

ORGDP

GJBX-29 '81

K/UR-29 Part 6

OAK RIDGE GASEOUS DIFFUSION PLANT

OPERATED BY UNION CARBIDE CORPORATION FOR THE UNITED STATES DEPARTMENT OF ENERGY HYDROGEOCHEMICAL AND STREAM SEDIMENT DETAILED GEOCHEMICAL SURVEY FOR TRANS-PECOS, TEXAS

STILLWELL MOUNTAINS PROJECT AREA

T. R. Butz, M. E. Wagner, J. G. Grimes, C. S. Bard, R. N. Helgerson, and P. M. Pritz Uranium Resource Evaluation Project

CAUTION CAL SHOVEY OF WYRMING This is a time release report. Do not release any part of this publication before

October 31, 1980

metadc1202583

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use-fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

A computer readable magnetic tape containing measurement, analysis, and location data may be purchased from the GJOIS Project, UCC-ND Computer Applications Dept., 4500 North Building, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, Tennessee 37830.

Date of Issue: October 31, 1980

Report Number: K/UR-29 Part 6

Subject Category: UC-51, Nuclear Raw Materials

HYDROGEOCHEMICAL AND STREAM SEDIMENT DETAILED GEOCHEMICAL SURVEY FOR TRANS-PECOS, TEXAS

STILLWELL MOUNTAINS PROJECT AREA

T. R. Butz, M. E. Wagner, J. G. Grimes, C. S. Bard, R. N. Helgerson, and P. M. Pritz

Uranium Resource Evaluation Project

Union Carbide Corporation, Nuclear Division Oak Ridge Gaseous Diffusion Plant Oak Ridge, Tennessee

Prepared for the U. S. Department of Energy Assistant Secretary for Resource Applications Grand Junction Office, Colorado under U. S. Government Contract W-7405 eng 26 Uranium Resource Evaluation Project J. W. Arendt, Project Manager T. R. Butz, Assistant Project Manager

Geology and Geochemistry T. R. Butz, Project Geologist/Geochemist P. M. Pritz, Field Geology Program Director M. E. Wagner, Field Geology Supvervisor

J. H. French, S. A. Roberts, C. J. Stannard, C. S. Lide, and D. J. Tiernan, Field Geologists

Analytical Chemistry, Detailed Survey Geochemistry, and Report Preparation J. D. Joyner, Data Management and Information Processing R. N. Helgerson, Analytical Chemistry J. G. Grimes and C. S. Bard, Detailed Geochemical Reporting

> Uranium Resource Evaluation Project Oak Ridge Gaseous Diffusion Plant P. O. Box P, Mail Stop 246 Oak Ridge, Tennessee 37830 Telephone: (615) 574-8882 FTS 624-8882

CONTENTS

<u> </u>	Page
ABSTRACT	9
INTRODUCTION.	11 12 12 12
GEOLOGY	18 18 21 23 23
SAMPLE COLLECTION	23 23 23 24
CHEMICAL ANALYSIS	24
QUALITY CONTROL	26 26 26
GEOCHEMICAL RESULTS	26 26 32 32 32 33 34 35
BIBLIOGRAPHY	37
APPENDIX A. GROUNDWATER	A-1
APPENDIX B. STREAM SEDIMENT	B-1
APPENDIX C. COMPUTER CODE LIST AND FIELD FORMS	C-1
APPENDIX D. MICROFICHE OF FIELD AND LABORATORY DATA	D-1

LIST OF TABLES

No.	Title	Page
1	Detection Limits of Variables Determined in Water and Sediment Samples	25
2	Summary of Measurements Control Results Obtained With Groundwater Samples From the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	27
3	Summary of Measurements Control Results Obtained With Stream Sediment Samples from the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	28
4	Distribution of Samples by Geologic Unit From the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	31

LIST OF FIGURES

<u>No.</u>	Title	Page
1	Index Map Showing the Map Boundaries of the Still- Well Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	13
2	Generalized Geologic Map of Texas with Location of the Stillwell Mountains Project Area, Trans- Pecos Detailed Geochemical Survey, Texas	15
3	Generalized Geologic Map of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	17
4	Generalized Structure Map of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	19
5	Producing Horizon Map for Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	29

LIST OF PLATES

(In Back Pocket)

No.	Title
1	Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Groundwater Sample Location Map
2	Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Concentration Map, Groundwater, Uranium
3	Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Concentration Map, Groundwater, Specific Conductance
4	Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Stream Sediment Sample Location Map
5	Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Symbol Plot, Stream Sediment, Uranium
6	Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Symbol Plot, Stream Sediment, Thorium
7	Generalized Geologic Map of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas
8	Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Radiometric Sample Location Map

ABSTRACT

Results of the Stillwell Mountains project area of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 10 groundwater and 228 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed.

Two groundwater samples from the western section of the project area have the highest uranium values (17.35 and 6.80 ppb). These samples display relatively high concentrations of variables commonly found associated with sulfide mineralization (silver, copper, molybdenum, and selenium). The specific conductance values measured for these two samples represent the second highest and the third lowest values in the project area. The producing horizons of these two samples are inferred to be in or below the Buda Limestone. The two samples occur in a rifted area with stratigraphically Lower Santa Elena Limestone and Tertiary intrusives exposed along the uplifted blocks.

Stream sediment samples containing significant amounts of soluble uranium (\geq 1.90 ppm) represent two major areas: along the Rio Grande (trending NE-SW) from Sierra Larga to Big Canyon, and between the Sierra del Carmen Range and Stillwell Mountain (trending NW-SE). Arsenic, beryllium, lithium, molybdenum, selenium, and vanadium are associated with high uranium values in both of the areas. The areas with high uranium values are characterized by extensive Tertiary faulting and folding and Tertiary intrusives.

STILLWELL MOUNTAINS PROJECT AREA

INTRODUCTION

The National Uranium Resource Evaluation (NURE) Program was established by the U. S. Atomic Energy Commission, now the U. S. Department of Energy (DOE), in the spring of 1973 to assess uranium resources and to identify favorable areas for detailed uranium exploration throughout the United States. The principal objectives of the NURE Program are: (1) to provide a comprehensive in-depth assessment of the nation's uranium resources for national energy planning, and (2) to identify areas favorable for uranium resources. A NURE Program report covering uranium resource assessment in 116 National Topographic Map Series (NTMS) 1° x 2° guadrangles, which contain 100% of the currently estimated uranium resources, is targeted for 1980. The complete resource assessment of the 272 highest-priority quadrangles is scheduled for completion in 1985, and the first comprehensive assessment report of the entire United States is scheduled for completion in 1988. This program, which is being administered by DOE, is expected to increase the activity of commercial exploration for uranium in the United States.

The NURE Program consists of five parts:

- Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) Program,
- 2. Aerial Radiometric and Magnetic Survey,
- 3. Surface Geologic Investigations,
- 4. Drilling for Geologic Information, and
- 5. Geophysical Technology Development.

The objective of the HSSR Program is to provide information to be used in accomplishing the overall NURE Program objectives. This is accomplished by a reconnaissance of surface water, groundwater, stream sediment, and lake sediment. The survey is being conducted by three Government-owned laboratories. Union Carbide Corporation, Nuclear Division (UCC-ND), under contract with DOE, is conducting its survey in 154 NTMS 1° x 2° quadrangles which cover approximately 2,500,000 km² (1,000,000 mi²) of the central United States. This area includes most of the states of Texas, Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota, Wisconsin, Michigan, Indiana, Illinois, and Iowa, as well as parts of Arkansas, Missouri, New Mexico, and Ohio.

As a part of the HSSR Program, detailed geochemical surveys were initiated in the fall of 1978 to supply comprehensive detailed geochemical data from specific areas. These surveys are designed to characterize the hydrogeochemistry, stream sediment geochemistry, and/or radiometric patterns of known or potential uranium occurrences. The information can be used to interpret data from the $1^{\circ} \times 2^{\circ}$ NTMS quadrangle basic data surveys.

This report on the Stillwell Mountains project area represents the sixth volume of geochemical data which describe seven select areas in the Trans-Pecos region, Texas (see Figure 1 for the location and names of the last three of the seven project areas).

LOCATION AND PHYSIOGRAPHY

The Stillwell Mountains project area of the Trans-Pecos detailed geochemical survey covers a surface area of approximately 5,983 km² (2,311 mi²) and is outlined on the generalized geologic map of Texas (Figure 2). It is located within the Emory Peak 1° x 2° NTMS Quadrangle, and solely within Brewster County. The area of detailed sampling includes approximately 1,199 km² (463 mi²). A generalized geologic map and stratigraphic column listing URE geologic codes used are given in Figure 3 and Plate 7.

The Stillwell Mountains project area borders the northeastern boundary of Big Bend National Park. To the north of the project area is the Marathon Basin; to the west, the Santiago Mountains; and to the east, the Rio Grande. The area is the eastern-most extension of the Mexican Highland section of the Basin and Range Province within the United States. The project area is located on the northeast end of the doubly plunging Serrania del Burro Mountains of Mexico. It is characterized by Late Oligocene fault block mountain ranges and adjacent alluvium-filled graben structures extending to the Rio Grande. Major topographic highs include the Sierra del Carmen Range to the southwest, the Black Gap basaltic ridge in the center and, to the north, the Dove and Black Mountains.

CLIMATE

The climate of the Trans-Pecos region of Texas is classified as arid, subtropical. Vegetation coverage is sparse due to the extremely high evapotranspiration rate relative to rainfall. The normal annual precipitation for the eastern Trans-Pecos area is 30 cm (12 in.). The normal average temperature is $18^{\circ}C$ ($64^{\circ}F$).

September is the peak season for rain, with precipitation occurring as short-lived, intense afternoon thundershowers. The intensity of rain-fall and lack of vegetation makes flash-floods common in the region (National Oceanic and Atmospheric Administration, 1974).

RELATED STUDIES

The geology and structural development of the Stillwell Mountains project area are discussed by Wilson (1951), Shambaugh (1951), and St. John (1965). Prior to NURE activity in the Stillwell Mountains region, four anomalously radioactive locations were described within the project boundaries (Southern Interstate Nuclear Board, 1969). However, uraniumrelated investigations have largely been limited to those of the NURE

INDEX MAP SHOWING THE MAP BOUNDARIES OF THE STILLWELL MOUNTAINS PROJECT AREA (6), TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GENERALIZED GEOLOGIC MAP OF TEXAS WITH LOCATION OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS (AFTER KING, ET AL, 1974)

LEGEND FOR FIGURE 3

SOURCE OF GEOLOGY: 1. BARNES, V. E.; GEOLOGIC ATLAS OF TEXAS, EMORY PEAK-PRESIDIO SHEET (PRELIMINARY SHEET, 1977).

ERA	SYSTEM	SERIES	MAP CODE	GEOLOGIC UNIT
CENOZOIC	QUATERNARY	RECENT	QD	ALLUVIUM AND OTHER QUATERNARY DEPOSITS
	TERTIARY		TEV	EXTRUSIVE IGNEOUS ROCKS
			L_ <u>_</u>	
		OLIGOCENE/EOCENE	ТЕСН	SOUTH RIM FORMATION CHISOS FORMATION
		EOCENE	TLSR	CANOE FORMATION HANNOLD HILL FORMATION BLACK PEAKS FORMATION
MESOZOIC	CRETACEOUS	UPPER CRETACEOUS	UKSE	JAVELINA FORMATION AGUJA FORMATION PEN FORMATION BOOUILLAS FORMATION
		LOWER CRETACEOUS	LKLB	BUDA LIMESTONE DEL RIO CLAY
			LKSE	SANTA ELENA LIMESTONE
			LKSP	SUE PEAKS FORMATION DEL CARMEN LIMESTONE TELEPHONE CANYON FORMATION (UNDIVIDED)
			LKT	GLEN ROSE FORMATION
PALEOZOIC	PENNSYLVANIAN	LOWER PENNSYLVANIAN	CPUD	TESNUS FORMATION
	MISSISSIPPIAN AND DEVONIAN			CABALLOS NOVACULITE
	ORDOVICIAN	UPPER ORDOVICIAN		MARAVILLAS FORMATION
		MIDDLE		FORT PENN FORMATION
	CAMBRIAN	UPPER CAMBRIAN		DAGGER FLATT SANDSTONE

STILLWELL MOUNTAINS PROJECT AREA, TRANSPECOS DETAILED GEOCHEMICAL SURVEY

program. UCC-ND personnel observed and reported on geochemical patterns indicative of uranium mineralization from samples collected in the Emory Peak 1° x 2° NTMS Quadrangle (Uranium Resource Evaluation Project, 1978). In an airborne gamma-ray and magnetic reconnaissance survey, conducted by LKB Resources, Inc., 12,114 line km (7,529 line mi) were flown during 1978 in the Big Bend area of Texas. Four preferred anomalies and twenty-eight statistically significant eU anomalies were recognized in the area of detailed sampling. The uranium spectral channel displayed local amplitudes over the Cretaceous sediments in the eastern portion of the Emory Peak 1° x 2° NTMS Quadrangle exceeding the responses over volcanic terrain in the western portion of the quadrangle (LKB Resources, Inc., 1979).

GEOLOGY

STRATIGRAPHY

Unit descriptions of the Stillwell Mountains project area are taken from St. John (1965), Shambaugh (1951), and Sellards, et al (1932). The exposed units within the project boundaries range in age from Cambrian to Quaternary.

The oldest exposed unit in the area of sampling is the Glen Rose Formation (LKT), which is composed of thick bedded, fine-grained limestones separated by zones of marl and sandstone and represents a littoral depositional environment. The unit is exposed in the Sierra del Carmen Range and northeast of the mouth of the Maravillas Canyon (lat. $29^{\circ}34'$ N. and long. $102^{\circ}47'$ W.). Unit thickness has been measured to be between 122 and 152 m (400 and 500 ft).

The Telephone Canyon Formation conformably overlies the Glen Rose Formation. It is exposed on the northeastern scarp of Maravillas Creek and represents a transgressive neritic to littoral environment. This unit is a nodular, marly yellow to gray limestone with a thickness of approximately 21 m (70 ft). The Del Carmen Limestone conformably overlies the Telephone Canyon Formation. It is exposed at the crest of the Dove Mountain Anticline (lat. 29°44' N. and long. 102°56' W.) (Figure 4) and northeast of Maravillas Creek (lat. 29°34' N. and long. 102°50' W.) with an approximate thickness of 137 m (450 ft). This limestone is biomicritic with bioherms representing a neritic environment with shallow The Sue Peaks Formation conformably overlies the Del Carmen e. The section measures 21 to 27 m (70 to 90 ft) at Stairway reefs. Limestone. Mountain (lat. 29°32' N. and long. 102°57' W.). This micritic to biomicritic unit represents a shallow neritic environment with a clastic sediment source. The Telephone Canyon Formation, Del Carmen Limestone, and Sue Peaks Formation are combined on the geologic map (Figure 3 and Plate 7) and shown as LKSP.

The Santa Elena Limestone (LKSE) is the most widely exposed unit of the project area, capping the Sierra Del Carmen Range (lat. $29^{\circ}30'$ N. and long. $102^{\circ}58'$ W.) and covering the northern section of the area sampled. It attains a maximum thickness of 290 m (950 ft). The Santa Elena Limestone (LKSE) is biomicritic with rudistid bioherms and beds of biosparite and micrite, and represents a neritic-shallow reef environment.

The Del Rio Clay is a silty claystone to clayey siltstone with gypsum accumulations. It reaches a maximum thickness of 56 m (185 ft) in Big Brushy Canyon (lat. 29°35' N. and long. 103°03' W.) and represents a littoral depositional environment. The overlying Buda Limestone consists of four facies. The basal facies is an algal biosparite with evidence of subaerial exposure. Upsection, the facies consist of a massive gray biomicrite, a clayey micrite, and a sublithic, nodular biomicrite. The basal member represents a marginal basin facies in a high energy zone, while the upper three members represent lower energy, deeper water environments. The Del Rio Clay and Buda Limestone are combined on the geologic map (Figure 3 and Plate 7) and shown as LKLB.

The Boquillas Formation, which is exposed east of the Black Gap Syncline (lat. $29^{\circ}34'$ N. and long. $102^{\circ}57'$ W.), consists of the Ernst and San Vicente Members (not shown on stratigraphic column). The basal Ernst Member is approximately 82 m (270 ft) thick. It is a silty, thin to medium-bedded flaggy micrite and biomicrite and represents a slow regressive or transgressive phase of low energy-nearshore deposition. The San Vicente Member is 82 m (270 ft) thick. The micritic beds of this member are thicker than those in the Ernst Member. The contact between the San Vicente Member and the overlying Pen Formation is gradational. The San Vicente Member represents a transgressive phase with deeper water and a lower energy environment.

The Pen Formation is the youngest Cretaceous marine unit exposed in the area sampled. This calcareous, gypsiferous clay has been protected from erosion by the overlying basalt cap. Its maximum thickness is 15 m (50 ft) when measured west of the Black Gap Syncline (Figure 4). It represents a regressive sequence with shallow water evaporitic conditions indicated by its gypsum content. The Boquillas and Pen Formations are combined on the geologic map with the Aguja and Javelina Formations (Figure 3 and Plate 7) and are shown as UKSE. The Aguja and Javelina Formations do not occur within the area sampled.

Tertiary extrusives (TEV) occur predominantly in the central grabenstructure of the project area, between the Sierra del Carmen Range and Cupola Mountain (lat.29°40' N. and long. 102°51' W.). The major extrusive is a fine-grained, porphyritic basalt. A thickness of 137 m (450 ft) is exposed east of Stillwell Mountain (lat. 29°37' N. and long. 102°58' W.). Two units are identifiable in outcrop, the lower being dark gray and weathering smooth while the upper unit weathers into reddish brown angular blocks. The units exhibit flow structure and have plagioclase, augite, olivine, and iddingsite as principal mineral components. Although age dates have not been determined, the flows are considered to be Middle to Late Eccene in age, suggesting extrusion prior to major faulting and folding of the region.

