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Abstract

The Rayleigh-Taylor Instability (RTI) is an instability that occurs at the interface

of a lighter density fluid pushing onto a higher density fluid in constant or time-dependent

accelerations. The Richtmyer-Meshkov Instability (RMI) occurs when two fluids of dif-

ferent densities are separated by a perturbed interface that is accelerated impulsively,

usually by a shock wave. When the shock wave is applied, the less dense fluid will pene-

trate the denser fluid, forming a characteristic bubble feature in the displacement of the

fluid. The displacement will initially obey a linear growth model, but as time progresses,

a nonlinear model is required. Numerical studies have been performed in the past to

accurately approximate this nonlinear model. A techniques called front tracking has pro-

vided an enhanced resolution and zero numerical diffusion that is helpful with the sharp

discontinuities of the fluid properties in simulations involving RTI and RMI. Weighted

essentially non-oscillatory (WENO) finite difference schemes are used for accurate and

precise results in both early and late time of fluid mixing simulations. In more traditional

projects, WENO schemes utilized Lax-Friedrichs flux splitting. However, an alternative

type of splitting developed by Gilbert Strang splits a two-dimensional problem into two

one-dimensional problems that are easier and faster to solve. His splitting method was

shown to achieve up to second-order accuracy. For this research, such a splitting method

was derived for higher-order accuracy in three-dimensional problems. RTI simulations

utilizing this newly derived model were used to incorporate front tracking technique,

WENO, and operator splitting in a way that has not been done for a three-dimensional

problem.
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1 Introduction

1.1 Rayleigh-Taylor Instability and Richtmyer-Meshkov Insta-

bility

The Rayleigh-Taylor Instability (RTI) occurs at the interface of a lighter density

fluid pushing onto a higher density fluid in constant or time-dependent accelerations.

Richtmyer-Meshkov Instability (RMI) occurs when two fluids of different densities are

separated by a perturbed interface that is accelerated impulsively, usually by a shock

wave. As a result, when the shock wave is applied, the lighter fluid will penetrate the

heavier fluid, forming a characteristic bubble feature in the displacement of the fluid.

The displacement will initially obey a linear growth model, but as time progresses, a

nonlinear model is required [9].

In Zhou’s (2017) paper, all relevant experiments regarding RTI and RMI are

reviewed. Lewis performed an RTI experiment and saw an approximately sinusoidal

initial perturbation to the interface by oscillating the blade of a small paddle near the

interface. The RTI was generated by accelerating liquids down a vertical tube using air

pressure. Emmons, et al., improved Lewis’ experiment by using a thin tank constrained

by guide rails. They also accelerated the fluids using a stretched rubber tubing. Similarly,

Cole and Tankin used a double-ended air cylinder driven by compressed air to propel a

tank containing air and water. Most experiments for RMI were accomplished using a

thin plate and withdrawing it. Meshkov was the first to use a nitrocellulose membrane

in his RMI experiments. This membrane was already shaped into a sinusoid to provide

the perturbation. However, the incident shock wave shattered the membrane, and the

fragments were carried with the flow. Bouzgarrou, et al., described the fragments as

likely to corrupt the optical measurements and would also interact with the flow. Jones

and Jacobs developed a membrane free approach in 1997. Instead of a membrane, they

used a vertical shock tube with horizontal slots for the fluids to enter. This was found
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to form a stagnation point flow at the interface, and a reproducible perturbation was

applied by disturbing the shock tube to generate a standing wave [9].

1.2 Front Tracking

Numerical simulations of RTI and RMI are helpful to investigate and analyze

the dynamics of the growth exponent that describes the outer edge of the mixing zone.

One of the first RMI studies was performed by Holmes, Grove, and Sharp in 1995. They

measured the growth rates of RMI through the use of front tracking. When two fluids are

subjected to an interface like that of RTI and RMI, there are sharp discontinuities of some

fluid properties such as density and pressure. Front tracking is an adaptive computational

tool which provides enhanced resolution and zero numerical diffusion in simulations of

the shock acceleration perturbation by tracking the interface. Holmes [5] and Glimm [3]

found that simulations involving front tracking exhibited a significant improvement in

agreement compared to those performed without front tracking. Front tracking eliminates

numerical diffusion that occurs in Eulerian codes without front tracking. Front-tracking

along with subgrid scale modeling (SGS) for Large eddy simulations (LES) is used for

modeling turbulent flows for predictions of turbulence behavior [4].

