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R E A L N U M B E R S T H A T H A V E G O O D D I O P H A N T I N E 
A P P R O X I M A T I O N S O F T H E F O R M rn+1/rn 

A n d r e a s D r e s s & F l o r i a n Luca (Bie lefe ld & More l i a ) 

A b s t r a c t . In this note, we show that if a is a real number such that there exist a 
constant C and a sequence of non-zero integers (?*n)n>0 with l i m n _ + c o |?'n| — OO for which 

— • " < -—— holds for all 71 > 0, then either a E Z \ { 0 , ± 1 } or a is a quadratic 
J'n 11'n I" 

unit. Our result complements results obtained by P. Kiss who established the converse in Period. 
Math. Hungar. 11 (1980), 281-187. 

A M S Classification N u m b e r : 11J04, 11J70 

1. I n t r o d u c t i o n 

Let a be a real number. In this paper, we deal with the topic of approximating 
a by rationals. It is well known that there exist a constant c and two sequences of 
integers (u n ) n >o and (i>n)n>o with vn > 0 for all n > 0 and vn diverging to infinity 
(with n) such that 

( 1 ) 
u, 
v, 

c 
< — vi 

holds for all n > 0. By work of Hurwitz (see [5]), one can take c := l / \ / 5 and the 
1 "n/Ö above constant is well known to be best-possible for a := — - — . 

Several papers in the literature deal with the question of approximating cv by 
rationals un/vn requiring un and vn to satisfy (1) as well as some additional 
conditions. For example, if a is irrational and a, b and k are integers with k > 1, 
then there exist a constant c and two sequences of integers (ttn)n>o ai*d (vn)n>o 
with vn > 0 and vn diverging to infinity such that 

(2) u, 
a  

Vr 

c 
< — and un = a (mod k), vn = b (mod k) 

v-
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holds for all n > 0. The best-possible constant c in (2) Is k2 /4 in case a and b are 
not both divisible by k (see [3] and [4]). 

If a is algebraic and V is a fixed finite set of prime numbers, then Ridout [10] 
inferred from Roth's work [11] that one cannot approximate a too well by rational 
numbers u/v where either u or v is divisible only by primes from V. More precisely, 
for every given e > 0, the inequality 

(3) < ,1 + C 

has only finitely many integer solutions (u, v) with v > 0 and either u or v divisible 
by primes from V, only. 

A different type of question was considered by P. Kiss in [6] and [7] (see also 
[8] and [9]). In [6], it was shown that if cv is a quadratic unit with |a | > 1, then 
there exist a constant c and a sequence of integers ( r n) n>o with | r n | diverging to 
infinity such that 

(4) 
"n + l < 

holds for all n > 0. In [7] it was shown that, in fact, a statement similar to (4) holds 
for both a and as where s > 2 is some positive integer: There exist a constant c 
and a sequence of integers (rn)n>o with \rn\ diverging to infinity such that both 

15) 
n + l < and < 

hold for all n > 0. 
An explicit description of a sequence (rn)n>o satisfying inequalities (5) above 

was also given in [7]: Let 

f = X2 + AX + B (A, Be Z) 

be the minimal polynomial of a over Q. Let ß be the other root of / . Since a is a 
unit, \B\ — \cxß\ = 1 must hold which implies that the sequence 

(6) 
ßT 

<x-ß ' 

n > 1 

fulfills the inequalities (5) for all n with c := 2 ^ 0 MÍ/? | s~1 - ? :-
One may ask if one can characterize all real numbers a for which there exist 

a constant c and a sequence of integers (rn)n>o with | r n | diverging to infinity such 
that inequality (4) or, respectively, inequalities (5) hold for all n > 0. Fi'om the 
above remarks, we saw that quadratic units cv with |a | > 1 have these properties. 
Moreover, the sequence r n :— a n (n > 1) shows that integers a with |a | > 1 
also belong to this class. It seems natural therefore to inquire if there are any 
other candidates cv satisfying the above conditions. The perhaps not too surprising, 
answer is no. Our exact result is the following. 
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T h e o r e m 1. Let a be a real number. 