The major intrusive unit (TI) of the area is an analcime gabbro exposed along the flanks of Stillwell Mountain, in Big Brushy Canyon, and west of Black Gap (lat. 29°33' N. and long. 102°56' W.). Reaching a maximum exposed thickness of 34 m (112 ft), it has intruded into the Ernst Member of the Boquillas Formation. The intrusive is a fine- to mediumgrained holocrystalline, nonporphyritic unit composed predominantly of plagioclase. Mineralogical compositions of both the extrusives and intrusives are alike and may be considered to be of the same source. They are alkalic in nature and differences in composition can be explained by pre-intrusive differentiation (St. John, 1965).

The bolson fill of the Stillwell Mountains project area is considered to range from Tertiary to Quaternary in age. Age is determined by quantity and composition of igneous rocks in the sand, pebble, and cobble fractions of the interbedded gravels within the deposits. The silty clay and interbedded gravel extend into Mexico and were later cut by the Rio Grande. Bolson material is combined with alluvium and other Quaternary deposits on the geologic map (Figure 3 and Plate 7) and shown as QD.

STRUCTURE

The Stillwell Mountains project area is located within the Paleozoic Ouachita mobile foldbelt, southwest of the Marathon structural salient. Several major foldbelt structural features have subsurface expression within or near the project boundaries. The Luling Front extends arcuately through the central portion of the project area separating the highly sheared interior facies zone from rocks of the frontal zone. The front is marked by overthrusting of interior zone rocks over frontal facies units. No data could be found on the frontal zone rocks in the area, however, the interior zone rocks can be described from well log data from Bud Roark Well No. 1 (lat. 29°52' N. and long. 102°29' W.) and from outcrop studies at Sierra del Carmen in Coahuila, Mexico (lat. 29°11' N. and long, 102°50' W.). The rocks are believed to be of Cambrian to Ordovician (pre-Tesnus) age. They consist of weakly metamorphosed units similar to the Marathon Limestone of the Marathon Basin area (Flawn, et al, 1961 and St. John, 1965).

The Early Paleozoic Era was marked by the accumulation of fine-grained, limey, cherty, clastic sediments in the Ouachita Geosyncline. Periodic tectonic uplift and subsequent erosion of deposits within the geosyncline limited the total thickness of Early Paleozoic strata. Uplift of the hinterland, Llanoris, south of the geosyncline, precipitated the influx of clastic material from the activated area into the deepening trough (Flawn, et al, 1961). Continued geosyncline mobilization shifted the axis of deposition northward. Earlier Paleozoic sediments were brought to the surface, eroded and incorporated in newly deposited sediments closer to the craton margin. Crustal movement continued, advancing to the northwest in the form of compressional folds which broke into thrust sheets (King, 1935). Folding and overthrusting of geosynclinal deposits by the end of the Paleozoic Era moved the axis of deposition further north. The deposition of thick Permian (Wolfcamp) sediments signaled the end of the orogenic or deformational episode of the western section of the Ouachita system (King, 1935). The deformed Paleozoic sediments were then eroded to a flattened surface with later gentle Permo-Triassic folding. This area later underwent vertical tectonism during the Oligocene Laramide Orogeny (St. John, 1965).

The Mesozoic structural development of the Stillwell Mountains project area is outlined in detail by St. John (1965). Post Permian uplift and erosion of Paleozoic strata were followed by deposition of Cretaceous marine units. The Stillwell Mountains region is considered to be part of the West Texas Platform at its junction with the Coahuila Peninsula of northern Mexico. The Coahuila Series of the Lower Cretaceous was either eroded or never deposited in the Stillwell Mountains area (Lonsdale, et al, 1955). Encroachment and inundation of the Tamaulipas and Coahuila Peninsulas by the Mexican geosynclinal sea led to the deposition of the Lower Cretaceous (Comanchean) Glen Rose Limestone.

Doming of the Marathon Salient occurred during the deposition of the Del Carmen and Santa Elena units and is demonstrated by their northward thinning from Black Gap towards Glass Mountain (lat. 30°30' N. and long. 103°00' W.). Minor folding and faulting occurred during Del Rio deposition and is indicated by substantial differences in unit lithology and thickness. Continued doming of the Marathon area led to the regression of the Mesozoic sea, subaerial erosion, and subsequent deposition of 'dirty' carbonate Upper Cretaceous (Gulfian) units (i.e., Boquillas Formation).

The Late Cretaceous-Early Tertiary Laramide Orogeny resulted in the uplift of the Sierra del Carmen Range and the formation of the Dove Mountain Anticline (lat. 29°44' N. and long. 102°45' W.) (Figure 4). Decollement from the Sierra del Carmen Range created northeast folding. The Stillwell Anticline (lat. 29°38' N. and long. 102° 57' W.) (Figure 4) is one such decollement feature.

The Late Eocene-Early Tertiary volcanic activity inundated the Stillwell Mountains area with basaltic lava flows. Remobilization of Paleozoic thrust sheets caused compressional stress accumulation in the Cretaceous limestones and Tertiary extrusives and resulted in conjugate shear sets. With the release of compression, vertical down-drop of basement rocks and overlying sediments occurred along shear sets creating Basin and Range-type topography. Erosion of coarse clastics from topographically high normal fault blocks formed the bolson-fill deposits of Late Tertiary and Quaternary age.

HYDROLOGY

The hydrology of the Stillwell Mountains project area is poorly understood due to structurally induced groundwater controls. However, those few wells that do exist furnish water from the fractured limestones of the Lower Cretaceous (Trinity and Comanchean) units. Wells range in depth from 90 to 305 m (300 to 1,000 ft). A few shallow wells produce from alluvium, however the water is of a poor quality with high concentrations of dissolved solids and mineral species.

URANIUM OCCURRENCES

Investigations conducted by the U.S. Atomic Energy Comission have delineated one site of uranium mineralization. The Stillwell Ranch prospect (lat. 29°38' N. and long. 102°57' W.) has carnotite in narrow fractures in deformed Cretaceous limestones (Southern Interstate Nuclear Board, 1969 and Shambaugh, 1951). Radiometric readings on outcrops exceeded background threefold (Reeves, et al, 1978).

Additional readings of anomalous radioactivity were detailed by LKB Resources, Inc., (1979). These anomalies occurred at or near the Lower-Upper Cretaceous (Comanchean-Gulfian) contact, presumably from the basal marly-shaly interbeds of the Boquillas Formation. A few of the statistically significant anomalies occur within the Santa Elena Limestone, presumably due to uranium from contact between the Santa Elena Limestone and intrusive-extrusive igneous units or from mineralization in solution cavities.

SAMPLE COLLECTION

CHRONOLOGY OF THE SURVEY

Sampling in the Stillwell Mountains project area began in January 1980 and was completed in February 1980. Laboratory analysis and compilation and verification of all field and laboratory data were completed in May 1980. The final field and laboratory data base used to prepare the statistical and areal distribution of uranium and other related variables for this report was completed in June 1980.

FIELD PROCEDURES

A total of 10 groundwater and 228 stream sediment samples was collected during detailed sampling of the Stillwell Mountains project area. Well water and springwater samples are reported as groundwater. Sample locations for groundwater and stream sediment sites are shown on Plates 1 and 4, respectively. Radiometric sample locations are shown on Plate 8. Sampling density for groundwater in the Stillwell Mountains project area was less than optimal due to the sparse population and because the major portion of the project area is within the Black Gap Wildlife Refuge.

Detailed information regarding techniques in sample collection, recording site data, field equipment, and field measurements can be found in the following reports: "Hydrogeochemical and Stream Sediment Reconnaissance Procedures for the Uranium Resource Evaluation Project" (Arendt, et al, December 1979); "Procedures Manual for Groundwater Reconnaissance Sampling" (Uranium Resource Evaluation Project, March 1978); and "Procedures Manual for Stream Sediment Reconnaissance Sampling" (Uranium Resource Evaluation Project, March sampling" (Uranium Resource Evaluation Project, May 1978). Field observations were recorded on the field form shown in Table C-2 and are included on microfiche in Appendix D.

BGS-1SL Scintrex Scintillation Counters were used to obtain the radiometric data in this area. These readings were used in directing sampling toward geologic units with positive anomalous radioactivity.

CONTAMINATION

Precautions were taken to avoid collecting contaminated samples. Wells which were affected by chlorination, water-softening, or filtering devices were not sampled unless a sample could be taken before the water passed through such devices. Any well that had not been pumped recently was allowed to run as long as possible to flush the system. Any wells that were thought to be contaminated were noted as such on the field forms.

Sediment samples were collected upstream from road crossings and railroad tracks, except where this was not feasible.

CHEMICAL ANALYSIS

All samples collected were returned to the URE Project laboratory in Oak Ridge, Tennessee for preparation and analysis. The elements determined and the analytical techniques used along with the appropriate detection limits are given in Table 1. These detection limits are considered the best average during normal operation; however, some variables have values reported below these limits. All water samples were received in 250-ml polyethylene bottles and were filtered through 0.45-µm cellulose acetate paper. Stream sediment samples were dried overnight at 85°C and sieved to collect the <150-µm fraction. Part of the sediment sample was dissolved in 10 ml of 1:1 nitric-hydrofluoric acid. The analytical procedures which were used have been described by Cagle (1977) and Arendt, et al (December 1979). All observed data from all samples are included on microfiche in Appendix D.

Table 1

DETECTION LIMITS OF VARIABLES DETERMINED IN WATER AND SEDIMENT SAMPLES

		Detectio Sediment	on Limits Water
<u>Variable</u>	Method	<u>(ppm)</u>	(p p b)
<u>Variable</u> U U-MS U-NT As Se Ag Al B Ba Be Ca Co Cr Cu Fe Hf K La Li Mn Mo Na Nb Ni P Pb Sc Si Th	Method Fluorometry Mass Spectrometry-Isotope Dilution Neutron Activation-Delayed Neutron Count Atomic Absorption Plasma Source Emission Spectrometry Plasma Source Emission Spectrometry Plas	<u>Detectio</u> Sediment (ppm) 0.25 0.02 0.1 0.1 2 0.05(a) 10 2 1 0.05(a) 15 0.05(a) 2 1 0.05(a) 2 1 0.05(a) 4 4 0.05(a) 4 2 5 10 1 1 2	<pre>value Limits Water (ppb) 0.2 0.02 0.5 0.2 2 10 4 2 10 4 2 10 0.1(b) 2 4 0.1(b) 2 4 0.1(b) 2 4 0.1(b) 2 4 0.1(b) 2 4 0.1(b) 2 4 0.1(b) 2 4 0.1(b) 2 4 0.1(b) 2 0.</pre>
Ti V Y Zn Zr SO ₄ Cl (a)Detectio (b)Detectio	Plasma Source Emission Spectrometry Plasma Source Emission Spectrometry Plasma Source Emission Spectrometry Plasma Source Emission Spectrometry Plasma Source Emission Spectrometry Spectrophotometry Spectrophotometry on limits expressed in percent.	10 2 1 2 2 	2 4 1 4 2 5(b) 10(b)

QUALITY CONTROL

MEASUREMENTS CONTROL

The procedures used to analyze URE Project samples require that calibration standards, check samples, and blanks be analyzed along with normal samples to ensure the validity of the reported results. A measurements control program provides information concerning precision and reliability of these measurements. On a daily basis, control samples of two water batches and three sediment batches are submitted anonymously along with routine samples. A statistical summary of results reported on control samples, which were analyzed along with the samples included in this survey, is given in Tables 2 and 3. Results of uranium analysis of water and sediment control samples obtained from the Ames Laboratory as part of the Multilaboratory Analytical Quality Control for the HSSR Program are reported by D'Silva, et al (1980).

PRINCIPAL COMPONENT ERROR ANALYSIS

A principal component analysis of data from groundwater and stream sediment samples was used to produce an ordered list of samples using the eigenvalue statistics as described by Kane, et al (1977), where the most extreme samples were listed first. Additional samples were identified if single-element measurements were outside a three standard deviation confidence interval around the mean. The laboratory and field data from the samples identified by this procedure were reviewed. Two groundwater samples (029319 and 029402) and three stream sediment samples (029317, 029342, and 029474) were submitted for reanalysis. The original results were compared to the results from reanalysis. Of the more than 150 individual analyses that were compared, the only results which were considered to be in error in the original analysis and thus require corrections were the sulfate and chloride values for Groundwater Sample 029402, U-FL value for Sediment Sample 029474, arsenic and selenium values for Sediment Sample 029317, and multielement values for Sediment Sample 029342. This low error rate for the samples indicates a high level of reliability for the laboratory measurements.

GEOCHEMICAL RESULTS

GEOCHEMICAL DISTRIBUTIONS IN GROUNDWATER

Sample locations for groundwater samples collected in the Stillwell Mountains project area of the Trans-Pecos detailed geochemical survey are shown on Plate 1. Areal concentration maps for uranium and specific conductance are presented on Plates 2 and 3, and Figures A-1b and A-2b, respectively. A map showing the units from which samples are produced is presented in Figure 5.

Table 2

			В	atch L-4		Batch H-4				
Element	Method	No. of Samples	Mean (ppb)	Standard Deviation (ppb)	Coefficient of Variation	No. of Samples	Mean (ppb)	Standard Deviation (ppb)	Coefficient of Variation	
U	FL(a)	17	0.75	0.351	0.47	11	10.87	0.897	0.08	
AS	AA(b)	20	3.3	1.11	0.33	17	0.6	0.31	0.55	
SE	AA	20	1.2	0.31	0.26	17	0.8	0.24	0.29	
AL	PS(c)	13	92.0	20.2	0.22	18	330.0	25.0	0.08	
В	PS	13	1,570.0	62.2	0.04	19	69.0	4.6	0.07	
BA	PS	12	140.0	3.3	0.02	19	31.0	1.4	0.05	
CA	PS	14	10,000.0	850.0	0.08	18	91,400.0	6.190.0	0.07	
CO	PS	14	20.0	4.1	0.20	17	90.0	2.9	0.03	
CR	PS	14	93.0	5.6	0.06	18	18.0	1.8	0.10	
CU	PS	8	45.0	1.8	0.04	18	202.0	23.3	0.11	
FE	PS	13	103.0	7.2	0.07	18	960.0	50.7	0.05	
к	PS	14	1,800.0	229.0	0.13	17	19,490.0	937.0	0.05	
LI	PS	14	16.0	1.1	0.07	18	100.0	5.6	0.06	
MG	PS	14	9,200.0	420.0	0.05	18	67.900.0	2.710.0	0.04	
MN	PS	14	20.0	2.3	0.11	16	96.0	4.1	0.04	
MO	PS	13	24.0	10.1	0.41	13	11.0	6.3	0.57	
NA	PS	14	1,600.0	150.0	0.10	18	43,800.0	2,120.0	0.05	
NI	PS	13	195.0	10.7	0.05	18	37.0	6.2	0.16	
Р	PS	13	90.0	23.8	0.26	17	4.498.0	134.3	0.03	
SC	PS	13	63.0	2.8	0.04	17	11.0	0.5	0.05	
SI	PS	14	870.0	164.0	0.19	18	7.940.0	371.0	0.05	
SR	PS	14	56.29	2.644	0.05	18	5.012.55	170.85	0.03	
TI	PS	13	118.0	8.2	0.07	18	38.0	4.4	0.11	
V	PS	12	9.0	1.5	0.15	18	41.0	3.5	0.08	
Y	PS	14	9.0	1.4	0.14	18	45.0	2.4	0.05	
ZN	PS	14	498.0	42.7	0.09	18	45.0	24.3	0.54	

SUMMARY OF MEASUREMENTS CONTROL RESULTS OBTAINED WITH GROUNDWATER SAMPLES FROM THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

(a)Fluorometric analysis.
(b)Atomic absorption.
(c)Plasma source emission spectroscopy.

