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Abstract

Efficiently managing a software development project is extremely important in industry

and is often overlooked by the software developers on a project. Pieces of development

work are identified by developers and are then handed off to project managers, who are

left to organize this information. Project managers must organize this to set expectations

for the client, and ensure the project stays on track and on budget. The main block in

this process are dependency chains between tasks. Dependency chains can cause a project

to take much longer than anticipated or result in the underutilization of developers on a

project. While project managers do have access to project management tools, few have

capabilities to effectively visualize dependencies. The goal of this research was to interact

with a project management tool’s API, pull down dependency information for a project,

and build out possible timelines for a set of tasks. We visualize this problem with a

directed graph, where each node is a task and edges in the graph indicate dependencies.

The relationships between this problem and more well-known problems in graph theory are

used to inform the development of the algorithms. Two algorithms are explored to handle

the problem and are then run under different conditions. Analysis of the results provide

insight to what structures of dependency chains can be handled by the algorithms. The

resulting software could be used to save companies both time and money when planning

software development projects.

Keywords: Dependency, Dependency Chain, Directed Graph, Jira, Sprint, Task
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1 Introduction

1.1 Background

Software development companies often consist of large departments, subdivided into

smaller teams. These teams work together to build some larger piece of technology. One

team might need to wait on another to complete a portion of the software before they can

build their portion. For example, one team might need to wait for the database API to

be completed before they can build the front end functionality. This is what is referred to

as a dependency (italicized words can be found in the glossary). We also define a task as

a small piece of work that must be completed. If task a must be completed before task b

can be started, we say b depends on a or a is depended upon by b. Multiple dependencies

may exist on a single task, which results in long chains of dependencies that must be

managed. Dependencies also exist on a more micro scale within the teams themselves.

These dependencies might be on brief tasks, however we should not downgrade their

importance. In fact, since these dependencies tend to be between smaller building blocks,

there are often more of them. A project manager is then left with the chore of organizing

all of the task information and keeping track of the dependencies.

There are many project management tools available to workplaces: Basecamp,

Asana, Scoro, and Atlassian Products to name a few. Jira, an Atlassian Product, is

a very popular project management tool among software developers. It has features for

the Scrum development cycle which has fast become one of the most preferred develop-

ment methodologies. Scrum is focused on short development cycles that include taking

feedback from the client, which results in frequently changing task lists. We will focus

on Jira’s Scrum capabilities, which include giving users the ability to link tasks or stories

together. A story is a series of related tasks. This feature is often used to track depen-
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dencies, but this is not ideal for visualization. A developer can open a task in Jira and

see what a task depends on and what other tasks depend on it, but there is not a way to

see the length of a dependency chain, or how many total dependency chains there are in a

sprint. We define a sprint as a short development period, generally two weeks in length.

While a developer might only need to know if all of a task’s dependencies are complete, it

is easy to see that a project manager will need this information in order to plan timelines

for a client and manage expectations.

Mapping all of these dependencies is still done painstakingly by hand in many

companies, a process that is error prone and time consuming. Ideally, there would be

some feature of Jira that would allow project managers to input the number of developers,

how much time they have, and build possible timelines. However, Jira does not have such

a feature. As it stands, the project mangers must build out the timelines themselves

from data that is stored in Jira. There is an inclination to say this is a simple scheduling

problem, but the nuance comes when we introduce dependencies. In this scenario, there is

no allotted time slot for each task, rather a set of tasks that must be completed before each

subsequent task. These problems become much easier to visualize with a directed graph,

where each node is a task or story, and each node is weighted with the estimated time

needed to complete it. Intuitively, weighting each edge with the estimated time makes

more sense in terms of graphs. However, there are often tasks with no dependencies, or

edges, but still need a weight. This type of software can save companies time and money,

leading to an improved development cycle and more accurate cost estimations.

To provide motivation for the rest of this paper we examine a use case. A project

manager starts the day by checking the team’s progress. They can run this software,

which pulls down the current time remaining information from Jira, and build timelines.

If a team member is sick, or will be gone for a few days, the project manager can run

the software with fewer number of developers and determine if the work load is still

manageable. The software can quickly give them an idea of where the team stands in the
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development cycle, so the project manager can make adjustments when necessary.

1.2 Technology

This software will be built using Node.js and an Express server. Node.js is an event

driven JavaScript runtime environment. It allows users to build asynchronous network

applications. Node.js also allows the use of a package manager called npm. Npm gives the

user access to open source software libraries that can be easily installed and integrated

into the application. Express is an example of one of these packages that can be installed

via npm in the terminal. Express is a light web framework for Node.js applications. Its

relevant features include HTTP helpers and routing.

