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RÉSUMÉ

L’apprentissage profond est devenu la technique de pointe pour de nombreuses applications
de classification et de régression. Les modèles d’apprentissage profond, tels que les réseaux
de neurones profonds (Deep Neural Network - DNN) et les réseaux de neurones convolution-
nels (Convolutional Neural Network - CNN), déploient des dizaines de couches cachées avec
des centaines de neurones pour obtenir une représentation significative des données d’entrée.
La puissance des DNN et des CNN provient du fait qu’ils sont formés par apprentissage de
caractéristiques extraites plutôt que par des algorithmes spécifiques à une tâche. Cepen-
dant, cela se fait aux dépens d’un coût de calcul élevé pour les processus d’apprentissage
et d’inférence. Cela nécessite des accélérateurs avec de hautes performances et économes en
énergie, en particulier pour les inférences lorsque le traitement en temps réel est important.
Les FPGA offrent une plateforme attrayante pour accélérer l’inférence des DNN et des CNN
en raison de leurs performances, dû à leur configurabilité et de leur efficacité énergétique.

Dans cette thèse, nous abordons trois problèmes principaux. Premièrement, nous examinons
le problème de la mise en œuvre précise et efficace des DNN traditionnels entièrement con-
nectés sur les FPGA. Bien que les réseaux de neurones binaires (Binary Neural Network -
BNN) utilisent une représentation de données compacte sur un bit par rapport aux données
à virgule fixe et à virgule flottante pour les DNN et les CNN traditionnels, ils peuvent en-
core nécessiter trop de ressources de calcul et de mémoire. Par conséquent, nous étudions le
problème de l’implémentation des BNN sur FPGA en tant que deuxième problème. Enfin,
nous nous concentrons sur l’introduction des FPGA en tant qu’accélérateurs matériels pour
un plus grand nombre de développeurs de logiciels, en particulier ceux qui ne maîtrisent pas
les connaissances en programmation sur FPGA.

Pour résoudre le premier problème, et dans la mesure où l’implémentation efficace de fonc-
tions d’activation non linéaires est essentielle à la mise en œuvre de modèles d’apprentissage
profond sur les FPGA, nous introduisons une implémentation de fonction d’activation non
linéaire basée sur le filtre à interpolation de la transformée cosinus discrète (Discrete Cosine
Transform Interpolation Filter - DCTIF). L’architecture d’interpolation proposée combine
des opérations arithmétiques sur des échantillons stockés de la fonction de tangente hyper-
bolique et sur les données d’entrée. Cette solution offre une précision 3× supérieure à celle
des travaux précédents, tout en utilisant une quantité similaire des ressources de calculs et
une petite quantité de mémoire. Différentes combinaisons de paramètres du filtre DCTIF
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peuvent être choisies pour compenser la précision et la complexité globale du circuit de la
fonction tangente hyperbolique.

Pour tenter de résoudre le premier et le troisième problème, nous introduisons une archi-
tecture intermédiaire sans multiplication de réseau à une seul couche cachée (Single Hidden
Layer Neural Network - SNN) avec une performance de niveau DNN entièrement connectée.
Cette architecture intermédiaire d’inférence pour les FPGA peut être utilisée pour des ap-
plications qui sont résolues avec des DNN entièrement connectés. Cette architecture évite
le temps nécessaire pour synthétiser, placer, router et régénérer un nouveau flux binaire de
programmation FPGA lorsque l’application change. Les entrées et les activations de cette
architecture sont quantifiées en valeurs de puissance de deux, ce qui permet d’utiliser des
unités de décalage au lieu de multiplicateurs. Par définition, cette architecture est un SNN,
nous remplissons la puce FPGA avec le maximum de neurone pouvant s’exécuter en parallèle
dans la couche cachée. Nous évaluons l’architecture proposée sur des données de référence
types, et démontrons un débit plus élevé en comparaison avec les travaux précédents tout en
obtenant la même précision. En outre, cette architecture SNN met la puissance et la poly-
valence des FPGA à la portée d’une communauté d’utilisateurs DNN plus large et améliore
l’efficacité de leur conception.

Pour résoudre le second problème, nous proposons POLYBiNN, un engin d’inférence binaire
qui sert d’alternative aux DNN binaires sur les FPGA. POLYBiNN est composé d’une pile
d’arbres de décision (Decision Tree - DT), ces DT sont des classificateurs binaires, et utilise
des portes AND-OR au lieu de multiplicateurs et d’accumulateurs. POLYBiNN est un engin
d’inférence sans mémoire qui réduit considérablement les ressources matérielles utilisées. Pour
implémenter des CNN binaires, nous proposons également POLYCiNN, une architecture
composée d’une pile de forêts de décision (Decision Forest - DF), où chaque DF contient
une pile de DT (POLYBiNN). Chaque DF classe l’une des sous-images entrelacée de l’image
d’origine. Ensuite, toutes les classifications des DF sont fusionnées pour classer l’image
d’entrée. Dans POLYCiNN, chaque DT est implémenté en utilisant une seule table de vérité
à six entrées. Par conséquent, POLYCiNN peut être efficacement mappé sur du matériel
programmable et densément parallèles. Aussi, nous proposons un outil pour la génération
automatique d’une description matérielle de bas niveau pour POLYBiNN et POLYCiNN.
Nous validons la performance de POLYBiNN et POLYCiNN sur des données de référence
types de classification d’images de MNIST, CIFAR-10 et SVHN. POLYBiNN et POLYCiNN
atteignent un débit élevé tout en consommant peu d’énergie et ne nécessitent aucun accès
mémoire.
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ABSTRACT

Deep learning has evolved to become the state-of-the-art technique for numerous classification
and regression applications. Deep learning models, such as Deep Neural Networks (DNNs)
and Convolutional Neural Networks (CNNs), deploy dozens of hidden layers with hundreds
of neurons to learn a meaningful representation of the input data. The power of DNNs
and CNNs comes from the fact that they are trained through feature learning rather than
task-specific algorithms. However, this comes at the expense of high computational cost
for both training and inference processes. This necessitates high-performance and energy-
efficient accelerators, especially for inference where real-time processing matters. FPGAs
offer an appealing platform for accelerating the inference of DNNs and CNNs due to their
performance, configurability and energy-efficiency.

In this thesis, we address three main problems. Firstly, we consider the problem of realizing a
precise but efficient implementation of traditional fully connected DNNs in FPGAs. Although
Binary Neural Networks (BNNs) use compact data representation (1-bit) compared to fixed-
point data and floating-point representation in traditional DNNs and CNNs, they may still
need too many computational and memory resources. Therefore, we study the problem of
implementing BNNs in FPGAs as the second problem. Finally, we focus on introducing
FPGAs as accelerators to a wider range of software developers, especially those who do not
posses FPGA programming knowledge.

To address the first problem, and since efficient implementation of non-linear activation
functions is essential to the implementation of deep learning models on FPGAs, we introduce
a non-linear activation function implementation based on the Discrete Cosine Transform
Interpolation Filter (DCTIF). The proposed interpolation architecture combines arithmetic
operations on the stored samples of the hyperbolic tangent function and on input data. It
achieves almost 3× better precision than previous works while using a similar amount of
computational resources and a small amount of memory. Various combinations of DCTIF
parameters can be chosen to trade off the accuracy and the overall circuit complexity of the
tanh function.

In an attempt to address the first and third problems, we introduce a Single hidden layer Neu-
ral Network (SNN) multiplication-free overlay architecture with fully connected DNN-level
performance. This FPGA inference overlay can be used for applications that are normally
solved with fully connected DNNs. The overlay avoids the time needed to synthesize, place,
route and regenerate a new bitstream when the application changes. The SNN overlay in-
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puts and activations are quantized to power-of-two values, which allows utilizing shift units
instead of multipliers. Since the overlay is a SNN, we fill the FPGA chip with the maximum
possible number of neurons that can work in parallel in the hidden layer. We evaluate the
proposed architecture on typical benchmark datasets and demonstrate higher throughput
with respect to the state-of-the-art while achieving the same accuracy. In addition, the SNN
overlay makes the power and versatility of FPGAs available to a wider DNN user community
and to improve DNN design efficiency.

To solve the second problem, we propose POLYBiNN, a binary inference engine that serves
as an alternative to binary DNNs in FPGAs. POLYBiNN is composed of a stack of Decision
Trees (DTs), which are binary classifiers in nature, and it utilizes AND-OR gates instead of
multipliers and accumulators. POLYBiNN is a memory-free inference engine that drastically
cuts hardware costs. To implement binary CNNs, we also propose POLYCiNN, an architec-
ture composed of a stack of Decision Forests (DFs), where each DF contains a stack of DTs
(POLYBiNNs). Each DF classifies one of the overlapped sub-images of the original image.
Then, all DF classifications are fused together to classify the input image. In POLYCiNN,
each DT is implemented in a single 6-input Look-Up Table. Therefore, POLYCiNN can
be efficiently mapped to simple and densely parallel hardware programmable fabrics. We
also propose a tool for the automatic generation of a low-level hardware description of the
trained POLYBiNN and POLYCiNN for a given application. We validate the performance
of POLYBiNN and POLYCiNN on the benchmark image classification tasks of the MNIST,
CIFAR-10 and SVHN datasets. POLYBiNN and POLYCiNN achieve high throughput while
consuming low power, and they do not require any memory access.
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CHAPTER 1 INTRODUCTION

Machine learning is a field of artificial intelligence where computer algorithms are used to
autonomously learn from data. Machine learning algorithms have been ubiquitous in several
applications such as objects classification [1], pattern recognition [2] and regression problems
[3]. Machine learning started early in 1950 when Alan Turing developed the Turing test
to determine if a computer has real intelligence. The test is about fooling a human into
believing that he/she had a natural text language conversation with another human while
it is a machine. This machine is mainly designed to generate human-like responses. In
1952, Arthur Samuel wrote a computer learning program which was the game of checkers. A
big step in the field of machine learning occurred when Frank Rosenblatt designed the first
neural network for computers which simulates the thought processes of the human brain in
1957. Hence, the nearest neighbor algorithm was developed in 1967 that allows computers to
recognize very basic patterns. In 1985, Terry Sejnowski developed NetTalk, which is a neural
network that learns to pronounce words the same way a baby does. The power of machine
learning started to appear when IBM’s Deep Blue computer beat the world champion at
chess in 1997. Lately, the term deep learning started to appear. Deep learning offers new
algorithms that can be used to let computers see and distinguish objects and text in images
and videos using deep models with a large number of parameters. All in all, the latest
technological advancements in machine learning approaches paved the way for new exciting
and complex applications [4].

1.1 Overview

Artificial Neural Network (ANN) is one of the machine learning algorithms that achieves
high performance in a diversity of applications. Usually the end user iteratively modifies
the ANN’s architecture to better represent the provided examples and generalize to new
data. ANNs consist of an input layer, a few hidden layers and an output layer. Each layer
has a number of Artificial Neurons (ANs) that receive signals from inputs or other neurons
and compute the weighted-sum of their inputs. Thereafter, an activation function is applied
on the weighted-sum of each AN in order to introduce non-linearity into the network. Ten
years ago, although there was no real restriction on the number of hidden layers in a Neural
Network (NN), having more than two or three hidden layers was impractical in terms of
computational complexity and memory access [5]. The main reason behind this is that the
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existing Central Processing Units (CPUs) at that time were spending weeks or months to
train a deep model.

Recently, deep learning has introduced deep models such as Deep Neural Networks (DNNs)
and Convolutional Neural Networks (CNNs) where large numbers of hidden layers are used [4].
The deep models with many hidden layers usually achieve better performances than NNs
especially at complex applications [6]. There have been attempts to address why DNNs
usually outperform NNs in terms of accuracy [6]. One reason is that DNNs usually expand
traditional NNs to a large scalable network with larger capacity of neurons and hidden
layers [6]. In other words, deep models have the ability to learn more complex functions than
simple NNs [7]. In the case of CNNs, they are trained to extract representative features from
their inputs through several non-linear convolutional layers. Consequently, DNNs and CNNs
achieve better performance than NNs in terms of classification accuracy.

Hardware accelerators played a major role in the development process of machine learning
algorithms. Traditionally, CPUs with limited cores are insufficient in executing deep learn-
ing models. Nowadays, hardware accelerators have massive computational resources and are
capable of processing data faster. The success of deep machine learning models is massively
linked to the development of parallel Graphical Processing Units (GPUs). GPUs brought a
paradigm shift in reducing the computational time of the execution process of the training
and inference processes of deep models. Although GPUs give developers the opportunity
to use deeper models and train these models with more data, the complexity of some deep
models exceeds the computational abilities of existing GPUs [8]. Moreover, GPUs consume
high power which is a problematic for battery-powered devices. In addition, the high power
consumption of GPUs limits the number of processors that can be used to improve GPUs’
performance in terms of throughput. Therefore, more efficient specialized hardware acceler-
ators for DNNs are highly desired [8].

Application Specific Integrated Circuits (ASICs) are dedicated hardware for a specific ap-
plication where both area and performance are well optimized. Although ASICs achieve
good performance in terms of computational time, they are dedicated for specific applica-
tions and have low level of configurability, and their time to market process is long. Field
Programmable Gate Arrays (FPGAs) are hardware logic devices that have different amount
of computational and memory resources that can be reconfigured to meet the requirements
of several applications. FPGAs can be used to prototype ASICs with the intention of being
replaced in the final production by the corresponding ASIC designs. However, FPGAs can
achieve throughputs close to ASICs. In addition, the time-to-market of FPGA implementa-
tions is significantly shorter than for ASIC implementations. This is mainly because that,
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unlike ASICs, FPGAs are not fully custom chips. So, no layouts, masks and manufacturing
steps are required for an FPGA implementation. It is all about compiling the Hardware
Description Language (HDL) code of the implementation on the target FPGA device. The
manual intervention of the complex processes like placement, routing and time analysis in
FPGA implementations is less than in ASIC. That is why the time-to-market of FPGA im-
plementations is shorter than ASIC implementations, and FPGAs are used in accelerating
several complex applications.

1.2 Problem Statement

Deep learning hardware accelerators that score high on the 3Ps - Performance, Programma-
bility and Power consumption - are highly desired. FPGAs achieve good performance in
the 3Ps, but they have not been widely used for accelerating deep learning models com-
pared to GPUs. The limited computation and memory resources of FPGAs might be the
reason why they have not been used in accelerating deep learning applications. Moreover,
the ease of the process of using GPUs over FPGAs in accelerating deep learning applica-
tions is another reason. One motivation of the present work is to thus improve the mapping
and scheduling of deep learning models such as DNNs and CNNs on current FPGAs within
the available resource and external memory bandwidth constraints. Another motivation is
the dearth of software libraries, frameworks and template-based compilers that can help de-
velopers transform their high-level description of a deep learning architecture to a highly
optimized FPGA-based accelerator with limited hardware design expertise. In this work,
these motivations have led us to address three problems.

Firstly, we consider the problem of realizing a precise implementation of Fully Connected
(FC) DNNs in FPGAs. This implementation entails a large number of additions and multi-
plications that would badly increase the overall resources required for implementing a single
AN with its non-linear activation function, and a fully parallel DNN. In addition, the pro-
cess of describing a DNN for FPGA implementation often involves HDL modeling, for which
designer productivity tends to be lower. These concerns must be addressed before FPGAs
can become as popular as GPUs for DNN implementation.

Secondly, we consider the problem of implementing FC Binary Neural Networks (BNNs) in
FPGAs. Recent works on compressing deep models have opened the door to implement deep
and complex models in FPGAs with limited computational and memory resources. Moreover,
reducing the precision of the data representation of DNN parameters from double floating-
point to fixed-point and binary representation proved efficient in terms of performance and
compression. Although BNNs drastically reduce hardware resources consumption, complex
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BNN models may need more computational and memory resources than those available in
many current FPGAs. Therefore, optimization techniques that efficiently map BNNs to
hardware are highly desired.

A third problem is how to realize efficient CNNs in FPGAs for solving classification problems.
CNNs achieve state-of-the-art accuracy in many applications, however they have weaknesses
that limit their use in embedded applications. A main downside of CNNs is their compu-
tational complexity. They typically demand many Multiply and Accumulate (MAC) and
memory access operations in both training and inference. Another drawback of CNNs is
that they require careful selection of multiple hyper-parameters such as the number of con-
volutional layers, the number of kernels, the kernel size and the learning rate. Consequently,
other classifiers that suit the nature of FPGAs and achieve acceptable classification accuracy
are worthy of exploration.

1.3 Research Contributions

The main objective of this work is to design and implement an efficient FPGA-based ac-
celerators for DNNs and CNNs with the aim to achieve comparable performance as CPU
and GPU-based accelerators and high throughput with high-level of design simplicity and
flexibility. This section reviews the different contributions of this thesis. These contributions
represent solutions to the problems detailed in section 1.2.

First, we propose a high precision approximation of the non-linear hyperbolic tangent acti-
vation function while using few computational resources. We also study how the accuracy of
the hyperbolic tangent activation function approximation changes the performance of differ-
ent DNNs. The proposed approximation is configurable and its parameters can be chosen to
trade off the accuracy and the overall circuit complexity. Moreover, it can be used for other
activation functions such as sigmoid, sinusoid, etc. The proposed approximation achieves al-
most 3× better precision than previous works in the literature while using a similar amount
of computational resources and a small amount of memory. This work was published in
the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays in 2017 [9]
entitled “Accurate and Efficient Hyperbolic Tangent Activation Function on FPGA using
the DCT Interpolation Filter”, and in IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines in 2017 in [10] entitled “A configurable FPGA
Implementation of the Tanh Function using DCT Interpolation”.

Second, we propose a single hidden layer NN multiplication-free overlay architecture with
DNN-level performance. The overlay is cheap in terms of computations since it avoids mul-



5

tiplications and floating-point operations. Moreover, it is user friendly especially for users
with no FPGA experience. In a couple of minutes, the user can configure the overlay with
the network model using a traditional C code. This work was published in the International
Conference on ReConFigurable Computing and FPGAs (ReConFig) in 2018 [11] entitled “An
Efficient FPGA-based Overlay Inference Architecture for Fully Connected DNNs”.

Third, we propose POLYBiNN, an efficient FPGA-based inference engine for DNNs using
decision trees, which are binary classifiers by nature. POLYBiNN is a memory-free inference
engine that drastically cuts hardware costs. We also propose a tool for the automatic gener-
ation of a low-level hardware description of the trained POLYBiNN for a given application.
This work was published in the IEEE Conference on Design and Architectures for Signal and
Image Processing (DASIP) in 2018 [12] entitled “POLYBiNN: A Scalable and Efficient Com-
binatorial Inference Engine for Neural Networks on FPGA” and got best paper award, and
in Journal of Signal Processing Systems in 2019 [13] entitled “POLYBiNN: Binary Inference
Engine for Neural Networks using Decision Trees”.

