes much more time than the
first experiment (Table-III). This behaviour is explained by
the low-level layer analysis with the kernel trace. In this case,

Fig. 7. Experiment-1: Migration succeeds; dirty-pages curve converges

VMs share the physical resources with other processes of the
host. For illustration, in Fig-8 the virtual machine VM-23405
is waiting for CPU while other VMs are using the resources.
Any process with high priority will confiscate the CPU and
reduce VM-23405 access time. Moreover, the preemption of
the migrated virtual machine increases the migration time. The
interference of co-located VMs really matters when we want
to perform migration quickly. The more the VM is preempted
the more its activity takes time to complete. We can estimate
the virtual machine preemption rate, explain its service latency
and deduce that it is better to increase, if possible, VM process
priority before moving it to another host.

Fig. 8. Experiment-3: vm-2340 migration takes much more time to complete

Fig. 9. VM Preemption: vm-2340 interferes with vm-1000

VII. CONCLUSION

In this work, we presented a multi-layer trace-based cloud
analysis approach. The idea is to trace the virtualization layer,
the kernel space of the VMs and the kernel space of any
host involved in the cloud and associate the outputs. We also
introduced OpenStack nova tracing to provide enough data
for troubleshooting and load balancing survey in the cloud
infrastructure. It works by correlating data from the compute
manager, virtualization and kernel layers and performing
work analysis and following any request made by the cloud
users. Our live migration experiments show that we are able
to pinpoint OpenStack services failures and understand in
most case work latency. But the efficiency of some tasks is



hard to report due to the lack of data related to the network
service. For future work, we plan to analyse the request flow
in network functions virtualization by tracing Neutron and
Opendaylight.
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