

University of New Hampshire University of New Hampshire Scholars' Repository

PREP Reports & Publications

Institute for the Study of Earth, Oceans, and Space (EOS)

5-4-2020

Seaweed Monitoring in the Great Bay Estuary: 2019 Annual Report

David M. Burdick University of New Hampshire, david.burdick@unh.edu

Gregg Moore University of New Hampshire

Arthur C. Mathieson University of New Hampshire, Arthur.Mathieson@unh.edu

Andrew Payne University of New Hampshire

Lara Martin University of New Hampshire

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/prep

Recommended Citation

Burdick, David M.; Moore, Gregg; Mathieson, Arthur C.; Payne, Andrew; Martin, Lara; and Peter, Chris, "Seaweed Monitoring in the Great Bay Estuary: 2019 Annual Report" (2020). *PREP Reports & Publications*. 442.

https://scholars.unh.edu/prep/442

This Report is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in PREP Reports & Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Authors

David M. Burdick, Gregg Moore, Arthur C. Mathieson, Andrew Payne, Lara Martin, and Chris Peter

Seaweed Monitoring in the Great Bay Estuary: 2019 Annual Report

David Burdick1, Gregg Moore1, Arthur C. Mathieson1, Andrew Payne1, Lara Martin1, and Chris Peter2

A Report to

The Piscataqua Region Estuaries Partnership

1Jackson Estuarine Laboratory University of New Hampshire 85 Adams Point Road Durham, NH, 03824 *david.burdick@unh.edu*

2Great Bay National Estuarine Research Reserve NH Fish and Game 89 Depot Road Greenland, NH, 03840

April 22, 2020

This report was funded by a grant from the Piscataqua Region Estuaries Partnership, as authorized by the U.S. Environmental Protection Agency pursuant to Section 320 of the Clean Water Act, and in part, by NOAA's Office for Coastal Management under the Coastal Zone Management Act in conjunction with the NH Department of Environmental Services Coastal Program.

Table of Contents

Executive Summary
Introduction
Project Goals and Objectives4
Methods4
Results and Discussion10
Intertidal Abundance10
Subtidal Seaweed and Eelgrass Abundance15
Photo vs. In-situ Percent Cover19
Percentage Cover vs. Biomass
Summary and Conclusions22
Acknowledgements
References
Appendices25
Appendix A: Data Tables
Appendix B: List of Photographs by Site and Date
Appendix C: Site Descriptions
Appendix D: QA/QC Plan

Cite as:

Burdick, D.M., G.E. Moore, A.C. Mathieson, A.R. Payne, L. Martin and C.R. Peter. 2020. Seaweed Monitoring in the Great Bay Estuary: 2019 Annual Report. The Piscataqua Region Estuaries Partnership. 25 pp.

Executive Summary

As global warming increases temperature and nitrogen inputs change—either due to greater inputs associated with growing populations in the Great Bay or with nitrogen reductions at wastewater treatment plants—it is important to understand how these changes are impacting the estuary. To that end, the abundance and taxa of intertidal seaweeds have been assessed at fixed locations throughout the estuary since 2013. Seaweed abundance may be influenced by environmental conditions such as nutrient levels, water temperature, light availability, and invasive species. Therefore, seaweed communities can provide insights into the overall health of the estuary and signal ecological change. In 2019, abundance data (percent cover and biomass) were collected from five of the eight intertidal sampling locations and four subtidal locations. Two more sampling arrays were established at each subtidal site, making three replicates per site.

Data from 2013-2019 show appreciable cover and biomass of nuisance seaweeds (reds and greens), including several introduced species. Green seaweeds decreased in cover at the two intertidal sites that are sampled annually (Depot Road and Adams Point), and cover of red seaweed decreased at one site (Depot Road). However, there were no decreases at the other six sites, and results from 2019 still show high levels of nuisance seaweed at the lowest intertidal elevations.

In subtidal areas, percent cover assessments by snorkel appeared successful based on strong correlations between cover and biomass. Percent cover of seagrass measured by snorkel was very similar to independent measurements from underwater photos. The abundance of seaweed in association with eelgrass beds was ecologically significant and may have impacted eelgrass density and productivity. Further monitoring of seaweed and eelgrass is required to determine potential impacts to the estuary from emerging threats of increased nutrients from impervious surfaces and rising water temperatures due to global warming, as well as reduced nutrient threats from improvements to wastewater treatment plants and stormwater management. For example, the 2019 eelgrass survey showed an increase in area of eelgrass beds within Great and Little Bays which co-occurred with declines in nuisance seaweed at two of our stations in Great Bay.

2

Introduction

Seaweed and eelgrass (Zostera marina) are important primary producers in estuaries. As such, they will be referred to as plants, though most biologists refer to seaweeds as protists due to their different evolutionary history. These photosynthetic organisms sequester carbon, capture nutrients, and provide habitat for fish and invertebrates. Tracking the abundance of seaweed and eelgrass is important for our understanding of how changes in environmental conditions affect the structure, function, and biodiversity of the estuary. Eelgrass forms a critical habitat in the Great Bay Estuary in New Hampshire, but the size of eelgrass beds has declined significantly (Beem and Short 2009, Short 2014). The loss of eelgrass or decreased ability of eelgrass to recover from other stressors (e.g., storms) may be related to nitrogen loading in the Great Bay Estuary, which can cause blooms of seaweed and phytoplankton that compete with eelgrass for light (Short et al. 1995; PREP 2017). Studies in other estuaries in New England show macroalgae can compete with and displace eelgrass (Short and Burdick 1996, Hauxwell et al. 2001, Vaudrey et al. 2010). Decomposing mats of seaweed can also increase soil hypoxia and sulfide concentrations, leading to reduced growth of eelgrass (reviewed by Han and Liu, 2014). Aerial surveys in 2019 did show an increase in areas of eelgrass meadows in the Little Bay (20 ac total, up 470% from 2017) and Great Bay (1450 ac, up 6% from 2017; Barker 2020)

Fluctuations in water quality can allow invasive species to outcompete others in the estuary that are less suited to the new conditions (Wallace and Gobler 2015). Red and green seaweeds especially require close monitoring because of their potential impacts to the ecosystem. Red seaweed includes one native species that has recently expanded its range northward into the Great Bay, *Agardhiella subulata* and two non-native, invasive species: *Dasysiphonia japonica* and *Agarophyton vermiculophyllum* (a taxon previously referred to as *Gracilaria vermiculophylla*). First documented in the Great Bay in 2003 by Nettleton et al. (2013), *A. vermiculophyllum* could impact local industries by fouling fishing nets and clogging intakes (Freshwater et al. 2006). The success of *A. vermiculophyllum* as an invader may be tied to its wide tolerance to environmental stresses such as light limitation, burial, and grazing (Thomsen and McGlathery 2007). Green algae should also be closely monitored because severe blooms of *Ulva*, the dominant green seaweed, have been shown to impair productivity in salt marshes (Watson et al. 2015) and seagrass beds (Schmidt et al. 2012). Additionally, one species of green seaweed found in the Great Bay, *Ulva australis*, is an exotic invasive and could impact native species (Lee et al. 2019).

Seaweed has been quantitatively sampled in the Estuary using reproducible methods by various researchers, but never over long time periods. The best historical quantitative data were collected from intertidal sampling grids as part of graduate student projects conducted under the direction of Arthur Mathieson: in 1978 (Hardwick-Whitman and Mathieson, 1983) and 2008-2010 (Nettleton et al. 2011). Most recently, Cianciola and Burdick (2014) reoccupied several historically assessed sites and used previous results to develop a standardized protocol for intertidal seaweed monitoring that has been used from 2013 to the present (Burdick et al. 2016).

Project Goals and Objectives

Our goal is to monitor the abundance of seaweed in the Great Bay Estuary as conditions change over time due to factors such as global warming, nutrient loading, and invasive species. The reason for monitoring benthic vegetation is manifold. First, changes in vegetation could have bottom-up effects on the ecosystem because of its role as a source of food and habitat for fish and invertebrates. Second, blooms of seaweed can shade and smother eelgrass, depressing eelgrass biomass within meadows and the overall extent of meadows. Finally, seaweed can serve as an indicator of water quality and ecological health in the estuary, so changes in seaweed abundance can be coupled with other measures (e.g., area of eelgrass beds) to develop a better understanding of how the Estuary reacts to changes in management actions such as reduction of nitrogen inputs. Seaweeds grow both intertidally and subtidally. Monitoring intertidal areas is relatively simple during low tide and provides a valuable metric to track changes in seaweed abundance and composition. Subtidal assessment of seaweed is difficult but provides a direct measure of seaweed abundance to better understand interactions with eelgrass.

Methods

To measure changes in seaweed abundance over time, eight intertidal monitoring sites were established in 2013 and 2014 from the mouth of the Piscataqua River to the southern end of Great Bay (Figure 1). Sites were intended to capture variability in nutrients, salinity, and shoreline exposure to wind and waves throughout the estuary. Three transects were created at each site (random distance apart but no closer than 10 m) along a 100 m length of shoreline

(Figure 2). Sampling stations were established at MLLW (Mean Lower Low Water) and every 0.5 m above until the shoreline (upper boundary of halophytes) was reached. Where MLLW could not be reached (Lubberland Creek, Depot Road and Sunset Hill Farm), stations were established relative to MHW (Mean High Water). Sampling for percent cover and biomass was scheduled to occur annually at two sites and biennially for six sites. Biennial intertidal sites monitored in 2019 included Four Tree Island, Hilton Park, and Sunset Hill Farm (Table 1). The two annual sites monitored were Adams Point and Depot Road. In 2018, a new sampling effort extended each of the four intertidal sites in Great Bay to the subtidal, where eelgrass was found. A single sample (composed of 9 subsamples) was collected at an extension of the central transect for each of four intertidal sites. In 2019, an additional sample was added to the subtidal end of each of the two remaining transects, making three replicates per site for each of the four Great Bay sampling sites (108 quadrats).

Figure 1. Vegetation sampling sites in the Great Bay Estuary, NH.

Lubberland Creek

Depot Road

Sunset Hill Farm

Wagon Hill

Adams Point

Sampling sites, shown in white circles, are part of the long term macroalgae monitoring project in the Great Bay Estuary

Meters

All inset maps are at a consistent scale.

Coordinate System: GCS WGS 1984 Datum: WGS 1984 Units : Degree

Service Layer Credits: Source: Es ri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Cedar Point

Hilton Park

Four Tree Island

Figure 2. Intertidal sampling stations for seaweed at each site in the Great Bay Estuary. Locations were plotted using GPS coordinates.

Site Name	Town	Location (Lat/Long)	Elevations (m above MLLW)	Years Sampled
Four Tree Island	Portsmouth	43.07536N 70.74701W	0.0, 0.5, 1.0, 1.5, 2.0, 2.5	2014, 2016, 2019
Hilton Park	Dover	43.12292N 70.82786W	0.0, 0.5, 1.0, 1.5, 2.0	2014, 2016, 2019
Cedar Point	Durham	43.12934N 70.85283W	0.0, 0.5, 1.0, 1.5	2013, 2015, 2018
Wagon Hill Farm	Durham	43.12457N 70.87260W	0.0, 0.5, 1.0, 1.5	2013, 2015, 2018
Adams Point	Durham	43.09019N 7086735W	Subtidal, 0.0, 0.5, 1.0, 1.5	2014, 2015, 2016, 2018, 2019
Lubberland Creek	Newmarket	43.07427N 70.90339W	Subtidal, 0.5, 1.0, 1.5	2013, 2015, 2018, 2019*
Depot Road	Greenland	43.05611N 70.89682W	Subtidal, 0.5, 1.0, 1.5	2013-2016, 2018, 2019
Sunset Hill Farm	Newington	43.05751N 70.83443W	Subtidal, 0.75, 1.0, 1.5	2014, 2016, 2018*, 2019

Table 1. Site locations, sampling elevations, and sampling schedule for long-term macroalgae monitoring in Great Bay Estuary.

*Subtidal only

Intertidal cover data for seaweeds and vascular plants were collected during a five-day period in July, August, and October 2019. Transects and plot locations were relocated using a handheld Garmin Geographic Positioning System (GPS) and PVC stakes that marked the seaward plot edges. Visual estimates of percent cover were made by species or genus in a 0.25 m² quadrat centered landward of each sampling point on each transect. A photograph was taken and archived for each plot sampled. To develop correlations between percent cover and biomass, vegetation samples were collected in separate plots during the August sampling event. For these samples, percent cover was estimated in a 0.0625 m² quadrat placed two meters to the right of each cover sampling point while facing the shore. A photograph was taken before all plant material in the quadrat was collected and placed in labeled plastic bags. Rooted plants and algae that were attached to rocks were clipped to the surface without removing algal holdfasts.

Subtidal sampling stations were first incorporated into the monitoring scheme in 2018. Subtidal sampling arrays were established at four sites: Adams Point, Lubberland Creek, Depot Road, and Sunset Hill Farm. Subtidal arrays were located on extensions of intertidal transects at an average elevation of -1.5 meters NAVD88. Each array consists of nine sampling stations – one central

station surrounded by the others in eight directions (Figure 3). Stations at cardinal directions were six meters from the center, whereas stations at primary intercardinal directions were four meters from the center. In 2019, all subtidal sites were sampled for percent cover and biomass in August and October. At each site, the center of the array was located using a GPS. The locations of surrounding stations were found using a compass to determine the bearing and pre-measured PVC poles to find the distance of the station from the center of the array. At each station, percent cover in a 0.25m2 quadrat was recorded to the genus or species level through visual estimation using a mask and snorkel. All aboveground plant material within the quadrat was collected for each sampling event and placed in individual, labeled bags for processing at the lab. The measurement of canopy height, which was called for in the original sampling protocol, was not possible in the field due to currents that bent eelgrass stems to varying degrees, depending on current strength. Instead, the length of live (still green) eelgrass stems were reached.

Figure 3. Subtidal sample arrangement of nine plots (0.5 by 0.5 m in size) that represent an area of 100 m².

Underwater photographs were collected in 2018 and 2019 to determine whether percent cover assessed from images was comparable to percent cover assessed in situ. Since underwater photographs taken by a hand-held camera were not consistently usable in 2018, we experimented with taking video grabs and integrated this method into the protocol for 2019. Using the same

general pattern of subtidal sampling, we collected 9 video clips of the camera apparatus coming into contact with the bottom sediment. At the lab, a screenshot was taken from each video just as the bottom was hit, before a plume of fine-grain sediments was released by contact. Percent cover was assessed visually in each screenshot.

SeagrassNet collections were made at the long-term Great Bay site and a new site at Fort Foster at the mouth of the Piscataqua River in Maine. The sampling was performed in spring in Great Bay and in summer and fall for both sites using the SeagrassNet protocol (https://scholars.unh.edu/prep/420/) with the inclusion of collection of all seaweed (from each of 36 plots, 0.25m2 in size), which were placed in marker gallon bags and cleaned, sorted by species and dried to constant weight to calculate biomass as an average of the 12 plots for each of three transects for each site.

Biomass assessment in the lab followed the same protocol for both intertidal and subtidal samples. Samples were cleaned of salts, sediment and detritus and sorted by species/genus. Any root material inadvertently collected was removed. Plant material was placed in marked foil envelopes and dried at 60°C in a drying oven for five days before it was weighed to 0.01g.

Species identifications were authenticated by Dr. Arthur Mathieson and nomenclature generally followed Villalard-Bohnsack (2003), with updates from Mathieson and Dawes (2017). Thus, some taxonomic changes were included. For example, the green seaweed *Enteromorpha intestinalis* was transferred to *Ulva intestinalis*, while the invasive red seaweed *"Heterosiphonia" japonica* was re-designated as *Dasysiphonia japonica*. Perhaps the most problematic change that has occurred recently was the reassignment of *Gracilaria vermiculophylla* to the new genus *Agarophyton* (Gurgel et al. 2018), so that the two species, *Gracilaria tikvahiae* and *Agarophyton vermiculophyllum*, which were not distinguished in field assessments, must be described using the Family *Gracilariaceae*.

The research team compiled the field percent cover estimates from all sampling periods and the biomass data in a Microsoft Excel spreadsheet. Data were reduced to means for elevations within sites and over all sites for taxa and by major taxonomic groups (red, green, brown, emergent salt marsh vegetation and eelgrass). Correlations were made between percent cover estimated using photos and on-site determinations using snorkel. Plant cover estimated in biomass sampling plots were regressed against plant weights after all zero cover/weight samples were removed.

Predictive equations of biomass from percentage cover were forced through zero, and strength of each relationship was reported as the r2 value obtained from regressions. For each taxon analysis reported, outliers were excluded using the Huber robust fit method (K=4). Simple linear regression was used to determine changes in abundance over time and ANOVA was used to determine differences in seaweed abundance at different locations. The Shapiro-Wilk W test was used to determine whether residuals were normally distributed. The following transformations were made to meet assumptions of normality and heteroscedasticity: Green seaweed cover was log transformed to assess changes over time. Biomass data were all square root transformed (except for *D. japonica*) when regressed on percent cover. Nearly all the biomass vs percent cover residuals still did not pass Shapiro-Wilk W test after transformations despite the distribution appearing normal. All statistical analyses were performed in JMP Pro 14 (SAS Institute Inc. 2020).

Results and Discussion

Intertidal Abundance

In 2019, average intertidal seaweed cover at the five sites sampled ranged from 12-34% (Figure 4). Four Tree Island had the highest percent cover, followed closely by Adams Point. Cover of green seaweed appeared highest at Hilton Park and lowest at Sunset Hill Farm, while reds appeared highest at the Great Bay sites: Depot Road and Sunset Hill Farm. Cover of brown seaweed was highest at Four Tree Island and Adams Point.

Species from the family *Gracilariaceae* (including the introduced *A. vermiculophyllum* and the native *Gracilaria tikvahieae*) accounted for 89% of the red seaweed cover. The similar morphologies between these species make it difficult to differentiate between the two in the field, but biomass analysis in the lab revealed that *A. vermiculophyllum* was clearly the dominant red seaweed in the intertidal, as it accounted for 94% of the total biomass of red seaweed in 2019. Another invasive red seaweed, *Dasysiphonia japonica* was recorded but only made up about 5% of the intertidal red seaweed cover observed in 2019. Brown seaweeds were composed of the native fucoids, *Ascophyllum nodosum* and *Fucus vesiculosus*, and green seaweeds were composed primarily of species from the genus *Ulva* (Figure 4). The invasive green seaweed, *Ulva australis* was not as widespread as in 2018 and was only recorded once at Adams Point.

With all sites combined, there were no clear trends in percent cover over time. However, significant trends were found for individual sites when percent cover was averaged over sampling month and elevation (Figure 5). Percent cover of green seaweed has decreased significantly over the study years at Adams Point (r2=.70, p<.0001; Figure 6). At Depot Road, there was also a weak, but significant decrease in percent cover of both greens (r2=.37, p<.01) and reds (r2=.43, p<.01). These data indicate that the ostensibly damaging red and green seaweed blooms are decreasing at two sampling sites in Great Bay. Further, it is likely that the trends are well-founded due to the fact that these two locations were sampled every year.

Figure 4. Cover of seaweed averaged over sampling elevations and three seasonal collection periods at the five intertidal sites sampled in 2019.

The 2019 eelgrass survey results showed greater eelgrass bed area in Little Bay (20 acres, a 470% increase) and Great Bay (1450 acres, a 6% increase) (Barker 2020). Since nuisance seaweeds compete with seagrass for light and nutrients, the decline in seaweed may result from greater seagrass area or vice versa. Historical accounts of seaweeds in the Estuary over the past 30 years suggest increases in nuisance and exotic species as seagrasses declined (Cianciola 2014, Nettleton et al. 2011, Beem and Short 2009, Short 2014). Coupled with increased nutrient

Figure 5. Percent cover of seaweed averaged over sampling elevations and collection periods for each site and year. Sites are arranged from the lower estuary (Four Tree Island) to Little Bay (upper panel) and four sites within the Great Bay (lower panel).

Figure 6. Percent cover of green and red algae over time at the two sites sampled annually: Adams Point and Depot Road. Data were averaged over elevation for each of the three transects per site

loading (PREP 2017), these data indicate an increase in the process of eutrophication and declining health of the Estuary. The monitoring of eelgrass and seaweeds in 2019 have found increases in eelgrass (Barker 2020) accompanied by declines in bloom-forming red and green seaweeds, suggesting improved conditions in the Estuary with respect to eutrophication (Wallace and Gobler 2015, Lee et al. 2019).

Seaweed abundance varied based on location in the estuary and elevation. Reds were most abundant at low elevations (\leq 1 m above MLLW), but greens occurred at all sampling elevations (Figure 7). Brown algae were scarce at MLLW (likely due to less exposed rocks available for holdfast attachment at the lowest intertidal elevations), but abundant at all other elevations and consistently dominated the 1.0 m and 1.5 m elevations at Adams Point and Four Tree Island. Red seaweed appeared to be more prevalent in Great Bay than other parts of the estuary.

Figure 7. Percent cover of seaweed by elevation averaged over the three transects per site. Lowest sample elevation at Sunset Hill Farms was actually 0.75 m (not 0.5) above MLLW.

Subtidal Seaweed and Eelgrass Abundance

Subtidal monitoring was first integrated into the sampling scheme in 2018 and was expanded significantly in 2019 to include 3 replicate samples consisting of 9 subsamples each per site. In 2018, it was determined that subtidal photographs to capture the cover of algae and seagrass within quadrats would not work due to poor, unpredictable light conditions (Figure 9 a-b). Once the camera was close enough to make an estimate of cover, it was too close and only captured a portion of the 0.25m₂ sampling frame (Figure 9 c-f). In 2019, an alternative approach took photographs remotely at nine stations using a GoPro video camera and selecting frames just as the apparatus began to disturb the bottom, yielding an image of the benthic cover (Figure 10 a-i). These still images of the bottom flora cannot be compared with individual estimates of the quadrat cover by snorkel because they are in slightly different locations, but the averages of the nine subsamples can be compared.

In 2019, red seaweed was the dominant group at Depot Road, but seagrass dominated all other subtidal sites (Figure 11). Green seaweed abundance was low at all sites in 2019 relative to previous observations (Cianciola 2014). Biomass (Figure 11a) and percent cover (Figure 11b) of eelgrass were greatest at Sunset Hill Farm and lowest at Depot Road. Total percent cover of all plants and seaweed at subtidal sites ranged from 15% at Adams Point to 68% at Sunset Hill Farm in 2019 (Figure 11b). Sites with the highest percent cover and biomass of red and green seaweed had the lowest abundance of eelgrass. Since 2018 had only one replicate per site, it is difficult to confidently assess differences between years, but Depot Road appeared to have less red and green seaweed in 2019. Stem length of eelgrass was higher for reproductive stems than vegetative stems, and overall length of stems appeared to be highest at Adams Point (Figure 11c).

Seaweed abundance was relatively low at SeagrassNet sites in 2019 (Figure 12) compared to our subtidal seaweed sampling areas. Total seaweed biomass was over 4.5 times higher at Fort Foster than at Great Bay, and red seaweed had the highest biomass out of all the groups at both sites. Clear water and holdfasts allowed long-lived brown seaweeds to be more common at Fort Foster (including kelps as well as *Ascophyllum* and *Fucus* species) than in Great Bay, which had only a tube-forming diatom, *Berkeleya rutilans*, and only in the spring. The red seaweed in Great Bay was dominated by the invasive *Agarophyton vermiculophyllum* while at Fort Foster it was the invasive *Dasysiphponia japonica*. When compared with the four subtidal seaweed collections in Great Bay, the SeagrassNet sites had similar amounts of seaweeds, with generally more red than green biomass (Figures 11 and 12). Note that both eelgrass and seaweed were more abundant

(i.e., higher biomass per unit area) at Fort Foster compared to Great Bay. One possible explanation is that both eelgrass and seaweed are more light-limited in Great Bay.

Figure 9. Subtidal quadrat photographs. At the whole quadrat level (0.5 by 0.5 meters) the frame is barely visible, much less the plants within (a, b). At the sub-quadrat level visibility is better, but assignment of percentage cover by species remains challenging, albeit more in some cases than in others (c-f).

Figure 10. Underwater video grabs of the subtidal area at Adams Point, transect B. Key shows visual estimates of percentage cover for *Zostera marina* (Zm.), Gracilariaceae spp. (Grac.), *Ulva* blade forming species (UlBl.), and detritus (typically dead *Zostera*; abbreviated as Detr.).

Figure 11. Subtidal biomass (a, Top left) and percent cover (b, Bottom) from 2018 showing the average of 9 quadrats per site (1 replicate) and 2019 showing the average of 27 quadrats per site (3 replicates). Data from August and October were averaged. Length of vegetative and reproductive stems in 2019 (c, Top, right).

Figure 12. Biomass of seaweed collected from SeagrassNet plots at Fort Foster, Maine and Great Bay, New Hampshire in 2019. Weights were averaged over sampling period (spring, summer, fall in Great Bay; Summer and fall for Fort Foster) for each transect (A,B,C). "Mix" includes multiple types of seaweed that were entwined and could not be separated. Great Bay transect C could not be located and was not sampled for the fall sampling event.

Photo vs In-situ Percent Cover

A comparison of percent cover obtained from photographs with visual percent cover recorded in situ showed mixed results (Figure 13). For seagrass, there was a strong correlation and nearly a 1:1 relationship between the two methods (y=1.063x, $r_2=0.951$). There was also a strong correlation for red seaweed but percent cover by photo was only around half of visual percent cover ($r_2=0.775$, y=0.530x), suggesting a correction factor may need to be applied. There was no relationship between percent cover obtained from the two methods for green seaweed, probably because there were few observations and the average of most samples was 0-1% (Figure 13).

Percent Cover vs. Biomass

Correlations were used to estimate plant biomass based on percent cover data. For samples collected from intertidal areas, we found strong correlations between percent cover and biomass for Gracilariaceae *spp.*, *Ascophyllum nodosum*, and *Fucus vesiculosus* when outliers were removed (Figure 14). The correlation for *Ulva* blade was weaker ($r_2 = .614$), possibly because any sediment that had not been properly removed by rinsing would have a proportionally larger effect on *Ulva* biomass measurements than on some of the heavier species due to its flat, thin sheets. Although *D. japonica* sample size was small (n=13), there was a strong correlation between percent cover and biomass ($r_2 = .746$). While there is substantial variability, the high r_2 values indicate that percent cover can be used to estimate biomass. Correlations were also strong for subtidal samples, despite the difficulty associated with assessing percent cover while vegetation was submerged. Correlations were strong for the three dominant taxa: Gracilariaceae *spp.*, *Z. marina*, and *Ulva* spp. (Figure 14). For less common species, more samples are necessary to correlate percent cover with biomass.