Fourth, we propose POLYCiNN, a classifier inspired by CNNs and decision forest classifiers.
POLYCiNN migrates CNN concepts to decision forests as a promising approach for reducing
both execution time and power consumption while achieving acceptable accuracy in CNN
applications. POLYCiNN can be efficiently mapped to simple and densely parallel hardware
designs since each decision tree is implemented in a single Look-Up Table. This work was
accepted for publication in the IEEE Conference on Design and Architectures for Signal and
Image Processing (DASIP) in 2019 [14] entitled “POLYCiNN: Multiclass Binary Inference
Engine using Convolutional Decision Forests”.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 introduces the basic concepts of NNs and
deep learning models. Moreover, it provides a review of recent literature about the dif-
ferent software and hardware acceleration approaches of DNNs and CNNs. We detail the
contributions of this work in the four subsequent chapters. In chapter 3, we present a con-
figurable FPGA implementation of the tanh activation function. In chapter 4, we describe
an efficient FPGA-based overlay inference engine for DNNs. We introduce POLYBiNN, a
binary inference engine for DNNs in chapter 5. Chapter 6 presents POLYCiNN, a multiclass
binary inference engine for CNN applications. Chapter 7 gives a general discussion about
the proposed implementations. Chapter 8 concludes this thesis and outlines future research
directions.
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

In this chapter, we provide background information and a literature review on DNNs and
CNNs. We begin by giving the basic principles of NNs in terms of their architectures and
working theorems. We describe the concept of deep learning and present its different models
and applications. We also review the literature regarding the different implementation ap-
proaches of DNNs and CNNs. Finally, we discuss the pros and cons of the different hardware
acceleration platforms for DNNs and CNNs.

2.1 Artificial Neural Networks

ANNs are computational models inspired by the principles of computations performed by the
biological NNs of human brains [15]. Nowadays, several applications in different domains use
ANNs, for example, signal processing, image analysis, medical diagnosis systems, and finan-
cial forecasting [15]. In these applications, the main role of ANNs is either classification or
functional approximation (regression) [3]. In classification, the main objective is to provide a
meaningful categorization or proper classification of input data. In functional approximation,
ANNs try to find a functional model that smoothly approximates the actual mapping of the
given input and output data.

2.1.1 Neural Network Components

ANNs consist of an input layer, a number of hidden layers and an output layer. Each layer
is composed of a number of ANs that are considered the basic elements of NNs. These
ANs receive signals from either inputs or other neurons and compute the weighted-sum of
their inputs, as shown in Fig. 2.1. Theoretically, each AN serves as a gate and uses an
activation function to determine whether to fire and produce an output from its input or
not [3]. Usually, activation functions are applied in order to introduce non-linearity into the
network.

An activation function is a transfer function that takes the weighted-sum of a neuron and
transfers it to an output signal. Fig. 2.2 shows the most common activation functions that
are used in different NN applications. Generally, NNs activation functions can be placed
into two main categories: 1) sigmoidal and 2) non-sigmoidal activation functions [16]. The
term sigmoidal function refers to any function that takes an S-shape curve. The sigmoid and
hyperbolic tangent functions are bounded, differentiable and continuous sigmoidal functions.
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Figure 2.1 The basic components of an artificial neuron

Non-sigmoidal activation functions such as Rectified Linear Unit (ReLU) are not bounded and
achieve better performance than sigmoidal functions in many applications [16]. Moreover,
non-sigmoidal functions are computationally efficient as they require a simple comparison
between two values. They also have a sparse representation in their output values.

An artificial neuron, or perceptron, can separate its input data into two classes in a linear
relation [17]. In order to solve non-linear complex functions, several ANs are used in multiple
layers where the outputs of the ANs of one layer are connected to the inputs of the next
layer. A Multi-Layer Perceptron (MLP) is a feed-forward NN that consists of an input layer
of ANs, followed by two or more layers of ANs with a final output layer. The term feed-
forward indicates that the network feeds its inputs to the hidden layers towards the output
layer in only one direction. The performance of a NN for a given application depends on the
associated weights of its ANs. Those weights are determined through training the network
on the given data iteratively. Once NNs are well trained and tested on a sufficient amount

Figure 2.2 Non-linear activation functions (sigmoid, tanh and ReLU)
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of data in order to generalize their classification or functional approximation surface, their
models can be applied on new data.

2.1.2 Model Selection

The objective of model selection process in NNs is to find the network architecture with the
best generalization properties, which minimize the error on the selected samples (training
and validation samples) of the dataset. This process defines the number of layers of the
network, number of ANs per layer, the interconnections, type of activation function, etc.
These settings are called hyper-parameters that control the behaviour of the corresponding
network. Conceptually, hyper-parameters can be considered orthogonal to the learning model
itself in the sense that, each network architecture with a set of hyper-parameters is considered
a hypothesis space. The training process of that network optimizes the hypothesis within that
space. For example, we can think of model selection for a given application as the process of
choosing the degree of the polynomial that best represents the given data of this application.
Once the polynomial degree is determined, adjusting the parameters of the polynomial is
considered as the optimization of the hypothesis.

All these hyper-parameters, alongside with learning rate, epochs, etc. must be chosen before
training and are picked manually based on experience [17]. The major drawback of this
strategy is the difficulty of reproducing the results as this optimization strategy takes time and
depends on the experience of the developer [22]. There are some other automatic strategies
such as grid search [23] and random search [22], however they do not perform as well as
manual optimization especially in deep models [22].

2.1.3 Training Artificial Neural Networks

NNs can be classified into three main types according to how they learn: supervised, semi-
supervised and unsupervised learning networks. In supervised learning, the aim is to discover
a function that approximates the true function of a given training set that has sample input-
output pairs [18] with a high degree of accuracy. In this case the output value of each
input is available and the labeled examples of the training set serve to supervise network
training. On the other hand, unsupervised NNs learn patterns of the input data even though
no explicit feedback is supplied. These networks are often used in clustering applications [18].
Semi-supervised NNs have few labeled examples and a large collection of unlabeled examples.
Semi-supervised NNs use both types of examples to learn the best classification or clustering
model of the given data.
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In supervised learning, training NNs is mainly about adjusting the network weight and bias
values to minimize the loss function [18]. The loss function is defined as the amount of utility
lost by approximating a model for the given data to its correct answer. In other words, the
loss function measures how the predicted model fits the data. Therefore, adjusting the weight
and bias values can be addressed by a hill-climbing algorithm that follows the gradient of the
loss function to be optimized. Although there are complex techniques to initialize the weight
and the bias values, random weight values and zero bias values are often used [20].

Generally, the error back-propagation algorithm is the most common technique for training
ANNs [17]. It consists of two paths through the ANN layers: a feed-forward and a back-
propagation paths. First, in the feed-forward path, the network takes the input values of
a single training sample (stochastic) or a number of samples (mini-batch) or all training
samples (batch). These inputs are multiplied by the initialized weight values and then the
weighted-sum values are calculated and passed through the pre-defined activation function
of each AN till the output layer. In the feed-forward path, the weights and bias values are
fixed and are not updated. Once the outputs appear at the output layer, the loss function
is computed by subtracting the output layer response from the expected output vector. In
the back-propagation path, the loss function value is back propagated through the different
layers of the network to update the weights and biases. The gradient descent algorithm [21]
computes the gradient of the loss function with respect to each weight and bias value at the
different layers. The gradient values along with the learning rate are used to update the
weights and biases of the model. The feed-forward and back-propagation paths are repeated
several times, called epochs, until the network is trained according to the training algorithm’s
constraint.

When training NNs, it is crucial to have separate training, validation and test sets [19]. The
training set usually represents 70% of the overall data and it is used to train the network
fitting the model to the given data. The validation set, which usually represents 15% of the
data, is used to tune the ANN’s hyper-parameters. It also prevents overfitting during training
by performing early stopping. The key point of early stopping is to find the weight values and
biases during training for which the validation set curve begins to deteriorate [19]. In other
words, when the classification performance of the validation dataset meets the requirements,
the training algorithms stops updating the weigh and bias value. After training the model,
the test set is used to assess the generalization of the trained model on new data.
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2.2 Deep Learning

Deep learning is a form of machine learning that uses multiple transformation steps in or-
der to discover representative features or patterns in the given data [19]. The word deep
refers to the fact that the outputs are derived from the inputs by passing through multiple
layers of transformations. In deep learning, the models jointly learn the most representa-
tive complex features across the different layers of the network. Recently, impressive results
were achieved in speech recognition and computer vision applications using different machine
learning models such as DNNs, CNNs, and Recurrent Neural Networks (RNNs) [4, 19].

2.2.1 Deep Learning into Action

The use of deep learning models is not a novel concept especially that it has been proposed
since developing NNs. However, deep models were out of reach as their computational com-
plexity were exceeding the available computational platforms capabilities [5]. Three facts
have facilitated the resurgence of deep learning models; a) the availability of large datasets,
b) the development of faster and parallel computation units and c) the development of new
sparsity, regularization and optimization machine learning techniques [4]. Nowadays, re-
searchers and organizations can collect massive amount of data that can be used to train
deep models with many parameters. In addition, techniques such as dropout and data aug-
mentation [24] can generate more training samples from a small dataset. On the other hand,
the availability of high-speed computational units such as GPUs and cloud computing are
valued in deep learning since they can adequately handle large amounts of computational
work quickly. Consequently, the revolution of deep learning has been enabled by the existing
hardware accelerators.

2.2.2 Deep Neural Networks

NNs have been considered standard machine learning techniques for decades, however DNNs
with higher capacity that have a larger number of hidden layers achieve better performance
compared to NNs [6]. DNN is considered the basic model of deep learning that performs
computations on deep FC layers. Usually, DNNs use the same activation functions used in
NNs such as sigmoid and tanh. However, for DNNs, ReLU activation function is favorable
in some applications since it outputs zero for all negative inputs. This is often desirable
because there are fewer computations to perform and this results in concise DNN models
that achieve more generalization towards the corresponding application and more immune
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to noise. Training DNNs is exactly the same process as training NNs with more number of
hidden layers using the back-propagation algorithm.

2.2.3 Convolution Neural Networks

CNNs are a special kind of feed-forward networks that have achieved success for image
analysis, pattern recognition and image based classification applications. CNNs process the
given data in the form of arrays containing pixel values, for example a color RGB image. A
typical CNN, as shown in Fig. 2.3, consists of a series of stages where each stage has three
layers: a convolution layer, an activation layer and a pooling layer.

The convolution layer applies learnable filters on small spatial regions of the input image.
The output of each filter is called a feature map. This process extracts the most important
and representative features of the input image. Once an image has been filtered, the output
feature maps are passed through a non-linear activation function in the second layer. Usually,
the ReLU activation function achieves good performance when working with images [1, 4].
Finally, a pooling or a decimation layer is applied which subsamples the output feature maps
from the activation layer. The main task of pooling layers is to reduce the computational
complexity of the network and generalize the model more to achieve good performance of
the testing dataset. The subsampling process usually uses the max operation that activates
a feature if it is detected anywhere in the pooling zone. A few FC layers before the output
layer link all the extracted features together and classify an input sample.

2.3 DNN and CNN Acceleration

GPUs, custom ASICs and FPGAs have been the main approaches for accelerating the training
and the inference of a deep model [8, 25]. Not only hardware accelerators, but algorithmic
and software approaches have been used as well to reduce DNN and CNN computations.

2.3.1 Algorithmic and Software Approaches

There are some algorithmic trends in accelerating deep models [25]: using more compact
data types, taking advantage of sparsity, models compression and mathematical transforms.

Recently, it has been shown that deeper models can achieve higher accuracies than simple
models [2]. However, deeper models require more computations and memory accesses to
perform their tasks. For example, ResNet [26] has significantly increased the top-5 accuracy
on the Imagenet [27] dataset to 96.4% compared to 84.7% using AlexNet [1]. However,
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ResNet uses 152 layers and requires 11 B Floating Point Operations Per Second (FLOPS)
while AlexNet has only eight layers and requires 1.5B FLOPS. The computational efficiency
of the network can be improved by using more compact data types. Usually, double floating-
point data representation is used in the training process of DNNs. However, many researchers
have shown that it is possible to train and perform the inference process using fixed-point data
representation [6, 28–30]. Moreover, more compact data representations such as BNNs [30]
have achieved performances comparable to fixed and floating-point data representations.
BNNs can significantly reduce network parameter storage. In addition, the multiply and
the accumulation processes are replaced by boolean operators which dramatically cut the
required computations of the network.

Sparsity is another trend in DNNs that reduces their computational complexity in the training
and the inference stages. Albreicio et al. [31] reported that more than 50% of the AN values
of some popular DNNs are zeros. Moreover, the ReLU function, which is the most commonly
used activation function [4], helps in building sparse activations since it outputs zero for
negative inputs. Computations on such zero-valued activations are unnecessary. This results
in transforming the traditional matrix multiplications to sparse matrix multiplications that
require fewer operations than dense matrix [25]. Furthermore, Han et al. [28] proposed a
pruning technique that zeros out the non-important neurons to generate a sparse matrix.
This reduces the computational complexity of the network while maintaining comparable
accuracy. Moreover, several compression techniques of DNNs have been proposed such as
weight sharing [28] and hashing function [32].

Several software libraries have been developed for designing, simulating and evaluating DNNs
and CNNs. Most of these libraries allow users to deploy their models to different hardware
platforms i.e. CPUs and GPUs. Some popular examples of open source NN libraries are
Fast Artificial Neural Network (FANN) developed in C [34], OpenNN developed in C++ [35]
and OpenCV library for NNs developed in C/C++ [36]. Moreover, open source software
platforms for machine learning, e.g. Tensorflow [37] and PyTorch [38] can realize DNN and
CNN applications. Although GPUs are powerful hardware accelerators mainly designed for
image and video processing application, they can also be used to accelerate any parallel
single instruction multiple data application which exactly fits to NN applications. GPUs are
working in the sense that the users have to translate their program into an explicit graphics
language, e.g., OpenGL. However, NVIDIA introduced CUDA [39], a C/C++ language that
enables more straightforward programming on the parallel architecture of a GPU. Therefore,
we consider GPUs as a software approach as most of the discussed software libraries e.g.
Tensorflow, PyTorch and Matlab deep learning library [40] are compatible with GPUs without
any required modifications by the users.
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DNNs are represented in software as control programs that operate on memory locations
containing the inputs and the output data of each AN. These ANs are connected through
pointers that are flexible. The execution time of DNN applications with software approaches
depends on the processor performance of the host computing platform. Moreover, the in-
struction set of these processors are not specific for DNN applications. Therefore, the major
drawback of DNN software-based implementations is the slow execution process [33]. More-
over, the execution time is affected by the memory access latency in order to read/write the
required data/result, respectively. Therefore, hardware accelerators are highly desired for
DNN and CNN applications [8].

2.3.2 GPU Acceleration

GPUs are often preferred for computations that exhibit regular parallelism and demand high
throughput. In addition, GPUs are high-level language programmable devices and their
development process is accessible to most designers. Consequently, GPUs are popular in
machine learning applications as they match the nature of these models [8] [17] [19]. Recently,
GPUs offer increased FLOPS, by incorporating more floating-point units, on-chip RAMs, and
higher memory bandwidth [25]. However, GPUs still face challenges in deep learning models
such as handling irregular parallel operations. In addition, GPUs support only a fixed set of
native data types and they do not have the ability to support other custom different data
types. GPUs still cannot meet the performance requirements of several real-time machine
learning applications [17] [41] [42]. It might take weeks or even months in order to train some
DNN applications. In addition, GPUs usually consume a significant amount power which is
problematic especially for mobile and embedded devices.

2.3.3 ASIC-based Acceleration

ASICs can optimize both area and performance for a given DNN application in a better way
than FPGAs since they are specific for a given application. The main concerns when using
NN ASIC accelerators are the time to market, the cost and the low-level of flexibility of
the implementation. Han and colleagues [43] introduced a compression technique for DNN
weights and also proposed skipping the computational activities of zero weights. They imple-
mented their proposed Efficient Inference Engine (EIE) for DNNs on ASIC 45nm technology.
On nine fully connected layers benchmark, EIE outperforms CPU, GPU and mobile GPU by
factors of 189×, 13× and 307×, respectively. It also consumes 24,000×, 3,400× and 2,700×
less energy than CPU, GPU and mobile GPU, respectively. Wang et al. [44] proposed a
low power CNN on a chip by quantizing the weight and bias values. The proposed dynamic
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quantization method diminishes the required memory size for storing the weight and bias
values and reduces the total power consumption of the implementation.

Eyeriss by Chen et al. [45,46], which is an energy efficient reconfigurable CNN chip, uses 16-bit
fixed point instead of floating data representation. The authors mapped the 2D convolution
operations to 1D convolution across multiple processing engines. The Eyeriss chip provides
2.5× better energy efficiency over other implementations. The authors extended their work
and proposed Eyeriss v2, which is a low-cost and scalable Network-on-Chip (NoC) design that
connects the high-bandwidth global buffer to the array of processing elements in a two-level
hierarchy [46]. This enables high-bandwidth data transfer and high throughput. Following
Eyeriss chip, Adri et al. [47] proposed the YodaNN that uses binary weights instead of 16-bit
fixed point data representation.

DianNao [48] is an ASIC DNN accelerator designed with a main focus of minimizing off-chip
communication. The accelerator achieves up to 452 Giga Operations Per Second (GOPS)
while consuming 485 mW and running at 980 MHz. The authors extended DianNao accel-
erator to a multi-mode supercomputer for both DNN inference and training [49, 50]. The
chip consumes 16 W while running at 600 MHz, and it allows the use of 16-bit precision for
inference and 32-bit precision for training with minimal effect on accuracy. Cnvlutin [31]
is an ASIC CNN accelerator that is designed to skip ineffectual operations in which one of
the operands is zero. The authors reported 4.5% area overhead and 1.37 higher performance
compared to DaDianNao [50] without any loss in accuracy.

To alleviate the limitations of fixed-bitwidth ASIC accelerators, Sharma et al. [51] proposed
BitFusion, a dynamic bithwidth DNN accelerator with 16-bit fixed-point arithmetic compu-
tational units that can be combined to create higher precision arithmetic units. Google’s
Tensor Processing Unit (TPU) [52] is another ASIC inference accelerator that contains a 2D
systolic matrix multiply unit that uses 8-bit fixed-point precision. It runs at 700 MHz and
achieves a peak performance of 92 Tera Operations Per Second (TOPS). The TPU work has
been extended to support both training and inference with a peak performance of 11.5 peta
FLOPS for a single TPU [53].

