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Colorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related
mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main
limitations of this screening procedure are polyp miss rate and the inability to perform visual assessment of polyp malignancy.
These drawbacks can be reduced by designing decision support systems (DSS) aiming to help clinicians in the different stages of
the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of
colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis
research. The proposed dataset consists of 4 relevant classes to inspect the endoluminal scene, targeting different clinical needs.
Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by
training standard fully convolutional networks (FCNs). We perform a comparative study to show that FCNs significantly
outperform, without any further postprocessing, prior results in endoluminal scene segmentation, especially with respect to
polyp segmentation and localization.

1. Introduction

Colorectal cancer (CRC) is the third cause of cancer death
worldwide [1]. CRC arises from adenomatous polyps (ade-
nomas) which are initially benign; however, over time, some
of them can become malignant. Currently, the standard
approach to reduce CRC-related mortality is to perform reg-
ular screening in search for polyps and colonoscopy is the
screening tool of choice. During the examination, clinicians
visually inspect the intestinal wall (see Figure 1(a) for an
example of intestinal scene) in search of polyps. Once
detected, they are resected and sent for histological analysis
to determine their degree of malignancy and define the corre-
sponding treatment the patient should undertake.

The main limitations of colonoscopy are its associated
polyp miss rate (small/flat polyps or the ones hidden behind
intestine folds can be missed [2]) and the fact that polyp’s
malignancy degree is only known after histological analysis.
These drawbacks can be reduced by developing new
colonoscopy modalities to improve visualization (e.g., high-
definition imaging, narrow-band imaging (NBI) [3], and
magnification endoscopes [4]) and/or by developing
decision support systems (DSS) aiming to help clinicians in
the different stages of the procedure. A clinically useful
DSS should be able to detect, segment, and assess the
malignancy degree (e.g., by optical biopsy [5]) of polyps
during the colonoscopy procedure, following a similar
pipeline to the one shown in Figure 1(b).

Hindawi
Journal of Healthcare Engineering
Volume 2017, Article ID 4037190, 9 pages
https://doi.org/10.1155/2017/4037190

https://doi.org/10.1155/2017/4037190


The development of DSS for colonoscopy has been an
active research topic during the last decades. The majority
of available works on optical colonoscopy are focused on
polyp detection (e.g., see [6–11]), and only few works address
the problems of endoluminal scene segmentation.

Endoluminal scene segmentation is of crucial relevance
for clinical applications [6, 12–14]. Polyp segmentation is
important to define the area covered by a potential lesion that
should be carefully inspected and possibly removed by
clinicians. Moreover, having a system for accurate in vivo
prediction of polyp histology might significantly improve
clinical workflow. Lumen segmentation is relevant to help
clinicians navigate through the colon during the procedure.
Additionally, it can be used to establish quality metrics
related to the degree of the colon wall that has been explored,
since a weak exploration can lead to polyp overlooking.
Finally, specular highlights have proven to be useful in
reducing polyp detection false-positive ratio in the context
of handcrafted methods [15].

In recent years, convolutional neural networks (CNNs)
have become a de facto standard in computer vision,
achieving state-of-the-art performance in tasks such as
image classification, object detection, and semantic segmen-
tation; and making traditional methods based on hand-
crafted features obsolete. Two major components in this
groundbreaking progress were the availability of increased
computational power (GPUs) and the introduction of large
labeled datasets [16, 17]. Despite the additional difficulty of
having limited amounts of labeled data, CNNs have

successfully been applied to a variety of medical imaging
tasks, by resorting to aggressive data augmentation tech-
niques [18, 19]. More precisely, CNNs have excelled at
semantic segmentation tasks in medical imaging, such as
the EM ISBI 2012 dataset [20], BRATS [21], or MS lesions
[22], where the top entries are built on CNNs [18, 19, 23–25].
Surprisingly, to the best of our knowledge, CNNs have not
been applied to semantic segmentation of colonoscopy data.
We associate this to the lack of large publicly available
annotated databases, which are needed in order to train
and validate such networks.

In this paper, we aim to overcome this limitation by
introducing an extended benchmark of colonoscopy images
created from the combination of the two largest public data-
sets of colonoscopy images [6, 26] and by incorporating addi-
tional annotations to segment lumen and specular highlights,
with the hope of establishing a new strong benchmark for
colonoscopy image analysis research. We provide new base-
lines on this dataset by training standard fully convolutional
networks (FCNs) for semantic segmentation [27] and signifi-
cantly outperforming, without any further postprocessing,
prior results in endoluminal scene segmentation.