Figure 14. Correlations between intertidal percent cover and biomass (dry weight) from 0.0625 m₂ quadrats for all sampling years. Gracilariaceae includes both *A. vermiculophylla* and *G. tikvahie*. Ulva blade includes *U. lactuca, U. australis,* and *U. rigida*. All biomass data were square root transformed for statistical analysis except for *Ulva* blade. Shown here are untransformed data. Triangles show outliers identified using Huber Robust Fit method (K=4; JMP 2018) that were excluded from the analysis. The number of outliers excluded for each group are: *Graciliaceae* = 2, *A. nodosum* =3, *Ulva* blade =4, *F. vesiculosis* =1, and *D. japonica* =0

Figure 15. Correlations between subtidal percent cover and biomass (dry weight) from 0.25 m² quadrats for all sampling years. *Gracilariaceae* includes both *A. vermiculophyllum* and *G. tikvahie. Ulva* blade includes *U. lactuca, U. australis,* and *U. rigida.* All biomass data were square root transformed for statistical analysis but untransformed data are shown. Triangles show outliers identified using Huber Robust Fit method (K=4; JMP 2018) that were excluded from the analysis (3 outliers for *Gracilariaceae* only)

Summary and Conclusions

Vegetation was assessed in 2019 at five intertidal sites and four subtidal locations by extending the center intertidal transect at all four sites in the Great Bay, to determine long-term trends in abundance. Within intertidal areas, we found that the percentage cover of green algae has decreased since 2014 at Adams Point and cover of both green and red algae has decreased at Depot Road. Substantial reductions in nitrogen released from wastewater treatment plants may have contributed to declines in seaweed observed at these two intertidal locations in Great Bay, but declines may also be related to annual changes in light, temperature or salinity for these areas. Percentage cover and biomass sampling at four subtidal sites in Great Bay showed moderate levels of seaweed compared to 2018 and an inverse correlation with eelgrass for both biomass and cover. Since many species of red and green algae are considered nuisance organisms because of their potential to contribute to eutrophication and foul fishing gear,

continued decreases could benefit the fishing community and signal improvements in estuarine health. However, decreases in cover of reds and greens were only significant at 2 of the 8 sites. and additional monitoring is required to determine whether declines will continue as land use changes, water temperatures warm, and introduced species potentially become more established. In 2019 we collected and analyzed seaweed biomass from SeagrassNet sites, which was similar to seaweed abundance found in eelgrass beds at our four subtidal sampling sites in Great Bay.

Biomass data of algae and eelgrass were also collected in 2019 and added to the existing data set to strengthen correlations between percent cover and biomass. Subtidal sampling was piloted in 2018 and fully integrated into the sampling scheme in 2019. Our approach to subtidal sampling appeared highly successful based on the strong correlations between percent cover and biomass. Obtaining a photographic record of these subtidal quadrats proved difficult using a hand-held camera. Better results assessing a standardized area of bottom were obtained by video camera. Initial comparisons between percent cover of seaweed and seagrass determined on site using snorkel *versus* those recorded from photos showed that photos can be used to measure percent cover of seagrass. Continued sampling in subtidal areas will allow us to gain a more comprehensive understanding of changes in seaweed and eelgrass communities over time.

Acknowledgements

The authors thank Kalle Matso, Rachel Rouillard and Erik Beck for support of the project. Financial support was obtained through the Piscataqua Region Estuaries Project. The project was funded in part by NOAA's Office for Coastal Management under the Coastal Zone Management Act in conjunction with the NH Department of Environmental Services Coastal Program. A volunteer program was piloted in 2019 and we thank Great Bay 2020, Abigail Lyon from PREP as well as the Davis Foundation for funding. We thank the volunteers, led by Wells Costello of the Coastal Research Volunteers, for venturing out onto the flats and helping us collect photographs of each quadrat. We also thank Briana Fischella for field assistance and Dillon Mulhern for lab assistance. The report was improved by reviews by Dr. Brad Peterson and Dr. Jud Kenworthy.

References

- Barker, S. 2020. Eelgrass Distribution in the Great Bay Estuary and Piscataqua River for 2019: Final Project Report submitted to the Piscataqua Region Estuaries Partnership. PREP Reports & Publications 438.
- Beem, N., F.T. Short. 2009. Subtidal Eelgrass Declines in the Great Bay Estuary, NH-ME. Estuaries and Coasts 32: 202-205.
- Burdick, D.M., A.C. Mathieson, C.R. Peter, S. Nick. 2016. Monitoring Macroalgae in the Great Bay Estuary for 2014. Final Report. The Piscataqua Region Estuaries Partnership. 19 pp.
- Cianciola, E. 2014. Evaluation of Macroalgae and Monitoring Options for Great Bay Estuary, New Hampshire. MS Thesis. University of New Hampshire 93 pp.
- Cianciola, E., D. Burdick 2014. Results of 2013 Macroalgal Monitoring and Recommendations for Future Monitoring in Great Bay Estuary, New Hampshire. PREP Publications. Paper 41. http://scholars.unh.edu/prep/41
- Freshwater, D.W., F. Montgomery, J.K. Greene, R.M. Hammer, M. Williams, P.E. Whitfield. 2006. Distribution and identification of an invasive *Gracilaria* species that is hampering commercial fishing operations in southeastern North Carolina, USA. Biological Invasions 8: 631-637.
- Gurgel, C.F.D., J.N. Norris, W.E. Schmidt, H.N. Le, S. Fredericq. 2018. Systematics of the Gracilariales (Rhodophyta) including new subfamilies, tribes, subgenera, and two new genera, *Agarophyton gen. nov.* and *Crassa gen. nov. Phytotaxa 374:1-23*.
- Han, Q., D. Liu. 2014. Macroalgae blooms and their effects on seagrass ecosystems. Journal of Ocean University of China 13(5):791-798.
- Hardwick-Whitman, M.N., A.C. Mathieson. 1983. Intertidal Macroalgae and Macroinvertebrates: Seasonal and Spatial Abundance Patterns Along an Estuarine Gradient. Estuarine, Coastal and Shelf Science 16: 113-129.
- Hauxwell, J., J. Cebrian, C. Furlong, I. Valiela. 2001. Macroalgal canopies contribute to eelgrass (*Zostera marina*) decline in temperate estuarine ecosystems. Ecology 82:1007-1022.
- Lee, H.W., J.C. Kang, M.S. Kim. 2019. Taxonomy of *Ulva* causing blooms from Jeju Island, Korea with new species, *U. pseudo-ohnoi* sp. nov. (Ulvales, Chlorophyta). Algae 34:253-266.
- Mathieson, A.C., C.J. Dawes. 2017. Seaweeds of the Northwest Atlantic. University of Massachusetts Press, Amherst, MA.
- Nettleton, J.C., C.D. Neefus, A.C. Mathieson, L.G. Harris. 2011. Tracking environmental trends in the Great Bay Estuarine System through comparisons of historical and present-day green and red algal community structure and nutrient content. Final Report. Great Bay National Estuarine Research Reserve System, Durham, NH. 101 pp.
- Nettleton, J.C., A.C. Mathieson, C. Thornber, C.D. Neefus, C. Yarish. 2013. Introduction of *Gracilaria vermiculophylla* (Rhodophyta, Gracilariales) to New England, USA: estimated arrival times and current distribution. Rhodora 115(961):28-41.

- PREP. 2017. State of Our Estuaries 2018. *PREP Reports & Publications*. 391. https://scholars.unh.edu/prep/391
- Schmidt, A.L., J.K.C. Wysmyk, S.E. Craig, H.K. Lotze. 2012. Regional scale effects of eutrophication on ecosystem structure and services of seagrass beds. Limnology and Oceanography 57(5): 1389-1402.
- Short, F.T., D.M. Burdick. 1996. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries 19:730-739.
- Short, F. 2014. Eelgrass Distribution in the Great Bay Estuary for 2013. University of New Hampshire Report. Piscataqua Region Estuaries Partnership, Durham, NH. 9 pp.
- Short, F.T., D.M. Burdick, J. Kaldy. 1995. Mesocosm experiments quantify the effects of coastal eutrophication on eelgrass, *Zostera marina* L. Limnology and Oceanography 40:740-749.
- Thomsen, M.S., K.J. McGlathery. 2007. Stress tolerance of the invasive macroalgae *Codium fragile and Gracilaria vermiculophylla* in a soft-bottom turbid lagoon. Biological Invasions 9: 499-513.
- Vaudrey, J.M.P., J.N. Kremer, B.F. Branco, F.T. Short. 2010. Eelgrass recovery after nutrient enrichment reversal. Aquatic Botany 93:237-243.
- Villalard-Bohnsack, M. 2003. Illustrated Key to the Seaweeds of New England, 2nd edition. The Rhode Island Natural History Survey, Kingston, RI. pp. 149 pp.
- Wallace, R.B., C.J. Gobler. 2015. Factors controlling blooms of microalgae and macroalgae (*Ulva rigida*) in a eutrophic, urban estuary: Jamaica Bay, NY, USA. Estuaries and Coasts 38:519-533.
- Watson, E.B., C. Wigand, A.J. Oczkowski, K. Sundberg, D. Vendettuoli, S. Jayaraman, K. Saliba, J.T. Morris. 2015. Ulva additions alter soil biogeochemistry and negatively impact Spartina alterniflora growth. Marine Ecology Progress Series 532:59-72.

Appendices

Appendix A: Raw data of cover and biomass

Appendix B: List of photographic images by site and date

Appendix C: Site descriptions

Appendix D: Quality Assurance / Quality Control document

Appendix A

Table A1. Intertidal plant cover (%) data measured in 0.25m2 quadrat.

Date	Site	Trans	Elev	Agarophyton vermiculophyllum	ASNO f. scorpioides	Ascophyllum nodosum	Atriplex patula	callathamnion	corymbosum	Chaetomorpha linum Cladophora sericea	Dasysiphonia japonica	Ectocarpus fasciculatus	Fucus spiralis	Fucus vesiculosus	Unknown Gracilaria spp . Total Gracilariaceae	Hildenbrandia rubra	Juncus gerardii	Limonium nashii	Percursaria percusa	Pyalela Intoralis Polysiphonia	Porphyra	Rhizoclonium riparium	Ruppia maritima	Spartina alterniflora	Spartina patens	Salicornia de pressa	Sudeud media	Ulva intestinalis	Ulva prolifera	Ulva Tube	Vaucheria	Unk. Filamentous green Unk. Red	Wrack	GREEN	RED	BROWN	Yellow	M	IARSH	Notes:
6/17/19	4TI	Α	0	5	-	-	-							1		5	-											1			-			0.	5	5	1	0	0	FUVE detached
6/17/19	4TI	Α	0.5	3		5								88	1	3					1														3 3	.5 9	3	0	0	
6/17/19	4TI	Α	1			2								98) 1																			0 0	.5 10	0	0	0	
6/17/19	4TI	Α	1.5											25)								20											0	0 2	5	0	20	
6/17/19	4TI	Α	2										4)								85		1									0	0	4	0	86	
6/17/19	4TI	Α	2.5)	95																5		0	0	0	0	95	
6/17/19	4TI	в	0	30										1	3)					1						1	0				1		1:	1 30	.5	1	0	0	
6/17/19	4TI	В	0.5	3											3	3													77	77				7	7	3	0	0	0	
6/17/19	4TI	В	1		25					20				20	()							_	10				_						2	<u>ן</u> נ	0 4	5	0	10	
6/17/19	4TI	В	1.5		4	22		_						40	()			_	_				30			_	_							<u> </u>	0 6	6	0	30	
6/17/19	4TI	В	2		2		_	_		_			_	2	()			_	_			_	75		2	_	_				_			0	0	4	0	77	
6/17/19	4TI	В	2.5				1	_		_					()			_		_							_					70		2	0	0	0	0.5	
6/17/19	4TI	С	0	3				2		_		5		2		3			_	_	_						_	_						(0	5	7	0	0	
6/17/19	4TI	С	0.5	2				_		_				45		2			_	_	_						_	_						(0	2 4	5	0	0	
6/17/19	4TI	С	1	1				_		_				85	-	L		_		_	_		_	10			_								<u> </u>	1 8	5	0	10	
6/17/19	4TI	С	1.5		22	3		_		_				40	()			_	_	_			30			_	_						(·	0 6	5	0	30	
6/17/19	4TI	C	2		15			_		_				1	()		3	_	_	_		_	60		2		_			5					0 1	.6	5	65	
6/17/19	4TI	C	2.5			_		_		_			_	_)	85		_		-		_			1	1			_	1			(0	0	1	86	
6/18/19	HP	A	0				_	_		_			_	_)		_	_	1			_					1		2		_		2.	5	0	1	0	0	
6/18/19	нр	A	0.5			18									5 0)				1								1	. 1	2					2	0 1	.9	0	0	
6/18/19	HP HD	A	1.5			/5	_	-		2		_		/ 0	.5 0.	2					-		_	15	_			1				10		2.		s c.	2	0	45	
6/10/19	nP up	A	1.5							_									17	2		10		10								10		2		0	<u> </u>	0	10	data shoot says 25 fill groop later ID'd as D
6/10/19	up	•	2	1						_									.,	-		10		10				0		15		1		5	-	1	0	0	10	data sheet says 55 m. green, later 10 d as k
6/18/19	нр	B	0.5	1				-		_			-						-				-					0		15		1		1	-	1	0	0	0	
6/18/19	нр	B	1																									1		2					2	0	0	0	0	
6/18/19	нр	B	15													, ,						60						1		~				6		0	0	0	0	marsh scarp (eroded)
6/18/19	нр	B	2.5																			5		25							15					0	0	15	25	
6/18/19	нр	c	0	1						_						1											1	0		30				4		1	0	0	- 25	
6/18/19	HP	c	0.5	-		3)											-	-	5	5					5	0	3	0	0	
6/18/19	HP	c	1			-		3						3		2												4 5	25	30				34	1	3	3	0	0	
6/18/19	HP	c	1.5					-						-)						1		2				1							i	0	0	0	2	most bare marsh edge
6/18/19	HP	c	2)						_		80							10				5	0	0	10	80	
6/17/19	AP	A	0							_)												1							ı	0	0	0	0	savs "seaward" on data sheet
6/17/19	AP	A	0.5			13								65)												2							2	0 7	8	0	0	
6/17/19	AP	А	1											1)																			0	0	1	0	0	
6/17/19	AP	Α	1.5			6								2)								42										(0	0	8	0	42	boulder 10%.
6/17/19	AP	в	0	15					1	LO					1	5												3						1	3 1	.5	0	0	0	
6/17/19	AP	в	0.5			75)																		(D	0 7	5	0	0	
6/17/19	AP	в	1			1								1)																			C	0	1	0	0	

6/17/19 AP	В	1.5		22			3	0							0	0	25	0	0	
6/17/19 AP	С	0	1		3			1			3		1		1 6	1	0	1	0	
6/17/19 AP	С	0.5			1		1	0							1	0	1	0	0	
6/17/19 AP	С	1	1	61			3	1							0	1	64	0	0	
6/17/19 AP	С	1.5		87			3	0		5					0	0	90	0	5	
6/17/19 DR	Α	0.5					0.5	0.5			5				5	0.5	0	0	0	
6/17/19 DR	Α	1		15			1	1			7				7	1	15	0	0	
6/17/19 DR	Α	1.5		30		1	5	0			2				2	0	45	0	0	
6/17/19 DR	в	0.5					0.5	0.5			3			0.	5 3	0.5	0	0	0	
6/17/19 DR	в	1		1			0.5	0.5			2				2	0.5	0.5	0	0	
6/17/19 DR	в	1.5				5		0		69	2	4			6	0	5	0	69	
6/17/19 DR	С	0.5					1	1			1			0.	5 1	1	0	0	0	
6/17/19 DR	с	1				6		0		15	3 1	5 15			18	0	6	0	15	
6/17/19 DR	с	1.5				20		0		53	1	1 1			2	0	20	0	53	location estimated, based on other plots. P
6/19/19 SHF	Α	0.75					3	3	1						0	3	0	0	0	elevation:38
6/19/19 SHF	Α	1.0					0.5	0.5							0	0.5	0	0	0	elevation:066
6/19/19 SHF	Α	1.5						0		85	1				0.5	0	0	0	85	elevation: .443
6/19/19 SHF	в	0.75					1	1	1						0	1	0	0	0	elevation:378
6/19/19 SHF	в	1.0					1	1							0	1	0	0	0	el:047
6/19/19 SHF	в	1.5						0		90					0	0	0	0	90	el: .537
6/19/19 SHF	с	0.75					2	2							0	2	0	0	0	ele:376
6/19/19 SHF	с	1.0					5	5			3				3	5	0	0	0	el:111
6/19/19 SHF	с	1.5						0		85					0	0	0	0	85	el: .410
8/1/19 DR	Α	0.5					30	30			1				1	30	0	0	0	
8/1/19 DR	A	1		2			1	1							3 0	1	2	0	0	
8/1/19 DR	Α	1.5		25				0							0	0	25	0	0	
8/1/19 DR	в	0.5					15	15			7	_			7	15	0	0	0	
8/1/19 DR	в	1					1	1			1				0.5	1	0	0	0	
8/1/19 DR	в	1.5				1	7	0		30	4	7			11	0	17	0	30	
8/1/19 DR	c	0.5						0							0	0	0	0	0	
8/1/19 DR	с	1					7 13	13		20	2	10			12	13	7	0	20	
8/1/19 DR	c	1.5				1	8	0		65	_				1 0	0	18	0	65	
8/1/19 AP	Α	0					3	3			3				3	3	0	0	0	
8/1/19 AP	A	0.5					3	0							0	0	3	0	0	
8/1/19 AP	A	1		85			5	0						1	0 0	0	90	0	0	
8/1/19 AP	Α	1.5		60				0							0	0	60	0	0	
8/1/19 AP	в	0					25	25							0	25	0	0	0	
8/1/19 AP	в	0.5		35		4	5	0							0	0	80	0	0	
8/1/19 AP	в	1		10				0							0	0	10	0	0	
8/1/19 AP	в	1.5		10		2	0	0							0	0	30	0	0	
8/1/19 AP	c	0					4	4			1				0.5	4	0	0	0	
8/1/19 AP	с	0.5		3		4	0	0							0	0	43	0	0	
8/1/19 AP	c	1		_		1	0	0							0	0	10	0	0	
8/1/19 AP	с	1.5					1	0		15					0	0	1	0	15	
8/1/19 HP	A	0						0			1				1 1	0	0	0	0	
8/1/19 HP	Α	0.5		20				0					0.5	0.	5 0.5	0	20	0	0	
	1																			

8/1/19 HP	Α	1	12			5	5 5							1				0.5	0.5	5	17	0	0
8/1/19 HP	Α	1.5					1 1			0	.5			1		2			0.5	1	0	2	0.5
8/1/19 HP	Α	2	1				0			3	30					35			0	0	0.5	35	30 ASNO drift
8/1/19 HP	в	0					5 5							10	12				22	5	0	0	0
8/1/19 HP	в	0.5					3 3							3			3	1	6	3	0	0	0
8/1/19 HP	в	1				1	4 4							1			0.5 0.5	2	1.5	4.5	1	0	0 unknown red either DAJA or CACO
8/1/19 HP	в	1.5				0.	5 0.5										0.5		0.5	0.5	0	0	0 peat block 40%
8/1/19 HP	в	2	15			8	0			(55					8		2	0	0	23	8	65
8/1/19 HP	с	0		1			2 2							1			05 4		1	7	0	0	0
8/1/19 HP	c	05	85				0							_			1	0.5	1	0	85	0	0 Ulva and Grac buried
8/1/19 HP	c	1					0							3			-	90	3	0	0	0	
8/1/19 HP	c	15	20			4	0				_			1			0.5		1	0	24	0	0
8/1/19 HP	c	2	2			3	0				0			-			1		1	0	5	0	90
8/6/10 /TI	^	2	-	1		- -	0				~			1			-		0.5	1	0	0	
8/6/10 41	A .	0.5		-		10								1					0.5		40	0	0
8/6/19 411	A .	1	7			+0	• •				_				_				0		40	0	0 Death 19/
8/6/19 411	A	1	/			90	0						_		_				0	0	97	0	0 ROCK 1%
8/6/19 411	A	1.5	10			.2	0				50				_				0	0	22	0	60
8/6/19 4TI	A	2	1			3	0			8	30		1		_			1	0	0	3.5	0	80.5
8/6/19 4TI	A	2.5				_	0	60			_	20	_		_			20	0	0	0	0	80
8/6/19 4TI	В	0		4		2	5 25		6		_	_	_	1	_			_	0.5	35	0	0	0 Porphyra drift
8/6/19 4TI	В	0.5				1	5 15				_		_				60	_	60	15	0	0	0
8/6/19 4TI	В	1	3			5	0			1	10		_						0	0	8	0	10
8/6/19 4TI	В	1.5	3		1	15	0			1	15		_					_	0	0	18	0	15
8/6/19 4TI	В	2	5			5	0			(50	20	1					_	0	0	10	0	81
8/6/19 4TI	в	2.5					0					1						2	0	0	0	0	1
8/6/19 4TI	С	0				1 0.	5 0.5										20		20	0.5	1	0	0
8/6/19 4TI	С	0.5			4	15	5 5										0.5		0.5	5	45	0	0
8/6/19 4TI	С	1	25			59	0			1	15								0	0	84	0	15 buried ASNO underneath
8/6/19 4TI	С	1.5	72			3	0			2	25								0	0	75	0	25 amphipods, 3 green crabs
8/6/19 4TI	с	2	30			8	0			5	59		1						0	0	38	0	60
8/6/19 4TI	с	2.5					0	63				7						30	0	0	0	0	70 Juncus recorded at 65.Changed to 63 to tota
8/9/19 SHF	Α	0.75					2 2			1								1	0	2	0	0	0
8/9/19 SHF	Α	1.0					5 5			1								20	0	5	0	0	0
8/9/19 SHF	Α	1.5					0			5	50							50	0	0	0	0	50
8/9/19 SHF	в	0.75				2	0 20			1				1				10	0.5	20	0	0	0
8/9/19 SHF	в	1.0					0			9	90								0	0	0	0	90
8/9/19 SHF	в	1.5					0			8	30								0	0	0	0	80
8/9/19 SHE	c	0.75					2 2											2	0	2	0	0	0
8/9/19 SHE	c	10					2 2											3	0	2	0	0	0
8/9/19 SHE	c	15									90								0		0	0	90
9/30/19 DR	Δ	0.5				9	3 93							2				5	2	93	0	0	0
9/30/19 DR	<u>^</u>	1				1	3 3							-				2		3	1	0	0
9/30/19 DR	2	15	25			10												2	0	0	25	0	0
0/20/10 DP		0.5	23		+ + + •		0 00			2	-							4	0	00	0	0	
0/20/10 DR		1				9	1 1			4								1	0		0	0	
9/30/19 DR	0	1.5			20		1 1				20							1	0	1	20	0	20
9/30/19 DR	0	1.5			30						50								0	0	30	0	0
3/20/13 DK	L	0.5					<u> </u>										2	4	0	4	U	U	U

9/30/19 DR	С	1				25	5	10 :	10				15				2	0	10	25	0	15	
9/30/19 DR	С	1.5				15	5		0				75					0	0	15	0	75	
10/1/19 4TI	Α	0				25	5	4	4									0	29	5	0	0	
10/1/19 4TI	Α	0.5		5			55		0									0	0	60	0	0	
10/1/19 4TI	Α	1		10			90		0									0	0	100	0	0	
10/1/19 4TI	Α	1.5		5			25		0				40					0	0	30	0	40	
10/1/19 4TI	Α	2					15		0	1			70	1				0	0	15	0	71.5	
10/1/19 4TI	Α	2.5							0	35			1	.5			15	0	0	0	0	50	
10/1/19 4TI	в	0				10		40 4	40			15						0	65	0	0	0	
10/1/19 4TI	в	0.5					1	2	2									0	2	0.5	0	0	
10/1/19 4TI	в	1		5			25		0				35					0	0	30	0	35	
10/1/19 4TI	в	1.5		35			25		0				40					0	0	60	0	40	
10/1/19 4TI	в	2							0	5			25 5	0 2				0	0	0	0	82	
10/1/19 4TI	в	2.5							0								80	0	0	0	0	0	no post. Guessed location from A
10/1/19 4TI	с	0				5			0							15		15	5	0	0	0	
10/1/19 4TI	с	0.5		2			35	3	3									0	3	37	0	0	
10/1/19 4TI	с	1	19	5			50		0				30					0	0	65	0	30	
10/1/19 4TI	c	1.5	30	2			30		0				30					0	0	60	0	30	
10/1/19 4TI	c	2	10	5			3		0	10			40	5 20		5		0	0	13	5	75	
10/1/19 4TI	c	2.5					-		0	50			1	5			25	0	0	0	0	65	no post. Guessed location from A
10/2/19 SHF	A	0.75						95 9	95					-			5	0	95	0	0	0	
10/2/19 SHE	A	1.0							0								15	0	0	0	0	0	
10/2/19 SHE	Δ	1.5							0				88				10	0	0	0	0	88	
10/2/19 SHE	B	0.75						92 (92				5		1		2	1	92	0	0	0	
10/2/19 SHE	в	10						25	25				50		-		5	0	25	0	0	50	
10/2/19 SHE	B	1.5							0				90				_	0	0	0	0	90	
10/2/19 SHE	c	0.75						30	30			1	0				5	0	30	0	0	0	
10/2/19 SHE	c	10						1	1			-	5	_			2	0	1	0	0	0	
10/2/19 SHE	c	1.5							0				- 80					0	0	0	0	80	
10/4/19 HP	Δ	0				1			0				00			1	0.5	0.5	0.5	0	0	0	
10/4/19 HP	Δ	0.5		8		-			0						1	-	1	0.5	0.5	8	0	0	
10/4/19 HP	Δ	1		75		1	6	05 0	1.5					_	-		1	0.5	1	81	0	0	
10/4/19 HP	Δ	15				-		0.0	0				20			1 50	-	0.5	0	0	50	20	
10/4/19 HP	Δ	2							0				25			60	1	0.5	0	0	60	25	No post Guessed location based on B
10/4/19 HP	B	0			<u>ح</u>			4	4							3	-	3	9	0	0		
10/4/19 HP	B	0.5	5					-	5							2	1	2	5	0	0	0	
10/4/19 HP	B	1	10	1			2		10							1	1	0.5	10	3	0		ELIVE and ASNO were detached
10/4/19 HP		1 5	10	-			~	-	0				1		2	15	-	2.0	10		15	1	TOVE and ASNO WERE detached
10/4/19 HP	B	2	0.5	5 1					0				25		2	50		2	0	15	50	25	ASNO drift
10/4/19 HP	c	0	0	, ,			2	2	2		1		25		1	1		1	2	1.5	0	23	Asito unit
10/4/19 HP	c	0.5	5	60		2	2	2	5		1				-	1	 3	1	7	- <u>-</u>	0	0	
10/4/19 HP	c c	1	2	00		1			2							1	 -	0.5	2	00	0		
10/4/19 HP	c c	1.5	2	15		1			2				•	_	1	10		0.5		15	40		
10/4/19 HP	C	1.5		15					0				75	- 1	1	40		1	0	15	40	70	
0/20/10 AP	<u>د</u>	2	0	,	2			E	5				/5	-				0		0.5	0	/0	
9/30/19 AP	~	0	1	20	3		45	-	4					_				0		75	0		
9/30/19 AP	A .	1	1	50			40		1								0.5	0	1	/5	0	0	08% rock
9/30/19 AP	A .	15					1		0				25	_			5	0	0	1	0	25	9676 TOLK
9/30/19 AP	8	0			10		-	10	10				25					0	20		0		B/BTOCK
9/30/19 AP	B	05		0/1	10			10	0									0	20	0/	0	0	ovsters
9/30/19 AP	B	1		34			-		0								05	0	0	54	0	0	no nost Lined up with other A
9/30/19 AP	B	15		20			2		0								 1	0	0	25	0	0	no post Lined up with other A
9/30/19 AP	C	0		20	5		د _ا	15	15								-	0	20	23	0	0	no pose ened up with other A
9/30/19 AP	c	05					4	1	1									0	1	0	0	0	
9/30/19 AP	C C	1		70			- 4	-	0					+-+			05	0	1	74	0	0	
9/30/19 AP	0	15		70			1		0								1	0	0	/1	0	0	Whole area dug up by clammers
AN 61 10CIE		1.5		55					U				9				1	U	U	55	U	9	whole area dug up by clammers

Table A2. Intertidal plant cover (%) and biomass (g dry weight) data collected from a 0.0625 m2 quadrat.