2.3.4 FPGA-based Acceleration

Although FPGAs are used in accelerating many applications, they still have some disadvan-
tages that might limit their roles in deep learning applications. One issue with FPGAs is
that in terms of power consumption they consume more power than ASICs. In addition,
there is no control over the power optimization in FPGAs which is not the case in ASICs.
Another issue is that the design size is limited by the available resources of the target FPGA
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device. Moreover, the synthesis, place and route processes of the design on FPGAs take time
and these processes should be repeated after each new design.

There have been several attempts to implement both the feed-forward and back-propagation
algorithms on FPGAs. Zamarano and his colleagues [54] implemented on FPGAs the back-
propagation and feed-forward algorithms that are used in the training, the validation and the
testing processes of NNs. They introduced a different AN representation by combining the
ANs of the input and the first hidden layers in order to reduce the computational resources
usage. Yu et al. [55] presented an FPGA-based accelerator for NNs, but it does not support
variable network size and topology. Since memory capacities of FPGAs are limited, Park
and his colleagues [56] proposed a NN accelerator on FPGA that uses 3-bit weights and a
fixed point weight optimization in the training phase. This approach allows storing the NN
weight values on the on-chip memory. This reduces the external memory access latency and
speeds-up the overall implementation. Wang et al. [57] proposed a scalable deep learning
accelerator unit on FPGA. It employs three different pipelined processing units: tiled ma-
trix multiplication, part sum accumulation and activation function acceleration units. The
proposed inference implementation achieves 36.1× speedup compared to current CPU im-
plementations with reasonable hardware cost and lower power utilization on the MNIST
dataset.

Zhang et al. [58] presented an analytical methodology for design space exploration on FPGA
to find the design parameters that result in highest throughput within the given resource
and memory bandwidth constraints for each convolutional layer separately. This work was
extended to a multi-FPGA cluster instead of a single FPGA [59] that uses 16-bit fixed
point precision. Li et al. [60] proposed a high performance FPGA-based accelerator for the
inference of large-scale CNNs. They implemented the different layers to work concurrently in
a pipelined structure to increase the throughput. In the fully connected layer, a batch based
computing method is adopted to reduce the required memory bandwidth. The proposed
implementation was tested by accelerating AlexNet, it can achieve a performance of 565.94
GOPS at 156 MHz. Targeting more flexible FPGA architectures, Ma et al. [61] presented a
scalable RTL compilation of CNNs onto FPGA. They developed a compiler that analyzes a
CNN structure and generates a set of scalable computing primitives that can accelerate the
inference of the given CNN model. The authors tested their idea on accelerating AlexNet. On
Altera Startix-V FPGA, the implementation achieves 114.5 GOPS. Recently, mathematical
optimizations such as Winograd Transform and Fast Fourier Transform (FFT) have been
used to decrease the number of arithmetic operations required when implementing DNNs
and CNNs in FPGAs [62,63].
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Binary DNNs and CNNs have proposed using extremely compact 1-bit data types for both
the weights and biases values [64]. This novel idea massively simplifies the computations of
the weight-sums of ANs by replacing the matrix multiplications by XNOR and bit-counting
operations. Umuroglu et al. [65] implemented a framework for fast scalable binarized NNs.
They implemented the fully connected, pooling and convolution layers of the MNIST CNN on
a ZC706 embedded FPGA platform consuming less than 25 W total system power. They re-
ported 95.8% accuracy while processing 12.3M images per second of the MNIST CNN. More-
over, Fraser et al. [66] demonstrated numerous experiments on binary NNs and a Framework
for Fast, Scalable Binarized Neural Network Inference (FINN) in order to show the scalabil-
ity, flexibility and performance of FINN on large and complex deep models. On the other
hand, Alemdar et al. [67] implemented a fully connected ternary weight NN that trains the
weights with only three values (-1, 0, 1). They reported that the proposed implementation
processes 255K frames per second on the MNIST dataset.

Venieris et al. [68] introduced fpgaConvNet, a framework that takes a CNNmodel described in
the C programming language and generates a Vivado High-Level Synthesis (HLS) hardware
design. The framework employs a set of transformations that explore the performance-
resource design space. Wei et al. [69] proposed another framework that generates a high-
performance systolic array CNN implementation in FPGAs from a C program. Noronha et
al. [70] proposed LeFlow, a tool that maps numerical computation models such as DNNs and
CNNs written in Tensorflow to synthesizable hardware in FPGA.

FPGAs have advanced significantly in recent years by incorporating large on-chip RAMs,
large amount of Look-Up Tables (LUTs) and Digital Signal Processing (DSP) slices for com-
plex arithmetic operations. In addition, the off-chip memory bandwidth is also increasing
with the integration of recent memory technologies. Moreover, the development process
on FPGAs has become much easier using recent tools such Vivado HLS. Such tools allow
C/C++ algorithms to be compiled and synthesized which made the development process
easier to software developers. Hence, FPGAs have the opportunity to do increasingly well
on the next-generation DNNs and CNNs as they become more irregular and use custom data
types.

2.3.5 DNN and CNN Acceleration Summary

Figure 2.4 summarizes the four approaches of accelerating DNNs and CNNs detailed in section
2.3. The approaches can be classified into four major directions. The first approach employs
different computational transforms to vectorize the implementations and reduce the number
of arithmetic operations occurring during inference. The second approach is the compression
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Figure 2.4 Different approaches of accelerating DNNs and CNNs on FPGAs

of the model and removing the unnecessary ANs and connections. The third approach is the
use of reduced precision weights and activations without critically affecting DNN and CNN
performances. The fourth approach is related to how to describe any DNN or CNN model
on FPGA.

2.4 Summary and Research Objectives

The DNN and CNN acceleration approaches can be used separately or together to achieve
the required performance for a given application on FPGAs. The two main approaches
that are used to accelerate DNNs and CNNs on FPGAs are the reduced precision and the
hardware generation. The reduced precision approach of DNNs and CNNs suits the nature
of FPGAs especially when it comes to using binary precision. The hardware generation
approach solves the difficulty of expressing DNN and CNN models in HDL. Recent FPGA-
based CNN and DNN accelerators can outperform GPUs in terms of performance while
consuming less power but they still pose special challenges. One issue is that FPGAs have
limited or costly computational capabilities, which hinders the realization of large DNNs
and CNNs. Another challenge is that the synthesis, place and route processes can take an
unacceptable amount of time. In addition, the process of describing DNNs or CNNs on
FPGAs often involves modeling in a HDL, for which designer productivity tends to be lower.
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The existing high level synthesis tools typically generate a non-optimized hardware solutions
for DNNs and CNNs. On the other hand, expressing DNNs and CNNs with Register Transfer
Logic (RTL) take a long development round. Therefore, in this thesis, we focus on the reduced
precision and hardware generation approaches.

The main goal of this thesis is to propose a designer friendly and efficient FPGA-based
inference architectures suitable for DNN and CNN applications with varied computational
and memory requirements. In order to reach our goals, the following specific objectives are
identified:

• Propose adequate optimized hardware architectures of DNNs and CNNs in FPGAs.
The proposed architectures should satisfy precise performance while consuming few
computations and memory.

• Develop tools able to generate optimized low-level HDL description automatically for
the proposed architectures.

• Simulate, implement, test and evaluate the proposed architectures to assess their per-
formance, and compare them to the existing works.
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CHAPTER 3 ARTICLE 1: A CONFIGURABLE FPGA
IMPLEMENTATION OF THE TANH FUNCTION USING DCT

INTERPOLATION

Authors: Ahmed M. Abdelsalam, J.M. Pierre Langlois and F. Cheriet

Published in: IEEE 25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM) 2017 [10]

Abstract–Efficient implementation of non-linear activation functions is essential
to the implementation of deep learning models on FPGAs. We introduce such
an implementation based on the Discrete Cosine Transform Interpolation Filter
(DCTIF). The proposed interpolation architecture combines simple arithmetic
operations on the stored samples of the hyperbolic tangent function and on input
data. It achieves almost 3× better precision than previous works while using a
similar amount computational resources and a small amount of memory. Various
combinations of DCTIF parameters can be chosen to trade off the accuracy and
the overall circuit complexity of the tanh function. In one case, the proposed
architecture approximates the hyperbolic tangent activation function with 0.004
maximum error while requiring only 1.45 kbits BRAM memory and 21 LUTs of
a Virtex-7 FPGA.

3.1 Introduction

Deep Neural Networks (DNN) have been widely adopted in several applications such as ob-
ject classification, pattern recognition and regression problems [4]. Although DNNs achieve
high performance in many applications, this comes at the expense of a large number of
arithmetic and memory access operations [71]. Therefore, DNN accelerators are highly de-
sired [8]. FPGA-based DNN accelerators are favorable since FPGA platforms support high
performance, configurability, low power consumption and quick development process [8].

DNNs consist of a number of hidden layers that work in parallel, and each hidden layer has a
number of Artificial Neurons (AN) [4]. Each neuron receives signals from other neurons and
computes a weighted-sum of these inputs. Then, an activation function of the AN is applied
on this weighted-sum. One of the main purposes of the activation function is to introduce
non-linearity into the network. The hyperbolic tangent is one of the most popular non-linear
activation functions in DNNs [4]. Realizing a precise implementation of the tanh function in
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hardware entails a large number of additions and multiplications [72]. This implementation
would greatly increase the overall resources required for implementing a single AN and a fully
parallel DNN. Therefore, approximations with different precisions and resources are generally
employed [8].

There are several approaches for the hardware implementation of the tanh function based on
Piecewise Linear, Piecewise Non-Linear (PWL), Lookup Table (LUT) and hybrid methods.
All of these approaches exploit the fact that the tanh function is negatively symmetric about
the Y-axis. Therefore, the function can be evaluated for negative inputs by negating the
output values of the same corresponding positive values and vice versa. Armato et al. [73]
proposed to use PWL which divides the tanh function into segments and employs a linear
approximation for each segment. Zhang and his colleagues [74] used a non-linear approxima-
tion for each segment. Although both methods achieve precise approximations for the tanh
function, this comes at the expense of the throughput of the implementation. LUT-based
approximations divide the input range into sub-ranges where the output of each sub-range is
stored in a LUT. Leboeuf et al. [75] proposed using a classical LUT and a Range Addressable
LUT to approximate the function. LUT-based implementations are fast but they require
more resources than PWL to achieve the same accuracy. Therefore, most of the existing
LUT-based methods limit the approximation accuracy to the range [0.02, 0.04].

Several authors have observed that the tanh function can be divided into three regions: Pass
Region, Processing Region (PR) and Saturation Region as shown in Fig. 3.1. The tanh
function behaves almost like the identity function in the Pass Region, and its value is close
to 1 in the Saturation Region. Some hybrid methods that combine LUTs and computations
were used to approximate the non-linear PR. Namin and his colleagues [76] proposed to apply
a PWL algorithm for the PR. Meher et al. [77] proposed to divide the input range of the
PR into sub-ranges, and they implemented a decoder that takes the input value and selects
which value should appear on the output port. Finally, Zamanloony et al. [72] introduced
a mathematical analysis that defines the boundaries of the Pass, Processing and Saturation
Regions of the tanh function based on the desired maximum error of the approximation.

In this paper, we propose a high-accuracy approximation using Discrete Cosine Transform
Interpolation Filter (DCTIF) [78]. This paper is based on a previously presented abstract [9].
The proposed approximation achieves higher accuracy than the existing approximations,
and it needs fewer resources than other designs when a high precision approximation is
required. The rest of the paper is organized as follows: the operation principle of the proposed
DCTIF approximation is described in Section 3.2. In Section 3.3, an implementation of the
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proposed approximation is detailed. Section 3.4 is dedicated to the experimental results and
a comparison with other approximations. Finally, Section 3.5 concludes the paper.

3.2 DCT Interpolation Filter Design

The DCT-based Interpolation Filter (DCTIF) interpolates data points from a number of
samples of a function [78]. First introduced for interpolating fractional pixels from integer
pixels in the motion compensation process of the latest video coding standard H.265 [78].
DCTIF interpolates values with a desired accuracy by controlling the number of samples
involved in the interpolation process and the number of interpolated points between two
samples. We propose to use DCTIF to approximate the tanh function.

The DCT transformation used to generate DCTIF coefficients is defined by (3.1), where Lmax

and Lmin define the range of the given sample points used in the interpolation process, Size
is defined as (Lmax - Lmin + 1 ) and the center position of a given size is Center = (Lmax +
Lmin)/2. By substituting by (3.1) in the inverse DCT formula defined in (3.2), we get the
DCTIF co-efficients generation formula for position i+rα as in (3.3).

As shown in Fig. 3.1, let’s assume that {p2M} denotes a set of 2M given sample points (no.
of DCTIF filter’s tabs) used to interpolate pi+rα at fractional position i+rα between two
adjacent samples at positions i and i+1 of the function x(n). The parameter α is a positive
fractional number that is equal to (2-j) where j is the number of interpolated points between
two sample points. The parameter r is a positive integer that represents the position of the
interpolated point between two sample points where it is ∈ [1, 2j-1]. A fractional position
value pi+rα is interpolated using an even number of samples when rα is equal to 1/2 , which
means that the interpolated point is exactly between two adjacent samples. Otherwise, pi+rα

is interpolated using an odd number of samples since the interpolated point is closer to one of
the samples than the other. Therefore, (3.3) is modified to generate the DCTIF co-efficients
for even and odd numbers of tabs as in (3.4) and (3.5), respectively.

The DCTIF co-efficients can be smoothed using a smoothing window of size W [78]. For hard-
ware implementation, the smoothed co-efficients are scaled by a factor of (2s) and rounded
to integers, where s is a positive integer value. In addition, the scaled co-efficients should be
normalized which means that their summation is equal to 2s. Consequently, (3.6) defines the
final DCTIF co-efficients.

Table 3.1 shows the generated DCTIF co-efficient values using different numbers of DCTIF
tabs, rα values and scaling factors by substituting in (3.6). The co-efficient values exhibit
similarity among some rα positions. For example, the i+1/4 and i+3/4 positions have
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Figure 3.1 DCTIF approximation for tanh function

the same set of co-efficient values. Moreover, at the i+1/2 position, the set of co-efficients
is symmetric about the center element. These properties can be exploited to reduce the
implementation cost.
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3.3 Proposed DCTIF Architecture

The proposed DCTIF approximation divides the input range of the tanh function into Pass,
Processing and Saturation Regions. The boundaries of these regions are computed based on
the targeted maximum error of the approximation [72]. The output is equal to the input
when the input is in the Pass Region. The proposed DCTIF approximation is utilized for the
inputs in the Processing Region. In the Saturation Region, all the bits of the output port
are set to one which represents the maximum value of the output signal.

The block diagram of the proposed architecture is shown in Fig. 3.2. It is composed of a
4-input multiplexer that selects the appropriate output based on the input range decoder
that determines the proper region of its input value. The decoder has four possible outputs
that represent a) Pass Region, b) Saturation Region, c) Processing Region and the output is
stored as a sample and finally d) Processing Region and the output of the given input needs
to be interpolated. The truncation process, shown in Fig. 3.2, is implemented in order to pass
the Nout fraction bits of the input. The implementation cost of the DCTIF approximation,
shown in Fig. 3.2, depends on the number of tabs and the values of s and α. Figure 3.3
shows the DCTIF implementation using four tabs, s = 4 and α = 1/4 where the co-efficient
values are shown in Table 3.1.

Table 3.1 DCTIF co-efficient values for tanh function approximation

No. of
Tabs

Position
(α+ri)

Filter Co-efficients
for s = 4

Filter Co-efficients
for s = 5

4
i+1/4 {-2, 15, 3, 0} {-3, 29, 6, 0}
i+1/2 {-2, 10, 10, -2} {-3, 19, 19, -3}
i+3/4 {0, 3, 15, -2} {0, 6, 29, -3}

6
i+1/4 {1, -2, 14, 4, -1, 0} {1, -5, 29, 9, -2, 0}
i+1/2 {1, -3, 10, 10, -3, 1} {1, -5, 20, 20, -5, 1}
i+3/4 {0, -1, 4, 14, -2, 1} {0, -2, 9, 29, -5, 1}
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Figure 3.2 Block diagram of the proposed tanh approximation

Figure 3.3 The proposed DCTIF approximation architecture using 4 tabs, α = 1/4, s = 4
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The address decoder of the DCTIF approximation, shown in Fig. 3.3, takes the input value
Z and the select lines S1 and S2 of the input range decoder. It generates the addresses of
the required samples (A, B, C, D) stored in the BRAM for the interpolation process. The
samples A, B, C and D correspond to samples pi-1, pi, pi+1 and pi+2, respectively, in Fig. 3.1.
Since the pi+1/4 and pi+3/4 interpolation equations are symmetric, the same hardware can be
used to interpolate them. Therefore, we only implement the interpolation equations of pi+1/4

and pi+1/2. In order to reduce the area required for the proposed implementation, we divide
the computation of pi+1/4 and pi+1/2 equations into four pairs (-2A + 15B), (3C + 0D), (-2A
+ 10B) and (10C - 2D). A set of three multiplexers, two subtractors and one adder, shown
in Fig. 3.3, is used to calculate the output value of any of these pairs. Each pair of these
simple equations is computed in one clock cycle and the full equation takes two clock cycles
to be calculated using an accumulator. A single cycle computation would also be possible, at
the expense of more resources. Finally, the outputs of the DCTIF interpolation block are the
interpolated value and the stored sample B when the input has its tanh output as a stored
sample.

3.4 Experimental Results

The proposed DCTIF approximation was described in Verilog HDL and synthesized for a
Virtex-7 XC7VX550T FPGA using Xilinx ISE 14.6. Table 3.2 compares the implemented
DCTIF approximation to previous works in terms of maximum error, computational resources
and throughput. The maximum error is the maximum absolute difference between the exact
tanh function and the approximated tanh function for all input values. The DCTIF method
can approximate the tanh function accurately with 0.00001 maximum error using 64-bit
floating point data representation.