1.3 WENO Scheme

The numerical analysis by Chi-Wang Shu was important in improving accuracy

in computational fluid dynamics (CFD). The methods used to analyze Shu’s numeri-

cal studies in CFD were high order finite difference weighted essentially non-oscillatory

(WENO), finite volume WENO, and discontinuous Galerkin method. Numerical studies

with the WENO scheme yielded accurate and precise results in both early and late time

of fluid mixing. This method was advantageous in that it did not contain a tuning pa-

rameter. Although this method complicates the code required to carry out experiments,

it yielded a more robust and accurate result than the second order total variation dimin-
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ishing (TVD) scheme on the same mesh. The purpose of the TVD schemes is to capture

sharper shock predictions without any misleading oscillations common with higher-order

schemes. At early times, second order TVD schemes were found to yield acceptable

data, but as time progressed, they did not fit the suggested model of flow. Thus, finite

difference WENO schemes were used for the numerical solution of Euler equations [8].

1.4 Euler Conservation Equations

The two-dimensional Euler Conservation equation is given as

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0 (1)

and the three-dimensional Euler Conservation equation is given as

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 (2)

where

U =



ρ

ρu1

ρu2

ρu3

E


, F =



ρu1

ρu2
1

ρu1u2

ρu1u3

(E + p)u1


G =



ρu2

ρu1u2

ρu2
2

ρu2u3

(E + p)u2


H =



ρu3

ρu1u3

ρu2u3

ρu2
3

(E + p)u3


where ρ is density, u = (u1 u2 u3) are velocities, E is the total energy per unit volume,

and p is pressure. The notation is simplified by letting X =
∂F

∂x
, Y =

∂G

∂y
, Z =

∂H

∂z
.

The derivative of x is what Shu sought to approximate with finite difference WENO

using Lax-Friedrichs flux splitting [8]. However, this research deals with a different type

of splitting method.

7



2 Strang Splitting

Splitting methods have been developed to split the higher dimension problems

into single dimension equations. MacNamara and Strang [6] introduce the ordinary

differential equation (ODE)

du

dt
= (A + B)u (3)

which has a solution of the form u(t) = u(0)et(A+B). A first order splitting scheme is

shown where

et(A+B) ≈ etAetB. (4)

This is said to be first order splitting because upon inspection of the local error, the

Taylor series

et(A+B) = I + t(A + B) +
1

2!
t2(A + B)2 + . . . (5)

agrees with the approximation of etAetB only up to the first order term. Strang developed

a symmetric splitting where

et(A+B) ≈ e
1
2
tAetBe

1
2
tA (6)

is seen to be second order accurate with Equation (5). In context of this research, a second

order symmetric Strang splitting would have the form X
1
2
tY tX

1
2
t in two dimensions and

X
1
2
tZ

1
2
tY tZ

1
2
tX

1
2
t in three dimensions.

2.1 Splitting Methods in Two Dimensions

2.1.1 Second-Order Strang Splitting

For the two-dimensional Euler Conservation equation (1), the solution U(x, y, t)

to the problem
∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0 (x, y) ∈ R2, t > 0

U(x, y, 0) = U 0(x, y) (x, y) ∈ R2

(7)
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where U 0(x, y) is given, can be approximated using splitting methods. For the case of

the second-order Strang splitting, first approximate the x-sweep by fixing y ∈ R and

solving

∂U

∂t
+
∂F

∂x
= 0, U(x, y, tn) = Un(x, y), x ∈ R, t ∈

(
tn, tn+ 1

2

]
(8)

for Ũn+ 1
2 (x, y) where tn+ 1

2 = tn + ∆t
2

. This is then used as the initial condition for the

y-sweep where x ∈ R is then fixed to solve

∂U

∂t
+
∂G

∂y
= 0, U(x, y, tn) = Ũn+ 1

2 (x, y), y ∈ R, t ∈
(
tn, tn+1

]
(9)

for ˜̃Un+1(x, y) where tn+1 = t+ ∆t. The splitting is completed by solving the rest of the

x-sweep where again y ∈ R is fixed to solve

∂U

∂t
+
∂F

∂x
= 0, U(x, y, tn) = ˜̃Un(x, y), x ∈ R, t ∈

(
tn+ 1

2 , tn+1
]

(10)

for Un+1
1 (x, y) which is the final approximation using the second-order Strang splitting

[1].

