
Titre:
Title: A machine learning filter for the slot filling task

Auteurs:
Authors:

Kevin Lange Di Cesare, Amal Zouaq, Michel Gagnon et Ludovic
Jean-Louis

Date: 2018

Type: Article de revue / Journal article

Référence:
Citation:

Lange Di Cesare, K., Zouaq, A., Gagnon, M. & Jean-Louis, L. (2018). A machine
learning filter for the slot filling task. Information, 9(6), p. 1-24.
doi:10.3390/info9060133

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/3565/

Version: Version officielle de l'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: CC BY

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title: Information

Maison d’édition:
Publisher: MDPI

URL officiel:
Official URL: https://doi.org/10.3390/info9060133

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/322959704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://publications.polymtl.ca/3565/
https://doi.org/10.3390/info9060133
http://publications.polymtl.ca/

 information

Article

A Machine Learning Filter for the Slot Filling Task

Kevin Lange Di Cesare 1,†, Amal Zouaq 2,‡,∗, Michel Gagnon 1,‡ and Ludovic Jean-Louis 3

1 Polytechnique Montréal, Computer Engineering and Software Engineering, The WeST Lab, Montreal,
QC H3T 1J4, Canada; kevin.langedicesare@gmail.com (K.L.D.C.); michel.gagnon@polymtl.ca (M.G.)

2 School of Electrical Engineering and Computer Science, University of Ottawa, School of Electrical
Engineering and Computer Science, The WeST Lab, Ottawa, ON K1N 6N5, Canada

3 Netmail Inc., 180 Peel Street, Montreal, QC H3C 2G7, Canada; Ludovic.Jean-Louis@netmail.com
* Correspondence: azouaq@uottawa.ca; Tel.: +1-613-562-5800
† Current address: University of Ottawa, School of Electrical Engineering and Computer Science,

Ottawa, ON K1N 6N5, Canada.
‡ These authors contributed equally to this work.

Received: 13 April 2018; Accepted: 25 May 2018; Published: 30 May 2018
����������
�������

Abstract: Slot Filling, a subtask of Relation Extraction, represents a key aspect for building structured
knowledge bases usable for semantic-based information retrieval. In this work, we present a machine
learning filter whose aim is to enhance the precision of relation extractors while minimizing the
impact on the recall. Our approach consists in the filtering of relation extractors’ output using a
binary classifier. This classifier is based on a wide array of features including syntactic, semantic and
statistical features such as the most frequent part-of-speech patterns or the syntactic dependencies
between entities. We experimented the classifier on the 18 participating systems in the TAC KBP 2013
English Slot Filling track. The TAC KBP English Slot Filling track is an evaluation campaign that
targets the extraction of 41 pre-identified relations (e.g., title, date of birth, countries of residence, etc.)
related to specific named entities (persons and organizations). Our results show that the classifier is
able to improve the global precision of the best 2013 system by 20.5% and improve the F1-score for
20 relations out of 33 considered.

Keywords: information retrieval; information extraction; relation extraction; slot filling;
knowledge base population; most frequent patterns; precision; data mining

1. Introduction

In the age of structured knowledge bases such as Google Knowledge Graph [1], DBpedia [2]
and the Linked Open Data cloud [3], relation extraction is becoming a very important challenge for
enhanced semantic search. Relation extraction and its sub-task, slot filling, have been very active
in recent years and have been subject to several evaluation campaigns that assess the ability of
automatically extracting previously known relations from corpora. Despite some progress, the results
of these competitions remain limited. Relation extraction generally consists of extracting relations from
unstructured information. This is done by identifying the meaningful links between named entities.
Slot filling goes one step further by providing a template defining the relations for which a named
entity needs to be linked. In this paper, we focus on the Text Analysis Conference (TAC) Knowledge
Base Population (KBP) English Slot Filling (ESF) track, which is an evaluation campaign that targets
the extraction of 41 pre-identified Wikipedia info-box relations (e.g., title, date of birth, countries of
residence, etc.) related to specific named entities (persons and organizations) [4]. In this task, a named
entity (the query entity) and a relation (the slot) are submitted to the system, which must find every
other entity (the filler) that is linked to this entity with this particular relation, and must return a textual
segment that justifies this result [4,5]. The goal of this task is to populate a reference knowledge base,

Information 2018, 9, 133; doi:10.3390/info9060133 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/2078-2489/9/6/133?type=check_update&version=1
http://dx.doi.org/10.3390/info9060133
http://www.mdpi.com/journal/information

Information 2018, 9, 133 2 of 24

in this case a Wikipedia infobox 2008 snapshot [6], for which fillers to a pre-defined list of relations for
100 selected named entities are missing. In 2014, the top performing system, submitted by Stanford,
achieved a recall of 0.277, a precision of 0.546 and a F1 score of 0.368 [5,7]. These results are somewhat
similar to those submitted the previous year by the best performing system, Relation Factory, which
achieved a recall of 0.332, precision of 0.425 and F1 score of 0.373 [4,8].

1.1. Example of a Slot Filling System’s Structure

For most systems, the slot filling task is done in two main steps: candidate generation and
candidate validation [8]. The candidate generation stage can be further decomposed into the following
steps: (i) query expansion, (ii) document retrieval and (iii) candidate matching. Query expansion
is performed by finding alternate reference forms that designate the named entity contained in the
query. For example, the entity Barack Obama could be referenced as President Obama, Barack Hussein
Obama or simply Obama. These alternative forms constitute the named entity expansion. The system
then retrieves documents containing a reference to the query entity. The retained documents are
annotated with a name entity recognizer that associates a named-entity tag (or the tag OTHER
if the word is not a named entity) to each word. In the candidate matching stage, candidates,
e.g., sentences containing a reference to the query entity or to some item of its expansion, along with
a named-entity tag of a potential slot filler type for a given relation, are retrieved [8]. For example,
the sentence Barack Obama was born in Honolulu, Hawaii in 1961. would be tagged by the named
entity tagger as follows: “Barack/PERSON Obama/PERSON was/OTHER born/OTHER in/OTHER
Honolulu/GPE-CITY, Hawaii/GPE-STATE in/OTHER 1961/DATE.” This sentence would be a candidate
for the relation city of birth and the query entity Barack Obama since it contains a named-entity tag
of type GPE-CITY. For each relation, the candidate sentences are passed to the validation stage.
This system-dependent step is usually based on distant supervision classifiers and/or hand-crafted
patterns, among other approaches [9].

1.2. Research Objective

A system’s recall can be increased significantly by configuring a more lenient candidate generation
step or candidate validation step. However, its precision is then expected to drop. This is a well-known
issue in information retrieval where there is a trade-off between precision and recall. Our research
describes a filtering module that could be applied to the output of relation extractors in order to
increase their precision. It is driven by the following research questions:

RQ1: What are the most important features for the filtering step?
RQ2: Is there a generic method to increase the precision of slot filling systems without significantly

degrading their recall (overall performance across several relations)?
RQ3: Are some relations more sensitive to our filter?

1.3. Outline and Organization

The paper is organized as follows. In Section 2, we present a brief overview of related work in
the field of relation extraction and slot filling. In Section 3, we explain our approach, describing the
dataset and the set of features used to train our classifiers. We compare the evaluation of systems’
for the TAC ESF track before and after filtering, measuring the impact of the feature sets in Section 4.
In Section 5, we discuss our motivation to focus on systems’ precision along with other aspects of
our work. We also give a brief conclusion and discuss future work.

2. Related Work

In Section 2.1, we give a brief overview of the most common and most successful approaches for
relation extraction. In Section 2.2, we focus on relation extractors’ enhancement and present different
methods to increase a relation extractor’s performance.

Information 2018, 9, 133 3 of 24

2.1. Relation Extraction and Slot Filling

Relation extraction being a prevailing concern, multiple research groups have worked on the task
lately. Relation extraction and slot filling are complex tasks that require rich modular automatic systems.
Typical methods such as supervised relation extraction encounter certain problems. Primarily, there are
very few labeled data available for training such systems since it is expensive to produce. In addition,
there is generally a text or domain bias considering relations are labeled on a particular corpus [10].
Alternatively, unsupervised relation extraction approaches use very large amounts of data and can
extract a wide scope of relations. However, those relations are not necessarily easy to map to a
knowledge base [11]. Therefore, modern systems (e.g., [7,8,12]) use different techniques such as
pattern bootstrapping and distant supervision, which do not require labeled datasets but extract
pre-defined relations.

Bootstrap learning uses a small number of seed instances, which are entities known to fill a given
relation [13,14]. The seed pairs are used to extract patterns from a large corpus, which are then used to
extract more seed entity pairs to generate additional seed patterns in an iterative manner. Depending
on the pattern types and other factors, the resulting patterns often suffer from low precision because of
semantic drift [9]. Some approaches rely on dependency parsing patterns. For example, Ref. [15] uses
bootstrapping to generate syntactic dependencies patterns. The authors train classifiers by parsing the
dependency tree and selecting all paths containing less than three vertices between the query and the
candidate filler. Their system achieved a recall of 0.223, a precision of 0.199 and a F1 of 0.21 for the
2014 TAC ESF task for which the median F1 was 0.198.

Most systems throughout different evaluation campaigns use distant supervision to acquire data
to train their classifiers. This approach, briefly described in the previous section, seems to work better
than bootstrapping, since most systems that use distant supervision scored higher in the ESF task in
2013 and 2014 [5]. For example, the authors in [8] use distant supervision support vector machine
classifiers for candidate validation. Distant supervision argument pairs are obtained by mapping
Freebase relations to TAC relations and by matching hand-crafted seed patterns against the TAC 2009
text collections [16]. Another work [8] uses a maximum of 10 k argument pairs per relation for each of
the two sets of seed pairs that are then matched against the TAC 2009 text corpora. A maximum of 500
sentences per pair are used as training data. Though the quality of generated examples is inferior to
the quality of examples generated using bootstrapping techniques, the number of examples is much
greater. In order to increase the performances of classifiers trained on noisy false positive sentences,
the authors use aggregate training. Instead of treating each sentence as a single training example, they
group all sentences per entity pair, extract the features, sum the feature counts of all the sentences and
normalize the feature vector for that pair so that the highest feature has weight 1.0. While increasing
training speed, this method reduces the influence of features that are highly correlated with a single
distant supervision pair. Their system, Relation Factory, scored the highest in the 2013 task.