Table 3.2 shows the results of the proposed DCTIF approximation while using fixed-point
data representation of both input and output values. In all cases, we use a 3 bits for the integer
part of input values. Moreover, the same number of bits for both input and output values
are used. That is why Nin is always equal to Nout + 3. Table 3.2 shows that the proposed
DCTIF approximation using 8-bit outputs achieves 0.004 maximum error while using only
21 LUTs and 1.45 kbits of memory which represents 0.0034% of the available BRAMs on
the FPGA device. The DCTIF approximation can achieve higher accuracy when using more
precise data representation of input and output values. However, this comes at the expense
of both computational and memory resources. All existing works have been implemented as
ASICs using TSMC 180 nm2 technology. The most accurate approximation achieves 0.0178
maximum error using 1,791 gates [75]. Zamanloony and colleagues [72] achieved 0.0196
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Figure 3.4 DCTIF tanh approximation accuracy vs no. of tabs, α value and the scaling
parameter s using double floating-point data representation

maximum error using only 129 gates. In addition, their implementation can be reconfigured
in order to achieve higher accuracy at the expense of computational resources. In order to
have a fair comparison, we re-implemented the design in [72] achieving 0.0118 maximum
error for a Xilinx FPGA Virtex-7. We chose to re-implement the work in [72] as it requires
the least amount of computational resources of all the existing implementations. Table 3.2
shows that our proposed DCTIF approximation outperforms the work in [72] by almost 3×
in terms of accuracy, using a similar amount of computational resources and a small amount
of memory. Therefore, our proposed DCTIF approximation thus makes a balanced usage of
available FPGA resources, while outperforming existing works.

The DCTIF tanh approximation error analysis is presented in Fig. 3.4. It can be seen
that the DCTIF approximation error increases for small α values. Although a large α value
means that fewer points need to be interpolated, this comes at the expense of memory
resources since more samples must be stored. A large value of s increases the accuracy of the
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approximation, but increases complexity as well because the interpolation coefficients take
larger values, potentially expressed with more signed digits as shown in Table 3.1. Moreover,
using more DCTIF tabs comes at the expense of the computational resources.

The proposed DCTIF tanh approximation is based on interpolating the missing points in the
Processing Region. High accuracy approximation can be achieved using the DCTIF approach
by widening the boundaries of the Processing Region with respect to the two other regions.
This directly increases the required amount of memory to store the sample values used in the
interpolation process. In addition, this comes at the expense of the computational resources
of the implementation as shown in Table 3.2. The proposed DCTIF approximation achieves
0.0001 maximum error, requiring 1250.5 kbits of memory and 129 LUTs. This implementation
computes a value every 7.6 ns in two cycles of 3.8 ns each.

3.5 Conclusion

The accuracy of the activation function is a bottleneck of the performance DNNs imple-
mentations on FPGA. We proposed a high-accuracy approximation technique that is based
on Discrete Cosine Transform Interpolation Filter. The proposed DCTIF approach outper-
forms the existing works in terms of accuracy for similar amounts of computational resources.
Moreover, it achieves better approximation accuracy at the expense of computational and
memory resources.
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Table 3.2 Different tanh function implementations

ASIC Results on 180 nm 2 TSMC Technology

Architecture Max. Error Area
(nm2)

Gate
Count

Delay
(ns)

ICCIT [75] 0.01800 17864.2 1791 2.45
ICCIT [75] 0.01780 11871.5 1190 2.12
ISCAS [76] 0.01890 5130.8 515 2.80

VLSI-SOC [77] 0.02050 1603.3 161 2.82
TVLSI [72] 0.01960 1280.3 129 2.12

FPGA Results on Xilinx Virtex-7

Architecture Max. Error Slice
LUTs

Memory
(kbits)

Delay
(ns)

TVLSI [72] 0.01180 20 — 1.245
DCTIF1 Nin = 11, Nout = 8 0.00400 21 1.45 1.640
DCTIF1 Nin = 12, Nout = 9 0.00200 27 2.39 1.662
DCTIF1 Nin = 13, Nout = 10 0.00100 36 9.14 1.784
DCTIF1 Nin = 14, Nout = 11 0.00050 37 22.17 1.993
DCTIF2 Nin = 19, Nout = 16 0.00010 129 1250.5 7.632
12-tabs, s = 4, and α = 1/4 24-tabs, s = 6, and α = 1/4
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CHAPTER 4 ARTICLE 2: AN EFFICIENT FPGA-BASED OVERLAY
INFERENCE ARCHITECTURE FOR FULLY CONNECTED DNNS

Authors: Ahmed M. Abdelsalam, Felix Boulet, Gabriel Demers, J. M. Pierre Langlois and
Farida Cheriet

Published in: IEEE International Conference on ReConFigurable Computing and FPGAs
(ReConFig) 2018 [11]

Abstract–Deep Neural Networks (DNNs) have gained significant popularity in
several classification and regression applications. The massive computation and
memory requirements of DNNs pose special challenges for FPGA implemen-
tation. Moreover, programming FPGAs requires hardware-specific knowledge
that many machine-learning researchers do not possess. To make the power
and versatility of FPGAs available to a wider DNN user community and to im-
prove DNN design efficiency, we introduce a Single hidden layer Neural Network
(SNN) multiplication-free overlay architecture with fully connected DNN-level
performance. This FPGA inference overlay can be used for applications that are
normally solved with fully connected DNNs. The overlay avoids the time needed
to synthesize, place, route and regenerate a new bitstream when the application
changes. The SNN overlay inputs and activations are quantized to power-of-two
values, which allows utilizing shift units instead of multipliers. Since the overlay
is a SNN, we fill the FPGA chip with the maximum possible number of neurons
that can work in parallel in the hidden layer. On a ZYNQ-7000 ZC706 FPGA, it
is thus possible to implement 2450 neurons in the hidden layer and 30 neurons in
the output layer. We evaluate the proposed architecture on typical benchmark
datasets and demonstrate higher throughput with respect to the state-of-the-art
while achieving the same accuracy.

4.1 Introduction

Neural Networks (NNs) have shown promising performance in many applications including
computer vision, speech recognition and regression problems [4]. NNs consist of an input
layer, a few hidden layers and an output layer. Deep models with a large number of layers
are now commonly used in the form of Deep Neural Networks (DNNs) and Convolutional
Neural Networks (CNNs) [4]. These deep models often perform better than shallow NNs in
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terms of accuracy [6], and efforts have been made to understand why. One reason is that
DNNs usually expand traditional NNs to a large scalable network with a larger number of
neurons and hidden layers [6]. In other words, deep models have the ability to learn more
complex functions than NNs.

Although DNNs achieve high performance in many applications, this comes at the expense
of a large number of arithmetic operations and memory accesses [71]. GPUs can accelerate
the training and the inference processes of large and complex deep learning models. GPUs
allow developers to use deeper models and train these models with more data. User appetite
for ever deeper models creates a need for other hardware accelerators with more specialized
computational abilities than GPUs [8]. Moreover, GPUs consume a relatively high amount
of power, which is problematic for battery-based devices and embedded systems. The high
power consumption of GPUs also limits the number of cores that can be integrated to in-
crease throughput [25]. Therefore, hardware accelerators that show good 3Ps for DNNs -
Performance, Programmability and Power consumption - are highly desired [8, 79].

FPGAs can outperform GPUs in terms of performance while consuming less power [80] but
they pose special challenges [81]. One issue is that the synthesis, place and route processes
can take an unacceptable amount of time [82]. In addition, the process of describing a DNN
for FPGA implementation often involves modeling in a Hardware Description Language
(HDL), for which designer productivity tends to be lower. FPGAs also have limited or costly
floating-point computational capabilities, which hinders the realization of large DNNs on
FPGAs. These concerns must be addressed before FPGAs can become as popular as GPUs
for DNN implementation.

The main focus of this work is to propose a designer-friendly and efficient FPGA framework
suitable for DNN applications with varied computational and memory requirements. The
specific contributions of this paper are as follows:

• an efficient Single hidden layer Neural Network (SNN) FPGA-based overlay inference
architecture for fully connected DNNs;

• the quantification of the inputs of the overlay to power-of-two values using stochastic
rounding;

• a quantized version of the tanh activation function and its hardware implementation;

• a study of the effect of quantizing the inputs and the activations on the performance
of DNNs and SNNs; and,
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• an FPGA implementation of the proposed overlay architecture that demonstrates re-
markable improvements over existing FPGA-based accelerators.

The rest of the paper is organized as follows. Different DNNs inference engines are reviewed
in Section 4.2. The proposed quantized SNN operation and analysis are described in Section
4.3. In Section 4.4, the proposed FPGA-based overlay inference architecture is detailed.
Section 4.5 is dedicated to the experimental results and comparison with other architectures.
Section 4.6 concludes the paper.

4.2 Related Work

Realizing a precise implementation of a DNN in hardware entails a large number of addi-
tions, multiplications and memory accesses [25]. Nevertheless, the hardware implementation
of a DNN on an FPGA is always constrained by the available computational and memory
resources [83]. A Multiply and Accumulate (MAC) operation is the basic element of each
Artificial Neuron (AN) in a NN. Therefore, compression techniques of MAC operations with
different accuracies and resource utilizations are employed in order to fit a DNN within the
available resources of an FPGA. These compression approaches can be categorized based
on weight quantization, activation quantization and DNN model compression. Weight and
activation quantization implies reducing their precision, while DNN model compression re-
duces the required number of MAC operations by removing some ineffective weights and
activations. These techniques have been combined in several DNN hardware accelerators on
FPGAs [25,79,81].

Weight quantization involves mapping the trained network weights to a smaller set of weights
quantization levels. Razlighi and colleagues [84] proposed LookNN, a neural network with
no multiplications. The authors quantize the weights of each AN to a small number of
clusters. They replace the multipliers by Look-Up Tables (LUTs) where each LUT stores all
the possible input combinations of an AN and their corresponding outputs. Kwan et al. [85],
Tann et al. [86] and Gudovskiy et al. [87] proposed different approaches to map floating-
point weights to integer power-of-two values with no change in the network architecture.
Although that method dramatically reduces the required computational resources, it badly
affects the accuracy of the network. Most recently, Courbariaux et al. [30] proposed Binary
Neural Networks (BNNs) where the weights are represented with a single bit {-1, 1}. They
also proposed to quantize the activations to binary values {-1, 1} in order to replace MAC
operations by XNOR gates and activation functions by counters.
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Several authors noticed that BNNs with XNOR gates and counters match the nature of FP-
GAs. Umuroglu et al. [65] proposed FINN, a framework for fast and scalable BNN inference.
The authors implemented a full BNN inference engine with fully connected, convolution and
pooling layers. On the Xilinx ZYNQ-ZC706 FPGA platform, the proposed engine processes
12.3 million MNIST [88] image classifications per second with 95.8% accuracy compared to
98.2% baseline accuracy. Rastegari et al. [89] proposed XNOR-Net, they extended BNNs
by keeping the first and last layers with floating-point precision. In addition, the authors
multiply the outputs by a scaling factor to recover the dynamic range of the weights. This ap-
proach helps in reducing the accuracy loss of BNN. Alemdar et al. [67] proposed another way
to maintain the same accuracy as floating-point DNNs with ternary NNs. The authors report
3.1× better energy efficiency with respect to the floating-point network while maintaining
the same accuracy.

A different trend for DNN implementation on FPGAs involves compression techniques [25].
Deep Compression [28] compresses DNNs without loss of accuracy through a combination of
pruning, weight sharing and Huffman encoding. Pruning sets non-important weights to zero,
which results in a sparse weights matrix that reduces the number of required LUTs. Weight
sharing involves the Huffman coding of non-zero weights and their representation with few
bits.

4.3 Quantized SNN Operation and Performance Analysis

In this work we focus on SNN implementation. SNNs have fewer hyper-parameters than
DNNs: only the number of ANs in the hidden layer must be specified. SNNs should thus lead
to simpler implementations and more flexibility. However, classification accuracy should not
be reduced. The universal approximation theorem [90] states that SNNs can approximate
any decision boundary given a sufficient number of sigmoid ANs. Recently, Ba et al. [6]
empirically demonstrated that shallow feed-forward NNs could learn complex functions and
achieve almost the same accuracy as deep models. In this section, we present an SNN overlay
inference architecture. We show how it operates without multipliers in the hidden and output
layers by quantizing the inputs and the activations to power-of-two values. We show how it
can be trained to achieve DNN-equivalent performance and demonstrate this with results.

4.3.1 Inputs Quantization

We quantize the inputs to power-of-two integer values in order to replace the multipliers in
the hidden layer by shift units. This significantly increases the number of ANs that can be
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implemented. We quantize the inputs instead of the weights because low precision weights
affect DNN and SNN accuracy more than low precision inputs [91]. Input quantization is
done offline as a pre-processing step. This reduces the required bandwidth between the input
memory and the inference architecture. The two most popular quantization algorithms in
machine learning are deterministic and stochastic rounding [30]. Deterministic rounding
quantizes a value to the nearest quantization level. It involves trivial computation but it
introduces high quantization error. Stochastic rounding quantizes a value to the nearest
quantization level with a probability dependent on the proximity to the quantization level.
Consequently, the expected stochastic rounding error is zero. Therefore, we use stochastic
rounding as it leads to better results than deterministic rounding.

Assume floating-point DNN inputs in an interval [a, b]. First, we normalize the inputs to an
interval [L, U], where L is zero and U takes one of the following values {1, 2, 4, 64, ... , 2s}.
The parameter s is defined as 22n - 2 and n is the number of bits to represent the quantized
inputs. The interval [L, U] is split into (2n - 1) sub-intervals where the boundaries of each
sub-interval are power-of-two values. Then, we stochastically quantize each data point x to
the endpoints of its interval:

QL,U
2n (x) =


2blog2xc with prob. 1− 2dlog2xe−x

2dlog2xe−2blog2xc

2dlog2xe otherwise.
(4.1)

Although stochastic rounding ensures the expected value of a quantized input is equal to the
normalized input itself, it is expensive in terms of data representation as both the quantized
value and its probability should be considered in computations. So, we apply a popularity
contest (dithering) algorithm on the quantized inputs with their probabilities in order to rep-
resent each quantized input with a single power-of-two. The dithering algorithm counts the
number of quantized inputs at each lower and upper level and their corresponding probabili-
ties. Then, the number of points at each power-of-two level is computed based on the number
of points at each lower and upper level and their corresponding probabilities. Finally, the
number of points at each power-of-two level is applied on the normalized inputs randomly.
Fig. 4.1 shows an example of rounding the inputs stochastically to power-of-two values.

4.3.2 Activations Quantization

In the proposed SNN overlay, obtaining one AN output involves the computation of the
tanh function. Approaches for the hardware implementation of the tanh function include
the Piecewise Linear (PWL), Piecewise Non-Linear, Look-Up Table (LUT) and other hybrid
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Figure 4.2 Exact versus quantized tanh activation function

methods [10]. We quantize the activations of the tanh function to power of two values in
order to replace the multipliers in the output layer by shift units. Figure 4.2 shows exact
versus approximated tanh function to power-of-two values. We quantize the tanh activation
function to the seven power-of-two values {-1, -1/2, -1/4, 0, 1/4, 1/2, 1}. The tanh function
is negatively symmetric around the Y-axis. Therefore, it can be evaluated for negative inputs
by negating the output values of the same corresponding positive values and vice versa. The
proposed quantized tanh function for positive inputs is given by:

Qtanh(x) =



1 if tanh(x) ≥ 3/4

1/2 if tanh(x) ≥ 1/2

1/4 if tanh(x) ≥ 1/4

0 if tanh(x) ≥ 0

(4.2)

4.3.3 Teacher-to-Student Training Algorithm

DNNs generally perform better than SNNs in complex applications such as speech recognition
and image classification [4]. However, it has been shown that SNNs can achieve the same
performance as DNNs with the same number of parameters [6]. Accordingly, we use the
two-stage teacher-to-student training algorithm [6] to train an SNN with quantized inputs
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and activations. First, we train a teacher DNN on the original training floating-point data in
order to be as accurate as possible. Then, the student SNN, with the same number of ANs as
the teacher DNN, is trained to mimic the teacher’s behavior. It works by passing the training
data through the trained teacher DNN in order to collect the produced outputs by the teacher
DNN. The synthetic outputs of the teacher DNN are used as labeled data to train the student
network using the same training dataset. In our work, the teacher network operates with
floating-point inputs and activations and the student SNN network’s activations and inputs
are quantized to power-of-two values as described before.

4.3.4 Experimental Assessment of the Multiplier-less SNN

We evaluated the performance of the SNN trained using the teacher-to-student algorithm
with quantized inputs and activations with respect to state-of-the-art floating-point DNNs.
All experiments were performed on four datasets (MNIST [88], Speech Recognition [92],
Indoor Localization [93] and Human Activity Recognition [94]), each of which has a differ-
ent data dimensionality. Table 4.1 shows the baseline NN topologies of the four datasets
and their baseline accuracies. For each application, Table 4.1 summarizes the inference
classification accuracies of the corresponding baseline DNN, SNN and SNN trained using
teacher-to-student approach. Table 4.1 shows that SNNs with power-of-two values quantized
inputs and quantized activations trained using the teacher-to-student approach can achieve
the same accuracy as the baseline teacher DNNs.

In all experiments, we quantize the inputs using stochastic rounding to the set {0, 1, 2, 4, 8,
16, 32, 64}. Our experiments show that three quantization bits are sufficient for the tested
applications. For the activations, we quantize the tanh outputs to seven power-of-two values
{-1, -1/2, -1/4, 0, 1/4, 1/2, 1}. Adding more power-of-two values would improve the accuracy
in the linear region of the tanh function, which is not needed.

4.4 Proposed DNN-Equivalent Inference Architecture

As discussed in Section 4.3, a SNN with quantized power-of-two inputs and activations can
achieve accuracies comparable to those of baseline floating-point DNNs when trained with
the teacher-to-student approach. Therefore, we propose a DNN-equivalent SNN overlay
architecture that is synthesized, placed and routed only once. The AN coefficients are stored
in memories that can be modified without a new synthesis and implementation cycle. The
architecture size depends on the available resources in the chosen FPGA, and should include
as many ANs as possible, thus allowing the implementation of the largest possible DNN-
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equivalent architectures. The proposed overlay architecture consists of two different AN
types: hidden and output. The selection of the number of each AN type can be established
from the target application class. The smallest possible number of output ANs should be
selected to allow the largest possible DNN-equivalent architecture, which is determined by
the number of hidden ANs.

Figure 4.3 shows the dedicated hardware implementation of hidden layer ANs. Each AN
stores its corresponding weights in a BRAM. A separate BRAM stores the current quantized
input shared among all hidden ANs. Input quantization is done offline as a pre-processing step
using stochastic rounding, as discussed in section 4.3.1. At each clock cycle, all the hidden
ANs are fed with the same input, while each hidden AN reads the corresponding weight
from its corresponding weights BRAM. For each hidden AN, an accumulator computes the
sum of all its weighted inputs. The accumulator needs as many clock cycles as the number
of inputs produce its output. As shown in Fig. 4.3, the quantized activation function is
implemented as a priority encoder which takes the output of the accumulator and produces
the corresponding activation. The activations of the hidden ANs are represented with 3 bits
corresponding to the quantized tanh values {-1, -1/2, -1/4, 0, 1/4, 1/2, 1}.