Therefore, the contributions of this paper are twofold:

(1) Extended benchmark for colonoscopy image
segmentation

(2) New state-of-the-art in colonoscopy image
segmentation.

(a)

In vivo diagnosisSegmentationDetection

(b)

Figure 1: (a) Colonoscopy image and corresponding labeling: blue for lumen, red for background (mucosa wall), and green for polyp.
(b) Proposed pipeline of a decision support system for colonoscopy.
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The rest of the paper is organized as follows. In Section 2,
we present the new extended benchmark, including the
introduction of datasets as well as the performance metrics.
After that, in Section 3, we introduce the FCN architecture
used as baseline for the new endoluminal scene segmentation
benchmark. Then, in Section 4, we show qualitative and
quantitative experimental results. Finally, Section 5 con-
cludes the paper.

2. Endoluminal Scene Segmentation
Benchmark

In this section, we describe the endoluminal scene segmenta-
tion benchmark, including evaluation metrics.

2.1. Dataset. Inspired by already published benchmarks for
polyp detection, proposed within a challenge held in conjunc-
tion with MICCAI 2015 (http://endovis.grand-challenge.org)

[28], we introduce a benchmark for endoluminal scene
object segmentation.

We combine CVC-ColonDB and CVC-ClinicDB into a
new dataset (CVC-EndoSceneStill) composed of 912 images
obtained from 44 video sequences acquired from 36 patients.

(i) CVC-ColonDB contains 300 images with associated
polyp masks obtained from 13 polyp video sequences
acquired from 13 patients.

(ii) CVC-ClinicDB contains 612 images with associated
polyp and background (here, mucosa and lumen)
segmentation masks obtained from 31 polyp video
sequences acquired from 23 patients.

We extend the old annotations to account for lumen,
specular highlights with new hand-made pixel-wise annota-
tions, and we define a void class for black borders present
in each frame. In the new annotations, background only

Table 1: Summary of prior database content. All frames show at least one polyp.

Database Number of patients Number of seq. Number of frames Resolution Annotations

CVC-ColonDB 13 13 300 500× 574 Polyp, lumen

CVC-ClinicDB 23 31 612 384× 288 Polyp

CVC-EndoSceneStill 36 44 912 500× 574 & 384× 288 Polyp, lumen, background,
specularity, border (void)

(a) (b)

(c) (d)

Figure 2: Example of a colonoscopy image and its corresponding ground truth: (a) original image, (b) polyp mask, (c) specular highlights
mask, and (d) lumen mask.
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contains mucosa (intestinal wall). Please refer to Table 1 for
dataset details and to Figure 2 for a dataset sample.

We split the resulting dataset into three sets: training,
validation, and test containing 60%, 20%, and 20%
images, respectively. We impose the constraint that one
patient cannot be in different sets. As a result, the final
training set contains 20 patients and 547 frames, the
validation set contains 8 patients and 183 frames, and
the test set contains 8 patients and 182 frames. The dataset
is publicly available (http://www.cvc.uab.es/CVC-Colon/
index.php/databases/cvc-endoscenestill/).

2.2. Metrics. We use Intersection over Union (IoU), also
known as Jaccard index, and per pixel accuracy as segmenta-
tion metrics. These metrics are commonly used in medical
image segmentation tasks [29, 30].

We compute the mean of per class IoU. Each per class
IoU is computed over a validation/test set according to the
following formula:

IoU PR class , GT class =
PR class ∩GT class
PR class ∪GT class

, 1

where PR represents the binary mask produced by the
segmentation method, GT represents the ground truth mask,
∩ represents set intersection, and ∪ represents set union.

We compute the mean global accuracy for each set
as follows:

Acc PR, GT =
#TP

#pixels
, 2

where TP represents the number of true positives.
Notably, this new benchmark might as well be used for

the relevant task of polyp localization. In that case, we follow
Pascal VOC challenge metrics [31] and determine that a
polyp is localized if it has a high overlap degree with its
associated ground truth, namely,

IoU PR polyp , GT polyp > 0 5, 3

where the metric is computed for each polyp independently
and averaged per set to give a final score.