2.1.2 Fourth-Order Strang Splitting

Descombes [2] showed a fourth-order splitting method for a two-dimensional

problem which requires five steps, similar to the ones in the last section. The first step

is solving the x-sweep over the time interval
(
tn, tn+ 1

4

]
with tn+ 1

4 = tn + ∆t
4

to solve

for Ũn+ 1
4 (x, y). The next step is the y-sweep for the time interval

(
tn, tn+ 1

2

]
with ini-

tial condition Ũn+ 1
4 (x, y). This step solves for ˜̃Un+ 1

2 (x, y). The third step is solving

the x-sweep again over the time interval
(
tn+ 1

4 , tn+ 3
4

]
from initial condition ˜̃Un+ 1

2 (x, y),

solving for Ũn+ 3
4 (x, y). The fourth step is completing the y-sweep in the time interval(

tn+ 1
2 , tn+1

]
using the initial condition Ũn+ 3

4 (x, y) and solving for ˜̃Un+1(x, y). The last
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step of this method is completing the x-sweep. This is solved over the time interval(
tn+ 3

4 , tn+1
]
, using the initial condition ˜̃Un+1(x, y) and solving for Un+1

2 (x, y). To com-

plete the fourth-order approximation, the approximation, Un+1
1 (x, y), found in Equation

(10) and Un+1
2 (x, y) are used. These two computations are multiplied using the following

weights for the final approximation

Un+1(x, y) =
4

3
Un+1

2 (x, y)− 1

3
Un+1

1 (x, y) (11)

where 4
3

and −1
3

are weights.

2.2 Splitting Methods in Three Dimensions

2.2.1 Second-Order Strang Splitting

For the three-dimensional Euler Conservation equation (2), the solution U(x, y, z, t)

to the problem

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 (x, y, z) ∈ R3, t > 0

U(x, y, z, 0) = U 0(x, y, z) (x, y, z) ∈ R3

(12)

where U 0(x, y) is given, can be approximated using splitting methods with an XZY

scheme, where X, Y , Z are defined in Section 1.4, and the scheme refers to the order of

the sweeps of the corresponding variable, as shown below. First, a second-order Strang

splitting method is used. This method will take five steps to complete. Similar to the

two-dimensional problem, x-sweep is first performed by fixing y, z ∈ R and solving

∂U

∂t
+
∂F

∂x
= 0, U(x, y, z, tn) = Un(x, y, z), x ∈ R, t ∈

(
tn, tn+ 1

2

]
(13)

for Ũn+ 1
2 (x, y, z) where tn+ 1

2 = tn + ∆t
2

. Next, the z-sweep is started in the time interval(
tn, tn+ 1

2

]
using Ũn+ 1

2 (x, y, z) as the initial condition and solving for ˜̃Un+ 1
2 (x, y, z). The

10



third step starts the y-sweep in the time interval (tn, tn+1] with the initial condition

˜̃Un+ 1
2 (x, y, z) solving for

˜̃̃
Un+1(x, y, z). The fourth step involves completing the z-sweep

in the time interval
(
tn+ 1

2 , tn+1
]

where the initial condition is
˜̃̃
Un+1(x, y, z) and is used to

solve for ˜̃Un+1(x, y, z). The final step is finishing the x-sweep, for which the time interval

is
(
tn+ 1

2 , tn+1
]

with the initial condition ˜̃Un+1(x, y, z) and solution Un+1
1 (x, y, z).

2.2.2 Fourth-Order Strang Splitting

For the fourth-order splitting method, there will have nine steps. Similar to the

two-dimensional fourth-order splitting method, the method starts with the x-sweep over

the time interval
(
tn, tn+ 1

4

]
with initial condition Un(x, y, z) to solve for Ũn+ 1

4 (x, y, z).