Figure 4.4 shows the implementation of an output AN, which is similar to the implementation
of hidden ANs. Each output AN stores its weights in a BRAM. All output ANs share another
BRAM to store the output activations of the hidden layer. In the same vein as hidden ANs
architecture design, we use shift right units instead of multipliers for the output ANs since
all the activations of the hidden layer are represented in power-of-two values. Moreover, we
use an accumulator that computes the sum of all weighted activations of each output AN.
The accumulator processes one input per clock cycle. The output ANs are fully connected
to the hidden ANs.

Figure 4.3 Proposed hidden artificial neuron architecture
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Figure 4.4 Proposed output artificial neuron architecture

Figure 4.5 The testing platform of the proposed SNN overlay
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4.5 Experimental Results and Discussion

The proposed SNN architecture was described in Verilog HDL and synthesized for a ZYNQ-
7000 ZC706 development kit using Xilinx Vivado 15.2. We tested the SNN overlay architec-
ture using the proposed hidden and output neurons implementations. Figure 4.5 illustrates
the organization of the proposed SNN overlay architecture. The implementation includes
four different blocks: a) User Interface Block, b) Processing System (PS), c) Programmable
Logic (PL) and d) PS-PL Interconnect, detailed in the following subsections.

4.5.1 User Interface Block

The user interface block manages the data exchange between the user and the FPGA board.
First, the user should feed four different types of data to the FPGA board through a C
program that runs on the PS. The first type of data is the student SNN settings that include
the number of inputs, number of outputs and number of ANs in the hidden layer. The second
and the third type of data are the weights and the biases of the student SNN. In the current
system, the stochastic quantization of the inputs happens as a pre-calculation step on the
dataset and is not performed on the FPGA board. Computed results are transferred to the
PS.

4.5.2 Processing System

The PS was implemented in a Zynq-7000 ZC706 that integrates a dual-core ARM Cortex-A9
based PS and a 7-series Xilinx PL. The ARM processor is clocked at 667 MHz and runs a
user installed Linux operating system. The main objective of the PS is to ease the process
of data exchange between the user and the PL through the PS-PL interconnect.

4.5.3 PS-PL Interconnect

The PS and PL communicate with the AXI4 stream [95] and AXILite [95] interfaces. We
use the AXI4 stream interface for high-speed streaming data including weights, biases and
quantized inputs from the PS to the PL. The AXI4 stream interface uses a Direct Memory
Access (DMA) and a set of buffers to transfer the data between the PS and the PL through
the DDR3 memory. The AXILite interface provides low-throughput and low-latency com-
munication between the PS and the PL. Therefore, we use the AXILite interface to transfer
the network settings and the control signals from the PS to the PL, and vice versa.
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4.5.4 Programmable Logic

For the purposes of testing, we used the ZYNQ-7000 SOC ZC706 development board. We
use the available PL in the FPGA chip to implement the SNN overlay architecture with
the maximum possible number of ANs in the hidden layer. Since the maximum number of
outputs of the studied applications is 26 as detailed in Table 4.1, we implemented 30 ANs in
the output layer. Based on the available resources of the XC7Z045 FPGA device, it could
be packed with 2450 ANs in the hidden layer using the proposed SNN. The 2450 ANs in the
hidden layer and the 30 ANs in the output layer utilize almost all the device’s LUTs.

The implemented quantized SNN on the ZYNQ-7000 ZC706 FPGA board, with 2450 ANs in
the hidden layer with 1000 inputs each and 30 ANs in the output layer, works as an overlay
for the inference part of different DNN applications. The numbers of ANs in the hidden layer
and output layer are limited by the available amount of LUTs on the chip. The benefit of this
overlay architecture is that the user specifies the network architecture of their application
(no. of inputs, number of ANs in the hidden layer and number of outputs) using a C program
that runs on the ARM processor of the processing system side. As long as the numbers do
not exceed the maximum value of each parameter, the C program reads the network settings
alongside the weights and the biases of the given applications and passes them to the overlay
on the PL side. The PL side activates the corresponding number of inputs, ANs in the hidden
layer and ANs in the output layer of the implemented quantized SNN. This flow does not
require any optimization on the PL side for each application. There is no need to synthesize
place, route and regenerate a bitstream for each application, which is advantageous since
those processes entail time and effort, and are tricky for many machine-learning researchers.
For different applications, our proposed overlay saves up to 40 man-hours that are needed
for the hand-coded hardware design. In addition, it saves up to 18 hours that are needed for
the synthesize, placement, routing and generating a new bitstream processes.

The proposed overlay can be used to solve many applications including the four studied
applications in Table 4.1. Table 4.2 lists the post place-and-route results in terms of FPGA
resources usage, power consumption, classification accuracy and throughput of the proposed
SNN architecture for MNIST. In this case and to have a fair comparisons, we implement an
SNN overlay with 1024 ANs in the hidden layer and 10 ANs in the output layer. With a 300
MHz clock frequency, the proposed SNN processes up to 210 k MNIST images/s with 98.4%
accuracy at 3.4 W. The most accurate FPGA implementation of a DNN for MNIST achieves
98.92% and processes 70 k images/s [56]. However, it requires 900 DSPs, 213,593 LUTs and
750 BRAMs. The binary DNN FPGA implementation [65] achieves the highest throughput
and avoids using DSPs. It processes 12,361 k images/s while utilizing 91,131 LUTs and 4.5
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BRAMs. However, its accuracy shrinks to 95.83%. Table 4.2 shows that the proposed SNN
achieves comparable accuracy to recent works [56, 65, 67] while utilizing fewer LUTs, FFs
and BRAMs, and no DSPs. The proposed overlay can also be used for other applications
as long as the required number of ANs in the hidden and output layers does not exceed the
implemented number of ANs in the overlay. Moreover, if the required number of ANs in the
hidden and output layers exceeds the number of implemented ANs in the overlay, the overlay
could be scaled using different time-multiplexing approaches to reuse the same implemented
ANs in both the hidden and output layers.

4.6 Conclusion

FPGA-based accelerators are a promising solution for DNN implementation. However, the
traditional FPGA accelerator design flow requires time and experience that hinder realizing
FPGA-based DNN accelerators. In order to overcome that problem, this paper proposes
an FPGA multiplier-less SNN overlay architecture with DNN-level performance. We used a
teacher-to-student approach to train the SNN in order to achieve the same DNN performance.
The multiplier-less SNN overlay is an energy and area efficient architecture since it avoids
multiplications and floating-point operations. The SNN overlay is configurable for many
applications. In a couple of minutes, the user can configure the overlay with the network
model using a traditional C code. The overlay avoids the unacceptable latency and tedious
synthesis, place and route steps for regenerating a new bitstream of a given application.
Our test cases show that the multiplier-less SNN overlay achieves the same accuracy as a
floating-point DNN with fewer computational resources.
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Abstract–Convolutional Neural Networks (CNNs) and Deep Neural Networks
(DNNs) have gained significant popularity in several classification and regres-
sion applications. The massive computation and memory requirements of DNN
and CNN architectures pose particular challenges for their FPGA implemen-
tation. Moreover, programming FPGAs requires hardware-specific knowledge
that many machine-learning researchers do not possess. To make the power and
versatility of FPGAs available to a wider deep learning user community and to
improve DNN design efficiency, we introduce POLYBiNN, an efficient FPGA-
based inference engine for DNNs and CNNs. POLYBiNN is composed of a stack
of decision trees, which are binary classifiers in nature, and it utilizes AND-OR
gates instead of multipliers and accumulators. POLYBiNN is a memory-free
inference engine that drastically cuts hardware costs. We also propose a tool
for the automatic generation of a low-level hardware description of the trained
POLYBiNN for a given application. We evaluate POLYBiNN and the tool for
several datasets that are normally solved using fully connected layers. On the
MNIST dataset, when implemented in a ZYNQ-7000 ZC706 FPGA, the system
achieves a throughput of up to 100 million image classifications per second with
90 ns latency and 97.26% accuracy. Moreover, POLYBiNN consumes 8× less
power than the best previously published implementations, and it does not re-
quire any memory access. We also show how POLYBiNN can be used instead of
the fully connected layers of a CNN and apply this approach to the CIFAR-10
dataset.

5.1 Introduction

Learning models with a large number of hidden layers have been recently introduced, such
as Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) [4]. These
models have shown promising performance in many applications including computer vision,
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speech recognition and regression problems [4]. Although these models achieve high perfor-
mance, they typically demand a large number of arithmetic and memory access operations in
both training and inference [71]. Consequently, existing DNN and CNN applications are typ-
ically run on clusters of computers with Graphical Processing Units (GPUs). However, the
high power consumption of GPUs and the limited throughput of mainstream processors limit
their roles in accelerating DNN and CNN applications that have high throughput and low
power consumption requirements [25]. Therefore, hardware accelerators that score high on
the 3Ps - Performance, Programmability and Power consumption - are highly desired [8,79].

Field Programmable Gate Arrays (FPGAs) are hardware logic devices that can be pro-
grammed in order to meet the computational and memory requirements of different applica-
tions. Low-precision DNN and CNN models [30, 89, 96], such as Binarized Neural Networks
(BNNs), reduce the computational complexity and memory requirements significantly [30].
They appear to be well suited for FPGA implementation since most of their computations are
bitwise logic operations. Moreover, their memory requirements are highly reduced compared
to traditional floating-point DNNs and CNNs. It would thus seem reasonable to expect that
FPGAs would outperform GPUs for BNN implementation, while consuming less power [25].
While it is true that ASICs are more energy efficient and can achieve higher performance
than FPGAs, FPGAs still have their advantages and market as well. FPGAs are configurable
and suit different applications where time to market and design flow matter. Moreover, they
are preferred over ASICs for prototyping and validating a design concept.

Although BNNs drastically cut hardware resources consumption down, complex BNN models
may need more computational and memory resources than those available in many current
FPGAs [25]. Therefore, optimization techniques that efficiently map BNNs to hardware are
highly desired. Many machine learning based algorithms have been proposed for classifica-
tion, including Naive Bayesian [97], K-means [98] and Support Vector Machine (SVM) [99].
Among these algorithms, the Decision Tree (DT) [100] based algorithm has demonstrated the
simplest implementation in most experiments. By contrast to NNs, it is easy to implement
simple DTs with few splits as Look-Up Tables (LUTs) in FPGAs [101, 102]. Decision trees,
however, do not usually generalize as well as DNNs. By contrast to the hidden Artificial
Neuron (AN) in a Neural Network (NN), a typical node at the lower levels of a DT is only
used to classify a small fraction of the training data. Therefore, DTs tend to overfit the
training data unless the training dataset is large enough compared to the depth of the tree.

This paper is an extended version of our previous work [12] in which we presented POLY-
BiNN, a scalable combinatorial classifier that can be efficiently implemented in FPGAs for
FC applications. POLYBiNN is composed of a stack of decision trees, which are binary clas-
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sifiers by nature, and it utilizes AND-OR gates instead of multipliers and accumulators. In
this work, we show how to train POLYBiNN in order to perform millions of classifications
per second while achieving the same accuracy as recent BNNs, making it ideal for support-
ing real-time embedded applications. We show POLYBiNN’s capabilities on five datasets
including MNIST and CIFAR-10. The achieved classification throughput surpass the best
previously published results by over 67× for MNIST while achieving 97.26% classification
accuracy.

In our previous work [12] we introduced:

• POLYBiNN, an efficient classifier based on logic functions without any arithmetic op-
erations.

• A tool that generates automatically a low-level hardware description of the trained
POLYBiNN.

• A method to integrate POLYBiNN into existing DNNs and CNNs by replacing their
fully connected layers.

• FPGA implementation of POLYBiNN using the proposed tool leading to remarkable
improvements over existing FPGA-based BNN accelerators.

The new contributions of this paper are as follows:

• We propose a heuristic method to train POLYBiNN based on Boosting, which creates
complex classifiers by combining many simple DTs.

• We propose an optimized voting circuit and its implementation to solve multinomial
classification problems using binary DT classifiers.

• We propose a range of POLYBiNN prototypes that demonstrate the potential of using
POLYBiNN for different applications.

• We explore different techniques for optimizing POLYBiNN in terms of classification
accuracy and resource utilization.

The rest of the paper is organized as follows. Section 5.2 provides background on BNNs and
DTs and their hardware implementations. A detailed view of POLYBiNN, its training and
inference are described in Section 5.3. The POLYBiNN hardware implementation is detailed
in Section 5.4. Section 5.5 is dedicated to the experimental results, comparison with other
architectures and discussion. Section 5.6 concludes the paper.
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5.2 Background

5.2.1 Binary Neural Networks

Realizing a precise implementation of DNNs and CNNs normally entails a large number of
additions, multiplications and memory accesses [25]. One approach to simplify the computa-
tional and memory complexity of DNNs and CNNs is to use a compact data representation
for inputs and parameters [103]. An extreme case is to use single-bit values; arithmetic op-
erations are then replaced by logic operations. Single-bit values can be used in three places:
binary inputs, binary weights and binary activations.

Courbariaux et al. [104] proposed Binary Weights Neural Networks (BWNs) where the
weights are constrained to the set {-1, 1} and represented with a single bit, and multiplica-
tions are replaced by additions. Courbariaux et al. [30] extended their work and proposed
a BNN where both weights and activations are binary values {-1, 1}. They proposed to
quantize the activations to replace the multiply-accumulate operations with logic operations,
i.e. XNORs and counters. The authors reported competitive accuracies for the MNIST,
SVHN and CIFAR-10 datasets. Fig. 5.1a) shows a real-valued AN which computes the
weighted sum of its inputs then applies a non-linear activation function to this sum. Fig.
5.1b) shows a binary AN that uses XNOR gates instead of multipliers, a counter instead of
a multi-operand adder, and a step activation function (a comparator) instead of a non-linear
activation function. Following that, a binary AN can be implemented using a single LUTs
with a sufficient number of inputs and a single output. In other words, using boolean ex-
pression, a combinatorial circuit with AND and OR gates as shown in Fig. 5.1c) can serve
as a binary AN.

5.2.2 Binary Neural Networks in Hardware

Many prior works have proposed mappings BNNs on FPGAs and Application-Specific In-
tegrated Circuits (ASICs). Umuroglu et al. [65] proposed FINN, a framework for fast and
scalable BNN inference. The authors implemented a full BNN inference engine with Fully
Connected (FC), convolution and pooling layers. On the Xilinx ZYNQ-ZC706 FPGA, the
proposed engine performs 12.3 million MNIST image classifications per second with 95.8%
accuracy. Nakahara et al. [105] proposed to eliminate all but the last Fully Connected (FC)
layers of a binary CNN, replacing the eliminated FC layers by average pooling operations. On
a Xilinx ZYNQ Z020 FPGA, the authors saved 66% of the LUTs required for FINN [65] while
achieving the same accuracy and throughput. Zhao et al. [106] leveraged HLS design tools for
BNNs with ternary weights {-1, 0, 1} on FPGAs. However, for a Xilinx ZYNQ Z020 FPGA,
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the ternary weights take too much space and must be stored in a separate DDR memory,
resulting in degraded throughput and power efficiency. Alemdar et al. [67] proposed another
way to maintain the same accuracy as floating-point DNNs with ternary weights NNs. They
train the ternary weights NNs using a teacher-to-student approach, transferring the knowl-
edge of trained floating-point NNs to ternary NNs. The authors report 3.1× higher energy
efficiency with respect to floating-point NNs while maintaining the same accuracy.

A key optimization of BNN models in hardware is to improve resource utilization of FC
layers [107]. Pruning [28] is a known method to do so where some less important connections
are trimmed. It reduces the computational complexity of the model and improves resource
utilization. Even using such techniques, several FC layers are necessary and require large
amounts of computational and memory resources that influence the throughput and power
consumption of the implementation. Neural networks were first introduced as continuous
values multiclass classifiers, and then BNNs were introduced as a binarized version of NNs.
However, such a conversion from continuous to binary values causes information loss. In
addition, BNNs are not fully optimized in terms of resource utilization since NNs are not
binary classifiers by nature.

5.2.3 Decision Trees

Decision Trees are one of the simplest but effective binary classification algorithms to have
been widely used is several disciplines [108]. The concept of DTs is to divide the training
dataset into sub-divisions to ease the classification process of the dataset samples. The main
components of DT models are nodes and branches. There are three different types of nodes
in DTs. The first type of DT node is the root node, which represents the best predictor
of the training dataset that further gets divided into two or more sets. The second type of
DT node is the decision or split node since it splits a subset into two or more subsets. Leaf
nodes are the third type of DT node, where the subsets are not split further. The leaf nodes
represent the final result of a combination of decision and root nodes.

Binary DT models include a single binary target variable and a number of binary input
variables. Input variables are used to split the root node and decision nodes down to the leaf
nodes. The input variable that best discriminates the target samples is chosen as the root
node, and then splits continue at the subsequent decision nodes into two or more subsets. The
splitting procedure carries on until a pre-determined DT architecture or a stopping criteria
are met. The more complex a DT is, the less reliable it is to classify new samples [109].
Although using a single DT to classify a complex multiclass problem is unlikely to achieve
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Figure 5.3 BNN architecture using a single FC layer with AND-OR gates

acceptable classification accuracy, DTs are well suited to FPGAs since they can easily fit
their LUTs.

In this paper, we focus on FC applications. The motivation of this paper is based on two
observations. The first observation stems from the fact that BNNs are classifiers that compute
the corresponding class of their binary inputs. They can have several FC layers composed
of XNOR gates followed by counters and step activation functions as shown in Fig. 5.2.
They can thus be viewed as large binary Sum-of-Products (SOPs) functions [101] as shown
in Fig. 5.3, and a binary AN can be implemented as shown in Fig. 5.1c). Those SOPs can
then be mapped to an FPGA’s LUTs [101] [102]. However, the number of LUT inputs is
small compared to the complexity of the BNNs’ logic functions [25]. The second observation
is that binary classifiers, such as DTs, can solve multiclass problems by dividing them into
several simple binary classification problems and solving the sub-problems independently
[110]. However, binary classifiers do not usually solve multiclass problems as efficiently as
NNs and BNNs do [109]. Boosting [109] can be used to build a series of binary classifiers,
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with the later classifiers rectifying the mistakes of the earlier classifiers, allowing the binary
classifiers to solve complex multiclass problems. This motivates us to propose a method to
train a single binary classification layer based on DTs to achieve high performance with a
significantly reduced amount of resources, and to propose a corresponding architecture.

5.3 The POLYBiNN Architecture

In this section, we detail the POLYBiNN architecture introduced in [12] and show how we
train it using simple binary classifiers. We then show how it can be efficiently implemented
in an FPGA.