Node.js and an Express server are simply the tools to interact with the main focus

of the project. As mentioned in Section 1.1, Jira is a project management tool used by

many companies, often for software development. A project manager can easily interact

with its user interface, inputting tasks and starting sprints. One of the features of Jira is

the ability to link tasks. Figure 1.1 is a screenshot of Jira’s task display. Notice that when

Figure 1.1: Jira Task Display

two tasks are linked together, viewing details on one task will display the identifier of the
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linked task and the user can click on the identifier to open the details page of the linked

task. While all of a task’s dependencies can be viewed, there is no way to see the entire

dependency chain without clicking through each link and recording them by hand. Jira

has extensive REST APIs that can help organize this information. A developer can use

these APIs to both pull down and push data to a Jira account with some authorization

tokens.

1.3 Related Work

The Program Evaluation and Review Technique (PERT) is a project management

methodology that aligns closely with this problem. PERT was created in 1957 for use in

the US Navy’s Polaris nuclear submarine project. It focuses on large complex projects

with many dependencies [3]. It gives a systematic approach to planning a project and

estimating total completion time.

To use PERT, we first establish all tasks of a project and determine the order in which

the tasks must be completed. Then time estimates are assigned to each task. Each task

has three times assigned to it: optimistic time, pessimistic time, and most likely time.

These separate times are used to calculate the expected time with the following equation:

Texpected = 1
6
(Toptimistic + 4Tmost likely + Tpessimistic)

From there we create a network diagram of the tasks. The diagram displays tasks as

nodes and dependencies as lines, as shown in Figure 1.2.

The diagram contains a node called start, this activity has a duration of zero. An

activity is the actual act of performing a task, which consumes time and resources. Then

initial activities are connected to the start node with an arrow. The diagram will generally

display the name, estimated time, early start time, early finish time, late start time, late

finish time, and the slack for each activity. Slack is the amount of time a task can be

delayed without causing a delay in subsequent tasks or the project as a whole.
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Figure 1.2: Example PERT Chart

Assume we have the estimated time (ET) for each activity. The early start time (EST)

will be the maximum early finish time (EFT) of all activities that proceed it. The early

start time for the first activity is zero. Early finish time is defined as the early start time

plus the estimated time. The late finish time (LFT) is the minimum late start of all the

activities succeeding it. If it is the last activity, the late finish equals the early finish.

The late start time (LST) is the late finish minus the estimated time. Notice the early

times must be computed before the late times. Then we can compute the available slack

for each task, slack (S) is the late start time minus the early start time. Below are the

equations to calculate each value.

EST = max(EFT of all proceeding tasks)

EFT = EST + ET

LFT = min(LST of all succeeding tasks)

LST = LFT − ET

S = LST − EST

Once these times are computed, we move to finding the critical path. The critical path is

the path that takes the longest time to complete. To find the time of a path, we sum the

estimated time for each task. With all task lengths computed, we can identify the critical
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path as the path with the longest duration. The slack for the critical path will be zero.
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2 Graph Theory

Before constructing the software itself, the mathematics behind the problem must

be examined. These dependency maps with which we will be working can be classified

as disconnected, weighted, directed graphs. It is important to note that we must either

consider the nodes to be weighted or introduce an imaginary root node to think of the

edges as weighted.

Throughout this paper, vertices may be referred to as nodes and edges may be referred

to as dependencies. Take the directed graph with weighted nodes in Figure 2.1.

Figure 2.1: Simple directed graph with weighted nodes

Let each node represent a task and each arrow represent a dependency, where each

node is given a weight equivalent to the estimated time remaining on the task. The

interesting problem we will address is how to put these tasks on parallel timelines such

that each node will not be reached until every preceding node has been reached. To clarify

the goal, we will show the intended result for the case of two timelines for the graph above.
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Figure 2.2: Resulting timelines for 2.1

See that we have a time interval for each node in Figure 2.1. Node 1, which has a

weight of 20 in the graph has a time slot of 20 minutes in Figure 2.2 and node 5 has a

slot of length 10, etc. Notice the interval of any given node will not overlap with a node

that appears before it in the graph. That is, if there exists a path from vi to vj then the

designated time interval of vi must end before vj begins. While this is fairly simple to

compute for a graph of few vertices, the problem grows very quickly as vertices are added.

2.1 Topological Sorting

Topological sorting will form the first layer of our algorithm as a way to cope with

dependencies. Given a directed acyclic graph G = (E, V ), a topological sort or ordering

is a linear ordering of its vertices such that for every edge (v1, v2) in G, v1 will appear in

the ordering before v2.

Figure 2.3: Directed acyclic unweighted graph

For example, in Figure 2.3 we can construct a topological order of the graph.

(A,B,C,D,E, F ) is a valid sorting of this graph. But notice that (A,B, F, C,D,E) is

8



also a valid ordering, therefore, topological orderings are not unique. Also notice that

fewer edges in a graph mean more possible topological ordering. We may think of adding

an edge as imposing a relation on the graph, which will restrict topological orderings. To

demonstrate this, let G = (V,E) be a graph, with the set of vertices V = {W,X, Y, Z},

and edges E = {}. Since there are no edges, any order of the vertices is a valid topological

ordering. Therefore, we have 4! possible topological orderings of G. Now, we add edges

to the graph such that E = {(X, Y ), (Y, Z)}. The imposed relations force X to appear

before Y and Y before Z. Then we can calculate the possible topological orderings as

follows: (W,X, Y, Z), (X,W, Y, Z), (X, Y,W,Z), (X, Y, Z,W ). The question is how to

algorithmically find a topological sorting for any directed acyclic graph.