Table 3

SUMMARY OF MEASUREMENTS CONTROL RESULTS OBTAINED WITH STREAM SEDIMENT SAMPLES FROM THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

		Batch Q-1					Batch R-3				Batch S-3			
Element	Method	No. of Samples	Mean (ppm)	Standard Deviation (ppm)	Coefficient of Variation	No. of Samples	Mean (ppm)	Standard Deviation (ppm)	Coefficient of Variation	No. of Samples	Mean (ppm)	Standard Deviation (ppm)	Coefficient of Variation	
U	FL(a)	40	0.79	0.269	0.34	37	4.26	0.469	0.11	38	28.52	2.674	0.09	
U	NT(b)	39	0.67	0.160	0.24	50	4,91	0.102	0.02	35	26.25	0.797	0.03	
AS	AA(c)	17	1.8	0.25	0.14	27	3.6	0.64	0.18	19	26.4	3.11	0.12	
SE	AA	12	0.5	0.31	0.57	28	0.2	0.43	2.02	20	1.4	0.62	0.45	
AL	PS(d)	36	9,700.0	490.0	0.05	39	34,100.0	2,730.0	0.08	30	48,700.0	3,430.0	0.07	
В	PS	38	7.0	3.5	0.46	34	20.0	7.1	0.34	30	61.0	10.3	0.17	
8A	PS	38	130.0	14.6	0.11	39	454.0	51.0	0.11	32	314.0	31.1	0.10	
BE	PS	37	<1.0			40	<1.0			32	2.0	4.0	1.74	
CA	PS	38	1,200.0	100.0	0.08	40	3,100.0	300.0	0.10	31	16,900.0	80.0	0.06	
СE	PS	37	19.08	3.677	0.19	39	68.82	7.196	0.10	29	55,59	4.968	0.09	
CO	PS	38	4.0	2.7	0.59	40	10.0	2.2	0.20	31	33.0	3.1	0.09	
CR	PS	38	14.0	2.1	0.14	39	28.0	3.2	0.11	32	65.0	6.6	0.10	
ĊU	PS	35	3.0	0.8	0.22	38	20.0	1.5	0.07	30	69.0	2.9	0.04	
FE	P S	37	9,700.0	390.0	0.04	40	18,000.0	1,070.0	0.06	30	40,800.0	2,070.0	0.05	
к	PS	37	1,900.0	190.0	0.10	38	9,900.0	930.0	0.09	31	17,200.0	2,000.0	0.12	
LI	PS	37	9.0	0.8	0.08	39	23.0	1.8	0.08	32	35.0	3.6	0.10	
MG	PS	38	1,100.0	50.0	0.05	39	2,200.0	110.0	0.05	32	5,600.0	260.0	0.05	
MN	P\$	37	317.0	9.9	0.03	40	1,909.0	87.8	0.05	30	404.0	15.9	0.04	
MO	PS	1	< 4.0			40	2.0	0.9	0.41	29	43.0	3.7	0.08	
NA	PS .	1	<500.0			40	1,600.0	190.0	0.13	31	1,600.0	220.0	0.14	
NB	PS	37	2.0	0.7	0.32	41	8.0	4.3	0.49	33	2.0	1.6	0.58	
NI	PS	37	6.0	1.0	0.16	41	20.0	3,1	0,15	30	108.0	6.3	0.06	
Р	PS	36	70.0	6.0	0.09	35	2,149.0	217.3	0.10	28	1,441.0	83.8	0.06	
PB	P5	28	5.0	3.0	0.50	27	38.0	5.6	0.14	28	21.0	3.6	0.16	
SC	PS	38	1.0	0.5	0.31	41	5.0	0.8	0.15	32	10.0	0.8	0.08	
SR	PS	36	19.17	1.320	0.07	39	55.33	4.054	0.07	32	85.56	6.133	0.07	
TH	PS	38	2.0	1.7	0.74	41	8.0	2.8	0.34	33	8.0	2.5	0.30	
11	PS	38	572.0	54.8	0.10	39	3,321.0	369.9	0.11	32	2,123.0	174.9	0.08	
¥	PS	35	20.0	0.9	0.04	38	55.0	4.4	0.08	30	166.0	6.7	0.04	
Y	PS	37	4.0	0.3	0.08	39	20.0	1.7	0.08	30	33.0	1.6	0.05	
ZN	PS	36	13.0	2.1	0.16	35	93.0	7.5	0.08	29	185.0	12.0	0.06	
ZR	PS	38	30.0	2,9	0.10	38	136.0	10.9	0.08	31	83.0	6.0	0.07	
HF	PS	27	2.11	1.577	0.75	27	3.83	2.685	0.70	28	1 .9 5	1.455	0.75	
LA	PS	28	20.89	3,023	0.14	27	78.00	15.056	0.19	28	90.61	4.787	0.05	

(C)Atomic absorption. (d)Plasma source emission spectroscopy.

Figure 5

The number of groundwater samples collected from each of the stratigraphic units is given in Table 4.

Observed data for the variables uranium, specific conductance, the 1,000·uranium:specific conductance ratio, silver, calcium, copper, molybdenum, selenium, strontium, the sodium:chloride ratio, and sulfate are listed in Table A-2. The figures in Appendix A present log frequency, lognormal probability, percentile, and areal concentration maps for these same variables and barium, potassium, and lithium.

The small number of groundwater samples has placed constraints on statistical manipulations; no correlation matrix or cluster analysis is presented. Discussion of groundwater geochemistry is given on a sample by sample basis, using the areal concentration maps as a guide to interpretation.

The two groundwater samples displaying the highest uranium values of the Stillwell Mountains project area are 029319 (Penner's Windmill; lat. 29°38' N. and long. 103°03' W.), and 029503 (Brushy Canyon Road Windmill; lat. 29°36' N. and long. 103°03' W.). Uranium concentrations for these two samples are 17.35 and 6.80 ppb, respectively. These samples display relatively high values for silver (Figure A-4b), calcium (Figure A-6b), copper (Figure A-7b), molybdenum (Figure A-10b), selenium (Figure A-11b), strontium (Figure A-12b), the sodium:chloride ratio (Figure A-13b), and sulfate (Figure A-14b). The areal concentration maps for barium (Figure A-5b), potassium (Figure A-8b), and lithium (Figure A-9b) indicate that concentrations of these elements in these two samples are relatively low. The variables silver, copper, molybdenum, and selenium are commonly found in nature as sulfides and may indicate base metal sulfide occurrences. The presence of elements commonly associated with sulfides and a high sulfate concentration may indicate favorable environmental conditions for potential uranium accumulations.

Specific conductance values of the high uranium Samples (029319 and 029503) are 1,057 and 831 μ mhos/cm, respectively. These represent the second highest and third lowest specific conductance values of the Stillwell Mountains groundwater samples.

The producing horizons of these two high uranium samples have not been positively identified due to alluvial cover and structural features modifying normal stratigraphic succession. Both wells are within a rifted area, presumably with the Buda Limestone and Del Rio Clay (LKLB), beneath the alluvial cover. The Santa Elena Limestone (LKSE) is exposed on the raised fault blocks bounding the rift. Tertiary intrusives (TI) are also exposed along strike of the inferred faults bounding the downdropped area. Base metal joint fillings have been noted where the Santa

Table 4

DISTRIBUTION OF SAMPLES BY GEOLOGIC UNIT CODE FROM THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Geologic Unit Code(a)	No. of Groundwater Samples	No. of Sediment Samples	No. of Radiometric Samples
QD	2	53	11
TI	0	0	9
TEV	0	5	15
UKSE	0	10	18
LKLB	0	4	4
LKSE	5	124	67
LKSP	0	28	15
LKT	0	4	1
CPUD	0	0	0
UNKN	_3	0	0
Total	10	228	140

(a)See Figure 3 for unit names.

Elena Limestone is in close proximity to the Tertiary intrusives in the area. The structural control and presence of intrusive sills may have significance in the presence of these geochemical anomalies.

Summary of Groundwater Data

Two groundwater samples (029319 and 029503) from the western portion of the project area exhibit the highest uranium values (17.35 and 6.80 ppb). These samples display a high concentration of elements commonly found in nature as sulfides (silver, copper, molybdenum, and selenium). Specific conductance values for these two samples represent the second highest and the third lowest values in the project area. The producing horizons of these two samples are inferred to be in or below the Buda Limestone (LKLB). The two samples occur in a rifted area with the stratigraphically lower Santa Elena Limestone (LKSE) exposed parallel to the uplifted blocks along with Tertiary intrusives (TI). The structural control and presence of intrusive sills may play a part in the presence of these hydrogeochemical anomalies.

GEOCHEMICAL DISTRIBUTIONS IN STREAM SEDIMENTS

Sample site locations from which stream sediment samples were collected in the Stillwell Mountains project area are shown on Plate 4. Areal distribution plots for hot-acid-soluble uranium, determined by fluorometric analysis and Thorium are presented on Plates 2 and 3 and Figures B-1b and B-4b, respectively.

Table 4 presents the number of sediment samples collected from the major groupings of stratigraphic units in the project area. Data for all sediment samples are included in Table B-3 and on microfiche in Appendix D.

Observed data for the variables, U, total uranium determined by neutron activation (U-NT), thorium, the thorium:U-NT ratio, arsenic, lithium, molybdenum, nickel, phosphorus, titanium, and vanadium are listed in Table B-3. The figures in Appendix B present log frequency, lognormal probability, percentile and areal distribution plots for these same variables (except titanium and vanadium) and the U:U-NT ratio, boron, beryllium, copper, iron, magnesium, manganese, sodium, selenium, and strontium.

Uranium

The areal distribution plot (Plate 5 and Figure B-1b) for soluble uranium indicates that concentrations ≧1.90 ppm generally occur in two major areas within the Stillwell Mountains project area: along the Rio Grande (trending northeast-southwest) from Sierra Larga (lat. 29°26' N. and long. 102°53' W.) to Big Canyon (lat. 29°43' N. and long. 102°45' W.); and between Stillwell Mountain (lat. 29°43' N. and long. 102°56' W.) and the Sierra del Carmen Range (lat. 29°32' N. and long. 103°00' W.).

The correlation matrix (Table B-2) indicates a significant positive correlation (a Pearson and Spearman correlation coefficient ≥ 0.17) between the natural log of U and the natural logs of U:U-NT ratio, U-NT, arsenic, lithium, strontium, vanadium, and zinc. In addition, the natural log of U has a significant positive Pearson correlation with the natural logs of aluminum and titanium.

The areal distribution plot (Plate 6 and Figure B-2b) for U-NT indicates that concentrations ≥ 2.30 ppm generally occur within the same two areas designated as having high soluble uranium values.

The percentile plot for U-NT (Figure B-2a) indicates that the Boquillas and Pen Formations (UKSE) have the highest concentrations of U-NT.

The correlation matrix (Table B-2) indicates a significant positive correlation (a Pearson and Spearman correlation coefficient ≥ 0.17) between the natural log of U-NT and the natural logs of U, arsenic, beryllium, lithium, strontium, vanadium, yttrium, and zinc. In addition, the natural log of U-NT has a significant positive Spearman correlation with the natural logs of iron, manganese, and aluminum.

The U:U-NT ratio indicates the percentage of total uranium in sediments which is present in hot-acid-soluble form. A sample with a high U:U-NT ratio value and a high U-NT value may indicate anomalous accumulations of uranium in a hot-acid-soluble form. Low U:U-NT ratio values in samples with high U-NT values indicate that the uranium is probably present in relatively insoluble (resistate) minerals (i.e., zircon, allanite, pyrochlore, monazite, and xenotime (Levinson, 1980).

The areal distribution plot for the U:U-NT ratio (Figure B-3b) indicates that no trend of high or low values corresponds with the two designated areas of both high soluble and total uranium values.

The correlation matrix (Table B-2) indicates a significant positive correlation (Spearman correlation coefficient ≥ 0.17) between the natural log of the U:U-NT ratio and the natural logs of uranium and cobalt.

Thorium

The areal distribution plot for thorium (Plate 6 and Figure B-4b) indicates that no significant area of high thorium values is present within the Stillwell Mountains project area. Instead, single sample anomalies are scattered throughout the project area.

The correlation matrix (Table B-2) indicates a significant positive correlation (Pearson and Spearman correlation coefficient ≥ 0.17) between the natural log of thorium and the natural logs of the thorium:U-NT ratio and cerium. In addition, the natural log of thorium has a significant positive Spearman correlation with the natural log of yttrium.

Figure B-5b, the areal distribution plot for the thorium:U-NT ratio, can be used to delineate areas which have been relatively depleted or enriched in uranium with respect to thorium. Thorium:uranium ratio values for sedimentary rocks vary from 1.0 to 3.4 for carbonates and 4.9 for clays (Rogers and Adams, 1969). Assuming a normal thorium:uranium ratio between 2.0 and 3.0 for carbonates with clay partings, a low value (≤ 1.80) may indicate uranium enrichment with respect to thorium. However, low values for the thorium:uranium ratios do not correspond to the two designated areas of high U and U-NT values.

The correlation matrix (Table B-2) indicates a significant positive Pearson and Spearman correlation between the natural log of the thorium: U-NT ratio and the natural logs of thorium and cerium. In addition, a significant positive Pearson correlation exists between the natural log of the thorium:U-NT ratio and the natural logs of scandium, chromium, and yttrium.

Related Variables

Variables associated with high uranium values in the two designated areas of the Stillwell Mountains project include arsenic (Figure B-6b), boron (Figure B-7b), beryllium (Figure B-8b), lithium (Figure B-11b), manganese (Figure B-13b), molybdenum (Figure B-14b), sodium (Figure B-15b), selenium (Figure B-18b), strontium (Figure B-19b), and vanadium (Figure B-21b). In addition, the northwestern section of the area with anomalous uranium values, between Stillwell Mountain and the Sierra del Carmen Range, exhibits relatively high concentrations of iron (Figure B-10b), magnesium (Figure B-12b), phosphorus (Figure B-17b), and titanium (Figure B-20b). Association of minor and trace elements such as arsenic, molybdenum, and selenium with uranium has been noted by many authors (Adler, 1974; Gabelman, 1977; Harshman, 1974; Krauskopf, 1967; Levinson, 1980; Mason, 1966; Perel'man, 1977; and Siegel, 1974).

Percentile plots in Appendix B indicate that the highest concentrations for the above-mentioned variables are from samples collected from the Boquillas and Pen Formations (UKSE).

The area of anomalous uranium values between Stillwell Mountain and the Sierra del Carmen Range is a graben structure with the Santa Elena Limestone (LKSE) exposed adjacent to younger units at the graben margin. The two major folds in the area are the Brushy Canyon Monocline and the Gulther Anticline (Figure 4). Tertiary faults abound in this area, many with Tertiary intrusive sills (TI) along the strike of the faults. A Tertiary agglomerate (one of the centers of volcanic activity) exists west of Stillwell Mountain. Most of the outcrop of the Pen Formation (UKSE) occurs within this area, along with the Black Gap basalt (TEV). In this area base metal accumulations as joint and fracture fillings within the Santa Elena Limestone (LKSE) occur where the Santa Elena Limestone is in close proximity to Tertiary intrusive sills (TI). The second area with anomalous uranium values along the Rio Grande also coincides with major structural features. The Horse Canyon Syncline and the Maravillas Canyon Monocline (Figure 4) closely approximate the trend of major Tertiary faulting in the area. The largest fault system trends between the Rio Grande and Cupola Mountain Dome (lat. $29^{\circ}40'$ N. and long. $102^{\circ}51'$ W.). A Tertiary extrusive unit (TEV) is exposed at the peaks of the raised mountain blocks. Extensive vertical joints and overthrusting occur in the Santa Elena Limestone (LKSE).

Coincidence between the areas of anomalous uranium values and major structural features implies the possibility of structural control in possible uranium accumulation.

Anomalous values for a group of variables indicative of sulfide mineralization are present between Stillwell Creek (lat. $29^{\circ}26'$ N. and long. $102^{\circ}53'$ W.) and Maravillas Canyon (lat. $29^{\circ}33'$ N. and long. $102^{\circ}50'$), trending SE-NW. This area exhibits high values for copper (Figure B-9b), molybdenum (Figure B-14b), nickel (Figure B-16b), and vanadium (Figure B-21b). High concentrations of the variables iron (Figure B-10b) and magnesium (Figure B-12b) also occur in this area. Tertiary extrusive rocks (TEV) are exposed almost exclusively within this area. Faulting, folding, and leaching of extrusive volcanic units may have resulted in the accumulation of high concentrations of elements associated with sulfides in this area.

Summary of Sediment Data

Stream sediment samples exhibiting anomalous concentrations of uranium in the Stillwell Mountains project area also contain high concentrations of the common uranium-related variables such as arsenic, molybdenum, and selenium. Samples exhibiting anomalous concentrations for these variables occur in two major areas: between Stillwell Mountain and the Sierra del Carmen Range, and along the Rio Grande.

A second suite of elements, commonly indicative of sulfide mineralization, occurs between Stillwell Creek and Maravillas Canyon. Variables that are anomalous in this area include copper, molybdenum, and nickel.

Major Tertiary faulting and folding and possible source rocks (Tertiary intrusive and extrusive igneous units) occur in all three of the designated anomalous areas of interest. These features and formations may be of significance in the location of geochemical systems that resulted in the development of the observed geochemical anomalies.
BIBLIOGRAPHY

- 1. Adler, H. H., Concepts of Uranium-Ore Formation in Reducing Environments in Sandstones and Other Sediments, Proceedings of a Symposium on the Formation of Uranium Ore Deposits, International Atomic Energy Agency, Athens, Greece, pp 141-168 (1974).
- Arendt, J. W., Butz, T. R., Cagle, G. W., Kane, V. E., and Nichols, C. E., Hydrogeochemical and Stream Sediment Reconnaissance Procedures of the Uranium Resource Evaluation Project, Union Carbide Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee, K/UR-100 (December 1979).
- 3. Barnes, V. E., *Geologic Atlas of Texas*, *Emory Peak*, *Presidio Sheet*, University of Texas, Austin, Bureau of Economic Geology (Preliminary Sheet) (1977).
- 4. Cagle, G. W., "The Oak Ridge Analytical Program," Symposium on Hydrogeochemical and Stream Sediment Reconnaissance for Uranium in the United States, March 16 and 17, 1977. United States Energy Research and Development Administration, Grand Junction, Colorado, pp 133-156 [GJBX-77(77] (October 1977).
- D'Silva, A. P., Grabau, F., and Haas, W. J., Jr., Multilaboratory Analytical Quality Control Program for the Hydrogeochemical and Stream Sediment Reconnaissance, Ames Laboratory, Iowa State University, Ames, Iowa, IS-4736 (April 1980) (Available from National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161).
- Flawn, P. T., Goldstein, A., King, P. B., and Weaver, C. E., The Ouachita System, University of Texas, Bureau of Economic Geology, Austin, Publication 6120 (1961).
- Gabelman, J. W., "Migration of Uranium and Thorium Exploration Significance, Studies in Geology No. 3, " AAPG Bulletin, Tulsa, Oklahoma, pp 121-134 (1977).
- 8. Harshman, E. N., Distribution of Elements in Some Roll-Type Uranium Deposits, Proceedings of a Symposium on the Formation of Uranium Ore Deposits, International Atomic Energy Agency, Athens, Greece, pp 169-183 (1974).
- Hem, J. D., Study of Interpretation of the Chemical Characteristics of Natural Water, U.S. Geological Survey, Water Supply Paper 1473, p. 155 (1970).
- Kane, V. E., Baer, T., and Begovich, C. L., Principal Component Testing for Outliers, Union Carbide Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee, K/UR-7 (July 1977). United States Department of Energy, Grand Junction, Colorado [GJBX-71(77)].

