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σδt, δ ∼ N(0, 1) (right). Top: Phase portraits; Bottom: Time plots. . . . 9

2 A time series xt = 0.8zt−1 + εt with its autocorrelation and partial

autocorrelation functions shown below. . . . . . . . . . . . . . . . . . . . 16

3 Noiseless series with initial values x0 = 1, ẋ0 = 0 . . . . . . . . . . . . . . 45
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Within-person data can exhibit a virtually limitless variety of statistical pat-

terns, but it can be difficult to distinguish meaningful features from statistical arti-

facts. Studies of complex traits have previously used genetic signals like twin-based

heritability to distinguish between the two. This dissertation is a collection of studies

applying state-space modeling to conceptualize and estimate novel phenotypic con-

structs for use in psychiatric research and further biometrical genetic analysis. The

aims are to: (1) relate control theoretic concepts to health-related phenotypes; (2)

design statistical models that formally define those phenotypes; (3) estimate individ-

ual phenotypic values from time series data; (4) consider hierarchical methods for

biometrical genetic analysis of individual phenotypic variation.
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CHAPTER 1

INTRODUCTION

This dissertation is a collection of studies that aimed to advance both the conceptu-

alization and methodology of complex human traits with applications to psychiatric

research. The title is a combination of two concepts. In signal processing, algorithms

for feature extraction reduce voluminous data to set of statistical patterns or con-

structs that are fewer in number [1]. In human genetics, a phenotype is any human

feature, whether social, behavioral, cognitive, or biological, that is determined to

some degree by genetic factors.

Feature extraction most often refers to techniques of dimension reduction, but

can also refer generally to structures obtained by classification and parametric mod-

eling. Features can be extracted from either between or within-person data. In

psychiatric research, most studies involve relatively abstract assessment of traits via

questionnaires and structured interviews. Exploratory, data-driven techniques are

then used to generate new cognitive and behavioral constructs from the responses.

Exploratory factor analysis (EFA), a method of dimension reduction that decomposes

observed data into latent variables and indicator residuals, has led to the five-factor

model of personality [2], the two-dimensional circumplex models of affect [3, 4], the

higher-order factors of disordered behaviors called internalizing and externalizing [5],

and many others. Within-person data can be treated the same way. In the field of

computer vision, facial recognition models commonly rely on principal components of

facial structure, called “Eigenfaces”[6, 7]. Rather than identify each face as a pattern

of thousands of relative pixel values or correlations, most identifying features can be

1



described with a linear combinations of the principal components. In functional mag-

netic resonance imaging (fMRI) of brain activity, Independent Component Analysis

(ICA)[8] is used to reduce thousands of three-dimensional voxels, each with their own

time course, to the time courses of anywhere between eight and fifty brain networks

[9, 10].

When these methods are applied to data from human subjects in the context of

Behavioral Genetics, they imply the existence of a phenotype that cannot be measured

directly but has greater theoretical importance and utility than any of its particular

indicators. The fact that data can be reduced to fewer dimensions does not, however,

imply that the dimensions must represent something “real”. Without invoking the

broader philosophical problems of ontology, we can proceed with our particular aims

using a narrow definition that a psychological construct is real, or a “natural kind”,

if it represents a set of functions that distinctly and reliably explain natural phenom-

ena. In practice, determining whether a feature extraction model does “carve nature

at its joints” in such a way is a question of theoretical validation. A latent variable

might attain construct validity [11] if it is known to accurately measure or represent

something with an intelligible, etiological role that corroborates or complements other

empirical observations. A related idea is the nomothetic span of a variable: the fre-

quency and strength of its network of associations with other variables and ability to

account for individual differences [12]. More often, latent variables attain the weaker

criterion validity, in which they are found to have reliable, statistical relationships

to outcomes of interest. If found to predict outcomes at a later time, they may be

considered to have predictive validity.

Where the development and validation of latent variable models concerns psy-

chiatric disorders and complex traits generally, Biometrical Genetic modeling [13]

enables another form of validation that falls under the category of nomothetic span.

2



The genetic signals of complex traits can be used to gauge their proximity to biological

pathways, and to some extent, their reliability. Heritability, or the total percentage

of variation in the population due to additive genetic factors, can be estimated from

data in monozygotic (MZ) and dizygotic (DZ) twins, or from genotypic data using

methods like Genome-wide Complex Trait Analysis (GCTA) [14]. In Hans Eysenck’s

estimation of the heritability of Neuroticism [15], one of the five personality factors,

he summarized the new form of biometrical genetic validation succinctly: “If the re-

sult shows that the factor is inherited to a more marked extent than any single test, it

follows that we have succeeded in proving that the factor is no mere artefact, but has

a certain degree of biological reality.” To determine the specific genetic mechanisms

underlying variation in a phenotype, genome-wide association studies (GWAS) may

be used to detect effects from Single Nucleotide Polymorphisms (SNP) throughout

the genome [16]. When SNP-level associations to a complex trait can be found and

reproduced, the functions of their associated genetic regions may give important in-

sight into the trait’s biological architecture. Recent progress in GWAS of complex

traits suggests that for more abstract phenotypes, and particularly psychiatric disor-

ders [17, 18], SNP effects are typically so small and numerous that tens of thousands

of study participants may be needed to detect them [19, 20]. For this reason, the costs

of a GWAS are generally too large to justify for early studies of novel phenotypes.

Detecting aggregate heritability by twin study or GCTA requires far fewer subjects

and is thus a more accessible, general way to contrast the ontology of competing

phenotypic definitions [21].

1.1 Intrinsic Dynamics

The major goals of psychological research concern interindividual variation to

make nomothetic inferences. That is, we want knowledge of people in general. Many

3



psychological study designs involve intensive repeated measures, such as Ecological

Momentary Assessment (EMA) [22], in which data reflecting subjective experiences

are recorded on a daily or hourly basis (called active measurement), or experiments in

which sensors continually sample physiological correlates of mental processes (passive

measurement). These hierarchical data sets can become overwhelming to investiga-

tors, as it is not always clear how to incorporate such an abundance of within-person

information into a between-person analysis.

The complexity of hierarchical data is simplified if within-person processes can

be summarized by indices of temporally stable traits. An atheoretical first pass at

simplifying the problem is to extract descriptive statistics such as the means and stan-

dard deviations of each individual’s time series, but these are not always sufficiently

reliable, predictive, or interpretable. Theoretical, model-based indices have the po-

tential to access different kinds of information and posit more specific hypotheses. By

definition, theoretical indices predicate their specificity on more a priori conjectures

than exploratory, atheoretical descriptors. Consequently, if such conjectures are not

accurate, they will tend to fail more completely than generic descriptors in terms of

both reliability and prediction. It is exactly this property that makes them interest-

ing, however, because both failures and successes can lend to the improvement of the

underlying conjectures and a deeper theoretical understanding of the problem.

The kind of theoretical indices explored in this dissertation are commonly called

dynamics, meaning the particular relations within and between entities that deter-

mine their motion over time. The study of dynamics has seen the most success in

physics, from Newton’s models of how bodies move and interact in space, to the ran-

dom behavior of molecules in solution described by Langevin [23]. Recently, some

authors have taken interest in a Newtonian view of psychology and called for the pur-

suit of instrinsic psychological dynamics [24, 25, 26]. This call more closely resembles
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the practice in Econometrics of deriving “structural parameters” to develop more

empirical theories of market fluctuation and clearer indices of the effects of changing

economic policy. Econometrics was famously critiqued by Lucas[27] for producing

only short-term predictive models, but nothing general or fundamental enough to

evaluate changes in policy and the context of economic trends more broadly. Sum-

mers [28] went on to admonish the pursuit of structural parameters in Econometrics

as a “scientific illusion” that has resulted in impressive mathematical techniques and

a slightly broader vocabulary for economic theory, but no enduring empirical foun-

dation. Within their criticisms, we find many relevant reasons to be skeptical of the

same pursuit in Psychology. Human minds and markets exhibit a similar degree of

complexity, importance of external context, and relative inadequacy of measurement

strategies. Both can change to unprecedented states over time as a consequence of

rare and unique events, rather than statistical regularities. Regarding economics,

wars and natural disasters often lead to economic recessions with lasting changes

in policy. Major technological advances, such as automobiles and computers, have

irreversibly led to new kinds of demand and the obsolescence of old markets, and

with that, large-scale changes in the overall standard of living. Analogously, single

traumatic events can trigger lasting changes in personality. For example, Border-

line Personality Disorder (BPD) seems to arise as are result of childhood exposure

to violence and abuse [29]. Alternatively, acquisition of a new coping strategies and

knowledge [30] or addiction to a new drug can alter one’s fundamental strategies for

coping with daily stress. That complex systems can suddenly adapt and undergo

lasting changes in state suggests that many readily apparent dynamics of functioning

may be superficial and transient, whereas more trait-like mechanisms may have to be

found deeper within the adaptation process itself.

As we will discuss in Chapter 2, the hunt for intrinsic, trait-like dynamics begins
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with the problem that a time series can be parameterized in countless ways. Every

model is predicated upon a set of theoretical assumptions and a set of parameters that

potentially represent stable, ontologically convincing phenotypes. Eysenck’s reason-

ing [15] would seem to provide us with a generic criterion for comparing such models

and evaluating their ontology. The generative role of the genome in human behavior

and the differential magnitude of genetic signals by candidate phenotype should give

the pursuit of intrinsic dynamics in psychology a stronger footing than has been pos-

sible in econometrics. Genetic signals have arguably served as a kind of ontological

SONAR, with each theoretical conjecture sending a ping and receiving its reflection

off the underlying biological landscape. Like SONAR, a particular signal is cryptic.

Mapping must take place over many iterations, and interpretation must proceed by

inference.

As genetic modeling of intrinsic dynamics no longer refers to variation on a

latent variable, but rather variation in the parameters of a process, it is less clear

what takes the place of “any single test” in Eysenck’s statement. Perhaps a model

parameter earns some validity when its heritability is greater than any summary

statistic of the subject time series. A more cautious criterion may be to only make

relativistic comparisons of parameter heritability between competing models, much

like the practice of comparing model fit statistics. In this way, we would choose

a model with the highest chances of linking to known biological systems (such as

particular SNPs) as its mechanisms and parameters are further elaborated and tested.

1.2 Control Theory

How do we begin to conceptualize intrinsic dynamics in psychology? Human

behavioral processes express tensions between intrinsic and extrinsic forces. Envi-

ronmental changes force people to adapt, while periods of stability allow them to
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optimize. These themes have in common the problem of control. In the health sci-

ences, control is essential to defining and explaining disease states. Pathogens disrupt

the regulatory functions of the body and lead to declines in health and functioning.

In the DSM-5, functional impairment in work, interpersonal relations, or self-care is

a key criterion for the diagnostic categories [31]. It follows that many concepts from

control theory [32, 33] may be useful for conceptualizing behavioral and psychological

health in terms of stability, variation, and response to disturbance.

Despite their utility in engineering, relevant technical concepts and methods from

control theory are not as commonplace in studies of mental health. If we look to phys-

iology more generally, there are many domains in which control schemes compete to

best explain observable processes. In practice, they are implemented as computational

models. A computational model attempts to describe the emergent properties of a

process by way of its underlying mechanisms, often using simulation to compare its

expectations with reality. In Chapter 3, we examine one such model in the field of

human postural control to empirically evaluate its underlying theory. Computational

modeling is less convenient in psychology and psychiatry, where observations can be

clustered and associated with outcomes or latent dimensions, but the intractable com-

plexity of cognitive processing and environmental context make it difficult to conceive

of detailed, mechanistic theories for any particular behavior. We nonetheless attempt

in Chapter 4 to apply an analogous procedure to time series of affect for a simple

model of emotion control.

A number of concepts from the theory of control systems will be useful. First,

a feedback control system is one that takes its own outputs at one time as inputs at

a later time. A simple example would be a household thermostat, which activates

the heating or cooling of a room when that room’s temperature deviates too far from

a set value. Specifically, a thermostat is said to use negative feedback to keep the
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temperature close to that set value because the amount of heating or cooling applied

is inversely related to the current temperature. A system with positive feedback would

accelerate away from the set value, as higher temperatures invoke more heating. In

either case, the thermostat is known as a simple proportional controller, as change in

the state is proportional to its level. If a hot oven were suddenly opened, releasing a

gust of hot air into a small kitchen, the thermostat would detect the sudden change

in temperature and activate the air conditioning in response. In modeling terms, the

oven is a forcing function that acts directly upon the temperature of the kitchen. If the

oven is regarded as an exogenous force, external and circumstantial, then the HVAC

system would be regarded as an endogenous force, or one that responds predictably

and automatically by design.

In human experience, both external and internal forces on behavior are perpetual

and numerous. The stresses of daily life originate from external responsibilities, social

interactions, accidents, as well as the internal fluctuations of bodily needs, diseases,

and hormones. These are met with regulatory responses that can also be internal

or external. Social support networks, daily comforts, and habits of self-care reduce

stress responses and create regularity in behavior and experience. To model the

competing factors of stress and emotion control, we can think of the human mind as

a control system undergoing continual, random perturbation. Figure 1 illustrates the

path of a negative proportional-derivative feedback cycle over time, which includes

negative feedbacks from both level and velocity. On the left, the state begins from

a high point and, absent any external forces, surges down to its equilibrium point at

zero. Imperfect adjustments cause the system to overshoot, but the negative feedback

with velocity gradually reduces the error with each oscillation. In the graph on the

right, continual, random disturbances drive the system back up to a nearly constant

amplitude.
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Fig. 1.: Equivalent representations of ẍt = ηxt+ζẋt (left) and ẍt = ηxt+ζẋt+σδt, δ ∼

N(0, 1) (right). Top: Phase portraits; Bottom: Time plots.