2.2. System Enhancement

Rather than developing whole systems, it is also common for research groups to look to enhance
existing relation extractors since there is a great margin of potential improvement. Ref. [17] developed
a Maximum Entropy based supervised re-ranking model to re-rank candidate answers for the
same slot. The model is trained on labeled query-answer pairs to predict the confidence of each
answer’s correctness. The authors used features based on confidence assigned by OpenEphyra, a web
module of an open domain question-answer system [18], co-occurrence in the document collection,
named-entity tags and slot type. When tested on the 2009 TAC ESF task, this approach achieved a
3.1% higher precision and a 2.6% higher recall compared to the best performing system. Ref. [19]
worked on a semantic rule filter. It is an unsupervised, scalable learning method for automatically
building relation-specific lexical semantic graphs representing the semantics of the considered relation.
The authors compare approaches using WordNet and BabelNet. The approach using BabelNet yields a
considerable precision gain with only a slight loss of recall. This approach worked best on relations of

Information 2018, 9, 133 4 of 24

type acquisition and type birth/death and struggled for relations of type place of residence, which have a
larger lexical diversity. The approach was tested on only seven relations. Ref. [20] worked on an active
learning module that combines supervised learning with distant supervision. By providing only a
small sample of annotated data, they have increased the F1 of Stanford’s 2013 slot filling system on the
2013 ESF task by 3.9.

All of these enhancement methods are incorporated within the pipeline of an individual system
and aim, in most cases, at a particular system or work best for particular relations. In contrast,
this paper describes a generic approach that can be easily integrated to any relation extractor and
which can be trained on any relation, regardless of the domain. An alternative to single system
enhancement is ensemble learning. In an incentive to encourage the development of ensemble learning
techniques, TAC also proposes the Slot Filler Validation (SFV) task, which consists in refining the
output of ESF systems [21]. Ref. [22] has developed a system participating in the TAC 2013 SFV task
that uses an aggregation approach. For a given query, it aggregates “raw” confidence scores produced
by individual slot fillers to produce an aggregated confidence score. This value is obtained based on
the number of occurrences of a response and the confidence score for each occurrence. A variant of
their method assigns a weight to each occurrence based on the “general confidence” of the system that
submitted the response. Their approach achieves great performances for single-value slots (Precision:
0.797, Recall: 0.794, F1: 0.795) but does not perform as well for list-value slots. Similarly, Ref. [23]
has developed a system using stacking that trains a classifier to optimally combine the results of
multiple systems. Their system combines the output of various systems in the TAC ESF task using
a “meta-classifier” and using the systems’ confidence score. The authors also derive features from
document provenance and offset overlap, i.e., the proportion of characters that are common between
justifications of every response submitted for the slot. For a given query/relation pair (slot), if N
systems provide answers and n of those systems provide the same docid as provenance, then the
provenance score associated with this docid is equal to n/N. Similarly, they use the Jaccard coefficient to
measure the offset reliability of a response relatively to other responses for the same slot. Similarly
to Relation Factory [8], they use an expansion method based on Wikipedia anchor text applied on
the filler, in order to detect redundant responses, thus increasing precision. This method allows them
to achieve an F1 of 50.1% on the 2014 SF submissions, which is greater than the best performing
system (39.5%).

In general, ensemble methods achieve better performances compared to individual systems.
However, they require accessing multiple relation extractors. This paper describes a more light-weight
approach and focuses on increasing precision while limiting loss of recall.

3. Proposed Work

We start by introducing our system architecture in Section 3.1. We then provide background
on the TAC KBP 2013 ESF and explain the preprocessing on our dataset Section 3.2. In Section 3.3,
we present the features used for filtering. Finally, we present our classification method in Section 3.4.

3.1. System Architecture

Our approach consists of using a machine learning filter trained on the combined outputs of
the TAC ESF participating systems. For each relation, a binary classifier filter is appended to the
end of a relation extractor, from where it eliminates responses, which it classifies as wrong. Figure 1
shows the general data flow: justification sentences from relation extractors are preprocessed and
then features are extracted from these sentences for classification. This approach aims at improving
the precision of any relation extractor. An increase in recall is not possible because there are not any
additional responses generated by our filter. The training data is aggregated and preprocessed in the
following manner. The outputs from the relation extractors, which contain a justification sentence for
each response, are passed to the named-entity recognizer (NER), which gives the NE tags for each
word in the justification sentences (OTHER if the word is not a named entity). The outputs from the

Information 2018, 9, 133 5 of 24

relation extractors are also passed to the part-of-speech (POS) tagger and syntactic analysis parser,
which return the POS tags as well as the syntactic dependencies tree (details in Section 3.2.3). Most
frequent patterns are extracted from the raw justification sentence as well as the POS/syntactic analysis
output. Sentence-level and syntactic-dependency-tree-level frequent patterns and the preprocessed
responses are used for feature extraction (details in Section 3.3). The resulting feature vectors are then
passed to the binary classifier for training.

Figure 1. Pipeline describing our approach.

3.2. Preprocessing

3.2.1. Background

As mentioned previously, the dataset is composed of responses from relation extractors to queries
related to 41 pre-defined relations. Table 1 shows a complete list of the relations for the TAC KBP 2013
ESF task. There are 25 relations expected to be filled for requests of entity type person and 16 relations
for requests of entity type organization [24]. Responses are assessed as either correct, if they satisfy
the assessment validity criterion, and wrong otherwise. The table also shows the distribution of the

Information 2018, 9, 133 6 of 24

complete training dataset, comprising the preprocessed responses of each relation extractor’s best run
after the dataset is cleaned (details in Section 3.2.2). The amount of training data varies widely across
relations, primarily because some relations expect multiple values, whereas others only expect a single
value as filler, and secondly because relation extractors have more ease in generating and retaining
candidates for certain relations compared to others. Another important fact to consider is the class
imbalance towards the wrong class in most relations.

Table 1. List of 41 pre-defined relations in TAC KBP 2013 English Slot Filling track and their
categorization [24].

Type Relation Content Quantity #Correct #Wrong Total

ORG org:alternate_names Name List 100 157 257
ORG org:city_of_headquarters Name Single 62 118 180
ORG org:country_of_headquarters Name Single 73 114 187
ORG org:date_dissolved Value Single 0 15 15
ORG org:date_founded Value List 36 48 84
ORG org:founded_by Name List 49 127 176
ORG org:member_of Name List 5 195 200
ORG org:members Name List 49 195 244
ORG org:number_of_employees_members Value Single 19 28 47
ORG org:parents Name List 34 270 304
ORG org:political_religious_affiliation Name List 1 39 40
ORG org:shareholders Name List 15 255 270
ORG org:stateorprovince_of_headquarters Name Single 47 76 123
ORG org:subsidiaries Name List 46 259 305
ORG org:top_members_employees Name List 392 612 1004
ORG org:website String Single 79 17 96
PER per:age Value Single 226 22 248
PER per:alternate_names Name List 58 114 172
PER per:cause_of_death String Single 127 110 237
PER per:charges String List 58 149 207
PER per:children Name List 169 202 371
PER per:cities_of_residence Name List 71 356 427
PER per:city_of_birth Name Single 44 56 100
PER per:city_of_death Name Single 105 97 202
PER per:countries_of_residence Name List 77 164 241
PER per:country_of_birth Name Single 11 23 34
PER per:country_of_death Name Single 26 50 76
PER per:date_of_birth Value Single 63 22 85
PER per:date_of_death Value Single 123 124 247
PER per:employee_or_member_of Name List 257 554 811
PER per:origin Name List 120 320 440
PER per:other_family Name List 19 184 203
PER per:parents Name List 80 167 247
PER per:religion String Single 9 44 53
PER per:schools_attended Name List 78 93 171
PER per:siblings Name List 43 154 197
PER per:spouse Name List 169 266 435
PER per:stateorprovince_of_birth Name Single 27 48 75
PER per:stateorprovince_of_death Name Single 57 62 119
PER per:statesorprovinces_of_residence Name List 50 176 226
PER per:title String List 888 1277 2165

Total 3962 7359 11321

Content: filler type (Name, Value or String), Quantity: number of fillers expected for the relation (Single or List),
#Correct: number of correct responses, #Wrong: number of wrong responses, Total: number of responses.

The relation extractors were provided a list of 100 queries that consisted of a named entity and a
list of relations to fill [4]. Figure 2 shows an example of a query. The XML query contains the query ID,

Information 2018, 9, 133 7 of 24

the named entity, the ID of a document in which an instance of the entity can be found, and the
beginning and end character offset of this instance in the document. The query also contains the entity
type (organization or person) indicating which relations have to be extracted. If the entity is already in
the knowledge base, it also contains a node ID and a list of slots that must be ignored (because they are
already available in the knowledge base). In response to the input queries, systems’ submissions were
required to provide the following information in each individual answer: the query ID, the ID of the
document that contains the answer, the name, string or value that is related to the relation specified in
the query (we will call this the slot filler), the offset of the query entity in the document, the offset of the
slot filler, the beginning/end character offset of the justification text, and, finally, a confidence score [4].
For a given query, slots are expected to be filled for all relations associated with the entity type (except
for relations to be ignored). Some relations accept multiple answers, e.g., alternate_names, children, title,
etc. Name slots are required to be filled with the name of a person, organization or geo-political entity;
value slots are required to be filled by either a numerical value or a date; string slots are a “catch all”
meaning that their fillers cannot be classified as names or values [24]. All answers come from the
Linguistic Data Consortium (LDC) Corpus entitled “the TAC 2013 KBP Source Corpus” (catalog ID:
LDC2013E45) composed of 2.1 million documents: 1 million newswire documents from Gigaword,
1 million web documents and 100,000 documents from web discussion forums [4]. Systems were also
required to submit between one and five system runs for which the system configuration could vary.
Each run is annotated by the LDC assessors who classify each response as correct if the slot filler and
its justification are accurate and wrong otherwise. For our experiment, we used the data from the
evaluation queries for the TAC KBP 2013 Slot Filler Validation (SFV) track, which are composed of the
annotated ESF submissions. The complete dataset utilized for our experiment is the pool of annotated
data made of each participating systems best run, i.e., the run that achieved the highest F1 score.