3. Baseline

CNNs are a standard architecture used for tasks, where a
single prediction per input is expected (e.g., image classifica-
tion). Such architectures capture hierarchical representations
of the input data by stacking blocks of convolutional, nonlin-
earity, and pooling layers on top of each other. Convolutional
layers extract local features. Nonlinearity layers allow deep
networks to learn nonlinear mappings of the input data.
Pooling layers reduce the spatial resolution of the representa-
tion maps by aggregating local statistics.

FCNs [19, 27] were introduced in the computer vision
and medical imaging communities in the context of semantic
segmentation. FCNs naturally extend CNNs to tackle per
pixel prediction problems, by adding upsampling layers to
recover the spatial resolution of the input at the output layer.
As a consequence, FCNs can process images of arbitrary size.

In order to compensate for the resolution loss induced by
pooling layers, FCNs introduce skip connections between
their downsampling and upsampling paths. Skip connections
help the upsampling path recover fine-grained information
from the downsampling layers.

We implemented FCN8 architecture from [27] and
trained the network by means of stochastic gradient descent
with the rmsprop adaptive learning rate [32]. The validation
split is used to early stop the training; we monitor mean IoU
for validation set and use patience of 50. We used a mini-
batch size of 10 images. The input image is normalized in
the range 0-1. We randomly crop the training images to
224× 224 pixels. As regularization, we use dropout [33] of
0.5, as mentioned in the paper [27]. We do not use any
weight decay.

As described in Section 2.1, colonoscopy images have a
black border that we consider as a void class. Void classes do
not influence the computation of the loss nor the metrics of
any set, since the pixels marked as void class are ignored. As
the number of pixels per class is unbalanced, in some experi-
ments, we apply the median frequency balancing of [34].

During training, we experiment with data augmentation
techniques such as random cropping, rotations, zooming,
and sharing and elastic transformations.

4. Experimental Results

In this section, we report semantic segmentation and polyp
localization results on the new benchmark.

4.1. Endoluminal Scene Semantic Segmentation. In this
section, we first analyze the influence of different data aug-
mentation techniques. Second, we evaluate the effect of hav-
ing different numbers of endoluminal classes on polyp
segmentation results. Finally, we compare our results with
previously published methods.

4.1.1. Influence of Data Augmentation. Table 2 presents an
analysis on the influence of different data augmentation
techniques and their impact on the validation performance.
We evaluate random zoom from 0.9 to 1.1, rotations from
0 to 180 degrees, shearing from 0 to 0.4, and warping with
σ ranging from 0 to 10. Finally, we evaluate the combination
of all the data augmentation techniques.

As shown in the table, polyps significantly benefit from
all data augmentation methods, in particular, from warping.
Note that warping applies small elastic deformation locally,
accounting for many realistic variations in the polyp shape.
Rotation and zoom also have a strong positive impact on
the polyp segmentation performance. It goes without saying
that such transformations are the least aggressive ones, since
they do not alter the polyp appearance. Shearing is most
likely the most aggressive transformation, since it changes
the polyp appearance and might, in some cases, result in
unrealistic deformations.

While for lumen it is difficult to draw any strong
conclusions, it looks like zooming and warping slightly
deteriorate the performance, whereas shearing and rota-
tion slightly improve it. As for specular highlights, all
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the data augmentation techniques that we tested signifi-
cantly boost the segmentation results. Finally, background
(mucosa) shows only slight improvement when incorpo-
rating data augmentations. This is not surprising; given
its predominance throughout the data, it could be even
considered background.

Overall, combining all the discussed data augmentation
techniques leads to better results in terms of mean IoU and
mean global accuracy. More precisely, we increase the mean
IoU by 4.51% and the global mean accuracy by 1.52%.

4.1.2. Influence of the Number of Classes. Table 3 presents
endoluminal scene semantic segmentation results for different
numbers of classes. As shown in the table, using more under-
represented classes suchas lumenor specularhighlightsmakes
the optimization problemmoredifficult.As expected and con-
trary tohandcrafted segmentationmethods,whenconsidering
polyp segmentation, deep learning-based approaches do
not suffer from specular highlights, showing the robustness
of the learnt features towards saturation zones in colonos-
copy images.