- 11. King, P. B., "Outline of Structural Development of Trans-Pecos, Texas," AAPG Bulletin, Vol. 19, No. 2, pp 221-261 (1935).
- 12. King, P. B., Beikman, H. M., and Edmonston, G. J., *Geologic Map of the United States*, U.S. Geological Survey (1974).
- 13. Krauskopf, K. B., Introduction to Geochemistry, McGraw-Hill Inc., New York, pp 151-175, 575-597 (1967).
- 14. Levinson, A. A., Introduction to Exploration Geochemistry, The 1980 Supplement, Applied Publishing Ltd., Alberta, Canada (1980).
- LKB Resource, Inc., NURE Areal Gamma-Ray and Magentic Reconnaissance Survey, Big Bend Area, Vol. 1, LKB Resources, Inc., Huntingdon Valley, Pennsylvania (1979). United States Department of Energy, Grand Junction, Colorado [GJBX-88(79)].
- Lonsdale, J. T., Maxwell, R. A., Wilson, J. A., and Hazzard, R. T., West Texas Geological Society Guidebook, 1955 Spring Field Trip, Big Bend National Park, Texas (1955).
- 17. Mason, B., *Principles of Geochemistry*, Third Edition, John Wiley and Sons, New York, pp 149-190, 223-234 (1966).
- National Oceanic and Atmospheric Administration, Climates of the States, Vol. II-Western States Including Alaska and Hawaii, Department of Commerce, Water Information Center, Port Washington, New York, pp. 538.594 (1974).
- 19. Perel'man, A. I., Geochemistry of Elements in the Supergene Zone, Keterpress Enterprises, Jerusalen, p 266 (1977).
- Reeves, C. C., Kenney, P., and Wright, E., "Known Radioactive Anomalies and Uranium Potential of Cenozoic Sediments, Trans-Pecos, Texas," *Cenozoic Geology of the Trans-Pecos Volcanic Field of Texas*, pp 86-99 (1978).
- 21. Rogers, J. J. W. and Adams, J. A. S., "Thorium," Handbook of Geochemistry, Spring-Verlag, New York, pp 90-D-1 - 90-0-1 (1969).
- St. John, B. E., Geology of Black Gap Area, Brewster County, Texas, Geology Quadrangle Map and Text No. 30, University of Texas, Austin, Bureau of Economic Geology (1965).
- 23. Shambaugh, J. S., Structure of the Black Gap Area, Brewster County, Texas, University of Texas, Austin, Master's Thesis (1951).
- 24. Siegel, F. R., Applied Geochemistry, John Wiley and Sons, New York, pp 29-102, 152-201 (1974).
- Southern Interstate Nuclear Board, Uranium in the Southern United States, Division of Raw Materials, United States Atomic Energy Commission, TID UC-51, pp 97-146 (1969).

- 26. Uranium Resource Evaluation Project, Hydrogeochemical and Stream Sediment Reconnaissance Basic Data for Emory Peak NTMS Quadrangle, Texas, Union Carbide Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee, K/UR-112 (December 1978). United States Department of Energy, Grand Junction, Colorado [GJBX-6(79)].
- 27. Uranium Resource Evaluation Project, Procedures Manual for Groundwater Reconnaissance Sampling, Union Carbide Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee, K/UR-12 (March 1978). United States Department of Energy, Grand Junction, Colorado [GJBX-62(78)].
- Uranium Resource Evaluation Project, Procedures Manual for Stream Sediment Reconnaissance Sampling, Union Carbide Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee, K/UR-13 (May 1978). United States Department of Energy, Grand Junction, Colorado [GJBX-84(78)].
- 29. Wilson, D. C. O., Jr., Stratigraphy of Black Gap Area, Brewster County, Texas, University of Texas, Austin, Master's Thesis (1951).

APPENDIX A

GROUNDWATER

*Where percentile plots are not present, they are unavailable because of the small number of samples.

APPENDIX A

GROUNDWATER

LIST OF TABLES

No.	Title	Page
A-1	Statistical Summary for Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-7
A-2	Partial Data Listing for Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-36

LIST OF FIGURES

No.	Title	Page
A-la	Probability, Frequency, and Percentile Plots for Uranium (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-8
А-1ь	Geochemical Distribution of Uranium (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	. A-9
A-2a	Probability, Frequency, and Percentile Plots for Specific Conductance (umhos/cm) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	. A-10
A-2b	Geochemical Distribution of Specific Conductance (µmhos/cm) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	. A-11
A-3a	Probability, Frequency, and Percentile Plots for 1,000.Uranium/Specific Conductance in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	. A-12
	accontent out out toys texts in the text of the	. ,, ,,

LIST OF FIGURES, Continued

No.	Title	Page
A-3b	Geochemical Distribution of 1,000.Uranium/Specific Conductance in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-13
A-4a	Percentile Plot for Silver (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-14
A-4b	Geochemical Distribution of Silver (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-15
A-5a	Probability, Frequency, and Percentile Plots for Barium (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-16
A-5b	Geochemical Distribution of Barium (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-17
А-ба	Probability, Frequency, and Percentile Plots for Calcium (ppm) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-18
A-6b	Geochemical Distribution of Calcium (ppm) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-19
A-7a	Percentile Plot for Copper (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-20
A-7b	Geochemical Distribution of Copper (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-21
A-8a	Probability, Frequency, and Percentile Plots for Potassium (ppm) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-22

LIST OF FIGURES, Continued

No.	Title	Page
A-8b	Geochemical Distribution of Potassium (ppm) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-23
A-9a	Probability, Frequency, and Percentile Plots for Lithium (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-24
A-9b	Geochemical Distribution of Lithium (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-25
A-10a	Percentile Plot for Molybdenum (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-26
А-10Ь	Geochemical Distribution of Molybdenum (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-27
A-11a	Percentile Plot for Selenium (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-28
А-116	Geochemical Distribution of Selenium (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-29
A-12a	Probability, Frequency, and Percentile Plots for Strontium (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-30
A-12b	Geochemical Distribution of Strontium (ppb) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-31

A-6

LIST OF FIGURES, Continued

No.	Title	Page
A-13a	Probability, Frequency, and Percentile Plots for Sodium/Chloride in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-32
А-13Б	Geochemical Distribution of Sodium/Chloride in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-33
A-14a	Probability, Frequency, and Percentile Plots for Sulfate (ppm) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	A-34
A-14b	Geochemical Distribution of Sulfate (ppm) in Groundwater of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	A-35

Table A-1

STATISTICAL SUMMARY FOR GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

U SP U/SP U/SD AG AL AS B BA SE	ASURABLE VALUES 10 10 10 10 10 10 10 5 4 8 10 10 10 10	BELOW DE TECT ION LIMIT 5 6 2	C2 <10 <0.5	HINIMUM VALUE 1.41 591 0.58 3.04 4.32 <2 <10 <0.5	MAXIMUM VALUE 17.35 3174 8.43 57.63 64.78 17 33	MEAN 5.19 1360 4.17 23.17 33.99	MEDIAN 3.53 1031 3.15 18.44	MODE 17.37 1007 2.35	STANDARD DEVIATION 4.623 779.4 2.571	0.890 0.617	MEAN 1.39 7.09	0.72 0.52	EORMATIO ROB MEAN	5. D.
ME ELE NENT U SP U/SP U/SD AG AL AS B BA BE	ASURABLE VALUES 10 10 10 10 10 10 5 4 8 10 10 10 10	DE TECTION LIMIT 5 6 2	<pre>C2 C2 C10 C0.5 C2 C2 C10 C0.5 C2 C2 C10 C0.5 C0.5 C0.5 C0.5 C0.5 C0.5 C0.5 C0.</pre>	NINIMUM VALUE 1.41 591 0.58 3.04 4.32 <2 <10 <0.5	MAXIMUM VALUE 17.35 3174 8.43 57.63 64.78 17 33	MEAN 5.19 1360 4.17 23.17 33.99	MEDIAN 3.53 1031 3.15 18.44	NODE 17.37 1007 2.35	STANDARD DEVIATION 4.623 779.4 2.571	OF VARIATION 0.890 0.6 0.617	MEAN 1.39 7.09	5. D. 0.72 0.52		5. D.
U SP U/SP U/SP U/SJ AG AL AS B BA BE	VALUES 10 10 10 10 10 5 4 8 10 10 0 10 10 10 10 10 10 10	5 6 2	<22 <10 <0.5	VALUE 1.41 591 0.58 3.04 4.32 <2 <10 <0.5	VALUE 17.35 3174 8.43 57.63 64.78 17 33	MEAN 5.19 1360 4.17 23.17 33.99	MEDIAN 3.53 1031 3.15 18.44	HODE 17.37 1007 2.35	4.623 779.4 2.571	0.890 0.6	MEAN 1.39 7.09	0.72 0.52	MEAN	5. 0.
U SP U/SP U/SJ AG AL AS BB BA BE	10 10 10 10 5 4 8 10 10 10	562	<2 <10 <0+5	1.41 591 0.58 3.04 4.32 <2 <10 <0.5	17.35 3174 8.43 57.63 64.78 17 33	5.19 1360 4.17 23.17 33.99	3.53 1031 3.15 18.44	17.37 1007 2.35	4.623 779.4 2.571	0.890	1.39	0.72		
SP U/SP U/SJ AG AL AS B BA BE	10 10 10 5 4 8 10 10 10	562	<2 <10 <0.5	591 0.58 3.04 4.32 <2 <10 <0.5	3174 8.43 57.63 64.78 17	1360 4.17 23.17 33.99	1031 3.15 18.44	1007 2.35	779.4	0.6	7.09	0.52		
U/SP U/SJ AG AL AS BA BE	10 10 10 5 4 8 10 10 0 10	562	<2 <10 <0.5	0.58 3.04 4.32 <2 <10 <0.5	8.43 57.63 64.78 17	4.17 23.17 33.99	3.15	2.35	2.571	0-617	1.21	0.74		
U/B U/SJ AG AL AS B BA BE	10 10 5 4 8 10 10 0	5 6 2	<2 <10 <0.5	3.04 4.32 <2 <10 <0.5	57.63 64.78 17 33	23.17	18.44							
U/SJ AG AL AS B BA BE	10 5 4 8 10 10 0	5 6 2	<2 <10 <0.5	4.32 <2 <10 <0.5	64.78 17 33	33.99		57.60	18.068	0.780	2.85	0.87		
AG AL AS B BA BE	5 4 8 10 10 0 10	5 6 2	<2 <10 <0.5	<2 <10 <0.5	17	-	31.55	64-16	16.684	0-491	3.35	0.75		
AL AS B BA BE	4 8 10 10 0	6 2	<10 <0.5	<10 ×0.5	33		<2	(2	5.3	0.5	2.15	0-58		
AS B BA BE	8 10 10 0 10	2	<0.5	×0.5		17	<10	<10	10.6	0.6	2.73	0.52		
B BA BE	10 10 0 10	10			9-1	2.6	0.8	0.8	3-18	1-21	0.45	1.02		
BA BE	10 0	10		50	601	272	275	274	148-6	0.5	5.45	0.65		
BE	0	10		6	96	40	23	95	32.5	0.8	3.35	0.93		
	10		<1	<1	<1		<1	<1						
CA				31.1	204.4	100.4	84.1	120.7	46.73	0.47	4.51	0.50		
C.0.	1	•	12	12	2	2	(2	<2	0.0	0.0	0.69	0-0		
CP	ò	10	-	-	-	-	C4	<.						
			(2	12	19	9	3	(2	7.1	0.7	2.02	0-82		
FF	5	5	<10	<10	15	12	<10	<10	2.4	0.2	2.52	0.20		
	10			2.4	17.0	6.8	6.1	16-9	4.40	0.64	1.75	0.62		
	10			10	1.34	64	35	134	50.3	0.8	3-81	0.97		
MG	10			6.5	109-1	26.5	15.9	24.9	29.79	1.12	2.95	0.76		
MN		2	12	12	205	49	12	<2	77.8	1.0	2.36	1.97		
MD	A	2	<	<	45	22	12	<.	14.4	0.7	2.85	0.81		
NA	10	-		17-3	250-3	98.9	77.7	38.6	69-53	0.70	4.34	0.80		
NI		7	<*	<	14	7	<4	<.	5.5	0.7	1.88	0.67		
P	1	ġ	<40	<	53	53	<	<	0.0	0-0	3.97	0.0		
sc		10	<1	<1	<1		<1	<1						
SE	6		(0.2	\$0.2	1.3	0.5	0.3	\$0.2	0.38	0.72	-0.78	0.55		
SI	10			2.8	15-1	9.6	9.3	10.4	3.96	0.41	2.15	0.56		
58	10			430	7951	2577	2304	774	2182.2	0.8	7.54	0.88		
TI	2	8	<2	<2	2	2	<2	<2	0.0	0.0	0.69	0.00		
v	1	9	<4	<4	4	4	<4	<4	0.0	0.0	1.39	0.0		
Y	i	9	<1	<1	1	1	<1	<1	0.0	0.0	0.0	0.0		
ZN	10			13	1402	224	22	21	443.8	2.0	3.99	1.65		
ZR	3	7	<2	<2	3	2	<2	<2	0.6	0.2	0.83	0.23		
T-AK	10			148	305	232	242	241	51.2	0.2	5.43	0.24		
M-AK	10			150	300	230	234	300	47.3	0.2	5.42	0.22		
P-AK	10			0	0	0	0	0	0.0	0.0				
CL	9	1	<10	<10	203	73	58	75	57.3	0.8	3.99	0.91		
NA/C	10			0.88	3.46	2.03	1.33	3.00	0.988	0.486	0.59	0.52		
PH	10			2.2	7.6	6.2	6.7	6.9	1.55	0.25				
SDA	10			31	550	197	175	178	167.8	0.9	4.95	0.90		
100000	Toras													

NOTE: Refer to Table 1, Page 21 and Table C-1, Page C-4 for concentration units and symbol defintions.

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR URANIUM (PPB) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF URANIUM (PPB) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Figure A-2a

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR SPECIFIC CONDUCTANCE (µMHOS/CM) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF SPECIFIC CONDUCTANCE (µMHOS/CM) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Figure A-3a

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR 1,000.URANIUM/SPECIFIC CONDUCTANCE IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF 1,000.URANIUM/SPECIFIC CONDUCTANCE IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PERCENTILE PLOT FOR SILVER (PPB) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR BARIUM (PPB) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Figure A-6a

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR CALCIUM (PPM) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PERCENTILE PLOT FOR COPPER (PPB) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR POTASSIUM (PPM) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR LITHIUM (PPB) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PERCENTILE PLOT FOR MOLYBDENUM (PPB) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR STRONTIUM (PPB) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR SODIUM/CHLORIDE IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR SULFATE (PPM) IN GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Table A-2

PARTIAL DATA LISTING FOR GROUNDWATER OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

OR SAMP	LE 3. 0.	E. SAMPLE	NUMBER	U	SP	U/SP	AG	CA	50	MO	SE	SR	NA/C	504
NUMBER	ST LAT	LONG	L TY REP	(PPB)	UMHOS/CM		(PPB)	(NCC)	(803)	(>PB)	(PPB)	(PPB)		(PPN)
29269	48-29.571	-102.946	-3-03-	5.9	1500	3.8	<2	94.	<2	12	0.5	2800	0.88	180
29315	48-29.653	-103.081	-3-03-	2.4	1000	2.3	4	31 .	•	36	0.4	430	3.0	78
29319	48-29.625	-103.053	-3-03-	17.	2100	8.4	9	200.	19	45	1.3	3900	2.5	550
29432	48-29.802	-102.908	-3-03-	1.8	3200	0.59	<2	130.	*	<4	0.3	8000	1.2	420
29409	48-29.451	-102.821	-3-03-	4.3	1400	3.1	<2	120.	<2	<4	<0.2	1700	1.1	67
29429	48-29.752	-102.796	-3-03-	5.3	1000	5.3	<2	77.	<2	4	<0.2	2300	1.1	190
29503	48-29.605	-103.042	-3-03-	6.8	830	8.2	6	120.	12	32	0.4	2900	2.6	180
29561	48-29.660	-103.047	-3-03-	1.4	590	2.4	17	75.	17	22	<0.2	750	3.5	31
29639	48-29.700	-102.997	-3-03-	3.5	1400	2.6	13	84.	<2	16	0.3	2500	1.3	210
29640	48-29.677	-102.995	-3-03-	3.1	620	4.9	<2	59.	3	9	<0.2	750	3.0	65

APPENDIX B

STREAM SEDIMENT

*Where percentile plots are not present, they are unavailable because of the small number of samples.

