University of New Hampshire University of New Hampshire Scholars' Repository

Jackson Estuarine Laboratory

Institute for the Study of Earth, Oceans, and Space (EOS)

2-5-2020

A Guide to Integrate Plant Cover Data From Two different Methods

David M. Burdick Jackson Estuarine Laboratory, david.burdick@unh.edu

Chris R. Peter GBNERR, christopher.peter@wildlife.nh.gov

Follow this and additional works at: https://scholars.unh.edu/jel

Part of the Marine Biology Commons, and the Terrestrial and Aquatic Ecology Commons

Recommended Citation

Peter, C., B. Fischella, K. Raposa, M. Terryll, J. Allen, J. Mora, J. Goldstein, C. Feurt, L. Crane, D. Burdick. 2020. A Guide to Integrate Plant Cover Data From Two Different Methods: Point Intercept and Ocular Cover. NERRs Science Collaborative, NOAA, 4pp.

This Report is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Jackson Estuarine Laboratory by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Project Goal

Integration of data from two common methods estimating marsh plant cover: Point-intercept & Ocular cover

Project Team

Great Bay National Estuarine Research Reserve New Hampshire **Christopher Peter** Christopher.Peter@wildlife.nh.gov (603) 294-0146 **Briana Fischella**

Narragansett Bay National Estuarine Research Reserve Rhode Island **Kenny Raposa**

Waquoit Bay National Estuarine Research Reserve Massachusetts Megan Tyrrell Jenny Allen Jordan Mora

Wells National Estuarine Research Reserve, Maine Jason Goldstein Chris Feurt Laura Crane

University of New Hampshire David Burdick

Convert PI to 100 points per plot

A Guide to Integrate Plant Cover Data from Two Different Methods: Point Intercept and Ocular Cover

Overview

There is a lack of consensus on how to monitor (measure) plant cover in tidal marshes. Multiple methods exist to estimate plant cover, which can confound interpretation when making comparisons across methods. Here, we provide a novel and more accurate approach, building off of traditional data transformations designed to integrate the two most common methods:

Point Intercept

ΡΙ

Presence/absence of individual cover categories using a thin pin in a gridded fixed area: 50 points in a 1m² plot.

OC Ocular Cover

Visuals estimates (non-binned) of abundance for individual cover categories in a fixed area: totaling to 100% in a 1m² plot.

Method

Our project team assessed over 100 salt marsh vegetation plots throughout New England located in four National Estuarine Research Reserves using both methods. From this monitoring, we developed a statistical relationship between them using a series of **Regressions Across Morphological Archetypes (RAMA)**. See figure and table below for details on regressions and archetypes. Our results provide a new method to convert point intercept (PI) data into a format more compatible to ocular cover (OC) in 4 simple steps:

Multiply Correction Factor Equations in regression graphs Normalize

Transformations of PI

OC

were most similar when using linear regressions across morphological archetypes (groupings of abiotic cover and plant species similar in structure). To transform, use a correction factor (provided as the **slope in the figures**) from the appropriate morphological archetype. For a full list of each morphological archetype, see

<u>Notes</u>: Regressions were created using a linear model (shown). Correction factors are derived from the slope of a regression constrained to zero (not shown). Graph symbols represent different plant species or abiotic cover categories.

A Guide to Integrate Plant Cover Data from Two Different Methods: Point-intercept and Ocular cover

Plot Example

Summary

We provide an easy process for transforming point-intercept data to be more compatible with ocular cover data: Regressions Across Morphological Archetypes (RAMA). This transformation method was compared with traditional methods and provided the most statistically similar data to OC. Transformed data, however, remains less accurate than data collected with a single method due to inherent differences between the protocols. For instance, transformed PI remained significantly different than OC estimates in the Bare + Dead and Broad Grasses archetypes, whereas all other archetypes became statistical similar after transformation. For Bare + Dead, this is likely the result of the PI method only counting bare or dead cover when the pin does not 'hit' any live cover categories, whereas OC weights all covers equally. As such, we recommend utilizing a single protocol when possible. This work is from a larger project funded by the National Science Collaborative. For a full list of project participants who help create this guide, see Burdick et al. 2020.