The phase plots, shown above the time series, are another way of representing

the system with its predicted motion for any values of its current level and velocity.

Like fitting regression lines to bivariate scatter plots, the vector field (in blue) can

be approximately fit to stochastic series like the one shown on the right. The direc-

tion and magnitude of the predictive vectors is a function of the estimated dynamic

coefficients. In this case, there are two: the proportional coefficient, or frequency,

and the derivative coefficient, or damping. This damped linear oscillator model has

many uses in engineering and physics, where frequency is generally determined by

a spring constant or other accelerating force, while damping most often represents

sources of friction that gradually dissipate energy. In representing stress and emotion
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control, the distinction between proportional and derivative control may be harder

to attribute to such specific mechanisms. Possibly, each kind of regulatory factor at

play could be regarded as having precise and imprecise effects that more or less lead

to overcompensation of stress, adding variously to the values of these two dynamics

when taken in aggregate. Mainly, the damped linear oscillator is used here because

it is easy to understand visually. The dynamics of more plausible control processes

may not be possible to detect by visual inspection at all, instead requiring statistical

deconvolution.

1.3 Aims

The aims of this dissertation are to: (1) relate control theoretic concepts to

health-related phenotypes; (2) design statistical models that formally define those

phenotypes; (3) estimate individual phenotypic values from time series data; (4)

consider hierarchical methods for biometrical genetic analysis of individual phenotypic

variation. The next chapter gives a brief overview of relevant statistical methods for

modeling time series with interpretations in the context of cognitive and behavioral

processes.

To explore the capabilities of within-person modeling, the third chapter examines

a complex, theoretical model of postural sway fit to high quality physiological data.

The study was published by PLOS ONE in September of 2019 [34]. Postural sway

data were chosen because of the existence of high quality public data sets and several

options for theoretical models, few of which had been validated using the strategies

proposed.

The fourth chapter navigates the limitations and uncertainties inherent to psy-

chometric data using a much simpler model of feedback control. That study was

published in Addictive Behaviors in March of 2020 [35]. The chosen data represent a
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typical, developmental Experience Sampling design with measurement bursts over a

period of two years. It was chosen for analysis because the included affect data inher-

ently present technical challenges for a dynamical systems analysis, such as irregular

response intervals, noisy measurements, and high dimensionality.

The fifth chapter considers a similar study design, data set, and phenotypic model

as the fourth chapter, but navigates a range of new, additional challenges that arise

when individuals in the sample are dependent. Specifically, it considers the problem

of obtaining truly individualized dynamics for twin studies when twins cohabit, share

experiences, and influence one another throughout the study period.

The sixth chapter considers methods of hierarchical twin modeling to perform

both feature extractions and biometrical genetic analyses simultaneously for maxi-

mum statistical accuracy. The seventh and final chapter discusses future applications

and implications of hierarchical biometrical genetic analyses.
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CHAPTER 2

TIME SERIES METHODS

The basic problem of time series analysis is in accounting for variation and serial

dependence among observations of a process. By considering process models in the

context of cognition and behavior, we can derive many new, generic phenotypic con-

structs. This chapter reviews many of the most common strategies and concepts for

modeling behavioral time series. The content briefly summarized here is standard in

many introductory textbooks; see [36, 37].

2.1 General concepts

A stochastic process is an indexed random variable, xi, and a time series is

a time-indexed random variable, x(t) or xt, t ≥ 0, that implies a time-dependent

process. A white noise process is a Gaussian, independent and identically distributed

(i.i.d) variable that, while having no time dependence in itself, is a useful component

of time series models. A single series is called a sample realization of the process.

The ensemble is the set of all sample realizations. Take N as the number of sample

realizations and T as the number of observations per realization. A process is ergodic

if its statistical properties converge to the same values either when T → ∞, N = 1

or when N →∞, T <∞. Alternatively, a single sample realization will span the full

sample space with p → 1.0 as T → ∞. Ergodicity holds primarily for simple, linear

models and is a necessary property for models that aggregate over many individuals.

Another important concept is that of stationarity, or constancy over time. In

a strictly stationary system, all moments of the distribution of xt remain constant.
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In n-th order weak stationarity, all moments up to order n are stationary. For ex-

ample, it is common for models to assume second-order stationarity (also known as

“wide-sense stationarity”) in which only means and variances are assumed to be con-

stant. The assumption of stationarity may be more or less weak depending on the

time frame and context of the series. For series representing short intervals recorded

at high-frequency, such as sensor data, stationarity may be a plausible or necessary

assumption because of a priori boundaries on the system imposed experimentally or

by the physiology itself. For developmental studies, it may not make sense to assume

certain degrees of stationarity when the time frame and subject matter concern irre-

versible and unbound processes of overall growth or decay. The kind of stationarity

in question depends on the phenotype and its model. For instance, the height of

an individual over a lifetime is first-order or mean-nonstationary, as it continually

increases through early adulthood, then decreases slightly in late adulthood. Over a

time frame restricted to middle adulthood, it may be considered mean stationary in

that it is nearly a constant value. More complex traits, represented by dynamics in a

model, may be subject to higher-order forms of nonstationaritity. One example would

be changes in lability or variance in emotional states over the course of adolescence,

which may be of primary interest in a study of emotional maturation.

2.2 Time domain

In time-domain analysis, a series is described by relations between its values at

different time lags up to lag L.

xt = f(xt−l, t), l ∈ 1, 2, ..., L (2.1)

A Markov process is one in which future states, xt+l, depend only on the current

state xt. The definition given by Wei [36] states: “The state of a system is defined
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to be a minimum set of information from the present and past such that the future

behavior of a system can be completely described by the knowledge of the present

state and the future input.” Markov processes can be organized by whether time

intervals are discrete and uniform, e.g., with t ∈ [1, 2, 3, ..., T ], or continuous, with

t ∈ R and potentially irregular intervals. Second, the sample space x may either be

continuous or discrete. We will discuss a few examples of each kind of process in the

sections to follow.

2.2.1 Discrete Time, Discrete Space

A discrete time, discrete sample space process can be described by a Markov

chain. For every possible state of the system, there is a probability of either remain-

ing the same or changing to a different state. The transitional probabilities can be

described by a Markov matrix where columns contain probabilities summing to one.

In the simplest case of two possible states, 0 and 1, we would have: P (x = 0|x = 0) 1− P (x = 1|x = 0)

1− P (x = 0|x = 1) P (x = 1|x = 1)

 (2.2)

This kind of model may be useful for time series of relatively sparse categori-

cal data measured at regular intervals, such as monthly or annual occurrence of an

episodic psychopathology. The diagonal elements describe the probability of staying

in the same state, and the off-diagonals are the probability of switching. This kind

of model is useful in general for describing regime change over time, as a state may

represent more than just values on an observed variable. For example, states may

represent distinct factor models, and hence the inter-correlations of many variables

randomly change between two configurations.
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2.2.2 Discrete Time, Continuous Space

Models of continuous variables, x ∈ R, can assume continuous change from one

discrete timepoint to the next. The basic descriptive statistics resemble those for

cross-sectional continuous-variable analysis, such as the covariance and correlation.

The Autocorrelation Function (ACF) describes the self-similarity over different time

lags as the covariance of a variable with itself at some lag or lead k:

γk = Cov(Xt, Xt−k) = E[(Xt − µ)(Xt−k − µ)]. (2.3)

The autocorrelation is the standardized autocovariance:

ρk =
Cov(Xt, Xt−k)√

V ar(Xt)
√
V ar(Xt−k)

. (2.4)

Assuming stationarity, V ar(Xt) = V ar(Xt−k), so ρk = γk
γ0

, where γ0 is the variance

of X.

The partial autocorrelation function (PACF) estimates the relationship ofXt, Xt−k

accounting for intermediate lags:

Pk = Corr(Xt, Xt−k|Xt−1, ..., Xt−k+1) (2.5)

=
ρk − α1ρk+1 − . . .− αk+1ρ1

1− α1ρ1 − ...− αk−1ρk−1

(2.6)

Obtaining αk is somewhat more involved, but can be computed using multiple regres-

sion. See Chapter 2 of [36] for details.

Figure 2 shows an autocorrelated processes with its ACF and PACF shown below.

The PACF shows that it can be described by a partial autocorrelation of 0.8 with

lag 1. No other lags are significant, conditional on the effect of lag 1. There is a

false positive association with lag 18. These descriptive results aid in determining an

appropriate linear model of the process.
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Fig. 2.: A time series xt = 0.8zt−1 + εt with its autocorrelation and partial autocor-

relation functions shown below.

An autoregressive process, denoted AR(p), describes Xt as a linear combination

of Xt−i for order p lags:

xt = µ+

p∑
i=1

βixt−i + εt, ε ∼ N(0, 1). (2.7)

The parameter, βi, determines the degree of time dependence specific to each lag. εt

is a white noise process contributing novel change at each step. In various contexts, ε

may be referred to as the innovations, disturbances, process noise, or dynamic error.

An AR(p) process has a decaying ACF and a discontinuous PACF. It is one of the

most common models of the interplay between system history as a function of β and

disturbances ε. When β = 1, the model describes a random walk, or the cumulative

sum of a white noise variable. In developmental models, β represents the proportion

of the phenotypic state’s deviation from its mean at time t that is carried forward to

time t+ 1. In control models, 0 < β < 1 results in an expected decay toward a mean

value, and −1 < β < 0 results in discrete, decaying oscillations.
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A moving average process MA(q) of order q is one in which the present state is

a linear combination of previous disturbances:

xt = µ+ εt +

q∑
i=0

αiεt−i (2.8)

Each new disturbance has a temporary influence described by α up to lag q. Whereas

the ACF of an AR process decays continuously to zero as the lag value increases, MA

processes have a discontinuous ACF with associations only out to lag q. They can

be understood conceptually as a finite impulse response process in which the effect

of each disturbance vanishes completely after a fixed time interval.

These two models are often combined to create an Autoregressive Moving Aver-

age model, or ARMA(p, q):

xt = µ+

p∑
i=1

βixt−i + εt +

q∑
j=1

αjεt−j (2.9)

A further extension of the ARMA model is the Autoregressive Integrated Mov-

ing Average, or ARIMA(p, d, q). Xt is differenced up to order d and the differences

are modeled as ARMA(p, q). ARIMA models are highly general because the differ-

ences of a mean-nonstationary series are often stationary, and mean-nonstationarity

is common in a wide range of applications. A consequence of differencing is that

estimated parameters will be more sensitive to noise, as variance due to the signal

is being systematically subtracted out. Because of their generality, ARIMA models

are often used with exploratory fitting processes with the goal of obtaining a highly

predictive model without making theoretical assumptions.

2.2.3 Continuous Time, Discrete Space

When discrete variables such as binary indicators and counts of an event are

recorded at irregular, real-valued times, we can model their occurrence as a Poisson
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process. The Poisson distribution maps a given time interval to an expected number

(k) of occurrences of an event.

P (X = k) =
λke−λ

k!
(2.10)

where λ is the number of occurrences or rate in the form of a standardized interval,

k/T , where T is the length of the time interval.

The Poisson distribution can be derived as a limiting case of the binomial distri-

bution. To start, we assume that each new event is an independent Bernoulli trial at

each new time t ∈ 1, 2, ..., T with probability of occurrence k. The Binomial distri-

bution gives the expected number of occurrences k given T trials and probability of

occurrence k:

P (X = k;T, p) =
T !

k!(T − k)!
pk(1− p)k (2.11)

The factorial term represents all possible combinations of occurrences across the T

time points. To conceptualize this as a continuous time process, we can take T →∞

and p→ 0, making k a real-valued interval that maps to a probability density. A full

proof of this is given by the Poisson Limit Theorem.

Take for instance binary indicators of substance use, stressful events, or acci-

dents recorded in an EMA study with an event-contingent design. These variables

may be recorded along with those of an ordinal or continuous sample space, such

as affect. When recording the affect, the event indicators may be zero most of the

time. When the event of interest occurs, a new report is submitted with the value

of one. The model describes the distribution of the events across time. Along with

binary indicators, the distribution accepts equally well a count of, for instance, the

number of cigarettes smoked or alcoholic drinks consumed in the previous hour. In

these models, zeros and missing data do not give different results- everything is zero
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between individual instances or aggregated counts of the event.

Poisson regression and the related negative binomial regression are two ways of

testing associations between such aggregate counts and their continuous covariates.

The exponentiated parameters give expected counts of the event conditional on the

value of the predictors. In Chapter 4, negative binomial regression is used to relate

the total number of occasions of substance use to a parameter of emotion regulation.

2.2.4 Continuous Time, Continuous Space

When both the time intervals and the sample space belong to R, a continuous

time model may be used instead. These models take the form of stochastic differential

equations (SDE). For brevity, we can use dot notation: dxt
dt

=: ẋt,
d2xt
dt2

=: ẍt, etc. A

continuous-time random walk can be described by a process with a random first

derivative:

ẋt = δt, δt ∼ N(0, 1) (2.12)

This basic relation has been used to describe “Brownian motion” of molecules in a

solution. The integral is called a “Wiener process”: A function that is everywhere

continuous but nowhere differentiable. It is a random fractal, in that it exhibits

statistical self-similarity at all scales. This property simplifies the problem of random

intervals in that the expectations for xt+1 can always be computed the same way,

regardless of ∆t.