APPENDIX B

STREAM SEDIMENT

LIST OF TABLES

No.	Title	<u>Page</u>
B-1	Statistical Summary for Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-9
B-2	Correlation Matrix for Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-10
B-3	Partial Data Listing for Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-54

LIST OF FIGURES

No.	Title	<u>Page</u>
B-la	Probability, Frequency, and Percentile Plots for Soluble Uranium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-12
B-1b	Geochemical Distribution of Soluble Uranium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-13
B-2a	Probability, Frequency, and Percentile Plots for Uranium by Neutron Activation in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-14
B-2b	Geochemical Distribution of Uranium by Neutron Activation in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-15

No.	Title	Page
B-3a	Probability, Frequency, and Percentile Plots for Uranium Fluorometric/Uranium Neutron Activation in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-16
B-3b	Geochemical Distribution of Uranium Fluorometric/ Uranium Neutron Activation in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-17
B-4a	Probability, Frequency, and Percentile Plots for Thorium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	B-18
B-4b	Geochemical Distribution of Thorium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-19
B-5a	Probability, Frequency, and Percentile Plots for Thorium/Uranium Neutron Activation in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-20
B-5b	Geochemical Distribution of Thorium/Uranium Neutron Activation in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	B-21
B-6a	Probability, Frequency, and Percentile Plots for Arsenic (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas .	B-22
B-6b	Geochemical Distribution of Arsenic (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-23
B-7a	Probability, Frequency, and Percentile Plots for Boron (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-24

No.	Title	Page
B-7b	Geochemical Distribution of Boron (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-25
B8a	Percentile Plot for Beryllium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-26
B-8b	Geochemical Distribution of Beryllium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-27
B-9a	Probability, Frequency, and Percentile Plots for Copper (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B- 28
B-9b	Geochemical Distribution of Copper (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-29
B-10a	Probability, Frequency, and Percentile Plots for Iron (%) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-30
В-105	Geochemical Distribution of Iron (%) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-31
B-11a	Probability, Frequency, and Percentile Plots for Lithium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-32
B-11b	Geochemical Distribution of Lithium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-33

<u>No.</u>	Title	Page
B-12a	Probability, Frequency, and Percentile Plots for Magnesium (%) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-34
B-12b	Geochemical Distribution of Magnesium (%) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-35
B-13a	Probability, Frequency, and Percentile Plots for Manganese (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-36
B-13b	Geochemical Distribution of Manganese (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-37
B-14a	Percentile Plot for Molybdenum (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-38
B-14b	Geochemical Distribution of Molybdenum (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-39
B-15a	Probability, Frequency, and Percentile Plots for Sodium (%) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-40
B-15b	Geochemical Distribution of Sodium (%) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-41
B-16a	Probability, Frequency, and Percentile Plots for Nickel (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-42

No.	Title	Page
B-16b	Geochemical Distribution of Nickel (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-43
B-17a	Probability, Frequency, and Percentile Plots for Phosphorus (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B - 44
В-17Ь	Geochemical Distribution of Phosphorus (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-45
B-18a	Percentile Plot for Selenium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-46
B-18b	Geochemical Distribution of Selenium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-47
B-19a	Probability, Frequency, and Percentile Plots for Strontium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-48
B-19b	Geochemical Distribution of Strontium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-49
B-20a	Probability, Frequency, and Percentile Plots for Titanium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-50
В-20Ь	Geochemical Distribution of Titanium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-51

No.	Title						
B-21a	Probability, Frequency, and Percentile Plots for Vanadium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-52					
B-21b	Geochemical Distribution of Vanadium (ppm) in Stream Sediment of the Stillwell Mountains Project Area, Trans-Pecos Detailed Geochemical Survey, Texas	B-53					

Table B-1

STATISTICAL SUMMARY FOR STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

	CACIND ADLE	DETECTION.	DETECTION	MENTMUM	MAYTMIN				STANDADD	OF			POE	Taur
LEMENT	VALUES	LIMIT	LIMIT	VALUE	VALUE	MEAN	MEDIAN	MODE	DEVIATION	VARIATION	MEAN	S. D.	MEAN	S. D.
	228			0.60	3.58	1.88	1.88	1.97	0-463	0-246	0.60	0.26	0.61	0.24
LNT	223			1.40	4.60	2.25	2.20	2.11	0-406	0.179	0.80	0.17	0.80	0-17
	215	12	12	12	25	5	5	5	2.4	0.4	1.50	0.41	1.58	0.40
IZTU	223			0.26	1-47	0.84	0.83	0.87	0.193	0.229	-0-20	0.24	-0-19	0.25
HZU	222			0.33	13-89	2.34	2.27	2.35	1.298	0.554	0.71	0.56	0.74	0.53
AG	1	226	(2	12	3	3	(2	(2	0.0	0.0	1.10	0.0		
AL	227			0.70	6-08	3.15	2.97	3.35	0.903	0.287	1.11	0.29	1.11	0.30
45	228			0.4	9.2	2.9	2.7	1.7	1.33	0.45	0.98	0.46	0.99	0.44
B	20	207	<10	<10	25	14	<10	<10	3.7	0.3	2.66	0.24		
AF	227			137	980	374	357	361	129.9	0.3	5.87	0.32	5.87	0.33
BE	225	2	e1	<1	3	1	<1	<1	0.4	0.3	0.10	0.25		
E A	227	-	••	2.34	36.39	18.77	19.53	19.85	5.387	0.287	2.88	0.36	2.91	0.36
CE	219	8	<10	<10	197	28	26	25	15.5	0.5	3.27	0.38	3.24	0.45
62	126	101	14	44	23	6	< A	<	3.2	0.5	1.72	0.38		
	227	101		7	140	26	21	19	17-8	0.7	3.15	0.45	3.12	0.44
-	226		12	12	32	10	10	9	3.5	0.3	2.33	0.30	2.33	0.30
EE	227			0.74	10.71	2.21	1.74	1.63	1.360	0.615	0.67	0.45	0.65	0.44
	227			0.11	2.92	0.75	0.70	0.72	0.293	0.394	-0.36	0.37	-0.35	0.37
11	227			8	40	18	18	16	4.4	0.2	2.92	0.21	2.91	0.20
MG	227			0.30	3.52	0.69	0.61	0.59	0.317	0.460	-0.44	0.35	-0.46	0.33
MN	227			170	1849	406	343	349	232.1	0.6	5.91	0.40	5.88	0.42
M.D.	63	164	<4	<4	17	5	<4	<4	2.2	0.4	1.64	0.31		
NA	226	1	<0.05	<0.05	2.15	0.49	0.43	0.42	0.240	0.494	-0.82	0.42	-0.82	0.45
NB	225	2	<4	<4	57	13	12	10	5.9	0.4	2.58	0.31	2.55	0.31
NI	227	4		5	92	17	13	9	12.1	0.7	2.72	0.51	2.69	0.52
P	227			183	4188	701	575	439	489.8	0.7	6.41	0.48	6.39	0.45
SC	226	1	<1	<1	14	4	4	3	1.9	0.4	1.41	0.38	1.40	0.37
SF	158	70	<0.1	<0.1	0.8	0.3	0.2	0.2	0.14	0.50	-1.39	0.48	-1.74	0.66
SR	227			195	875	398	355	296	133.3	0.3	5.94	0.30	5.93	0.30
TI	227			204	38032	3871	2601	1866	4171.9	1.1	8.01	0.63	7.97	0.55
v	227			9	282	64	49	35	40.1	0.6	4.04	0.49	4.02	0.43
Y	227			5	60	12	11	12	4.7	0.4	2.45	0.29	2.45	0.30
ZN	227			35	244	73	68	61	27.0	0.4	4.25	0.30	4.24	0.25
78	227			14	300	73	67	68	35.8	0.5	4.22	0.41	4.21	0.44
-														

Table B-2

CORRELATION MATRIX FOR STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

L-U

	(228)														
LUTU	0.78*** 0.72*** (223)	1.00													
L-C0	0.04 0.06 (126)	0.23000 0.1900 (125)	1.00 (126)												
L-16	-0.05 -0.04 (227)	0.07 0.07 (222)	0.80000	1.00 (227)											
L-SR	0.18000 0.19000 (227)	0.08	0.47***	0.48*** 0.48*** (227)	1.00 (227)										
L-CR	0.120	0.17**	0.73000	0.61000	0.52000 0.47000	L-CR									
L-NI	0.07 0.130	0.07	0.60***	0.40000	0	0.69***	L-NI 1.00								
L-CU	0.13**	0.05	0.51000	0.45000	0.30000 0.37000	0.59000	0.68***	cu							
L-BA	-0.04	-0.07	0.23***	0.36***	-0.09	0.26000	0.27000	0.31***	1.00						
L-K	0.07	0.01	0.13	0.33***	-0.11*	0.21***	0.18***	0.32***	0.86***	L-K					
	-0.01	-0.05	0.34+++	0.30***	0.01	0.38***	0.32***	0.29000	0.85+++	0.82***	L-NA				
L-NA	0.01 (226)	-0.03 (221)	(125)	(226)	0-07 (226)	0.37***	(226)	(225)	0.82000	0.80***	1.00	L-CA			
L-CA	-0.120 -0.110 (227)	-0.05 -0.05 (222)	-0.36*** -0.36*** (126)	-0.43000 -0.43000 (227)	0.02 -0.08 (227)	-0.37*** -0.47*** (227)	-0.29*** -0.35*** (227)	-0.33*** -0.50*** (226)	-0.76*** -0.75*** (227)	-0.74*** -0.75*** (227)	-0.79*** -0.76*** (226)	1.00	L-7		
L-7	0.15** 0.10 (227)	0.03 -0.00 (222)	0.27*** 0.32*** (126)	0.47000 0.53000 (227)	0.11 0.20000 (227)	0.29*** 0.43*** (227)	0.27000 0.38000 (227)	0.32*** 0.41*** (226)	0.78*** 0.72*** (227)	0.75*** 0.72*** (227)	0.75*** 0.71*** (226)	-0.51*** -0.77*** (227)	1.00	1 -79	
L-ZR	0.15** 0.09 (227)	0.08 0.04 (222)	0.29*** 0.27*** (126)	0.46*** 0.51*** (227)	0.10 0.130 (227)	0.28*** 0.37*** (227)	0.31*** 0.35*** (227)	0.33*** 0.34*** (226)	0.79*** 0.72*** (227)	0.71*** 0.69*** (227)	0.71000 0.69000 (226)	-0.67*** -0.70*** (227)	0.87*** 0.90*** (227)	1.00	
L-CE	-0.03 -0.03 (219)	-0.04 -0.07 (215)	0.2100 0.170 (123)	0.44000	-0.11* -0.02 (219)	0.130 0.25000 (219)	0.16** 0.24*** (219)	0.21000 0.29000 (219)	0.76*** 0.70*** (219)	0.76*** 0.72*** (219)	0.71*** 0.62*** (218)	-0.74*** -0.68*** (219)	0.85*** 0.85*** (219)	0.75*** 0.79*** (219)	1.00
L-BE	0.10 0.10 (225)	-0.08 -0.11* (220)	0.14 (125)	0.13* 0.13* (225)	0.04 0.05 (225)	0.06 0.17*** (225)	0-15**	0.21*** 0.22*** (225)	0.55***	0.51***	0.49***	-0.59*** -0.47*** (225)	0.60*** 0.49*** (225)	0.52*** 0.43*** (225)	0.53*** 0.45*** (219)
L-LI	0.26***	0.05 -0.02 (222)	0.16*	0.34***	0.27*** 0.30*** (227)	0.41000	0.33***	0.48***	0.53*** 0.54*** (227)	0.68***	0.50*** 0.60*** (226)	-0.51000 -0.63000 (227)	0.55***	0.51*** 0.49*** (227)	0.45***
L-V	0.35***	0.10 0.06 (222)	0.54444 0.62444 (126)	0.45***	0.59888	0.60***	0.53*** 0.61*** (227)	0.47*** 0.52*** (226)	0.42000	0.32*** 0.26*** 1 2271	0.50***	-0.55*** -0.52*** (227)	0.62*** 0.61*** (227)	0.58*** 0.56*** (227)	0.35*** 0.37*** (219)
L-ZN	0.21*** 0.19*** (227)	-0.02 -0.07 (222)	0.35***	0.35*** 0.35*** (227)	0.25***	0.32*** 0.42*** (227)	0.35***	0.43*** 0.58*** (226)	0.58***	0.47*** 0.40*** 1 2271	0.55***	-0.63*** -0.50*** (227)	0.71*** 0.64*** (227)	0.69*** 0.59*** (227)	0.58*** 0.52*** (219)
L-PE	0.16**	0.07 0.06 (222)	0.64*** 0.71*** (126)	0.63***	0-40***	0.53***	0.51***	0.36*** 0.48*** (226)	0.52*** 0.56*** (227)	0.48***	0.67***	-0.69*** -0.64*** (227)	0.77*** 0.78*** (227)	0.70*** 0.78*** (227)	0.63*** 0.62*** (219)
L-MN	0.08 0.08 (227)	0.00 -0.00 (222)	0.50*** 0.59*** (126)	0.56*** 0.58*** (227)	0.25*** 0.33*** (227)	0.37*** 0.47*** (227)	0.39*** 0.50*** (227)	0.27*** 0.42*** (226)	0.68***	0.53*** 0.53*** (227)	0.69*** 0.68*** (226)	-0.70*** -0.63*** (227)	0.83*** 0.82*** (227)	0.81*** 0.81*** (227)	0.74*** 0.69*** (219)
L-TI	0.100 0.10 (227)	0.09 0.05 (222)	0.45*** 0-56*** (126)	0.51*** 0.56*** (227)	0.31*** 0.35*** (227)	0.38*** 0.47*** (227)	0.36*** 0.47*** (227)	0.23*** 0.34*** (226)	0.57*** 0.54*** (227)	0.44***	0.61*** 0.64*** (226)	-0.58*** -0.54*** (227)	0.71*** 0.74*** (227)	0.77*** 0.79*** (227)	0.58*** 0.59*** (219)
L-P	0.09 0.09 (227)	-0.01 9.02 (222)	9.42*** 0.49*** (126)	0.56*** 0.57*** (227)	0.35***	0.34***	0.33*** 0.44*** 1 227)	0.40*** 0.50*** (226)	0.56*** 0.46*** (227)	0.45***	0.60*** 0.57*** (226)	-0.61*** -0.60*** (227)	0.77*** 0.70*** (227)	0.68*** 0.68*** (227)	0.64*** 0.57*** (219)
L-ML	0.20000 0.1600 (227)	0.12* 0.06 (222)	0.48*** 0.56*** (126)	0.56*** 0.56*** (227)	0.27*** 0.33*** (227)	0.60***	0.46*** 0.52*** (227)	0.59***	0.75*** 0.71*** (227)	0.82*** 0.74*** (227)	0.80***	-0.77*** -0.85*** (227)	0.80*** 0.83*** (227)	0.75*** 0.74*** (227)	0.67*** 0.69*** (219)
L-SC	0.15** 0.13* (226)	0.12* 0.04 (221)	0.76*** 0.82*** (126)	0.73*** 0.72*** (226)	0.43*** 0.47*** (226)	0.70***	0.52*** 0.59*** (226)	0.58*** 0.60*** (226)	0.59*** 3.53*** (226)	0.57***	0.63***	-0.69*** -0.70*** (226)	0.78*** 0.50*** (226)	0.71*** 0.70*** (226)	0.61***
L-118	0.06 0.08 (225)	0.07 0.10 (220)	0-13 0-12 (126)	0.18***	-0.05 -0.06 (225)	-0.05 -0.04 (225)	0.16** 0.09 (225)	-0.01 -0.02 (225)	0.51*** 0.33*** (225)	0.42***	0.41000	-0.35*** -0.09 (225)	0.52*** 0.33*** (225)	0.61***	0.54***
L-TH	-0.01 -0.03 (215)	0.00 0.02 (211)	0.05 -0.02 (120)	0.13* 0.11 (215)	-0.02 -0.03 (215)	0.14**	0.04 0.01 1 215)	0.15**	0.08	0.10 9.11 (215)	0.02 0.06 (214)	-0.08 -0.14** (215)	0.15** 0.19*** (215)	0.09 0.13+ (215)	0.22***
LTUN	-0.10 -0.16** (222)	0.08 0.11 (222)	0.16* 0.05 (125)	0.17** 0.15** (222)	-0.09 -0.10 (222)	0.18***	0.08 -0.01 (222)	0.15**	0.1700 0.1300 (222)	0.13** 0.12* (222)	0.09 0.05 (221)	-0.09 -0.110 (222)	0.19***	0.17**	0.22***
LUNT	0.42*** (223)	-0.23*** -0.25*** (223)	-0-28*** -0-07 (125)	-0.18*** -0.12* (222)	0.19***	-0.05 0.11 (222)	0.05 0.12* (222)	0.15**	0.04 0.02 (222)	0.11 0.06 (222)	0.06 0.11 (221)	-0.12+ -0.13+ (222)	0.20***	0.12* 0.15** (222)	0.02 0.09 (215)
L-AS	0.26***	-0.05 -0.07 (223)	0-18** 0-28*** (126)	-0.03 -0.03 (227)	0.38***	0.33***	0.34***	0.33***	0.09 0.12* (227)	0.03	0.15**	-0.15**	0.130	0.13*	-0.04 0.10 (219)
L-SE	0.03	-0.06	0.00	0-10	0.34***	0.15+	0.27***	0.15*	-0.05	-0.04	-0.06	0.05	0.03	0.01	-0.04

- Pearson correlation/Spearman correlation/(sample size). If either element has a concentration below the labora-NOTE: tory detection limits, it is omitted from the pairwise computations.

 - (2) Significance levels: *-10%, **-5%, ***-1%.
 (3) No correlation computed because of insufficient number of pairs: *****.