2.1.1 Kahn’s Algorithm

Kahn’s algorithm functions on the assumption that there exists at least one node with

indegree 0 and at least one node with outdegree 0. This simply means there are no cycles

in the graph which holds in our case.

1. Count the indegree of each vertex and initialize the number of visited vertices as 0.

2. Place all the vertices with indegree 0 in a queue.

3. Remove the next vertex from the queue.

4. Increment visited vertex count.

5. Decrease the indegree of adjacent vertices by 1.

6. If a new vertex now has indegree 0, add it to the queue.

7. Repeat 3-6 until the queue is empty

This is a very simple algorithm that can effectively sort vertices that could be appli-

cable to our case of dependencies.
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2.2 Interval Scheduling Problem

The interval scheduling problem can be described as having a set of tasks that each can

only be completed during a given interval and the goal is to complete as many tasks as

possible. If a task overlaps with another, they cannot both be completed. The algorithm

to solve this problem is quite simple. First, the tasks are sorted based on end time. Then,

select the first task and eliminate tasks that overlap with the selected task. This selection

and elimination process is repeated until all tasks have been selected or eliminated.
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3 Design

3.1 Initial Construction

The focus of this project is interacting with data within Jira, so we began by creating

a Jira account then planning the data we wanted to examine. As mentioned in the

introduction, Jira is used as a project management tool. It allows users to input data

about tasks and stories, including links between them and estimated time needed to

complete it. In order to make the dependency chains interesting, we created tasks within

a sprint that had different arrangements of dependencies. This included an independent

task, a task with multiple tasks depending on it, a task with multiple dependencies, and

chains where a task’s immediate dependency shared a dependency with the original task.

Visualizing the initial data entry we have:

Figure 3.1: Initial Task Dependencies

Examining Figure 3.1, we can see that there are multiple interesting and intersecting

dependency chains. Table 3.1 denotes the estimated time for each task. Notice that the

varying time estimates can cause a dependency chain with three tasks to take longer to

complete than a dependency chain with five tasks.
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Task Time Estimate Task Time Estimate Task Time Estimate
DM-2 30m DM-9 1h DM-17 5h
DM-3 3h DM-10 3h 30m DM-18 2h
DM-4 30m DM-11 2h 30m DM-19 4h
DM-5 2h 30m DM-12 6h DM-20 3h
DM-6 2h 15m DM-13 4h DM-21 1h
DM-7 3h DM-14 1h DM-22 1h 15m
DM-8 6h DM-15 3h 15m DM-23 45m

Table 3.1: Initial Data Time Estimates

Once there was data on a Jira board, we researched available API endpoints. Jira’s

API endpoints allow third party applications to push and pull information to and from

boards of authorized users. To be an authorized user we had to generate an API token

through with which we could make HTTP requests. Once we had data and a way to

access it, the construction of the software began in earnest.

The initial set up of the environment included installing Node.js and Express. This

was done using Homebrew, which is a package manager for macOS and Linux. From there,

we created a project directory which contained sub-directories for necessary modules, a

sub-directory for JavaScript files, an app.js file, and routing files.

3.2 Data Parsing

Using the request npm package, we sent HTTP requests to the Jira API. These

requests included our url, authorization token, and the request parameters. The relevant

API endpoints included requests for all boards of a project, for all sprints of a board,

and for all issues for a sprint. The endpoints returned JSON objects that could be pared

down to only include information that would be used in the construction of the dependency

chains. A request for all issues in a sprint would result in over 7000 lines of data which

could not be efficiently sorted. Note that an issue is the Jira terminology for any task,

story, or software bug within a sprint.

In the api.js file, we define the following API calls using the npm request package:

getDashboard, getAllBoards, getAllSprints, getIssuesForSprint, and getIssuesForBoard.
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These requests return JavaScript promises that will resolve to a JSON object containing

data. Within the parser.js file, we used these functions and proceeded to pull the necessary

information off of the JSON object. The parsed information was then returned as a

promise.

Parsing getAllBoards will return a promise, which resolves to a JSON object con-

taining the id, name, project key, and project name of the board. Parsing getSprints will

return a promise which resolves to a JSON object containing the id, state (active, future,

or completed), name, start date, end date, and boardId of the sprint. The objective of

parsing boards and sprints is to find boards containing active sprints. Once the IDs of

active sprints are found, we can parse getIssuesForSprint to find the information needed

to construct dependency chains. The structure and information in the returned JSON

object is seen below.