The AR(1) model in Equation 2.7 can equivalently be written for continuous

time:

ẋt = λxt + δt, (2.13)

where λ = ln(β)
∆t

or β = eλ∆t, using the solution to a linear first-order ordinary

19



differential equation (ODE). Variation in time intervals is thus handled implicitly.

The solution of an SDE is called a diffusion process, where diffusion refers to the

stochastic component.

Differential equations can be characterized by their phase portraits, the bivariate

plots of different derivatives. Take for instance the second order equation for damped

oscillation described in Chapter 1:

ẍt = ηxt + ζẋt + δt (2.14)

When η is negative and η + ζ2/4 < 0, this equation produces oscillations of random

amplitude. The sign of ζ determines whether the amplitude tends to grow or decay.

A continuous time model will fit a vector field to the series that predicts its motion

for any coordinate in the sample space, as was shown in Figure 1.

It is useful in many scenarios, regardless of whether time intervals are actu-

ally continuous or discrete, to use differential equation notation instead of equivalent

discrete-time notations. When comparing the results of substantively similar studies

with different measurement intervals, autoregressive models may be converted to dif-

ferential equations for directly comparable parameter values. Many kinds of dynami-

cal systems, and physical systems in particular, are also much more straight forward to

describe with differential equations. A thrown baseball, measured at equal intervals,

will be highly autocorrelated because each new position will be almost completely

accounted for by the last known position. But it is not intuitive or convenient to ana-

lyze physical trajectories in terms of discrete variance transfers using an equation like

2.7, when the parabolic curve can be described by the relationship between forces of

acceleration, velocity, and position instead. Similarly, the generic damped oscillator

model may be described by a second-order autoregression, yt = β1yt−1 + β2yt−2 + δt

in which β1 > 0, β2 < 0, and β1 + β2 < 1. The most obvious topological features of
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the series, damping and frequency, become a somewhat more obscure joint function

of β1 and β2, rather than being controlled primarily by separate parameters.

2.2.5 Structural Equation Models of Change

Biometrical genetic analyses of multi-indicator factors over time often use a com-

bination of dimension reduction and structured linear modeling in the framework of

Structural Equation Modeling (SEM) with latent variables [38]. SEM is a highly gen-

eral way of specifying linear models that incorporates latent dimensions. It can be

used to specify measurement models in which the unmeasured phenotype is inferred

from the network of correlations among many observed indicators. The SEM algebra

generalizes that of factor analysis, decomposing the expected covariance matrix of

the observed variables into regressions onto a smaller set of latent dimensions:

Σ̂(X) = LSLT + U, (2.15)

where L is a matrix of factor loadings, or the regression coefficients of observed vari-

ables X onto latent factors. S is the covariance matrix of the latent factors, and U is

a diagonal matrix of residuals. Pre- and post-multiplication by (I−A)−1 allows us

to specify unidirectional relations between latent factors in the A matrix:

Σ̂(X) = L(I−A)−1S(I−A)−1TLT + U (2.16)

Time-series SEMs are often used in developmental studies with relatively few

occasions of measurement, most often in the form of random-effects curve-fitting or

between-persons autoregressive panels. In a Latent Growth Curve (LGC) [39], fixed

factor loadings are used to define latent variables as terms of a polynomial trajectory

that is allowed to vary across the sample. Autoregressive and cross-regressive panels

[40, 41] are specified in “wide format”, where each of the T occasions is given a column
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in each matrix. For AR models, most of the information that identifies the model

comes from between-person variation per occasion. To estimate the autoregressive

coefficients with sufficient statistical power, ergodicity must be assumed.

Continuous-time Ordinary Differential Equation models have been produced

using SEM algebra as well. One such strategy, the Latent Differential Equation

(LDE)[42], uses roughly the same specification as the LGC, but the rows of the data

matrix are overlapping intervals of the series rather than independent persons. The

dynamics are estimated as the linear relationships between the polynomial terms.

The result is a deterministic differential equation model with measurement error that

relies on local linear approximation of derivatives. So far, only a single specification,

namely the damped linear oscillator, has been demonstrated, though multi-state [43],

multi-timescale [44], and quasi-stochastic [45] generalizations have been developed.

2.2.6 State-Space Modeling

All of the Markovian models presented so far belong to the general class of State

Space Models (SSM). SSMs, as an algebraic framework, can include any and all of

the components of the above methods, modeling latent variables as continuous or

discrete time processes according to particular dynamics. SSMs can be vectorized to

allow multiple states as latent variables with multiple indicators:

xt = Axt−∆t + But + qt, (2.17)

yt = Cxt + Dut + rt. (2.18)

The first line is the state equation that includes the dynamical specification, and the

second line is the measurement model that relates the indicators to the states.

In equation 2.17, the A matrix contains the auto and cross-regressive coefficients

of the latent state, xt. B contains the regression coefficients on potentially time-
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varying covariates, or external forcing functions. mathbfqt is a Gaussian distributed

white noise variable representing random disturbances to the state. In equation 2.18,

the C matrix contains the factor loadings, or coefficients that relate the indicators

to the latent state. It is identical to matrix L in equation 2.16. D, similarly to

B, includes regression coefficients of yt onto time-varying covariates. Finally, rt is

a Gaussian distributed white noise variable that represents measurement error, or

additional random variation that does not influence the latent state.

The same models can be specified as differential equations in continuous time:

ẋt = Axt + But + qt (2.19)

yt = Cxt + Dut + rt (2.20)

For a discrete-time system with two latent states, six indicators, one time-varying

covariate, we would have:x1,t

x2,t

 =

β1,1 β2,1

β1,2 β2,2


x1,t−∆t

x2,t−∆t

+

α1

α2

[ut]+

q1,t

q2,t

 (2.21)

(2.22)

and 

y1,t

y2,t

y3,t

y4,t

y5,t

y6,t


=



λ1,1 λ2,1

λ1,2 λ2,2

λ1,3 λ2,3

λ1,4 λ2,4

λ1,5 λ2,5

λ1,6 λ2,6



x1,t

x2,t

+



γ1

γ2

γ3

γ4

γ5

γ6



[
ut

]
+



r1,t

r2,t

r3,t

r4,t

r5,t

r6,t


(2.23)

SSMs can be fit to data using the Kalman filter (KF)[46], a method of iteratively
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estimating means of the latent state conditional on previous values of the observed

indicators. The KF produces minimum-variance, unbiased estimates of the latent

state and the likelihood of the data given a set of parameter values. By re-running

the KF over iterations of optimization, maximum-likelihood estimates (MLE) of the

parameter values can be determined.

2.3 Frequency domain

The other major category of time series analyses involves the frequency domain.

Instead of considering the behavior of observations at each time t, we can transform

the data to consider the magnitudes of different frequencies f that comprise the

signal. A function g(t) can be described as an infinite sum of sinusoids (fi) with

varying amplitudes, frequencies, and phases.

g(t) =
∞∑
i=0

Ai cos

(
πfit

T

)
+
∞∑
i=1

Bi sin

(
πfit

T

)
(2.24)

Coefficients Ai and Bi can be found as the inner product of the function g(t) with

harmonic cosine and sine functions:

Ai =
1

T

∫ T

−T
g(t) cos

(
πfit

T

)
dt, (2.25)

Bi =
1

T

∫ T

−T
g(t) sin

(
πfit

T

)
dt, (2.26)

fi ∈ 1, 2, ...,∞ (2.27)

while A0 is simply the series mean. In the case where g(t) is a discrete function, i.e.,

a series of observations in discrete time, we can make sense of these coefficients as the
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covariances of the time series with sine and cosine functions of the same length:

Ai =
1

T

T∑
t=−T

g(t) cos

(
πfit

T

)
, (2.28)

Bi =
1

T

T∑
t=−T

g(t) sin

(
πfit

T

)
, (2.29)

fi ∈ 1, 2, ..., T. (2.30)

A Fourier transform on discrete data can therefore be equivalently performed as a

multiple linear regression of the time series onto the set of equal length sine and cosine

series for all harmonic frequencies fi. The above coefficients can be transformed to

put the series in terms of harmonic frequencies with a particular amplitude α and

phase φ, i.e., t offset of the first peak:

g(t) =
T∑
i=0

αi cos(2πfit+ φi), (2.31)

αi =
√
A2
i +B2

i , (2.32)

φi = − tan−1

(
Bi

Ai

)
(2.33)

αi is thus the amplitude spectrum and φi is the phase spectrum. Either these, or the

original coefficients Ai and Bi are all that are needed to reconstruct the original series

from the frequencies.

By modifying the spectra and reconstructing the series, frequencies can be selec-

tively filtered out. High-pass filtering tapers the amplitudes of only low frequencies

to zero and can be used to remove mean-nonstationarity. Low-pass filtering tapers

the amplitudes of high frequencies to zero and is one method of removing noise. This

is because the spectrum of Gaussian white noise dominates the high frequency range.

In most applications, measurement error or sensor noise also has a much lower vari-
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ance than the signals of interest. Suppressing high frequencies can eliminate a greater

proportion of error variance than the signal of interest, but it can also lead to artifacts

and misleading smoothness.

The Fourier Transform has numerous other uses throughout signal processing,

including data and image compression, edge detection, and analysis of the underlying

structure of a series. In mathematics generally, it is commonly used to solve partial

differential equations by reducing difficult systems to an infinite series of far simpler

components. The Fourier Transform also has a number of non-sinusoidal generaliza-

tions, including Wavelet transforms[47], which serve many of the same purposes but

with properties like localization of features.

Frequency-domain analyses are common in physiological studies, particularly

EEG and fMRI where the activity of brain networks is characterized by rhythmic

oscillations. Different frequencies, amplitudes, and synchronizations of electrophysi-

ological activity in different regions of the brain appear to correspond respectively to

the type, degree, and combination of different mental tasks. Frequency domain anal-

yses also allow raw feeds of electrocardiogram (ECG) and respiration to be converted

to series of heart rate and breaths-per-minute.
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CHAPTER 3

STUDY I: WELL-BEHAVED PHYSIOLOGICAL SENSOR DATA,

COMPLEX NONLINEAR MODEL

3.1 Introduction

Several previous studies have analyzed bodily sway patterns in quiet standing,

and a variety of models have been proposed. In this study, we designed and tested

a method of directly estimating the parameters of the Asai et al. [48] intermittent

feedback control model of posture from experimental data. We begin with a brief

review of prior models and the rationale for choosing a model of intermittent postural

control (IPC). In the second section, we describe the current model in more detail

and explain our framework for the estimation of its parameters. The third section

describes simulation studies that tested the estimation capabilities of our framework

when the data-generating parameters are known and the model is specified accurately.

In the fourth section, we applied the model to experimental data and estimated

sampling distributions for each parameter.

Observed trajectories of postural sway have largely been studied as a problem of

stochastic behavior, though some studies have focused on its chaotic properties [49].

In this study, we too regarded postural sway as a random process subject to statistical

analysis. The center of pressure (COP) on a force plate during quiet standing has

been shown to exhibit the features of a bounded, random walk, or correlated noise

[50]. Center of mass (COM) is one of the most common metrics of body sway but

has to be inferred from other position and force metrics such as the COP [51]. For

the small radius in which postural sway occurs, body tilt angle is nearly equivalent
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to COM and has likewise been used to develop models of posture [48].

Many authors have observed that sway follows a two-frequency oscillation scheme,

with fast oscillations of the COP around a drifting center point [52, 50, 53, 54]. Collins

and De Luca [50] regarded these patterns as a combination of short-term, open-loop

system with long-term closed-loop control. Alternatively, the “rambling and trem-

bling” hypothesis suggests that short-term tremors result from corrective, closed-loop

feedback that is activated with deviation of the COP from the ground projection of

the COM, which is itself allowed to drift [54].

Broadly, more recent debate over the control scheme of human balance has fo-

cused on two kinds of models: continuous and intermittent feedback controllers. Con-

tinuous control is exerted through a proportional-integral-derivative (PID) or closed-

loop system often characterized by a second order linear differential equation, some-

times including delayed proportional and derivative feedback. For instance, Maurer

and Peterka [55] tested a PID inverted pendulum model that distinguishes passive,

instantaneous feedback from sources such as ankle joint stiffness, from delayed, ac-

tive feedback from the central nervous system and subsequent muscular response.

Others have argued that human postural movement is better described by intermit-

tent feedback mechanisms due to a smaller reliance on process noise, reproduction

of cyclical behavior over multiple timescales, more efficient energy expenditure, and

greater robustness to disturbances and instability caused by delays in neural signal-

ing [56]. Simulations [57] and reinforcement learning [58] have been used to show

that an upright pendulum, taken as a simple model of the standing human body,

can exhibit stability and the observed slow oscillation patterns as a result of learned,

time-delayed, intermittent feedback.

Intermittent activation models have taken multiple forms. Gawthrop and Wang

[59] initially proposed clock-driven muscular feedback, but later considered event-
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driven models [60]. Event-driven models are generally defined by a combination

of stable and unstable manifolds in the phase space of the body’s position or angle.