L-86															
1.00															
	L-LI														
0.39000															
0.38***	1.00														
(225)	(227)														
		L-V													
0.41***	0.48***	a serve													
0.38***	0.49***	1.00													
(225)	(227)	(227)													
1000			L-ZN												
0.54000	0.48***	0.76***													
0.46***	0.54000	0.71000	1.00												
(225)	(227)	(227)	(227)	1											
				L-FE											
0.45000	0.45444	0.85***	0.79												
1 3351	(2271	1 2271	1 2221	1 9971											
1 2201		1 2211	1 cert	1 eers	1										
		0.75444			F-44										
0.43.000	0.49888	0.75000	0.71.000	0.95	1.00										
(225)	(227)	(227)	(227)	1 2271	1 2271										
						L-TI									
0.38***	0.32***	0.80	0.74999	0.93***	0.92***										
0.32000	0.38***	0.77000	0.62***	0.94+++	0.93***	1.00									
(225)	(227)	(227)	(227)	(227)	(227)	(227)									
			2 2 2 2 2 2 2 2 2				L-P								
0.39000	0.40000	0.00000	0.72	0.//***		0.72									
4.32000	0.50000	0.04.00	0.70000			0.71	1.00								
								1-41							
0.46999		0.03000	0.62888	0.70		0.58888									
0.45498	0.00888	0.68***	0-65***	0.80***	0.76848	0.67***	0.72000	1.00							
(225)	(227)	(227)	(227)	(227)	(227)	(227)	1 2271	(227)							
					1.000	1.15			L-SC						
0.38***	0.56***	0.77***	0.65***	0.83***	0.77***	0.73***	0.71***	0.84***							
0.39***	0.590++	0.804#	0.69000	0.87***	0.50444	0.77***	0.75***	0.85+++	1.00						
(225)	(226)	(226)	(226)	(226)	(226)	(226)	(226)	(226)	(226)						
										L-NB					
0.37***	0.17**	0.31	0.44.00	0.53***	0.500.00	0.57000	0.39***	0.31000	0.29***	- 31444					
0.24888	0.11.	0.18***	0.16**	0.35***		0.44	0.18***	0.16	0.16**	1.00					
(224)	(225)	(225)	(225)	(225)	(225)	(225)	(225)	(225)	(225)	(225)					
									Garder Street	10000	L-TH				
-0.00	0.10	0.03	0.05	0.03	0.06	-0.01	0.02	0.13*	0.15**	0.02					
0.02	0.06	0.05	0.04	0.07	0.10	0.03	-0.00	0.13*	0.15**	0.06	1.00				
(214)	(215)	(215)	(215)	(215)	(215)	(215)	(215)	(215)	(215)	(215)	(215)	Contraction of			
S												LTUN			
-0.03	-0.01	-0.04	-0.02	0.03	0.06	-0.02	-0.03	0.12+	0.19000	0.05	0.93000				
-0.05	-0.08	-0.06	-0.07	0.03	0.06	0.02	-0.05	0.07	1 2211	1.000		1.00			
(556)	(222)	(222)	(222)	(222)	(222:	(222)	(222)	(222)		1 2201	(and	(222)			
					1.200.000				0.07		-0.02		-uni		
0.27	0.34000	0.40000	0.30000	0.1400	0.120	0.15	0.10.0	0.1700	0.17.8	0.05	-0.02				
0.32000	0.29000	0.00000		0.20000	1		0.1000	1 9991	1 2211	(2201	(211)	1 2221	1		
1 2241	1 2221	1 2221	1 2221	1 2241	1 2221	1 2221	1 eres							1	
0.2688*		0.51844	0.18844	0.30000	0.21000	0.188.00	0.1585	8.29000	0.234.00	0.00	-0.00	-0.11			
0.300.04	0.41865	0-574-4	0.46444	0.36883	0.30800	0.24444	0-21000	8.378.00	9.36***	0.06	-0-02	-9-1699	8-47884	1.00	
(225)	(227)	1 2271	(227)	(227)	(227)	1 2271	(227)	1 227)	(226)	(225)	(215)	(222)	(223)	(228)	
														1000	LTRE
0.00	0.19**	0.27***	0.13*	0.16**	9-11	9-11	9-12	0.07	0.11	0.03	0.03	-0.00	0.130	8-279.00	
-0.03	0.1600	0.28+++	0.16**	0.20**	0.16**	0.17**	0.16**	0.11	0.18**	0.07	0.00	-0.02	0.85	0.25444	1-00
(155)	(157)	(157)	(157)	(157)	(157)	(157)	(157)	(157)	(156)	(155)	(151)	(183)	(184)	(164)	(100)
and a state of	101.000.005	18 SIRUS	101110222	Contration of the		CARDING VEDOCIAL	10000001	100 BIRD					The Providence of the	n frito month of	and the second second

Figure B-la

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR SOLUBLE URANIUM (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF SOLUBLE URANIUM (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR URANIUM BY NEUTRON ACTIVATION IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Figure B-2b

GEOCHEMICAL DISTRIBUTION OF URANIUM BY NEUTRON ACTIVATION IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Figure B-3a

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR URANIUM FLUOROMETRIC/ URANIUM NEUTRON ACTIVATION IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Figure B-3b

GEOCHEMICAL DISTRIBUTION OF URANIUM FLUOROMETRIC/URANIUM NEUTRON ACTIVATION IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR THORIUM (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF THORIUM (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR THORIUM/URANIUM NEUTRON ACTIVATION IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF THORIUM/URANIUM NEUTRON ACTIVATION IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR ARSENIC (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR BORON (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF BORON (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PERCENTILE PLOT FOR BERYLLIUM (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF BERYLLIUM (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Figure B-9a

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR COPPER (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF COPPER (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Figure B-10a

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR IRON (%) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF IRON (%) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR LITHIUM (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF LITHIUM (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR MAGNESIUM (%) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF MAGNESIUM (%) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR MANGANESE (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Figure B-15a

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR SODIUM (%) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Figure B-16a

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR NICKEL (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR PHOSPHORUS (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR STRONTIUM (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR TITANIUM (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR VANADIUM (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

GEOCHEMICAL DISTRIBUTION OF VANADIUM (PPM) IN STREAM SEDIMENT OF THE STILLWELL MOUNTAINS PROJECT AREA, TRANS-PECOS DETAILED GEOCHEMICAL SURVEY, TEXAS

Table B-3

OR SANP	LE D. D. E. SAMPLE	NUMBER	U	U-NT	TH	TH/U	AS	LI	MO	NI	P	T1	v
NUMBER	SI LAI LUNG	L IY REP	(PPM)	(PPM)	(PPN)		(DDM)	(224)	[JPM]	(PPN)	(PPN)	(PPM)	(PPM)
27347	48-29.456 -102.832	-3-15-	2.2	2.1	8	3.0	3.5	19	•	60	400	3500	63
27340	48-29.470 -102.839	-3-15-	2.2	2.5	•	1.0	9.2	21	-	61	500	2500	59
27350	48-29.481 -102.657	-3-15-	1.1	2.0	4	1.0	4.5	19	5	14	540	2200	07
27461	48-29.678 -102.987	-3-15-	1.0	1.0	0	3.3	1.3	10			310	1 800	33
27462	48-29.674 -102.973	-3-15-	1	2.5		1.3	1.0	20		12	700	2700	50
27464	40-29-014 -102-981	-3-15-	2.1	2.5	12	0.40	2.5	19		22	2900	11000	120
27465	48-20 656 -102.980	-3-15-	2.0	2.4	0	2.3	2.4	21		10	890	3700	100
27465	48-29.630 -102.989	-3-15-	2.4	2.3	3	1.3	2.5	17		21	1300	10000	120
27467	48-20 675 -102 055	-3-15-	2.1	2.9	•	2.0	4.0	20	•	13	590	2300	40
27468	48-20 671 -102 042	-3-15-	2.2	2.5	:	1.0	3.9	20		17	670	2200	32
27469	48-29.650 -102.942	-3-15-	2.5	2.1	3		1.0	19	.4	27	670	1600	30
27470	48-29.650 -102.935	-3-15-	2.0	3.0	-	1.3		22		23	370	3900	60
20206	48-29.650 -102.994	-3-15-	2.0	2.1	3	1.4	2.1	23		23	730	2800	03
29208	48-29.563 -102.807	-3-15-	2.5	2.0	-	2.1	5.5	23	10	31	110	3700	110
29209	48-29-558 -102.837	-3-15-	2.1	2.0	5	2.3	2.2	20		25	530	1800	30
29211	48-29-555 -102-816	-3-15-	2.0	2.7		1.7	7.9	27		12	530	2100	30
29212	48-29-562 -102-781	-3-15-	2.0	2.4	5	2.1	2.7	24		13	760	3300	
29213	48-29.566 -102.777	-1-15-	2.5	3.4		2.88	7.2	32	27	13	100	3300	01
29214	A8-29-600 -102-847	-3-15-	2.1	3.0	12	0.33		17		12	230	1200	40
29217	48-29.603 -102.872	-1-15-	1.7	2.3		1.7	2.6	10		0	540	1900	76
29221	48-29.600 -102.759	-1-15-	2.2	3.2	-	2.2	5.7	75		16	600	2000	70
29222	48-29.591 -102.769	-1-15-	2.2	3.2		2.5	5.5	40		17	640	2900	10
29237	48-29-769 -102-679	-3-15-	2.2	2.1	6	2.9	2.8	22			670	2000	45
29259	48-29-528 -102-887	-1-15-	2.2	2.8	5	1.8	A. 3	17		24	810	2700	75
29260	48-29.509 -102.890	-1-15-	2.4	2.0		1.0	6.2	15	5	18	450	2700	97
29262	48-29.504 -102.887	-3-15-	2.2	2.1	12	0.48		15	10	10	400	1500	40
29264	A8-29.509 -102.895	-1-15-	1.9	1.9		2.1	2.5	1.0	27	10	800	1900	49
29266	48-29-577 -102-969	-3-15-	2.5	2.4		3.3	5.1	15	5	15		2400	83
29268	48-29.506 -102.887	-1-15-	1.7	2.4	6	2.5	6.2	22	7	21	570	2300	110
29270	48-29-571 -102-043	-3-15-		1.9	6	3.2	4.5	21		34	600	5100	120
29288	48-29.559 -103.021	-3-15-	1.6	2.3	12	0.43	1.0	19	-		1400	7800	70
29294	48-29-526 -103-013	-1-15-	2.0			0.45	3.4	16	24		310	2500	36
29300	48-29-757 -102-884	-3-15-	2.0	2.1	6	2.9	2.5	17	<	57	530	5200	69
29301	48-29.756 -102.883	-1-15-	2.5	2.8	5	1.8	4.5	30	6	48	650	5900	120
29.30 2	48-29.763 -102.833	-3-15-	2.1	2.1	5	2.4	1.7	19	< A	54	450	2600	41
29304	48-29.767 -102.872	-3-15-	1.8	2.1	7	3.3	2.1	18	<4	59	460	2200	36
29307	48-29.648 -103.055	-3-15-	2.1	2.6	6	2.3	3.3	19	5	14	1300	13000	150
29310	48-29.654 -103.034	-3-15-	1.8	2.6	6	2.1	4.1	18	<4	14	1500	7600	100
29312	48-29.651 -103.023	-3-15-	2.5	2.8	5	1.8	3.5	21	<4	16	880	7000	120
29313	48-29.659 -103.071	-3-15-	2.0	2.0	6	3.0	2.0	22	<4	76	940	4300	66
29314	48-29.649 -103.064	-3-15-	2.6	2.9	8	2.8	5.2	22	<4	16	1600	26000	280
29316	48-29.687 -103.041	-3-15-	2.3	2.2	8	3.6	4.5	26	<4	15	1400	3200	54
29317	48-29.684 -103.041	-3-15-	1.8	2.4	3	1.3	4.4	22	<4	12	950	9100	100
29318	48-29.663 -103.059	-3-15-	2.0	2.3	2	0.87	5.9	23	<4	14	950	11000	120
29320	48-29.639 -103.005	-3-15-	1.9	2.1	4	1.9	3.1	19	<4	12	630	4600	71
29321	48-29.639 -103.076	-3-15-	1.7	2.4	3	1.3	3.7	29	<4	16	1100	3700	66
29322	48-29.653 -103.102	-3-15-	2.0	2.0	2	1.0	2.9	27		15	1000	6600	95
29323	48-29.653 -103.103	-3-15-	2.5	2.5	5	2.0	2.7	24	<4	14	1300	4000	78
29324	48-29.716 -103.026	-3-15-	1.7	2.2	4	1.8	2.6	22	<4	13	3500	9900	98
29325	48-29.684 -103.019	-3-15-	1.2	2.3	7	3.0	2.4	21	<4	16	1600	4900	62
29326	48-29.684 -103.030	-3-15-	1.6	2.1	4	1.9	2.9	19	<4	30	700	7100	92
29327	48-29.684 -103.006	-3-15-	1.9	2.6	4	1.5	3.6	21	4	15	1500	10000	120
29328	48-29.701 -103.023	-3-15-	2.1	2.6	3	1.2	2.7	25	4	11	3100	38000	270
29329	48-29.713 -103.051	-3-15-	1.9	2.4	7	2.9	3.9	20	<4	14	1000	11000	130

	LE D. D. E. SAMPLE	NUMBER	U	U-NT	TH	TH/U	A5	LI	MO	NI	P	TI	V CODWI
29330	48-29.716 -103.055	-1-15-	1.6	2.2	(2.7	A-1	21	<a< td=""><td>19</td><td>1000</td><td>3500</td><td>56</td></a<>	19	1000	3500	56
29338	48-29-466 -102-835	-3-15-	2.5	2.9		1.4	4.5	20	6	20	5 30	2600	88
20 3 30	48-29-476 -102-849	-3-15-	1.7	2.4		1.3	3-8	20	<4	12	620	2100	44
29340	48-29-486 -102-861	-3-15-	1.7	2.5	3	1.2	4.2	23	7	16	730	2200	57
29 34 2	48-29.495 -102.869	-3-15-	3.6	4.6	5	1.1	8.1	26	17	41	650	1800	270
29344	48-29-482 -102-815	-3-15-	1.4	2.7	9	3.3	2.9	19	<4	9	440	3000	56
29345	48-29.443 -102.867	-3-15-	1.9	2.7	5	1.9	3.6	22	5	16	580	2500	80
29346	48-29.432 -102.857	-3-15-	1.3	2.3	9	3.9	2.0	16	<4	9	390	2600	48
29347	48-29.442 -102.869	-3-15-	1.9	2.5	7	2.8	4.4	22	6	15	560	2400	73
29355	48-29.576 -102.946	-3-15-	2.1	1.7	5	2.9	3.3	19	<4	24	650	3300	74
29356	48-29.574 -102.942	-3-15-	2.2	1.8	5	2.8	2.7	20	<4	22	820	3100	72
29357	48-29.574 -102.938	-3-15-	2.0	1.9	2	1.1	4.0	26	<4	28	660	3000	91
29359	48-29.621 -102.898	-3-15-	2.1	1.8	8	4.4	2.3	19	<4	14	500	2200	45
29362	48-29.584 -102.991	-3-15-	2.2	1.8	3	1.7	3.3	15	<4	10	400	3100	47
29363	48-29.549 -102.571	-3-15-	2.6	2.0			3.9						
29364	48-29.524 -102.964	-3-15-	2.6	1.9	7	3.7	3.5	14	<4	11	330	1900	41
29365	48-29.568 -102.989	-3-15-	2.9	2.1	5	2.4	3.4	15	<4	14	490	2200	44
29368	48-29.625 -102.890	-3-15-	2.0	1.8	<2	0.56	2.5	19	4	14	570	2000	38
29370	48-29.617 -102.888	-3-15-	1.8	2.2	2	0.91	2.6	20	<4	11	590	2100	38
29372	48-29.609 -102.890	-3-15-	1.6	2.2	<2	0.45	4.2	21	<4	30	830	4700	100
29373	48-29.606 -102.876	-3-15-	1.6	2.3	5	2.2	2.4	16	4	6	300	1800	35
29374	48-29.599 -102.901	-3-15-	1.3	2.4	<2	0.42	3.8	21	<4	17	520	2100	64
29375	48-29.599 -102.901	-3-15-	1.6	2.4	4	1.7	3.9	17	<4	26	1000	5900	100
29376	48-29.579 -102.898	-3-15-	1.8	2.3	3	1.3	4.5	20	<4	32	600	4700	110
29377	48-29.531 -102.904	-3-15-	1.8	2.5	3	1.2	4.5	16	4	23	450	1700	91
29380	48-29.526 -102.918	-3-15-	1.8	2.7	3	1 - 1	4.3	18	<4	11	410	1 500	55
29381	48-29.527 -102.919	-3-15-	2.5	2.6	5	1.9	3.0	16	<4	12	780	1700	**
29382	48-29.582 -102.961	-3-15-	2.0	2.0	7	3.5	5.1	22	<4	31	790	5000	110
29383	48-29.583 -102.962	-3-15-	2.5	2.1	5	2.4	3.2	22	<4	18	720	2400	63
29384	48-29.580 -102.937	-3-15-	1.9	1.6	9	5.6	2.6	19	<4	48	670	5600	110
29385	48-29.578 -102.926	-3-15-	1.3	3.0	7	2.3	3.9	21	4	32	930	7600	150
29386	48-29.585 -102.918	-3-15-	1.5	1.9	7	3.7	2.6	16	<4	24	900	6600	100
29387	48-29.692 -102.808	-3-15-	1.8	2.1	8	3.8	1.2	15	<4	11	400	2000	36
29389	48-29.654 -102.822	-3-15-	2.3	2.2	7	3.2	1.5	19	<4	10	380	1800	37
29391	48-29.664 -102.801	-3-15-	1.8	2-1	5	2.4	1.0	16	<4	9	400	1900	37
29393	48-29.674 -102.786	-3-15-	2.8	2.2	5	2.3	1.6	21	<4	10	370	2000	44
29394	48-29.687 -102.769	-3-15-	2.4	2.3	7	3.0	1.3	15	<4	10	410	2100	41
29396	48-29.760 -102.980	-3-15-	1.9	2.1	4	1.9	1.9	17	<4	10	440	2600	42
29397	48-29.756 -102.979	-3-15-	2.2	1.9	<2	0.53	1.8	18	<4	10	500	3000	42
29 39 8	48-29.755 -102.931	-3-15-	3.1	2.3	0	2.0	2.4	18	<4	25	1100	8500	100
29399	48-29.751 -102.940	-3-15-	1.9	2.3	2	0.07	1.5	10			570	2800	
29400	48-29.751 -102.943	-3-15-	2.3	2.4		1.1	1.0	11		13	520	3300	50
29401	48-29.751 -102.948	-3-15-	2.2	1.0	-	2.2	7.2	10		20	500	2200	37
29405	48-29.483 -102.826	-3-15-	1	2.4	-	3.63	3.2	21		20	590	2000	62
29400	48-29.440 -102.863	-3-15-	1.2	2.4		2.5	3.0	22		15	540	2200	80
29400	40-29.447 -102.809	-3-15-		2.2		1.0		10	-	10	400	2400	
29410	48-20 478 -102 570	-3-15-	1.6	2.5	5	2.0	5.5	15	-	8	390	3900	51
20412	A8-20 A70 -102.979	-3-15-	1.6	2.3	3	1.3	2.7	15	-	a	390	2100	37
29415	48-29.488 -102.970	-3-15-	1.7	2.4	7	2.9	4.5	14	<	9	300	2700	45
20417	48-29-496 -102-980	-3-15-	2.0	2.2	6	2.7	2.4	17	<4	10	500	2000	46
20418	48-29-488 -102-014	-3-15-	1.8	2.1		1.9	4.3	14	<.	9	350	990	38
20410	48-29-488 -102-916	-3-15-	2.3	2.7	7	2.6	3.5	17	5	17	510	1400	71
29421	A8-29.470 -102.881	-3-15-	2.2	2.4	7	2.9	4.8	20		11	470	2400	64
20423	48-29.455 -102.934	-3-15-	1.8	2.2	8	3.6	4-1	15	<4	10	320	1700	36