Best results for polyp segmentation are obtained in the
2-class scenario (polyp versus background). However, seg-
menting lumen is a relevant clinical problem as mentioned

in Section 1. Results achieved in the 3-class scenario are
very encouraging, with a IoU higher than 50% for both
polyp and lumen classes.

4.1.3. Comparison to State-of-the-Art. Finally, we evaluate the
FCN model on the test set. We compare our results to the
combination of previously published handcrafted methods:
map-based method (1) for polyp segmentation and [12] a
watershed-based method (2) for lumen segmentation and
[15] (3) for specular highlights segmentation.

The segmentation results on the test set are reported in
Table 4 and show a clear improvement of FCN8 over previ-
ously published methods. The following improvements can
be observed when comparing previously published methods
to the 4-class FCN8 model trained with data augmentation:
15% in IoU for background (mucosa), 29% in IoU for polyps,
18% in IoU for lumen, 14% in mean IoU, and 14% in mean
accuracy. FCN8 is still outperformed by traditional methods
when it comes to specular highlight class. However, it is
important to note that specular highlight class is used by
handcrafted methods to reduce false-positive ratio of polyp
detection, and from our analysis, it looks like the FCN model
is able to segment well polyps even when ignoring this class.
For example, the best mean IoU of 72.74% and mean

Table 2: FCN8 endoluminal scene semantic segmentation results for different data augmentation techniques. The results are reported on
validation set.

Data augmentation IoU background IoU polyp IoU lumen IoU spec. IoU mean Acc mean

None 88.93 44.45 54.02 25.54 57.88 92.48

Zoom 89.89 52.73 51.15 37.10 57.72 90.72

Warp 90.00 54.00 49.69 37.27 58.97 90.93

Shear 89.60 46.61 54.27 36.86 56.83 90.49

Rotation 90.52 52.83 56.39 35.81 58.89 91.38

Combination 92.62 54.82 55.08 35.75 59.57 93.02

Table 3: FCN8 endoluminal scene semantic segmentation results for different numbers of classes. The results are reported on validation set.
In all cases, we selected the model that provided best validation results (with or without class balancing).

Number of classes IoU background IoU polyp IoU lumen IoU spec. IoU mean Acc mean

4 92.07 39.37 59.55 40.52 57.88 92.48

3 92.19 50.70 56.48 — 66.46 92.82

2 96.63 56.07 — — 76.35 96.77

Table 4: Results on the test set: FCN8 with respect to previously published methods.

Data augmentation IoU background IoU polyp IoU lumen IoU spec. IoU mean Acc mean

FCN8 performance

4 classes None 86.36 38.51 43.97 32.98 50.46 87.40

3 classes None 84.66 47.55 36.93 — 56.38 86.08

2 classes None 94.62 50.85 — — 72.74 94.91

4 classes Combination 88.81 51.60 41.21 38.87 55.13 89.69

State-of-the-art methods

[12, 13, 15] — 73.93 22.13 23.82 44.86 41.19 75.58
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accuracy of 94.91% are obtained by the 2-class model without
additional data augmentation.

Figure 3 shows qualitative results of the 4-class FCN8
model trained with data augmentation. From left to right,

each row shows a colonoscopy frame, followed by the corre-
sponding ground truth annotation and FCN8 prediction.
Rows 1 to 4 show correct segmentation masks, with very
clean polyp segmentation. Rows 5 and 6 show failure modes

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Examples of predictions for 4-class FCN8 model. Each subfigure represents a single frame, a ground truth annotation, and a
prediction image. We use the following color-coding in the annotations: red for background (mucosa), blue for lumen, yellow for polyp,
and green for specularity. (a), (b), (c), (d) show correct polyp segmentation, whereas (e), (d) show incorrect polyp segmentation.
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of the model, where polyps have been missed or underseg-
mented. In row 5, the small polyp is missed by our segmenta-
tion method while, in row 6, the polyp is undersegmented.
All cases exhibit decent lumen segmentation and good
background (mucosa) segmentation.

4.2. Polyp Localization. Endoluminal scene segmentation can
be seen as a proxy to proper polyp detection in a colonoscopy
video. In order to understand how well suited FCNs are to
localize polyps, we perform a last experiment. In this experi-
ment, we compute the polyp localization rate as a function of
IoU between the model prediction and the ground truth. We
can compute this IoU per frame, since our dataset contains a
maximum of one polyp per image. This analysis describes the
ability of a given method to cope with polyp appearance
variability and stability on polyp localization.