Date SITE	TRANSECT	ELEVATION Accompletion	vermiculophyllum % Agarophylon vermiculophyllum Bio	Ascophyllum nodosum %	Ascophyllum nodosum Bio	ASNO f. sorpioides Bio	Callithomniom corymbosum %	corymbosum bio	Chondrus crispus 76 Chondrus crispus Bio	Cladophora sericea %	Cladophora sericea Bio Dazysiphonia japonica %	Dazysiphonia japonica Bio	Fucus vesiculosis % Fucus vesiculosis Bio Cravillaria Hk vahiae %	Gracillaria tikvahiae Bio	Grac. Unknnown spp. %	Tota Ki racilla riaceae %	Total G racillariaceae Bio Juncus gerardii %	Juncus gerardii Bio Limonium nashii %	Limonium nashii Bio Mastocarpus stellatus %	mastocarpus stellatus Bio	melanothaminus harveyi Melanothamnus harveyi Bio	Polysiphonia fucoides % Polysiphonia fucoides	Bio Bio Dunnia maritima %	Ruppia maritima	Salicornia depressa %	Salicornia depressa Bio Spartina alterniflora %	Spartina alterniflora Bio	spartina patens 26 Spartina patens Bio	Ulva australis	Ulva lactuca %	Ulva lactuca	Ulva rigida	Blade Ulva %		Ulva compressa Ulva intestinalis	Ulva prolifera	Ulva Tube %	Ulva Tube Bio Vaucheria %	Vaucheria Bio	Green filamentous %	% Note	5
8/1/19 AP	A	0.0	5 0.4													5 (.40													2		0.03	2	0			_	_				
8/1/19 AP 8/1/19 AP	A	1.0		100	225.29												_																	-			_	-				
8/1/19 AP	A	1.5	0.02	2	1.30								2 0.7			0	.02									20	19.21										_					
8/1/19 AP	В	0.0	2													2					0.03									1		0.04	1	0							NEH	A mixed w
8/1/19 AP	B	0.5	2 0.06	-	0.005	_		0.005				1	12 3.86		-	2 0	.06				0.005													_				_			FUVE	ID'd in t
8/1/19 AP 8/1/19 AP	B	1.0			0.005							3	0 28 09			-	_																	-			_	-				
8/1/19 AP	c	0.0	10 0.45													10 0	.45												0.42	10			10 0	.4								
8/1/19 AP	С	0.5		10	2.05								2 2.69																													
8/1/19 AP	C	1.0		2	0.54								0 3 17		-	_	_										0.00							-			_	_				
8/1/19 AP 8/1/19 DR	A	0.5	1.45	2	0.54					0	005		0 5.17			20 1	.45				0.005					3	0.28					1.43	25 1	4			_	-				
8/1/19 DR	A	1.0		95	252.7																																					
8/1/19 DR	Α	1.5	0.02	95	73.27					0.	005		0 0.15			0	.02															0.01		0								
8/1/19 DR	B	0.5	0.03												1	1 0	.03															0.01	0.5	0			_	_				
8/1/19 DR	B	1.5															_															0.01	5	0	0.04		8 0	.04				
8/1/19 DR	C	0.5																																								
8/1/19 DR	С	1.0											1 0.05		_																				_		2	0			1	
8/1/19 DR	C	1.5								0.	005		0 0.02		-	_	_									25	9.07				0.03		2	0 0.00	05	0.01	1 0.0)15			0.5	
8/6/19 4TI	A	0.5	0.09									1	0 28.63		1	1 0	.09																	-			_	-			0.5	
8/6/19 4TI	Α	1.0										9	5 58.75																													
8/6/19 4TI	A	1.5		90	147.8								5 4.41		_		_																	_			_	_				
8/6/19 411 8/6/10 4TI	A	2.0											1 0.34				-	2.02							0.4	41 80	48.28	5 05						-			_	_			FUVI	: drift
8/6/19 4TI	B	0.0											0 0.1		0.5	0.5	-	5 2.02							0.0	05		5 0.5						-			_				No b	iomass o
8/6/19 4TI	В	0.5	3.24										1 0.07		15	15 3	.24																			0.56	70 0	.56			U. pr	olifera re
8/6/19 4TI	В	1.0	0.54			1 0.1						8	80 41.79		_	0	.54									12	7.89							_			_	_			Grac	ilaria was
8/6/19 4TI	B	1.5			2 27 1	0 56.64						1	1 1 1 1 5	-	-	-	_				-				2 01	50	16.8	0 20	1					-			_	2			8.49	g JUGE rea
8/6/19 4TI	B	2.5			2.27	2 3.52							1 1.15				_								2 0.1	02 05	22.54	.0 2.0	1					-			_	- 1	0.005	0	.05	
8/6/19 4TI	С	0.0																																						80	no b	iomass. G
8/6/19 4TI	C	0.5	0.32												5	5 (.32																	_			_	_				
8/6/19 411 8/6/19 411	C	1.0			1	4.4							0 36 32		-		_									30	2.73		-					-			_	_				
8/6/19 4TI	c	2.0				0 0.02							0 30.32				-	1	0.44						1	1 80	28.92							-			_	10				
8/6/19 4TI	С	2.5															65	5 8.49																							30 JUGE	biomass
8/5/19 HP	A	0.0	0.01	60	20.24										-	0	01						0.08											_		0.07		07			1 100-	prolifer
8/5/19 HP	A	1.0	0.01	15	4.5								0 8.18		-	0 (.01						0.06											-		0.07	5 0	.07			1 Olva	prontera
8/5/19 HP	A	1.5																																								
8/5/19 HP	Α	2.0		0.5	0.005																					45	11.15											50	1.54		ASNO) was det
8/5/19 HP	B	0.0	0.5 0.005	00	102.1										-	0.5 0	.01			_									-		0.01		1	0	0.04		5 0	.04				
8/5/19 HP	B	1.0		00	105.1			0.02					1		0.5	0.5 0	.00																0.5	-			0.5	0			FUVE	drift
8/5/19 HP	В	1.5																															0.5							0.5	1 No b	iomass c
8/5/19 HP	B	2.0	2 0 12	2	1.16										_	2 0	12						0.05			40	25.87						0.5		0.02		1.0	50				
8/5/19 HP	c	0.5	1 0.13				2		0.08			0.005				1 0	.10			5 0.7		0	.005										0.5	-	0.02		1 0.	.02		1	1 MAS	recorded
8/5/19 HP	С	1.0	1.67	1	1.52		-		2.50				4 1.98		57	57 1	.67														0.06		5 0	1							30	
8/5/19 HP	C	1.5																															0.5									
8/5/19 HP	C	2.0	0.00	10	24.16	6.01						1	.0 3.54			5 0	30				0.01			1 0		60	38.44		-			0.03	0	0			_	10			5	
8/9/19 SHF	Â	1.00	0.59												7	7 0	.35				0.01			1 0													_				15	
8/9/19 SHF	A	1.50		0	0.42																					85	59.23														15	
8/9/19 SHF	В	0.75	0.1												2	2 0	.10																								2	
8/9/19 SHF	B	1.00	4.13											0.1	30	30 4	.18						0.	5		50	17.6		-			0.02	1	0			-	_			50 30 00%	of plot ::::
8/9/19 SHF	c	0.75	0.04												1	1 0	.04									50	17.0											-			50 50%	or proc wa
8/9/19 SHF	С	1.00	0.81												10	10 0	.81									30	8.94														5	
8/9/19 SHF	C	1.50																								8	0.82														92 elev	ation was

Table A3. Subtidal cover and biomass data collected in 0.25 m2 quadrats.

10/16/19 DR B W	0.78	0.005		0.005					5 0.78						0 0.3	1
10/16/19 DB B NE	1.08	0.005		0.06		5	•		15 1.08				2	0.9		wrack bio recorded as 7M bi
10/16/19 DR B SE	4.08	0.01		0.005					20 4.08				-		0 06	3
10/16/19 DR B SW	3.5	0.005		0.005		2			20 3.50						0.0	
10/16/10 DR B NW	5.5	0.005		0.003		2			20 3.30				-	0.5		wrack bio recorded as 7M bi
10/16/19 DR B NW		0.005		0.02		2			33 0.00					0.5		what bio recorded as zivi bi
10/16/19 DR C Center	0.72	0.005						1.0	5 357						F 10	bare
10/16/19 DR C N	0.75	0.005						1.0	5 2.57					1	5 1.9	-
10/16/19 DR C E	2.07		0.005						20 2.07						0 0.1	5
10/16/19 DR C S	0.3	0.005	0.005				_		5 0.30						0 0.2	5
10/16/19 DR C W	4.42			0.005		5		0.3	15 4.72				5	0.4		wrack bio recorded as ZM bi
10/16/19 DR C NE	0.32	0.005							2 0.32				2	0.3		wrack bio recorded as ZM bi
10/16/19 DR C SE	2.97	0.005							10 2.97							
10/16/19 DR C SW	5.88	0.005	0.005			1 0	.09		30 5.88	0.04		0.2	5	0.8		wrack bio recorded as ZM bi
10/16/19 DR C NW																bare
10/15/19 LC A Center	0.1					5 0.0	005		5 0.10					5	0 10.	3
10/15/19 LC A N																bare
10/15/19 LC A E															2 0.1	8
10/15/19 LC A S	8.55				0.005	0	.08		50 8.55					2	0 1.5	4
10/15/19 IC A W																bare
10/15/19 IC A NE	0.05	0.005			0.005				0.05					1	5 1 2	4
10/15/19 LC A SE	2.15	0.005			0.005	1 0	105		15 2 15					6	0 86	8
10/15/19 LC A SW/	2.15					1 0			15 2.15						2 0.0	2
10/15/19 LC A SW															2 0.2	204 augusta a Mat as Ilast
10/15/19 LC A NW									0.40						1	zivi overnanging, ivot correcte
10/15/19 LC B Center	0.13								0.13					1	0 0.1	5
10/15/19 LC B N						0.0	005							3	0 3.6	1
10/15/19 LC B E									2 0.00				2	0.2		
10/15/19 LC B S															3 0.	6
10/15/19 LC B W														2	0 2.2	8
10/15/19 LC B NE	0.49 0.0	01 0.005							2 0.49				2		0.1	1
10/15/19 LC B SE	0.31								2 0.31					1	0 2.6	7
10/15/19 LC B SW	3.5								15 3.50		0.01			4	0 5.0	6
10/15/19 LC B NW																bare
10/15/19 LC C Center	0.01								0 0.01					1	5 0.8	1
10/15/19 LC C N	0.08								1 0.08						0.0	1
10/15/19 IC C F																bare
10/15/19 10 0 5																bare
10/15/19 LC C W																bare
10/15/10 LC C NE																bare
																bare
10/15/19 LC C SE																bare
10/15/19 LC C SW																bare
10/15/19 LC C NW	0.01					20 0	0.48		0 0.01					5	0 10.	5
10/15/19 SHF A Center	1.97					5	0		0 1.97					8	0 16.	1
10/15/19 SHF A N	0.84					10 1	14		0 0.84					8	0 14.	8
10/15/19 SHF A E	0.3								0 0.30					8	0 11.	7
10/15/19 SHF A S	0.7				0.005				0 0.70					8	0 14.	8
10/15/19 SHF A W	0.26								0 0.26					9	0 15.	9
10/15/19 SHF A NE	2.02	0.005				0 0.0	005		0 2.02					8	0 14.	2
10/15/19 SHF A SE	0.76	0.005				5 0	.23		0 0.76					7	5 13.	6
10/15/19 SHF A SW	0.97	0.005				0 0.0	005		0 0.97					9	0 10.	8 gracilaria seen after collecti
10/15/19 SHF A NW	0.6				0.03	5 0	.59		0 0.60					9	0 15.	6
10/15/19 SHE B Center	1.4		0.01						10 1.40					4	5 6.9	9
10/15/19 SHE B N	3.51								0 3.51		0.14			8	0 17	3
10/15/19 SHE B E	0.72				0.005				0 0.72						5 12	5
	2.40				0.005				20 2.42						0 10	2
	3.42	0.005			0.005				30 3.42						0 19.	2
10/15/19 SHF B W	2.8	0.005			0.005	0 0	1.66		25 2.80					6	0 17.	8
10/15/19 SHF B NE	1.347								0 1.35					8	0 14.	9
10/15/19 SHF B SE	3.31				0.005				0 3.31					9	0 17.	8
10/15/19 SHF B SW	1.09				0.005	0 0.0	005		15 1.09					5	5 14.	9
10/15/19 SHF B NW	2.22								5 2.22					8	0 17.	9
10/15/19 SHF C Center	1.86								0 1.86					9	0 16.	1
10/15/19 SHF C N	1.13								5 1.13					7	5 1	4
10/15/19 SHF C E	1.13								0 1.13					8	0 19.	8
10/15/19 SHF C S	3.83				0.005				5 3.83					8	0 12.	4
10/15/19 SHF C W	0.74					0 0.0	005		5 0.74					9	0 1	1
10/15/19 SHF C NE	1.31								0 1.31					8	0 16.	8
10/15/19 SHF C SE	0.85								0 0.85					7	0 12	1
10/15/19 SHE_C_SW	0.46								0 0.46					ģ	0 17	1
10/15/19 SHE C NW	6.22								5 6 22						5 12	1
10/13/13/01	0.22								0.22					′	2.	-1

Table A4. Stem lengths of *Zostera marina* collected from subtidal plots.

							v	'egeta	tive S	Stems								Repr	oductiv	ve Ster	ns						Average	Numb	er of Stems	Measured	
DATE	SITE	TRANSECT	DIRECTI	1	2	3	4		5	6	7	8	9	10	1	2	3	4	5	6	7	, 8	3	9 1	0 Veg avg	Repro	Stem Length	Veg	Repro	Total	Notes
8/13/19	AP	Α	С	_	_	-			-	-	-	-	-		-	_	-		-	-				-				0	0	0 0	
8/13/19	AP	A	N																										0	0 0	0
8/13/19	AP	A	E																										0	0 (
8/13/19	AP	A	S																										0	0 (
8/13/19	AP	A	W												41											4	1 4	1	0	1 1	1
8/13/19	АР	Α	NE																										0	0 (
8/13/19	АР	Α	SE																										0	0 (none
8/13/19	AP	Α	SW																										0	0 (none
8/13/19	AP	Α	NW																										0	0 (
8/13/19	AP	В	Cen	24	40										10										3	2 1	0 2	5	2	1 3	8
8/13/19	АР	В	N																										0	0 (
8/13/19	АР	В	E																										0	0 (none
8/13/19	AP	В	S	35	18	40	44	- 38	8	49	41	28	51	58	84										4	0 8	4 4	4 1	.0	1 1	L
8/13/19	AP	В	W	21											129	84	102	61	68	105	79	85	5 6	59 12	4 2	1 9	1 8	4	1	10 11	L
8/13/19	AP	В	NE												60											6	0 6	D	0	1 :	L
8/13/19	AP	В	SE	55											54	85									5	5 7	0 6	5	1	2 3	8
8/13/19	АР	В	SW																										0	0 (
8/13/19	AP	В	NW																										0	0 (
8/13/19	AP	С	Cen	19											44										1	9 4	4 3:	2	1	1 3	2
8/7/19	AP	С	N																										0	0 (No stems, only hydroids
8/12/19	AP	С	E	37	12	25	13								77	123	60	36	43	41	90	67	7 8	36 5	0 2	2 6	7 54	4	4	10 14	1
8/13/19	АР	С	S	35	57	20	45	33	2	19	25	46	23	18	99	36	38	108	73	55	72	92	2 8	36 8	1 3	2 7	4 5	3 1	.0	10 20	
8/13/19	AP	С	W	20	51	27									24										3	3 2	4 3:	1	3	1 4	1
8/13/19	AP	С	NE	52	55	43	56	24	4	40					90	35	46	84	76	112	70	26	5 7	79 8	7 4	5 7	1 6	1	6	10 10	5
8/13/19	AP	С	SE	33	38										24										3	6 2	4 3:	2	2	1 3	
8/7/19	АР	С	SW	62	64	12									34	49	67	44							4	6 4	9 4	7	3	4 7	1
8/7/19	AP	С	NW																										0	0 (
8/15/19	DR	Α	Cen																										0	0 (
8/15/19	DR	Α	N																										0	0 (
8/15/19	DR	Α	E																										0	0 (
8/15/19	DR	Α	S																										0	0 (
8/15/19	DR	Α	W	18	61	45	59	2	5	21	25	51	17	27	57	39	31	80	108	41	51	41	L 8	31 3	1 3	5 5	6 4	5 1	.0	10 20	
8/15/19	DR	Α	NE																										0	0 (
8/15/19	DR	Α	SE																										0	0 (
8/15/19	DR	Α	SW	20	48	15	18								73	67	72	63	38						2	5 6	3 4	6	4	5 9	9
8/15/19	DR	Α	NW																										0	0 (
8/15/19	DR	В	Cen																										0	0 (
8/15/19	DR	В	N																										0	0 (
8/15/19	DR	В	E						_																				0	0 (0
8/15/19	DR	В	S																										0	0 (
8/15/19	DR	В	W																				_						0	0 (
8/15/19	DR	В	NE																										0	0 (
8/15/19	DR	В	SE																					_					0	0 (
8/15/19	DR	В	SW																										0	0 (

						Ve	egetati	ve Ster	ms							1	Repro	ductiv	e Stem	s						Average	Numb	er of Stems N	/leasured	
DATE	SITE TRANSECT	DIRECTI	1	2	3	4	5	6	7	7	8 9) 1	0	1	2	3	4	5	6	7	8	9	10 Ve	g avg	Repro avg	Stem Length	Veg	Repro	Total	Notes
8/15/19	DR B	NW											1															0 (0 (
8/15/19	DR C	Cen																										0 (0 (0
8/15/19	DR C	N																										0 (0 (0
8/15/19	DR C	E	45	23	16	24							8	8 3	37									27	63	3		4 :	2 (5
8/15/19	DR C	S																										0 (0 ()
8/15/19	DR C	W																										0 (0 (one broken shoot 11 cm
8/15/19	DR C	NE																										0 (0 ()
8/15/19	DR C	SE																										0 (0 (0
8/15/19	DR C	SW	34																					34		34	1	1 (0 1	L
8/15/19	DR C	NW	22										5	7										22	57	7 40		1 :	1 2	2
8/13/19	LC A	Cen	32	30									2	8 5	52	24	32	39	35	42	25	34		31	39	5 34	1	2	9 11	L
8/7/19	LC A	N	24	35	30								2	6										30	26	5 29		3 :	1 4	1
8/13/19	LC A	E	30	34	28																			31		31	L	3 (0 3	3
8/7/19	LC A	S	31	29	23								3	1 3	32	44	29	30						28	33	3	l i	3 !	5 8	3
8/7/19	LC A	W	42																					42		42	2	1 (0 1	L
8/7/19	LC A	NE											3	4											34	1 34	1	0 :	1 1	L
8/7/19	LC A	SE	37																					37		37	7	1 (0 1	L
8/7/19	LC A	SW	20	45	29	21	30	25	28	8 3	8 19) 1	8 3	6 4	4	38	31							27	37	7 30	1	0	4 14	1
8/7/19	LC A	NW	37																					37		37	7	1 (0 1	l
8/13/19	LC B	Cen	19	20	21								3	7 3	36	21	11							20	26	5 24	1	3 4	4 7	7
8/13/19	LC B	N																										0 (0 (0
8/13/19	LC B	E	30										3	3										30	33	3	2	1 :	1 2	2
8/13/19	LC B	S																										0 (0 (0
8/13/19	LC B	W																										0 (0 ()
8/13/19	LC B	NE	30	21	44								4	4 3	27									32	36	j 33	3	3	2 !	5
8/13/19	LC B	SE	41	22	38	31	31	32	33	3	8 26	5	3	4 :	16									29	25	5 28	3	9	2 11	L
8/13/19	LC B	SW	15	36	37	39	20	23	22	2			6	0 4	19	48	65	50	49	27	29	31	46	27	49	5 38	3	7 10	0 17	7
8/13/19	LC B	NW																										0 (0 (0
8/13/19	LC C	Cen																										0 (0 (0
8/13/19	LC C	N	16										2	9										16	29	2	3	1 :	1 2	2
8/13/19	LC C	E																										0 (0 (0
8/13/19	LC C	S	31										3	8 3	30									31	34	1 33	3	1 :	2 :	3
8/13/19	LC C	W	30	26	20	11	17						3	8 4	12	35	38	47	22	22				21	35	5 29		5	7 12	2
8/13/19	LC C	NE											2	8											28	3 28	3	0 :	1 1	L
8/13/19	LC C	SE																										0 (0 (0
8/13/19	LC C	SW																										0 (0 (D
8/13/19	LC C	NW																										0 (0 (0
8/13/19	A	Cen	26	15	9	34	18	41	18	8 3	8 13	3 1	7 6	2 5	53	62	47	36	47	40	59	58	25	23	49	3	i 1	0 10	0 20	0
8/13/19	SHF A	N	42	54	36	21	30	35	46	6 4	7 39) 1	6 6	4 (57	77	58	53	32	48	36	70		37	56	5 40	5 1	0 9	9 19	Ð
8/13/19	SHF A	E	22	31	40	38	25	35	20	0 2	8 20) 4	8 4	2 (54	61	64	66	63	68	41	40	45	31	55	4	3 1	0 10	0 20)
8/12/19	SHF A	S	30	19	12	44	27	28	34	4 2	8 33	3 4	6 7	7 3	39	84	39	58	54	74	40	32	45	30	54	4.	2 1	0 10	0 20)
8/7/19	SHF A	W	18	21	28	38	24	34	42	2 3	1 35	5 1	8 4	1 5	58	42	59	84	52	45	45	66	42	29	53	3 4:	1	0 1	0 20)
8/12/19	SHF A	NE	18	56	25	26	36	43	16	6 2	0 34	1 3	6 5	3 (54	29	46	55	60	61	49	56	64	31	54	1 42	2 1	0 10	0 20)
8/12/19	SHF A	SE	26	44	37	31	33	29	30	0	8 27	7 1	0 4	5 4	15	70	81	82	50	30	25	49	30	28	51	L 39	1	0 10	0 20)

							Ve	getativ	e Stem	15							Repro	ductive	e Stem	s					Average	N	lumber of Stem	s Measured	
DATE	SITE	TRANSECT	DIRECTI	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10	Repro	Stem Length	Veg	Repro	Total	Notes
8/13/19	SHE	Δ	SW	26	34	51	36	16	17	28	21	18	13	- 38	43	38	49	49	65	61	65	49	65	26	52 3	39	10	10 20	
8/7/19	SHE	Α	NW	55	46	53	49	44	53	39	40	49	48	46	51	67	.51	.52	49	51	57	59	69	48	55 5	1	10	10 20	
8/13/19	SHF	B	Cen	41	16	24	15	14	11	23	24	6	17	54	83	47	77	20	27	39	60	27	22	19	46 3	32	10	10 20	
8/7/19	SHF	В	N	20	22									54	50	55	36	62	52	39				21	50 4	13	2	7 9	
8/7/19	SHF	В	E	24	50	21								51	78	65	47	54	30	53	40	31	40	32	49 4	15	3	10 13	
8/7/19	SHF	В	S	52	88	55	55	48	32	36	55	41		45	16	16	28	37	18	22	16	27		51	25 3	38	9	9 18	5
8/7/19	SHF	В	w	16	32	25	37	27	17	28	15	17		76	75	57	59	69	44	44	37	54	37	24	55 4	10	9	10 19	
8/13/19	SHF	В	NE	25	30	18	30	50	38	21	39	12		74	57	57	63	32	17	59	70	60	45	29	53 4	12	9	10 19	
8/7/19	SHF	В	SE	22	52	36	14	21						48	61	34	84	60	65	61	46	67	67	29	59 4	19	5	10 15	
8/13/19	SHF	В	SW	35	18	40	41	17	23	44	10	17	47	88	27	88	52	47	40	46	22	52	48	29	51 4	10	10	10 20	
8/13/19	SHF	В	NW	44	44	33	21	14	21	17	34	42		59	31	81	42	62	56	38	57	50	53	30	53 4	12	9	10 19	
8/7/19	SHF	С	Cen	40	28	23	14	34	19	16	21			60	67	74	61	43	78	60	47	45	37	24	57 4	13	8	10 18	
8/7/19	SHF	С	N	22	22	35								60	41	51	29	39	34	30	52	49	33	26	42 3	38	3	10 13	
8/12/19	SHF	С	E	36	56	48	34	24	17	39	45	25	18	40	57	72	59	65	52	51	47	51	58	34	55 4	15	10	10 20	
8/13/19	SHF	С	S	47	30	48	27	12	17	18	25	23	31	53	82	32	54	31	33	38	57	37	66	28	48 3	38	10	10 20	
8/12/19	SHF	С	W	16	30	27	20	34	16	13	12	28	10	47	55	39	60	42	47	37	66	66	39	21	50 3	35	10	10 20	
8/12/19	SHF	С	NE	35	43	38	51	26	31	28	40	33	12	70	77	47	58	47	55	40	51	40	32	34	52 4	13	10	10 20	
8/7/19	SHF	С	SE	35	57	36	37	46						42	34	41	40	41	46	40	38	24	42	42	39 4	10	5	10 15	
8/7/19	SHF	С	SW	36	37	16	19	31	35	13				52	64	72	59	69	61	42	31	45	30	27	53 4	12	7	10 17	
8/13/19	SHF	С	NW	34	51	54	43	16	17	21	10	11		39	57	57	26	51	67	83	47	66	82	29	58 4	14	9	10 19	
10/15/19	AP	Α	Cen																								0	0 0	
10/15/19	AP	Α	N																							_	0	0 0	
10/15/19	AP	Α	E																							_	0	0 0)
10/15/19	AP	Α	S	56	75	51	44	78	66	82	70	79	77	70	62	40	40	43						68	51 6	52	10	5 15	·
10/15/19	AP	Α	W	24	31	50	66	55	26					45										42	45 4	12	6	1 7	1
	AP	Α	NE																							-	0	0 0	
10/15/19	AP	A	SE	32	59	22	25	53	26	18	14	37	21	70										31	70 3	34	10	1 11	
10/15/19	AP	A	SW	28	28	32	29	25						60	48	53	42	27	25	34	26	19		28	37 3	34	5	9 14	l
10/15/19	AP	A	NW																								0	0 0	
10/15/19	AP	В	Cen	54	41	51	46	4/	49	35	38	31		84	39	30								44	51 4	15	9	3 12	
10/15/19	AP	В	N																							_	0	0 0	
10/15/19	AP	В	E C	50	~ ~	60	00	5.4	40	C A	C1	40	41	00	60	00	F1	00	40	50	05	60	20	50	<u>(0</u>)	- 2	0	10 00	
10/15/19	AP	В	5	52	00	09	83	54	49	64	01	40	41	80	09	90	22	90	48	52	95	69	38	59	08 0	17	10	10 20	/
10/15/19	AP	B	VV	51	45	44	09	45	40	00	45	50	40	20	42	28	22	09						50	45 4	+/	10	5 15	
10/15/19	AP	B	INE CE											E1											F4 F		0	0 0	·
10/15/19		D	STAT	47	57	22	56	24	40	20	20	22	22	62	46	20	20							29	<u>31</u> 3	00	10	1 10	
10/15/19		D	SVV NIM/	4/	57	22	50	24	40	30	23	33	52	02	40	20	50							30	40 3	00	10	4 14	·
10/15/19		0	Con																							_	0	0 0	/
10/15/19	AP AD	C	N																								0	0 0	
10/15/19	AP AD	C	F																								0	0 0	
10/15/19		C	5	55	51	71	53	65	67	51	61	62	31	55	71	32	35	58	32	25	37			57	43 0	1	10	8 19	
10/15/19		C		33	31	/1	35	00	07	51	01	02	51	35	/1	32	33	30	32	2.5	37			37	40 3	1	0	0 0	
10/15/19		C	NE																-								0	0 0	7M fragments only
10/13/15	AF	<u> </u>	INC.	1																							0	0	zwindgments only