Gawthrop et al. [60] and Eurich and Milton [61] describe the behavior of systems with

position-based thresholds that result in two stable equilibria. A model by Bottaro

et al. [62] proposes boundary functions of both position and velocity that jointly

determine probabilistic bursts of negative feedback. Asai et al. [48] reproduced a

commonly observed double power-law structure in the PSD of sway [53] using similar

control manifolds but with deterministic rules for sustained feedback activation. Their

model requires only a simpler, Gaussian distribution of process noise with a smaller

variance as compared to continuous PID models. Nomura et al. [63] showed that the

same intermittent activation feedback model is capable of reproducing both chaotic

and stochastic patterns that resemble human postural sway as a function of small

hemodynamic perturbations, while continuous feedback models cannot.

A common method of estimating the parameters of each model is to simulate

data that optimally resemble the experimental data. This is accomplished by varying

parameters over iterations of simulation until resulting disparities on a set of key

summary statistics have been minimized. Bottaro et al. [62] used the the Root

Mean Square (RMS) of both the COP and COM series and each of its derivatives,

unimodality of the series histogram, the length of largest oscillations calculated from

zero crossings, and the PSD of the COP series. Maurer and Peterka [55] estimated

parameters from observed data in a similar manner using mean velocity, RMS distance

and velocity, spectral properties such as mean frequency, frequency dispersion, and

total power. Asai et al. [48] used the double power law structure of the frequency

spectrum as a criterion for the success of their model but did not demonstrate a direct

empirical application. To obtain statistical information about estimated parameters,

summary statistic methods have been combined with approximate Bayesian inference

29



[64]. This method was used to acquire empirical posterior distributions of five out of

the eight parameters of interest [65].

While the simulation approach is flexible for a wide range of model specifications

and levels of complexity, it risks overlooking attributes of the data that do not have

specific effects on the chosen summary statistics. Bottaro et al. [62] notes, for in-

stance, that “The intermittent nature of the control process cannot be detected by

global descriptors of the sway patterns, like the PSD of the COP, because they cannot

distinguish between asymptotic and bounded stability.” Furthermore, the amplitude

spectrum is invariant to reversal of the signal, giving identical results for potentially

different mechanisms of variation. This is problematic when the system includes dis-

continuous dynamics, such as a sharp impulse followed by a more gradual decay. An

alternative approach that better accounts for fine-grained sequential dependence is to

estimate the structural parameters directly from the data using Kalman filtering or

other iterative techniques. No simulation or descriptive statistics are necessarily used,

rather the structural parameters are estimated by minimizing an objective function

such as the squared prediction error, or by maximizing the likelihood of the data ac-

cording to an expected noise distribution. The results obtained by this approach can

be sensitive to the exact predictive mechanisms specified in the model, and post-hoc

analyses of the estimates can be highly informative about the types and degrees of

misspecification. Direct estimation (sometimes called exact estimation by comparison

[66]) may be particularly useful when the dynamic structure cannot be represented

by any descriptive statistics with sufficient specificity. The Asai et al. [48] model of

posture may present one such case in that it postulates dependence of the spectral

power-law property upon nonlinear, physiological mechanisms of feedback control and

their properties. Such properties include the delay in neural signaling, the sensitivity

of feedback activation, and the strength of passive versus active corrective forces. Fur-
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thermore, the process noise distribution of the Asai et al. [48] model is a Gaussian

process and thus accords with the statistical assumptions of the Kalman filter. A

drawback of direct estimation is that a misspecified model is not guaranteed to result

in any interpretable or accurate parameter estimates if the parameters are highly de-

pendent. If the parameter estimates deviate significantly from their theorized values,

we may nonetheless analyze the behaviors they imply and draw general inferences.

The aim of this study was to validate and apply a method of directly estimating

parameters for event-driven control with specific focus on the popular intermittent

control model by Asai et al. [48]. Validation of this analytic strategy will set a foun-

dation for estimating the parameters of alternative models and more comprehensive

comparisons. Following the validation study, we estimated empirical values of each

parameter from publicly available COM data [67] and compared our results with

theoretically expected values from the literature. We included two previously demon-

strated covariates in our analysis, visual feedback and age, to attempt to replicate

previous findings as further evidence for the validity of the model.

3.1.1 Model

The intermittent postural control (IPC) model by Asai et al. [48] describes a ten-

sion between toppling torque due to gravity and a combination of active and passive

resistance mechanisms. Passive resistance is proposed to come from leg stiffness and

joint friction and is modeled with instantaneous relations between position, velocity,

and acceleration. Active feedback control is proposed to arise from motor responses

signaled by the central nervous system and is consequently delayed by about 190-210

ms [68].
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The model is provided in terms of body tilt angle (θ) as follows:

Iθ̈t =mghθt − T, (3.1)

T =mghKθt +Bθ̇t +mghfP (θt−τ ) + fD(θ̇t−τ ) + σwt, wt ∼ N(0, 1), (3.2)

where I is the rotational inertia, m is the body mass (kg), g is gravity (≈ 9.81m/s2),

and h is the height of the COM. T includes all the terms representing mechanisms

of resistance to the angular toppling force. wt is a Gaussian, independent and identi-

cally distributed random variable accounting for stochastic variation in acceleration,

with standard deviation σ. The total passive forces may be written as mgh(1−K)θt,

as K is the percentage of the gravitational acceleration counteracted by passive re-

sistance. While a certain definition of B is not given, its effects are non-trivial and

an interpretation may be taken from the common use of the second-order damped

oscillator equation, in which the velocity coefficient represents negative feedback due

to friction. In this case, it may be regarded as a measure of ankle and knee joint

friction.

The active control terms, fP and fD, intermittently respond to θ on a time lag

of τ ≈ 200 ms according to the conditions:

if θt−τ (sθ̇t−τ − αθt−τ ) > 0, and θ2
t−τ + (sθ̇t−τ )

2 > r2


fP (θt−τ ) = Pθt−τ

fD(θ̇t−τ ) = Dθ̇t−τ

(Active),

(3.3)

otherwise


fP (θt−τ ) = 0

fD(θ̇t−τ ) = 0

(Inactive)

(3.4)

The first condition represents a threshold dividing the saddle-type attractor of
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the toppling acceleration into stable and unstable manifolds. The stable manifold

briefly occurs when the tilt angle is moving toward zero, while the unstable manifold

is characterized by falling away from zero. The angle of the dividing line is given by the

slope parameter α. The second condition describes a radius (r) about the origin within

which the tilt angle is too small to be detected or too stable for immediate correction

(note that r has conventionally been used to denote the delay time interval in the

delay differential equation literature. Here we have preferred τ for that purpose.).

By converting the switching threshold slope α into the angle a as α = sin(aπ)
cos(aπ)

, we

change the upper and lower estimation bounds from [−∞,∞] to [0, 1]. This way,

the parameter a represents the percentage of the phase space, not including the

insensitivity radius, for which the active control parameters are non-zero.

The estimable parameters of the SDDE are summarized in Table 1. Many of the

parameters have previously been estimated in a variety of ways, sometimes with highly

varied results. Tietäväinen et al. [65] used the approximate Bayesian inference [64]

with data simulation to estimate P , D, a, τ , and σ. Among these, the method failed

to obtain precise distributions for D in both simulations and empirical application.

It is also not clear whether fixing the other parameters to uncertain theoretical priors

(K = .8, B = 4, and r = .004) results in biased estimates. Direct physiological

measurements found the relative resistance to toppling torque at the ankle, K, to be

as high as 91% on average [69] when the average magnitude of disturbance is small.

Another study estimated relative resistance to be around 64% when disturbances were

larger [70]. Conversely, the chosen value of r involves a conjecture about perceptual

sensitivity that is specific to this model and has not been measured directly.

Tietäväinen et al. [65] obtained a value of τ around 300 ms, while other methods

of assessment have produced estimates including 125 ms [71] and 200 ms [68]. Di-

rect measurements of ankle response, however, found response to start at 30 ms with

33



Table 1.: Parameters of the IPC model with units and descriptions.

Fixed / Observed Unit

I Inertia (kgm)2

m Body mass (kg)

h Distance of center of mass from the ankle (m)

g Acceleration from gravity (m/s2)

Estimated

K Intrinsic upright stiffness % (of total Nm/rad)

B Joint friction Nms/rad

P Active response force Nm/rad

D Active response damping Nms/rad

a Percentage of phase space active %

r Insensitivity radius rad

τ Feedback delay s

σ Process noise variance Nm

ε Measurement error variance rad

maximal displacement around 120 ms [72]. If feedback delay is too long, then inter-

mittent periods of acceleration due to gravity or muscle feedback will be consequently

prolonged even as the state enters unstable regions of the phase space. One result

is overcompensation for error, in which the fast oscillations found in sway are more

amplified than would be the case with shorter delays. Alternatively, if the value of a

is too high, then delayed feedback may bypass the unstable manifold and activate at

inappropriate locations in the phase space, potentially amplifying slower oscillations

over time. Long feedback delays can therefore contribute to instability, sway ampli-
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fication, and higher risk of falling, but the exact kinds of error are determined by

the joint behavior of several parameters, including a, r, and disturbance magnitude

σ [48].

3.1.2 Estimation

The above equations represent a Stochastic Delay Differential Equation (SDDE).

The Kalman-Bucy filter provides minimum-variance unbiased estimates of the state of

a stochastic process when both measurement and process noise are present and can

be used to estimate the parameters of continuous-time differential equations from

noisy data [46]. However, two challenges arise when estimating the parameters of an

SDDE, including the lag interval τ and the lagged position and velocity coefficients,

P and D. First, interpolation of the lagged states must be used to allow a continuous

domain of possible values for τ . Second, backward extrapolation must be used to

estimate the unmeasured interval of lagged states preceding initial state x0.

Last, we address problems that occur when the discrete switching conditions

are toggled between measured instances. For most intervals between measures, the

dynamics are linear and the prediction is exact, but state predictions that traverse the

condition thresholds will systematically introduce bias to the linear dynamics unless

the correct ratio of active and inactive dynamics within each traversal is estimated.

We detail an algorithm to resolve this bias by adjusting the prediction according to

each of the possible threshold-traversal scenarios.
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3.1.2.1 Optimal filtering

The state-space equation for the time-lagged IPC system is given as

ẋt =Axt + Aτxt−τ + Q, (3.5)

yt =Hxt + µ+ R, (3.6)

where Q is the process noise covariance matrix, H is the measurement matrix, µ is

the estimated origin about which the COM oscillates, and R is the covariance matrix

of measurement error. The contemporaneous and lagged state vectors are

xt =

xt
ẋt

 , ẋt =

ẋt
ẍt

 , xt−τ =

xt−τ
ẋt−τ

 ,
and the state transition matrices are

A =

 0 1

mgh(1−K)/I −B/I

 , Aτ =

 0 0

−mghP/I −D/I

 , Q =

0 0

0 σ2

 ,
Matrix A contains the parameters of the passive, instantaneous forces, while Aτ con-

tains the conditional parameters of active feedback. When the conditions given in Eq

3.3 evaluate to false, Aτ = 0.

The measurement matrices simply attribute the observed COM to the state po-

sition with estimated origin µ and measurement error variance ε:

H =

[
1 0

]
R =

[
ε

]
The complete algebra for the prediction and correction steps of Kalman Filter-

ing is excluded, as its derivation can be found in many resources [36] and remains

largely unchanged for this model. However, the key difference in this case is that the

prediction step is altered to include the delayed term. Using the following matrix
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discretizations,

Ad =eA∆t, (3.7)

Ad
τ =A−1(Ad − I)Aτ (3.8)

Qd =

∫ ∆t

δ=0

eAδQeAδTdδ (3.9)

we can then provide the prediction equations for the state mean and covariance as

follows:

x̂t+∆t =Adx̄t + Ad
τ x̄t−τ+∆t (3.10)

P̂t+∆t =AdP̄tA
dT + Ad

τ P̄tA
dT
τ + Qd (3.11)

For stationary series with large number of observations, Pt ≈ P∞. For conve-

nience, we use Pt−1 as an approximation to Pt−τ . Note that Eq 3.8 does not work

if K = 1, making A singular. However, small, numerically viable deviations from

K = 1 will not substantially impact solution topology. Point singularities will also

not impede derivative-free optimization methods.

3.1.2.2 Estimation of feedback delay

Linear interpolation To obtain estimates of the state at time lags that do not

fall on measurement instances, we use linear interpolation of the state:

λ =
τ

∆t
, (3.12)

x̂t−τ =xi−bλc + (xi−bλc − xi−dλe)(λ− bλc), (3.13)

λ is the conversion of the time delay to the number of measured occasions comprising

that interval. The ceiling and floor functions thus give valid measurement indices and

are used to give a combination of measurements falling to either side of λ, weighted
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proportionally. If τ = 0, then the second term of Eq 3.13 can be neglected.

Backward extrapolation of initial values By introducing an initial value pa-

rameter for acceleration, we can estimate a quadratic extrapolation backward from

t0 to t0 − τ , allowing the influence of lagged states and switching conditions to be

respected within the first λ iterations of filtering:

If t ≤ τ


x̂t−τ = x0 + ẋ0(t− τ) + ẍ0(t− τ)2,

ˆ̇xt−τ = ẋ0 + 2ẍ0(t− τ),

(3.14)

3.1.2.3 Constrained interpolation of dynamic switching points

To avoid bias due to missing transitional information between measures that

straddle the threshold of the conditions given by Eq 3.3, we explicitly detect each

case, interpolate the state falling on the condition threshold, and predict its traversal

in two steps. For convenience, take the shortened terms u and v as the delayed states

leading up to, and away from the condition threshold:

u :=xt−τ , u̇ := sẋt−τ

v :=xt−τ+∆t, v̇ := sẋt−τ+∆t, (3.15)

Where s is the seconds constant, such that v, u, v̇, and u̇ are measured in radians.