// issue JSON object

{

id : 10019,

key : DM-7,

sprintId : 3,

inwardLinks : [{id : 10020, key : DM-8}, {id : 10026, key : DM-14}],

outwardLinks : [{id : 10025, key : DM-13}],

issueType : Sub-task,

subtasksId : [],

worklogs : [{timeSpent : 18}{timeSpent : 36}],

originalTimeEstimate : 16200,

timeRemaining : 108,

status : to Do

}

It is important to note that inwardLinks contains the id and key of issues that this
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issue is depended upon by and outwardLinks contains the id and key of issues that this

issue depends on. For example, consider the data in Figure 3.1. The inwardLinks array

for DM-7 would include DM-14 and DM-8, while the outwardLinks array would contain

DM-13.

There were some problems when initially parsing this data since the necessary pieces

of information were often in very nested objects and if there was no available data in

an object, there would be undefined errors that had to be handled. Issue type was

occasionally a field that could not be accessed. Examples of issue types are task, sub-

task, bug, and story.

3.3 Construction of Dependency Chains

Before constructing dependency chains, we had to turn the parsed objects into easily

accessible information. Since each issue had a unique key, we decided to feed all the issue

objects into a map using the issue key as the map key. We did this in the buildMap

function. In the buildMap function we called getBoards, then pulled the board id off

the response object and used it to call getSprints. The response object for getSprints

contained the sprint ids which were finally used to call getIssuesForSprint. From there we

looped through each issue and created an entry on the map.

Each entry on the map had a key and object. The keys were the unique issue key.

The objects were Nodes and we define the constructor of a Node object below.
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// Node Constructor

function Node(issueKey, inwardLinkArray, outwardLinkArray, originalTime,

remainingTime, status) {

this.key = issueKey;

this.originalTimeEstimate = originalTime;

this.timeRemaining = remainingTime;

this.status = status;

this.inwardlinks = [];

this.outwardlinks = [];

this.completed = false;

this.completedTime = -1;

this.minStartTime = 0;

this.endTime = -1;

inwardLinkArray.forEach(link => {

this.inwardlinks.push(link.key);

});

outwardLinkArray.forEach(link => {

this.outwardlinks.push(link.key);

});

}

The map then contained all necessary information about each issue, as well as fields that

would later be used to construct the timelines. The next question was how to store the

dependency chains. The chains needed to be easily accessible and should only need to be

constructed once. The best choice was a two dimensional array. In JavaScript, arrays are

mutable and do not need to be initialized as a certain length so the data structure was a

good fit.

The list of dependency chains should only consist of chains that begin with a node
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that does not depend on any other node and terminates only when the last node in the

chain does not have any nodes that depend on it. That is, considering Figure 3.1, DM-13

→ DM-7 → DM-14 → DM-8 is a valid dependency chain but DM-7 → DM-14 is not a

valid dependency chain. To ensure we only included valid dependency chains, we had to

loop through all the nodes and create an array consisting of nodes whose outwardLink

array had a length of 0. We called this the root array and for each root node we called the

recursive function buildArrayOfDependencies. This function takes in the map of nodes,

a node key, an array, and a time. To build the chains, the function pushes the key into

the array. It checks for dependencies by looking if the length of the inwardLink array is

0. If length is not 0 then there is another node that depends on the current node and we

recursively call the buildArrayOfDependencies method and pass the key of the dependent

node, the node map, the array with the current node pushed to it, and the time for the

chain. When a node is reached that does have an inwardLink array of length 0, meaning

there are no other nodes that depend on it, the function will push to total time of the

chain onto the array and return the array.

Calling the buildArrayOfDependencies function results in a global array called de-

pendencyChains. Each entry in the array is another array which represents a different

dependency chain. The final entry in each dependency chain array is the total estimated

time to complete the dependency chain. The dependencyChains array will be used directly

in the dependency mapping algorithm.

3.4 Dependency Mapping Algorithm

The focus of this project is the dependency mapping algorithm. We wanted to allow

project managers to quickly determine the workload a team could complete, and create

viable timelines for reference. The simple first case for this is: given an infinite amount of

developers, how quickly can a set of tasks be completed. We implemented this functional-

ity in the minTimeUnlimitedDevelopers function. Analyzing this problem, we see that we
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can distribute each independent task to a different developer and their completion times

will match with their estimated time. Hence, if this function is given a set of completely

independent tasks the result should be time estimate of the largest task. However, if there

are dependencies within the tasks more information must be considered. The question is

how to handle these dependencies and ensure that they are completed efficiently.

Figure 3.2: Test Data for Unlimited Developers

Consider the tasks in Figure 3.2. It is clear that it will take longer than the longest

individual task to complete the set of tasks. This is true as 4 must be completed before

5, 6, and 7 can be started. Notice that the restrictions on the order can be examined in

terms of dependency chains. That is, if we constructed each possible dependency chain

and gave each chain to a different developer we could ensure each task is completed as

soon as possible. This distribution of tasks would contain repeated tasks so we would

need to remove all but the latest occurrence of a task.