Figure 2. TAC ESF query example [4].

3.2.2. Dataset Cleaning and Partition

As mentioned, the TAC KBP English Slot Filling task only requires systems, for every output,
to provide the query entity, the slot filler and justification, the ID of the document where they are found
and the beginning/end character offset of the filler, the query and the justification in this document.
The document ID and offsets constitute the data that is used to train and test our classifiers and are in
some cases noisy, since some relation extractors provide erroneous offsets. For example, although some
source documents are in HTML, some systems do not consider HTML tags in their computation of
offsets. Therefore, the justification cannot be properly recovered. To ensure the cleanliness of the data,
such outputs are removed from the training set. Responses containing a justification with a character
length greater than 600 are removed from the dataset as well to ensure a smooth usage of the Stanford
Parser. We removed HTML tags from responses in the query entity, the slot filler, or the justification.
We also removed periods, question marks and exclamation marks from responses that contained such
punctuations at the beginning of their justification.

For a given system, we hold out its own output from the training set and use it as test data in
order to be able to compare the system’s initial performance to its performance after filtering using the

Information 2018, 9, 133 8 of 24

official evaluation script. This means no actual data coming from the system is used in the training set.
The evaluation script calculates the global recall, precision and F1 by considering only the slots for
which the system submitted a response or nil, which indicates the system is confident no response can
be found. We have also experimented a segmentation where 75% of slots were used for training and
25% of slots were held for the test dataset. This enables us to include a portion of the tested system’s
output in the training data; however, we can only test the filter’s performance on 25% of the system’s
output. We have not noticed a significant increase nor decrease in performance for the tested slots
compared to the previous segmentation. We therefore make the assumption that there is no significant
variability between outputs of different systems affecting the filter’s performance and proceed using
the former train/test segmentation to be able to compare the systems’ performances after filtering to
their original performance.

3.2.3. Linguistic Processing of Justifications

The various features require the justification to be annotated with part-of-speech tags as well as
named-entity tags. The syntactic dependencies tree is also necessary for feature extraction. Systems are
allowed to submit up to two sets of character offsets within the specified document to designate
query entity, slot filler and justification. Therefore, since most features depend on the query entity
and the slot filler’s position in the justification, we must ensure a mapping between these positions
and the justification sentence. This process is necessary, especially in cases where there are multiple
references to either the query entity or the slot filler in the justification or if either entity is designated
by a pronoun. We used the Stanford Parser to obtain the part-of-speech annotated justification as well
as the syntactic dependencies [25]. The named-entity annotations are obtained by applying sequor,
a perceptron named-entity tagger [26]. Figure 3 shows an example of a justification sentence for which
the named-entity tags, the part-of-speech tags and the syntactic dependency tree have been extracted.

3.2.4. Down-Sampling and Selective Filtering

In order to avoid overfitting, we do not filter relations for which the number of instances is
inferior to 15 for either class (correct/wrong). Due to the lack of available examples, the following
relations were omitted from the filtering process for all systems: org:date_dissolved, org:member_of,
org:political_religious_affiliation, per:county_of_birth, per:religion. Data imbalance have been shown to
cause classifiers to favor the majority class [27]. For most relations, there are more wrong instances than
correct instances. Therefore, for each relation where the number of wrong instances is greater than two
times the number of correct instances, we down-sample the subset of wrong instances to five subsets
randomly sampled containing the same number of instances as the correct class subset. The usage of
these five subsets will be further detailed in Section 3.4. The training dataset was rebalanced for the
following relations for most systems: org:founded_by, org:members, org:parents, org:subsidairies, per:charges,
per:cities_of_residence, per:countries_of_residence, per:employee_or_member_of, per:origin, per:other_family,
per:parents, per:siblings, per:statesorprovinces_of_residence. Other relations were either rebalanced or
eliminated for a few systems.

3.3. Features

The main goal of our approach is to experiment with various sets of features and ultimately
propose a relation-independent selection of features. In this section, we present a set of generic features
used in our experiment.

Our approach is based on a wide selection of generic features ranging from statistical,
named-entity, lexical to syntactic features. These features are listed in Table 2.

Information 2018, 9, 133 9 of 24

Figure 3. Example of NE tags, POS tags and syntactic dependency tree for a justification sentence.

3.3.1. Statistical Features

Our filter utilizes generic features such as sentence length (C1), the number of words of both the
query entity and the slot filler (two features) (C2), and their order of appearance in the justification
sentence, either query or filler first (C3). Another set of features is based on the segmentation of the
sentence according to the position of the query entity and the slot filler, resulting for most sentences in
three segments (before, between and after the query entity and slot filler). For each sentence segment,
we capture the number of tokens (including words and punctuation) (C4). Since the training data is
directly derived from relation extractors that participated in the TAC KBP English Slot Filling task,
and given that the task requires every submitted response to be accompanied by a confidence score,
we exploit this score as a feature (C5).

3.3.2. Named Entity Features

This subset of features captures the location of named entities in the justification relative to the
query and the filler for the following types: person (N1), geo-political entity (N2) and organization
(N3) [28]. Similarly to feature C4, this set of features is based on the segmentation of the sentence
according to the position of the query entity and the slot filler. For each sentence segment, we capture
the number of named entities of each of the specified types, resulting in three features for each entity
type. For example, as shown in Figure 3, given the relation city of birth, in the following justification,
“Nicole Kidman and Barack Obama were both born in Honolulu, Hawaii.”, where the query entity is Barack
Obama and the slot filler is Honolulu, the sentence would be segmented in the following way: (1) Nicole
Kidman and (2) were both born in (3), Hawaii. The first segment contains one entity of type person (Nicole

Information 2018, 9, 133 10 of 24

Kidman), the second segment does not contain any named entity and the final segment contains one
named entity of type geo-political entity (Hawaii).

Table 2. Full set of generic features used for filtering.

ID Name Description

Statistical features

C1 Sentence length Number of tokens in sentence

C2 Answer/query length Number of tokens within answer and query references

C3 Entity order Order of appearance of query and answer references

C4 #tokens left/between/right Number of tokens left/right or between entities in the sentence

C5 Confidence score Score given by the relation extractor [4]

Named-entity features

N1 #person left/between/right Number of person left/right or between entities in the sentence [28]

N2 #gpe left/between/right Number of Geo-political entities left/right or between entities in the
sentence [28]

N3 #orgs left/between/right Number of organizations left/right or between entities in the
sentence [28]

Lexical (POS) features

L1
POS fractions left/between
/right/sentence

Fraction of nouns, verbs, adjectives and others left/right/between
answer and query references or in the whole sentence [9]

L2 POS subsets Most frequent subsets of POS tags between query and answer references
in the sentence. (boolean feature indicating the presence of the subset)

L3 Word subsets Most frequent subsets of word (excluding stop-words and named entities)
in the sentence. (boolean feature indicating the presence of the subset)

L4 POS bigram subsets
Most frequent subsets of POS tag bigrams (excluding stop-words)
between query and answer references in the sentence. (boolean feature
indicating the presence of the subset)

L5 Word bigram subsets
Most frequent subsets of word bigrams between query and answer
references in the sentence. (boolean feature indicating the presence of
the subset)

Syntactic features

S1 Distance between entities Distance between entities at the syntactic dependency tree level

S2 Entity level difference Level difference within syntactic dependency tree between query and
answer references

S3 Ancestors One entity is ancestor of the other at the syntactic dependency tree level

S4 Syntactic dependencies subsets
Most frequent subsets of syntactic dependencies between query and
answer references at the syntactic dependency tree level (boolean feature
indicating the presence of the subset)

S5 Multilevel subsets

Most frequent subsets, where each token is composed of a POS
tag, syntactic dependency and direction, between query and answer
references at the syntactic dependency tree level (boolean feature
indicating the presence of the subset)

S6
Syntactic dependencies bigram
subsets

Most frequent subsets of syntactic dependencies bigram between query
and answer references at the syntactic dependency tree level (boolean
feature indicating the presence of the subset)

S7 Multilevel bigram subsets

Most frequent subsets, where each token is composed of a POS tag,
syntactic dependency and direction bigram, between query and answer
references at the syntactic dependency tree level (boolean feature
indicating the presence of the subset)