For use later, we note here that the slope between the two points is m = v̇−u̇
v−u .

Conditions for switching off:

If [u(u̇− αu) > 0 and u2 + u̇2 > r2] and [v(v̇ − αv) ≤ 0 or v2 + v̇2 ≤ r2], (3.16)
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then Aτ is switching off. If this holds true, then the following conditions further

apply:

If v2 + v̇2 > r2

and ![(v > 0 and v̇ < 0 and u < 0 and u̇ < 0)

or (v < 0 and v̇ > 0 and u > 0 and u̇ > 0)], (3.17)

then the lagged state is traversing the line ẋ = αx outside of the slack radius and not

traversing u = 0. The interpolated point (û, ˆ̇u) falls on the line, and is calculated as

û = −mv − v̇
α−m

, ˆ̇u = mû−mv + v̇, (3.18)

If v2 + v̇2 ≤ r2, then the lagged state is traversing into the slack radius, and the

interpolated point is

û =
r2 + v2 + 2mvv̇ − v̇2

2(v +mv̇)
, ˆ̇u = mû−mv + v̇, (3.19)

In all other cases in which (3.16) holds true, u is traversing the axis at u = 0.

û = 0, ˆ̇u = −mv + v̇, (3.20)

Conditions for switching on: For cases where the delayed feedback is switching

on, the roles of u and v are simply traded. The interpolated point is calculated

identically under each set of conditions analogous to those for switching off.

If [u(u̇− αu) ≤ 0 or u2 + u̇2 ≤ r2] and [v(v̇ − αv) > 0 and v2 + v̇2 > r2], (3.21)
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then Aτ is switching on. If this holds true, then the following conditions further

apply:

If v2 + v̇2 < r2

and ![(u > 0 and u̇ < 0 and v < 0 and v̇ < 0)

or (u < 0 and u̇ > 0 and v > 0 and v̇ > 0)], (3.22)

then the lagged state is traversing the line ẋ = αx outside of the slack radius and

not traversing u = 0, and the interpolated point is calculated as equation (3.18). If

u2 + u̇2 ≤ r2, then the lagged state is traversing the slack radius from within, and

the interpolated point is calculated with equation (3.19). In all other cases in which

equation (3.21) holds true, u is traversing the axis at u = 0 and the interpolated point

is calculated as equation (3.20).

Prediction for threshold traversal: The time for u to reach the switching

threshold, ∆t−, and the time to reach the next observation after the threshold, ∆t+,

can be calculated from the interpolated state at the threshold and its neighboring

states, u and v:

∆t− =
‖u− û‖
‖v − u‖

∆t, ∆t+ =
‖v − û‖
‖v − u‖

∆t, (3.23)

In the first step, A,Aτ , and Q are discretized for the interval ∆t−, and the prediction

is given as:

x̂t+∆t− =Adx̄t + Ad
τu (3.24)

P̂t+∆t− =AdP̄tA
dT + Ad

τPtA
dT
τ + Qd. (3.25)

In the second step, A,Aτ , and Q are discretized for the interval ∆t+, and the
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prediction is computed from time t+ ∆t− as:

x̂t+∆t =Adx̂t+∆t− + Ad
τ û (3.26)

P̂t+∆t =AdP̂t+∆t−AdT + Ad
τ P̂t+∆t−AdT

τ + Qd. (3.27)

For either step, Ad
τ = 0, depending on whether the active feedback is switching on or

off.

3.1.2.4 Optimization

The toggling of active feedback is not a smooth process and results in disconti-

nuities in the space of a cost function for fitting the model, though these are greatly

mitigated by the interpolation measures described above. The complexity of the

model nonetheless gives rise to multiple local solutions, and attempts to find optimal

parameters using local methods such as gradient descent and Nelder-Mead reliably

fail. Instead, we recommend using a method of global, derivative-free optimization

such as Differential Evolution (DE) [73]. The optimization parameters that we chose

are listed below.

• Strategy: DE / rand / 1 / bin with per-vector-dither

• Iterations = 15000

• Population size = 30

• Crossover Probability (CR) = .95

• F = .15

• Weighting of successful members (c) = 0

• Step tolerance: 500
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• Relative tolerance: 1e-10

We chose a high crossover probability (CR) due to high dependence between param-

eters of the model and used simulations to confirm reasonable convergence given the

chosen population size, iterations, and F value. DE does not require initial values

for parameter estimation, but instead populates a region within explicit bounds. The

bounds used here for simulation and data analysis are given in Table 2. Parameter

bounds were generally restricted to potentially stable and theoretically meaningful

ranges, such as for K, P , r, and τ . Theoretical interpretations of parameters B and

D were less certain and were therefore allowed to vary beyond boundaries imposed

under any particular physiological definition. τ was constrained to the extremes of the

empirical distribution of neural delay given the results from Peterka [68]. Otherwise,

bounds were made extreme enough to capture all reasonable possibilities without

unnecessarily slowing convergence.

3.1.2.5 Software

All analyses used R statistical programming environment [74]. Differential Evo-

lution was provided by the R package DEoptim [75]. The IPC model was implemented

in C++ using R packages Rcpp [76] and RcppArmadillo [77], and compiled to the

open-source R package IPCmodel. The package includes the following functions:

• ipcModel(): C++ Kalman Filter with delayed terms and switching conditions

that returns a -2Log-likelihood value for optimization.

• ipcSimulate(): C++ numerical integrator that generates simulated data for

the IPC model.

• ipcMultiGroup(): R wrapper for ipcModel() that incorporates physical con-

stants, parameter algebras, and enables the estimation of both within and

42



Table 2.: Optimization bounds for all parameters

Par. Domain

K [0, 1]

B [-1000, 1000]

P [0, 2]

D [-1000, 1000]

a [0, 1]

r [0, 2]

τ [0.15, 0.25]

σw [0, 5]

σε [0, 1]

x0,i [-10, 10]

ẋ0,i [-50, 50]

ẍ0,i [-100, 100]

µi [-20, 20]

between-series parameters.

• kalmanIntegrate(): C++ helper function that accepts continuous-time state-

space matrices and returns discretized matrices for Kalman-Bucy filtering.

3.2 Simulations

Two simulations were used: the first to check model specification, and the second

to evaluate the accuracy and precision of parameter estimates. The first simulation

used noiseless (i.e. deterministic trajectories) with perfect measurement to check for

systematic bias due to the estimation strategy. The second simulation used data
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simulated to include both process and measurement noise according to the possible

properties of real data recorded by a force plate. Solutions for both deterministic

and noiseless simulations were generated in linearized steps of size 10−5s then down-

sampled according to the design of each simulation. This procedure ensured both

numerical accuracy of solutions and simulated real world mapping of analogue pro-

cesses to discrete measurements. The statistical properties of simulated series were

expected to be invariant to downsampling due to the fractal property of continuous

random walks (i.e., Wiener processes) where ∆t ∼ N(0,∆t).

3.2.1 Parameter sets

Six sets of simulated parameters were defined to test the model’s estimation

capability over a variety of possible behaviors and are shown in Table 3. The first set

replicates the simulated data for Model 4 by Asai et al. [48] and is named accordingly.

The second and third sets (“Low Noise” and “High Noise”) respectively decrease and

increase the variance of process noise to examine its effect on other parameters. The

fourth and fifth(“Active Control” and “Passive Control”) sets respectively increase

and decrease the ratio of active to passive control, representing different plausible

configurations for stability. The sixth set (“Rambling and Trembling”) represents a

stationary random-walk series that diverges markedly from the underlying theory but

is nonetheless a stable and plausible configuration.

3.2.2 Sim 1: Noiseless series

To test for improper model specification and systematic sources of bias, noiseless

series were generated to span 20s, with a step size of 10−5s, then downsampled to

an observation every 0.01s and again to every 0.1s. The noiseless series used in the

first simulation are shown in Figure 3. Only one series per set and per downsample
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Table 3.: Parameter sets for generating simulated data

K B P D a r τ σ ε

Asai et al. 0.80 4.00 0.25 10.00 0.62 0.40 0.20 0.20 1E-04

Low Noise 0.80 4.00 0.25 10.00 0.62 0.40 0.20 0.05 1E-04

High Noise 0.80 4.00 0.25 10.00 0.62 0.40 0.20 1.00 1E-04

Passive Control 0.95 4.00 0.15 10.00 0.50 0.70 0.20 0.20 1E-04

Active Control 0.75 4.00 0.70 120.00 0.80 0.20 0.20 0.20 1E-04

Rambling and Trembling 0.98 500.00 0.20 -50.00 0.45 0.05 0.20 2.00 1E-04

rate was used, as there were no sources of sampling error. To ensure that estimates

converged to a high degree of precision, 3000 iterations of optimization were used.
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Fig. 3.: Noiseless series with initial values x0 = 1, ẋ0 = 0

Table 4 contains the parameter estimates for these simulations, with sampling

rate shown to the left. Only the velocity coefficients B and D exhibited substantial

bias all throughout, and the “High Active” set incurred the greatest bias over nearly

all parameters. Most parameter estimates given 100Hz sampling were exact to at
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Table 4.: Parameter point estimates for simulated noiseless series. Downsampling rate in Hz is

shown in the left column. See Table 3 for the true, data-generating parameter values of each

set.

Hz Set K B P D a r τ σ

Asai et al. 0.80003 4.10640 0.24996 10.62579 0.62000 0.40000 0.20001 0.00000

100 Passive Control 0.95000 4.08142 0.14998 10.46709 0.50000 0.70000 0.20000 0.00000

Active Control 0.75086 4.09833 0.69372 122.07313 0.79987 0.19990 0.20020 0.00000

Asai et al. 0.80024 5.65678 0.24975 15.62635 0.62030 0.39914 0.20000 0.00000

10 Passive Control 0.95001 5.40384 0.14939 19.03988 0.49999 0.70016 0.19978 0.00001

Active Control 0.74853 4.17357 0.63636 140.82292 0.80120 0.19951 0.20097 0.00022

least 3-5 decimal places. Reducing sampling resolution by a factor of ten increased

biases to parameters B and D by a factor of ten to fifteen, but much less so for K

and P . The nonlinear parameters a, r, and τ exhibited the least bias for all sets.

The small biases to K, B, P , and D most likely occur as a result of the ap-

proximate, linear interpolation methods and inability to account for process noise

before t0 in the quadratic backward extrapolation. Biases may be further mitigated

using polynomial interpolation of the lagged state. However, the exact accuracy of

the estimated τ indicates that bias from linear interpolation is probably trivial in this

case.

A second source of bias may be the limits of numerical precision. When no noise

is present in the system, the state only occupies a small area of the phase space where

certain values of B and D may have nearly unobservable effects on the solution. We

show later that relatively unbiased estimates of B and D can indeed be obtained as

a function of the other parameters, including the process noise variance σ.
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3.2.3 Sim 2 Estimation from noisy data

To test the precision and accuracy of IPC parameter estimates given the di-

mensions and expected structure of the data from Santos et al. [67], one-hundred

individuals were simulated for each parameter set in Table 3, with examples series

shown in Figure 4. Each individual consisted of three trials, and each trial consisted

of a 60s series downsampled to 100 Hz. The same parameters were estimated for all

three trials, making for a total of 18,000 observations per individual model.

Figs 5a through 5f show the sampling variation and bias for each parameter set.

Boxplots are grouped by common axis scale. Table 5 gives the means and standard

deviations of each parameter for each set.

Variance and baises across all parameters were highly interdependent. Estimates

of both process noise (σ) and measurement error were precise and close to their true

values, indicating successful filtering of the state. The precision of active and passive

control parameters depended on their true values and the resulting behavior of the

process. For the Asai et al. replication and the sets with low and high process noise,

most control parameters had only small bias and high precision, while others were

less reliable under particular conditions. The greatest apparent contrast may be the

insensitivity radius r, which was not estimable for the Rambling and Trembling set

in which its true value was small, and much less reliable in the increased noise set

where its value matched Asai et al.

The B and D parameters were the least reliable, and are possibly empirically

unidentified without a sufficiently high process noise variance. This is evident from

the increased noise set (Figure 5d) and the Rambling and Trembling set (Figure

5b). The active control set (Figure 5f) also showed successful estimation of the B

parameter, and improvements in estimating D over the the Asai et al. set, low noise,
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Table 5.: Simulation results: Means (µ) and standard deviations (σ) of estimated parame-

ters over 100 iterations of simulation for six parameter sets. True values are given in Table

3, and parameter descriptions are given in Table 1.

Par. Asai et al. Low Noise High Noise Low Active High Active Ramb./Tremb.

K
µ 0.820 0.814 0.812 0.955 0.789 0.978

σ 0.021 0.017 0.017 0.008 0.067 0.025

B
µ 15.654 22.278 4.203 9.811 6.350 504.441

σ 10.727 13.743 9.631 6.922 4.743 28.426

P
µ 0.228 0.231 0.235 0.139 0.694 0.301

σ 0.020 0.017 0.016 0.011 0.071 0.211

D
µ -0.511 -3.337 11.039 7.556 101.869 -138.941

σ 14.490 14.398 13.258 14.042 9.850 281.247

a
µ 0.621 0.623 0.620 0.505 0.813 0.481

σ 0.006 0.005 0.004 0.008 0.016 0.072

r
µ 0.410 0.402 0.494 0.712 0.202 0.609

σ 0.037 0.006 0.210 0.024 0.014 0.322

τ
µ 0.174 0.170 0.178 0.162 0.177 0.176

σ 0.013 0.011 0.009 0.010 0.013 0.023

σ
µ 0.216 0.060 1.008 0.207 0.206 2.117

σ 0.014 0.005 0.049 0.011 0.011 0.134

ε
µ 9.98E-05 1.00E-04 9.96E-05 1.00E-04 9.98E-05 9.99E-05

σ 1.07E-06 1.16E-06 1.08E-06 1.04E-06 1.08E-06 1.15E-06
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Fig. 4.: Examples of simulated series from six parameter sets.

and passive control.