5.3.1 Architecture Overview

Fig. 5.4 shows an overview of the POLYBiNN architecture. It is composed of a M ×N array
of DTs as shown in Fig 5.5, where M is the number of classes and N is the number of trees
per class, followed by a voting circuit. The array of DTs are implemented as SOPs. Each
AND gate represents the path from the root node to an active leaf node (leaf node that has
an output of 1), and the DT output is high when one leaf is active. An example is given in
Fig. 5.6 for a case with seven features and three active leaves. The AND gate inputs can be
the natural or complemented version of features. While each class has N DTs, each DT can
be made up of a different number of SOPs, depending on its classification complexity.

A pre-processing step is necessary to binarize the inputs to POLYBiNN. In the case of appli-
cations that can be solved using FC layers, each input is directly binarized using an arbitrary
threshold. For application that require CNNs, e.g. CIFAR-10, a number of convolutional
layers extract features from the input images, and they are then binarized using an arbitrary
threshold.

Decision trees are deceptively simple, but implementing large DTs with dozens of splits
(decision nodes) in an efficient way is a complex problem [111]. As the number of splits
increases, the number of included features for each branch increases, which can lead to
overfitting of the training dataset. A single large DT can lead to poor classification on data
with complex relationships since it begins with the same root for all splits [112]. Moreover,
DTs with many splits may result in SOPs with a large number of inputs. The maximum
number of splits must thus be selected carefully according to the implementation technology,
e.g. 6-input LUTs in some FPGAs. Therefore, using multiple but smaller DTs is preferred
for complex problems since they can have different roots and result in reasonable-size SOPs.
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Figure 5.5 POLYBiNN DT implementation in AND and OR gates

Figure 5.6 Decision tree implementation as a SOP and a LUT

5.3.2 POLYBiNN Training Algorithm

We train POLYBiNN using AdaBoost [109], an ensemble-learning algorithm that creates
complex classifiers by combining many weak classifiers. Each class is trained separately
using N binary classifiers. We choose DTs as weak binary classifiers because they can be
directly represented in Boolean logic without requiring any mapping or simplification like
other machine learning techniques [112].

For each class, the DTs are trained iteratively by splitting the observation space using a
top-down greedy search algorithm. The feature chosen to make the split is the one that
best discriminates between the training classes. Splitting starts with the first feature in the
root node of the tree, then it is repeated on each partition of the divided data, as shown
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in Fig. 5.6. The first node is known as the root node of the tree, which is the first feature
used for splitting. Then the splitting is repeated on each partition of the divided data, as
shown in Fig. 5.4. Searching for the best discriminating feature among all possible features
is impractical and time consuming for large datasets. Therefore, the search for the best
discriminating feature takes place only among a set of possible candidate features where the
class labels of observations change from one class to another. This is due to the fact that
there is no need to search for splits between observation members of the same class. The
selection for the best discriminating feature is then done according to a quality measure of
each of the candidate features and the best is selected. The measure of discrimination used
for choosing the features is the information gain, which is the decrease in entropy when a
split is made. For a partition of the data Ds, its entropy H(Ds) for binary classification can
be formulated as shown in Eq. (5.1):

H(Ds) = p+ log2
1
p+

+ p− log2
1
p−

(5.1)

where p+ is the portion of positive examples in the considered split in the partition Ds,
and p˘ is the portion of negative examples. The number of splits either stops after the
performance on a validation set starts to deteriorate, or by choosing the maximum number
of splits to suit the target hardware platform. We stop splitting the decision trees after a
pre-defined number of splits. It is a hyper-parameter of our training algorithm which affects
the accuracy and computational resources as detailed section 5.5. Another hyper-parameter
is the number of decision trees for each binary class, which is also studied in section 5.5.

Although decision trees are relatively simple to understand and implement compared to NNs,
large decision trees with dozens of decision nodes and splits are not accurate and difficult
to implement [109]. As the number of splits increases, the included features for each branch
increase, which leads to conditions that are more specific of the training dataset rather than
a good generalization of the actual problem. This might cause overfitting and poor accuracy
of the classifier. Moreover, implementing such decision trees with deeper branches requires
LUTs with a large number of inputs which may not perfectly fit the LUTs available on the
existing FPGAs. In addition, a single large DT still achieves poor resolution on data with
complex relationships since it starts with the same root for all decision nodes [112]. A multiple
DTs approach is preferred for complex applications since the trees start with different roots
and are easy to implement. Therefore, we use the Adaptive Boosting (AdaBoost) algorithm
to combine the decision trees classifiers together to improve the performance of the overall
classifier.
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AdaBoost iteratively trains the DTs with an adaptive sample-weighting scheme [113]. The
weights of samples are computed as a function of the error made by the previous DT and
emphasize wrongly classified samples. Given a binary classification problem with a training
set {(x1, y1), (x2, y2), ...(xm, ym)}, where m is the number of samples, x is the observation
vector and y is the class label. Each class label takes a value from the set {–1, +1}, where
–1 indicates that the observation does not belong to the target class and +1 indicates that
the observation belongs to the target class. Let Dn(xi) be the weight of sample xi at DT
n, and αn be the nth decision tree’s confidence vote. The first decision tree is trained with
equal sample weights where all the samples have the same weight value 1/m. For all the
subsequent decision trees, the sample-weighting scheme depends on the confidence of the
previously trained decision tree (αn). The confidence of the nth decision tree is calculated as
shown in Eq. (5.2):

αn = λ× 1
2 ln (1− εn

εn
) (5.2)

where λ is the learning rate of training DTs, which decreases the impact of a training iteration
on the whole model, so it slows down the change of the weights of the samples. In other
words, the learning rate helps to compensate the fact that the selected features to split might
not be the best for future splits. εn is the ratio of the misclassified samples by the trained
decision tree and is given by Eq. (5.3):

εn =
∑m
i=1 Dn(xi)Ihn(xi)6=yi∑m

i=1 Dn(xi)
(5.3)

where hn(x) is the decision of the nth DT, and Ihn(xi) 6=yi
is an indicator function which outputs

1 when the condition is satisfied and 0 otherwise.

The training sample weights for the next decision tree are then updated as follows:

Dn+1(xi) = Dn(xi) exp(−αnyihn(xi))
Zn

= Dn(xi)
Zn

×

e
−αn when hn(xi) = yi

eαn otherwise

(5.4)

where Zn is a normalization factor chosen so that Dn+1 will sum to 1. When the prediction
of decision tree n is correct (hn(xi) = yn) for sample xi, the weight of the same sample in
the following decision tree n+ 1 is decreased, and vice versa, when the prediction of decision
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tree n is incorrect hn(xi) = yn for sample xi, the weight of the same sample Dn+1(xi) in the
following decision tree n+ 1 is increased.

The computed sample weights change the effective portions of the positive and negative
samples (p+ and p−) which are used in Eq. (5.1). This affects the entropy values while
training the following decision tree. In turn, this affects the decision of choosing the best
discriminating splits within a feature among the candidate splits. Once the N decision trees
are properly trained, the final POLYBiNN classification decision K(x) is a confidence vote
between the trained binary decision trees as follows:

K(x) = sign(
N∑
n=1

αnhn(x)) (5.5)

where the sign functions gives 1 when its input is greater than zero, and -1 otherwise, which
indicate the class of the given sample.

The procedure of the POLYBiNN training algorithm is summarized in Algorithm 1. We use
a one-vs.-all training strategy that involves training each class separately with the samples of
that class as positive samples and all other samples as negatives. Following that strategy of
training each class separately, we might end up with ties among classes. Therefore, we apply
a voting algorithm based on the confidence of each strong binary classifier in order to predict
the output class for a given input. When two or more strong binary classifiers are active for
the same input, the voting circuit selects the class with the highest confidence. When all
strong binary classifiers are inactive for the same input, the voting circuit chooses the class
with the lowest confidence. Otherwise, the voting circuit selects the one active classifier.

Once all N trees of class M have been trained, their outputs must be combined to come to
a decision for that class. The output dnm of tree n in class m can be 0 or 1. AdaBoost also

Algorithm 1: POLYBiNN Training Algorithm
1 Initialize Sample Weights: D1(xi) = 1

m

2 n← 1;
3 while n < N do
4 Train a DT that using a sample weight Dn(xi)
5 Computes DT confidence αn
6 Computes the mis-classification ratio εn
7 Update sample weights Dn+1(xi)
8 n← n+ 1;
9 end

10 Output: A confidence vote decision of POLYBiNN K(x) using α′ns
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assigns a confidence cnm to the output of each tree, a floating point value in the range [0, 1[.
For each class m, the decision Dm and confidence Cm are computed as follows:

Dm =

1 when∑N
n=1 dnm. cnm >

∑N
n=1 cnm/2

0 otherwise.
(5.6)

Cm =
∑N
n=1 dnm. cnm∑N

n=1 cnm
(5.7)

The final step is to decide to which class each input belongs. Each of the M classifiers
produces a decision Dm and a confidence Cm. For each input, if only one classifier is active,
its class is selected. If more than one classifier are active, we select the class with the highest
confidence. If all classifiers are inactive for the same input, the class for which the confidence
is lowest is selected.

5.4 POLYBiNN High-Level Architecture on FPGAs

The POLYBiNN architecture lends itself well to an FPGA implementation. As shown in Fig.
5.4, POLYBiNN consists of an array of DTs followed by a voting circuit, whose details are
shown in Fig. 5.7. Each DT corresponds to a SOP and can be implemented in a single LUT
if the number of inputs is not larger than six, a constraint that can be set during training.
Equations (5.6) and (5.7) are used to compute the final decision for each input, but their
output can be obtained without any arithmetic computation. The decisions dnm are binary
values and the confidences cnm are constants once training is completed. In Fig. 5.7, the
overall decisions Dm and confidences Cm are computed by a separate block for each class,
without any arithmetic operations. Then, the confidences are quantized into 2-bit values,
resulting in three output bits for each class: one for the decision and two for the confidence.
A set of pipelined comparators is used in the Argmax block to select one of the output classes,
according to the rules given in the previous subsection. The complexity of the voting circuit
depends on the number of DTs per class.

5.4.1 Simplified Voting Circuit

In several classification applications, the training dataset is not balanced: the output classes
have a different number of samples. We exploit this fact to simplify the computational
complexity of the voting circuit. We propose a simplified version of the voting circuit that
does not require to compute, quantize and compare the confidences of each DT per class.
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Figure 5.7 Voting circuit implementation of POLYBiNN

The idea is that if more than one classifier is active for the same input sample, the class that
has the greater number of samples is selected. This idea is effective in terms of achieving
the same classification accuracy and reducing the computational complexity of the voting
circuit. Therefore, the optimized voting circuit is implemented as a priority encoder. It
assigns priorities to the output classes based on the number of samples of each. The effect of
that simplification in terms of classification accuracy and LUT usage is discussed in Section
5.5. It should be noted that if the dataset is balanced with an equal number of samples for
each class, the original voting circuit should be used.

5.4.2 Automated HDL generation of POLYBiNN

The POLYBiNN architecture is regular and lends itself well to a parameterized description.
Therefore, one of the contributions of this work is a tool that automatically generates a
synthesizable HDL description of POLYBiNN given a set of parameters. The steps followed
by the tool are given in Fig. 5.8. In the first step, the tool generates the HDL for the
necessary headers, definitions for input and output ports and signal definitions. The HDL
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Tool parameters: 
(number of inputs, number of outputs, number of decision 

trees for each class and the trained POLYBiNN mode) 

Headers, initializations and 
definitions 

Decision trees circuit 
generation 

Single decision and 
confidence circuit generation 

Voting circuit 
generation 

POLYBiNN HDL description 

Instantiation module  
generation 

Figure 5.8 POLYBiNN HDL generation steps

descriptions of the SOP circuit module for each class are then generated according to the
parameters and the trained POLYBiNN model. Then, the outputs of those modules are
connected to the inputs of the voting circuit module that is generated in the voting circuit
generation step. The tool can be configured to implement the original or the optimized voting
circuit according to users preferences. The last step is the generation of the instantiation
module that incorporates the different generated modules. File generation time is negligible
compared to the training time.
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5.5 Experimental Results

This section presents the classification accuracy and hardware implementation cost of POLY-
BiNN in FPGAs.

5.5.1 POLYBiNN Classification Performance

We trained POLYBiNN in MATLAB using DTs and AdaBoost, uisng a 0.7 learning rate.
The input data was normalized to [0, 1] and binarized using a fixed threshold of 0.5. We
implemented POLYBiNN to accelerate BNN inference on the following datasets:

MNIST [88]: MNIST is a well-studied machine learning dataset of handwritten digits im-
ages. The objective is to classify the input image into one of the ten digits {0 ... 9}. The
MNIST dataset consists of 60,000 gray-scale images each of 28×28 pixels.

Speech Recognition [92]: This speech recognition dataset (ISOLET) contains vocal signals
of the 26 letters of the English alphabet {A ... Z}. The goal is to classify each vocal signal
into one of the 26 English letters. ISOLET has a dataset of 7,797 examples each with 617
features collected from 150 speakers.

Indoor Localization [93]: The objective is to determine the location (building 0, 1, or 2
and floor 0, 1, 2, 3, or 4 (only for building 2)) of each input signal. A set of 520 Received
Signal Strength Indicators (RSSI) for each input signal of the 21,048 examples is given.

Human Activity Recognition [94]: The goal is to recognize the human activity {WALK-
ING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING and
LAYING} based on motion sensor signals. The human activity recognition dataset has
10,299 examples each with 561 features.

CIFAR-10 [114]: CIFAR-10 is a well-known machine learning and computer vision dataset
that has 60,000 32×32 color images in 10 categories.

We considered two different POLYBiNN topologies to classify the datasets.

• FC is a trained POLYBiNN for classification of the first four datasets that can be solved
using only FC layers.

• CNV is made up of a CNN in which a trained POLYBiNN replaces the FC layers. A
succession of (3×3 convolution, 3×3 convolution, 2×2 maxpool) layers repeated three
times with 64-128-256 channels is used to extract the features of a CIFAR-10 image.
POLYBiNN then accepts the binarized extracted features computed by the convolution
layers and outputs a 10-bit one-hot vector indicating the corresponding class of a given



63

input. The first convolution layer accepts 32×32 images with 24 bits/pixel.

Table 5.1 compares the accuracy of POLYBiNN for the studied FC application and CIFAR-
10 with prior works. In all cases we obtain near state-of-the-art results in terms of accuracy.
POLYBiNN achieves 97.26% accuracy with the FC architecture on MNIST. For the other
FC applications, Table 5.1 shows that POLYBiNN can achieve acceptable accuracy. On
the ISOLET, Indoor Localization and Human Activity Recognition datasets, we compare
POLYBiNN results to the floating-point baseline results. Although POLYBiNN uses binary
weights compared to the floating-point weights used to achieve the baseline results, the
accuracy diminishes by just 5% in the worst case. On the CIFAR-10 dataset, POLYBiNN
achieves 81.3% accuracy with the CNV architecture. Fig. 5.9 shows the accuracy for MNIST
and CIFAR-10 as a function of the number of DTs and the number of splits of each DT.
Fig. 5.9 shows that the accuracy of POLYBiNN for these datatsets is more sensitive to the
number of DTs than to the number of splits when the number of DTs is small.

5.5.2 POLYBiNN Implementation Results

POLYBiNN models were synthesized for a ZYNQ-7000 ZC706 development kit using Xilinx
Vivado 15.2. The development kit contains a ZYNQ Z7045 SoC with dual ARM Cortex-
A9 and FPGA fabric with 218,600 LUTs. For all tests the data was stored in BRAM and
these resources are not included in the POLYBiNN cost. The resource utilization and power
consumption are reported in Xilinx Vivado Design Suit after implementation. Table 5.1
presents performance and cost results.

For MNIST, Table 5.1 shows that POLYBiNN with 20 DTs and 100 splits achieves 95.97% ac-
curacy using 9,943 LUTs. Constraining the clock frequency to 100 MHz, the implementation
can process 100 M frames per second, which is 8.3× the throughput of FINN [65] that uses
binary weights and activations, while consuming 0.286 W, which is 25× less than FINN [65]
for virtually the same accuracy. The power consumption of POLYBiNN is significantly lower
than the power consumption of the previous works because POLYBiNN is implemented using
combinational circuits and requires few registers and no counters, adders or multipliers.

POLYBiNN can still achieve better accuracy using more DTs and splits. As shown in Table
5.1, POLYBiNN achieves 97.26% accuracy using 109,653 LUTs. Although POLYBiNN then
utilizes 20% more computational resources than FINN [65], its throughput is up to 67×
greater while consuming 8× less power, for slightly less accuracy. POLYBiNN achieves a
latency of 90 ns compared to 2.5 µs needed by FINN [65]. Moreover, POLYBiNN does not
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require any memory access since it does not have any weights nor activations, which is not
the case in FINN [65] that requires 396 36-kb BRAMs to store its weights and activations.

For other studied FC applications such as ISOLET, Speech Recognition and Indoor Local-
ization, POLYBiNN achieves acceptable accuracy compared to the baseline accuracy in [11].
Although the work in [11] uses power-of-two inputs and activations, which allows using shift
units instead of multipliers, POLYBiNN utilizes 70%-90% fewer LUTs compared to the LUTs
required to implement [11] for the same application. In terms of throughput, POLYBiNN
achieves 366× greater throughput than [11] while consuming 9× less power. Moreover,
POLYBiNN does not require any memory access.

Comparing the implementation costs in the case of CIFAR-10 cannot be made with prior
works since POLYBiNN only replaces the fully connected layers of a CNN. Still, our imple-
mentation achieves 81.3% accuracy while using 28,735 LUTs using the set of convolution lay-
ers in [65] and [105] (3×3 CONV, 3×3 CONV and 2×2 MAXPOOL repeated three times with
64-128-256 channels). We expect that the accuracy could be improved with more complex
convolution layers. The fully connected layers implemented with POLYBiNN consume only
0.591 W. POLYBiNN is expected to achieve higher classification accuracy on the CIFAR-10
dataset with a more complex set of convolutional layers.

The reported results in Table 5.1 correspond to the original voting circuit implementation.
We also tested the optimized voting circuit on the MNIST dataset since it has an unbalanced
number of training samples of its output classes. The classification accuracy of the testing
dataset reduces by 0.05% (only 5 more samples were wrongly classified) of the full testing
dataset as compared to the classification accuracy. In terms of resource utilization, the
optimized voting circuit uses only 15% of the required LUTs to implement the original voting
circuit. It reduces the number of required LUTs to implement POLYBiNN by 8% in the case
of MNIST with 20 DTs and 100 splits.

5.5.3 Teacher-to-Student POLYBiNN

In this section, we discuss an attempt to improve the classification accuracy of POLYBiNN
architecture with fewer resources in FPGAs.