						Ve	egetativ	ve Ster	ns							Repr	oductiv	e Ste	ms						Average	Nu	mber of Stems	Measured	
DATE SIT	TRANSECT	DIRECTI	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	E	3	9 10	Veg avg	Repro avg	Stem Length	Veg	Repro	Total	Notes
10/15/19 AP	С	SE	61	55	33	60	50	56	29	56	54	31	77	61	51	48							52	2			10	4 14	l l
10/15/19 AP	С	SW	55	41	58	42	57	63	47	46	53	33	75	33	53	61	61						50	0 !	57 5	2	10	5 19	
10/15/19 AP	С	NW																									0	0 0	
10/15/19 DR	A	Cen																									0	0 0	
10/15/19 DR	A	N																									0	0 0	
10/15/19 DR	A	E																									0	0 0	
10/15/19 DR	A	S																									0	0 0	
10/15/19 DR	A	w	29	25	24	23	33	36	43	16	28												20	9	2	9	9	0 9	
10/15/19 DR	A	NE																									0	0 0	ZM fragments only
10/15/19 DR	A	SE																									0	0 0	
10/15/19 DR	A	SW	41	51	33	31	34	38	35	53	38	27	72	28									38	8 !	50 4	0	10	2 12	2
10/15/19 DR	A	NW																									0	0 0	
10/15/19 DR	В	Cen																									0	0 0	
10/15/19 DR	В	N																									0	0 0	
10/15/19 DR	В	E																									0	0 0	
10/15/19 DR	В	S																									0	0 0	
10/15/19 DR	В	w																									0	0 0	
10/15/19 DR	В	NE																									0	0 0	
10/15/19 DR	В	SE																									0	0 0	
10/15/19 DR	В	SW																									0	0 0	
10/15/19 DR	В	NW																									0	0 0	
10/21/19 DR	с	Cen																									0	0 0	
10/21/19 DR	с	N	21	31	47	58	31	25	29	23	22	47											33	3	3	3	10	0 10	
10/21/19 DR	С	E																									0	0 0	
10/21/19 DR	С	S																									0	0 0	
10/21/19 DR	C	w																									0	0 0)
10/21/19 DR	C	NE																									0	0 0	
10/21/19 DR	C	SE																									0	0 0	
10/21/19 DR	C	SW																									0	0 0	
10/21/19 DR	C	NW																									0	0 0	
10/22/19 LC	А	Cen	40	64	36	46	54	25	32	15	34	12	59	63	54	40	67	36	26	45	5 3	1 39	9 36	6 4	46 4	1	10	10 20	
10/22/19 LC	А	N																									0	0 0	
10/22/19 LC	Α	E																									0	0 0	ZM fragments only
10/22/19 LC	А	S	19	15									63	30	22	31							17	7	37 3	0	2	4 6	5
10/22/19 LC	А	W																									0	0 0	
10/22/19 LC	А	NE	22										53	31									22	2 4	42 3	5	1	2 3	3
10/22/19 LC	Α	SE	61	56	9	51	17	36	19	43	26	35	61	42	63	30	20	38					35	5 4	42 3	8	10	6 16	5
10/22/19 LC	А	SW	49																				49	9	4	9	1	0 1	L
10/22/19 LC	Α	NW																									0	0 0	
10/29/19 LC	В	Cen																									0	0 0	
10/29/19 LC	В	N	42	52	34	32	50	41	54	52	48	49	63	56									45	5 (60 4	8	10	2 12	2
10/29/19 LC	В	E	26	15	18								26	45	20	37							20	0 3	32 2	7	3	4 7	
10/29/19 LC	В	S	32										27	36	28								32	2	30 3	1	1	3 4	
10/28/19 LC	В	W	11	36	37	43	36	23	38	37	53	41											36	6	3	6	10	0 10	

							Veg	getativ	e Stem	IS							Repro	oductive	Stem	5					Average	Numb	er of Stems I	leasured	
DATE	SITE	TRANSECT	DIRECTI	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10 Veg avg	Repro avg	Stem Length	Veg	Repro	Total	Notes
10/29/19	LC	В	NE																							1	0	0 0	
10/29/19	LC	В	SE	40	36									51	32	62	33						3	8	45 42		2	4 6	5
10/29/19	LC	В	SW	27	53	11	45	46	15	26	34	36	11	40	48	10	43	20	40	42	17	44	43 3	0	35 33	3 1	0 1	0 20	
10/28/19	LC	В	NW																								0	0 0	
10/28/19	LC	С	Cen	38	65	31	16	21	26	36	17	16		37	21								3	0	29 29		9	2 11	
10/28/19	LC	С	N																								0	0 0	
10/28/19	LC	С	E																								0	0 0	
10/28/19	LC	С	S																								0	0 0	
10/28/19	LC	С	W																								0	0 0	
10/28/19	LC	С	NE																								0	0 0	
10/28/19	LC	С	SE																								0	0 0	
10/28/19	LC	С	SW																								0	0 0	
10/28/19	LC	С	NW	44	33	49	18	9	41	48	27	45	43	35	22	32	41	53	31	28	39	48	45 3	6	37 37	1 1	0 1	0 20	
10/29/19	SHF	Α	Cen	46	53	29	44	38	48	24	32	30	42	64	38	45	58	53	50	57	58	50	47 3	9	52 49	1	0 1	0 20	
10/29/19	SHF	Α	N	51	29	30	18	27	28	42	17	21	9	42	32	38	20	57	20	20	21	21	36 2	7	31 29) 1	0 1	0 20	
10/29/19	SHF	Α	E	27	32	21	24	39	41	53	27	14	66	66	31	33	25	64	31	33	56	57	48 3	4	44 39	1	0 1	0 20	
10/29/19	SHF	Α	S	34	62	21	22	50	14	58	29	33	30	46	29	41	25	30	26	34	26	19	25 3	5	30 33	3 1	0 1	0 20	
10/29/19	SHF	Α	W	30	25	49	39	44	29	12	13	23	17	55	42	41	27	56	18	36	67	24	28 2	8	39 34	I 1	0 1	0 20	
10/29/19	SHF	Α	NE	12	19	41	39	27	40	23	15	22	27	56	41	28	29	51	42	37	43	45	51 2	7	42 34	1 1	0 1	0 20	
10/29/19	SHF	Α	SE	15	8	41	26	23	27	10	25	17	31	45	53	33	23	51	46	32	11	17	20 2	2	33 28	3 1	0 1	0 20	
10/29/19	SHF	Α	SW	36	39	41	50	33	42	45	54	17	48	32	61	53	54	64	38	59	51	35	4	1	50 45	5 1	0	9 19	
10/29/19	SHF	Α	NW	31	48	62	54	38	44	27	26	27	38	40	47	50	38	38	62				4	0	46 42	2 1	0	6 16	5
10/29/19	SHF	В	Cen	23	9	46	65	35	32	27	45	14	36	41	51	37	48	15	40	34			3	3	38 35	5 1	0	7 17	
10/29/19	SHF	В	N	41	42	8	31	41	16	33	50	33	26	61	74	26	59	34	64	40	33	52	55 3	2	50 41	l 1	0 1	0 20	
10/29/19	SHF	В	E	24	43	41	45	34	40	43	53	50	55	54	55	40	47	62	56	47	41		4	3	50 46	5 1	0	8 18	3
10/29/19	SHF	В	S	32	35	28	35	40	41	36	40	32	48	30	35	39	35	44	33	50	44	19	36 3	7	37 37	1	0 1	0 20	
10/29/19	SHF	В	W	44	50	47	44	21	37	25	47	35	28	31	58	39	50	49	37	41	44	34	3	8	43 40) 1	0	9 19	
10/29/19	SHF	В	NE	42	28	36	42	27	47	31	20	66	76	43	33	54	60	62	69	70	53	34	47 4	2	53 47	1 1	0 1	0 20	
10/29/19	SHF	В	SE	19	19	20	28	58	18	42	40	24	35	64	46	33	21	29	21	52	55	57	26 3	0	40 35	5 1	0 1	0 20	
10/29/19	SHF	В	SW	32	73	17	33	20	16	15	19	26	10	56	28	41	73	39	48	49	26	26	17 2	6	40 33	1	0 1	0 20	
10/29/19	SHF	В	NW	61	68	51	75	65	55	50	62	60	46	48	58	36	46	48	48	49	67	58	51 5	9	51 55	5 1	0 1	0 20	
10/30/19	SHF	С	Cen	49	44	53	39	45	43	36	71	42	35	75	34	70	35	48	58	48	57		4	6	53 49	1	0	8 18	3
10/30/19	SHF	С	N	45	34	32	24	10	26	35	45	50	27	37	50	43	45	34	44	50	50	20	3	3	41 37	1	0	9 19	
10/30/19	SHF	С	E	53	37	61	64	20	16	28	40	28	29	43	55	41	68	55	39	15	58	21	41 3	8	44 41	L 1	0 1	0 20	
10/30/19	SHF	С	S	23	29	29	37	31	46	42	25	34	61	38	30	36	46	31	46	44	41		3	6	39 37	1	0	8 18	3
10/30/19	SHF	С	W	40	68	46	25	31	20	24	56	9	37	45	63	42	48	30	34	43	60	42	28 3	6	44 40	1	0 1	0 20	
10/30/19	SHF	С	NE	42	49	20	52	36	26	35	25	28	59	46	39	29	62	56	40	45	36	73	39 3	7	47 42	2 1	0 1	0 20	
10/30/19	SHF	С	SE	35	33	45	35	52	27	31	29	25	15	31	35	35	33	44	58	39	25	41	70 3	3	41 37	1 1	0 1	0 20	
10/30/19	SHF	С	SW	26	56	41	30	50	29	46	47	57	30	41	56	36	31	66	39	37	44	41	74 4	1 4	47 44	1 1	0 1	0 20	
10/30/19	SHF	С	NW	41	28	22	30	33	47	35	23	19	27	47	41	47	64	41	45	47	33	33	3	1 4	44 37	1 1	0	9 19	

Table A6. Seaweed biomass collected at SeagrassNet sites in 0.25m2 quadrats.

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
4/20/19	Spring	Great Bay	Α		1	Agarophyton vermiculophyllum	Red	6.85	1.35	3.56	1.89	1.674
4/20/19	Spring	Great Bay	Α		1	Ulva rigida	Green	0.70	0.88	1.56	0.99	0.110
4/20/19	Spring	Great Bay	Α		1	Berkeleya rutilans	Brown		0.69	0.73	0.70	0.010
4/20/19	Spring	Great Bay	Α		2	Callithamnion corymbosum	Red	0.00				0.005
4/20/19	Spring	Great Bay	Α		2	Berkeleya rutilans	Brown		0.75	0.95	0.80	0.050
4/20/19	Spring	Great Bay	Α		3	Berkeleya rutilans	Brown		0.96	1.33	1.09	0.130
4/20/19	Spring	Great Bay	Α		4	Berkeleya rutilans	Brown		1.12	1.54	1.25	0.130
4/20/19	Spring	Great Bay	Α		5	Berkeleya rutilans	Brown		0.50	0.74	0.57	0.070
4/20/19	Spring	Great Bay	Α		6	Berkeleya rutilans	Brown		0.86	0.96	0.89	0.030
4/20/19	Spring	Great Bay	Α		7	Berkeleya rutilans	Brown		0.84	1.12	0.93	0.090
4/20/19	Spring	Great Bay	Α		8	Berkeleya rutilans	Brown		1.14	1.61	1.29	0.150
4/20/19	Spring	Great Bay	Α		9	Berkeleya rutilans	Brown		0.72	0.79	0.74	0.020
4/20/19	Spring	Great Bay	Α		10	Berkeleya rutilans	Brown		0.80	0.87	0.83	0.030
4/20/19	Spring	Great Bay	Α		11	Berkeleya rutilans	Brown		0.72	0.87	0.76	0.040
4/20/19	Spring	Great Bay	Α		12	Berkeleya rutilans	Brown		1.01	1.41	1.14	0.130
4/18/19	Spring	Great Bay	в		1	No algae						
4/18/19	Spring	Great Bay	В		2	No algae						
4/18/19	Spring	Great Bay	в		3	Ulva lactuca	Green	0.00				0.000
4/18/19	Spring	Great Bay	В		4	Berkeleya rutilans	Brown		2.37	11.90	6.03	3.660
4/18/19	Spring	Great Bay	В		4	Ceramium virgatum	Red		0.84	1.04	0.90	0.060
4/18/19	Spring	Great Bay	в		4	Agarophyton vermiculophyllum	Red		1.88	2.96	2.10	0.220
4/18/19	Spring	Great Bay	В		4	Melosira nummuloides	Diatom	0.00				0.000
4/18/19	Spring	Great Bay	В		4	Callithamnion corymbosum	Red	0.00				0.000
4/18/19	Spring	Great Bay	в		5	Agarophyton vermiculophyllum	Red		2.13	2.27	2.16	0.030
4/18/19	Spring	Great Bay	В		5	Berkeleya rutilans	Brown		2.37	3.46	2.79	0.420
4/18/19	Spring	Great Bay	в		6	No algae						
4/18/19	Spring	Great Bay	В		7	Monostroma grevillei	Green	0.01	0.79	0.80	0.79	0.000
4/18/19	Spring	Great Bay	в		8	No algae						
4/18/19	Spring	Great Bay	в		9	No algae						
4/18/19	Spring	Great Bay	В		10	No algae						
4/18/19	Spring	Great Bay	в		11	No algae						
4/18/19	Spring	Great Bay	в		12	No algae						
4/19/19	Spring	Great Bay	С		1	No algae						
4/19/19	Spring	Great Bay	С		2	Agarophyton vermiculophyllum	Red		0.92	1.14	0.96	0.040
4/19/19	Spring	Great Bay	С		2	Berkeleya rutilans	Brown		1.19	5.17	2.13	0.940

Collection Date	Season	Site	Tran-	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
4/19/19	Spring	Great Bay	C	Distance	3	No algae	.165		18/	(11, 1011)	(11, 1011)	(ine rong
4/19/19	Spring	Great Bay	C		4	Monostroma grevillei	Green	0.01				0.000
4/19/19	Spring	Great Bay	C		4	Callithamnion corymbosum	Red	<0.01				0.000
4/19/19	Spring	Great Bay	C		4	Ceramium virgatum	Red		1.36	1.47	1.39	0.030
4/19/19	Spring	Great Bay	c		4	Berkeleva rutilans	Brown		1.50	9.19	3 27	1 810
4/19/19	Spring	Great Bay	c		4	Agarophyton vermiculophyllum	Red		1.40	1 79	1 48	0.070
//19/19	Spring	Great Bay	C			Agarophyton vermiculophyllum	Red		1.91	1.75	1.40	0.070
4/10/10	Spring	Great Bay	C		5	Rerkelova rutilans	Brown		1.05	0.05	2 21	2 120
4/10/10	Spring	Great Bay	C		5	Chandria bailovana	Bod		0.76	0.77	0.76	2.130
4/15/15	Spring	Great Bay	C C		5	Ulva optoromorpha	Croon	<0.01	0.70	0.77	0.70	0.000
4/19/19	Spring	Great Bay	C		5	No aleas	Green	<0.01				
4/19/19	Spring	Great Bay	C C		0	No algae	D I					0.000
4/19/19	Spring	Great Bay	C		/	Ceramium virgatum	кеа		1.41	1.43	1.41	0.000
4/19/19	Spring	Great Bay	C		/	Berkeleya rutilans	Brown		2.02	4.27	2.62	0.600
4/19/19	Spring	Great Bay	С		7	Callithamnion corymbosum	Red	<0.01				0.000
4/19/19	Spring	Great Bay	С		7	Agarophyton vermiculophyllum	Red		2.56	3.87	2.77	0.210
4/19/19	Spring	Great Bay	С		8	No algae						
4/19/19	Spring	Great Bay	С		9	No algae						
4/19/19	Spring	Great Bay	С		10	No algae						
4/19/19	Spring	Great Bay	С		11	Berkeleya rutilans	Brown		1.45	3.11	1.94	0.490
4/19/19	Spring	Great Bay	С		11	Agarophyton vermiculophyllum	Red		1.35	1.62	1.40	0.050
4/19/19	Spring	Great Bay	C		12	Berkeleya rutilans	Brown		2.39	5.59	3.21	0.820
4/19/19	Spring	Great Bay	С		12	Agarophyton vermiculophyllum	Red		2.33	3.48	2.54	0.210
4/19/19	Spring	Great Bay	С		12	Callithamnion corymbosum	Red	0.00				0.000
4/19/19	Spring	Great Bay	С		12	Ceramium virgatum	Red	< 0.01				0.000
4/19/19	Spring	Great Bay	C"1" b	ag did not	have a plot num	ber						
4/19/19	Spring	Great Bay	С	-	"1"	Agarophyton vermiculophyllum	Red		1.33	1.39	1.34	0.010
4/19/19	Spring	Great Bay	С		"1"	Ceramium virgatum	Red	0.01				0.000
4/19/19	Spring	Great Bay	С		"1"	Ulva lactuca	Green	0.00				0.000
4/19/19	Spring	, Great Bay	С		"1"	Berkeleva rutilans	Brown		1.16	2.61	1.54	0.380
4/19/19	Spring	, Great Bay	С		"1"	Halosiphon tomentosus	Brown		1.27	1.48	1.29	0.020
7/25/19	Summer	Fort Foster	Α	2	1	Quadrat not suveyed						
7/25/19	Summer	Fort Foster	Α	7	2	Ulva rigida	Green		0.58	0.67	0.60	0.020
7/25/19	Summer	Fort Foster	Δ	7	2	Polysiphonia schneideri	Red		1.45	5.55	1.93	0.480
7/25/19	Summer	Fort Foster	Δ	. 7	2	Corallina officinalis	Red		0.61	0.82	0.74	0.130
7/25/19	Summer	Fort Foster	Δ	, ,	2	Vertebrata Janosa	Red		0.55	0.62	0.59	0.040
7/25/19	Summer	Fort Foster	<u>^</u>	7	2	Chondrus crispus	Red		1.81	4 14	2 35	0.540
7/25/10	Summer	Fort Fostor	^	7	2	Eucus vesiculosus	Brown		1.01	4.14	2.33	0.040
7/25/10	Summor	Fort Foster	^	7	2	Polysiphonia fuccidos	Rod		1.05	4.23	0.50	0.040
7/25/19	Summer	Fort Foster	A A		2	Porysiphonia inconies	Red		1.00	0.01	6.70	4 700
7/25/19	Summer	Fort Foster	A	/	2	Dasysiphonia japonica	Red		1.92	27.03	0.70	4.780
7/25/19	Summer	Fort Foster	A	/	2	Chapterson be accuration of	Kea		0.66	1.02	0.79	0.130
7/25/19	summer	Fort Foster	A	-	2	chaetomorpha picquotiana	Green		0./1	0.76	0.74	0.030
//25/19	summer	Fort Foster	A	8	3	Ascophyllum nodosum	Brown		2.63	12.82	5.46	2.830
7/25/19	Summer	Fort Foster	Α	8	3	Vertebrata lanosa	Red		1.16	3.92	1.75	0.590

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
7/25/19	Summer	Fort Foster	Α	8	3	Chordaria flagelliformis	Brown		1.10	2.11	1.27	0.170
7/25/19	Summer	Fort Foster	Α	8	3	Fucus vesiculosus	Brown		4.31	26.40	8.62	4.310
7/25/19	Summer	Fort Foster	Α	8	3	Ceramium virgatum	Red		0.82	2.61	1.17	0.350
7/25/19	Summer	Fort Foster	Α	8	3	Coccotylus truncatus	Red		2.19	5.74	3.09	0.900
7/25/19	Summer	Fort Foster	Α	8	3	Chaetomorpha picquotiana	Green		0.68	0.96	0.74	0.060
7/25/19	Summer	Fort Foster	Α	8	3	Dasysiphonia japonica	Red		1.66	7.05	2.85	1.190
7/25/19	Summer	Fort Foster	Α	8	3	Chondrus crispus	Red		3.29	20.15	7.08	3.790
7/25/19	Summer	Fort Foster	Α	16	4	Saccharina latissima	Brown		1.14	4.62	1.59	0.450
7/25/19	Summer	Fort Foster	Α	16	4	Ceramium virgatum	Red		0.53	0.58	0.54	0.010
7/25/19	Summer	Fort Foster	Α	16	4	Agarophyton vermiculophyllum	Red		0.48	0.50	0.48	0.000
7/25/19	Summer	Fort Foster	Α	16	4	Dasysiphonia japonica	Red		1.87	25.56	6.45	4.580
7/25/19	Summer	Fort Foster	Α	16	4	Ulva rigida	Green		0.52	0.55	0.54	0.020
7/25/19	Summer	Fort Foster	Α	16	4	Chaetomorpha picquotiana	Green		0.52	0.54	0.53	0.010
7/25/19	Summer	Fort Foster	Α	16	4	Polysiphonia fucoides	Red		0.66	2.20	1.03	0.370
7/25/19	Summer	Fort Foster	Α	16	4	Ulva prolifera	Green		0.55	0.86	0.60	0.050
7/25/19	Summer	Fort Foster	Α	18	5	Chondrus crispus	Red		2.75	11.67	4.62	1.870
7/25/19	Summer	Fort Foster	Α	18	5	Chordaria flagelliformis	Brown		0.63	0.65	0.63	0.000
7/25/19	Summer	Fort Foster	Α	18	5	Ulva australis	Green		0.45	0.50	0.46	0.010
7/25/19	Summer	Fort Foster	Α	18	5	Dasysiphonia japonica	Red		1.10	12.20	3.58	2.480
7/25/19	Summer	Fort Foster	Α	18	5	Ulva prolifera	Green		0.69	1.01	0.71	0.020
7/25/19	Summer	Fort Foster	Α	18	5	Ascophyllum nodosum	Brown		0.62	1.09	0.77	0.150
7/25/19	Summer	Fort Foster	Α	18	5	Ceramium virgatum	Red		0.44	0.60	0.47	0.030
7/25/19	Summer	Fort Foster	Α	18	5	Chaetomorpha picquotiana	Green		0.46	0.49	0.47	0.010
7/25/19	Summer	Fort Foster	Α	18	5	Vertebrata lanosa	Red		0.54	0.93	0.61	0.070
7/25/19	Summer	Fort Foster	Α	25	6	No seaweed						0.000
7/25/19	Summer	Fort Foster	Α	26	7	Dasysiphonia japonica	Red		0.92	2.70	1.27	0.350
7/25/19	Summer	Fort Foster	Α	26	7	Ulvaria obscura	Green		0.82	0.99	0.85	0.030
7/25/19	Summer	Fort Foster	Α	33	8	Polysiphonia fucoides	Red		0.69	0.82	0.72	0.030
7/25/19	Summer	Fort Foster	Α	33	8	Chaetomorpha picquotiana	Green		0.41	0.43	0.42	0.010
7/25/19	Summer	Fort Foster	Α	33	8	Ulva australis	Green		0.80	0.97	0.84	0.040
7/25/19	Summer	Fort Foster	Α	33	8	Ceramium virgatum	Red		0.94	1.21	0.97	0.030
7/25/19	Summer	Fort Foster	Α	33	8	Dasysiphonia japonica	Red		1.28	5.00	2.01	0.730
7/25/19	Summer	Fort Foster	Α	38	9	Phyllophora pseudoceranoides	Red		0.51	0.51	0.51	0.000
7/25/19	Summer	Fort Foster	Α	38	9	Mastocarpus stellatus	Red		0.93	1.64	1.15	0.220
7/25/19	Summer	Fort Foster	Α	38	9	Ulva australis	Green		1.35	6.44	2.34	0.990
7/25/19	Summer	Fort Foster	Α	38	9	Chaetomorpha picquotiana	Green		0.48	0.48	0.48	0.000
7/25/19	Summer	Fort Foster	Α	38	9	Cystoclonium purpureum	Red		0.40	0.41	0.40	0.000
7/25/19	Summer	Fort Foster	Α	38	9	Chondrus crispus	Red		1.70	6.33	2.73	1.030
7/25/19	Summer	Fort Foster	Α	38	9	Fucus distichus (ssp evanescens)	Brown		0.93	2.01	1.21	0.280
7/25/19	Summer	Fort Foster	Α	38	9	Ceramium virgatum	Red		1.90	7.73	2.70	0.800
7/25/19	Summer	Fort Foster	Α	38	9	Chordaria flagelliformis	Brown		0.47	0.49	0.49	0.020
7/25/19	Summer	Fort Foster	Α	38	9	Saccharina latissima	Brown		0.92	4.84	1.45	0.530
7/25/19	Summer	Fort Foster	Α	38	9	Fucus vesiculosus	Brown		2.35	21.45	5.32	2.970