Information 2018, 9, 133 11 of 24

3.3.3. Lexical (POS) Features

Our filter also relies on a subset of features that captures the ratio of part-of-speech tags in
each sentence segment and in the whole sentence. The part-of-speech tags are generalized into four
categories: nouns, verbs, adjectives and other (L1) [28]. If we take Figure 3, for example, the distribution
of POS tags for the sentence segment before the query entity (“Nicole/noun Kidman/noun and/other”) is
the following: nouns: 2/3, verbs: 0/3, adjectives: 0/3, other: 1/3. We also extracted the most frequent
subsets of part-of-speech tags between both entities at the sentence level in the training dataset (L2).
This is done using the Apriori algorithm after separating the instances of each relation by class (correct
and wrong) [29]. We used a support of 0.15, meaning that the subset must be present in at least 15%
of data related to the wanted class. The Apriori algorithm allows for retaining the desired subsets
with reduced computational resources, by first identifying individual items, in this case a single POS
tag, for which the support is greater than the minimum support and extending them to larger item
sets by retaining only the subsets that have a support greater than the minimum support, 15% in this
case. In order to ensure the specificity of the previously withheld subset, a subset is only retained
if its support on the opposite class is equal to or less than 0.5 of its support on the wanted class
(we will call this value specificity), which gives us a minimum specificity of 2. These parameters were
determined experimentally. In order to maintain a reasonable training execution time, we have limited
the number of retained subsets to 100. As long as the number of retained subsets is greater than the
limit, we rerun the Apriori algorithm with a 2% support increment and a 10% specificity increment.
The number of retained subsets ranges from 1 to 100 in the 41 relations. We derive boolean features
that indicate the presence or absence of each subset between the query and the filler at the sentence
level. A similar method is used to extract the most frequent word subsets contained in the whole
sentence (bag of words) (L3). Stop words, named-entities and punctuation are excluded from potential
subsets. Figure 3 shows an example of a justification sentence for which the query is Barack Obama
and the filler is Honolulu. In this case, the word set is the following : {born}. The other words between
the query and the filler are either named entities or stop-words and are therefore not retained. Since
word subsets are more specific to responses compared to POS subsets, we used Apriori with more
lenient parameters to retain the most frequent subsets in the training data: support 10%, specificity
1.5, limit of retained subsets 200, support increment 1% and specificity increment 0. Similarly, we
extract POS tag bigram subsets and word bigram subsets between the query and the filler and retain
the most frequent subsets using the Apriori algorithm once again (L4 and L5). We also add two
additional tokens representing respectively the query and the filler to the bigram subset. In order
to retain a sufficient amount of subsets, we use the following settings: support 5%, specificity 1.5,
limit of retained subsets 200, support increment 1% and specificity increment 0. The word bigram
subset is the following for the example shown in Figure 3: {QUERY_were, were_both, both_born, born_in,
in_FILLER}. The POS bigram subset is constituted of the corresponding POS tags: {QUERY_VBD,
VBD_DT, DT_VBN, VBN_IN, IN_FILLER}.

3.3.4. Syntactic features

These features are based on the syntactic dependency tree obtained by parsing the justification
sentence. The distance between both entities, i.e., the query and the filler (S1), is the number of
links that separate both entities in the syntactic dependency tree. The entity level difference (S2) is
the difference between the level (depth) of each entity in the tree. We use a feature that indicates if
one entity is the ancestor of the other (S3). We also focus on frequent subsets between the entities
in the syntactic dependency tree. The subsets retained are comprised of syntactic dependencies
of words present in the subtree between both entities (path in the tree between both entities) (S4).
In cases where either entity is composed of more than one word, we consider only the word with
the lowest level to represent the query or the filler. For example, in Figure 3, the query has two
words, Barack and Obama. Since the level of Barack is 3 and the level of Obama is 2 (root level
= 0), we consider only Obama as the query for the subset extraction. This is the case for every

Information 2018, 9, 133 12 of 24

syntactic feature. We, once again, use the Apriori algorithm, with the following parameters: support
15%, specificity 2, limit of retained subsets 100, support increment 1%, specificity increment 10%,
to obtain the most frequent subsets. The syntactic dependencies subset for the example in Figure 3 is:
{conj, nsubjpass, prep, pobj, nn}. Another set of features derived from most frequent subsets captures
the syntactic dependencies, direction and part-of-speech tag of each node in the subtree common
to both entities (S5). The direction is obtained by following the path starting from the query and
ending at the filler. The Apriori algorithm is used with the same parameters as the previous set of
features. Each token is comprised of the syntactic dependency, the direction (↑: the next token in the
path is closer to the root, ↓: the next token in the path is further from the root, -: the token is at root
level) and the POS tag. The subset for the example in Figure 3 is: {(conj,↑,NNP), (nsubjpass,↑,NNP),
(root,-,VBN), (prep,↓,IN), (pobj,↓,NNP), (nn,↓,NNP)}. In the same way, we extract the syntactic
dependencies bigrams as well as the syntactic dependencies, direction and part-of-speech tuple
bigrams within the path between the query and the filler in the syntactic dependency tree (S6 & S7).
The syntactic dependency bigram subset for the example in Figure 3 is: conj_nsubjpass, nsubjpass_prep,
prep_pobj, pobj_nn. The syntactic dependencies, direction and part-of-speech tuple bigrams are the
following: {(conj,↑, NNP)_(nsubjpass,↑,NNP), (nsubjpass,↑,NNP)_(root,-,VBN), (root,-,VBN)_(prep,↓,IN),
(prep,↓,IN)_(pobj,↓,NNP), (pobj,↓,NNP)_(nn,↓,NNP)}. We use the Apriori algorithm to retain the most
frequent subsets with the same configuration as L4 and L5 feature subsets.

3.4. Classifiers

For each relation, we trained a series of classifiers from which we selected the best classifier to
apply on test data, i.e., used for filtering the relation extractors’ output. Models are selected from one of
the following base classifiers: RandomForest [30,31], Sequential Minimal Optimization (SMO) [32–35],
NBTree [36,37], DecisionTable [38,39], J48 [40] and K* [41,42]. The evaluation is done on the training set
using a 10 fold cross-validation. We retain the classifier that has the greatest F1 measure on the correct
class. We selected this metric amongst others for the sole purpose that we want to limit the number
of false negatives produced by the classifier. As mentioned in the previous section, the aim of the
filter is to increase the relation extractors’ global precision while limiting loss on recall. A significant
amount of false negatives produced by the filter would result in a great loss of recall, which would
be detrimental to the relation extractors’ F1. For relations that have been rebalanced, we train these
six classifiers for the five randomly sampled subsets. We retain the classifier/subset pair that has the
greatest F1 measure on the correct class. We performed the experiments using Weka’s implementation
of the classifiers with the default configurations and hyper-parameters [43].

4. Experiments

We performed experiments for each participating system in the TAC KBP Slot Filling task.
We present results for all systems, and then we focus on Relation Factory, the best performing
system [8].

4.1. Experiment Overview

From the 18 available systems, we excluded four systems because the offsets provided did not
allow us to extract the queries, fillers and justifications. In fact, the following systems’ outputs are
corrupted by a character offset error and were omitted in order to evaluate the filter’s performances
correctly: SINDI, IIRG, CohenCMU and Compreno. The experiment is executed for each of the
remaining 14 participating systems by holding out its own output from the training data. The following
description indicates the procedure for one system. Once the preprocessed training data is separated
by relation, the features are extracted from each response. In some cases, some features may not be
extracted if they depend on the position of the query entity and the slot filler in the justification sentence
(e.g., the distance between entities in the syntactic tree, the ratio of part-of-speech tags of each type
between the entities at the sentence level, etc.). In general, when this happens, it is due to the fact that

Information 2018, 9, 133 13 of 24

one of the entities (query, slot filler) cannot be found in the justification, or because both entities cannot
be found in the same sentence. The filter only processes responses in which a reference to both entities
is present in the same sentence. When both entities are not found in the same sentence, most features
cannot be extracted. Therefore, the response is removed from the training set. The procedure for the
test data is quite similar: responses for which entities are not found in the same sentence are simply not
passed through the filter and are kept by default. Cases for which the responses are rejected correspond
to approximately 15% of the instances and are unevenly distributed amongst relations. For relations
such as org:website, systems do not typically return complete sentences as justifications, but only return
short textual segments generally containing only the filler. Specific relations such as per:alternate_names
and org:alternates_names, for which justifications are not required to obtain a correct assessment are the
main cause of examples being rejected from the training set.

The filtered response is evaluated using the TAC KBP 2013 English Slot Filling evaluation script
version 1.4.1 (http://www.nist.gov/tac/2013/KBP/SentimentSF/tools/SFScore.java) with the strict
configuration, for which the response is assessed as correct only if the answer is provided with a correct
justification. As mentioned previously, from the 18 systems, we excluded four systems because their
output was not processable. Our filter enables an increase in precision for every relation extractor
that participated in the TAC KBP 2013 English Slot Filling task compared to its original performance.
We have attempted multiple feature configurations to train our classifiers. We have achieved the
greatest precision increase using a combination of statistical and lexical/POS features using bigrams
as a base for the extraction of most frequent subsets (subsets composed respectively of POS and word
bigrams). Table 3 shows the evaluation for participating systems before and after filtering using this
feature configuration. The filter results in an average increase in precision of 11.2% and an average
decrease in recall of 4.4% for the 14 systems. It allows an increase in precision for every system and an
F1 increase for three systems including Relation Factory, the best performing system. In the case of
Relation Factory, the precision increases from 42.5% to 63% with a 20.5% increase. The F1 is increased
from 37.3% to 38.4%.

Table 3. Global Evaluation using the TAC KBP 2013 Slot Filling scorer on the test dataset for all systems
before and after filtering.

System ID
Pre-Filtering Post-Filtering

Recall Precision F1 Recall Precision F1

Uwashington 0.103 0.634 0.177 0.079 0.725 0.143
BIT 0.232 0.511 0.319 0.185 0.668 0.290
CMUML 0.107 0.323 0.161 0.082 0.553 0.142
lsv (Relation Factory) 0.332 0.425 0.373 0.276 0.630 0.384
TALP_UPC 0.057 0.131 0.080 0.048 0.262 0.082
NYU 0.168 0.538 0.256 0.139 0.620 0.227
PRIS2013 0.276 0.389 0.323 0.211 0.535 0.303
Stanford 0.279 0.357 0.314 0.208 0.491 0.293
UNED 0.093 0.176 0.122 0.061 0.249 0.098
Umass_IESL 0.185 0.109 0.137 0.153 0.159 0.156
SAFT_Kres 0.150 0.157 0.153 0.095 0.167 0.122
CUNY_BLENDER 0.290 0.407 0.339 0.221 0.519 0.310
utaustin 0.081 0.252 0.123 0.050 0.310 0.087
ARPANI 0.275 0.504 0.355 0.215 0.600 0.316

Average 0.188 0.351 0.231 0.144 0.463 0.211

Filtering has increased F1 for systems shown in bold .