From the variation in results across sets, it can be inferred that a parameter

can only be estimated reliably when the state occurs for a sufficient amount of time

in the portions of the phase space for which that parameter has an influence. For

instance, the insensitivity radius will not be estimable if the state tends to bypass

it entirely. This may be due to a large variance of process noise, or for large values
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(b) Rambling and Trembling
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Fig. 5.: Parameter recovery results for each parameter configuration. Black squares:

data-generating value; Empty squares: Estimate mean; Triangles: Upper and lower

std. dev.; Circles: Outliers; Crosses: Optimization boundaries.
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of B that distort the saddle shape of the passive attractor space, causing an orbital

path that never intersects the origin. Likewise B and D cannot be estimated reliably

if the process does not frequently visit the extremes of the phase space where their

influence is most apparent.

Empirical under-identification of some parameters is not necessarily problematic

for the others, and does not imply the unreliable parameters should be fixed to some

value or excluded. Two solutions to empirical under-identification are to increase the

length and resolution of the sample to increase the chances of observing informative

behavior, and perhaps to introduce small interventions or disturbances such that

subjects express the full range of relevant dynamic behaviors.

Standing apart from the other parameters is the feedback delay τ . Despite perfect

accuracy in the noiseless case, it tended to bias downwards when estimated from

noisy data. It is unclear from our simulations why the bias occurs and whether it

accounts for bias to other parameters. However, the estimates were not generally

boundary cases, and the sampling variability was small. If the bias is consistent, the

delay parameter should still be comparable between persons, with the caveat that the

estimate is understated by 20-40ms.

3.3 Data Analysis

The IPC model was fit to empirical postural control data to 1) estimate the

multivariate distributions of each parameter, 2) test for expected effects from age and

visual feedback, 3) test the consistency of parameters within-person, 4) compare the

proposed model to simpler alternatives. COM data were obtained from the data set

published for public use by Santos et al. [67] and included 49 individuals at 100Hz

for 60 seconds per trial. Three trials were conducted with eyes open, and three with

eyes closed. Only trials tested with a rigid floor were used for our analyses. Height
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and weight were provided for each individual and included as the constants h and m

in the model, scaled to units of meters and kilograms respectively. Height was scaled

by 0.51, the approximate ratio of vertical COM to total height in upright standing

(calculated from Table 1, p.7 of [70]). By visual inspection of the sample, it was

found that the first and last several seconds of many series contained large, sudden

changes in position likely relating to movement during the initiation and termination

of the trial period. To ensure that only the stationary dynamics of interest were

modeled, 500 occasions were trimmed from the beginning and end of each series,

leaving 5000 occasions or 50 seconds of data per trial, and 30,000 measurements in

total per individual.

Models Three models were fit to each of three trials per individual to examine the

statistical significance of the parameters involved in intermittent activation and de-

layed feedback. The models included, in descending order of complexity, the complete

intermittent stochastic delay differential equation (ISDDE),

Iθ̈t = mgh(1−K)θt +Bθ̇t +mghfP (θt−τ ) + fD(θ̇t−τ ) + σwt, (3.28)

a stochastic delay differential equation (SDDE) with delayed feedback but no inter-

mittent switching conditions,

Iθ̈t = mgh(1−K)θt +Bθ̇t +mghPθt−τ +Dθ̇t−τ + σwt, (3.29)

and a stochastic differential equation (SDE) containing only instantaneous, continu-

ous PID control terms:

Iθ̈t = mgh(1−K)θt +Bθ̇t + σwt. (3.30)

All models included trial-specific initial conditions x0,i and ẋ0,i and sway origins
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µi for i ∈ [1, 2, 3]. The ISDDE and SDDE both included trial-specific estimation of

ẍ0,i for backward extrapolation. All models included measurement error variance σε.

Parameter boundaries, shown in Table 6 reflected both theoretical and analytic roles

of each parameter. For example, B could not be less than zero in the ISDDE because

it is conjectured to represent ankle stiffness, and stability is required to come from

values of P and D in the given domains. In the SDE, stable solutions must rely

on only instantaneous feedback with coefficients K and B. In the absence of other

theoretical mechanisms, the same physiological interpretations of K and B could not

be assumed and thus the same theoretical constraints were not applied.

Multiple regression was used to test the association between each parameter,

visual feedback, and age, accounting for height and mass as covariates. Pearson

correlation was used to estimate the correlation between parameter estimates during

trials with eyes open and trials with eyes closed. Maximum likelihood estimation

was used to fit each model, assuming the multivariate normality of measurement and

process noise.

The estimated means µ̂, standard deviations σ̂, and medians of each estimated

parameter across all trials × participants × visual feedback conditions, are given in

Table 7. The estimated individual-level intraclass correlations (ρICC), effect sizes,

and p-values for age and visual feedback are also given for each model. Measurement

error estimates were generally small (σε < 1e− 3) and were omitted from the tables.

Minor, trial-specific “nuisance” parameters including sway origins and initial values

were also omitted. Mean sway origin was estimated to be 0.217, with a standard

deviation of 0.11 and a median of 0.226.

The estimated parameters of the ISDDE fell within the expected domains. Sev-

eral parameters of the ISDDE had outliers that substantially inflated estimates of

their standard deviations. Trimmed standard deviations in which the highest 15 val-
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Table 6.: Optimization boundaries [lower, upper] for each parameter, under each

model.

Par. ISDDE SDDE SDE

K [0, 1] [0, 1] [-10, 10]

B [0, 2000] [0, 2000] [-2000, 2000]

P [0, 2] [-2, 2]

D [-2000, 2000] [-2000, 2000]

a [0, 1]

r [0, .1]

τ [0, 1] [0, 1]

σ [0, 5] [0, 5] [0, 100]

ε [0, .03] [0, .03] [0, 10]

x0 [-5, 5] [-5, 5] [-5, 5]

ẋ0 [-150, 150] [-150, 150] [-150, 150]

ẍ0 [-500, 500] [-500, 500]

Origin [-1, 1] [-1, 1] [-1, 1]

ues were excluded are given in parentheses in Table 7. The marginal distributions

of each parameter with these trimmed means and standard deviations are shown in

Figure 6. B, P , D, and r in particular were skewed upward by outliers but other-

wise had relatively precise distributions about their medians, with similar precision

to those of the SDDE. K had consistent values around .91 to .93 in all three models.

B was close to zero for most series but skewed upward by outliers as high as 80. In

the SDE, B was allowed to take negative values but had a mean around 17. All values

of B in the SDE were positive and greater than zero, with a minimum of .82. a was
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generally high, representing active control over 75-85% of the phase space. Similarly,

r was 50% smaller on average than values used in previous studies. τ had a median of

284 ms and was distributed between 200 to 400 ms. If the bias found in simulations

is consistent and proportional, then the true median delay was closer to 240 ms. The

SDDE estimated much longer delays on average at 470-490 ms but much lower val-

ues of D. Process noise standard deviation σw estimates were distributed identically

between models.
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Fig. 6.: Marginal distributions of the ISDDE parameter estimates. Solid lines are

means and dashed lines are standard deviations, both trimmed for the 15 highest

values.

No significant effects of visual feedback were observed in the parameters of any

of the three models. The lowest p-values were for a(p = .069) and σw(p = .086). Both

the SDDE and SDE showed effects on σ with p < .05, the alpha level before adjusting

for the 17 tests in total.

In the SDDE, both passive ankle stiffness K and active control coefficient P were
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shown to significantly increase with age. The effects were detected given the adjusted

alpha level, with p < .0029. Both B and σw in the SDE showed significant trends

with age as well. Other non-significant effects with p < .05 were K and σw in both

the ISDDE and SDDE, B in the ISDDE, and τ in the SDDE. Effect estimates of σw

were consistent across models.

Overall, parameters tended to be more consistent within person for the simpler

models. The highest intra-class correlation for all parameters in all models was K,

with extreme reliability (ρ = .999) in the SDDE. σ generally correlated around .5

for each model. The ISDDE had the least consistent parameters with intraclass

correlations near zero for P , D, a, and r. The SDDE and SDE intraclass correlations

were moderate to high for all except feedback delay, τ , which was near zero.

Akaike’s Information Criterion (AIC) [78], as −2 ln(L̂)+2k where k is the number

of estimated parameters, was used to compare overall model fit for every individual.

For each trial, the model with the lowest value of the AIC was selected as the best

fitting option. In total, the ISDDE was selected for 227 trials, SDDE for 62, and SDE

for 0. No significant associations were found between model selections over trials

within person or by visual feedback condition.

3.4 Discussion

3.4.1 Simulation

Simulation studies were used to determine whether the parameters of the in-

termittent activation feedback control model proposed by Asai et al. [48] can be

estimated using a Kalman Filtering-based framework with delayed proportional and

derivative terms and discrete activation thresholds. The results of the simulations

show that the parameters of the model can be estimated with relatively low bias and
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high precision if the behaviors for which they are influential are sufficiently expressed

in the data (i.e., empirically identified). Every parameter of the model was success-

fully recovered in at least one of the parameter configurations tested, though no single

configuration of parameters resulted in a completely unbiased set. The set of results

shown in Figure 5f comes close, with downward bias only to the active derivative

controller. We can also see by comparing Figure 5d to Figures 5c and 5a that an

increased variance of process noise allowed the identification of the B and D param-

eters, but with large standard errors. The derivative coefficients were likely biased

and unreliable when the trajectories did not frequent the extremes of position and

velocity where the directional effects of derivative terms could be distinguished from

other sources. Figure 5b shows that with process noise of a standard deviation much

greater than the insensitivity radius and a weak attraction to point equilibria (K ≈ 1),

the state is prone to drifting away from the origin where it will rarely traverse the

insensitivity radius or switching boundary. If the data can be optimally explained

without the use of the switching parameters, then they are said to be empirically

unidentified. For this reason, both a and r do not contribute crucial information

and converge to precise solutions when the data are optimally described by other

parameter values characteristic of rambling and trembling. However, estimates of the

derivative controllers B and D in that case were unbiased.

Across configurations, some iterations of model fitting resulted in negative values

of B. In continual PID controllers, this would result in amplification and instability

over time. In the ISDDE and SDDE, the stability of the system given a value of B

depends on the corresponding values of P , D, and a, as the instantaneous proportional

and derivative terms do not control the complete periodic behavior on their own.

Negative values of B will promote further instability in the already unstable manifold

of instantaneous feedback but will be counteracted when the state reaches the stable
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manifold determined by active feedback. It is informative that solutions occasionally

involved negative values of B that breach its theoretical interpretation as joint friction.

Solutions that did estimate B and D accurately only did so when their true values

were much larger than physically plausible, a priori values of joint friction. In simpler

PID cases, estimates of damping tend to be far less reliable than, for instance, the

proportional coefficients, so for these reasons together it may be inadvisable to rely on

postural sway data and estimation approaches to specifically determine joint friction.

Similar concerns may be directed toward the active feedback damping D, though

the prior ISDDE literature does not assert as specific of a definition nor necessary

theoretical boundaries.

Estimates of both process noise and measurement error were very close to their

true values in every case, with only small upward bias proportional to the magnitude

of the estimate for certain parameter sets (Figures 5a and 5b). The standard deviation

of measurement error that we chose to simulate was σ = .01 cm, twenty times the

error of the force plate used by Santos et al. [67] to obtain the data. The success

of estimation despite greatly exaggerated sensor noise demonstrates the reliability

of Kalman filtering and adequate technical specification of the model, and relieves

researchers from the need to choose a preliminary noise reduction step such as spectral

filtering. Instead, using the raw data and including measurement error in the model

avoids removing fine-grained details of the signal represented in the domain of high

frequencies typically suppressed by low-pass filtering.

The feedback delay, τ , was unbiased in noiseless simulations, and consistently

biased downward in noisy simulations. It is not clear what causes the bias, but it

did not appear to consistently induce bias in other parameters that depended on the

correct lag interval, such as the active proportional and derivative controllers.

The results of our simulation demonstrate that the proposed method of direct,
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statistical estimation by Kalman filter can recover the complete set of parameters for

the model. Previous estimation methods only attempted to estimate five of the eight

structural parameters [64, 65]. Among those attempted, the D parameter did not

converge to its true value in simulation nor to a reliable, unimodal distribution in the

empirical study. Despite this setback, no discussion was given of the role of empirical

identification in determining D or other parameters, whereas we have demonstrated

that the precision of estimates depends on their true values and interdependence.

Additionally, the accuracy of their results rests on assumed values of K, B, and r. Due

to the high degree of parameter dependence in univariate models such as this, error

in one parameter is expected to propagate to other parameters in a compensatory

manner. It is therefore preferable to jointly estimate all uncertain model parameters

when possible.

The prior studies also did not account for measurement error. We determined

that additional sources of sensor noise could be filtered simultaneously with estimation

of the dynamic structure. If additive noise is Gaussian, then no preprocessing steps

such as spectral filtering or downsampling should be needed and the risk of obscuring

important, fine-grained topological features is greatly mitigated.