To understand this process take all the dependency chains in Figure 3.2: [1, 4, 5],

[1, 4, 6, 7], [2, 4, 5], [2, 4, 6, 7], [3, 6, 7], [3, 7]. We give each developer a dependency chain

and keep track of the start time of each task in the chain. We define the start time of a

task as the sum of time estimates of all the tasks appearing before it in the chain. Then

we remove each repeated task leaving the copy with the latest start time. If we do not

recompute the start times of the tasks, we are left with a timeline for each developer
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where all dependencies for a task are completed before we reach the dependent task.

Figure 3.3: Timelines for Unlimited Developers Pre-removal

Figure 3.3 shows the corresponding timeline for each dependency chain. Developer 6

is meant to start on task 7 at 20 minutes, but notice that all the tasks 7 is dependent on

will not be completed until 40 minutes. This is why we must remove all copies of a task

except the latest occurring task.

Figure 3.4 shows each timeline after duplicates are removed. We can see that each

task will only be reached after its dependencies have been completed. Also notice the time

required to complete all the tasks will be the length of the longest dependency chain.

Now we can move onto the real world case of a limited number of developers that

can complete tasks. Assume we only have a particular number developers to complete

the tasks in Figure 3.2. This proves to be substantially more difficult and we will use a

version of a greedy algorithm to tackle the problem. First, we create an array to represent

all the developers. The length of the developers array will be the same length as number

Figure 3.4: Timelines for Unlimited Developers Post-removal
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of developers. From there we create two maps of nodes, an empty map representing all

completed tasks and a map containing all the incomplete tasks. Initially the map of

incomplete tasks will contain all the tasks in the original node map. Recall the interval

scheduling problem discussed in section 2.3. The algorithm used to solve this problem

requires us to know the end times of each task. So we can check the earliest end time for

each task but this requires some extra thought in the limited developers case.

Recall that all dependencies of a task must be completed before a task can be started.

But also recall that limiting the number of developers will cause some tasks’ start times

to be pushed back. Therefore, we must calculate the latest end time for any dependency

of a task and add the estimated time for the task to determine the earliest a task can

be completed. We denote the length of a task G as |G|, the completed time as TG, and

the earliest end time, Gend. The earliest possible end time is computed purely based on

length of tasks and their dependencies, while completed time is computed as tasks are

assigned to developers. Notice when we restrict the number of developers, a task can have

a later completed time than its earliest possible end time. For example, let A be a task,

which is dependent on tasks B and C. It is calculated that B will be completed at time

TB = 30min, however C will not be completed until time TC = 40min. Since TB < TC ,

Aend = |A|+ TC .

So we determine the earliest end time of all the incomplete tasks and choose the task

with the earliest end time, we denote this task A. We denote the amount of time currently

allotted to a developer d as |d|. Then we determine which developer should take the task.

We give the task to the developer di such that |di| ≥ Aend−|A| and if there exists dk such

that |dk| < |di| then |dk| � Aend − |A|. To state this informally, we select the developer

with the smallest amount of time worked such that time worked is greater than or equal

to the earliest start time of the task. Then we give the task to the developer, update the

developer with a new time worked, remove the task from the incomplete map and put the

task in the completed map. This process is repeated until the incomplete map is empty.
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Figure 3.5: Continuous Timelines for Limited Developers

For example, let A be a task and d1, d2, d3 be developers.

|A| = 13 Aend = 45 Aend − |A| = 32

|d1| = 38 |d2| = 29 |d3| = 60

We choose d1, it satisfies the condition of |d1| ≥ Aend − |A|. While |d3| also satisfies this

condition, |d1| < |d3| so we give the task to d1.

Take the set of tasks in Figure 3.2. We will restrict the number of developers to three.

Now we have an array of length 3 for developers and earliest start times attached to

each task. We then choose the task with the earliest end time and give it to developer

1. In this case it is task 1. We increment the time worked for developer 1, put task

1 in the completed map and remove it from the incomplete map. Task 2 now has the

earliest end time, we give it to developer 2 and make the necessary changes to variables

and the process repeats. The interesting part of this case comes when we reach task 5.

If we examine Figure 3.5 we can see that the state of the process will be as follows when

we select task 5. Developers 1, 2, and 3 will each have 10, 40, and 20 minutes worked

respectively. Task 5 has an earliest start time of 25 minutes. According to our algorithm,

we select the developer with the smallest amount of time worked such that time worked

is greater than or equal to the earliest start time of the task. In this case, developer 2 fits

this description and we continue as expected. We can see in Figure 3.5 that the longest

timeline is attached to developer 2 and the total time required to complete all the tasks

with 3 developers is 70 minutes. We will call this strategy the continuous strategy since

it can only produce timelines without gaps. It is clear that if task 5 had been given to
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developer 3, leaving a gap in developer 3’s timeline, we could produce a smaller total time.

Figure 3.6: Discontinuous Timelines for Limited Developers

There is a fairly simple tweak to the choice of developer criterion which will help

handle cases of this nature. Again, let A be a task and di be a developer. We give A to

the developer di such that |di| = Aend − |A| and if no such di exists then we choose di

such that there does not exist dk such that ||dk| − (Aend − |A|)| < ||di| − (Aend − |A|)|.