4.2. Evaluation by Relation

Table 4 shows the filter’s accuracy and F1 for both correct and wrong classes evaluated by
cross-validation using 10 folds on the training data. The training data contains the output of
every participating system from which Relation Factory’s output was held out. Table 5 details the

http://www.nist.gov/tac/2013/KBP/SentimentSF/tools/SFScore.java

Information 2018, 9, 133 14 of 24

performances of Relation Factory, the best system of the 2013 campaign, for each relation before and
after filtering using its best feature set configuration (detailed in Section 4.3) individually for every
relation. From the 33 relations out of 41 for which there was a trained classifier, the filter increases the
precision as well as the F1 for 20 relations. There is an increase in precision but a decrease in F1 for
nine relations. There was no change in precision or F1 for three relations. Finally, the precision along
with the F1 are decreased for one relation.

Table 4. Classifier performances on train set for Relation Factory by cross-validation (10-folds).

Relation Algorithm Accuracy (%) F1 (Correct) F1 (Wrong)

org:alternate_names NBTree 94.7368 0.933 0.957
org:city_of_headquarters RandomForest 74.7368 0.755 0.739
org:country_of_headquarters NBTree 78.6207 0.739 0.819
org:date_founded NBTree 77.4648 0.704 0.818
org:founded_by RandomForest 92.9412 0.936 0.921
org:members SMO 90 0.879 0.915
org:number_of_employees_members SMO 84.375 0.828 0.857
org:parents SMO 80.7692 0.808 0.808
org:shareholders SMO 68.9655 0.69 0.69
org:stateorprovince_of_headquarters RandomForest 81.25 0.747 0.851
org:subsidiaries SMO 86.3636 0.847 0.877
org:top_members_employees RandomForest 76.799 0.698 0.812
per:alternate_names SMO 92.4528 0.917 0.931
per:cause_of_death J48 84.2932 0.84 0.845
per:charges SMO 73.7864 0.743 0.733
per:children RandomForest 82.6087 0.797 0.848
per:cities_of_residence SMO 75.8929 0.765 0.752
per:city_of_birth SMO 77.0115 0.744 0.792
per:city_of_death J48 81.6092 0.814 0.818
per:countries_of_residence SMO 73.1343 0.746 0.714
per:country_of_death SMO 82.2222 0.818 0.826
per:date_of_birth J48 84 0.895 0.667
per:date_of_death NBTree 63.8498 0.703 0.539
per:employee_or_member_of NBTree 66.4269 0.689 0.635
per:origin RandomForest 79.1045 0.806 0.774
per:other_family J48 87.5 0.846 0.895
per:parents J48 91.8033 0.918 0.918
per:schools_attended RandomForest 79.1367 0.785 0.797
per:siblings RandomForest 86.9565 0.877 0.862
per:spouse RandomForest 79.2105 0.727 0.832
per:stateorprovince_of_birth J48 84.058 0.766 0.879
per:stateorprovince_of_death SMO 83.8095 0.825 0.85
per:statesorprovinces_of_residence SMO 77.5281 0.773 0.778
per:title RandomForest 70.96 0.644 0.755

We separated relations based on slot quantity, slot content, number of training instances, initial
recall and initial precision. Table 6 shows the difference in recall, precision and F1 after filtering
Relation Factory’s output for the different relation groups. The filter has a greater impact on list-value
slots for which the precision is increased by 18.3% on average relative to 13.5% for single-value slots.
List-value slots have a greater contribution on global performances since they represent 73.5% of the
system’s recall, whereas single slots represent 26.5% of the system’s recall. The filter increases the
precision of name and string slots by respectively 17.3% and 19.3%, whereas it increases precision
of value slots by only 9.8%. Table 6 also indicates that relations with a greater number of training
instances achieve a greater increase in precision on average. Initial recall has a slight influence on
precision increase. However, relations with a high initial recall achieve greater F1 increase. Relations
with high initial precision (≥65) achieve less precision increase than relations with a lower initial
precision. Relations for which initial precision is less than 40% achieve the greatest F1 increase (2.4%).

Information 2018, 9, 133 15 of 24

Table 5. Evaluation for Relation Factory using the TAC KBP 2013 Slot Filling scorer on the test dataset
before and after filtering for each relation.

Relation
Pre-Filtering Post-Filtering

Instances Precision F1 Precision F1 Classifier

org:country_of_headquarters 30 0.267 0.250 0.636 0.311 NBTree
org:date_founded 7 0.714 0.500 1.000 0.556 NBTree
org:number_of_employees_members 11 0.273 0.273 0.375 0.316 SMO
org:parents 16 0.25 0.276 0.364 0.333 SMO
org:subsidiaries 22 0.364 0.291 0.700 0.326 SMO
org:top_members_employees 153 0.386 0.417 0.663 0.505 RandomForest
per:alternate_names 19 0.632 0.293 0.667 0.296 SMO
per:cause_of_death 29 0.759 0.710 0.880 0.759 J48
per:charges 8 0.375 0.113 0.600 0.120 SMO
per:children 28 0.429 0.282 0.733 0.306 RandomForest
per:city_of_birth 13 0.615 0.640 0.875 0.700 SMO
per:city_of_death 25 0.800 0.702 0.909 0.741 J48
per:countries_of_residence 7 0.571 0.160 0.800 0.167 SMO
per:date_of_death 27 0.037 0.032 0.040 0.033 NBTree
per:schools_attended 22 0.364 0.314 0.615 0.381 RandomForest
per:siblings 11 0.545 0.522 0.600 0.545 RandomForest
per:spouse 22 0.500 0.400 0.750 0.400 RandomForest
per:stateorprovince_of_birth 3 0.667 0.308 1.000 0.333 J48
per:statesorprovinces_of_residence 11 0.455 0.256 0.625 0.278 SMO
per:title 345 0.348 0.417 0.580 0.445 RandomForest
org:alternate_names 62 0.710 0.583 0.722 0.545 NBTree
org:city_of_headquarters 24 0.458 0.468 0.571 0.432 RandomForest
org:founded_by 8 0.625 0.345 0.800 0.308 RandomForest
org:stateorprovince_of_headquarters 8 0.625 0.357 0.750 0.250 RandomForest
per:cities_of_residence 50 0.22 0.214 0.375 0.174 SMO
per:employee_or_member_of 70 0.257 0.185 0.360 0.120 NBTree
per:origin 19 0.526 0.339 1.000 0.298 RandomForest
per:parents 21 0.524 0.478 0.692 0.474 J48
per:stateorprovince_of_death 12 0.667 0.533 0.750 0.462 SMO
org:members 1 0.000 0.000 0.000 0.000 SMO
per:date_of_birth 7 0.857 0.600 0.857 0.600 J48
per:other_family 1 1.000 0.125 1.000 0.125 J48
per:country_of_death 3 1.000 0.462 1.000 0.333 SMO

Table 6. Evaluation variation using the TAC KBP 2013 Slot Filling scorer on the test dataset after
filtering for different relation groups (Relation Factory).

Relation Group ∆R ∆P ∆F1 #Relations

List −0.035 0.183 0.009 22
Single −0.046 0.135 −0.005 11

Name −0.044 0.173 −0.002 26
String −0.054 0.193 0.028 3
Value 0.000 0.098 0.025 4

#train ≥ 300 −0.071 0.233 0.015 5
300 > #train ≥ 100 −0.041 0.193 −0.003 12
100 > #train −0.028 0.124 0.005 16

Recall ≥ 0.5 −0.049 0.155 0.040 5
0.5 > Recall ≥ 0.25 −0.054 0.161 −0.008 14
0.25 > Recall −0.021 0.174 0.003 14

Precision ≥ 0.65 −0.030 0.105 −0.008 9
0.65 > Precision ≥ 0.4 −0.050 0.197 −0.007 12
0.4 > Precision −0.036 0.181 0.024 12

#train: number of training instances, ∆R: Recallpost-filtering − Recallpre-filtering,
∆P: Precisionpost-filtering − Precisionpre-filtering, ∆F1: F1post-filtering − F1pre-filtering, #Relations: number
of relations.

Information 2018, 9, 133 16 of 24

An important point to consider is the fact that the quantity of data is unevenly distributed
across relations. For relations that do not have enough data, models could suffer from over-training.
Therefore, it is wiser not to apply the filter in those cases, to avoid a significant decrease in performance.
In addition to that, there is a great potential for improvement for the filter, considering the small
amount of labeled data available for this experiment. Obviously, with a greater amount of training
data, the filter would cover a greater scope of examples and would be more flexible. Improvements
that were not included in this paper suggest an optimization of the current features, especially for the
selection of the most frequent subsets.

4.3. Evaluation by Feature Subset

We proceeded iteratively to measure the impact of the different features throughout the
experiment. We compared the results using the full set of features to those obtained using different
combinations of feature subsets presented in Section 3.3. We started by varying the feature subsets in
our classifiers when filtering Relation Factory’s output. Table 7 shows the performance achieved by
Relation Factory after filtering using different feature configurations. For the Lexical/POS and Syntactic
feature subsets, we specified if the most frequent subset based features were bigram subsets. Cases for
which nothing is specified indicate that the most frequent subset based features were unigram subsets.
For the Lexical/POS feature subset, we also specify if only word or POS patterns were used, and, for the
Syntactic feature subset, we specify if only syntactic or multilevel subsets were used. In addition to
the different feature subsets applied to our filter, the table also shows as a baseline the evaluation
obtained by Relation Factory’s highest F1 run (to which the filter is applied). The run only uses its
main components, which are the support vector machine (SVM) classifier, the distant supervision
patterns, the hand-written patterns and the alternate name expansion modules [8]. We also compare
our results to Relation Factory’s highest precision run, which uses syntactic patterns instead of the
SVM classifier [8]. We first measured the impact of each feature subset used in combination with the
statistical features subset. When using bigrams instead of unigrams for lexical/POS features, we obtain
the best results when combined with statistical features. The precision is 0.63, and the F1 is 0.384,
which is a 12.1% precision increase and a 4.1% F1 increase compared to Relation Factory’s precision
run (baseline 2). It is also a 20.5% precision increase and a 1.1% F1 increase compared to Relation
Factory’s F1 run (baseline 1).