We tested the two-stage teacher-to-student training algorithm [6] to train POLYBiNN with
the predicted outputs of a trained BNN to simplify the task for POLYBiNN, make POLY-
BiNN immune to overfitting and achieve equivalent performance as BNNs. First, we trained
a BNN on the original training data. The trained BNN served as a teacher for POLYBiNN.
Then, POLYBiNN, was trained to mimic the teacher’s behavior. This works by training the
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Figure 5.9 POLYBiNN performance analysis for MNIST and CIFAR-10 in terms of accuracy
vs number of decision trees and number of splits for each class

teacher BNN with the original data to generate the corresponding predicted outputs. The
predicted outputs of the teacher BNN were used as labeled data to train POLYBiNN using
the same training dataset. In other words, instead of training POLYBiNN using the original
labels, we trained POLYBiNN using the expected outputs of the trained BNN. Using this
training approach on MNIST, POLYBiNN achieves the same classification accuracy with
fewer resources. On MNIST, POLYBiNN with just 10 DTs per class and 50 splits, when
trained using the teacher-to-student approach, achieves the same classification accuracy of
POLYBiNN with 20 DT and 100 splits when trained using the traditional training approach.
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5.6 Conclusion

This paper presented POLYBiNN, a high performance and scalable combinatorial inference
engine for binary NNs. POLYBiNN consists of a stack of binary decision trees that are
integrated into existing NNs to achieve the same performance as binary DNNs and CNNs.
POLYBiNN is an energy and area efficient architecture since it avoids multiplications and
floating point operations. In order to avoid the unacceptable latency and tedious steps for
generating a low-level hardware description of a given application, we propose a tool that
automates that process. Our test cases show that the POLYBiNN architecture on FPGA
achieves the same accuracy as binary DNNs with fewer computational resources and up to
67× higher throughput on the MNIST dataset. Future works will focus on the full integration
of POLYBiNN into CNN-based applications and their full implementations.
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Abstract–Convolutional Neural Networks (CNNs) have achieved significant suc-
cess in image classification. One of the main reasons that CNNs achieve state-of-
the-art accuracy is using many multi-scale learnable windowed feature detectors
called kernels. Fetching of kernel feature weights from memory and performing
the associated multiply and accumulate computations consume massive amount
of energy. This hinders the widespread usage of CNNs, especially in embedded
devices. In comparison with CNNs, decision forests are computationally effi-
cient since they are composed of decision trees, which are binary classifiers by
nature and can be implemented using AND-OR gates instead of costly multiply
and accumulate units. In this paper, we investigate the migration of CNNs to
decision forests as one of the promising approaches for reducing both execution
time and power consumption while achieving acceptable accuracy. We introduce
POLYCiNN, an architecture composed of a stack of decision forests. Each de-
cision forest classifies one of the overlapped sub-images of the original image.
Then, all decision forest classifications are fused together to classify the input
image. In POLYCiNN, each decision tree is implemented in a single 6-input
Look-Up Table and requires no memory access. Therefore, POLYCiNN can be
efficiently mapped to simple and densely parallel hardware designs. We validate
the performance of POLYCiNN on the benchmark image classification tasks of
the MNIST, CIFAR-10 and SVHN datasets.

6.1 Introduction

Convolutional Neural Networks (CNNs) have been overwhelmingly dominant in many com-
puter vision problems, especially image classification [4]. The recent success of CNNs is
mainly due to the tremendous development of many deep architectures such as AlexNet [1],
GoogleNet [2] and ResNet [4]. These deep CNN architectures are trained to extract represen-



69

tative features from their inputs through several non-linear convolutional layers. Typically,
in each convolutional layer many pre-trained windowed feature detectors called kernels are
applied on their inputs. One or more fully connected layers connect the top-level extracted
features and make a classification detection.

Although CNNs achieve state-of-the-art accuracy in many tasks, they have deficiencies that
limit their use in embedded applications [4]. A main downside of CNNs is their computational
complexity. They typically demand many Multiply and Accumulate (MAC) and memory
access operations in both training and inference [71]. Another drawback of CNNs is that they
require careful selection of multiple hyper-parameters such as the number of convolutional
layers, the number of kernels, the kernel size and the learning rate [4]. This results in a
large design space exploration that makes the training process of CNNs time consuming
because of several interfering parameters with many configurational combinations. Current
CNN applications are typically trained and run on clusters of computers with Graphical
Processing Units (GPUs). However, the limited throughput of mainstream processors and the
high power consumption of GPUs limit their applicability in embedded and edge computing
CNN applications [25].

Recently, there has been increased interest in other classifiers that should 1) suit the nature
of hardware accelerators by fully utilizing their specific computing resources to maximize
parallelism when executing a large number of operations [12, 115]; 2) achieve acceptable
classification accuracy [29, 116, 117]; 3) be amenable to finding a robust model for a given
task; and 4) be simple to train [118]. Decision Forests (DFs) were introduced as efficient
models for classification problems [119]. They operate by constructing a stack of Decision
Trees (DTs) and then voting on the most popular output class. Since DTs are binary in nature
and can be implemented using AND-OR gates, DFs can be efficiently mapped to simple and
densely parallel hardware architectures [101, 102]. Moreover, DFs can be trained quickly
and are considered handy classifiers since they do not have many hyper-parameters [97].
However, by contrast to CNNs, DFs do not achieve state-of-the-art accuracy on several
applications [115]. CNNs outperform DFs in terms of accuracy because they deploy several
convolutional layers with many kernels to extract representative features from raw data. On
the other hand, DFs divide the feature space into subspaces based on simple comparison
operations on the input data.

The motivation of this paper is based on three observations. The first observation stems from
the fact that CNNs achieve state-of-the-art accuracy by sliding many kernels over images.
This motivates us to propose convolutional DFs, where DFs are applied over a sliding window
(sub-images) on the original image. The second observation is that most Field-Programmable
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Gate Arrays (FPGAs) fit any function with 6-bit inputs in a single Look-Up Table (LUT).
Therefore, we limit the number of nodes of the DTs utilized in our convolutional DFs to six.
Each DT can thus be optimally implemented in one LUT. This idea could be generalized to
wider LUTs. The third observation is that DFs, by contrast to CNNs, are not good feature
extractors. We thus integrate a low complex feature extraction layer before the proposed
convolutional DFs. This allows to achieve high performance with a significantly reduced
amount of resources, and to propose a corresponding architecture.

Training DFs to learn both representative features of the input data and the final classifiers
in a joint manner is a difficult problem [116]. This paper thus introduces POLYCiNN, an
architecture composed of a stack of DFs. POLYCiNN follows the sliding kernels idea of CNNs
and divides each input image into several overlapped sub-images. Then, POLYCiNN trains a
different DF to classify each sub-image. A decision fusion algorithm is applied to combine all
DF classifications. In order to achieve near state-of-the-art accuracy, we use a Local Binary
Pattern (LBP) layer that extracts representative features of the inputs efficiently and with
simple computations. We demonstrate POLYCiNN’s capabilities on the MNIST, CIFAR-10
and SVHN datasets.

The specific contributions of this paper are as follows:

• We introduce POLYCiNN, an efficient classifier based on 6-input LUT DTs.

• We integrate a simple LBP feature extraction layer to POLYCiNN and show that we
can obtain near state-of-the-art accuracy with a reduced input set of binary parameters.

• We explore different meta-parameters to optimize POLYCiNN in terms of classification
accuracy and resource utilization.

• We validate POLYCiNN on the MNIST, CIFAR-10 and SVHN datasets and demon-
strate the potential of using POLYCiNN for different applications.

The rest of the paper is organized as follows. Section 6.2 provides a review of the related
works. A detailed view of POLYCiNN, including its training, inference and its hardware
implementation, are described in Section 6.3. Section 6.4 is dedicated to the experimental
results, comparison with other architectures and discussion. Section 6.5 concludes the paper.

6.2 Related works

Various approaches have been proposed to simplify the computational and memory require-
ments of CNNs. One of these approaches is to use single-bit data representation for inputs and
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parameters [103]. Courbariaux et al. [30] proposed binary kernels and activations of convo-
lutional layers. Since kernels and activations are binary, multiply and accumulate operations
of convolutional layers are then replaced by XNORs and counters. Several works [117] [120]
exploited this paradigm and proposed its implementation on different hardware accelerators
such as FPGAs and Applications-Specific Integrated Circuits (ASICs). Although binary
CNNs achieved competitive accuracies for the MNIST, SVHN and CIFAR-10 datasets, they
are still expensive in terms of computations and memory access since they required many
layers and many kernels in each layer.

Another approach to simplify the computational and memory complexity of CNNs is to
implement them as DTs. Frosst et al. [121] proposed a method to distil knowledge from
trained neural networks to DTs. This method allows DTs to generalize better than DTs
learned directly from the training data. Zhang et al. [122] roughly represented the rationale
of each CNN prediction using a semantic DT structure. Both methods achieve acceptable
accuracy on the MNIST dataset but they lack performance on complex applications such
as CIFAR-10 and SVHN. Abdelsalam et al. [12] [13] proposed POLYBiNN, a stack of DTs
that replaces fully connected layers of CNNs. Although they achieve near state-of-the-art
accuracy on CIFAR-10, they require several convolutional layers to extract features from raw
data.

The success of CNNs over DFs owes to layer-by-layer processing and in-model feature ex-
traction [4]. Therefore, many works explored the possibility of building deep layered DFs to
extract representative features that achieve near state-of-the-art accuracy. Zhou et al. [116]
proposed deep DFs where the output vector of each DF is fed as the input to the next
layer of DFs. Miller et al. [123] proposed forward thinking, a general framework for training
deep DFs layer by layer. The authors demonstrated a proof of concept of their ideas on
the MNIST dataset. However, the idea does not scale up with complex applications such as
CIFAR-10 and SVHN. In addition, implementing multi-layer DFs faces the same complexity
as implementing CNNs, especially when DFs have many DTs with many nodes.

6.3 The POLYCiNN Architecture

In this section, we detail the POLYCiNN architecture, show how we extract representative
features using LBP, demonstrate how we train POLYCiNN using simple sliding DFs, and
show how it can be implemented in an FPGA.
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6.3.1 Architecture Overview

Fig. 6.1 shows an overview of the POLYCiNN architecture. POLYCiNN starts by encoding
input images using a LBP descriptor, a simple yet powerful descriptor for image classification
applications [124]. The features vectors alongside with the downsampled version of the input
image are fed to a stack of POLYBiNNs [12]. Each POLYBiNN is a DF that is composed of
a M ×N array of DTs, where M is the number of classes and N is the number of trees per
class, followed by a voting circuit. The voting circuit outputs of different POLYBiNNs are
combined together using a decision fusion circuit to make the final classification.

Sliding windows and image pyramids play an integral role in image classification since they
allow classifiers to localize different objects at various scales [?]. We exploit that concept and
divide the input images into w overlapped windows. Moreover, we downsample the original
images and divide them into the same number of windows. We train a stack of POLYBiNNs,
where each POLYBiNN classifies one image window using the extracted LBP features vector
of the original window and the corresponding window of the Downsampled Image (DI). Fig.
6.1 shows an example for the CIFAR-10 dataset, where w = 9, with 16×16 windows and a
stride of eight pixels, and the downsampled image is 8×8 with nine windows of size 6×6 with
a stride of one pixel.

6.3.2 Local Binary Pattern Feature Extraction

The main goal of this layer is to obtain the most relevant information from inputs and
represent that information in a lower dimensionality space. We choose LBP descriptors [124]
because they measure the spatial structure of local image texture efficiently and with parallel
simple computations that fit the nature of most hardware accelerators such as FPGAs. The
LBP descriptor is formed by comparing the intensity of the center pixel to its neighboring
pixels within a patch. Neighbor pixels with higher intensity than the center pixel are assigned
a value of 1, and 0 otherwise. LBP patch sizes are normally 3×3, 5×5, etc., however, we
restrict the intensity comparison of the center pixel to its four adjacent neighbor pixels (top,
right, bottom and left) which reduces memory access cost. This approach is more suitable
for hardware implementation since the comparisons are computed row-wise and column-wise,
as discussed in Section 6.3.4.

Each pixel is now represented with a 4-bit string computed by comparing the pixel intensity
to its four corresponding neighbors intensities. The final feature vector of each window is the
histogram of the feature values within the corresponding window. The histogram provides
better discrimination of the inputs and diminishes the dimensionality space of the inputs to
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Figure 6.1 Overview of the POLYCiNN architecture with w windows and M classes

16 (all possible values of a 4-bit string). Fig. 6.2 shows an example of computing the LBP
features vector of a local image window.

6.3.3 POLYCiNN Training Algorithm

We train each POLYBiNN classifier on its corresponding LBP feature vector and down-
sampled image window. POLYBiNNs are trained using AdaBoost, an ensemble learning
algorithm that creates complex classifiers by combining many weak DTs [13]. We limit the
number of nodes of each DT to six in order to implement each DT as a single 6-input LUT.
Once all N DTs within the same POLYBiNN have been trained, their outputs are combined
to come to M decisions (D1 to DM) with M confidences (C1 to CM). The output (Dm) is

Figure 6.2 Local binary pattern encoding process
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the binary decision of class (m) in the corresponding POLYBiNN and can be 0 or 1. The
output (Cm) is a 2-bit confidence value of the corresponding binary decision (Dm).

When the training process of all POLYBiNNs is completed, we merge their outputs using a
decision fusion approach to obtain a decision for a given input. For each class m, the final
confidence CFm is computed by summing all the corresponding Cm together. We select the
class with the highest confidence as the final classification decision. Fig. 6.3 shows the overall
process.

6.3.4 Implementing POLYCiNN in Hardware

As shown in Fig. 6.1, POLYCiNN consists of a LBP feature extraction layer, a stack of
POLYBiNNs where each POLYBiNN is composed of an array of DTs followed by a voting
circuit, and finally a decision fusion circuit that merges POLYBiNN classifications. We pro-
pose an efficient hardware implementation of the LBP layer, as shown in Fig. 6.4. The
architecture is composed of two arrays of comparators: row comparators and column com-
parators. The row array of comparators compares between the intensity of each given pixel
and the intensity of its adjacent bottom neighbor pixel in the consecutive row. The column
array of comparators compares between the intensity of each given pixel and the intensity of
its adjacent right neighbor pixel in the consecutive column. The output of each comparator
is assigned a value of 1 or 0, as discussed in Section 6.3.2.

In the proposed LBP layer, we compare the given pixel intensity to its four adjacent neighbor
pixels (top, right, bottom and left). However, in the proposed array of comparators we only
compute the south and east comparisons. Therefore, the natural and complemented versions
of comparator outputs are used to form the 4-bit string feature value of each color channel
of a given pixel. Once the 4-bit string of each channel of all pixels is formed, a set of 16
comparators and accumulators construct the histogram of the computed feature values and
compute the feature vector of each window for a given image. Fig. 6.4 shows the proposed
implementation of the LBP layer in hardware.

LBP feature vectors of different image windows are computed then fed alongside with their
corresponding downsampled images the stack of POLYBiNNs, as shown in Fig. 6.1. Each
DT of different POLYBiNNs corresponds to a Sum of Product (SOP) that is implemented
in a single LUT since the number of inputs is six, a constraint set during the training
process of POLYCiNN. Since DTs are binary classifiers by nature, their inputs should be
binary. Therefore, the extracted feature vectors and the downsampled images, which serve
as DTs inputs, are binarized with thresholds that are learned during the training process of
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Figure 6.3 Decision forests and decision fusion implementation of POLYCiNN

POLYCiNN. A set of comparators binarize the extracted feature vectors and downsampled
images according to the learned thresholds.

The decisions Dwm and confidences Cwm of each POLYBiNN of the corresponding image win-
dow are computed without any arithmetic operations as detailed in [12]. The w confidences

Figure 6.4 Local binary pattern hardware implementation in POLYCiNN
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of each class m are summed using a set of M accumulators in the decision fusion circuit,
as shown in Fig. 6.3. A set of pipelined comparators is used in the Argmax block to select
the class with the highest confidence. Since the POLYCiNN architecture is well suited to
parametrized descriptions, we expanded and adapted the tool proposed in [12] to generate a
synthesizable HDL description of POLYCiNN given a set of parameters.

6.4 Experimental Results and Discussions

This section presents and analyzes the classification accuracy of POLYCiNN with different
parameters, compares it to the literature and discusses its hardware cost.

6.4.1 POLYCiNN Classification Performance

We tested POLYCiNN on the MNIST (28×28 handwritten digits from 0 to 9), CIFAR-
10 (32×32 color images in 10 categories) and SVHN (32×32 color image of street view
house numbers in 10 categories) datasets. We used the binary version of MNIST version
where each pixel is represented in one bit. In case of CIFAR-10 and SVHN, we only used
the 4-MSB of each pixel value in the three color channels. We considered three different
sets of experiments for classifying the datasets. The first set classified the three datasets
when training POLYCiNN using raw data. In the second set of experiments, we trained
POLYCiNN using the extracted LBP feature vectors. The third set trained POLYCiNN
using the extracted LBP feature vectors alongside with the downsampled image.

For reasons of comparison, we reproduced the results of training POLYBiNN [12] on the raw
data of the three datasets. We also studied the effect of changing the number of DTs for each
POLYBiNN on the accuracy. We trained POLYBiNN for classifying the three datasets with
100, 500 and 1000 DTs per class. In the case of POLYCiNN, we trained it with 100, 500 and
1000 DTs per class for each window. For CIFAR-10 and SVHN, we divided each image into
nine windows of size 16×16 and a stride of eight pixels. For MNIST, we divided each image
into nine windows of size 22×22 and a stride of three pixels.

Fig. 6.5 shows the accuracy for MNIST, CIFAR-10 and SVHN as a function of the number
of DTs in different experiments. In the three datasets, POLYCiNN outperforms POLYBiNN
in terms of classification accuracy when both are trained using raw data. This is because
POLYCiNN has the advantage of using sliding DFs. The accuracy curves for CIFAR-10 and
SVHN indicate that using LBP features is a powerful approach that can achieve the same
performance as using raw data. However, Fig. 6.5 shows that training POLYCiNN using
LBP features and downsampled images achieves higher classification accuracy for the three
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datasets. This is because each POLYBiNN is trained using the LBP feature vector of its
corresponding window alongside with its neighbor area from the downsampled image. The
accuracy of POLYCiNN is sensitive to the number of DTs up to a limit where the classification
accuracy saturates, as shown in Fig. 6.5. Table 6.1 compares the accuracy of POLYCiNN
for the MNIST, CIFAR-10 and SVHN datasets with prior works. Although POLYCiNN is
inferior to state-of-the-art CNNs [1,2,28] in terms or accuracy, we obtain better results when
compared to other DF approaches [12, 115,116].