References

Burdick, D.M., C.R. Peter, C. Feurt, B. Fischella, M. Tyrrell, J. Allen, J. Goldstein, K. Raposa, J. Mora, L. Crane. 2020. Synthesizing NERR Sentinel Site data to improve coastal wetland management across New England. Final Report to National Science Collaborative. <u>www.nerrssciencecollaborative.org/project/Burdick18</u>

A Guide to Integrate Plant Cover Data from Two Different Methods: Point-intercept and Ocular cover

...

Morphological Cover Archetypes

Morphological Cover Archetypes

Bare/Dead	Bare Ground	Broad 'Grasses'	Agropyron pungens
Bare/Dead	Dead	Broad 'Grasses'	Ammophilia breviligulata
Ground / Algae	Algae	Broad 'Grasses'	Carex spp.
Ground / Algae	Ascophyllum nodosum	Broad 'Grasses'	Phragmites australis
Ground / Algae	Fucus spp	Broad 'Grasses'	Phragmites australis var. americanus
Ground / Algae	Fucus vesiculosus	Broad 'Grasses'	Schoenoplectus maritimus
Ground / Algae	Gracilaria sp.	Broad 'Grasses'	Schoenoplectus robustus
Ground / Algae	Moss	Broad 'Grasses'	Spartina alterniflora
Ground / Algae	Ruppia maritima	Broad 'Grasses'	Spartina pectinata
Ground / Algae	Ulva Lactuca	Broad 'Grasses'	Typha angustifolia
Ground / Algae	Wrack	Thin' Grasses'	Agrostis stolonifera
Forbs	Atriplex patula	Thin' Grasses'	Distichlis spicata
Forbs	Galium palustre	Thin' Grasses'	Festuca rubra
Forbs	Impatiens capensis	Thin' Grasses'	Juncus balticus
Forbs	Iris versicolor	Thin' Grasses'	Juncus gerardii
Forbs	Lepedium virginicum	Thin' Grasses'	Spartina patens
Forbs	Limonium nashii	Climbers	Calystegia sepium
Forbs	Mentha arvensis	Climbers	Cuscuta gronovii
Forbs	Oenothera biennis	Climbers	Cuscuta spp.
Forbs	Onoclea sensibilis	Climbers	Parthenocissus quinquefolia
Forbs	Osmunda cinnamomea	Climbers	Smilax spp.
Forbs	Plantago spp	Climbers	Solanum dulcamara
Forbs	Polygonum ramosissimum	Climbers	Toxicodendron radicans
Forbs	Salicornia depressa	Shrubs & Trees	Acer rubrum
Forbs	Salicornia maritima	Shrubs & Trees	Alnus spp
Forbs	Salicornia spp	Shrubs & Trees	Baccharis halimifolia
Forbs	Solidago sempervirens	Shrubs & Trees	Iva frutescens
Forbs	Spergularia marina	Shrubs & Trees	Juniperus virginiana
Forbs	Suaeda linearis	Shrubs & Trees	Myrica pensylvanica
Forbs	Sueda maritima	Shrubs & Trees	Myrica spp
Forbs	Symphyotrichum novi-belgii	Shrubs & Trees	Picea spp
Forbs	Symphyotrichum spp.	Shrubs & Trees	Prunus maritima
Forbs	Symphyotrichum subulatas	Shrubs & Trees	Quercus rubra
Forbs	Teucrium canadense	Shrubs & Trees	Rosa multiflora
Forbs	Thalictrum dioicum	Shrubs & Trees	Rosa rugosa
Forbs	Thalictrum polygamum	Shrubs & Trees	Spiraea tomentosa
Forbs	Trientalis borealis		

Full abiotic cover and plant species list grouped by morphological archetype.