To evaluate the statistical significance of our results (recall loss and precision gain), we used the
chi-square test [44]. Relation Factory submitted a total of 1145 responses on which the filter was applied.
Considering that the precision increases to 0.63 from 0.425 (baseline 1) and from 0.509 (baseline 2)
we obtain p-values of, respectively, 5.6 × 10−5 and 5.0 × 10−9. Since the post-filtering subset is not
independent from the pre-filtering subset in the case of baseline 1, we created two independent data
subsets. We split Relation Factory’s output into two randomly sampled subsets: we calculated the initial
precision on the first subset and applied the filter to the second subset on which we then calculated the
precision. We repeated the process 100 times to obtain an average p-value. We can therefore reject the
null hypothesis (p < 0.1) and consider those results as statistically significant. Considering the precision
difference between the best feature subset (Statistical + Lexical/POS (bigrams)) performance (0.63) and
the other subsets for which the precision ranges from 0.574 to 0.623, we obtain p-values greater than 0.1.
Thus, we cannot state that the Statistical + Lexical/POS (bigrams) allows a significant precision increase
over the other feature subsets. Since the different subsets are not independent, we once again split
Relation Factory’s output into two randomly sampled subsets. We then applied the filter using the
Statistical + Lexical/POS (bigrams) feature configuration on one subset and alternatively applied
the filter using every other feature configuration on the other subset. Initially, Relation Factory has
submitted 487 correct responses from 1468 responses contained in the gold standard obtaining a recall
of 0.332 (baseline 1). Considering that the recall decreases from 0.332 to 0.276 (Statistical + Lexical/POS
(bigrams)), we obtain a p-value of 0.0287 indicating the recall decrease is statistically significant.

Information 2018, 9, 133 17 of 24

Based on the results obtained by filtering Relation Factory’s output, for the seven feature subsets
that allow an increase in F1 for Relation Factory, we have tested our filter for the other systems as well.
Table 8 shows the average performances for the 14 systems that were tested. The greatest average
precision increase was obtained using the Statistical + Lexical/POS (bigrams) feature subset, which is the
same feature subset providing the greatest precision and F1 increase for Relation Factory. However,
we assume there is no statistical significance between the precision difference obtained using the
different subsets.

Table 7. Results obtained by Relation Factory using the TAC KBP 2013 Slot Filling scorer on the test
dataset after filtering when using different feature sets.

Feature Set R P F1 ↑↑ ↑↓ ↓↓ – NT

Baseline 1: Relation Factory (best F1 run) 0.332 0.425 0.373

Baseline 2: Relation Factory (best precision run) 0.259 0.509 0.343

Statistical 0.256 0.574 0.354 12 13 4 4 8

Statistical + NE 0.260 0.579 0.359 13 11 5 4 8

Statistical + Lexical/POS 0.266 0.614 0.371 16 10 4 3 8

Statistical + Syntactic 0.253 0.582 0.352 9 18 1 5 8

Statistical + Lexical/POS + Syntactic 0.271 0.616 0.377 16 10 4 3 8

Statistical + Lexical/POS + Syntactic + NE 0.264 0.591 0.365 15 12 3 3 8

Statistical + Lexical/POS (bigrams) + Syntactic (bigrams) 0.272 0.623 0.379 16 9 4 4 8

Statistical + Lexical/POS (bigrams) 0.276 0.630 0.384 20 9 1 3 8

Statistical + Syntactic (bigrams) 0.255 0.597 0.357 9 16 5 3 8

Statistical + Lexical/POS (bigrams) + Syntactic (bigrams)+ NE 0.268 0.591 0.369 14 13 3 3 8

Statistical + Lexical/POS (bigrams)+ Syntactic (bigrams)+
Specific

0.266 0.600 0.369 13 15 3 2 8

Statistical + Lexical/POS (bigrams) + Syntactic (bigrams) +
NE + Specific

0.267 0.597 0.369 15 13 3 2 8

Statistical + Lexical/POS (bigrams) + Syntactic (unigrams) 0.272 0.607 0.376 16 11 3 3 8

Statistical + Lexical/POS (POS bigrams only) 0.272 0.582 0.370 15 12 2 4 8

Statistical + Lexical/POS (word bigrams only) 0.266 0.618 0.372 18 11 2 2 8

Statistical + Lexical/POS (POS bigrams only) + Syntactic
(unigrams)

0.274 0.617 0.379 15 13 3 2 8

Statistical + Lexical/POS (word bigrams only) + Syntactic
(unigrams)

0.270 0.608 0.374 16 12 2 3 8

Statistical + Lexical/POS (bigrams) + Syntactic (syntactic
dependencies unigrams only)

0.269 0.603 0.372 16 13 2 2 8

Statistical + Lexical/POS (bigrams) + Syntactic (multilevel
unigrams only)

0.279 0.614 0.383 19 9 3 2 8

↑↑: Precision and F1 increase, ↑↓: Precision increase and F1 decrease, ↓↓: Precision and F1 decrease, –: No change in Precision
and F1, NT: No trained classifier.

4.4. Filtering All System Runs

As mentioned previously, relation extractors were required to submit between one to five runs.
This provided the opportunity for the teams to test their different system configurations. The systems
that submitted multiple runs generally have precision-oriented and recall-oriented configurations.
Table 9 shows the evaluation before and after filtering for all system runs. Precision is increased for 43
out of 44 runs and F1 is increased for 11 out of 44 runs (25%). The filter has increased the F1 for at least

Information 2018, 9, 133 18 of 24

one run for 5 out of 14 systems. When applied to Relation Factory’s highest Recall run, the precision is
increased by 20.9% and the F1 is increased by 3%. This post-filtering F1 of 39.4% is also a 2.1% increase
relative to Relation Factory’s highest F1 run. Table 10 shows the average results for respectively every
system’s F1-tuned, precision-tuned and recall-tuned run. Our filter consistently increases the original
system precision by an average of at least 10% for any system configuration. However, the filter
decreases the systems’ F1 by an average of 2.4% for precision-tuned runs, 1.8% for F1-tuned runs and
1.3% for recall-tuned runs.

Table 8. Average evaluation obtained by the participating systems using the TAC KBP 2013 Slot Filling
scorer on the test dataset after filtering when using different feature sets.

Feature Subset Recall Precision F1

Pre-Filtering 0.188 0.351 0.231

Statistical + Lexical/POS + Syntactic 0.147 0.439 0.211

Statistical + Lexical/POS + Syntactic (bigrams) 0.144 0.453 0.209

Statistical + Lexical/POS (bigrams) 0.144 0.463 0.211

Statistical + Lexical/POS (bigrams) + Syntactic (unigrams) 0.146 0.457 0.212

Statistical + Lexical/POS (POS bigrams only) + Syntactic (unigrams) 0.146 0.453 0.211

Statistical + Lexical/POS (word bigrams only) + Syntactic (unigrams) 0.141 0.446 0.206

Statistical + Lexical/POS (bigrams) + Syntactic (multilevel unigrams only) 0.145 0.458 0.211

We have also compared our results with those obtained by filtering Relation Factory’s output
using a confidence score threshold heuristic only (heuristic filter). These results are shown in Table 11.
By filtering Relation Factory’s output using only the confidence score, there is no confidence score
threshold that achieves a higher precision or F1 than those obtained using our filter. This confirms
that our filter achieves a much greater precision than tuning an individual system by increasing the
threshold on the confidence score which also severely hinders the recall. To evaluate the statistical
significance of our results (precision gain), we once again used the chi-square test [44]. Column p-value
(p/baseline) indicates the p-value of the precision increase using the heuristic filter compared to the
baseline. We measured this value using the same process as described in Section 4.3. The precision
increase is statistically significant for a confidence score threshold of 0.4 to 1.0. Column p-value (p/filter)
indicates the p-value of the precision difference between our filter and the heuristic filter for different
confidence score values. The precision difference is statistically significant for a confidence score
threshold of 0.1 to 0.7. However, using a heuristic filter based on a confidence score threshold above
0.7 hinders the recall much more (>10 percentage points) than our filter. This recall difference is
statistically significant as well.

As mentioned in previous sections, our approach aims mainly at increasing the relation extractor’s
precision. Our filter is appended to the end of the relation extractor’s pipeline, thus allowing the
filter to be tested and operated on any system. This approach, however, imposes an upper bound
on recall, which is the recall of the system before filtering. As shown in Table 9, post-filtering
performances are optimal for recall-oriented system configurations. In order to increase the relation
extractor’s recall, the filter would have to be directly inserted inside the pipeline after the candidate
generation stage. Our modular approach gives us the flexibility to operate upstream or downstream
of the candidate validation stage, whereas typical ensemble learning methods can only be applied
downstream. This approach would require further specificity in order to adapt to each individual
system. The system’s original candidate validation module could be improved by taking into account
our filter’s confidence score for each response. An upstream integration could be a promising avenue
to explore given that the filter performs best on high-recall outputs.

Information 2018, 9, 133 19 of 24

Table 9. Global evaluation for all systems using the TAC KBP 2013 Slot Filling scorer on the test dataset
before and after filtering for all submitted runs.