Computationally, the use of global optimization to maximize the likelihood func-

tion provided an efficient alternative to Bayesian MCMC methods as no data simu-

lation procedures, prior distributions, or posterior sampling were required. An addi-

tional, unexplored benefit of maximum likelihood in this case is estimation of stan-

dard errors directly from the likelihood function. Because the model includes discrete

thresholds, the likelihood function was stochastic and non-differentiable. This pre-

vented the use of the Hessian matrix to calculate precision. However, future work

may explore methods of smoothly approximating the marginal likelihood function,

for instance by fitting splines to likelihood values retained from the optimization

60



procedure.

3.4.2 Experimental Data

The results of analyzing the empirical COM data show that the nonlinear mech-

anisms of feedback activation led to significant improvement in model fit over the

simpler SDDE and SDE (i.e., delayed and instantaneous PID) models. It cannot

be determined from statistical model comparisons alone whether the results validate

the model-generating theory of posture control. To that end, we must compare the

parameter estimates to their theoretical priors.

Overall, the distributions of parameters showed a feasible correspondence to the

domains expected given the theory. K was consistently close to the 91% relative

resistance found by Loram and Lakie [69] for all of the models tested, here showing

resistance to 92% of the total gravitational toppling torque on average. Conversely,

in the ISDDE and SDDE, B most often converged to zero and was not likely to play

a critical role in the model behavior. Perhaps coincidentally, the mean of B was

near its proposed value of 4 Nms/rad. It is possible that statistical power at the

individual level was insufficient to identify small effects due to B, and the expected

value would be recovered if it were estimated across the total data set. Active feedback

was generally weaker than hypothesized but still sufficient for stability. Estimates

of P were closer to .1 than the proposed .25 [48], likely due in part to the greater

resistance to toppling forces from values of K closer to the high end of their theoretical

distribution. D played a large role in the dynamics of active control and resulted in

non-negligible damping in many individuals. Values of a and r reflected greater

control sensitivity than expected. a values around 75% to 80% assign a larger share

of the phase space to active feedback, while smaller values of r indicate less tolerance

to falling at the origin of sway. The mean estimate of a was higher than found by
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Tietäväinen et al. [65], which reported a control space closer to 64% in accordance

with the analysis by Asai et al. [48]. We found a nearly identical distribution of the

feedback delay, τ , to Tietäväinen et al. [65], ranging from 200 to 400 ms with a mean

around 300 ms. Estimates of σw were an order of magnitude smaller than expected

by Asai et al. [48], and about half of those found by Tietäväinen et al. [65].

A graphical vignette of these results is provided in Figure 7, which shows six raw

data series with their respective intermittent activation conditions estimated by the

model. The horizontal axis is the tilt angle and the vertical axis is the tilt angle’s

velocity. The shaded region represents behavior where P and D are equal to zero.

In the unshaded region, all parameters are active with their non-zero values. Figure

7a shows two cases that resemble the theorized structure with combinations of stable

and unstable manifolds in nearly equal proportion. In Figure 7b, the values of B and

a are sufficiently large to minimize the influence of the unstable manifold. The result

is behavior that closely resembles harmonic oscillation around a single equilibrium.

The opposite trend is shown in Figure 7c, where the unstable manifold is not influen-

tial, but a high ratio of the derivative coefficients to proportional coefficients results

in continual suppression of velocity. This pattern results in wandering oscillations

without clear equilibria.

The optimal solution for the SDE model had a much larger, positive value for B

than the other models while maintaining a theoretically plausible value of K less than

1. Furthermore, all values of B in the SDE were positive, as we might expect given

that negative values would result in instability. When a linear system is strongly

overdamped (in this case, a high value of B in the SDE, or either B or D in the

SDDE) with relatively weak proportional feedback, as the SDE, then it exhibits non-

equilibrium Langevin dynamics. These dynamics have conventionally described the

random walk of a large molecule due to its collisions with a many smaller molecules
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Fig. 7.: Phase portraits of observed body tilt angle with estimated intermittent ac-

tivation structures and vector fields. Horizontal axis: COM; Vertical axis: COM

velocity. Shaded region: state where P = D = 0. (a) Estimated parameters match

theoretical expectations showing two equilibria. (b) and (c) the nonlinear mechanisms

deviate uniquely from theoretical purpose.
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in a solvent. The resulting trajectories can appear locally stationary by chance and

exhibit short intervals of oscillation. Previous studies have modeled posture control

in the context of Langevin dynamics [79, 80, 81, 82]. Our simplest model of COM

movement, the SDE, resembled a model of COP proposed by Bosek et al. [79] that

describes trajectories as a second order SDE with no proportional feedback and a

large derivative coefficient B. Figure 8 shows how the theoretical model and Langevin

dynamics differ markedly in their mechanistic parameterization and observed phase

portraits, yet they share many notable features. In both, high-frequency oscillations

move gradually across the sample space in a “rambling” pattern. By chance, the

Langevin equation in Figure 8b can result in concentrated oscillations around a few

apparent equilibria, but no equilibrium mechanism is present in the model. The

parsimony of generating these patterns with only three parameters poses a challenge

to the specificity of evidence for the theoretical ISDDE. Visual inspection of the

complete results showed that trials ranged between the two extremes of theoretical

misspecification, from harmonic oscillation to Langevin dynamics. The expected

topology involves a mix of features from both, sometimes showing adherence to the

principles of feedback switching with occasional deviations into Langevin-type random

walk.

Regardless of the true form of the underlying process, we might expect that if

the parameters represent underlying physiological mechanisms, they should exhibit

some degree of trait-like stability within-person. The intraclass correlations in Table 7

show that the nonlinear switching parameters were generally unreliable within-person.

The correlations for the remaining parameters increase as the model is simplified

to the SDDE and SDE. The higher consistency of the simpler models’ parameters

does not necessarily imply that they are more “real” than those of the ISDDE. It is

expected that reliance on fewer parameters to explain the variance of sway results in
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Fig. 8.: Phase portraits and time series from two models generated from the same

vector of noise (scaled by σw). In (a) data were simulated from the ISDDE model with

the theoretical priors. In (b) data were simulated from a 3-parameter SDE. The large

ratio of derivative (B) to proportional (K) force results in non-equilibrium Langevin

dynamics that may exhibit similar features to the ISDDE for limited periods of time.

Characteristic features distinguish (a) from (b), such as sharp changes in velocity

localized to quadrants II and IV, slow change in velocity associated with quadrants I

and III, and higher density at two spatial equilibria

fewer competing configurations of those parameters. Any consistency of topological

features within-person will be reflected in similarity of the model solutions. The lack

of consistency in the more complex ISDDE is, however, a challenge to the trait-like
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stability and actuality of its parameters.

Though no specific connections between visual feedback and the theoretical mech-

anisms of control were hypothesized for the present study, we expected one or more

parameters to be significantly influenced over trials in which eyes were closed in cor-

respondence with previously observed effects on summary statistics. By modeling

center of pressure variation with Langevin dynamics, Bosek et al. [79] found that

the process noise distribution was influenced by visual feedback. The same finding

was replicated with further connections to Parkinson’s disease [80]. Vieira et al. [83]

found associations of visual feedback with stabilogram measures of sway. All three

models models tested here had lower p-values for σw than for other parameters, sug-

gesting that effects may be discernible given a larger sample or improvement in model

specification.

Age has been previously associated with more general metrics of sway, such as

path length [84], frequency band [83, 85] and mean velocity [85], though findings

vary and few effects have been consistently reproduced in COP and COM data.

Significant effects of age were observed in the present results, including ankle stiffness

and active feedback force in the SDDE and process noise and ankle viscosity in the

SDE. Interpretation of effects on the SDE is more difficult because the parameters

of the SDE do not correspond to specific explanatory mechanisms in this case. The

consistent positive associations of all models with noise magnitude σw with age may

be linked to previously observed associations of stabilogram-based diffusion metrics

with age [86]. The significant associations of ankle stiffness and active proportional

feedback in the SDDE found here may reflect previously observed increases in stiffness

and damping with age estimated from a simpler PID model [87].

Finally, the model concerns an abstract notion of body tilt angle, though there

are many ways to represent this using the full kinematic data. For simplicity and
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consistency with past studies, we chose to represent tilt angle by the COM. Prelim-

inary tests using alternative measures included COP and the average angle of both

ankle joints. The results were found to differ markedly from both our current results

and those previously obtained with the COM, but a complete comparison of alterna-

tive measures is too complex to discuss here. We leave detailed examination of this

question with regard to the feasibility of this model to future study.

3.4.3 Conclusions

We designed and implemented an Extended Kalman Filter-based estimation

model of intermittent, delayed feedback control in postural sway and demonstrated

that for a variety of stable configurations, parameters can be recovered accurately

given adequate empirical identification. Application of the model to experimental

data resulted in distributions of the parameters that correspond well to previous

findings and suggest that physiologically informative and clinically useful attributes

of human balance may be extracted directly from COM data. While the model repli-

cates previous findings, the conjectured parameters of feedback activation were not

reliable within-person or strongly associated with visual feedback and age. Further

comparisons with alternative mechanistic theories and model parameterizations are

warranted. Beyond postural control, the model stands as a framework for estimat-

ing parameters of stochastic delay differential equation models controlled by discrete

activation thresholds.
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CHAPTER 4

STUDY II: POORLY-BEHAVED PSYCHOMETRIC DATA, SIMPLE

LINEAR MODEL

4.1 Introduction

Motivation to use psychoactive substances can arise both as a cause and a

consequence of problems with emotion regulation. Data collected from psycholog-

ical and behavioral time series designs, known as Ecological Momentary Assessment

(EMA)[22] or Experience Sampling [88], present new opportunities to conceptualize

emotion regulation in terms of variability in emotional states over time. Often, in-

dividual traits of emotion regulation are inferred from descriptive statistics, such as

the means and standard deviations of repeated, within-person assessments of affect.

Descriptive indices are simple to compute and can be used as general predictors,

but they are difficult to interpret in terms of real-world concepts, saying little about

the actual process of change in emotion over time. An alternative approach is to

specify theoretical models that describe the structure of emotion variability in terms

of its mechanisms. Indices with unambiguous, a priori interpretations can then be

obtained as the statistical parameter estimates from such models. In the current

study, we compared one such theoretical index of emotion variability to commonly

used descriptive statistics for their capacity to predict substance use.

In psychiatric research, self-reported affect assessments have been used in many

ways. As a general state-based assessment of subjective experiences, they can pro-

vide insight into the timing and valence of emotions linked to psychiatric symptoms

and episodic behaviors. For instance, positive and negative affect have been studied

68



to differentiate between mood disorders [89] and as a means to identify distinctive

features of anxiety and depression for the DSM-5 [90, 91]. Negative affect has been

associated with both binge eating severity and its rate of comorbidity with depression

[92]. A review of studies on smoking, stress and negative affect points to a general

mediating or moderating role of negative affect in smoking initiation, maintenance,

and relapse [93]. Smoking to cope with negative affect is associated with higher risk

for regular, persistent use, and with greater difficulty quitting than occasional social

smoking [94, 95].

With time-series of affect data, (i.e., frequently repeated measures), patterns of

change can help to identify new, distinguishing features of psychiatric disorders. For

instance, the mean and overall variability of negative affect are greater in patients with

borderline personality disorder than healthy controls [96]. Intra-individual variability

has been found to uniquely predict aspects of personality when compared to simple

means [97, 98]. In clinical samples, the variability of momentary affect has been

important to predicting and preventing behaviors and negative health outcomes, such

as stress-induced binge eating [99, 100, 101], relapse to alcohol, [102, 103, 104] tobacco

[105, 106] and other substance use, prodrome to manic and depressive episodes [107,

108], and suicide [109].

In this study, we conceptualize emotional variability in terms of feedback control

and derive a measure of emotion regulation based on simple theoretical assumptions.

Specifically, we assume that emotional states trend toward a mean or equilibrium

value following stressful or joyful experiences. For short-term emotional stability, the

rate at which emotions decay toward equilibrium, or their “offset”, must be sufficient

to overcome perturbations from typical daily experiences [110]. Maintaining emo-

tional homeostasis allows one to more easily predict and control one’s own behavior.

Recovery from stress involves deactivation of flight or fight response and restfulness
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associated with the parasympathetic nervous system [111, 112, 110] and a renewal of

the capacity for healthy behaviors. Positive experiences, while desirable, nonetheless

can lead to poor judgment if their effects accumulate unchecked, a scenario charac-

terized by mania [113]. Mechanisms of emotion regulation likely vary individually by

development and preference. Family and friends may serve as sources of regulatory

feedback, providing social support and stable interpersonal roles [114, 115]. Intrinsic

mechanisms of emotion regulation can include habits and tools of self-care, such as

exercise, diet, structure and schedule, and cognitive-perceptual appraisal of experi-

ences [116], all of which modulate the degree to which experiences disturb one from

an equilibrium state and the time needed to recover.

The above concepts of emotional homeostasis, including equilibrium, distur-

bance, and rate of recovery, comprise the fundamental components of a feedback

control system. The simplest case of linear feedback control subject to random per-

turbations can be formalized as a stochastic differential equation (SDE):

dxt
dt

= λxt + wt, w ∼ N(0, σw), (4.1)

where xt is the state of affect at time t, λ is the coefficient of feedback, and wt is a

random, exogenous disturbance at each time. If λ has a negative value, then on av-

erage, deviations from equilibrium are counteracted proportional to their magnitude.