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
7/25/19	Summer	Fort Foster	Α	38	9	Vertebrata lanosa	Red		1.08	2.29	1.34	0.260
7/25/19	Summer	Fort Foster	Α	38	9	Polysiphonia fucoides	Red		0.53	0.68	0.57	0.040
7/25/19	Summer	Fort Foster	Α	38	9	Dasysiphonia japonica	Red		1.10	7.04	2.37	1.270
7/25/19	Summer	Fort Foster	Α	40	10	Ceramium virgatum	Red		0.60	1.17	0.66	0.060
7/25/19	Summer	Fort Foster	Α	40	10	Dasysiphonia japonica	Red		1.22	5.39	2.13	0.910
7/25/19	Summer	Fort Foster	Α	40	10	Chondrus crispus	Red		0.99	2.22	1.27	0.280
7/25/19	Summer	Fort Foster	Α	40	10	Fucus distichus (sub sp evanescens)	Brown		0.97	1.93	1.18	0.210
7/25/19	Summer	Fort Foster	Α	40	10	Ulva australis	Green		1.70	6.38	2.64	0.940
7/25/19	Summer	Fort Foster	Α	44	11	Polysiphonia elongata	Red		0.57	0.91	0.58	0.010
7/25/19	Summer	Fort Foster	Α	44	11	Chordaria flagelliformis	Brown		1.01	1.87	1.10	0.090
7/25/19	Summer	Fort Foster	A	44	11	Ahnfeltia plicata	Red		0.63	0.70	0.65	0.020
7/25/19	Summer	Fort Foster	Α	44	11	Chondrus crispus	Red		1.57	3.43	1.97	0.400
7/25/19	Summer	Fort Foster	A	44	11	Ceramium virgatum	Red		0.82	4.12	1.18	0.360
7/25/19	Summer	Fort Foster	A	44	11	Polysiphonia fucoides	Red		1.01	3.32	1.39	0.380
7/25/19	Summer	Fort Foster	Α	44	11	Chaetomorpha picquotiana	Green		0.57	0.64	0.58	0.010
7/25/19	Summer	Fort Foster	Δ	44	11	Saccharina latissima	Brown		4.48	19.71	6.62	2.140
7/25/19	Summer	Fort Foster	Δ	44	11	Dasysiphonia japonica	Red		1.75	14.72	4.13	2.380
7/25/19	Summer	Fort Foster	Δ	44	11	Chaetomorpha ligustica	Green		0.51	0.59	0.54	0.030
7/25/19	Summer	Fort Foster	Δ	46	12	Fucus vesiculosus	Brown		0.97	1.85	1 24	0.270
7/25/19	Summer	Fort Foster	Δ	46	12	Ceramium virgatum	Red		0.59	0.66	0.59	0.000
7/25/19	Summer	Fort Foster	Δ	46	12	Dasysinhonia janonica	Red		0.98	1.86	1 14	0.000
7/25/19	Summer	Fort Foster	Δ	46	12	Polysiphonia fucoides	Red		0.50	0.90	0.84	0.010
7/25/19	Summer	Fort Foster	Δ	46	12	Chaetomorpha nicquotiana	Green		0.03	0.50	0.74	0.010
7/24/19	Summer	Fort Foster	R	9	12	Dasysinhonia janonica	Red		0.94	3 61	1.41	0.010
7/24/19	Summer	Fort Foster	B	9	1	Polysiphonia fuccides	Red		0.74	1 20	0.85	0.110
7/24/10	Summor	Fort Foster	B	9	1	Saccharina latissima	Brown		0.74	0.80	0.05	0.040
7/24/10	Summor	Fort Foster	B	9	1	Dunctaria plantaginea	Brown		0.57	0.60	0.50	0.040
7/24/10	Summor	Fort Foster	D		1	Polysiphopia stricta	Rod		0.57	0.07	0.55	0.020
7/24/19	Summer	Fort Foster	B	9	1	Chaetomorpha nicquotiana + ligustic	Green		0.50	0.55	0.52	0.020
7/24/19	Summor	Fort Foster	D	9	1	Ulva australis	Green		0.55	0.35	0.34	0.010
7/24/13	Summor	Fort Foster	D		1	Ortadustralis	Bod		0.40	0.40	0.40	0.000
7/24/15	Summor	Fort Foster	D		1	Dhyllophora provideseranoides	Red		0.45	0.47	0.44	0.010
7/24/19	Summer	Fort Foster	D		1	Coromium virgetum	Red		0.55	0.56	0.50	0.030
7/24/15	Summor	Fort Foster	D		1	Euthora gristata	Red		0.35	0.07	0.33	0.020
7/24/13	Summer	Fort Foster	D		1	Vertebrata Janaca	Red		0.40	0.47	0.47	0.010
7/24/19	Summer	Fort Foster	D	10	2		Red		0.76	0.92	0.78	0.020
7/24/19	Summer	Fort Foster	D	10	2	Deluciphonia elongete	Red		0.00	0.00	0.05	0.000
7/24/19	Summer	Fort Foster	D	10	2	Fugue vosiculorus	Brown		0.83	1.04	1.00	0.020
7/24/19	Summer	Fort Foster	в	10	2	Fucus vesiculosus	Brown		0.87	1.84	1.22	0.350
7/24/19	Summer	Fort Foster	в	10	2	Chondrus crispus	Rea		2.00	6.54	3.04	1.040
7/24/19	Summer	Fort Foster	в	10	2	Saccharina latissimä	Brown		1.55	15.57	3.40	1.850
//24/19	Summer	Fort Foster	В	10	2	Dasysiphonia Japonica	Red		1.57	11.40	4.24	2.670
//24/19	Summer	Fort Foster	В	15	3	Bonnemaisonia hamitera	Red		0.62	0.62	0.63	0.010
7/24/19	Summer	Fort Foster	B	15	3	Chordaria flagelliformis	Brown		0.62	0.77	0.66	0.040

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
7/24/19	Summer	Fort Foster	В	15		3 Chaetomorpha picquotiana	Green		0.47	0.48	0.48	0.010
7/24/19	Summer	Fort Foster	B	15		3 Saccharina latissima	Brown		0.93	2.14	1.11	0.180
7/24/19	Summer	Fort Foster	B	15		3 Dasysiphonia japonica	Red		1.81	20.17	5.25	3.440
7/24/19	Summer	Fort Foster	B	17		1 Polysiphonia elongata	Red		0.71	1.95	0.95	0.240
7/24/19	Summer	Fort Foster	B	17		1 Coccotylus truncatus	Red		1.16	2.34	1.46	0.300
7/24/19	Summer	Fort Foster	B	17		1 Dasysinhonia janonica	Red		1 75	18 20	5 30	3 550
7/24/19	Summer	Fort Foster	B	17		Asconbyllum nodosum	Brown		1.75	5.45	3.05	1 200
7/24/19	Summor	Fort Foster	D	17		1 Saccharina latissima	Brown		1.65	5.20	2.09	0.490
7/24/15	Summor	Fort Foster	D	17	-		Rod		0.60	0.65	0.61	0.480
7/24/13	Summer	Fort Foster	D	17		1 Delusinhenia fusoides	Red		0.00	1 10	0.01	0.010
7/24/13	Summer	Fort Foster	D	17	-	Chandrus erispus	Ded		0.80	1.10	1.05	0.080
7/24/19	Summer	Fort Foster	в	17	2	Chondrus crispus	Red		1.40	3.12	1.85	0.390
7/24/19	summer	Fort Foster	в	17	2	t Olva australis	Green		0.48	0.48	0.47	0.000
//24/19	Summer	Fort Foster	В	1/	4	Chaetomorpha picquotiana	Green		0.39	0.40	0.40	0.010
//24/19	Summer	Fort Foster	В	1/	2	1 Vertebrata lanosa	Red		1.1/	7.85	2.73	1.560
7/24/19	Summer	Fort Foster	В	22		5 Chaetomorpha picquotiana	Green		0.54	0.56	0.54	0.000
7/24/19	Summer	Fort Foster	В	22		5 Dasysiphonia japonica	Red		2.08	14.82	4.28	2.200
7/24/19	Summer	Fort Foster	В	22	5	5 Fucus vesiculosus	Brown		2.48	4.58	3.17	0.690
7/24/19	Summer	Fort Foster	В	22		5 Saccharina latissima	Brown		1.15	2.28	1.28	0.130
7/24/19	Summer	Fort Foster	В	22	5	5 Euthora cristata	Red		0.64	0.72	0.65	0.010
7/24/19	Summer	Fort Foster	В	22	5	5 Chordaria flagelliformis	Brown		0.78	0.94	0.81	0.030
7/24/19	Summer	Fort Foster	В	22	5	5 Polysiphonia fucoides	Red		0.80	1.05	0.85	0.050
7/24/19	Summer	Fort Foster	В	22	5	5 Polysiphonia elongata	Red		0.74	1.29	0.86	0.120
7/24/19	Summer	Fort Foster	В	22	5	5 Agarophyton vermiculophyllum	Red		0.67	0.69	0.67	0.000
7/24/19	Summer	Fort Foster	В	25	(5 Polysiphonia fucoides	Red		0.80	1.17	0.90	0.100
7/24/19	Summer	Fort Foster	в	25	(5 Polysiphonia pseudoceranoides	Red		0.97	1.66	1.18	0.210
7/24/19	Summer	Fort Foster	В	25	(5 Dasysiphonia japonica	Red		0.95	4.48	1.82	0.870
7/24/19	Summer	Fort Foster	В	25	(5 Lomentaria clavelosa	Red		1.69	10.70	2.71	1.020
7/24/19	Summer	Fort Foster	в	25	(5 Chaetomorpha picquotiana	Green		0.70	0.78	0.73	0.030
7/24/19	Summer	Fort Foster	в	25	(5 Saccharina latissima	Brown		2.21	10.67	3.26	1.050
7/24/19	Summer	Fort Foster	В	28	-	7 Desmarestia aculeata	Brown		2.00	3.26	2.39	0.390
7/24/19	Summer	Fort Foster	B	28		7 Chaetomorpha picquotiana	Green		0.56	0.71	0.58	0.020
7/24/19	Summer	Fort Foster	B	28		7 Polysiphonia fucoides	Red		0.80	1.71	1.09	0.290
7/24/19	Summer	Fort Foster	B	28		7 I omentaria clavelosa	Red		0.78	2.74	1.25	0.470
7/24/19	Summer	Fort Foster	B	28	-	7 Saccharina latissima	Brown		2 62	18.04	4.83	2 210
7/24/19	Summer	Fort Foster	B	20	-	7 Dasysinhonia janonica	Red		2.02	28.04	11 92	9.820
7/24/10	Summer	Fort Foster	B	20		Ceramium virgatum	Red		0.59	0.66	0.60	0.010
7/24/19	Summer	Fort Foster	B	21		Polysinhonia fuccidos	Rod		0.55	1 50	0.00	0.010
7/24/19	Summer	Fort Foster	D	21		Datysiphonia iaponica	Rod		0.05	2.50	1.00	0.140
7/24/19	Summer	Fort Foster	D	21		Saccharina laticsima	Brown		0.33	0.04	2.10	0.250
7/24/19	Summer	Fort Foster	В	31	5	polygina alignatic	Brown		2.33	8.90	3.18	0.850
7/24/19	Summer	Fort Foster	в	31	5	S Porysiphonia elongata	Red		2.01	3.26	2.20	0.250
7/24/19	summer	Fort Foster	в	31	8	s chaetomorpha picquotiana	Green		0.58	0.59	0.57	0.000
//24/19	summer	Fort Foster	в	35	-	Phyliophora crispa	Ked		0.53	0.59	0.54	0.010
7/24/19	Summer	Fort Foster	B	35	9	Phycodrys fimbriata	Red		1.48	4.28	2.09	0.610

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
7/24/19	Summer	Fort Foster	В	35	9	Chaetomorpha picquotiana	Green		0.64	0.72	0.66	0.020
7/24/19	Summer	Fort Foster	В	35	9	Ceramium virgatum	Red		1.40	4.30	1.84	0.440
7/24/19	Summer	Fort Foster	В	35	9	Dasysiphonia japonica	Red		1.36	5.04	2.34	0.980
7/24/19	Summer	Fort Foster	В	35	9	Palmaria palmata	Red		1.81	13.80	3.59	1.780
7/24/19	Summer	Fort Foster	В	37	10	Saccharina latissima	Brown		3.05	24.79	5.89	2.840
7/24/19	Summer	Fort Foster	В		10	Phycodrys fimbriata	Red		0.84	1.16	0.92	0.080
7/24/19	Summer	Fort Foster	В		10	Vertebrata lanosa	Red		0.76	1.21	0.90	0.140
7/24/19	Summer	Fort Foster	В		10	Chaetomorpha picquotiana	Green		0.55	0.55	0.55	0.000
7/24/19	Summer	Fort Foster	В		10	Dasysiphonia japonica	Red		2.33	15.62	5.39	3.060
7/24/19	Summer	Fort Foster	В		10	Agarophyton vermiculophyllum	Red		0.49	0.51	0.50	0.010
7/24/19	Summer	Fort Foster	В		10	Bonnemaisonia hamifera	Red		0.47	0.55	0.47	0.000
7/24/19	Summer	Fort Foster	В		10	Lomentaria clavelosa	Red		1.29	4.90	1.79	0.500
7/24/19	Summer	Fort Foster	В	39	11	Chaetomorpha picquotiana	Green		0.70	0.87	0.73	0.030
7/24/19	Summer	Fort Foster	В	39	11	Lomentaria clavelosa	Red		0.46	1.07	0.54	0.080
7/24/19	Summer	Fort Foster	В	39	11	Dasysiphonia japonica	Red		1.90	11.54	4.26	2.360
7/24/19	Summer	Fort Foster	В	39	11	Bonnemaisonia hamifera	Red		1.12	2.19	1.35	0.230
7/24/19	Summer	Fort Foster	В	45	12	Ceramium virgatum	Red		0.94	1.17	0.96	0.020
7/24/19	Summer	Fort Foster	В	45	12	Euthora cristata	Red		0.98	1.80	1.10	0.120
7/24/19	Summer	Fort Foster	В	45	12	Dasysiphonia japonica	Red		3.74	25.10	8.03	4.290
7/24/19	Summer	Fort Foster	В	45	12	Saccharina latissima	Brown		4.43	27.27	7.18	2.750
7/26/19	Summer	Fort Foster	С	5	1	Ptilota serrata	Red		1.11	1.49	1.24	0.130
7/26/19	Summer	Fort Foster	С	5	1	Euthora cristata	Red		0.52	0.61	0.55	0.030
7/26/19	Summer	Fort Foster	С	5	1	Dasysiphonia japonica	Red		1.69	16.76	4.74	3.050
7/26/19	Summer	Fort Foster	С	5	1	Phycodrys fimbriata	Red		0.58	0.73	0.62	0.040
7/26/19	Summer	Fort Foster	C	5	1	Desmarestia aculeata	Brown		0.71	0.74	0.72	0.010
7/26/19	Summer	Fort Foster	С	5	1	Polysiphonia fucoides	Red		0.78	0.93	0.81	0.030
7/26/19	Summer	Fort Foster	С	5	1	Chaetomorpha picquotiana	Green		0.70	0.98	0.75	0.050
7/26/19	Summer	Fort Foster	С	7	2	Polysiphonia fucoides	Red		0.65	1.15	0.80	0.150
7/26/19	Summer	Fort Foster	С	7	2	Cystoclonium purpureum	Red		0.54	0.56	0.54	0.000
7/26/19	Summer	Fort Foster	С	7	2	Coccotylus truncatus	Red		0.97	1.56	1.18	0.210
7/26/19	Summer	Fort Foster	С	7	2	Ceramium virgatum	Red		0.95	1.12	0.99	0.040
7/26/19	Summer	Fort Foster	С	7	2	Dasysiphonia japonica	Red		0.95	12.03	4.17	3.220
7/26/19	Summer	Fort Foster	С	7	2	Phycodrys fimbriata	Red		0.64	0.78	0.70	0.060
7/26/19	Summer	Fort Foster	С	7	2	Chaetomorpha picquotiana	Green		0.61	0.61	0.61	0.000
7/26/19	Summer	Fort Foster	C	7	2	Saccharina latissima	Brown		0.71	2.07	0.89	0.180
7/26/19	Summer	Fort Foster	С	10	3	Polysiphonia fucoides	Red		0.55	0.97	0.69	0.140
7/26/19	Summer	Fort Foster	С	10	3	Palmaria palmata	Red		2.00	21.20	4.59	2.590
7/26/19	Summer	Fort Foster	С	10	3	Cystoclonium purpureum	Red		1.36	1.64	1.41	0.050
7/26/19	Summer	Fort Foster	С	10	3	Dasysiphonia japonica	Red		1.20	14.61	5.31	4.110
7/26/19	Summer	Fort Foster	С	10	3	Phycodrys fimbriata	Red		1.18	1.70	1.31	0.130
7/26/19	Summer	Fort Foster	С	10	3	Desmarestia aculeata	Brown		0.70	0.70	0.71	0.010
7/26/19	Summer	Fort Foster	С	10	3	Saccharina latissima	Brown		4.24	33.57	8.29	4.050
7/26/19	Summer	Fort Foster	C	18	4	Saccharina latissima	Brown		3.43	24.42	6.08	2.650

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
7/26/19	Summer	Fort Foster	С	18	4	Dasysiphonia japonica	Red		0.65	1.27	0.78	0.130
7/26/19	Summer	Fort Foster	С	18	4	Polysiphonia fucoides	Red		0.58	1.04	0.66	0.080
7/26/19	Summer	Fort Foster	С	18	4	Desmarestia aculeata	Brown		1.10	1.94	1.33	0.230
7/26/19	Summer	Fort Foster	С	18	4	Chaetomorpha picquotiana	Green		0.33	0.37	0.34	0.010
7/26/19	Summer	Fort Foster	С	18	4	Ulva rigida	Green		3.16	15.97	5.57	2.410
7/26/19	Summer	Fort Foster	С	19	5	Chondrus crispus	Red		2.71	30.02	9.11	6.400
7/26/19	Summer	Fort Foster	С	19	5	Desmarestia aculeata	Brown		0.94	1.74	1.27	0.330
7/26/19	Summer	Fort Foster	С	19	5	Chaetomorpha picquotiana	Green		0.61	0.65	0.62	0.010
7/26/19	Summer	Fort Foster	С	19	5	Palmaria palmata	Red		2.18	18.70	5.12	2.940
7/26/19	Summer	Fort Foster	С	19	5	Saccharina latissima	Brown		1.35	6.18	2.16	0.810
7/26/19	Summer	Fort Foster	С	19	5	Cystoclonium purpureum	Red		0.96	14.05	2.78	1.820
7/26/19	Summer	Fort Foster	С	19	5	Dasysiphonia japonica	Red		0.98	2.63	1.18	0.200
7/26/19	Summer	Fort Foster	С	19	5	Phyllophora pseudoceranoides	Red		2.82	18.48	7.14	4.320
7/26/19	Summer	Fort Foster	С	22	6	Dasysiphonia japonica	Red		0.99	3.85	1.71	0.720
7/26/19	Summer	Fort Foster	С	22	6	Polysiphonia fucoides	Red		0.60	0.66	0.62	0.020
7/26/19	Summer	Fort Foster	С	22	6	Cystoclonium purpureum	Red		0.58	1.00	0.65	0.070
7/26/19	Summer	Fort Foster	С	22	6	Bonnemaisonia hamifera	Red		0.57	1.06	0.60	0.030
7/26/19	Summer	Fort Foster	С	22	6	Chaetomorpha picquotiana	Green		0.34	0.37	0.36	0.020
7/26/19	Summer	Fort Foster	С	22	6	Saccharina latissima	Brown		5.91	61.85	13.47	7.560
7/26/19	Summer	Fort Foster	С	26	7	Chaetomorpha picquotiana	Green		0.93	0.95	0.94	0.010
7/26/19	Summer	Fort Foster	С	26	7	Ceramium virgatum	Red		1.13	2.63	1.39	0.260
7/26/19	Summer	Fort Foster	С	26	7	Palmaria palmata	Red		0.53	0.56	0.54	0.010
7/26/19	Summer	Fort Foster	С	26	7	Dasysiphonia japonica	Red		1.22	7.53	3.23	2.010
7/26/19	Summer	Fort Foster	С	34	8	Palmaria palmata	Red		0.52	0.75	0.60	0.080
7/26/19	Summer	Fort Foster	С	34	8	Dasysiphonia japonica	Red		1.02	4.70	1.86	0.840
7/26/19	Summer	Fort Foster	С	34	8	Saccharina latissima	Brown		1.18	2.48	1.45	0.270
7/26/19	Summer	Fort Foster	С	35	9	Chaetomorpha picquotiana	Green		0.37	0.39	0.38	0.010
7/26/19	Summer	Fort Foster	С	35	9	Dasysiphonia japonica	Red		1.11	9.50	3.46	2.350
7/26/19	Summer	Fort Foster	С	35	9	Saccharina latissima	Brown		1.13	8.61	2.14	1.010
7/26/19	Summer	Fort Foster	С	35	9	Polysiphonia elongata	Red		0.48	0.49	0.48	0.000
7/26/19	Summer	Fort Foster	С	35	9	Cystoclonium purpureum	Red		0.49	0.61	0.53	0.040
7/26/19	Summer	Fort Foster	С	38	10	Saccharina latissima	Brown		5.01	96.98	20.07	15.060
7/26/19	Summer	Fort Foster	С	38	10	Dasysiphonia japonica	Red		2.00	10.51	3.87	1.870
7/26/19	Summer	Fort Foster	С	38	10	Chaetomorpha picquotiana	Green		0.40	0.40	0.40	0.000
7/26/19	Summer	Fort Foster	С	38	10	Ceramium virgatum	Red		1.04	1.38	1.08	0.040
7/26/19	Summer	Fort Foster	С	43	11	Palmaria palmata	Red		3.38	24.16	6.39	3.010
7/26/19	Summer	Fort Foster	С	43	11	Dasysiphonia japonica	Red		0.74	1.25	0.90	0.160
7/26/19	Summer	Fort Foster	С	43	11	Polysiphonia fucoides	Red		0.68	0.77	0.71	0.030
7/26/19	Summer	Fort Foster	С	43	11	Chaetomorpha picquotiana	Green		0.68	0.71	0.70	0.020
7/26/19	Summer	Fort Foster	C	43	11	Saccharina latissima	Brown		3.08	10.55	4.08	1.000
7/26/19	Summer	Fort Foster	C	43	11	Chaetomorpha ligustica	Green		0.50	0.51	0.50	0.000
7/26/19	Summer	Fort Foster	C	44	12	Polysiphonia elongata	Red		0.39	0.39	0.39	0.000
7/26/19	Summer	Fort Foster	C	44	12	Polysiphonia fucoides	Red		0.59	0.62	0.59	0.000

0.56 1.96 0.88 7 3.59	5 0.54 5 1.11 3 0.65	0.030
3 1.96 2 0.88 7 3.59	5 1.11 3 0.65	0.330
2 0.88 7 3.59	3 0.65	
3.59		0.030
3.59		
	1.77	1.000
		0.000
		0.000
		0.000
		0.000
		0.000
		0.000
		0.000
		0.000
		0.000
		0.000
5 1.39	1.14	0.090
		0.000
		0.000
1.36	5 0.86	0.070
0.73	3 0.70	0.010
4.10) 1.95	0.550
		0.000
3.77	7 1.22	0.550
12.20	3.88	1.890
0.65	5 0.49	0.040
1.10	0.75	0.090
2.98	1.23	0.430
1.54	1 0.78	0.060
0.93	3 0.70	0.060
0.63	0.60	0.000
0.54	0.46	0.040
2.04	0.93	0.290
4.23	3 1.58	0.450
6.96	5 2.58	1.000
1.02	0.79	0.060
5.57	7 2.32	0.710
0.49	3 0.40	0.020
1.27	7 0.91	0.070
. 1.2/	0.51	0.000
	_	0.000
1.69	0.87	0 170
0.30	0.36	0.000
17.20	1 4 92	2 320
	5 1.39 9 1.36 9 0.73 0 4.10 7 3.77 9 12.20 5 0.65 6 1.10 0 2.98 2 1.54 4 0.93 0 0.63 2 0.54 4 2.04 3 4.23 8 6.96 3 1.02 1 5.57 8 0.48 4 1.27 0 1.69 6 0.39 0 0.63 0 1.69 6 0.39 0 0.63 0 0.64 0 0.63 0 0.63 0 0.64 0 0.63 0 0.75 0 0.63 0 0.75 0 0.75 0 0.63 0 0.63 0 0.63 0 0.75 0 0.7	9 1.36 0.86 9 1.36 0.86 9 0.73 0.70 0 4.10 1.95 7 3.77 1.22 9 12.20 3.88 5 0.65 0.49 6 1.10 0.75 0 2.98 1.23 2 1.54 0.78 4 0.93 0.70 0 0.63 0.60 2 0.54 0.46 4 2.04 0.93 3 4.23 1.58 8 6.96 2.58 3 1.02 0.79 1 5.57 2.32 8 0.48 0.40 4 1.27 0.91 0 1.69 0.87 6 0.39 0.36 0 1.69 0.87 6 0.39 0.36 0 1.69 0.87 6 0.39 0.36 0 1.720