The next step is starting the z-sweep over the time interval
(
tn, tn+ 1

4

]
with initial con-

dition Ũn+ 1
4 (x, y, z) and solution ˜̃Un+ 1

4 (x, y, z). Now, the y-sweep is initiated over the

time interval
(
tn, tn+ 1

2

]
with initial condition ˜̃Un+ 1

4 (x, y, z) to solve for
˜̃̃
Un+ 1

2 (x, y, z). For

the fourth step, another z-sweep is performed over the time interval
(
tn+ 1

4 , tn+ 1
2

]
using

˜̃̃
Un+ 1

2 (x, y, z) as the initial condition and solving for ˜̃Un+ 1
2 (x, y, z). Now, another x-sweep

is performed over the time interval
(
tn+ 1

4 , tn+ 3
4

]
with the initial condition ˜̃Un+ 1

2 (x, y, z)

used to solve for Ũn+ 3
4 (x, y, z). The next step is another z-sweep over the time inter-

val
(
tn+ 1

2 , tn+ 3
4

]
using the initial condition Ũn+ 3

4 (x, y, z) to solve for ˜̃Un+ 3
4 (x, y, z). The

y-sweep is then completed over the time interval
(
tn+ 1

2 , tn+1
]

with the initial condition

˜̃Un+ 3
4 (x, y, z) to solve for

˜̃̃
Un+1(x, y, z). In the eighth step, the z-sweep is completed

over the time interval
(
tn+ 3

4 , tn+1
]

to solve for ˜̃Un+1(x, y, z) with the initial condition

˜̃̃
Un+1(x, y, z). Finally, the x-sweep is completed over the time interval

(
tn+ 3

4 , tn+1
]
. Us-

ing the initial condition ˜̃Un+1(x, y, z), the approximation Un+1
2 (x, y, z) can be computed.

Using Un+1
1 (x, y, z) and Un+1

2 (x, y, z), there is a similar equation to Equation (11) to get

the final approximation of Un+1(x, y, z) with

Un+1(x, y, z) =
4

3
Un+1

2 (x, y, z)− 1

3
Un+1

1 (x, y, z), (14)
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again, where 4
3

and −1
3

are weights.

3 Simulations and Results

3.1 Grid Convergence and Error Analysis

In CFD studies, establishing grid convergence is an important tool for numerical

analysis. As described by Roache [7], the first step is to find three mesh sizes suitable for

coarse, medium, and fine simulations. Next, an order of convergence is established for

the simulations. This tells how quickly the error of the simulations converge. For these

simulations, the order of convergence, P , was calculated with

P =

log

(
ei
ei−1

)
log (r)

(15)

where ei is the error with respect to the fine mesh and r is the constant refinement

ratio. For these simulations, r = 1
2

for all calculations. The next step is performing a

Richardson Extrapolation to predict the data of the simulation at mesh size 0 according

to the equation

ρ0 = ρi +
ρi−1 − ρi−2

2P − 1
(16)

where ρi represents the max density value for the fine mesh size, ρi−1 represents the max

density value for the medium mesh size, and ρi−2 represents the max density value for

the coarse mesh size. This ρ0 is an estimate of the density value when there is zero grid

spacing. Next, the Grid Convergence Index (GCI) for the medium and fine meshes is

calculated to report grid convergence quality by the equation

GCIi,i−1 =
Fs|ei|
2P − 1

(17)
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where Fs = 1.25 is the safety factor. GCI measures the percentage that the computed

value is away from the value of the asymptotic numerical value. Lastly, the grids chosen

are checked to see if they are in the asymptotic range of convergence by verifying that

GCIi,i−1

rP ·GCIi−1,i−2

∼= 1 (18)

where GCIi,i−1 is the GCI of the fine mesh size, and GCIi−1,i−2 represents the GCI of the

medium mesh size.

3.2 Finding Optimum Mesh Sizes

The first simulations performed were to find the optimum mesh sizes and the

number of processors necessary to perform the three-dimensional RM simulations. Table

1 shows the simulations stopped at time T = 0.1 ms, where m is the mesh size, np is the

number of processor that performed the simulation, and the max density values. The

max density (ρ) values are recorded from initial time T = 0 ms. The time to solution

each simulation took was also recorded.