System ID Run
Pre-Filtering Post-Filtering

Recall Precision F1 Recall Precision F1

Uwashington
F1 0.103 0.634 0.177 0.079 0.725 0.143

Precision 0.086 0.646 0.152 0.067 0.742 0.122
Alternate 0.076 0.633 0.136 0.057 0.694 0.106

BIT

F1 0.217 0.613 0.321 0.176 0.751 0.286
Recall 0.260 0.234 0.246 0.197 0.395 0.263

Alternate 1 0.225 0.539 0.318 0.181 0.693 0.287
Alternate 2 0.232 0.511 0.319 0.185 0.668 0.290
Alternate 3 0.251 0.258 0.254 0.192 0.445 0.268

CMUML
F1 0.107 0.323 0.161 0.082 0.553 0.142

Precision 0.053 0.443 0.095 0.042 0.633 0.079
Alternate 0.097 0.303 0.147 0.073 0.525 0.128

lsv (Relation Factory)

F1 0.332 0.425 0.373 0.276 0.630 0.384
Precision 0.259 0.509 0.343 0.216 0.637 0.322

Recall 0.378 0.351 0.364 0.304 0.560 0.394
Alternate 1 0.366 0.369 0.368 0.295 0.591 0.393
Alternate 2 0.358 0.381 0.369 0.286 0.595 0.386

TALP_UPC
F1 0.098 0.077 0.086 0.078 0.148 0.102

Precision 0.020 0.291 0.038 0.016 0.387 0.031
Alternate 0.057 0.131 0.080 0.048 0.262 0.082

NYU F1 0.168 0.538 0.256 0.139 0.620 0.227

PRIS2013

F1 0.276 0.389 0.323 0.211 0.535 0.303
Recall 0.335 0.267 0.297 0.240 0.395 0.298

Alternate 1 0.324 0.227 0.267 0.232 0.341 0.276
Alternate 2 0.266 0.221 0.242 0.181 0.319 0.231
Alternate 3 0.257 0.218 0.236 0.170 0.319 0.222

Stanford

F1 0.284 0.359 0.317 0.215 0.498 0.300
Precision 0.267 0.382 0.314 0.204 0.530 0.295

Alternate 1 0.279 0.357 0.314 0.208 0.491 0.293
Alternate 2 0.267 0.351 0.303 0.200 0.483 0.283
Alternate 3 0.256 0.353 0.297 0.189 0.494 0.274

UNED F1 0.093 0.176 0.122 0.061 0.249 0.098
Alternate 0.089 0.167 0.116 0.058 0.234 0.093

Umass_IESL F1 0.185 0.109 0.137 0.153 0.159 0.156

SAFT_Kres
F1 0.150 0.157 0.153 0.095 0.167 0.122

Precision 0.088 0.277 0.133 0.051 0.439 0.092
Alternate 0.078 0.122 0.096 0.054 0.119 0.074

CUNY_BLENDER

F1 0.292 0.396 0.336 0.224 0.500 0.310
Precision 0.268 0.443 0.334 0.207 0.543 0.300

Alternate 1 0.275 0.400 0.326 0.212 0.498 0.297
Alternate 2 0.290 0.407 0.339 0.221 0.519 0.310
Alternate 3 0.258 0.435 0.324 0.196 0.555 0.290

utaustin F1 0.081 0.252 0.123 0.050 0.310 0.087
Alternate 0.076 0.186 0.108 0.043 0.228 0.072

ARPANI F1 0.275 0.504 0.355 0.215 0.600 0.316

Average 0.206 0.349 0.239 0.156 0.472 0.223

Runs for which the filtering has increased the F1 are shown in bold.

Information 2018, 9, 133 20 of 24

Table 10. Average global evaluation for all systems using the TAC KBP 2013 Slot Filling scorer on the
test dataset before and after filtering for F1, precision and recall oriented runs.

System Configuration
Pre-Filtering Post-Filtering

Recall Precision F1 Recall Precision F1

F1-tuned 0.190 0.354 0.231 0.147 0.460 0.213
Precision-tuned 0.167 0.398 0.218 0.129 0.510 0.194
Recall-tuned 0.201 0.313 0.224 0.152 0.420 0.211

Table 11. Results obtained by Relation Factory using the TAC KBP 2013 Slot Filling scorer on the test
dataset after filtering when using a confidence score threshold heuristic (Precision increase is significant
for p-value < 0.1. Statistical significance is indicated with * when comparing our filter with the heuristic
filter and with † when comparing the heuristic filter with the baseline.)

Confidence Score Threshold Recall Precision F1
ine Pre-filtering (baseline) 0.332 0.425 0.373
Using our filter 0.276 0.630 0.384
ine 0.1 0.319 0.452 † 0.374
0.2 0.292 0.473 † 0.361
0.3 0.275 0.494 † 0.353
0.4 0.262 0.515 *† 0.347
0.5 0.252 0.535 *† 0.343
0.6 0.210 0.528 *† 0.300
0.7 0.196 0.539 *† 0.287
0.8 0.171 0.532 * 0.259
0.9 0.160 0.529 * 0.246
1.0 0.147 0.539 * 0.231

In line with the same idea, since the relation extractor’s recall can only decrease after filtering
downstream, it is imperative to limit the loss of recall. The loss of recall is caused by the filter’s
rejecting correct instances provided by the relation extractor. This case is recognized as a False Negative.
Therefore, the selection of a convenient classifier for filtering is based upon the metric that is correlated
with the quantity of false negatives. A high recall on the correct class indicates that a low rate of false
negatives are generated at training time by the filter (Recall = TP/(TP + FN)). However, we also want
to limit the number of False Positives, which in this case is a wrong response retained by the filter.
A high precision on the correct class indicates a low rate of false positives (Precision = TP/(TP + FP)).
Therefore, we use the F1, which is a harmonic mean of both recall and precision, to determine the
base classifier. Classifiers that exhibit a high F1 on the correct class at training time and are trained on
a sufficient amount of training data usually perform well on the test data. To measure the impact of our
algorithm selection, we tested our filter consistently using alternately each algorithm for all relations.
Results of performances on Relation Factory’s output are shown in Table 12. From the six machine
learning algorithms, Random Forest provides the best performances with a 62.2% precision and a 38%
F1 compared to a 63% precision and a 38.4% F1 when using our proposed algorithm selection method
(Statistical and Lexical/POS (bigrams) features). For applications using limited resources, a filter using
Random Forest as the default classifier could be considered without expecting a significant decrease
in performances.

Information 2018, 9, 133 21 of 24

Table 12. Performance using the TAC KBP 2013 Slot Filling scorer on the test dataset when using
alternatively different algorithms to filter responses for every relation (Relation Factory).

Algorithm Recall Precision F1

Pre Filtering 0.332 0.425 0.373

Decision table 0.263 0.556 0.357
J48 0.271 0.621 0.377
Kstar 0.272 0.605 0.376
NBTree 0.254 0.572 0.352
Random Forest 0.274 0.622 0.380
SMO 0.256 0.596 0.358

Combination 0.276 0.630 0.384

5. Discussion

One of the main objectives of this research was to determine the most important features for
the filtering step (RQ1). Our results show that the greatest performances were achieved using
a combination of statistical and POS/lexical features. Our results also show that the most frequent
subsets are more informative when considering bigrams over unigrams. Bigram subsets implicitly
capture the token sequence, whereas unigram subsets do not. Another objective of our research
was to evaluate whether a method based on a generic set of features could lead to an increase in
precision without a major setback in recall (RQ2). Since our approach imposes an upper bound on
recall, which is the recall of the system before filtering, post-filtering performances are optimal for
recall-oriented system configurations. Finally, we wanted to determine whether some relations were
more sensitive to our filter (RQ3). The filter has a greater impact on list-value slots, which generally
have a greater number of training instances. Initial recall has a slight influence on precision increase.
However, relations with a high initial recall achieve greater F1 increase. The features used for training
are mostly generic and could be utilized for any pre-defined relation. However, classification is more
successful when there is a sufficient amount of training data that is balanced between the correct and
wrong class.

An interesting path to explore in the future is feature selection. Currently, most features
are generated by capturing most frequent patterns at different levels using the Apriori algorithm.
The selection criteria allow us to retain patterns for which the number of occurrences in the subset of
the specified class is above a certain threshold and for which the number of occurrences in the subset
of the complementary class is below a certain threshold. However, for certain relations such as per:title
for instance, there is a wide array of patterns that exist to represent the relation. Therefore, in order to
ensure an optimal coverage, an option would be to be more lenient on Apriori selection parameters
and instead use feature selection algorithms such as information gain [45] to empirically discover the
most significant features for each relation.

The relation would have an even greater impact with more training data. The simplest way to
increase the amount of training would be to append to the current training dataset the responses for
the systems having participated in the TAC KBP English Slot Filling track in the subsequent years
when they are available. However, the data would still be unevenly distributed across relations
and the observable imbalance towards the wrong class would persist and we would lose data by
down-sampling the dataset. We could use existing methods for up-sampling the minority class instead.
One way to do so could be by using the Synthetic Minority Over-sampling Technique (SMOTE)
method [46]. This method consists in creating “synthetic” examples rather than over-sampling by
duplicating existing examples. This is done by creating a feature vector between a randomly selected
minority class example and its nearest neighbor and adding this vector multiplied by a random
number between 0 and 1 to the original selected minority class example. Finally, making use of distant
supervision to increase the amount of training data would be an avenue worth considering.

Information 2018, 9, 133 22 of 24

6. Conclusion

This paper presented a method to increase the precision of relation extractors. This generic
method consists of appending a machine learning-based filter to the relation extractor’s pipeline in
order to increase its performance. The filter is based on a wide scope of features, including statistical,
lexical/POS, named entity and syntactic features. We showed that precision could be increased for all
the participating systems in the TAC KBP 2013 ESF track. Overall, the filter enabled a 20.5% precision
increase and a 1.1% F1 increase for the best performing system from the 2013 slot filling track when
applied to the F1-tuned run. The filter also led to a 14.9% precision increase and a 3% F1 increase for
the best performing system when applied to the recall-tuned run. In fact, our filter performs best on
high recall runs. Finally, the filter obtained a 2.1% F1 increase compared to the original F1-tuned run,
the best global performance in the TAC KBP 2013 ESF track.

Author Contributions: K.L.D.C., A.Z., M.G. and L.J.-L. conceived the approach and methodology. K.L.D.C.
implemented the approach and conducted the experiments on the Slot Filling Task. The supervision of this project
and Masters thesis was done by M.G., A.Z. and L.J.-L.

Funding: This research was partially funded by the Fonds de recherche du Québec—Nature et technologies
(FRQNT) - Industrial Innovation Scholarships Program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Singhal, A. Introducing the Knowledge Graph: Things, Not Strings. In Official Google Blog; Google Blog:
Mountain View, CA, USA, 2012.