OR SAMP	LE D. O. E. SAMPLE	NUMBER	U	U-NT	TH	THZU	A5	LI	04	NI	P	TI (PPM)	(PP M)
NUMBER	ST LAT LUNG	L IT REP	(PPM)	2 7	(PPM)	1.0	7.9	17		10	A 70	1800	46
29424	48-29.458 -102.933	-3-15-	1.0	2.3	2	3.0	5.0			10	200	1000	32
29420	48-29.440 -102.912	-3-15-	2.4	2.2	2	0.91	3.4	1.5			430	2300	40
29428	48-29.439 -102.893	-3-15-	2.2	2.2	0	2.1	3.4	16		10	350	1400	20
29430	48-29-730 -102-791	-3-15-	0.80	1.0				15	-	12	390	1700	31
29431	48-29.733 -102.779	-3-15-	0.09	1.9	2		1.2	15		12	A 20	1600	29
29432	48-29-740 -102-775	-3-15-	1.2	1.0	12	0.50		20		14	580	1900	36
29433	48-29.731 -102.813	-3-15-	1.3	2.0	~~	1.8		21	24	14	650	3000	41
29434	48-29-720 -102-853	-3-15-	1.2	2.2	-	2.4	2.0	10		14	500	1800	33
29435	48-29.719 -102.854	-3-15-	1-0	2.1	5	2.4	2.0	17		14	430	2000	43
29437	48-29.001 -102.018	-3-15-		2.0	5	2.5	1.7	17	1	13	350	2000	35
29430	40-29.004 -102.020	-3-15-	1.5	2.0	5	2.5	1.4	19	24	13	390	1800	34
29440	48-29.003 -102.191	-3-15-	1.5	2.0		2.3	2.8	15			300	2000	
29441	48-29.685 -102.789	-3-15-	2.2	2.0	3	1.5	1.7	18	<a< td=""><td>15</td><td>440</td><td>2100</td><td>30</td></a<>	15	440	2100	30
29445	48-29.701 -102.764	-3-15-	2.1	2.4		1.7	0.5	13	5	12	4200	21000	200
20445	48-29.636 -102.882	-3-15-	1.7	2.7	5	1.9	3.3	19	5	13	440	3000	53
20447	43-29-647 -102-902	-3-15-	1.6	2.1	2	0.95	2-1	21	(4	16	700	2500	41
20448	43-29.659 -102.901	-3-15-	1.4	2.0		2.0	2.1	20	-	12	680	2600	42
20440	48-29.659 -102.903		1.9	2.1	-	3.3	2.7	12	-	16	730	3400	48
29450	48-29-658 -102-890	-3-15-	2.4	2.5	3	1.2	3.7	15		13	430	1900	43
29452	48-20-637 -102-686	-3-15-	1.3	1.5	6	4.0	2.6	15	14	49	700	7900	130
29453	48-29-631 -102-681	-1-15-	1.4	1.6	7	4.4	2.8	19	64	3.8	910	6600	120
29455	48-29.655 -102.901	-3-15-	1.0	2.6	5	1.9	2.1	17	ćA	11	610	2100	.2
20455	48-29.652 -102.928	-1-15-	3.3	3.7	4		4.3	27	10	32	1800	4700	160
20456	40-29.032 -102.920	-3-16-		2.1			1.0	17		10	660	3300	45
29430	48-29.645 -102.911	-3-15-	1.5	2.1	-	2.5	3.8	26	6	18	550	2200	69
29457	48-29-639 -103.012	-3-15-	1.8	2.2	A	3.6	1.5	18	< A	12	1300	3900	68
20450	48-29 656 -103 104	-3-15-	1.0	2.1		3.8	1.7	18	-	11	950	3000	47
29459	48-29-708 -103-001	-3-15-	2.3	2.8	6	2.1	2.9	22	6	22	1400	4 300	100
29461	48-29,729 -102,997	-3-15-	1.3	1.9		2.1	1.0	17	< A		310	1800	33
20462	48-29 720 -102 601	-3-15-		1.9		1.6	1.7	15			620	3600	47
29463	48-29.718 -102.988	-3-15-	1.2	2.2	A	3.6	2.1	18	< A	10	620	2700	42
29464	48-29.716 -102.587	-3-15-	1.9	2.2		2.7	1.7	19		11	660	2600	42
29465	48-29.706 -102.977	-3-15-	1.6	2.2	6	2.7	2.5	21	4		780	2700	43
29466	48-29-688 -102-973	-3-15-	1.6	2.1	6	2.9	3.3	19	<4	9	740	2300	43
29467	48-29.723 -102.954	-3-15-	1.9	2.1	7	3.3	1.5	15	<4	10	500	3500	52
29468	48-29-725 -102-551	-1-15-	1.7	2.1	7	4.3	1.7	17	<4	9	520	2500	40
29469	48-29.723 -102.952	-3-15-	1.8	1.9	5	2.6	1.5	18	<4	7	560	2400	37
29470	48-29-717 -102.953	-3-15-	1.4	2.0	9	4.5	2.0	17	<4	10	480	2400	39
29471	48-29-716 -102-552	-1-15-	1.5	2.0	5	2.5	1.7	19	<4	10	600	2300	39
29472	48-29.708 -102.962	-3-15-	1.5	1.7	6	3.5	2.1	15	<4	8	440	1 800	34
29473	48-29.710 -102.959	-3-15-	2.3	2.6	8	3.1	2.1	15	4	8	310	1400	40
29474	48-29-632 -102-882	-3-15-	1.5	2.3		1.7	2.1	16	<4	9	450	1900	35
29475	48-29.669 -102.882	-3-15-	2.0	2.2	7	3.2	2.1	18	<4	9	780	2600	41
29477	48-29.672 -102.884	-3-15-	2.4	2.1	5	2.4	2.3	17	5	14	720	2500	55
29478	48-29.679 -102.882	-3-15-	2.1	2.3	5	2.2	2.3	19	<4	11	620	2900	52
29481	48-29-633 -102-901	-3-15-	1.3	2.0	7	3.5	3.7	19	<4	11	560	2600	47
29482	48-29.731 -102.896	-3-15-	1.8	2.0	4	2.0	2.6	18	<4	12	890	4400	58
29483	48-29.727 -102.898	-3-15-	1.7	1.4	6	4.3	3.0	27	<4	38	2500	18000	220
29484	48-29.720 -102.898	-3-15-	2.2	2.5	4	1.6	2.5	15	5	18	560	3600	58
29485	48-29.709 -102.895	-3-15-	2.1	2.4	3	1.3	3.2	17	<4	10	590	2300	39
29486	48-29.725 -1 02.901	-3-15-	1.8	2.2	3	1.4	3.0	16	<4	21	890	6800	83
29487	48-29.746 -102.905	-3-15-	1.6	2.0	5	2.5	2.5	17	<4	13	520	2500	46
29488	48-29.688 -102.922	-3-15-	1.6	2.0	5	2.5	2.5	16	4	16	650	2900	48
29489	48-29.689 -102.921	-3-15-	0.70	1.9	5	2.6	2.5	A	<4	9	820	200	14

OR SAMP	LE D	. 0.	E.	SAMPLE	NUMBER	U	U-NT	TH	TH/U	AS	LI	MO	NI	P	TI	۷
NUMBER	ST	LAT		LCNG	L TY REP	(PPM)	(PPM)	(PPN)		(PPM)	(PPM)	(PPN)	(PPN)	(PPM)	(PPM)	(PPH)
29490	48-2	9.674	• -	102.918	-3-15-	1.9	2.5	•	1.6	3.0	18		35	750	4000	63
29491	48-2	9.745	5 -	102.935	-3-15-	1.3	2.0	•	3.0	2.2	18	<4	11	590	2300	39
29492	48-2	9.55	3 -	102.658	-3-15-	1.8	2.1	5	2.4	5.5	18	•	35	640	3300	90
29493	48-2	9.54	7 -	102.871	-3-15-	1.5	2.3	:	3.0	3.8	16		30	690	2800	90
29499	48-2	9.01.	3 -	103.055	-3-15-	1.9	2.0	•	2.3	2.1	21	5	10	1800	3100	80
29500	48-2	9.009	9 -	103.046	-3-15-	1.9	2.3	:	1.1	2.8	21		12	140	2500	59
29501	48-2	9.004	• -	103.046	-3-15-	1.8	2.1	-	3.3	1.0	19		13	14.00	20000	100
29502	48-2	9.004	• -	103.049	-3-15-	2.3	3.0	5	2.0	2.6	10			670	2600	
29504	40-2	9.574		103.036	-3-15-	2.0	2.0	3	2.0	2.5	10		12	260	1000	37
29505	40-2	9.50		102. 790	-3-15-	2.1	2.5	3	0.80	3.0	12		13	200	1800	38
29500	40-2	9.59	:]	102.800	-3-15-	2.1	2.4		2.1	2.5	13		12	320	1500	35
29507	48-2	9.57	;]	102.801	-3-15-	1.1	1.7	5	2.9	2.8	14	-	13	350	2200	35
29510	40-2	0.57	; _	102.779	-3-15-	1.9	3.1		1.3	2-0	12	5	12	250	1800	35
20513	40-2	9.55	o _	102.823	-3-15-	1.7	2.3		1.7	2.3	18		22	820	3700	66
29514	48-2	9.56		102.834	-3-15-	1.9	2.3	6	2.6	1.9	14	4	15	420	1800	36
29515	48-2	9.56	6 -	102.843	-3-15-	1.6	2.4	7	2.9	1.7	14		12	460	2200	41
29516	48-2	9.57	7 -	102.855	-3-15-	1.9	2.5	3	1.2	1.7	19	4	16	700	3000	60
29517	48-2	9.53	6 -	102.598	-3-15-	2.0	2.3	5	2.2	2.9	18	<4	15	790	2200	48
29522	48-2	9-61	5 -	102.590	-3-15-	1.8	2.0	6	3.0	2.6	19	<4	12	540	2400	47
29523	48-2	9.61	2 -	102.598	-3-15-	1.8	2.2	5	2.3	2.2	17		13	1400	8000	93
29524	48-2	9.490		102.843	-3-15-	2.4	2.3	3	1.3	3.0	20	5	29	570	3400	96
29525	48-2	9.58	1 -	102.979	-3-15-	2.0	1000	<2	T .C. C	2.6	11	5	10	460	25000	150
29526	48-2	9.76	3 -	102-887	-3-15-	2.3		6		1.5	16	<4	11	470	2100	37
29527	48-2	9.75	1 -	1 02 . 906	-3-15-	2.0	1.9	7	3.7	1.5	16	<4	15	540	2400	43
29528	48-2	9.75	7 -	102.902	-3-15-	1.1	1.5	<2	0.67	0.4	11	<4	5	180	880	9
29530	48-2	9.77	3 -	1 02 . 886	-3-15-	1.2	1.9	6	3.2	2.1	17	<4	10	490	1900	35
29531	48-2	9.78	0 -	102.904	-3-15-	1.5	2.1	9	4.3	2.9	17	<4	10	470	2500	44
29532	48-2	9.79	5 -	102.914	-3-15-	1.6	1.9	8	4.2	2.7	18	<4	11	490	1900	39
29536	48-2	9.762	2 -	102.927	-3-15-	1.3	1.8	25	14.	1.9	15	10	16	570	2400	43
29537	48-2	9.75	3 -	102.924	-3-15-	1.5	1.5	5	3.3	2.7	16	<4	92	1500	7600	94
29538	48-2	9.76	8 -	102.925	-3-15-	1.7	2.0	4	2.0	2.2	19	<4	9	590	1900	39
29539	48-2	9.77	5 -	102.913	-3-15-	1.2	2.4	5	2.1	1.7	15	<4	10	390	1 500	29
29540	48-2	9.795	5 -	102.893	-3-15-	1.3		5		2.2	16	<4	32	460	1700	32
29559	48-2	9.58	1 -	103.007	-3-15-	2.2	2.0	<2	0.50	2.2	21	<4	7	560	2000	33
29560	48-2	9.54	1 -	103.036	-3-15-	1.8	2.1	7	3.3	1.4	15	<4	9	500	2100	36
29570	48-2	9.798	8 -	102.943	-3-15-	1.8	1.8	5	2.8	1 - 1	17	<4	13	520	4500	68
29571	48-2	9.78:	3 -	102.967	-3-15-	2.0	1.6	3	1.9	1.1	15	<4	17	700	3200	36
29573	48-2	9.78	2 -	102.959	-3-15-	1.6	1.7	5	2.9	1.2	14	<4	10	460	1700	31
29576	48-2	9.775	5 -	102.871	-3-15-	2.7	3.0	9	3.0	2.2	22	<4	10	520	3000	54
29577	48-2	9.78	0 -	102.863	-3	1.8	2.2	3	1.4	2.0	19	4	11	770	3800	49
29578	48-2	9.780	0 -	102.863	-3-15-	1.5	1.8	5	2.8	1.1	14	<4	9	360	1 500	29
29579	48-2	9.77	0 -	102.853	-3-15-	2.3	2.3	7	3.0	2.3	16	<4	14	1100	8000	79
29580	48-2	9.773	3 -	102.835	-3-15-	2.0	2.1	5	2.4	1.3	18	<4	10	650	1800	34
29590	48-2	9.53	7 -	102.793	-3-15-	3.4	3.2	10	3.1	4.2	35	<4	17	800	3100	83
29592	48-2	9.524	4 -	102.822	-3-15-	2.5	1.9	2	1.1	2.4	12	•	16	330	1300	51
29595	48-2	9.739	9 -	102.880	-3-15-	0.94	2.2	5	2.3	3.6	22	<4	36	1000	5200	60
29597	48-2	9.72	5 -	102.886	-3-15-	1.1	2.1	3	1.4	3.1	19		38	1400	5800	56
29598	48-2	9.72	2 -	102.887	-3-15-	2.6	2.5	2	0.80	3.5	19	<4	34	990	5700	55
29599	48-2	9.71	7 -	102.891	-3-15-	0.60	2.3	5	2.2	3.6	19		39	720	2800	41
29600	48-2	9.700	6 -	102.893	-3-15-	2.5	2.1	1	3.3	2.2	20	54	11	600	2000	40
29601	48-2	9.702	2 -	102.887	-3-15-	3.4	2.3	5	2.2	2.4	38	~	25	570	3900	14
29603	48-2	9.69	9 -	102.882	-3-15-	1.5	1.9	10	5.3	3.5	33	54	21	450	2800	60
29604	48-2	9.68	7 -	102.890	-3-15-	1.9	2.0	0	3.0	4.5	21		23	340	5000	-0
20605	48-2	0.40	n -	102-886	-1-15-	1.5	1.1		6.3	3.9 4	20		21	010	5000	

OR SAMP	LE D. 0.	E. SAMPLE	NUMBER	U	U-NT	тн	TH/U	AS	LI	MQ	NI	P	TI	v
NUMBER	ST LAT	LENG	L TY REP	(PPM)	(PPM)	(PPM)		(224)	(POM)	(PPM)	(PPM)	(PPM)	(PPM)	(PPM)
29607	48-29.539	-102.841	-3-15-	1.9	2.5	5	2.0	3.5	19	5	23	540	2000	92
29608	48-29.554	-102.858	-3-15-	2.0	2.1	9	4.3	5.5	19	5	32	610	3300	94
29631	48-29.805	-102.949	-3-15-	1.4	1.8	8	4.4	1.7	18	<4	20	4 30	2500	39
29633	48-29.793	-102.955	-3-15-	1.7	2.0	9	4.5	1.8	15	<4	23	560	3000	43
29634	48-29.787	-102.958	-3-15-	1.7	1.9	7	3.7	1.4	16	<4	22	780	6100	72
29635	48-29.784	-102.578	-3-15-	1.6	1.9	11	5.8	1.5	16	<4	19	580	4400	53
29636	48-29.784	-102.981	-3-15-	1.7	1.8	2	1.1	0.8	15	<4	19	210	1500	31
29642	48-29.523	-102.811	-3-15-	2.0	3.1	10	3.2	3.4	35	<4	20	700	3300	90