For example, we again examine a task A and developers d1, d2, d3.

|A| = 13 Aend = 45 Aend − |A| = 32

|d1| = 38 |d2| = 29 |d3| = 60

In this case we choose d2 since

||d2| − (Aend − |A|)| < ||d3| − (Aend − |A|)|

|29− 32| < |38− 32|

3 < 6

When we take this strategy change into account we get a better result from our algorithm

as seen in Figure 3.6. Notice that task 5 has been moved to developer 3 which allows

task 7 to be completed 20 minutes earlier. We will call this strategy the discontinuous

strategy. While this change in choice criterion improved the results in this set of tasks, we

will see that there are cases where the continuous method produces a better result than

the discontinuous strategy and vice versa. These cases will be examined in Section 4.
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3.5 Front End Development

The original intention of this software was that it would be hosted on a web platform

with a UI for project managers. We began running the software on an Express server which

we planned to later transition to a more permanent web server, Turing for example. Once

we felt the software should be moved to Turing, and the front end developed we discovered

that web platforms do not support some of the Node.js functions that were used during

development. The main problem being ’require’ statements that were used to connect all

the different pieces of the program.

From there we decided to switch gears and create a simple terminal interface that

would allow a project manager to input the various sprints on which they wanted to run

calculations and what analysis they wanted done. To display the dependency chains, we

simply print the total time of a dependency chain and below it, the tasks in the chain,

in order, separated by arrows. The output for timelines is fairly simple, but intuitive.

For each developer, there will be a line that states the total time for the timeline. The

total time is computed as the end time for the last task the developer completes. Then

the line below that displays all the tasks in a row. It shows the start time for the task,

the name of the task, then the completion time for the task. Gaps in timelines are not

particularly noticeable, but since both the start and end times are shown for each task,

gaps in work can be seen as differences between the end time of a task, and the start time

of the following task. The most reasonable extension for the front end in the future would

be to output JPEGs of the dependency chains and the timeline for the developers.
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4 Testing and Results

To understand the good and the bad of the strategies, we will run both algorithms on

various test data with different parameters. The test data is assigned an alphanumeric

tag by Jira. The test project was named ’Dependency Mapper’ in Jira, so tasks in the

project are tagged with ’DM’. We will begin by examining the algorithm’s performance

on the simplest case, the set of tasks with no dependencies.

Figure 4.1: No Dependencies

In Figure 4.1 we can see that we have a set of five tasks with no dependencies between

them. However, there is a wide range of times for each task. We will run the algorithm on

an interesting number of developers, meaning an amount of developers which will constrict

the timelines. We choose 3 developers, run the continuous and discontinuous algorithms

and examine the output.

Figure 4.2: Continuous Algorithm, 3 Developers

After examining the ouput in Figures 4.2 and 4.3, notice that we get the same timelines

for both algorithms. Due to the lack of dependencies, there will not be a case where a
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Figure 4.3: Discontinuous Algorithm, 3 Developers

task must be postponed to accommodate the completion of a dependency. However, it

only takes a moment to realize this is not an optimal result. If we instead place the largest

tasks first and put the smallest tasks together, we will get a better result. We omit the

’DM-’ portion of the tag for readability.

Developer 1: [29]→ 60 minutes

Developer 2: [28, 27]→ 45 minutes

Developer 3: [53, 30]→ 35 minutes

So we can calculate the error for this data as follows.

Continuous T ime−Optimal T ime

Optimal T ime
=

75− 60

60

= 0.25

There is a 25% error with this set of tasks. It is important that the applications of these

algorithms are more focused on handling large numbers of intersecting dependency chains.

We now move on to a set of tasks whose dependencies are in the form of a tree.

We input the data shown in Figure 4.4 into Jira and run both the continuous and

discontinuous algorithms. For the continuous algorithm run with 3 developers, we get

times of 110, 0, 0 minutes as shown in Figure 4.5. This is obviously not optimal as there

are clearly tasks that can be run in parallel. We try this with the discontinuous algorithm
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Figure 4.4: Dependency Tree

Figure 4.5: Continuous Algorithm, 3 Developers

and get a slightly better result.

Figure 4.6: Discontinuous Algorithm, 3 Developers

As we can see in Figure 4.6 the times are 80, 65, and 0 minutes. While this is an im-

provement over the continuous algorithm, it is still an apparent failing of the discontinuous

algorithm. By manual calculation the following timelines are optimal.

Discontinuous−Optimal

Optimal
=

80− 55

55

≈ 0.4545

We get an approximate error of 45%. And notice that the discontinuous algorithm
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3

Figure 4.7: Timelines for Dependency Tree

does not handle tasks that would result in very large gaps between times worked. We

move on to a case that resembles a more interlocking set of tasks that resembles structures

that are common in industry.

Figure 4.8: Intersecting Dependencies

Again, the tasks in Figure 4.8 are input into Jira and both algorithms are run on the

data. We first run them with 2 developers.