(i) Assume that there exist e > 0 and a sequence of integers (rn)n>o with \rn 

diverging to infinity such that 

(7) 
n + l < 

1 

holds for all n > 0. Then, a is a real algebraic integer of absolute value larger than 
1 and of degree at most 2. Moreover, if a is irrational, then the absolute value of 
its norm is smaller than \/jck[. 

(ii) Assume, moreover, that there exist a constant c and a sequence of integers 
(rn)n >o with |rn| diverging to infinity such that 

(8) 
n + l 

< 

holds for all n > 0. Then a is a quadratic unit or a rational integer different from 
0 or ±1. 

The following result characterizes real numbers a for which - as in (5) - two 
different powers can be well approximated by rationals. 

T h e o r e m 2. Let a be a real number. Assume that there exist two coprime positive 
integers si and so, two positive integers t\ and 12, a real number e > 0, and a 
sequence of integers ( r n ) n > o with |rn \ diverging to inßnity with n such that 

(9) 
I'n+t, 

< 
1 

hold for all n > 0 and for both i — 1 and 2. Then, either a £ Z\{0, ±1} or a is 
quadratic irrational with norm smaller than \ / | c v j in absolute value. If moreover a 
is irrational and there exists a constant c with 

(10) 
n+i , C 

< — 

then a is a quadratic unit. 

The proofs of both Theorems 1 and 2 are based 011 the following result which 
follows right away from our recent work [1] and [2], 

T h e o r e m DL. Let (rn)n> 0 be a sequence of integers with | r n | diverging to inßnity. 

(i) Assume that 

(ID lim. 1 rn — r n + l T . n - l l 1 

7 1 ' 
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Then, the sequence ( —— ) is convergent to a limit a that is a non-zero 
\ rn / n>o 

algebraic integer of degree at most 2. If a is irrational, then its norm is smaller 
than y/\a\. Moreover, there exists no £ N such that (rn)n>no is binary recurrent. 

(ii) If 

(12) l rn ~ r n+lTn- l | < C 

holds for some constant c and all n, then a is a quadratic unit or a non-zero integer. 

We point out that in our work [1] and [2], we gave more precise descriptions 
for both the sequences (r n) n>o satisfying (11) or (12), respectively, and the limit 

a = lim 71+1, but the above Theorem DL suffices for our present purposes. 
n — oo rn 

We now proceed to the proofs of Theorems 1 and 2. 

2. T h e Proofs 

P roo f of T h e o r e m 1. We will prove (i) in detail and we will only sketch the proof 
of (ii) . 

(i) By replacing the sequence (rn)n by the sequence ((—l)nr„) and a by —a 
if a < 0, we may assume a > 0 and rn > 0 for all n > 0. By letting n tend to 
infinity in (7), we get a — lim n + 1 . Since rn diverges to infinity, we must have n —+ co Vn 

a > 1. We now show that a > 1. Indeed, if a — 1, then inequality (7) becomes 

1 1 _ r»+1 
< 

Vn 

or 
1 

\rn+l - rn I < < !> 
?n 

therefore r7J+i = r n for all n > 0. This contradicts the fact that r n diverges to 
infinity. Hence, a > 1. 