The localization results are presented in Figure 4 and
show a significant improvement when comparing FCN8 var-
iants to the previously published method [13]. For example,
when considering a correct polyp localization to have at least
50% IoU, we observe an increase of 40% in the polyp

localization rate. As a general trend, we observe that architec-
tures trained using a fewer number of classes achieve a higher
IoU, though the polyp localization difference starts to be
more visible when really high overlapping degrees are
imposed. Finally, as one would expect, we observe that the
architectures that show better results in polyp segmentation
are the ones that show better results in polyp localization.

4.3. Towards Clinical Applicability. Sections 4.1.3 and 4.2
presented results of a comparative study between FCNs and
previous state-of-the-art of endoluminal scene object seg-
mentation in colonoscopy images. As mentioned in Section
1, we foresee several clinical applications, which can be built
from the results of endoluminal scene segmentation. How-
ever, in order to be deployed in the exploration room, they
must comply with real-time constraints apart from offering
a good segmentation performance. In this case and consider-
ing videos recorded at 25 frames per second, a DSS should
not take more than 40ms to process an image in order not
to delay the procedure.

Considering this, we have computed processing times for
each of the approaches studied in this paper. Results are
presented in Table 5.

As shown in the table, none of the presented approaches
currently meet real-time constraints. Running the FCN8
inference on an NVIDIA Titan X GPU takes 88ms per frame.
Note that this could easily be addressed by taking advantage
of recent research on model compression [35] by applying
fancier FCN architectures that encourage feature reuse [36].
Alternatively, we could exploit the temporal component
and build more sophisticated architectures that would take
advantage of the similarities among consecutive frames.
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Figure 4: Localization rate of polyps as a function of IoU. The x-axis represents the degree of overlap between ground truth and model
prediction. The y-axis represents the percentage of correctly localized polyps. Different color plots represent different models: FCN8 with
4 classes, FCN8 with 3 classes, and FCN8 with 2 classes and previously published method [13] (referred to as state-of-the-art in the plot).

Table 5: Summary of processing times achieved by the different
methods studied in the paper. FCN results are the same for all
four classes considered as segmentation of the four classes is done
at the same time∗.

Method Polyp Lumen
Specular
highlights

Background

FCN 88ms∗ 88ms∗ 88ms∗ 88ms∗

State-of-the-art 10000ms 8000ms 5000ms 23000ms
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Clearly, handcrafted methods take much longer to
process one image. Moreover, they need to apply different
methods to segment each class of interest, making them
less clinically useful. Note that this is not the case for
FCN-like architectures.

Despite computational constraints, FCNs’ superior per-
formance could lead to more reliable and impactful
computer-assisted clinical applications, since they offer both
a better performance and computational efficiency.

5. Conclusions

In this paper, we have introduced an extended benchmark
for endoluminal scene semantic segmentation. The bench-
mark includes extended annotations of polyps, background
(mucosa), lumen, and specular highlights. The dataset
provides the standard training, validation, and test splits
for machine learning practitioners and will be publicly
available upon paper acceptance. Moreover, standard
metrics for the comparison have been defined, with the
hope to speed up the research in the endoluminal scene
segmentation area.

Together with the dataset, we provided new baselines
based on fully convolutional networks, which outperformed
by a large margin previously published results, without any
further postprocessing. We extended the proposed pipeline
and used it as proxy to perform polyp detection. Due to the
lack of nonpolyp frames in the dataset, we reformulated the
task as polyp localization. Once again, we highlighted the
superiority of deep learning-based models over traditional
handcrafted approaches. As expected and contrary to hand-
crafted segmentation methods, when considering polyp
segmentation, deep learning-based approaches do not
suffer from specular highlights, showing the robustness of
the learnt features towards saturation zones in colonoscopy
images. Moreover, given that FCN not only excels in terms
of performance but also allows for nearly real-time
processing, it has a great potential to be included in future
DSS for colonoscopy.

Knowing the potential of deep learning techniques,
efforts in the medical imaging community should be devoted
to gather larger labeled datasets as well as designing deep
learning architectures that would be better suited to deal with
colonoscopy data. This paper pretends to make a first
step towards novel and more accurate DSS by making
all code and data publicly available, paving the road for
more researchers to contribute to the endoluminal scene
segmentation domain.
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