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
8/2/19	Summer	Great Bay	С		4	Cladophora sericea	Green		0.36	0.54	0.39	0.030
8/2/19	Summer	Great Bay	С		5	Cladophora sericea	Green		1.05	1.38	1.13	0.080
8/2/19	Summer	Great Bay	С		5	Agarophyton vermiculophyllum	Red		2.52	15.82	4.94	2.420
8/2/19	Summer	Great Bay	С		5	Ulva australis	Green		1.00	1.84	1.22	0.220
8/2/19	Summer	Great Bay	С		6	Agarophyton vermiculophyllum	Red		1.27	3.79	1.71	0.440
8/2/19	Summer	Great Bay	С		6	Cladophora sericea	Green		0.58	0.67	0.61	0.030
8/2/19	Summer	Great Bay	С		7	Dasysiphonia japonica	Red		0.71	0.71	0.71	0.000
8/2/19	Summer	Great Bay	С		7	Cladophora sericea	Green		0.88	0.94	0.87	0.000
8/2/19	Summer	Great Bay	С		7	Agarophyton vermiculophyllum	Red		3.13	14.91	5.03	1.900
8/2/19	Summer	Great Bay	С		8	Ulva australis	Green		0.70	1.09	0.81	0.110
8/2/19	Summer	Great Bay	С		8	Agarophyton vermiculophyllum	Red		0.69	1.54	0.82	0.130
8/2/19	Summer	Great Bay	С		8	Cladophora sericea	Green		0.44	0.46	0.44	0.000
8/2/19	Summer	Great Bay	С		8	Polysiphonia schneideri	Red		0.32	0.38	0.32	0.000
8/2/19	Summer	Great Bay	С		9	Cladophora sericea	Green		0.58	0.58	0.58	0.000
8/2/19	Summer	Great Bay	С		9	Ulva australis	Green		3.12	11.16	5.09	1.970
8/2/19	Summer	Great Bay	С		9	Agarophyton vermiculophyllum	Red		1.48	15.74	4.67	3.190
8/2/19	Summer	Great Bay	С		10	Agarophyton vermiculophyllum	Red		1.51	2.71	1.68	0.170
8/2/19	Summer	Great Bay	С		11	Agarophyton vermiculophyllum	Red		0.54	0.76	0.56	0.020
8/2/19	Summer	Great Bay	С		12	No algae						
10/29/19	Fall	Great Bay	Α		1	No algae						
10/29/19	Fall	Great Bay	Α		2	No algae						
10/29/19	Fall	Great Bay	Α		3	No algae						
10/29/19	Fall	Great Bay	Α		4	Agarophyton vermiculophyllum	Red					0.005
10/29/19	Fall	Great Bay	Α		4	Dasya baillouviana	Red		1.21	9.69	2.01	0.800
10/29/19	Fall	Great Bay	Α		4	Dasysiphonia japonica	Red		1.03	1.47	1.08	0.050
10/29/19	Fall	Great Bay	Α		5	Agarophyton vermiculophyllum	Red		2.53	7.7	3.23	0.700
0/29/19	Fall	Great Bay	Α		6	Ulva rigida	Green		1.24	2.89	1.56	0.320
0/29/19	Fall	, Great Bay	Α		6	Ulva lactuca	Green		1.29	2.72	1.54	0.250
0/29/19	Fall	Great Bay	Α		6	Agarophyton vermiculophyllum	Red		0.66	1.37	0.75	0.090
0/29/19	Fall	Great Bay	Α		7	Dasysiphonia japonica	Red		0.62	0.75	0.65	0.030
0/29/19	Fall	Great Bay	Α		8	Dasysiphonia japonica	Red		1.29	1.54	1.35	0.060
0/29/19	Fall	Great Bay	Α		8	Palmaria palmata	Red					0.005
0/29/19	Fall	Great Bay	Α		9	Dasysiphonia japonica	Red		1.44	3.15	1.97	0.530
0/29/19	Fall	Great Bay	Α		9	Agarophyton vermiculophyllum	Red		1.09	1.24	1.11	0.020
0/29/19	Fall	Great Bay	Α		10	No algae						
10/29/19	Fall	Great Bay	A		11	No algae						
10/29/19	Fall	Great Bay	Α		12	No algae						
10/28/19	Fall	Great Bay	В		1	No algae						
10/28/19	Fall	Great Bay	B		2	No algae						
10/28/19	Fall	Great Bay	B		3	Chaetomorpha picquotiana	Green		1.00	1.03	1.01	0.010
10/28/19	Fall	Great Bay	B		3	Neosiphonia harvevi	Red		0.95	0.98	0.93	0.005
10/28/19	Fall	Great Bay	B		3	Polysiphonia fucoides	Red		1.25	2.41	1.46	0.210
10/28/19	Fall	Great Bay	B		3	Dasysiphonia japonica	Red		1.17	13.24	3.54	2.370
720113		Sicarbay			<u> </u>		11000				0101	2.370

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
10/28/19	Fall	Great Bay	В		3	Agarophyton vermiculophyllum	Red		5.18	47.82	10.92	5.740
10/28/19	Fall	Great Bay	В		3	Ulva rigida	Green		1.32	3.21	1.76	0.440
10/28/19	Fall	Great Bay	В		3	Desmarestia aculeata	Brown					0.005
10/28/19	Fall	Great Bay	В		3	Ceramium virgatum	Red					0.005
10/28/19	Fall	Great Bay	В		4	Dasysiphonia japonica	Red					0.005
10/28/19	Fall	Great Bay	В		4	Agarophyton vermiculophyllum	Red		0.95	2.87	1.21	0.260
10/28/19	Fall	Great Bay	В		5	Polysiphonia fucoides	Red		0.75	1.45	0.90	0.150
10/28/19	Fall	Great Bay	В		5	Phyllophora pseudoceranoides	Red		1.15	1.59	1.27	0.120
10/28/19	Fall	Great Bay	В		5	Ulva rigida	Green		2.19	6.80	3.14	0.950
10/28/19	Fall	Great Bay	В		5	Palmaria palmata	Red		2.58	6.86	3.16	0.580
10/28/19	Fall	Great Bay	В		5	Gracilaria tikvahiae	Red		1.38	4.77	1.82	0.440
10/28/19	Fall	Great Bay	В		5	Agarophyton vermiculophyllum	Red		3.10	51.34	9.88	6.780
10/28/19	Fall	Great Bay	В		5	Callithamnion corymbosum	Red		0.79	0.87	0.82	0.030
10/28/19	Fall	Great Bay	В		5	Dasysiphonia japonica	Red		1.48	15.75	4.61	3.130
10/28/19	Fall	Great Bay	В		5 Combined	Combined sample	Mix					
10/28/19	Fall	Great Bay	В		5 Combined	Dasysiphonia japonica			0.59	0.76	0.63	0.040
10/28/19	Fall	Great Bay	В		5 Combined	Polysiphonia fucoides			0.71	0.75	0.72	0.010
10/28/19	Fall	Great Bay	В		5 Combined	Agarophyton vermiculophyllum			1.05	1.91	1.18	0.130
10/28/19	Fall	Great Bay	В		5 Combined	Zostera marina			2.42	7.34	2.93	0.510
10/28/19	Fall	Great Bay	В		5 Combined	Ulva rigida						0.005
10/28/19	Fall	Great Bay	В		5 Combined	Subsample total	Mix		3.06	66.58	10.24	7.180
10/28/19	Fall	Great Bay	В		6	Agardhiella subulata	Red		2.47	15.09	3.28	0.810
10/28/19	Fall	Great Bay	В		6	Agarophyton vermiculophyllum	Red		2.87	20.09	5.21	2.340
10/28/19	Fall	Great Bay	В		6	Polysiphonia elongata	Red		2.38	13.06	5.10	2.720
10/28/19	Fall	Great Bay	В		6	Ulva rigida	Green		0.62	0.81	0.67	0.050
10/28/19	Fall	Great Bay	В		6	Dasysiphonia japonica	Red		1.86	7.32	3.10	1.240
10/28/19	Fall	Great Bay	В		6	Palmaria palmata	Red					0.005
10/28/19	Fall	Great Bay	В		6	Callithamnion corymbosum	Red					0.005
10/28/19	Fall	Great Bay	В		6	Desmarestia aculeata	Brown					0.005
10/28/19	Fall	Great Bay	В		6	Chaetomorpha picquotiana	Green					0.005
10/28/19	Fall	Great Bay	В		7	Agarophyton vermiculophyllum	Red		2.58	11.79	3.98	1.400
10/28/19	Fall	Great Bay	В		7	Dasysiphonia japonica	Red		1.35	4.92	2.10	0.750
10/28/19	Fall	Great Bay	В		7	Chaetomorpha picquotiana	Green					0.005
10/28/19	Fall	Great Bay	В		8	Ulva rigida	Green					0.005
10/28/19	Fall	Great Bay	В		8	Agarophyton vermiculophyllum	Red		1.80	5.48	2.32	0.520
10/28/19	Fall	Great Bay	В		8	Dasysiphonia japonica	Red		1.39	3.44	1.83	0.440
10/28/19	Fall	Great Bay	В		8	Agardhiella subulata	Red		2.17	8.30	2.59	0.420
10/28/19	Fall	Great Bay	В		9	Dasysiphonia japonica	Red		0.75	0.90	0.77	0.020
10/28/19	Fall	Great Bay	В		9	Agarophyton vermiculophyllum	Red		0.68	1.49	0.85	0.170
10/28/19	Fall	Great Bay	В		9	Callithamnion corymbosum	Red					0.005
10/28/19	Fall	Great Bay	В		10	Polysiphonia fucoides	Red					0.005
10/28/19	Fall	Great Bay	В		10	Ulva rigida	Green		0.84	1.34	0.96	0.120
10/28/19	Fall	Great Bay	В		10	Agarophyton vermiculophyllum	Red		2.44	5.65	3.07	0.630

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)		
10/28/19	Fall	Great Bay	В		10	Dasysiphonia japonica	Red		0.89	1.41	1.01	0.120		
10/28/19	Fall	Great Bay	В		11	Agarophyton vermiculophyllum	Red		1.21	1.82	1.31	0.100		
10/28/19	Fall	Great Bay	В		12	Palmaria palmata	Red					0.005		
10/28/19	Fall	Great Bay	В		12	Polysiphonia fucoides	Red		1.41	1.83	1.50	0.090		
10/28/19	Fall	Great Bay	В		12	Dasysiphonia japonica	Red		1.54	13.91	4.53	2.990		
10/28/19	Fall	Great Bay	В		12	Agarophyton vermiculophyllum	Red		5.25	55.42	12.11	6.860		
10/28/19	Fall	Great Bay	В		12	Gracilaria tikvahiae	Red		1.26	2.90	1.50	0.240		
10/29/19	Fall	Great Bay	С		1	Dasysiphonia japonica	Red		0.71	1.89	0.90	0.190		
10/29/19	Fall	Great Bay	С		1	Agarophyton vermiculophyllum	Red					0.005		
10/29/19	Fall	Great Bay	С		2	Dasysiphonia japonica	Red		1.46	2.01	1.57	0.110		
10/29/19	Fall	Great Bay	С		2	Polysiphonia elongata	Red		0.55	0.60	0.55	0.005		
10/29/19	Fall	Great Bay	С		2	Polysiphonia fucoides	Red		0.53	0.67	0.56	0.030		
10/29/19	Fall	Great Bay	С		2	Agarophyton vermiculophyllum	Red		1.52	2.66	1.71	0.190		
10/29/19	Fall	Great Bay	С		2	Cladophora sericea	Green					0.005		
10/29/19	Fall	Great Bay	С		3	Chaetomorpha picquotiana	Green					0.005		
10/29/19	Fall	Great Bay	С		3	Neosiphonia harveyi	Red					0.005		
10/29/19	Fall	Great Bay	С		3	Dasysiphonia japonica	Red		1.45	3.70	1.95	0.500		
10/29/19	Fall	, Great Bay	с		3	Agarophyton vermiculophyllum	Red		1.58	6.92	2.50	0.920		
10/29/19	Fall	, Great Bay	с		3	Ulva rigida	Green		1.35	5.99	2.60	1.250		
10/29/19	Fall	Great Bay	C		3	Callithamnion corymbosum	Red					0.005		
10/29/19	Fall	Great Bay	C		4	Agarophyton vermiculophyllum	Red		1.29	5.96	2.21	0.920		
10/29/19	Fall	Great Bay	c		4	Dasvsiphonia japonica	Red		0.76	3.54	1.22	0.460		
10/29/19	Fall	Great Bay	C		4	Chaetomorpha picquotiana	Green					0.005		
10/29/19	Fall	Great Bay	c		4	Neosiphonia harvevi	Red					0.005		
10/29/19	Fall	Great Bay	C		4	Polysiphonia fucoides	Red					0.005		
10/29/19	Fall	Great Bay	C		4	Cladophora sericea	Green					0.005		
10/29/19	Fall	Great Bay	C		4	Ceramium deslongchampsii	Red					0.005		
10/29/19	Fall	Great Bay	c		5	Dasysiphonia japonica	Red		1.05	5.48	1.93	0.880		
10/29/19	Fall	Great Bay	C		5	Agarophyton vermiculophyllum	Red		1.88	5.68	2.73	0.850		
10/29/19	Fall	Great Bay	C		5	Ulva rigida	Green		1.44	2.94	1.78	0.340		
10/29/19	Fall	Great Bay	C		6	Dasysiphonia japonica	Red		0.59	2.02	0.92	0.330		
10/29/19	Fall	Great Bay	C		6	Neosinhonia harvevi	Red		0.00	2.02	0.52	0.005		
43767	Fall	Great Bay	C C			6 Gratelounia turuturu (subsample)	Red	33.5	2 410	11 640	3 120	2 577	subsample taken to calculat	te dry wt
10/29/19	Fall	Great Bay	Č.		7	Ulva rigida	Green	55.5	3.45	18 93	6 19	2.377		
10/29/19	Fall	Great Bay	C C		7	Dasysinhonia ianonica	Red		1 37	4 08	1 76	0 390		
10/29/19	Fall	Great Bay	C C		7	Agarophyton vermiculophyllum	Red		1.57	3.46	1.93	0.330		
10/29/19	Fall	Great Bay	C C		,	No algae	neu		1.50	3.40	1.05	0.550		
10/29/19	Fall	Great Bay	C		9	Dasvsinhonia ianonica	Rod		1 10	2 65	1.45	0 250		
10/20/10	Fall	Great Bay	C		9	Agarophyton vormiculophyllum	Rod		1.10	2.05	1.45	0.330		
10/29/19	Fall	Great Bay	C		9	Cladophora sericea	Green		1.35	1.00	1.00	0.270		
10/29/19	Fall	Great Bay	C		9	Polysiphonia fuccidos	Rod		1.1.5	1.27	1.21	0.020		
10/20/10	Fall	Great Bay	C		10	Agarophyton vermiculophyllum	Red		1.15	3 10	1.15	0.020		
10/20/10	Fall	Great Day	C		10	Dasweinhonia japonica	Rod		1.34	1 27	1.05	0.510		
10/25/15	i dii	Great bay			10	Dasysiphonia Japonica	neu		0.00	1.57	0.50	0.100		

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
10/29/19	Fall	Great Bay	С		11	Cladophora sericea	Green					0.005
10/29/19	Fall	Great Bay	С		11	Dasysiphonia japonica	Red		0.68	3.26	1.03	0.350
10/29/19	Fall	Great Bay	С		11	Agarophyton vermiculophyllum	Red		0.73	0.94	0.77	0.040
10/29/19	Fall	Great Bay	С		11	Ceramium virgatum	Red					0.005
10/29/19	Fall	Great Bay	С		12	Ceramium virgatum	Red					0.005
10/29/19	Fall	Great Bay	С		12	Dasysiphonia japonica	Red		0.73	1.94	0.79	0.060
10/29/19	Fall	Great Bay	С		12	Agarophyton vermiculophyllum	Red		2.36	5.31	2.75	0.390
10/20/19	Fall	Fort Foster	Α		1	Polysiphonia fucoides	Red		0.78	0.91	0.80	0.020
10/20/19	Fall	Fort Foster	Α		1	Vertebrata lanosa	Red		0.96	1.06	0.98	0.020
10/20/19	Fall	Fort Foster	Α		1	Euthora cristata	Red		0.83	1.09	0.87	0.040
10/20/19	Fall	Fort Foster	Α		1	Agarum clathratum	Brown		1.10	1.28	1.13	0.030
10/20/19	Fall	Fort Foster	Α		1	Dasysiphonia japonica	Red		1.31	1.47	1.33	0.020
10/20/19	Fall	Fort Foster	Α		1	Desmarestia aculeata	Brown		0.82	0.91	0.84	0.020
10/20/19	Fall	Fort Foster	Α		1 combined	Combined sample	Mix		0.94		1.53	0.590
10/20/19	Fall	Fort Foster	Α		1 combined	Ulvaria obscura	Green					
10/20/19	Fall	Fort Foster	Α		1 combined	Coralina officinalis	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Coccotylus truncatus	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Chaetomorpha picquotiana	Green					
10/20/19	Fall	Fort Foster	Α		1 combined	Membranoptera alata	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Phycodrys fimbriata	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Bonnemaisonia hamifera	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Dasysiphonia japonica	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Ptilota serrata	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Neosiphonia harveyi	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Callithamnion tetragonum	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Chaetomorpha linum	Green					
10/20/19	Fall	Fort Foster	Α		1 combined	Euthora cristata	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Desmarestia aculeata	Brown					
10/20/19	Fall	Fort Foster	Α		1 combined	Cystoclonium purpureum	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Polysiphonia fucoides	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Ahnfeltia plicata	Red					
10/20/19	Fall	Fort Foster	Α		1 combined	Hydroids	Animal					
10/20/19	Fall	Fort Foster	Α		2	No algae						
10/21/19	Fall	Fort Foster	Α		3	Ceramium virgatum	Red					0.005
10/21/19	Fall	Fort Foster	Α		3	Ptilota serrata	Red					0.005
10/21/19	Fall	Fort Foster	Α		3	Polysiphonia fucoides	Red		0.65	0.70	0.67	0.020
10/21/19	Fall	Fort Foster	Α		3	Desmarestia aculeata	Brown		3.16	5.58	3.83	0.670
10/21/19	Fall	Fort Foster	Α		3	Palmaria palmata	Red		2.67	8.87	3.43	0.760
10/21/19	Fall	Fort Foster	A		3	Agarum clathratum	Brown		2.79	7.69	3.89	1,100
10/21/19	Fall	Fort Foster	Α		3	Dasysiphonia japonica	Red		0.56	0.70	0.59	0.030
10/21/19	Fall	Fort Foster	Α		3	Phyllophora pseudoceranoides	Red		0.78	0.96	0.85	0.070
10/21/19	Fall	Fort Foster	Α		3	Coccotylus truncatus	Red		0.80	1.20	0.92	0.120
10/21/19	Fall	Fort Foster	Α		3	Vertebrata lanosa	Red		0.80	0.84	0.81	0.010

Collection Date	Season	Site	Tran-	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
10/21/19	Fall	Fort Foster	Δ	Distance	3	Phycodrys fimbriata	Red		0.84	1.23	0.92	0.080
10/21/19	Fall	Fort Foster	Δ		3	Futhora cristata	Red		0.89	1 10	0.92	0.030
10/21/19	Fall	Fort Foster	Δ		3	Ulva rigida	Green		0.03	0.97	0.94	0.010
10/21/19	Fall	Fort Foster	Δ		3	Chondrus crispus	Red		0.86	1.09	0.92	0.060
10/21/19	Fall	Fort Foster	Δ		3	Chaetomorpha picquotiana	Green		0.92	1 24	0.98	0.060
10/21/19	Fall	Fort Foster	Δ		4	Rhodomela confervoides	Red		0.68	0.70	0.69	0.010
10/21/19	Fall	Fort Foster	Δ		4	Palmaria palmata	Red		1.38	2.51	1.55	0.170
10/21/19	Fall	Fort Foster	Δ		4	Desmarestia aculeata	Brown		0.96	1 27	1.03	0.070
10/21/19	Fall	Fort Foster	Δ		4	Phyllophora pseudoceranoides	Red		0.74	0.97	0.79	0.050
10/21/19	Fall	Fort Foster	Δ		4	Polysiphonia fucoides	Red		0.79	0.88	0.81	0.020
10/21/19	Fall	Fort Foster	Δ		4	Futhora cristata	Red		0.88	1.05	0.91	0.030
10/21/19	Fall	Fort Foster	Δ		4	Dasysinhonia janonica	Red		0.00	0.82	0.75	0.040
10/21/19	Fall	Fort Foster	Δ		4	Eredericcia deveauniensis	Red		0.69	0.73	0.70	0.010
10/21/19	Fall	Fort Foster	2		4 combined	Combined sample	Mix		0.03	1.02	0.70	0.010
10/21/19	Fall	Fort Foster	2		4 combined	Chaetomorpha picquotiana	Green		0.75	1.02	0.01	0.000
10/21/19	Fall	Fort Foster	Â		4 combined	Vertebrata Janosa	Red					
10/21/19	Fall	Fort Foster	~		4 combined	Desvsinhonia ianonica	Red					
10/21/19	Fall	Fort Foster	2		4 combined	Callithamnion tetragonum	Red					
10/21/19	Fall	Fort Foster	A		4 combined	Coramium virgatum	Rod					
10/21/19	Fall	Fort Foster	A		4 combined	Polysiphonia stricta	Rod					
10/21/19	Fall	Fort Foster	A 		4 combined	Absfoltia plicata	Rod					
10/21/19	Fall	Fort Foster	A		4 combined	Futhora cristata	Rod					
10/21/19	Fall	Fort Foster	A		4 combined	Dtilota correta	Rod					
10/21/19	Fall	Fort Foster	A 		4 combined		Rod		0.67	0.75	0.69	0.010
10/21/19	Fall	Fort Foster	A 		5		Red		0.07	1.20	0.06	0.010
10/21/19	Fall	Fort Foster	A 		5	Chaotomorpha picquotiana	Groop		0.65	0.95	0.50	0.150
10/21/19	Fall	Fort Foster	A A		5	Dosmaractia aculaata	Brown		0.05	0.55	0.70	0.030
10/21/19	Fall	Fort Foster	A .		5 Combined	Combined cample	Mix		0.75	0.65	1.27	0.020
10/21/19	Fall	Fort Foster	A		5 Combined	Combined sample	Rod		0.00	2.07	1.27	0.470
10/21/19	Fall	Fort Foster	A		5 Combined	Callithampion totragonum	Rod					
10/21/19	Fall	Fort Foster	A		5 Combined	Chaotomorpha picquotiana	Groop					
10/21/19	Fall	Fort Foster	A A		5 Combined	Dosmaractia aculaata	Brown					
10/21/13	Fall	Fort Foster	A		5 Combined	Euthora cristata	Rod					
10/21/19	Fall	Fort Foster	A		5 Combined	Abnfoltia plicata	Pod					
10/21/19	Fall	Fort Foster	A		5 Combined	Anniertia pricata Delusiebenia fusoidos	Red					
10/21/19	Fall	Fort Foster	A		5 Combined	Custoslanium purpursum	Red					
10/21/19	Fall	Fort Foster	A		5 Combined	Cystocionium purpureum	Red					
10/21/19	Fall	Fort Foster	A		5 Combined	Vortobrata Japana	Red					
10/21/19	Fall	Fort Foster	A		5 Combined	Verteprata janosa Delvides retunds	Red					
10/21/19	Fall	Fort Foster	A		5 Combined	Polyldes rotunda	ĸea					
10/21/19	Fall	Fort Foster	A		0	No algae						
10/21/19	Fall	Fort Foster	A		/	NO algae	De -l		0.00	4 4 5	0.05	0.050
10/21/19	Fall	Fort Foster	A		8	Euthora cristata	Red		0.90	1.13	0.95	0.050
10/21/19	Fall	Fort Foster	A		8	Polysiphonia fucoides	Red		0.77	0.98	0.82	0.050

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
10/21/19	Fall	Fort Foster	Α		8	Chondrus crispus	Red		0.93	1.46	1.08	0.150
10/21/19	Fall	Fort Foster	Α		8	Ptilota serrata	Red		0.82	0.93	0.84	0.020
10/21/19	Fall	Fort Foster	Α		8	Desmarestia aculeata	Brown		0.91	1.54	1.05	0.140
10/21/19	Fall	Fort Foster	Α		8	Dasysiphonia japonica	Red		1.95	4.46	2.76	0.810
10/21/19	Fall	Fort Foster	Α		8 combined	Combined sample	Mix		2.17	5.90	3.05	0.880
10/21/19	Fall	Fort Foster	Α		8 combined	Chaetomorpha ligustica	Green					
10/21/19	Fall	Fort Foster	Α		8 combined	Chaetomorpha picquotiana	Green					
10/21/19	Fall	Fort Foster	Α		8 combined	Coccotylus truncatus	Red					
10/21/19	Fall	Fort Foster	Α		8 combined	Desmarestia aculeata	Brown					
10/21/19	Fall	Fort Foster	Α		8 combined	Phycodrys fimbriata	Red					
10/21/19	Fall	Fort Foster	Α		8 combined	Callithamnion tetragonum	Red					
10/21/19	Fall	Fort Foster	Α		8 combined	Dasysiphonia japonica	Red					
10/21/19	Fall	Fort Foster	Α		8 combined	Euthora cristata	Red					
10/21/19	Fall	Fort Foster	Α		8 combined	Vertebrata lanosa	Red					
10/21/19	Fall	Fort Foster	Α		8 combined	Ahnfeltia plicata	Red					
10/21/19	Fall	Fort Foster	Α		8 combined	Polyides rotunda	Red					
10/21/19	Fall	Fort Foster	Α		8 combined	Ptilota serrata	Red					
10/21/19	Fall	Fort Foster	Α		9	No algae						
10/21/19	Fall	Fort Foster	Α		10	Palmaria palmata	Red		6.75	69.63	17.46	10.710
10/21/19	Fall	Fort Foster	Α		10	Chaetomorpha picquotiana	Green		4.05	19.95	7.53	3.480
10/21/19	Fall	Fort Foster	Α		10	Desmarestia aculeata	Brown		5.95	43.56	16.45	10.500
10/21/19	Fall	Fort Foster	Α		10	Ascophyllum nodosum	Brown		3.22	20.34	7.00	3.780
10/21/19	Fall	Fort Foster	Α		10	Saccharina latissima	Brown		1.47	9.18	2.49	1.020
10/21/19	Fall	Fort Foster	Α		10	Ceramium virgatum	Red		1.42	2.30	1.52	0.100
10/21/19	Fall	Fort Foster	Α		10	Ulvaria obscura	Green		1.35	1.40	1.37	0.020
10/21/19	Fall	Fort Foster	Α		10	Fucus distichus subsp. evanescens	Brown		1.32	2.14	1.53	0.210
10/21/19	Fall	Fort Foster	Α		10	Ahnfeltia plicata	Red		0.86	1.17	1.00	0.140
10/21/19	Fall	Fort Foster	Α		10	Phyllophora pseudoceranoides	Red		1.16	2.68	1.55	0.390
10/21/19	Fall	Fort Foster	Α		10	Chondria bailevana	Red		0.85	1.12	0.87	0.020
10/21/19	Fall	Fort Foster	Α		10	Ulva rigida	Green		0.69	0.73	0.70	0.010
10/21/19	Fall	Fort Foster	Α		10	Ptilota serrata	Red		0.81	0.88	0.82	0.010
10/21/19	Fall	Fort Foster	Α		10	Bonnemaisonia hamifera	Red		0.72	0.80	0.73	0.010
10/21/19	Fall	Fort Foster	Α		10	Dasysiphonia japonica	Red		1.26	1.91	1.36	0.100
10/21/19	Fall	Fort Foster	Α		10	Vertebrata lanosa	Red		1.38	2.02	1.55	0.170
10/21/19	Fall	Fort Foster	Α		10	Rhodomela confervoides	Red		1.61	5.86	2.20	0.590
10/21/19	Fall	Fort Foster	Α		10	Polvides rotunda	Red		1.46	6.48	2.49	1.030
10/21/19	Fall	Fort Foster	Α		10	Cystoclonium purpureum	Red		0.83	0.86	0.83	0.005
10/21/19	Fall	Fort Foster	Α		10	Callithamnion tetragonum	Red		0.91	1.04	0.93	0.020
10/21/19	Fall	Fort Foster	Δ		10	Fucus vesiculosus	Brown		0.99	1.10	1.02	0.030
10/21/19	Fall	Fort Foster	Δ		10	Membranoptera alata	Red		0.90	0.93	0.91	0.010
10/21/19	Fall	Fort Foster	A		10	Polysiphonia fucoides	Red		1.48	1.54	1.50	0.020
10/21/19	Fall	Fort Foster	A		10	Coccotylus truncatus	Red		2.72	5.05	3.29	0.570
10/21/19	Fall	Fort Foster	Α		10	Phycodrys fimbriata	Red		1.38	3.72	1.83	0.450