Now let 6 be a real number with 1 < 8 < a, note that j := 2a — 6 exceeds a, 
and choose no such that 

^ 1 Vn > 
a — 6 

holds for all n > no- From inequality (7), we get that 

(13) Si 
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holds for all n > no- Prom inequalities (7) for n and n 1 and the triangular 
inequality, we get 

IM+i - r n r n + 2 1 _ 
rn I'n+1 ' n + 1 

< ?n + l + r n+ 2 < a  + a  
rn ?'n+l \ 

/ 1 _ 1 

v + ,!-rn 7 »1 -I 71 + 1 

(14) 
rn+1 - rn+2rn\ ^ 

r' y/Tn+l 

Using inequality (13) in (14), we get 

71 

rn+1 1 
\l + l V?>71 + 1 

( is ; 71 + 1 rn+2rn \ ^ ci c2 

\An + l 7 7' 72 + 1 

for all 7? > ?io, where C\ = and c2 = 1 /S. We now let n tend to infinity in (15) 
and get 

( 1 0 ) lim 
n—*oo 

r n + 1 r n _ i | _ o 1 

yft' 

Consequently, the conclusion of part (i) of Theorem 1 follows from part (i) of 
Theorem DL. 

The remaining assertions of part (ii) now follow from putting e := 1/2 in (15) 
and invoking rn+i/rn < 7 as well as part (ii) of Theorem DL. 

Theorem 1 is therefore established. 

R e m a r k 1. The occurence of e > 0 in the exponent in inequality (7) is unnecessary. 
A closer investigation of the arguments used in the proof of Theorem 1 shows that 
the conclusion of part (i) of Theorem 1 remains valid if inequality (7) is replaced 
by the weaker inequality 

(7': 
71 + 1 < 

1 - € 1 

v ^ x / M + i / H 

R e m a r k 2. Assume that cv is a real number such that the hypotheses of either 
part (i9 or part (ii) of Theorem 1 are fulfilled. Using the full strength of our 
results from [1] and [2], we can infer that if a is an integer, then (rn)n>o is a 
geometrical progression of ratio cv from some n on. However, if a is quadratic and 
the hypotheses of part (ii) of Theorem 1 are fulfilled, we can only infer that (7'n)7i>o 
is binary recurrent from some n on, and that its charateristic equation is precisely 
the minimal polynomial of a over Q. However, we cannot infer that (rn)n>o is the 
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Lucas sequence of the first kind for a given by formula (6), mostly because the 
constant c appearing in inequality (8) is arbitrary. Of course, if one imposes that 
the constant c appearing in inequality (8) is small enough (for example, c. = 1/2), 
then the rational numbers r n + i / r n are exactly the convergents of a , therefore r n 

is indeed given by formula (6) for all n (up to some linear shift in the index n). 

P r o o f of T h e o r e m 2. If one replaces the sequence ( r n ) n >o by the sequence 
{Rn)n>o = {i'ntx)n>o» then the first inequality (9) together with part (i) of 
Theorem 1 show that c*Sl is an algebraic integer, different than 0 or ±1, of 
degree at most 2. Similarly, if one replaces the sequence ( r n ) n >o by the sequence 
(Rn)n>o = (?'ní2)n>0? then the second part of inequality (9) together with part (ii) 
of Theorem 1 show that a 5 2 is an algebraic, integer, different that 0 or ±1, of degree 
at most 2. 

Prom here on, all we need to establish is that Q is itself algebraic of degree 
at most 2. Assume that this is not so and let K :— Q[a] and Ki := Q[aÄI] for 
i — 1, 2. Since Si and «2 are coprime, we get that K = Q[a S l , a i 3 ] . Moreover, we 
must have [Ki : Q] = 2 for both i — 1 and 2, i.e. K is a biquadratic real extension 
of Q and G a l ( / \ / Q ) = Z2 0 Z 2 . Hence, there exist two non-trivial elements <ti and 
er2 in Gal ( /v /Q) with cr^cv5') = a s ' , i.e. 

for i = 1, 2. Since K is a real field and is non-trivial, formula (17) implies that 
(Ji(a) = —<y for i = 1, 2. Hence, <ri(a) = a2(a), which implies a 1 = cr2. But this is 
a contradiction. The remaining of the assertions of Theorem 2 follow from Theorem 
1. 

Theorem 2 is therefore established. 
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