Figure 4.9: Continuous Algorithm, 2 Developers

We can see from Figure 4.9 that the times are 160 and 50 minutes. Once again, the

discontinuous algorithm performed better than the continuous algorithm with times of
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Figure 4.10: Discontinuous Algorithm, 2 Developers

100 and 130 minutes in Figure 4.10. Notice that the sum of times needed to complete

everything is increased by 20 minutes but the longest time for a single developer is reduced

by 30 minutes.

Figure 4.11: Continuous Algorithm, 3 Developers

Figure 4.12: Discontinuous Algorithm, 3 Developers

Now we run the tests again, increasing the numbers of developers to 3. The times

for the continuous algorithm are 25, 155, and 30 minutes as seen in Figure 4.11. The

times for the discontinuous algorithm are the same. This is a particularly interesting case

because increasing the number of developers has actually made the performance of the

discontinuous algorithm worse. This goes back to what we saw in the tree test. The

discontinuous algorithm does not have a mechanism to recognize when a developer is

being underutilized. A possible way to combat this would be to keep all independent

tasks until the end and place them on the least used developers.

We calculate the optimal timelines for this data as shown in Figure 4.13. Our resulting

times are 125, 95, and 0 minutes. Notice that DM − 34 is an independent task and

therefore could be given to developer 3. However, in a real world scenario it would be

more useful to staff the developer on another project, so we place DM − 34 between
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Figure 4.13: Timelines for Intersecting Dependencies

DM − 38 and DM − 37. We will use the data from the discontinuous algorithm with 2

developers to calculate the error.

Discontinuous−Optimal

Optimal
=

130− 125

125

= 0.04

The error for this data set is 4%. The algorithm seems to perform very well when we have

multiple intersecting chains. To go further with large amounts of intersecting chains we

will look at another set of tasks which has a similar structure.

We will finish by examining the data in Figure 3.1.

Figure 3.1: Initial Task Dependencies

Figure 4.14: Continuous Algorithm, 3 Developers
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Task Time Estimate Task Time Estimate Task Time Estimate
DM-2 30m DM-9 1h DM-17 5h
DM-3 3h DM-10 3h 30m DM-18 2h
DM-4 30m DM-11 2h 30m DM-19 4h
DM-5 2h 30m DM-12 6h DM-20 3h
DM-6 2h 15m DM-13 4h DM-21 1h
DM-7 3h DM-14 1h DM-22 1h 15m
DM-8 6h DM-15 3h 15m DM-23 45m

Table 4.1: Initial Task Time Estimates

Let us first examine the case of 3 developers. In Figure 4.14 we can see that the three

developers will have timelines of length 1035, 1185, and 1095 minutes respectively.

Figure 4.15: Discontinuous Algorithm, 3 Developers

In Figure 4.15 we can see the times for each developer are 1320, 1020, 1005 minutes

respectively for the discontinuous algorithm. Hence, in the case of 3 developers, the

continuous algorithm is closer to the optimal solution. If we take the longest timeline

in both cases we can calculate the improvement of the continuous algorithm over the

discontinuous algorithm.

Discontinuous− Continuous

Continuous
=

1320− 1185

1185

≈ 0.1139

In this case, there is an 11% improvement of continuous over discontinuous. There is a

gap in time on developer 3’s timeline between tasks DM − 14 and DM − 19. DM − 14 is

completed at 735 minutes and DM − 19 is not started until the 765 minute mark. This

forces DM − 8 to be given to developer 1, and DM − 22 to developer 3 which lengthens

our total time even though the longest timeline does not include a gap. But we check if

these results change with a 4 developers in the continuous algorithm.

The total times in the case of the continuous algorithm with 4 developers are 1005,
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Figure 4.16: Continuous Algorithm, 4 Developers

390, 930, and 990 minutes. Notice that this is not a big time reduction as compared to

only utilizing 3 developers. This is due to the length of dependency chains. The time

as the number of developers goes to infinity will be the length of the longest dependency

chain. Again we will compare it to the performance of the discontinuous algorithm.

Figure 4.17: Discontinuous Algorithm, 4 Developers

We have times of 915, 390, 930, 1110 minutes respectively. Once again the continuous

algorithm outperforms the discontinuous algorithm. Notice that using the continuous

algorithm with 3 developers is only worse than the discontinuous algorithm with 4 devel-

opers by 75 minutes.

Discontinuous− Continuous

Continuous
=

1110− 1005

1005

≈ 0.1044

We get a similar improvement as with 3 developers, but slightly better as we lessen

the constraints on the developers. However, we find that neither of these results for 4

developers are optimal. By manual calculation we find that the following timelines are
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optimal. We have omitted the ’DM−’ portion of the task names for readability.

Developer 1: [9, 15, 10, 12, 4]→ 855 minutes

Developer 2: [2, 13, 7, 14, 20, 22]→ 765 minutes

Developer 3: [6, 3, 5, 8]→ 870 minutes

Developer 4: [11, 17, 21, 18, 19]→ 870 minutes

Note that with these timelines developer 3 does not have a task from time 465-510 to

account for the dependency of DM − 8 on DM − 14.