TABLE 1: Simulations on mesh 10, 20, 40, 80, 160, 320 stopped at T = 0.1 ms

m np time to solution (hh:mm:ss) max ρ (at T = 0 ms)
10× 10× 40 1× 1× 1 00 : 00 : 03 2.206
20× 20× 80 1× 1× 1 00 : 00 : 26 2.221
40× 40× 160 1× 1× 1 00 : 04 : 23 2.229
80× 80× 320 1× 1× 1 01 : 01 : 27 2.233
80× 80× 320 4× 4× 16 00 : 00 : 33 2.233

160× 160× 640 4× 4× 16 00 : 09 : 33 2.235
320× 320× 1280 2× 2× 8 − −

The first three simulations and the mesh 80 with np = 256 can be seen to have

completed very quickly. When the simulation with the size 80 mesh and np = 1 was

performed, the simulations took much longer to perform. Increasing np to 256 did help

13



with speed, but it could be seen that more resources were required for the same data

points. Clearly, it is seen that as mesh size (m) increased, the interface became much

smoother. However, the mesh size 320 was unable to complete due to the disk allocation

requirements in PSC Bridges involved with such a fine-sized mesh. Thus, the rest of

the simulations that were performed using the coarse mesh with m = 20 × 20 × 80, the

medium-sized mesh with m = 40× 40× 160, and the fine mesh with m = 80× 80× 320,

each with np = 1.

3.3 Simulations without Strang Splitting

Table 2 displays the results of the three simulations that were run with a WENO

scheme that was supposedly third order. The results are visualized in Figure 2.

TABLE 2: Simulations on mesh 20, 40, 80 with max time T = 0.1 ms

m np max ρ
20× 20× 80 1× 1× 1 2.156
40× 40× 160 1× 1× 1 2.163
80× 80× 320 1× 1× 1 2.164

To analyze the grid convergence, the order of convergence is first calculated, for which

Equation (15) is used to solve for

P =

log

(
2.164− 2.164

2.163− 2.156

)
log

(
1

2

) = 3

which gives a third order convergence. Using this, the Richardson Extrapolation data

point via Equation (16) is calculated as

ρ0 = 2.164 +
2.163− 2.156

23 − 1
= 2.16500.
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Equation (17) is used to get

GCI80,40 =
Fs

(
2.164−2.163

2.164

)
23 − 1

× 100% = 0.0082519%

GCI40,20 =

(
2.163−2.156

2.163

)
23 − 1

× 100% = 0.057790%.

Last, Equation (18) is used to get

0.0082519(
1
2

)3 · 0.057790
= 1.14233.

This shows that solutions are within the asymptotic range of convergence. These calcu-

lations also shows that the max density for mesh 0 is predicted to be 2.16500 with an

error bound of 0.057790%. The WENO scheme was expected to be third order conver-

gent which was consistent with the results. The extrapolation result gives an anticipated

value since it was predicted to be a value greater than 2.164 for the max density for mesh

size 0. It can be seen that the values of the densities increased with a finer mesh size, so

when there is zero grid spacing, we would expect a larger value such as 2.165.

3.4 Simulations with Second Order Strang Splitting

For this set of simulations, a known second order Strang splitting method was

used. The results are visualized in Figure 3.

TABLE 3: Simulations on mesh 20, 40, 80 with max time T = 0.1 ms using second order
Strang splitting

m np max ρ
20× 20× 80 1× 1× 1 2.152
40× 40× 160 1× 1× 1 2.162
80× 80× 320 1× 1× 1 2.165

To analyze these results, the order of convergence is calculated, for which Equation (15)
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yields

P =

log

(
2.165− 2.162

2.165− 2.152

)
log

(
1

2

) = 2.11548

which implies a second order convergence as expected. Using this, the Richardson Ex-

trapolation data point via Equation (16) is

ρ0 = 2.165 +
2.162− 2.152

22.11548 − 1
= 2.16800.

Equation (17) is then used to get

GCI80,40 =
Fs

(
2.165−2.162

2.165

)
22.11548 − 1

× 100% = 0.051963%

GCI40,20 =

(
2.162−2.152

2.162

)
22.11548 − 1

× 100% = 0.17426%.

Last, Equation (18) yields

0.051963(
1
2

)2.11548 · 0.17426
= 1.29217.

This shows that the solutions are within the asymptotic range of convergence. These

calculations also show that the max density for mesh 0 is predicted to be 2.16200 with

an error bound of 0.17426%. Again, the extrapolation result yields an expected value

since it would have been predicted to be a value greater than 2.165 for the max density

for mesh size 0 given the trend in the data with finer mesh spaces. The expected second

order convergence is seen here.
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3.5 Simulations with Experimental Fourth Order Strang Split-

ting

For this set of simulations, the experimental implementation of the fourth order

Strang splitting method was used. The results are visualized in Figure 4.