POLYCiNN with LBP feature extraction layer and downsampled image suits the CIFAR-10
and SVHN datasets more than the MNIST dataset, as shown in Fig. 6.5. This is because
the variability in the CIFAR-10 and SVHN datasets in terms of image translations, scales,
rotations, color spaces and geometrical deformations are much more than those in the MNIST
dataset. When a space of high variability is divided into sub-spaces using DFs, the variations
become less evident and the overall performance of classifier fusion on all sub-spaces gains
are notable. On the other hand, when there are few variations, the gains of space division
are less notable since there is not much reduction in variability.

6.4.2 Hardware Implementation

The hardware implementation of POLYCiNN is composed of three main parts 1) extracting
LBP features, 2) decision forests of decision trees and 3) decision fusion circuit. As discussed
in Section 6.3.4, the simple computations needed to compute LBP feature vectors should
not hinder the implementation process since these features are computed using arrays or
comparators. The delay caused in this part by awaiting neighbor pixels to be loaded is
negligible. This is because the arrays of comparators access the memory symmetrically (row
by row and column by column). Moreover, this approach of implementing LBP can be
parallelized by using many arrays of comparators, which increases the throughput at the cost
of computational and memory access resources.

Table 6.1 Accuracy comparison with existing decision tree approaches

Accuracy (%)
MNIST CIFAR-10 SVHN

[116] 99.10 - -
[121] 96.76 - -
[115] 99.26 63.37 -
[12] 97.45 55.12 71.68

POLYCiNN* 98.23 63.43 76.35
* nine windows per image and 1000 DTs per class of each window.
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Figure 6.5 POLYCiNN accuracy for the CIFAR-10, SVHN and MNIST datasets

Concerning the second part, all DTs are have decision nodes as maximum. Consequently,
each DT is implemented in a single LUT. It should be noted that DTs with more nodes
can be utilized to increase the classification accuracy. However, this requires more LUTs to
implement these DTs. The third part of the decision fusion circuits uses few accumulators
and a set of pipelined comparators that should not restrict the implementation capabilities.
Future works will focus on experimenting different implementations of POLYCiNN in FPGAs.

6.5 Conclusion

This paper presented POLYCiNN, a classifier inspired by CNNs and Decision Forest (DF)
classifiers. POLYCiNN comprises a stack of DFs, where each DF classifies one of the over-
lapped image windows. POLYCiNN deploys an efficient LBP feature extraction layer that
improves its classification accuracy. We demonstrated that POLYCiNN achieves the same
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accuracy as prior DF approaches on the MNIST, CIFAR-10 and SVHN datasets. From a
hardware perspective, POLYCiNN can be implemented using efficient computational and
memory resources. Moreover, it can be configured to suit various hardware accelerators and
embedded devices.
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CHAPTER 7 GENERAL DISCUSSION

In the research presented in this thesis, we proposed efficient FPGA architectures to achieve
higher performance for deep learning applications in general and more specifically for DNN
and CNN inference. The contributions of this work can be summarized into four main
components.

We proposed an efficient approximation and its implementation of the non-linear hyperbolic
tangent activation function of NNs in FPGA. We started with the implementation of activa-
tion functions since it is a basic element of ANs, is crucial in terms of NN performance and
entails many computations as well. The hyperbolic tangent activation function tends to work
better than ReLU on deeper models across a number of applications, especially in RNNs and
Long Short-Term Memories (LSTMs) [125]. The tanh function is used as the gating function
in LSTMs. Since its output is bounded as a value between 0 and 1, it can either let no flow
or complete flow of information throughout the gates. Our proposed FPGA implementation
of the tanh function achieves 3× better precision than previous works while using a similar
amount of computational resources and a small amount of memory. The proposed approx-
imation is highly scalable according to the available computational and memory resources
and the required precision of the function. In addition, it is highly configurable since it can
approximate other non-linear functions.

In order to assess the impact on the accuracy of out tanh approximation on DNN perfor-
mance, we trained and tested several DNN architectures. We conducted this experiment on
two classification problems, MNIST [88] and CANCER [126], and Sinc and Sigmoid func-
tions as regression problems [127]. Table 7.1 shows the testing performance of four different
datasets with several DNN architectures while employing several approximations in the test-
ing process. All the architectures in Table 7.1 were trained using the exact hyperbolic tangent
activation function without any approximation. The Sinc and Sigmoid functions were sam-
pled in the range [-3,3] with 600 samples each and used as regression problems [127]. Training
and testing instances were selected randomly by 420 and 180 samples, respectively, for both
functions. Sinc and Sigmoid functions results in Table 7.1 show that the normalized Mean
Squared Error (MSE) value (MSEapprox - MSEexact) is increased when using less accurate
approximations for the same DNN architecture. In addition, the normalized MSE is getting
larger when the DNN architecture becomes more complex with more hidden layers as shown
in Figure 7.1. MNIST results in Table 7.1 show that the testing accuracy of the classification
process is highly affected by the precision of the approximation. Although the testing per-
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Table 7.1 Testing errors of Sinc, Sigmoid, MNIST and Cancer datasets using different hyper-
bolic tangent approximations

DNN
Architecture

Tanh Max.
Error Correlation Avg.

MSE
Norm.
MSE

DNN
Architecture

Tanh Max.
Error

Testing
Acc. (%)

Avg.
MSE

Norm.
MSE

Si
nc

4 Hidden
Layers x 5

ANs

0.04 0.77237 0.1432 0.0608

M
N
IS
T

1 Hidden
Layer x 30

ANs

0.04 57.9 0.1960 0.0362
0.02 0.89024 0.1046 0.0216 0.02 72.8 0.1745 0.0147
0.01 0.92115 0.0902 0.0079 0.01 77.5 0.1657 0.0059
0.001 0.93335 0.0823 0.0002 0.001 77.8 0.1602 0.0004
0.0001 0.93373 0.0818 0.0000 0.0001 77.7 0.1599 0.0001

0 0.93376 0.0817 0 0 77.7 0.1598 0

6 Hidden
Layers x 5

ANs

0.04 0.77797 0.1428 0.0615

10 Hidden
Layers x 30

ANs

0.04 47.5 0.3045 0.1965
0.02 0.89177 0.1036 0.0229 0.02 73.4 0.1868 0.0788
0.01 0.91246 0.0899 0.0085 0.01 81.1 0.1369 0.0289
0.001 0.92553 0.0822 0.0006 0.001 82.6 0.1086 0.0006
0.0001 0.92601 0.0820 0.0001 0.0001 82.5 0.1080 0.0000

0 0.92605 0.0820 0 0 82.5 0.1080 0

8 Hidden
Layers x 5

ANs

0.04 0.74849 0.1747 0.1018

20 Hidden
Layers x 30

ANs

0.04 17.2 0.2881 0.1165
0.02 0.88751 0.1131 0.0402 0.02 22.3 0.2119 0.0403
0.01 0.92661 0.0874 0.0145 0.01 33.0 0.1867 0.0151
0.001 0.94100 0.0736 0.0007 0.001 38.1 0.1723 0.0007
0.0001 0.94137 0.0730 0.0001 0.0001 38.2 0.1716 0.0000

0 0.94140 0.0729 0 0 38.3 0.1716 0

Si
gm

oi
d

4 Hidden
Layers x 5

ANs

0.04 0.94904 0.2167 0.0050

C
an

ce
r

1 Hidden
Layer x 3

ANs

0.04 95.8 0.1166 0.0050
0.02 0.95131 0.2128 0.0011 0.02 95.8 0.1140 0.0024
0.01 0.95229 0.2122 0.0005 0.01 95.8 0.1128 0.0012
0.001 0.95308 0.2117 0.0000 0.001 95.8 0.1117 0.0001
0.0001 0.95315 0.2117 0.0000 0.0001 95.8 0.1116 0.0000

0 0.95316 0.2117 0 0 95.8 0.1116 0

6 Hidden
Layers x 5

ANs

0.04 0.94403 0.2682 0.0601

10 Hidden
Layers x 3

ANs

0.04 87.5 0.2663 0.0534
0.02 0.94615 0.2282 0.0201 0.02 87.5 0.2387 0.0258
0.01 0.95005 0.2160 0.0079 0.01 87.5 0.2255 0.0126
0.001 0.95268 0.2088 0.0007 0.001 87.5 0.2141 0.0012
0.0001 0.95304 0.2082 0.0001 0.0001 87.5 0.2130 0.0001

0 0.95305 0.2081 0 0 87.5 0.2129 0

8 Hidden
Layers x 5

ANs

0.04 0.94042 0.4569 0.2394

20 Hidden
Layers x 3

ANs

0.04 62.5 0.4314 0.2270
0.02 0.94836 0.2821 0.0646 0.02 62.5 0.3828 0.1784
0.01 0.95220 0.2326 0.0151 0.01 91.7 0.2139 0.0095
0.001 0.95435 0.2182 0.0007 0.001 91.7 0.2050 0.0006
0.0001 0.95447 0.2176 0.0001 0.0001 91.7 0.2045 0.0001

0 0.95448 0.2175 0 0 91.7 0.2044 0
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Figure 7.1 Performance analysis of testing different DNNs architectures employing hyperbolic
tangent activation function with different accuracies

formance of the Cancer dataset does not change with different approximations for the same
DNN architecture, the normalized MSE is still increasing when using DNN architectures with
a large number of hidden layers as shown in Figure 7.1.

Table 7.2 shows the training accuracy of the four datasets employing the hyperbolic tangent
activation function with five approximations and the exact hyperbolic tangent function in
the training process of the network. The training accuracies of classification and regres-
sion problems decrease even when using precise hyperbolic tangent approximations with a
maximum error of 10-4. We noticed that when the networks are trained using less accurate
approximations, the training process stops early before applying the full number of epochs.
Therefore, the training accuracies are badly affected compared to the training accuracies
using the exact hyperbolic tangent activation function. Moreover, that would degrade the
overall testing results of both classification and regression problems.
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Generally, we showed that the performance of some widely used DNN architectures change
using five hyperbolic tangent approximations with different accuracies. In some cases, a hy-
perbolic tangent function approximation with 10-5 is required in order to achieve the same
performance of the exact function. Although implementing an approximation with high ac-
curacy improves DNN performance, this requires more computational and memory resources
and reduces the throughput. The proposed DCTIF approach achieves such an accurate
approximation while using few computational and memory resources.

A complete AN and DNN implementation requires the extension of our tanh implementation
work to include a weighted-sum processing unit. To improve DNN design efficiency on FPGA,
we proposed a SNN multiplication-free overlay inference architecture. An FPGA overlay is
a virtual configurable architecture implemented over the physical FPGA fabric. It enables
FPGA programmability at a higher level of abstraction [128]. The overlay eases the way for
software developers to use FPGA DNN accelerators since they can configure the overlay with
the network model using a traditional C code in a couple of minutes. Moreover, it saves the
HDL development, synthesis, place and route and bitstream generation time when moving
from one application to another. The proposed overlay architecture uses power-of-two 3-bit
inputs and activations in order to replace the multipliers in the hidden and output layers by
shift units. We used a quantized power-of-two tanh function instead of the proposed DCTIF
tanh function for two reasons. The first reason is that the quantized power-of-two tanh
uses fewer computational resources and allows replacing ANs multipliers by shift units. The
second reason is that we are training our SNN overlay using the teacher-to-student algorithm
which compensates for the quantization of both inputs and activations. We can implement
2450 ANs in the hidden layer and 30 ANs in the output layer on ZYNQ-7000 ZC706 FPGA.
The proposed overlay is a configurable SNN and it achieves DNN-level performance for many
FC applications such as MNIST [88] and ISOLET [92].

It is important to recognize that while the proposed SNN overlay achieves DNN performance
for FC applications, it still requires many computations and memory accesses since it uses
3-bit power-of-two inputs and activations and 8-bit fixed-point weights. Motivated by BNNs
and the fact that they use binary weights and activations, we proposed a third contribution,
POLYBiNN. Although BNNs use binary weights and activations as binarized versions of tra-
ditional floating point and fixed-point NNs, they are not binary by nature and such conversion
from continuous to binary causes information loss. Therefore, we proposed POLYBiNN, an
efficient FPGA-based inference engine for DNNs, which consists of a stack of DTs that are
binary by nature. By contrast to NNs, DTs with few splits are easy to implement as LUTs
in FPGAs. The proposed engine achieves a throughput of 100 million image classifications
per second with 97.26% accuracy on MNIST [88]. Moreover, it does not require any memory
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Table 7.2 Training errors of Sinc, Sigmoid, MNIST and Cancer using different hyperbolic
tangent approximations

DNN
Architecture

Tanh Max.
Error Correlation DNN

Architecture
Tanh Max.

Error
Training
Acc. (%)

0.04 0.43279 0.04 10.7
0.02 0.78250 0.02 16.4
0.01 0.78976 0.01 23.1
0.001 0.84850 0.001 31.1
0.0001 0.87712 0.0001 68.0

Sinc
8 Hidden
Layers × 5
ANs, 10,000

epochs 0 0.90287

MNIST
1 Hidden
Layer × 15
ANs, 10,000

epochs 0 68.1
0.04 0.77945 0.04 86.1
0.02 0.80033 0.02 86.9
0.01 0.80068 0.01 86.9
0.001 0.84581 0.001 86.9
0.0001 0.85014 0.0001 94.1

Sigmoid
8 Hidden
Layers × 5
ANs, 10,000

epochs 0 0.86097

Cancer
1 Hidden
Layer × 15
ANs, 10,000

epochs 0 94.1

access. Following the overlay idea that eased the way for software developers to use FPGA
accelerators for DNNs, we proposed a tool that automatically generates a low-level hardware
description of the trained POLYBiNN for a given application.

POLYBiNN achieves a good tradeoff in terms of accuracy and computational complexity
for FC applications. Moreover, we showed that POLYBiNN can be used instead of the FC
layers of a CNN. However, POLYBiNN lacks accuracy when used as an alternative to a full
CNN for complex applications such as CIFAR-10 and SVHN. This is mainly because DTs
are not adequate as CNNs in extracting representative features of the inputs. Decision trees
just divide the feature space into subspaces based on simple comparison operations on the
input data. Consequently, we proposed POLYCiNN, a stack of POLYBiNNs, where each
POLYBiNN classifies one of the overlapped image windows of the input image. In order to
improve POLYCiNN’s accuracy, we deployed an efficient LBP feature extraction layer. We
demonstrated that POLYCiNN achieves the same accuracy as prior DF approaches on the
MNIST, CIFAR-10 and SVHN datasets. Moreover, it can be implemented using efficient
computational and memory resources compared to CNNs.

Table 7.3 shows the performance of the proposed SNN overlay and POLYBiNN on FPGA
in comparison to several recent FPGA DNN and CNN accelerators on MNIST dataset. Our
proposed system in [13], implemented in ZYNQ ZC706 FPGA, outperforms all the exist-
ing FPGA DNN and CNN accelerators in terms throughput, BRAM and DSP requirements
and latency. Comparing to BNNs on FPGAs [65], our proposed architecture [13] reaches
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the same accuracy while achieving 8× the throughput. Moreover, our proposed architec-
ture outperforms small CNN architectures for mobile devices such as MobileNet [132] and
SqueezNet [131] in terms of throughput, DSP requirement and power consumption. Com-
paring to other classifiers such as SVMs in [129], our systems utilizes 55% fewer LUTs with
no DSP requirements.
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CHAPTER 8 CONCLUSION

In this thesis, we aimed to improve the mapping and scheduling of deep learning models
such as DNNs and CNNs on FPGAs. Moreover, we pursued to introduce libraries and
template-based compilers that can help developers transform their high-level description of
deep learning models to a highly optimized FPGA accelerator with limited design expertise.
This chapter summarizes the contributions of this work and discusses its limitations and
future works.

8.1 Summary of Works

We developed a high-accuracy approximation technique to implement non-linear activation
functions on FPGAs efficiently. The proposed approximation is based on DCTIF. It outper-
forms the existing works in terms of accuracy for similar amounts of computational resources.
We used the proposed implementation as a building block to implement a multiplier-less
SNN overlay on FPGA with DNN-level performance thanks to teacher-to-student training
approach. The proposed overlay is energy and area efficient architecture since it avoids mul-
tiplications and floating-point operations. The overlay is configurable for many applications
and convenient for users with limited FPGA design expertise. The user can configure the
overlay with the network model using a traditional C code. Moreover, the overlay avoids the
latency and tedious synthesis, place and route steps for regenerating a new bitstream for a
given applications. We showed that the proposed multiplier-less overlay achieves the same
accuracy as floating-point DNN with fewer computational resources.

We also developed POLYBiNN, a high performance combinatorial inference engine for BNNs.
POLYBiNN consists of a stack of binary DTs and it achieves the same performance as bi-
nary DNNs. POLYBiNN avoids multiplications and floating-point operations since all DTs
are implemented as LUTs. Our test cases show that the POLYBiNN architecture on FPGA
achieves the same accuracy as binary FC DNNs with fewer computational resources and up
to 67× higher throughput on the MNIST dataset. To cover binary CNN applications, we ex-
tended POLYBiNN and proposed POLYCiNN, a DF classifier inspired by CNNs. POLYCiNN
comprises a stack of POLYBiNNs, where each POLYBiNN classifies one of the overlapped
image windows. POLYCiNN deploys an efficient LBP feature extraction layer that improves
its classification accuracy. We demonstrated that POLYCiNN achieves the same accuracy
as prior DF approaches on the MNIST, CIFAR-10 and SVHN datasets. For both POLY-
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BiNN and POLYCiNN, we proposed a tool that automates the process of low-level hardware
description of a given application.

8.2 Future Works

Even though the work described in this thesis presented multiple contributions in the field
of accelerating deep learning models on FPGAs, several improvements and extensions could
be proposed to the solutions presented.

One of the possible extensions is to implement POLYCiNN on FPGAs and show how it
can be efficiently mapped to simple and densely parallel hardware designs. The POLYCiNN
architecture should be divided into three different parts: 1) the LBP feature extraction layer,
2) POLYBiNN and 3) the final decision fusion circuit. The level of parallelism and the data
flow between the three parts should be studied to achieve the expected results in terms of
computational and memory requirements and compare them to the related works.

An important improvement that should be studied is how to use DTs to extract features from
data. In POLYCiNN, we used a feature extraction layer to extract representative features
and drive them to our DT-based classifier. If we could extract meaningful features using
DTs, the implementation would be much improved in terms of computational resources since
it would be implemented using DTs only.

Another extension is to apply the idea of using DFs and boosting in RNNs. Recurrent neural
networks have shown outstanding performance in processing sequence data. However, they
are both complex and memory intensive due to their recursive nature. These limitations
make RNNs difficult to embed in mobile devices requiring real-time processing with limited
hardware resources. Therefore, we believe that there is potential to use the idea of DFs as
an alternative to traditional RNNs.
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