APPENDIX C

FIELD FORM AND COMPUTER CODE LIST

APPENDIX C

FIELD FORM AND COMPUTER CODE LIST

LIST OF TABLES

No.	Title	Page
C-1	Computer Code List of Geochemical Variables	C-4
C-2	Oak Ridge Geochemical Sampling Form Showing Field Data Recorded on Microfiche	C-5

Table C-1

Variable(a)	<u>Code</u>	Variable(a)	Code
Uranium Measured by	U-FL	Scandium	SC
Fluorometry(b)		Silicon	SI
Uranium Measured by Mass Spectrometry(b)	U-MS	Strontium	SR
Uranium Measured by	U-NT	Thorium	тн
Neutron Activation	• • • • •	Titanium	ΤI
Arsenic	AS	Vanadium	۷
Selenium	SE	Yttrium	Y
Silver	AG	Zinc	ZN
Aluminum	AL	Zirconium	ZR
Boron	В	Sulfate (ppm)	S04
Barium	BA	Chloride (ppm)	CL
Beryllium	BE	Conductivity from Lab (umhos/cm)	CT-L
Calcium	CA	Conductivity from Field (µmhos/cm)	CT-F
Cerium	CE	Dissolved Oxygen (ppm)	DO
Cobalt	CO	Air Temperature (°C)	ATEM
Chromium	CR	Water Temperature (°C)	WTEM
Copper	CU	рН	PH
Iron	FE	pH Measured by Lo Ion Paper	PH-P
Hafnium	HF	Total Alkalinity (ppm)	T-AK
Potassium	К	M-Alkalinity (ppm)	M-AK
Lanthanum	LA	P-Alkalinity (ppm)	P-AK
Lithium	LI	Carbonate (ppm)(c)	CB
Mangesium	MG	Bicarbonate (ppm)(c)	BC
Manganese	MN	Undissociated Carbonic Acid $(ppm)(c)$	CAB
Molybdenum	MO	U-NT/U-FL	TU/U
Sodium	NA	U-FL/U-NT	U/TU
Niobium	NB	TH/U-NT	TH/U
Nickel	NI	1,000·U/SP	U/SP
Phosphorus	Р	1,000-07B	U/B
Lead	PB	r,uuu+u/su Sadium/Chlanida	U/ 50
Platinum	PT	Log of Sodium/Chloride	

COMPUTER CODE LIST OF GEOCHEMICAL VARIABLES

(a) If natural logarithm of variable is used, L or L- precedes the variable code.

(b) If method is not specified for waters, U-FL is used, except where value is below laboratory detection limit in which case U-MS is substituted if it is available.

(c)These variables were approximated using cubic spline functions to fit the curves in Hem (1970), p. 155.

Table C-2

OAK RIDGE GEOCHEMICAL SAMPLING FORM SHOWING FIELD DATA RECORDED ON MICROFICHE

OAK RIDGE G	EUCHEMICAL SAMPLIN	G FORM
The second se	Type of Vegetation	Sample Color (Except Plants)
	65 (Within 1 Km Upstream)	Adi Noun
1 Card Number	C Conifer	72 73 74 78 70
	D Deciduous	
GENERAL SITE DATA	B Brush	V V Lt PK Pink
	G Grass	L Light RD Red
Attach Identical	M Moss	M Medium GN Green
Sample Number Here	L Lichen	D Dark BU Blue
	0 Other	CL Clear GY Grav
		WH White BK Black
	Density of Vegetation	YL Yellow GT Other
• [• [10] 11]	B Barren	ØR Orange
Site Number	S Sparse	27 Odor of Sampled Material
	M Moderate	S H.S
12 13 14 10 10 17	D Dense	0 Other
- Map Code	V Very Dense	
		7. Results Request
Semple Type	Local Relief	R (Use Remarks)
	57 (Within 1 Km Upstream)	
M Streem Sediment	E Flat (<2m)	
H Lake Sediment	L Low (2-15m)	1
S Stream Water	G Gentle (15-60m)	2 Card Number
W Well Water	M Moderate (60-300m)	
P Spring Water	H High (>300m)	PLANT SAMPLE
I ake Water	0 Other	18 18 Number of Plants Sampled
A Boo Water		(Number of grabs for moss)
P Plant	Weather	
C Call		20 21 22 Trunk Diamater (m)
(Use Remarks)	C Caim C Clear	(1 m above ground)
G NOCK	V Winth W Overcet	
O Other 1	R V Windy V Bainy	23 24 25 Plant Height (m)
	S Gale G Somer	Average of Plants Sampled)
10		
Replicate Letter (A-Z)	Classes of Contaminants	Name of Tree, Deciduous
	60	26 20
Hour Day Month Year	N None	R Alto Verde U Locust
	M Mining (Use Remarks)	A Ash P Maple
	A Agriculture	8 Beech M Mesquite
	F Oil Field	1 Birch K Oak, Other
28 29 30	I Industry	D Box Elder V Olive
Collector's Initials	S Sewage	P Cottonwood S Superson
	III IIman	E Eim T Sait Cadar
11	0 Other	H Hackberry G Walnut
Phase (P. 1, 2, or G)		C Hickory X Willow
	Average Stream Velocity (m/sec)	W Huisache Ø Other
32 Field Sheet Status	61 62 63	L Live Oak
0 Original	N = No Visible Movement	Name of Tree, Conifer
C Correction	P = Stagnant Pool	27 27
V Voiding	64 65 64	A N. Wh. Cedar L Larch
Cantral Samuela		C Ceder, Other P Pine
A Satimat Mint II	Water Width (m)	F Fir S Spruce
B Sediment Low II	(The second sec	H Hemlock Q Other
C Water, High U	67 68 69	Juniper
D Water, Low U	Average Depth (m)	Name of Bush
Ø Other		28 28
	Water Level	A Alder W Witch Hazel
34 35 38 37	70 70	B Blueberry Y Yew
Als Territoria (BC)	Dry N Normal	P Pussy Willow G Other
Air temperature (-C)	Pools H High	
	LE LOW FIDOd	Nume of Moss
Location	Dominant Bed Meterial	PI Past
Latitude Longitude	B Boulder	a Other
Deg. Min. Sec. Deg. Min. Sec.		
Latitude Longitude Deg. Min. Sec. Deg. Min. Sec. 38 39 40 41 42 43 44 44 44 47 44 49 80	C Cobble	
Latitude Longitude Deg. Min. Sec. Deg. Min. Sec. 38 39 40 41 42 43 44 46 44 47 46 49 50	C Cobbie P Pebble	Algae
Latitude Longitude Deg. Min. Sec. Deg. Min. Sec. 38 39 40 41 43 53 44 45 46 47 46 49 50	C Cobble P Pebble S Send	Algee 30
Latitude Longitude Deg. Min. Sec. Deg. Min. Sec. 38 39 40 41 42 43 44 44 44 47 44 49 50	C Cobble P Pebble S Send T Silt	Algee 30 G Blue-Green
Latitude Longitude Deg. Min. Sec. Deg. Min. Sec. 28 29 40 41 42 43 44 48 44 47 44 48 40 51 52 53 54 Surface Geologic	Cobble PPPbble SSend TSSitt YCley	Algae 30 G Blue-Green B Brown

Table C-2, Continued

OAK RIDGE GEOCHEMICAL SAMPLING FORM SHOWING FIELD DATA RECORDED ON MICROFICHE

AM OR LAKE SEDIMENT	74 75 75 77 Identification of Producing Herizon (Contenio Linit Code)	N Use of Well
mple Condition	(Geologic Unit Cool)	M Municipal
31	Contidence of Producing Horizon Identification	H Household
wet		S Stock
	H High Degree	A All of above
32	S Possible	X H and S
None	Source of Producing Harizon Identification	Y Hand I
Sieved	79 Belication	N None
Other	W Owner	0 Other
100	Ulear	Frequency of Pumping
Number of Grabe	G Geologic Inference	27 Cl Constant (bouris)
		F Frequent (deily)
5 38	-	I Infrequent (weekly)
	3 Card Number	R Here (no recent use)
ERAL WATER SAMPLES		[26] 26 [30] 31
ater Sample Treatment	WELL WATER	(Meters)
None	Type of Well	Contidence of Producing Doubh
Filtenid Only	D Drilled	
Acidified Only	P Drive Point	H High
Acidified and Filtered	G Dug	R Probable
	a Other	
epth of Visibility (m)	Power Classification	Source of Producing Depth Information
C = Cleer		P Publication
	A Artesian Flow	W Owner
1 42 43 44 45 Conductivity	G Gasoline	U User
(umhos/am)	W Wind	G Geologic Inference
10 47 40	H Hand Other	
Dissolved O2 (ppm)	Casing	Total Well Depth
10 10 101	20	34 35 36 37
• Temperature (°C)	N None (Below Water Table)	(Motors)
	G Gelvenized	
pH pH	P Plastic	Contrasence or rocal Depth
	0 Unknown	H High
	Pipe Composition	R Probable
P pri by Lo-Ion Paper		S Possible
14 67 58 60	Z Galvanized	Source of Total Depth Information
Total Alkalinity (ppm)	C Copper	30
0 01 02 03	P Plastic	W Owner
P Alkalinity (ppm)	a Other	UUUser
4 8 8 8 87	Paralle I contine	G Geologic Inference
M Athatinity (ppm)	32 23 24	Other
ppearance of Water	Meters from Well Head	LAKE WATER
	TH = Holding Tank (Use Remarks)	Type of Lake
C Clear	Where Sample Taken	NT Natural
A Algel	With Respect To Pressure Tank	M Manmade
2 Other	B Before	Lake Area
9 70 71 72 737	A After	[10] [17] [10] [10]
Discharge (linestrie)	N No Pressure Tenk	
	LEL From Freedore Fank (Gee Namerke)	(eq km)
EMARKS (Card 4)		
	and the second se	
and the second		
	and the second sec	
a second s	and the second	
and the second sec		

Table C-2, Continued

OAK RIDGE GEOCHEMICAL SAMPLING FORM SHOWING FIELD DATA RECORDED ON MICROFICHE

Sequence Number 1 Procedure Number End Results for Procedure 31						
10 17 11 10 20						
Results for Procedures 34-41	and Procedures below	counts/minute				
Results for Precedure 32 Gamn	na Spectrometer					
TOTAL (COUNTS (CPM) SSIUM (%)					
20 20 20 20 20 20 20 20 20 20 20 20 20 2	IUM (CPM) IUM (ppm) M (CPM)					
	IUM (ppm) M (CPM)					
	20 Not Used					
Note To Sampler: Blocks 16-, Should Be Marked Out.					and the second	
Note To Sampler: Blocks 16-, Should Be Marked Out.	DO N	OT KEYPUN	ICH			
Note To Sampler: Blocks 16-, Should Be Marked Out.	DO N Readinos made ir	OT KEYPUN	ICH			
Note To Sampler: Blocks 16-, Should Be Marked Out. Procedures 34-41 34 Uranium (nob)	DO N Readings made in	Counts per _	ICH	BACKGP	OUND	RESULTS
Note To Sampler: Blocks 16-, Should Be Marked Out. Procedures 34-41 34 Uranium (ppb) 35 Fluoride (ppm)	DO N Readings made in VARIABLE	Counts per _ READ	ICH ING CPM	BACKGF	CPM	RESULTS
Note To Sampler: Blocks 16-, Should Be Marked Out. Procedures 34-41 34 Uranium (ppb) 35 Fluoride (ppm) 36 Nitrate (ppm) 37 Sulphare (ppm)	DO N Readings made in VARIABLE TOTAL COUNTS	Counts per _ READ	ICH ING CPM	BACKGF	CPM	RESULTS
Note To Sampler: Blocks 16- Should Be Marked Out. Procedures 34-41 34 Uranium (ppb) 35 Fluoride (ppm) 36 Nitrate (ppm) 37 Sulphate (ppm) 38 Phosphate (ppm)	DO M Readings made in VARIABLE TOTAL COUNTS POTASSIUM	Counts per _ READ	ICH ING CPM	BACKGF	IOUND CPM	RESULTS
Note To Sampler: Blocks 16- Should Be Marked Out. Procedures 34-41 34 Uranium (ppb) 35 Fluoride (ppm) 36 Nitrate (ppm) 37 Sulphate (ppm) 38 Phosphate (ppm) 39 Ferrous Iron (ppm) 40 Total Iron (ppm)	DO M Readings made in VARIABLE TOTAL COUNTS POTASSIUM URANIUM	OT KEYPUN Counts per READ ACTUAL	ICH ING CPM	BACKGF	CPM	RESULTS
Note To Sampler: Blocks 16- Should Be Marked Out. Procedures 34-41 34 Uranium (ppb) 35 Fluoride (ppm) 36 Nitrate (ppm) 37 Sulphate (ppm) 38 Phosphate (ppm) 39 Ferrous Iron (ppm) 40 Total Iron (ppm) 41 Turbidity (% T)	DO M Readings made in VARIABLE TOTAL COUNTS POTASSIUM URANIUM THORIUM	OT KEYPUN Counts per READ ACTUAL	ING CPM	BACKGF	CPM	RESULTS

APPENDIX D

MICROFICHE OF FIELD AND LABORATORY DATA

APPENDIX D

MICROFICHE OF FIELD AND LABORATORY DATA

CONTENTS

Laboratory Data	Page
Groundwater (W) and Radiometric	1-9
Stream Sediment (M)	10-24

Field Data

Page 1

26-125

LEGEND • WELL WATER

PLATE 1

STILLWELL MOUNTAINS PROJECT AREA TRANS-PECOS DETAILED GEOCHEMICAL SURVEY GROUNDWATER SAMPLE LOCATION MAP

	SYMBOL F	RAI	NGE	ES ABL	FOR E (X)	-
	0.05					~
×	0.25	5	Х	<	1.1	
	1.00	\leq	Х	<	1.2	20
	1.20	≤	Х	<	1.3	35
0	1.35	\leq	Х	<	1.5	50
0	1.50	≤	Х	<	1.	70
0	1.70	≤	Х	<	1.9	90
0	1.90	\$	Х	<	2.3	15
0	2.15	\leq	Х	<	2.1	12
۲	2.45	5	Х	<	2.7	70
۲	2.70	5	Х	<	3.0	
•	3.00	5	Х	<	3.1	40
•	3.40	\leq	X	<	4.(

-R

PLATE 5 STILLWELL MOUNTAINS PROJECT AREA TRANS-PECOS DETAILED GEOCHEMICAL SURVEY SYMBOL PLOT STREAM SEDIMENT URANIUM (PPM) SCALE 1: 250000 228 SAMPLES PLOTTED

103°10′ 103° 0' 102°50′ 102°40′ 30° 0′[

102°30′

1

	SYMBOL	RAI	NĢ	ES	FOR
	PLUTIEU	VHI	11	HRI	EIXJ
+	0.0	\$	Х	<	2.00
×	2.00	\leq	Х	<	3.00
	3.00	≤	Х	<	4.00
•	4.00	\leq	Х	<	5.00
0	5.00	≤	Х	<	6.00
0	6.00	≤	Х	<	7.00
0	7.00	≤	X	<	8.00
0	8.00	≤	Х	<	10.00
0	10.00	≤	X	<	11.00
۲	11.00	\leq	X	<	13.00
*			X	2	23.00

THØRIUM (PPM) SCALE 1: 250000 227 SAMPLES PLOTTED

ERA	SYSTEM	SERIES	MAP CODE	GEOLOGIC UNIT		
CENOZOIC	QUATERNARY	RECENT	QD	ALLUVIUM AND OTHER QUATERNARY DEPOSITS		
	TERTIARY		TEV	EXTRUSIVE IGNEOUS ROCKS		
			TI			
		OLIGOCENE/EOCENE	ТЕСН	SOUTH RIM FORMATION CHISOS FORMATION		
		EOCENE	TLSR	CANOE FORMATION HANNOLD HILL FORMATION BLACK PEAKS FORMATION		
MESOZOIC	CRETACEOUS	UPPER CRETACEOUS	UKSE	JAVELINA FORMATION AGUJA FORMATION PEN FORMATION BOQUILLAS FORMATION		
		LOWER CRETACEOUS	LKLB	BUDA LIMESTONE DEL RIO CLAY		
	and the state of		LKSE	SANTA ELENA LIMESTONE		
			LKSP	SUE PEAKS FORMATION DEL CARMEN LIMESTONE TELEPHONE CANYON FORMATION (UNDIVIDED		
			LKT	GLEN ROSE FORMATION		
PALEOZOIC	PENNSYLVANIAN	LOWER PENNSYLVANIAN	CPUD	TESNUS FORMATION		
	MISSISSIPPIAN AND DEVONIAN			CABALLOS NOVACULITE		
Server 1	ORDOVICIAN	UPPER ORDOVICIAN		MARAVILLAS FORMATION		
		MIDDLE ORDOVICIAN		FORT PENN FORMATION		
	CAMBRIAN	UPPER CAMBRIAN		DAGGER FLATT SANDSTONE		

GEOLOGIC CONTAC

GEOLOGIC FAUL

PLATE 8 STILLWELL MOUNTAINS PROJECT AREA TRANS-PECOS DETAILED GEOCHEMICAL SURVEY RADIOMETRIC SAMPLE LOCATION MAP

-02- 44

102°30′