TABLE 4: Simulations on mesh 20, 40, 80 with max time T = 0.1 ms using an experi-
mental fourth order Strang splitting method

m np max ρ
20× 20× 80 1× 1× 1 2.152
40× 40× 160 1× 1× 1 2.162
80× 80× 320 1× 1× 1 2.164

First, the order of convergence is calculated, for which Equation (15) gives

P =

log

(
2.164− 2.162

2.164− 2.152

)
log

(
1

2

) = 2.58496

which gives a third order convergence. Using this, the Richardson Extrapolation data

point via Equation (16) is

ρ0 = 2.164 +
2.162− 2.152

22.58496 − 1
= 2.16700.

Using Equation (17) yields

GCI80,40 =
Fs

(
2.164−2.162

2.164

)
22.58496 − 1

× 100% = 0.023105%

GCI40,20 =

(
2.162−2.152

2.162

)
22.58496 − 1

× 100% = 0.11617%.

Last, Equation (18) is used to get

0.023105(
1
2

)2.58496 · 0.11617
= 1.19334.
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This shows that the solutions are within the asymptotic range of convergence. These

calculations also give the max density for mesh 0 is predicted to be 2.16200 with an error

bound of 0.11617%. Rounding the order of convergence up, the results of the simulations

give a third order convergence when fourth order was expected with this scheme. This

leads to the conclusion that the implementation of the C++ code for this method is not

correct. However, an increase in order of convergence as a result of this implementation

is seen. The max density prediction, however, does yield something since it would have

been predicted to be a value greater than 2.164 for the max density for mesh size 0.
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3.6 Pseudocolor Plots of Simulations

(a) (b) (c)

(d) (e) (f)

FIGURE 1: Pseudocolor plots of the density of the simulations for mesh size (a) 10 with
np = 1, (b) 20 with np = 1, (c) 40 with np = 1, (d) 80 with np = 1, (e) 80 with np = 256
and (f) 160 with np = 256 with max time T = 0.1 ms and densities recorded at initial
time T = 0 ms
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(a) (b)

(c)

FIGURE 2: Pseudocolor plots of the density of the simulations for mesh size (a) 20, (b)
40, (c) 80 with no Strang Splitting
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(a) (b)

(c)

FIGURE 3: Pseudocolor plots of the density of the simulations for mesh size (a) 20, (b)
40, (c) 80 with second order Strang splitting
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(a) (b)

(c)

FIGURE 4: Pseudocolor plots of the density of the simulations for mesh size (a) 20, (b)
40, (c) 80 with fourth order Strang splitting
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4 Conclusion

Some of the scientific applications of RTI are interstellar medium and galaxy

clusters and interactions between shocked solar wind plasma and magnetospheric plasma

on Earth. A practical application of RTI is found in industry with premixed combustion

or transport. There are also several practical applications of the complex flow of RMI such

as inertial confinement fusions and fuel injection in supersonic flows. Another application

of RMI is in astrophysics where there is significant fluid mixing involved in supernovae.

In all of these applications, it is easy to see that experimental studies on the actual events

themselves is not feasible; issues arise from the short nature of the events and the extreme

environmental conditions in which they occur. Thus, using RTI and RMI simulations for

analysis is a very helpful alternative for understanding the growth of the mixing layer of

the interface [9].

The results of the simulations for this research were consistent for the second

order Strang splitting method, but the expected fourth order Strang splitting method

was not observed as desired. Although the implementation of the fourth order Strang

splitting method did not show results of fourth order convergence, it did increase the rate

of convergence compared to the known-to-work second order Strang splitting method.

Hence, if there were more time for implementation, it is possible that an order four

convergence could be observed. A source of the error in the implementation is found in

the multiplication of the flux with the weights. One other possible source of error could

have been that the fine mesh of size 80 is not fine enough for accurate results. Possibly

with more resources, running simulations with mesh size 320 could have potentially shown

better results. Despite these possible errors, it is believed that the data observed in this

study will give rise to better results in the future with more work and the observation

for even higher order convergence.
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