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) •use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
10/21/19	Fall	Fort Foster	Α		10	Euthora cristata	Red		1.99	5.55	2.55	0.560
10/21/19	Fall	Fort Foster	Α		10	Agarum clathratum	Brown		8.76	55.00	20.42	11.660
10/21/19	Fall	Fort Foster	Α		10 combined A	Combined sample	Mix		3.35	14.93	6.76	3.410
10/21/19	Fall	Fort Foster	Α		10 combined A	Chaetomorpha picquotiana	Green					
10/21/19	Fall	Fort Foster	Α		10 combined A	Mastocarpus stellatus	Red					
10/21/19	Fall	Fort Foster	Α		10 combined A	Hydroids	Animal					
10/21/19	Fall	Fort Foster	Α		10 combined B	Combined sample	Mix		2.67	15.23	5.24	2.570
10/21/19	Fall	Fort Foster	Α		10 combined B	Chaetomorpha picquotiana	Green					
10/21/19	Fall	Fort Foster	Α		10 combined B	Saccharina latissima	Brown					
10/21/19	Fall	Fort Foster	Α		10 combined B	Desmarestia aculeata	Brown					
10/21/19	Fall	Fort Foster	Α		10 combined B	Fucus vesiculosus	Brown					
10/21/19	Fall	Fort Foster	Α		10 combined B	Euthora cristata	Red					
10/21/19	Fall	Fort Foster	Α		10 combined B	Ahnfeltia plicata	Red					
10/21/19	Fall	Fort Foster	Α		10 combined B	Coccotylus truncatus	Red					
10/21/19	Fall	Fort Foster	Α		10 combined B	Coralina officinalis	Red					
10/21/19	Fall	Fort Foster	Α		10 combined B	Palmaria palmata	Red					
10/21/19	Fall	Fort Foster	Α		10 combined B	Polyides rotunda	Red					
10/21/19	Fall	Fort Foster	Α		10 combined B	Phycodrys fimbriata	Red					
10/21/19	Fall	Fort Foster	Α		10 combined B	Dasysiphonia japonica	Red					
10/21/19	Fall	Fort Foster	Α		10 combined B	Rhodomela confervoides	Red					
10/21/19	Fall	Fort Foster	Α		10 combined B	Vertebrata lanosa	Red					
10/21/19	Fall	Fort Foster	Α		10 combined B	Zostera marina	Plant					
10/21/19	Fall	Fort Foster	Α		10 combined B	Hvdroids	Animal					
10/21/19	Fall	Fort Foster	Α		10 combined C	Combined sample	Mix		2.97	17.87	6.96	3.990
10/21/19	Fall	Fort Foster	Α		10 combined C	Chondrus crispus	Red					
10/21/19	Fall	Fort Foster	Α		10 combined C	Hvdroids	Animal					
10/21/19	Fall	Fort Foster	Α		11	Agarum clathratum	Brown		2.83	5.77	3.44	0.610
10/21/19	Fall	Fort Foster	Α		11	Palmaria palmata	Red		0.95	1.58	1.01	0.060
10/21/19	Fall	Fort Foster	Α		11	Chaetomorpha picquotiana	Green		0.87	1.80	1.01	0.140
10/21/19	Fall	Fort Foster	A		11	Dasvsiphonia japonica	Red		1.01	1.65	1.17	0.160
10/21/19	Fall	Fort Foster	Α		11	Vertebrata lanosa	Red		1.11	1.30	1.16	0.050
10/21/19	Fall	Fort Foster	Δ		11	Desmarestia aculeata	Brown		1.23	1.66	1.33	0,100
10/21/19	Fall	Fort Foster	Α		11	Phycodrys fimbriata	Red		1.41	1.77	1.48	0.070
10/21/19	Fall	Fort Foster	Δ		11	Ascophyllum nodosum	Brown		0.74	0.85	0.77	0.030
10/21/19	Fall	Fort Foster	Δ		11 combined	Combined sample	Mix		0.98	1 44	1 15	0 170
10/21/19	Fall	Fort Foster	Δ		11 combined	Coralina officinalis	Red		0.50		1.10	0.270
10/21/19	Fall	Fort Foster	Δ		11 combined	Polysiphonia fucoides	Red					
10/21/19	Fall	Fort Foster	Δ		11 combined		Red					
10/21/19	Fall	Fort Foster	Δ		11 combined	Dasysiphonia japonica	Red					
10/21/19	Fall	Fort Foster	Δ		11 combined	Callithamnion tetragonum	Red					
10/21/19	Fall	Fort Foster	Δ		11 combined	Futhora cristata	Red					
10/21/19	Fall	Fort Foster	Δ		11 combined	Chaetomorpha picquotiana	Green					
10/21/19	Fall	Fort Foster	Δ		11 combined	Ptilota serrata	Red					
		. or croster	~		22 comonicu	r enota periota	inc o					

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
10/21/19	Fall	Fort Foster	Α		12	Desmarestia aculeata	Brown		0.82	1.54	1.04	0.220
10/21/19	Fall	Fort Foster	Α		12	Mastocarpus stellatus	Red		0.74	1.19	0.86	0.120
10/21/19	Fall	Fort Foster	Α		12	Saccharina latissima	Brown		0.70	1.05	0.76	0.060
10/21/19	Fall	Fort Foster	Α		12	Coccotylus truncatus	Red		0.66	1.18	0.79	0.130
10/21/19	Fall	Fort Foster	Α		12	Euthora cristata	Red		0.59	0.89	0.64	0.050
10/21/19	Fall	Fort Foster	Α		12	Phycodrys fimbriata	Red		0.60	0.84	0.65	0.050
10/21/19	Fall	Fort Foster	Α		12	Chondrus crispus with hydroids	Red		1.10	4.23	1.84	0.740
10/21/19	Fall	Fort Foster	Α		12	Dasysiphonia japonica	Red		1.00	1.53	1.17	0.170
10/21/19	Fall	Fort Foster	Α		12 combined	Combined sample	Mix		0.83	1.45	0.97	0.140
10/21/19	Fall	Fort Foster	Α		12 combined	Chaetomorpha picquotiana	Green					
10/21/19	Fall	Fort Foster	Α		12 combined	Ceramium virgatum	Red					
10/21/19	Fall	Fort Foster	Α		12 combined	Dasysiphonia japonica	Red					
10/21/19	Fall	Fort Foster	Α		12 combined	Euthora cristata	Red					
10/21/19	Fall	Fort Foster	Α		12 combined	Cystoclonium purpureum	Red					
10/21/19	Fall	Fort Foster	Α		12 combined	Desmarestia aculeata	Brown					
10/21/19	Fall	Fort Foster	Α		12 combined	Coccotylus truncatus	Red					
10/21/19	Fall	Fort Foster	Α		12 combined	Phyllophora pseudoceranoides	Red					
10/21/19	Fall	Fort Foster	Α		12 combined	Phycodrys fimbriata	Red					
10/21/19	Fall	Fort Foster	Α		12 combined	Polysiphonia fucoides	Red					
10/21/19	Fall	Fort Foster	В		1	Phyllophora pseudoceranoides	Red		0.90	1.11	0.96	0.060
10/21/19	Fall	Fort Foster	В		1	Chondrus crispus	Red		0.95	1.11	1.00	0.050
10/21/19	Fall	Fort Foster	В		1	Devaleraea ramentacea	Red		0.81	0.88	0.83	0.020
10/21/19	Fall	Fort Foster	В		1	Chaetomorpha picquotiana	Green		0.62	0.72	0.65	0.030
10/21/19	Fall	Fort Foster	В		1	Dasysiphonia japonica	Red		0.92	3.68	1.57	0.650
10/21/19	Fall	Fort Foster	В		1 combined	Combined sample	Mix		0.62	2.53	1.02	0.400
10/21/19	Fall	Fort Foster	В		1 combined	Chaetomorpha picquotiana	Green					
10/21/19	Fall	Fort Foster	В		1 combined	Coccotylus truncatus	Red					
10/21/19	Fall	Fort Foster	В		1 combined	Dasysiphonia japonica	Red					
10/21/19	Fall	Fort Foster	В		1 combined	Desmarestia aculeata	Brown					
10/21/19	Fall	Fort Foster	В		1 combined	Ptilota serrata	Red					
10/21/19	Fall	Fort Foster	В		1 combined	Polysiphonia fucoides	Red					
10/21/19	Fall	Fort Foster	В		1 combined	Callithamnion tetragonum	Red					
10/21/19	Fall	Fort Foster	В		1 combined	Euthora cristata	Red					
10/21/19	Fall	Fort Foster	В		1 combined	Cystoclonium purpureum	Red					
10/21/19	Fall	Fort Foster	В		2	Euthora cristata	Red		0.76	0.89	0.78	0.020
10/21/19	Fall	Fort Foster	В		2	Dasysiphonia japonica	Red		0.80	1.64	0.92	0.120
10/21/19	Fall	Fort Foster	В		2	Chaetomorpha picquotiana	Green		0.92	1.41	1.04	0.120
10/21/19	Fall	Fort Foster	В		2 combined	Combined sample	Mix		0.77	5.16	1.87	1.100
10/21/19	Fall	Fort Foster	В		2 combined	Dasysiphonia japonica	Red					
10/21/19	Fall	Fort Foster	В		2 combined	Chaetomorpha picquotiana	Green					
10/21/19	Fall	Fort Foster	В		2 combined	Bonnemaisonia hamifera	Red					
10/21/19	Fall	Fort Foster	В		2 combined	Callithamnion tetragonum	Red					
10/21/19	Fall	Fort Foster	В		2 combined	Ceramium virgatum	Red					

Josoff Partial Part	Collection	Season	Site	Tran-	Quadrat	Blot	Species	Tupo	Total Wet Wt. (no foil) *use when taking subcamples	Foil weight	Wet weight	Dry Wt.	Dry Wt.
0/02/19 Fail Fort Foster 9 2 combined 2 zerra marina Plant Plant 0/02/19 Fail Fort Foster 8 3 Physodrys finibriata Red 0.64 0.77 1.06 0.63 0.67 0.63 0.66 0.60 0.60 0.02 0.65 0.66 0.60 0.02 0.65 0.66 0.60 0.02 0.65 0.65 0.66 0.60 0.02 0.53 0.	10/21/19	Fall	Fort Foster	B	Distance	2 combined	Dtilota serrata	Red	subsamples	(8)	(wy ion)		
Oracle of Poster B Descriptionia japonica Red 0.84 1.77 1.06 0.220 10/21/9 Fail Fort Foster B 3 Phycodry finbriala Red 0.64 0.76 0.67 0.630 10/21/9 Fail Fort Foster B 3 combined Dasysiphonia japonica Red 0.99 3.88 1.52 0.530 10/21/19 Fail Fort Foster B 3 combined Dasysiphonia japonica Red 0.99 3.88 1.52 0.530 10/21/19 Fail Fort Foster B 3 combined Dasysiphonia japonica Red 0.99 3.88 1.52 0.530 10/21/19 Fail Fort Foster B 3 combined Dasysiphonia japonica Red 0.67 0.530 0.530 0.73 0.660 0.511 1.52 0.530 0.71 0.520 0.71 0.721 511 Fort Foster B 3 combined Dasysiphonia japonica Red 0.67 0.53	10/21/19	Fall	Fort Foster	B		2 combined	Zostera marina	Dlant					
10/2/19 real 3 Phycodrys finibilitia Red 0.44 0.7.6 0.0.87 0.030 10/2/19 Fall Fort Foster 8 3 Group service/suss Brown 0.0.20 0.7.6 0.0.87 0.0.80 10/2/19 Fall Fort Foster 8 3 Gombined Brain Service/Suss Brown 0.9.9 3.88 1.52 0.530 10/2/19 Fall Fort Foster 8 3 Gombined Brain Service/Suss Brain S	10/21/19	Fall	Fort Foster	B		2 combined	Dasvsinhonia japonica	Red		0.84	1 77	1.06	0 220
Old Jos Fail Fort Forter B 3 Fucus vesculosus Brown 0.62 0.76 0.66 0.040 10/JJ/19 Fail Fort Foster B 3 combined Dasysphonia japonica Red 0.99 3.88 1.52 0.330 10/JJ/19 Fail Fort Foster B 3 combined Dhasysphonia japonica Red 0.99 3.88 1.52 0.330 10/JJ/19 Fail Fort Foster B 3 combined Dhatment fort foster B 3 combined Dhatmensionia hamifera Red 0.99 3.88 1.52 0.330 10/J2/19 Fail Fort Foster B 3 combined Domensionia hamifera Red 0.99 3.88 1.52 0.330 10/J2/19 Fail Fort Foster B 3 combined Demissionia hamifera Red 0.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1	10/21/19	Fall	Fort Foster	B		3	Phycodrys fimbriata	Red		0.64	0.76	0.67	0.030
Oracle Sector B 3 combined Combined sample Nix 0.99 3.88 1.52 0.330 10/21/19 Fail Fort Foster B 3 combined Dasysiphonia japonica Red 0.99 3.88 1.52 0.330 10/21/19 Fail Fort Foster B 3 combined Detrogram Red 0.99 3.88 1.52 0.330 10/21/19 Fail Fort Foster B 3 combined Detrogram Red 0.99 3.88 1.52 0.330 10/21/19 Fail Fort Foster B 3 combined Detrogram Green 0.99 3.88 1.52 0.330 10/21/19 Fail Fort Foster B 3 combined Detrogram Red 0.60 0.67 0.60 0.71 0.020 1.121 Fail Fort Foster B 3 combined Sector/lippic/	10/21/19	Fall	Fort Foster	B		3	Fucus vesículosus	Brown		0.62	0.76	0.66	0.040
Construct B 3 combined Dasysphonia japonica Red 0.00 0.00 0.00 0.00 10/21/19 Fall Fort Foster B 3 combined Deskysphonia japonica Red 0.00 0.0	10/21/19	Fall	Fort Foster	B		3 combined	Combined sample	Mix		0.99	3.88	1.52	0.530
10/21/39 Failt Fort Foster B 3 combined Chaetomorpha picquotiana Green 10/21/39 Failt Fort Foster B 3 combined Chaetomorpha picquotiana Green 10/21/39 Failt Fort Foster B 3 combined Euthora cristata Red Image: Combined Im	10/21/19	Fall	Fort Foster	B		3 combined	Dasysiphonia japonica	Red		0.55	5.00	1.52	0.000
Vizi/19 Fail Fort Foster B 3 combined Chaetomorpha picquotiana Green 10/21/19 Fail Fort Foster B 3 combined Euthora cristata Red	10/21/19	Fall	Fort Foster	B		3 combined	Ptilota serrata	Red					
10/21/19 Fail Fort Foster B 3 combined Euthora cristata Red Image: Combined C	10/21/19	Fall	Fort Foster	B		3 combined	Chaetomorpha picquotiana	Green					
10/21/19 Fail Fort Foster B 3 combined Califhamion tetragonum Red Image: Combined Combined Califhamion tetragonum Red Image: Combined Combined Combined Combined Coccotylis truncatus Red Image: Coccotylis truncatus Image: Coccotylis truncatus Red Image: Coccotylis truncatus Image: Coccotylis truncatus Red Image: Coccotylis truncatus Image: Coccotylis truncatus Image: Coccotylis truncatus Red Image: Coccotylis truncatus Image: Co	10/21/19	Fall	Fort Foster	B		3 combined	Euthora cristata	Red					
10/21/19 Fail Fort Foster B 3 combined Callithamnion tetragonum Red Image: Comparison of the second secon	10/21/19	Fall	Fort Foster	B		3 combined	Bonnemaisonia hamifera	Red					
10/21/19 Fall Fort Foster B 3 combined Desamarestia aculeata Brown Image: Comparison of the	10/21/19	Fall	Fort Foster	В		3 combined	Callithamnion tetragonum	Red					
10/21/19 Fail Fort Foster B 3 combined Ahnfelta plicata Brown Image: Comparison of the compa	10/21/19	Fall	Fort Foster	B		3 combined	Coccotylus truncatus	Red					
10/21/19 Fail Fort Foster B 3 combined Ahnfeltia plicata Red Image: Comparison of the combined o	10/21/19	Fall	Fort Foster	В		3 combined	Desmarestia aculeata	Brown					
10/21/19 Fail Fort Foster B 3 combined Phyllophora pseudoceranoides Red Image: Caranium virgum Image: Caranium virgum Red Image: Caranium virgum Red Image: Caranium virgum Image: Caranium virgum Red Image: Caranium virgum Red Image: Caranium virgum	10/21/19	Fall	Fort Foster	В		3 combined	Ahnfeltia plicata	Red					
10/21/19 Fall Fort Foster B 3 combined Ceramium virgatum Red 10/21/19 10/21/19 Fall Fort Foster B 4 No algae 0.07 0.05 0.73 0.060 10/19/19 Fall Fort Foster B 5 Phycodrys fimbriata Green 0.67 0.95 0.73 0.060 10/19/19 Fall Fort Foster B 5 Phycodrys fimbriata Red 0.49 0.51 0.50 0.010 10/19/19 Fall Fort Foster B 5 Polysiphonia fucoides Red 0.49 0.51 0.50 0.010 10/19/19 Fall Fort Foster B 5 Dasysiphonia fucoides Red 0.49 0.51 0.50 0.010 10/19/19 Fall Fort Foster B 5 Dasysiphonia fucoides Red 0.51 0.52 0.51 0.000 10/19/19 Fall Fort Foster B 5 Callitharmion tetragonum and DasysiRed 0.55 0.59 0.59 0.050 0.010	10/21/19	Fall	Fort Foster	B		3 combined	Phyllophora pseudoceranoides	Red					
10/21/19 Fail Fort Foster B 4 No algae 10/19/19 Fail Fort Foster B 5 Chaetomorpha picquotiana Green 0.67 0.95 0.73 0.060 10/19/19 Fail Fort Foster B 5 Phycodrys fimbriata Red 0.61 1.18 0.74 0.030 0.010 10/19/19 Fail Fort Foster B 5 Phylota serrata Red 0.49 0.51 0.50 0.010 10/19/19 Fail Fort Foster B 5 Polysiphonia fuccides Red 0.54 0.84 0.61 0.070 0.010 10/19/19 Fail Fort Foster B 5 Calithamnion tetragonum and Dasy Red 0.51 0.52 0.53 0.029 0.59 0.050 10/19/19 Fail Fort Foster B 5 Calithamnion tetragonum and Dasy Red 0.51 0.52 0.53 0.059 0.059 0.059 0.050 10/19/19 Fail Fort Foster	10/21/19	Fall	Fort Foster	В		3 combined	Ceramium virgatum	Red					
Display Fail Fort Foster B S Chaedomorpha picquotiana Green 0.67 0.95 0.73 0.060 10/19/19 Fail Fort Foster B S Phycodrys fimbriata Red 0.61 1.18 0.73 0.060 10/19/19 Fail Fort Foster B S Phycodrys fimbriata Red 0.64 0.51 0.50 0.010 10/19/19 Fail Fort Foster B S Polysiphonia fucoides Red 0.49 0.51 0.50 0.010 10/19/19 Fail Fort Foster B S Euthora cristata and Callithammion tet/Mix 0.68 0.73 0.69 0.60 0.010 10/19/19 Fail Fort Foster B S Callithammion tetragonum and Dasys Red 0.51 0.52 0.51 0.005 10/19/19 Fail Fort Foster B S Callithammion tetragonum Red 0.65 0.66 0.60 0.010 10/19/19 Fail Fort Foster	10/21/19	Fall	Fort Foster	B		4	No algae						
10/19/19 Fail Fort Foster B 5 Phycodrys fimbriata Red 0.61 1.1.8 0.74 0.130 10/19/19 Fail Fort Foster B 5 Ptilota serrata Red 0.49 0.51 0.50 0.010 10/19/19 Fail Fort Foster B 5 Polysiphonia fucoides Red 0.49 0.51 0.50 0.010 10/19/19 Fail Fort Foster B 5 Dasysiphonia japonica Red 0.54 0.44 0.61 0.070 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum and Dasysifed 0.51 0.52 0.51 0.070 10/19/19 Fail Fort Foster B 5 Agarophyton vermiculophyllum Red 0.65 0.69 0.66 0.010 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum Afed 0.65 0.69 0.66 0.010 10/19/19 Fail Fort Foster B 5 combined annifera Red 0.67 1.16 0.73	10/19/19	Fall	Fort Foster	B		5	Chaetomorpha picquotiana	Green		0.67	0.95	0.73	0.060
10/19/19 Fail Fort Foster B 5 Ptilota serrata Red 0.49 0.51 0.50 0.010 10/19/19 Fail Fort Foster B 5 Polysiphonia fuccides Red 0.49 0.51 0.50 0.010 10/19/19 Fail Fort Foster B 5 Euthora cristata and Callithamion teMix 0.68 0.73 0.69 0.010 10/19/19 Fail Fort Foster B 5 Dasysiphonia japonica Red 0.54 0.84 0.61 0.070 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum and Dasys Red 0.51 0.52 0.51 0.005 10/19/19 Fail Fort Foster B 5 Agarophyton vermiculophyllum Red 0.65 0.66 0.010 10/19/19 Fail Fort Foster B 5 Combined sample Mix 0.40 1.10 0.33 0.050 10/19/19 Fail Fort Foster <td< td=""><td>10/19/19</td><td>Fall</td><td>Fort Foster</td><td>В</td><td></td><td>5</td><td>Phycodrys fimbriata</td><td>Red</td><td></td><td>0.61</td><td>1.18</td><td>0.74</td><td>0.130</td></td<>	10/19/19	Fall	Fort Foster	В		5	Phycodrys fimbriata	Red		0.61	1.18	0.74	0.130
10/19/19 Fail Fort Foster B 5 Polysiphonia fucoides Red 0.49 0.51 0.50 0.010 10/19/19 Fail Fort Foster B 5 Euthora cristata and Callithamnion te Mix 0.68 0.73 0.69 0.010 10/19/19 Fail Fort Foster B 5 Dasysiphonia japonica Red 0.51 0.52 0.51 0.000 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum and Dasy: Red 0.51 0.52 0.51 0.000 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum and Dasy: Red 0.65 0.69 0.66 0.010 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum Red 0.65 0.69 0.66 0.010 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum Red 0.65 0.69 0.66 0.010 10/19/19 Fail Fort Foster B 5 combined sample Mix 0.40 1.10	10/19/19	Fall	Fort Foster	B		5	Ptilota serrata	Red		0.49	0.51	0.50	0.010
10/19/19 Fail Fort Foster B 5 Euthora cristata and Callithamnion te Mix 0.68 0.73 0.69 0.010 10/19/19 Fail Fort Foster B 5 Dasysiphonia japonica Red 0.54 0.84 0.61 0.070 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum and Dasys Red 0.51 0.52 0.59 0.59 0.005 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum Red 0.65 0.66 0.010 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum Red 0.67 1.16 0.73 0.69 0.66 0.010 10/19/19 Fail Fort Foster B 5 Bonnemaisonia hamifera Red 0.67 1.16 0.73 0.69 0.60 0.260 10/19/19 Fail Fort Foster B 5 combined Somemaisonia hamifera Red 0.66 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260	10/19/19	Fall	Fort Foster	B		5	Polysiphonia fucoides	Red		0.49	0.51	0.50	0.010
D/19/19 Fail Fort Foster B 5 Dasysiphonia japonica Red 0.54 0.61 0.070 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum and Dasys Red 0.51 0.52 0.51 0.005 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum and Dasys Red 0.55 0.59 0.59 0.59 0.60 0.010 10/19/19 Fail Fort Foster B 5 Callithamnion tetragonum Red 0.65 0.66 0.010 10/19/19 Fail Fort Foster B 5 Bonnemaisonia hamifera Red 0.67 1.16 0.73 0.660 10/19/19 Fail Fort Foster B 5 combined Combined sample Mix 0.40 1.10 0.66 0.200 10/19/19 Fail Fort Foster B 5 combined Bonnemaisonia hamifera Red 0.61 0.60 0.66 0.200 10/19/19 Fail Fort	10/19/19	Fall	Fort Foster	B		5	Futhora cristata and Callithamnion te	Mix		0.68	0.73	0.69	0.010
10/19/19 Fail Fort Foster B S Califthamion tetragonum and Dasys Red 0.51 0.52 0.53 0.005 10/19/19 Fail Fort Foster B S Agarophyton verniculophyllum Red 0.59 0.59 0.059 0.005 10/19/19 Fail Fort Foster B S Califthamion tetragonum Red 0.65 0.69 0.66 0.010 10/19/19 Fail Fort Foster B S Califthamion tetragonum Red 0.65 0.69 0.66 0.010 10/19/19 Fail Fort Foster B S Bonnemaisonia hamifera Red 0.63 0.54 0.53 0.005 10/19/19 Fail Fort Foster B S combined Combined sample Mix 0.40 1.10 0.66 0.260 10/19/19 Fail Fort Foster B S combined Bonnemaisonia hamifera Red	10/19/19	Fall	Fort Foster	В		5	Dasysiphonia japonica	Red		0.54	0.84	0.61	0.070
10/19/19 Fall Fort Foster B 5 Agarophyton vermiculophyllum Red 0.59 0.59 0.059 0.059 10/19/19 Fall Fort Foster B 5 Callithannion tetragonum Red 0.65 0.66 0.010 10/19/19 Fall Fort Foster B 5 Callithannion tetragonum Red 0.67 1.16 0.73 0.060 10/19/19 Fall Fort Foster B 5 Ahnfeltia plicata Red 0.53 0.54 0.53 0.005 10/19/19 Fall Fort Foster B 5 combined Combined sample Mix 0.40 1.10 0.66 0.260 10/19/19 Fall Fort Foster B 5 combined Bonnemaisonia hamifera Red </td <td>10/19/19</td> <td>Fall</td> <td>Fort Foster</td> <td>B</td> <td></td> <td>5</td> <td>Callithamnion tetragonum and Dasv</td> <td>Red</td> <td></td> <td>0.51</td> <td>0.52</td> <td>0.51</td> <td>0.005</td>	10/19/19	Fall	Fort Foster	B		5	Callithamnion tetragonum and Dasv	Red		0.51	0.52	0.51	0.005
10/19/19FallFort FosterB5Callithamion tetragonumRed0.650.690.660.01010/19/19FallFort FosterB5Bonnemaisonia hamiferaRed0.671.160.730.06010/19/19FallFort FosterB5Ahnfeltia plicataRed0.530.540.530.05110/19/19FallFort FosterB5SombinedCombined sampleMix0.401.100.660.26010/19/19FallFort FosterB5SombinedVertebrata lanosaRed0.530.540.530.05410/19/19FallFort FosterB5SombinedVertebrata lanosaRed0.660.26010/19/19FallFort FosterB5SombinedBonnemaisonia hamiferaRed0.550.540.530.05410/19/19FallFort FosterB5SombinedDasysiphonia japonicaRed0.550.540.550.5410/19/19FallFort FosterB5SombinedCallithamion tetragonumRed0.550.540.550.540.5510/19/19FallFort FosterB5SombinedCallithamion tetragonumRed0.550.540.550.540.550.540.550.540.550.540.550.560.550.560.550.560.550.560.550.56 <t< td=""><td>10/19/19</td><td>Fall</td><td>Fort Foster</td><td>В</td><td></td><td>5</td><td>Agarophyton vermiculophyllum</td><td>Red</td><td></td><td>0.59</td><td>0.59</td><td>0.59</td><td>0.005</td></t<>	10/19/19	Fall	Fort Foster	В		5	Agarophyton vermiculophyllum	Red		0.59	0.59	0.59	0.005
10/19/19FallFort FosterB5Bonnemisonia hamiferaRed0.671.160.730.06010/19/19FallFort FosterB5Ahnfeltia plicataRed0.530.540.530.05410/19/19FallFort FosterB5 combinedCombined sampleMix0.401.100.660.26010/19/19FallFort FosterB5 combinedCombined sampleMix0.401.100.660.26010/19/19FallFort FosterB5 combinedBonnemaisonia hamiferaRed0000010/19/19FallFort FosterB5 combinedBonnemaisonia hamiferaRed00000010/19/19FallFort FosterB5 combinedBonnemaisonia hamiferaRed00 <t< td=""><td>10/19/19</td><td>Fall</td><td>Fort Foster</td><td>B</td><td></td><td>5</td><td>Callithamnion tetragonum</td><td>Red</td><td></td><td>0.65</td><td>0.69</td><td>0.66</td><td>0.010</td></t<>	10/19/19	Fall	Fort Foster	B		5	Callithamnion tetragonum	Red		0.65	0.69	0.66	0.010
In/19/19FailFort FosterB5Ahnfeltia plicataRed0.530.540.530.00510/19/19FailFort FosterB5 combinedCombined sampleMix0.401.100.660.26010/19/19FailFort FosterB5 combinedVertebrata lanosaRed	10/19/19	Fall	Fort Foster	В		5	Bonnemaisonia hamifera	Red		0.67	1.16	0.73	0.060
10/19/19FallFort FosterB5 combinedCombined sampleMix0.401.100.660.26010/19/19FallFort FosterB5 combinedVertebrata lanosaRed <td< td=""><td>10/19/19</td><td>Fall</td><td>Fort Foster</td><td>B</td><td></td><td>5</td><td>Ahnfeltia plicata</td><td>Red</td><td></td><td>0.53</td><td>0.54</td><td>0.53</td><td>0.005</td></td<>	10/19/19	Fall	Fort Foster	B		5	Ahnfeltia plicata	Red		0.53	0.54	0.53	0.005
10/19/19FallFort FosterBS combinedVertebrata lanosaRedImage: Combined lanosityRedImage: Combined lanosity10/19/19FallFort FosterBS combinedBonnemaisonia hamiferaRedImage: Combined lanosityImage: Combined lanos	10/19/19	Fall	Fort Foster	в		5 combined	Combined sample	Mix		0.40	1.10	0.66	0.260
10/19/19FallFort FosterBS combinedBonnemaisonia hamiferaRedIndext of the second seco	10/19/19	Fall	Fort Foster	в		5 combined	Vertebrata lanosa	Red					
10/19/19FallFort FosterB5 combinedEuthora cristataRedImage: CombinedCom	10/19/19	Fall	Fort Foster	в		5 combined	Bonnemaisonia hamifera	Red					
10/19/19FallFort FosterB5 combinedDasysiphonia japonicaRedImage: Combined interpretation int	10/19/19	Fall	Fort Foster	в		5 combined	Euthora cristata	Red					
10/19/19FallFort FosterB5 combinedCallithamnion tetragonumRedImage: Combined for terragonumRed10/19/19FallFort FosterB5 combinedPtilota serrataRedImage: Combined for terragonumRedImage: Combined for terragonumRedImage: Combined for terragonumImage: Combined for terragonumRedImage: Combined for terragonumImage: Combined fo	10/19/19	Fall	Fort Foster	в		5 combined	Dasysiphonia japonica	Red					
10/19/19FallFort FosterB5 combinedPtilota serrataRedImage: CombinedComb	10/19/19	Fall	Fort Foster	в		5 combined	Callithamnion tetragonum	Red					
10/19/19FallFort FosterB5 combinedChaetomorpha picquotianaGreenGreenInterpretationGreenInt	10/19/19	Fall	Fort Foster	в		5 combined	Ptilota serrata	Red					
10/19/19FallFort FosterB5 combinedPhycodrys fimbriataRedImage: Combined plantPhycodrys fimbriataRedImage: Combined plantPhycodrys fimbriataRedImage: Combined plantPhycodrys fimbriataPhycodrys fimbriataPhyco	10/19/19	Fall	Fort Foster	В		5 combined	Chaetomorpha picquotiana	Green					
10/19/19FallFort FosterB5 combinedZostera marinaPlantPlantImage: Combined statePlantImage: Combined statePlant10/19/19FallFort FosterB6Chaetomorpha picquotianaGreen0.600.980.680.08010/19/19FallFort FosterB6Dasysiphonia japonicaRed0.772.721.050.28010/19/19FallFort FosterB6 combinedCombined sampleMix1.638.553.792.16010/19/19FallFort FosterB6 combinedDasysiphonia japonicaRedImage: Combined sampleImage: Combined sampleImage	10/19/19	Fall	Fort Foster	В		5 combined	Phycodrys fimbriata	Red					
10/19/19 Fall Fort Foster B 6 Chaetomorpha picquotiana Green 0.60 0.98 0.68 0.080 10/19/19 Fall Fort Foster B 6 Dasysiphonia japonica Red 0.77 2.72 1.05 0.280 10/19/19 Fall Fort Foster B 6 combined Combined sample Mix 1.63 8.55 3.79 2.160 10/19/19 Fall Fort Foster B 6 combined Dasysiphonia japonica Red 0.00 0.00 0.080	10/19/19	Fall	Fort Foster	В		5 combined	Zostera marina	Plant					
10/19/19 Fall Fort Foster B 6 Dasysiphonia japonica Red 0.77 2.72 1.05 0.280 10/19/19 Fall Fort Foster B 6 combined Combined sample Mix 1.63 8.55 3.79 2.160 10/19/19 Fall Fort Foster B 6 combined Dasysiphonia japonica Red 0.00 0.00 0.0280	10/19/19	Fall	Fort Foster	В		6	Chaetomorpha picquotiana	Green		0.60	0.98	0.68	0.080
10/19/19 Fall Fort Foster B 6 combined Combined sample Mix 1.63 8.55 3.79 2.160 10/19/19 Fall Fort Foster B 6 combined Dasysiphonia japonica Red 6 6 6 6 Combined Combined Red 6 6 6 6 Combined Combined Red 6 6 6 Combined Co	10/19/19	Fall	Fort Foster	В		6	Dasysiphonia japonica	Red		0.77	2.72	1.05	0.280
10/19/19 Fall Fort Foster B 6 combined Dasysiphonia japonica Red	10/19/19	Fall	Fort Foster	В		6 combined	Combined sample	Mix		1.63	8.55	3.79	2.160
	10/19/19	Fall	Fort Foster	В		6 combined	Dasysiphonia japonica	Red					