2. Bizer, C.; Lehmann, J.; Kobilarov, G.; Auer, S.; Becker, C.; Cyganiak, R.; Hellmann, S.
DBpedia—A Crystallization Point for the Web of Data. Web Semant. Sci. Serv. Agents World Wide Web 2009,
7, 154–165. [CrossRef]

3. Bizer, C.; Heath, T.; Berners-Lee, T. Linked Data—The Story so Far. Int. J. Semant. Web Inf. Syst. 2009, 5,
205–227. [CrossRef]

4. Surdeanu, M. Overview of the TAC2013 Knowledge Base Population Evaluation: English Slot
Filling and Temporal Slot Filling. In Proceedings of the Sixth Text Analysis Conference (TAC 2013),
Gaithersburg, MA, USA, 18–19 November 2013.

5. Surdeanu, M.; Ji, H. Overview of the English Slot Filling Track at the TAC2014 Knowledge Base Population
Evaluation. In Proceedings of the Text Analysis Conference Knowledge Base Population (KBP) 2014,
Gaithersburg, MA, USA, 17–18 November 2014.

6. Ellis, J. TAC KBP Reference Knowledge Base LDC2009E58; Linguistic Data Consortium: Philadelphia, PA, USA, 2013.
7. Angeli, G.; Gupta, S.; Jose, M.; Manning, C.D.; Ré, C.; Tibshirani, J.; Wu, J.Y.; Wu, S.; Zhang, C. Stanford’s

2014 Slot Filling Systems. In Proceedings of the Text Analysis Conference Knowledge Base Population (KBP)
2014, Gaithersburg, MA, USA, 17–18 November 2014.

8. Roth, B.; Barth, T.; Wiegand, M.; Singh, M.; Klakow, D. Effective Slot Filling Based on Shallow Distant
Supervision Methods. arXiv 2014, arXiv:1401.1158.

9. Mintz, M.; Bills, S.; Snow, R.; Jurafsky, D. Distant Supervision for Relation Extraction without Labeled Data.
In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP, Suntec, Singapore, 2–7 August 2009; Association
for Computational Linguistics: Stroudsburg, PA, USA, 2009; Volume 2, pp. 1003–1011.

10. Jiang, J. Domain Adaptation in Natural Language Processing; ProQuest: Ann Arbor, MI, USA, 2008.
11. Fader, A.; Soderland, S.; Etzioni, O. Identifying Relations for Open Information Extraction. In Proceedings

of the Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 27–31 July 2011;
Association for Computational Linguistics: Stroudsburg, PA, USA, 2011; pp. 1535–1545.

12. Nguyen, T.H.; He, Y.; Pershina, M.; Li, X.; Grishman, R. New York University 2014 Knowledge Base
Population Systems. In Proceedings of the Text Analysis Conference Knowledge Base Population (KBP)
2014, Gaithersburg, MA, USA, 17–18 November 2014.

13. Brin, S. Extracting Patterns and Relations from the World Wide Web. In The World Wide Web and Databases;
Springer: Berlin/Heidelberg, Germany, 1999; pp. 172–183.

http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.4018/jswis.2009081901

Information 2018, 9, 133 23 of 24

14. Agichtein, E.; Gravano, L. Snowball: Extracting Relations from Large Plain-text Collections. In Proceedings
of the Fifth ACM Conference on Digital Libraries, San Antonio, TX, USA, 2–7 June 2000; ACM:
New York, NY, USA, 2000; pp. 85–94.

15. Li, Y.; Zhang, Y.; Doyu Li, X.T.; Wang, J.; Zuo, N.; Wang, Y.; Xu, W.; Chen, G.; Guo, J. PRIS at Knowledge Base
Population 2013. In Proceedings of the Sixth Text Analysis Conference (TAC 2013), Gaithersburg, MA, USA,
18–19 November 2013.

16. Roth, B.; Chrupala, G.; Wiegand, M.; Singh, M.; Klakow, D. Generalizing from Freebase and Patterns
Using Distant Supervision for Slot Filling. In Proceedings of the Fifth Text Analysis Conference (TAC 2012),
Gaithersburg, MA, USA, 5–6 November 2012.

17. Chen, Z.; Tamang, S.; Lee, A.; Li, X.; Passantino, M.; Ji, H. Top-Down and Bottom-Up: A Combined Approach
to Slot Filling. In Proceedings of the 6th Asia Information Retrieval Societies Conference, AIRS 2010,
Taipei, Taiwan, 1–3 December 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 300–309.

18. Schlaefer, N.; Ko, J.; Betteridge, J.; Pathak, M.A.; Nyberg, E.; Sautter, G. Semantic Extensions of the
Ephyra QA System for TREC 2007. In Proceedings of the Sixteenth Text REtrieval Conference, TREC 2007,
Gaithersburg, MA, USA, 5–9 November 2007; Volume 1, p. 2.

19. Moro, A.; Li, H.; Krause, S.; Xu, F.; Navigli, R.; Uszkoreit, H. Semantic Rule Filtering for Web-scale
Relation Extraction. In The Semantic Web–ISWC 2013; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 347–362.

20. Angeli, G.; Tibshirani, J.; Wu, J.Y.; Manning, C.D. Combining Distant and Partial Supervision for Relation
Extraction. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Doha, Qatar, 25–29 October 2014.

21. Surdeanu, M. Slot Filler Validation at TAC 2014 Task Guidelines; TAC: Geelong, Australia, 2014.
22. Wang, I.J.; Liu, E.; Costello, C.; Piatko, C. JHUAPL TAC-KBP2013 Slot Filler Validation System.

In Proceedings of the Sixth Text Analysis Conference (TAC 2013), Gaithersburg, MA, USA, 18–19 November
2013; Volume 24.

23. Rajani, N.F.; Viswanathan, V.; Bentor, Y.; Mooney, R.J. Stacked Ensembles of Information Extractors
for Knowledge-Base Population. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics (ACL-15), Beijing, China, 26–31 July 2015; Volume 1, pp. 177–187.

24. Ellis, J. TAC KBP 2013 Slot Descriptions; TAC: Geelong, Australia, 2013.
25. De Marneffe, M.C.; MacCartney, B.; Manning, C.D. Generating Typed Dependency Parses from Phrase

Structure Parses. In Proceedings of the 2006 LREC, Genoa, Italy, 28 May 2006; Volume 6, pp. 449–454.
26. Chrupała, G.; Klakow, D. A Named Entity Labeler for German: Exploiting Wikipedia and Distributional

Clusters. In Proceedings of the Conference on International Language Resources and Evaluation (LREC),
Valletta, Malta, 17–23 May 2010; pp. 552–556.

27. Chawla, N.V. Data Mining for Imbalanced Datasets: An Overview. In Data Mining and Knowledge
Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2005; pp. 853–867.

28. Voskarides, N.; Meij, E.; Tsagkias, M.; de Rijke, M.; Weerkamp, W. Learning to Explain Entity Relationships
in Knowledge Graphs. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China,
26–31 July 2015.

29. Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules. In Proceedings of the 20th International
Conference on Very Large Data Bases; Morgan Kaufmann Publishers, Inc.: Burlington, MA, USA, 1994;
Volume 1215, pp. 487–499.

30. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
31. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
32. Vapnik, V.N.; Kotz, S. Estimation of Dependences Based on Empirical Data; Springer: New York, NY, USA, 1982;

Volume 40.
33. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings

of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992;
ACM: New York, NY, USA, 1992; pp. 144–152.

34. Burges, C.J. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998,
2, 121–167. [CrossRef]

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1009715923555

Information 2018, 9, 133 24 of 24

35. Platt, J. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines; Technical Report
MSR-TR-98-14; Microsoft Research: Redmond, WA, USA, 1998.

36. Kohavi, R. Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid. In Proceedings
of the Second International Conference on Knoledge Discovery and Data Mining, Portland, OR, USA,
2–4 August 1996; pp. 202–207.

37. John, G.H.; Langley, P. Estimating Continuous Distributions in Bayesian Classifiers. In Proceedings of the
Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, Montreal, QC, Canada,
18–20 August 1995; pp. 338–345.

38. Kohavi, R. The Power of Decision Tables. In Machine Learning: ECML-95; Springer: Berlin/Heidelberg, Germany,
1995; pp. 174–189.

39. Russell, S.; Norvig, P.; Intelligence, A. A Modern Approach; Artificial Intelligence; Prentice Hall: Egnlewood
Cliffs, NJ, USA, 1995; Volume 25, p. 27

40. Quinlan, J.R. C4. 5: Programs for Machine Learning; Elsevier: New York, NY, USA, 2014.
41. Cleary, J.G.; Trigg, L.E. K*: An Instance-based Learner Using an Entropic Distance Measure. In Proceedings

of the 12th International Conference on Machine Learning, Tahoe City, CA, USA, 9–12 July 2016; pp. 108–114.
42. Sharma, T.C.; Jain, M. WEKA Approach for Comparative Study of Classification Algorithm. Int. J. Adv. Res.

Comput. Commun. Eng. 2013, 2, 1925–1931.
43. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software:

An Update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]
44. Mantel, N. Chi-square tests with one degree of freedom; extensions of the Mantel-Haenszel procedure.

J. Am. Stat. Assoc. 1963, 58, 690–700.
45. Yang, Y.; Pedersen, J.O. A Comparative Study on Feature Selection in Text Categorization. In Proceedings

of the Fourteenth International Conference on Machine Learning (ICML 1997), Nashville, TN, USA,
8–12 July 1997; Volume 97, pp. 412–420.

46. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling
Technique. J. Artif. Intell. Res. 2002, 16, 321–357.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1656274.1656278
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	2018_Lange_Di_Cesare_Machine_Learning_Filter_Slot_Filling_original
	Introduction
	Example of a Slot Filling System's Structure
	Research Objective
	Outline and Organization

	Related Work
	Relation Extraction and Slot Filling
	System Enhancement

	Proposed Work
	System Architecture
	Preprocessing
	Background
	Dataset Cleaning and Partition
	Linguistic Processing of Justifications
	Down-Sampling and Selective Filtering

	Features
	Statistical Features
	Named Entity Features
	Lexical (POS) Features
	Syntactic features

	Classifiers

	Experiments
	Experiment Overview
	Evaluation by Relation
	Evaluation by Feature Subset
	Filtering All System Runs

	Discussion
	Conclusion
	References