Continuous−Optimal

Optimal
=

1005− 870

870

≈ 0.1551

We can see that there is approximately a 16% error with this data. It is interesting

that the continuous algorithm performs better than the discontinuous algorithm, but the

optimal solution is discontinuous.
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5 Conclusion

This project resulted in software that could allow a project manager to get an idea

for possible timelines for a sprint. The software was built with JavaScript on a Node.js

Express server. The software was constructed with a layered structure. The kernel con-

sisted of parsing data pulled down from Jira. The next layer built all possible dependency

chains. The following layer created timelines given an unlimited amount of developers.

The final layer created timelines given a limited number of developers. The layer that

needs improvement before other layers can be developed is the limited developer layer.

Parsing data from Jira can be slightly tedious as thousands of lines of information are

pulled down with each call to the Jira API. It would be better to be able to cache the data

then only check if the sprint had been changed before making another expensive call to

the Jira API. However, once the data is parsed into nodes building dependency chains is

not too expensive relative to the general lengths of dependency chains in a given sprint. It

is almost trivial to create timelines for unlimited developers once the dependency chains

have been built, but we run into problems when creating algorithms to build timelines

with a limited number of developers.

Test data for these algorithms show that on some occasions the continuous algorithm

will perform better and other occasions the discontinuous algorithm will perform better.

However, neither of these algorithms can generally produce the optimal solution. There

is some margin of error ranging between 4% and 45%. If the margin of error is as high

as 45%, it is easy to see how to adjust the timelines by examining the placement of

independent tasks. Even though there is a large margin of error in some cases, it can

give project managers a place to start. Not only does this give managers a place to

start, a manager could run the same set of tasks through the software multiple times with

different numbers of developers, which would allow them to make swift adjustments to
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team assignments and improve utilization.

With more time, this project could be expanded upon to include a more informative

front end. The front end could be expanded to include a display of the dependency chains

that resemble Figure 3.1, for example. From there, we could add visualizations resembling

the timelines in Figure 3.4. As mentioned, it would be ideal for this to be hosted on a web

server and be accessible to outside use. We think the best way to improve the algorithm

would be to create classifications of the overall structures of tasks in a sprint and develop

particular algorithms that would be better suited to handle those cases.
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6 Glossary

6.1 Introduction

Definition 6.1.1. A dependency is a relationship between two tasks, such that one

task must be completed before the other task can be started.

Definition 6.1.2. A directed graph (V,E) is a graph where E is composed of order

pairs of elements of V . That is the edge (e1, e2) is distinct from the edge (e2, e1).

Definition 6.1.3. Slack is the amount of time a task can be delayed without causing a

delay in subsequent tasks or the project as a whole.

Definition 6.1.4. A story is a series of related tasks.

Definition 6.1.5. A task is a small piece of development work.

6.2 Graphs

Definition 6.2.1. A bipartite graph is a graph whose vertices can be separated into

two disjoint sets V and U such that each edge connects one vertex in V to one in U .

Definition 6.2.2. A complete graph is a graph where each pair of vertices are connected

by an edge.

Definition 6.2.3. A graph is connected if for any two vertices in a graph there is a

path between the vertices.

Definition 6.2.4. A directed graph (V,E) is a graph where E is composed of order

pairs of elements of V . That is the edge (e1, e2) is distinct from the edge (e2, e1).

Definition 6.2.5. A graph is disconnected if it is not connected.
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Definition 6.2.6. An Eularian cycle in a graph G is a cycle that includes every edge

in G.

Definition 6.2.7. A graph G is a pair of sets (V,E) where V is nonempty, and E is a

(possibly empty) set of unordered pairs of elements of V .

Definition 6.2.8. A Hamiltonian cycle in a graph G is a cycle that contains every

vertex in G.

Definition 6.2.9. The indegree of a vertex is the number of edges going into a vertex,

a vertex with an indegree of 0 is called a root.

Definition 6.2.10. A minimum spanning tree is an edge-weighted undirected graph

that connects all the vertices together, without any cycles and with the minimum possible

total edge weight.

Definition 6.2.11. The outdegree of a vertex is the number of edges leaving a vertex,

a vertex with an outdegree of 0 is called a leaf.

Definition 6.2.12. A perfect matching is a matching of a graph such that every vertex

of the graph is incident to exactly one edge of the matching.

Definition 6.2.13. Given a directed acyclic graph G = (E, V ), a topological sort or

ordering is a linear ordering of its vertices such that for every edge (v1, v2) in G, v1 will

appear in the ordering before v2.

Definition 6.2.14. A undirected graph (V,E) is a graph where E is composed of pairs

of elements of V .

Definition 6.2.15. A graph is weighted if each branch has a numerical weight.

6.3 Design

Definition 6.3.1. An issue is the Jira term for a task, story or software bug.
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