Collection Date	Season	Site	Tran-	Quadrat	Plot	Species	Type	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight	Wet weight (w/ foil)	Dry Wt.	Dry Wt. (no foil)
10/19/19	Fall	Fort Foster	B	Distance	6 combined	Callithamnion tetragonum	Red	Subsumpres	(6/	(w/ 1011)	(w/ ionj	(no ion)
10/19/19	Fall	Fort Foster	B		6 combined	Ptilota serrata	Red					
10/19/19	Fall	Fort Foster	B		6 combined	Ceramium virgatum	Red					
10/19/19	Fall	Fort Foster	B		6 combined	Chaetomorpha picquotiana	Green					
10/19/19	Fall	Fort Foster	B		6 combined	Zostera marina	Plant					
10/19/19	Fall	Fort Foster	B		6 combined	Hydroids	Animal					
10/19/19	Fall	Fort Foster	B		6 combined	Futhora cristata	Red					
10/19/19	Fall	Fort Foster	B		6 combined	Coccotylus truncatus	Red					
10/19/19	Fall	Fort Foster	B		6 combined	Coralina officinalis	Red					
10/19/19	Fall	Fort Foster	B		6 combined	Polysinhonia fucoides	Red					
10/19/19	Fall	Fort Foster	B		7	Chaetomorpha picquotiana	Green		0.35	0.46	0.38	0.030
10/19/19	Fall	Fort Foster	B		7	Phycodrys fimbriata	Red		0.53	0.40	0.58	0.030
10/19/19	Fall	Fort Foster	B		7	Coccotylus truncatus	Red		0.52	0.55	0.55	0.010
10/19/19	Fall	Fort Foster	B		7	Desvsiphonia japonica	Red		0.50	1 21	0.37	0.010
10/19/19	Fall	Fort Foster	B		7	Vertebrata Janosa	Red		0.50	0.51	0.72	0.100
10/19/19	Fall	Fort Foster	B		7	Callithampion tetragonum	Rod		0.51	0.51	0.51	0.000
10/10/10	Fall	Fort Foster	D		7 combined	Combined sample	Mix		0.53	1.02	0.33	0.020
10/10/10	Fall	Fort Foster	D		7 combined	Callithampion totragonum	Rod		0.02	1.05	0.77	0.150
10/19/19	Fall	Fort Foster	D		7 combined	Polysiphonia schnoidori (noods und	Rod					
10/19/19	Fall	Fort Foster	D		7 combined	Porysiphonia iononica	Rod					
10/19/19	Fall	Fort Foster	D		7 combined	Euthora gristata	Red					
10/19/19	Fall	Fort Foster	D		7 combined	Agaraphytan yarmiaylanhyllym	Red					
10/19/19	Fall	Fort Foster	D		7 combined	Agarophyton vermiculophynum	Groon					
10/19/19	Fall	Fort Foster	D		7 combined	Zectora marina	Diant					
10/19/19	Fall	Fort Foster	D		7 combined	Zostera marina Chastemereka piegustiana	Croon		0.25	0.20	0.26	0.010
10/19/19	Fall	Fort Foster	B		0	Chaetomorpha picquotiana	Bed		0.35	0.38	0.30	0.010
10/19/19	Fall	Fort Foster	B		8	Callithermaion totracenum and Daru	Red		0.59	0.00	0.00	0.010
10/19/19	Fall	Fort Foster	В		8	Callithamnion tetragonum and Dasy	Red		0.59	0.73	0.59	0.005
10/19/19	Fall	Fort Foster	В		8	Califinamiion tetragonum	Red		0.57	0.03	0.60	0.030
10/19/19	Fall	Fort Foster	В		8	Dasysiphonia japonica	Rea		0.70	1.80	0.88	0.180
10/19/19	Fall	Fort Foster	В		8	Desmarestia aculeata	Brown					0.005
10/19/19	Fall	Fort Foster	В		8	Polysiphonia stricta	Red					0.005
10/19/19	Fall	Fort Foster	В		8	Vertebrata lanosa	кеа		0.55	4.00	0.60	0.005
10/19/19	Fall	Fort Foster	В		9	Chaetomorpha picquotiana	Green		0.55	1.23	0.68	0.130
10/19/19	Fall	Fort Foster	В		9	Phycodrys fimbriata	Red		0.54	0.72	0.57	0.030
10/19/19	Fall	Fort Foster	B		9	Euthora cristata	Red		0.60	0.80	0.63	0.030
10/19/19	Fall	Fort Foster	В		9	Rhodomeia contervoides	кеа		0.61	0.73	0.64	0.030
10/19/19	Fall	Fort Foster	B		9	Desmarestia aculeata	Brown		0.57	0.60	0.58	0.010
10/19/19	Fall	Fort Foster	B		9	Dasysiphonia japonica	Red		0.43	0.81	0.49	0.060
10/19/19	Fall	Fort Foster	B		9 combined	Combined sample	MIX		0.45	1.13	0.63	0.180
10/19/19	Fall	Fort Foster	B		9 combined	Callithamnion tetragonum	Red					
10/19/19	Fall	Fort Foster	B		9 combined	Ceramium virgatum	Red					
10/19/19	Fall	Fort Foster	B		9 combined	Cystoclonium purpureum	Red					
10/19/19	Fall	Fort Foster	B		9 combined	Bonnemaisonia hamifera	Red					

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
10/19/19	Fall	Fort Foster	В		9 combined	Agarophyton vermiculophyllum	Red					
10/19/19	Fall	Fort Foster	В		9 combined	Vertebrata lanosa	Red					
10/19/19	Fall	Fort Foster	В		9 combined	Zostera marina	Plant					
10/19/19	Fall	Fort Foster	В		10	Chaetomorpha picquotiana	Green		0.62	0.83	0.65	0.030
10/19/19	Fall	Fort Foster	В		10	Desmarestia aculeata	Brown		0.54	0.69	0.56	0.020
10/19/19	Fall	Fort Foster	В		10	Ptilota serrata	Red		0.59	0.60	0.58	0.005
10/19/19	Fall	Fort Foster	В		10	Phycodrys fimbriata	Red		0.62	0.81	0.66	0.040
10/19/19	Fall	Fort Foster	В		10	Coralina officinalis	Red		0.53	0.98	0.78	0.250
10/19/19	Fall	Fort Foster	В		10	Ulva rigida	Green		0.51	0.57	0.53	0.020
10/19/19	Fall	Fort Foster	В		10	Dasysiphonia japonica	Red		0.98	1.34	1.08	0.100
10/19/19	Fall	Fort Foster	В		10 combined	Combined sample	Mix		0.97	3.61	1.62	0.650
10/19/19	Fall	Fort Foster	В		10 combined	Euthora cristata	Red					
10/19/19	Fall	Fort Foster	В		10 combined	Chaetomorpha ligustica	Green					
10/19/19	Fall	Fort Foster	В		10 combined	Callithamnion tetragonum	Red					
10/19/19	Fall	Fort Foster	В		10 combined	Ahnfeltia plicata	Red					
10/19/19	Fall	Fort Foster	В		10 combined	Ptilota serrata	Red					
10/19/19	Fall	Fort Foster	В		10 combined	Dasysiphonia japonica	Red					
10/19/19	Fall	Fort Foster	В		10 combined	Chaetomorpha picquotiana	Green					
10/19/19	Fall	Fort Foster	В		10 combined	Bonnemaisonia hamifera	Red					
10/19/19	Fall	Fort Foster	в		10 combined	Zostera marina	Plant					
10/19/19	Fall	Fort Foster	в		11	Dasysiphonia japonica	Red		0.40	0.66	0.47	0.070
10/19/19	Fall	Fort Foster	В		11	Euthora cristata	Red		0.42	0.58	0.45	0.030
10/19/19	Fall	Fort Foster	В		11	Ceramium virgatum	Red		0.46	0.56	0.47	0.010
10/19/19	Fall	Fort Foster	в		11	Rhodomela confervoides	Red		0.41	0.43	0.42	0.010
10/19/19	Fall	Fort Foster	В		11	Chondrus crispus	Red		0.47	0.84	0.57	0.100
10/19/19	Fall	Fort Foster	В		11	Chaetomorpha picquotiana	Green		0.41	0.61	0.45	0.040
10/19/19	Fall	Fort Foster	В		11	Callithamnion tetragonum	Red		0.47	0.51	0.47	0.005
10/19/19	Fall	Fort Foster	В		11 combined	Combined sample	Mix		0.44	0.87	0.58	0.140
10/19/19	Fall	Fort Foster	в		11 combined	Vertebrata lanosa	Red					
10/19/19	Fall	Fort Foster	в		11 combined	Agarophyton vermiculophyllum	Red					
10/19/19	Fall	Fort Foster	в		11 combined	Bonnemaisonia hamifera	Red					
10/19/19	Fall	Fort Foster	в		11 combined	Phycodrys fimbriata	Red					
10/19/19	Fall	Fort Foster	в		11 combined	Ptilota serrata	Red					
10/20/19	Fall	Fort Foster	В		12	Ascophyllum nodosum	Brown		1.36	4.71	2.15	0.790
10/20/19	Fall	Fort Foster	В		12	Desmarestia aculeata	Brown		1.26	3.21	1.75	0.490
10/20/19	Fall	Fort Foster	В		12	Chaetomorpha picquotiana	Green		0.59	0.71	0.62	0.030
10/20/19	Fall	Fort Foster	В		12	Ptilota serrata	Red		0.62	0.83	0.66	0.040
10/20/19	Fall	Fort Foster	B		12	Euthora cristata	Red		0.49	0.83	0.54	0.050
10/20/19	Fall	Fort Foster	B		12	Fredericgia deveauniensis	Red		0.56	0.58	0.56	0.005
10/20/19	Fall	Fort Foster	В		12	Dasysiphonia japonica	Red		0.97	1.50	1.09	0.120
10/20/19	Fall	Fort Foster	B		12 combined	Combined sample	Mix		0.92	2.60	1.35	0.430
10/20/19	Fall	Fort Foster	B		12 combined	Ptilota serrata	Red					
10/20/19	Fall	Fort Foster	В		12 combined	Dasysiphonia japonica	Red					

Collection Date	Season	Site	Tran- sect	Quadrat Distance	Plot	Species	Туре	Total Wet Wt. (no foil) *use when taking subsamples	Foil weight (g)	Wet weight (w/ foil)	Dry Wt. (w/ foil)	Dry Wt. (no foil)
10/20/19	Fall	Fort Foster	В		12 combined	Callithamnion tetragonum	Red					
10/20/19	Fall	Fort Foster	В		12 combined	Chaetomorpha picquotiana	Green					
10/20/19	Fall	Fort Foster	В		12 combined	Ceramium virgatum	Red					
10/20/19	Fall	Fort Foster	В		12 combined	Coccotylus truncatus	Red					
10/20/19	Fall	Fort Foster	В		12 combined	Hydroids	Animal					
10/20/19	Fall	Fort Foster	В		12 combined	Euthora cristata	Red					
10/20/19	Fall	Fort Foster	В		12 combined	Zostera marina	Plant					

Appendix B: List of photographic images by site and date for 2019 season. Photographs may be accessed at the UNH Scholars Repository (see Below)

Intertidal Sampling: https://scholars.unh.edu/jel/158/

June June 17: Four Tree Island, Adams Point, Depot Road June 18: Hilton Park June 19: Sunset Hill Farm

August August 1: Adams Point, Depot Road August 5: Hilton Park August 6: Four Tree Island August 9: Sunset Hill Farm

October September 30: Adams Point, Depot Road October 1: Four Tree Island October 2: Sunset Hill Farm October 4: Hilton Park

Subtidal Sampling: https://scholars.unh.edu/jel/159/

August August 7: Adams Point, Sunset Hill Farm August 8: Depot Road, Lubberland Creek

October October 15: Adams Point, Sunset Hill Farm A and B October 16: Sunset Hill Farm C, Depot Road October 21: Lubberland Creek

Appendix C. Site Descriptions

The macroalgal sampling site at Four Tree Island lies east of the causeway between boulder fields on the island and a point on Peirce Island to the east. Access is provided by the adjacent parking lot. The water depth shallows above mean lower low water (MLLW, 0.0 m elevation) into a broad mudflat with coarsening sediments as elevations rise above 0.5 m elevation and flats begin to grade into a low marsh with *Spartina alterniflora* at 1.0 m. Low marsh dominated the next two elevation at 1.5 and 2.0 m, and then high marsh dominated by *Spartina patens* (2.5 m) occurred at the uppermost samples.

The sampling area at Dover Point lies on the northeast side of the point on the Piscataqua River, approximately 200 meters north of the boat launch about 50 meters north of the northernmost portion of Hilton Park and its parking area. The shore is characterized by subtidal boulders (0.0 m) grading into a narrow intertidal mudflat (0.5 and 1.0 m) with scattered rocks before a short step (at 1.5 m) up to low marsh (sampled at 2.0 m). Since trees shade out the uppermost portion of a fringing marsh that adjoins vertical rocky outcrop, only unvegetated areas were evident at 2.5 m and so this elevation was not sampled.

The transects at Cedar Point lie on the south side with their upper elevations close to the parking lot (southwest corner of the Scammel Bridge), which is above a steep bedrock embankment (access to the shore is provided by stairs). Subtidal mud bottom slopes steeply up to the edge of the intertidal at 0.0 m elevation MLLW and the mudflats continue at 0.5 and 1.0 elevations, where the sediments coarsen as a narrow band of low marsh is approached. The marsh is sampled at 1.5 meters in elevation. A rocky outcrop extends shore-normal between the second and third transects that is colonized by fucoid algae.

The sampling site at Wagon Hill Farm lies just north of the artificial beach created and maintained by the Town of Durham as part of the park. Access to the site from the main lot occurs by heading eastward across several fields to the shore. The transects run across a wide mudflat from intertidal elevations (0.0, 0.5 and 1.0 m MLLW) to a narrow fringing marsh (1.5 m) that is shaded by overhanging trees and shows strong signs of erosion. The third, northernmost, transects runs into a derelict pier characterized as a crib-construction and filled by cobble and larger rock, with fucoid algae attached to some of the exposed rock.

Along the southern shoreline of Adams Point lies the three sampling transects that extend south toward the Footman Islands. Access to the site is provided by state-maintained walking trails and wooden steps constructed along the steep embankment of shale bedrock. Fringing marsh is discontinuous at the site, occurring between coarse shale 'beach'. The edge of the intertidal is characterized by small boulders and rocks (at 0.0 m elevation) that grade up into mudflat interspersed with rocks (0.5 and 1.0 m), often colonized by fucoid algae (primarily *Fucus vesiculosus*). At 1.5 m there can either be a fringing marsh or unconsolidated shale.

Land holdings of The Nature Conservancy (TNC) extend from the middle of Lubberland Creek north through the extensive salt marsh and several points and islands. The sampling location is accessed through a TNC trail that begins on the opposite side of Bay Road from their trail head parking lot. As the trail approaches the shoreline and salt marsh, strike off toward the shore and continue along the shore until a large mowed field extending to the marsh edge is reached. Three transects extend across the marsh into a broad very flat mudflat that extends into the Bay between a point and island. One sample set is collected from the mudflat (0.5 m elevation), another just as the low marsh is reached (1.0 m), and a final set is located in the low marsh (1.5 m). An osprey platform with active nest is located in the adjacent upland field and so sampling should be restricted to mid-July or later to avoid disrupting any fledglings.

The Great Bay National Estuarine Research Reserve (GBNERR) has as its headquarters at the Sandy Point Discovery Center located on the southern shore of Great Bay. The transects are located from the GBNERR kayak launch extending westward and accessed by the adjacent parking lot. The mud flats are flat and broad, and the 0.0 m elevation could not be accessed by walking across the mudflat (beyond 1 km), and so the three transects began at 0.05 m elevation where the mudflat began to slope upward. The 1.0 elevation was also in mudflat but within 10 meters of a fringing marsh and the 1.5 m elevation was in low marsh at the two western transects and on a rock pile adjacent to the launch for the eastern transect.

On the eastern shore of Great Bay, extensive mudflats grade into fringing salt marsh before the land rises into uplands that were historically farmed. One farm (Sunset Hill) in Newington has been set aside for conservation by the NH Fish and Game. This site has shorelines adjacent to mown fields and knobs of bedrock that show rocky outcrops along the shoreline. The private site is accessed by permission from NH Fish and Game and the first transect has its highest elevation near a derelict crib construction pier. The remaining two shore normal transects are found to the north. Similar to the Lubberland Creek and Depot Road sites, mean low water could not be reached on foot and the lowest elevation was chosen at 0.75 above MLLW, approximately 100 m seaward of the continuous edge of the low marsh (tiny marsh islands were common, but very few extended lower than 0.75 m elevation). The sampling sites at 1.0 m elevation were also in mudflat, but close to the continuous low marsh, where the 1.5 m samples were collected.

APPENDIX D

QA/QC MEMORANDUM

From: Dr. Kalle Matso, PREP

Date: April 2020

Re: Quality Assurance of 2019 Seaweed Monitoring

PURPOSE

The purpose of this memorandum is to document the results of quality assurance checks on the 2019 Great Bay Estuary Seaweed Monitoring led by David Burdick of the University of New Hampshire (UNH) Jackson Estuarine Laboratory (JEL).

In 2019, abundance data (percent cover and biomass) were collected from five of the eight intertidal sampling locations and four subtidal locations in the Great Bay Estuary. Two more sampling arrays were established at each subtidal site, making three replicates per site.

The following table contains assessments of the data quality objectives of the project. Supporting tables and figures are also provided.

For more information on data quality objectives, please see the published Quality Assurance Project Plan (QAPP) at: <u>https://scholars.unh.edu/prep/422/</u>

With questions or comments, please contact Kalle Matso at (kalle.matso@unh.edu)

Data Quality Objective	Criteria	Protocol	Data Quality Objective Status
Precision	Biomass measurements should be maintained to 1/100 of a gram.	Field assessment team will measure biomass with a Sartorius Balance (Type = E2000D).	Achieved
Bias	Percent cover estimates should be comparable across members of the field assessment team within ±10%	Field assessment team members will "calibrate" their visual interpretations of percent cover prior to field work by reviewing published examples of visual representations of different percent covers (REF). Field estimates will then be made by consensus of the field team. The field assessment team will also review photographs and associated percent cover estimates from previous years before the field season begins.	Achieved
Spatial accuracy	GPS units should have a reported accuracy less than or equal to 2 meters.	Plots will be established using a highly accurate real-time kinematic (RTK) GPS. Plot locations will then be staked in the field using lengths of 0.5inch PVC pipe. The minimum accuracy tolerance of the unit will be set to reject saving of waypoints with spatial accuracy less than 0.03m, thereby assuring spatial accuracy requirements met or exceeded.	Achieved
Comparability	Field and laboratory data should be collected using standardized methods.	Check that protocols from the QAPP were used for field observations. The QA Manager should use filtering functions to check the field assessment team's spreadsheets for data entry errors. All percent cover values should fall into one of the categories specified in the sampling methods. A minimum of 10% of field observations should be checked against electronic spreadsheets.	Achieved
Completeness	Field observations should be made for seaweed cover at all pre-determined elevations at each site (for example: 0.0 to 2.5m, with 0.5m intervals).	Check field observations for completeness by elevation. Document reasons for any deviations from sampling protocol.	Achieved