Variability at time t is driven by random disturbances, wt, leading to a continual flux

between perturbations and regulation. Similar models have previously been used to

characterize affect change and have been fit to empirical data [117, 118].

The regulation parameter in Equation 4.1, λ, is difficult to interpret in real-world

terms. For a more intuitive index of emotion regulation, δ, we can define regulation as

the percent recovery to equilibrium after a given time interval. This can be computed

from λ in Equation 4.1 by considering an equivalent, discrete-time formulation as an
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autoregressive model:

xt = βxt−∆ +
√

∆wt (4.2)

β = eλ∆ (4.3)

In this form, values of β from 0 to less than 1 characterize negative feedback or sta-

bilization. In the current study, affect was assessed multiple times per day to study

hourly variability. If we choose ∆ = 1 hour, then β is the percentage of deviation

from equilibrium remaining from the previous hour. We can therefore take the effect

size of emotion regulation as 1− β, interpreted as the expected percentage of recov-

ery to equilibrium per hour given no further disturbances to affect. An alternative

interpretation may be to take the average half-life of affect disturbances, given by

ln(0.5)
β

. The former definition was chosen so that higher values represented stronger

regulation.

In addition to the feedback coefficient λ, σw is the estimable standard deviation

of exogenous disturbances. When the latent state describes affect or other subjective

measures in the EMA context, such exogenous disturbances represent the distribution

of unmeasured influences on the individual.

Together, the parameters λ and σw can be estimated from each individual’s time

series to obtain indices of emotion regulation and volatility or sensitivity, respectively.

One potential benefit of theoretical indices such as these is that their underlying the-

ory can be validated and improved through empirical applications. If the feedback

control structure is an accurate representation of emotional processes, then associ-

ations between its indices and substance use can be expected to arise for several

reasons, depending on the particular effects of each substance. Drugs such as nico-

tine [95, 119] and alcohol [104] may directly decrease average emotional volatility by
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dulling emotional responses. Whether these drugs are used to reduce emotional sensi-

tivity or increase emotion regulation response depends on their timing as preemptive

or reactive to stress, respectively. Conversely, many stimulants are used specifically

for their ability to induce or sustain mania-like symptoms, potentially undermining

the goals of healthy regulation.

We hypothesized that our theoretical, model-based indices of emotion regulation

would predict substance use independently from simpler descriptive statistics. We

did not hypothesize about the degree to which descriptive statistics would associate

with substance use, but included them in analyses as a benchmark for methodological

improvement.

4.2 Methods

The available EMA data presented many technical, methodological challenges,

and required multiple steps of processing. In this section, we detail the sample, our

quality control criteria, a state-space affect model, and the second stage regression

of substance use onto the estimated parameters from that model. Our analysis was

organized as follows: 1) In each individual, data quality was first determined in terms

of complete rows of data and the information content of responses; 2) If the quality

control criteria were met, then affect indicators were aggregated into negative affect

scores; 3) Descriptive statistics and state-space model parameters were estimated from

the aggregate scores, and counts of reported use for each substance were summed; 4)

After steps 1-3 were performed for all individuals, counts of usage for each substance

were regressed on the descriptive statistics and state-space model parameters. Each

of these steps is detailed in the sections that follow.
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Participants This study utilizes data from the Social-Spatial Adolescent Study, a

two-year longitudinal investigation of the interacting effects of peer networks, urban

environment, and substance use [120]. Participants were recruited between November

2012 and February 2014. Most participants (72%) were recruited from an urban

adolescent primary care clinic at Virginia Commonwealth University Medical Center,

in Richmond, Virginia. Age-eligible (age 13 or 14) adolescents presenting to the clinic

for routine or acute care were approached and invited to participate in this study by

a research assistant. Other participants were recruited from a city health district

satellite clinic, located within a subsidized housing development. These participants

were recruited by referral to the study team from the primary Patient Advocate at the

satellite clinic. Enrollment and data collection procedures were the same across sites.

Chi-square tests revealed no significant differences in age, sex, or race of participants

between the two recruitment sites. Race was not used because the sample was 86%

African American and too small to estimate or control for any effects of demographic

heterogeneity.

Ecological Momentary Assessment Moods All participants were given a smart

phone for the period of the study, through which EMA surveys were delivered. EMA

surveys were administered to each subject via text message with an embedded URL

link 18 times over a four-day period every other month, over a period of two years. The

11-item survey asked participants to rate their current mood in terms of happiness,

sadness, anger, worry, loneliness, and stress as well as feelings of safety, on a scale of

1 to 9 with 9 representing more intense feelings. Participants were asked questions

about if they were using tobacco, alcohol, and marijuana with responses coded as yes

= 1, and no = 0. Participants were encouraged to complete each of the surveys within

an 8-minute window from when it was sent. Timestamps on each EMA survey were
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collected to identify surveys that were answered within the prescribed time limit.

Dimension reduction It is common to aggregate information across affect items

to simplify models and produce a small set of variables with maximal information

content. For continuous state-space models, it is convenient to aggregate discrete,

Likert-type variables to produce a sufficiently continuous sample space to be de-

scribed by the differential equation model. If all response categories are used, then

uniquely weighted combinations of the 7, 11-point affect items would produce an af-

fect dimension with up to 117 possible values. In practice, most participants only

use a small subset of the available response categories, making dimension reduction

necessary.

Table 8 shows that all affect items were moderate to highly correlated across

individuals and waves. Items “happy” and “safe” were positively correlated with each

other and negatively correlated with all other items. The strong inter-correlations

suggest that the indicators may be related to one or two underlying dimensions.

Table 8.: Correlation matrix of affect states across the total sample.

happy angry safe lonely anxious sad

angry -0.47

safe 0.35 -0.3

lonely -0.35 0.55 -0.29

anxious -0.34 0.58 -0.33 0.57

sad -0.43 0.67 -0.32 0.61 0.63

stressed -0.42 0.64 -0.32 0.59 0.66 0.68

When affect questionnaire items must be aggregated into a single dimension of

affect, a common strategy is to sum the scores across all items for each measurement
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occasion. To produce a methodological standard for comparison, we computed series

of sum scores for each person along with their person-level means and standard de-

viations. Items “happy” and “safe” were first negatively coded, then all items were

added together to produce a series of negative affect sum scores for each person.

To produce negative affect series for the state-space model, an alternative di-

mension reduction technique was used. Sum scores imply two untenable assumptions.

First, that all items are equally important to the underlying dimension, and second,

that no item-level variance is due to measurement error or other sources irrelevant

to their collective underlying dimension. A standard alternative approach to aggre-

gation is to produce scores from a factor model, or as an approximation, principal

component analysis. These options weigh the items by their communality, or the

inter-correlation of each with the other items. Scores representing the shared vari-

ance of the items are produced that exclude item-specific, residual variance. One

rapid method of computing principal component scores is Singular Value Decomposi-

tion (SVD). SVD is given for m×n data matrix X as X = UΣVT, where U contains

n length-m orthonormal columns of scores, V is the n×n matrix of eigenvectors, and

Σ is the n × n diagonal matrix of eigenvalues. The first column of U provides a set

of weighted composite scores that maximally account for the shared variance of the

items. Subsequent columns account for diminishing proportions of the total variance

of the items, and variance unique to particular items is relegated to the last columns

in the U matrix. Items “safe” and “happy” were automatically reverse coded by the

SVD as a result of their negative correlations with the other items. Only a single

variable maximally representing negative affect was of interest in this application, so

only the first column of the U matrix was used to represent affect principal compo-

nent scores, and the others were discarded. Affect items were standardized and SVD

was applied separately for each wave and for each person, allowing the respective
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influence of each affect indicator to vary individually. This choice is analogous to

relaxing the assumption of factor loading invariance in a factor analysis. The ex-

act loading structure and its reliability were of less concern than the aggregation of

available information across the items within each person’s time series.

Model The measurement intervals of each series were unequal, so a continuous-

time state-space model (SSM) as shown in Equation 4.1 was used to model the reduced

series of negative affect data as an SDE:

ẋt =λ(xt − µx) + wt, wt ∼ N(0, σw) (4.4)

yt =µy + xt + εt, εt ∼ N(0, σε) (4.5)

The additional, second equation (4.5) relates observed measures yt to the latent state

by a constant mean µy and measurement error εt. Because affect indicator scores were

standardized, the mean or equilibrium value of the state equation, µx was fixed to

zero and the indicator means, µy, were subtracted out. Individual emotional resilience

was calculated as δ = 1−eλ, as described by Equations 4.2 and 4.3. Because as many

as 18 repeated measures were taken over the course of each four day burst, we coded

the time intervals to a scale of hours such that ∆ = 1 hour. δ is therefore interpreted

as the expected percentage of emotional recovery to baseline over the course of 1 hour

absent the effects of additional disturbances.

The SDE model was implemented using the Kalman filter [46], an optimal

method of obtaining minimum-variance, unbiased estimates of latent states from

noisy indicators and fitting time series models to data. Waves of negative affect

SVD scores were aggregated in a multi-group manner within the state space model

with the first observation of each wave beginning at hour 0. Maximum likelihood and

the Nelder-Mead optimization algorithm [121] were used to estimate the parameters
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in R [74]. Waves were far enough apart in time to be modeled independently with

each starting over at time zero. Each parameter was estimated between-waves for

sufficient statistical power. The first observation of each wave was used as the initial

position of the latent state and the series variance as the initial state variance.

Cross-sectional Analysis The indices of emotion regulation, δ and σw, were

estimated for each individual along with the means (µSS) and standard deviations

(σSS) of negative affect sum scores. These within-person statistics were then used

as the independent variables in a between-person analysis of aggregate counts of

substance use. Total counts of nicotine, alcohol, and cannabis use were produced from

the EMA data. Counts of each substance were overdispersed for a Poisson model,

so they were regressed upon the extracted affect variables using multiple negative

binomial regression. To estimate the uniqueness and contribution of the model-based

predictors to the total explained variance of substance use, substance use counts were

regressed onto: (a) only the mean and standard deviation of affect sum scores; (b)

only the model-based predictors, emotion regulation and volatility; (c) predictors

from both (a) and (b) combined. The magnitude and uniqueness of improvement in

R2 due to the model-based predictors was then quantified from comparisons of the

three models. Nagelkerke’s generalized R2 [122] was used for the negative binomial

regressions with the recommended adjustment for discrete likelihood functions.

Preprocessing and quality control Data were preprocessed to ensure that only

time series with the necessary quality requirements were used in the analysis. Statis-

tics drawn from inadequate samples will be highly variable and add noise to any

subsequent relationships with covariates. In two-step analyses such as this, unin-

formative or misleading response patterns may reduce statistical power of the final
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analysis by reducing the estimable effect sizes, regardless of the number of people in

the total sample. Data quality metrics included a minimum number of complete rows

of data (6 per wave, 18 total per person) and a minimum amount of available affect

information per wave. Many participants did not provide enough usable information,

either using most affect items in a sparse, binary way, or entering only a single rating

for all occasions. Data were frequently missing, so the amount of remaining data per

wave was small and thus sensitive to bias introduced by interpolation. To avoid this

risk, rows with missing data were simply excluded.

Variables with zero variance lead to singular matrices in computation of the

model expectations and likelihood values. For integer-valued variables such as ordinal

Likert scales, low variance is associated with only rarely using more than one response

category. Such cases can produce erratic results and model-fitting errors in state-

space models, which assume continuous variation in the sample space. If too few

items were used in a nuanced way, for instance with no variability on some and

binary responses on others, then the resulting SVD scores or other representations of

the latent dimensions will be too coarse to model reliably. To address uninformative

response patterns, Shannon entropy was used as a measure (in natural log units, or

‘nats’) of the available information content of each series. [123].

H(x) =−
∑

ps ln ps, s ∈ S. (4.6)

S is the set of possible symbols s, or possible rating values in ordinal variable x. In the

case of the ordinal affect items, ratings were integers s ∈ {1, ..., 9}. A key property of

entropy is that it is maximal when P (s ∈ S) is uniformly distributed. Entropy also

increases with the number of possible symbols in S. Setting a minimum requirement

for the total entropy across the set of variables ensures that at a minimum, either a

few ratings were used on several items or several ratings were used on a few items.
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The entropy of a uniform distribution of 3 symbols is 1.1, so the total entropy for 7

of such items would be 7.7.

Simulations were used (See Appendix) to determine the statistical power re-

sulting from values of N and T , given optimal H(x). Only 67 participants had

H(x) ≥ 7.7. Of the participants that qualified, the average number of completed af-

fect reports was about 64. Assuming maximal H(x), the resulting sample would have

only a 43% chance of detecting an effect of δ if the true parameters of the negative

binomial model were a dispersion of .2 and mean δ effect of -3. Choosing a lower

entropy threshold, H(x) = 6.0 resulted in a potentially better balance of data quality

with sample size (N = 94, E[T ] = 65), increasing our estimate of the maximum possi-

ble statistical power to 56%. Further decreases in the minimum H(x) were expected

to add only highly noisy estimates of δ that no longer yield benefits to the statistical

power. The complete set of data qualifications was therefore:

K∑
i=1

HWave(xi) > 6.0, TWave ≥ 6, TTotal ≥ 18. (4.7)

The quality control metrics, total entropy and total complete rows of data per

person, were regressed on demographic variables sex, age, race, mean latitude, mean

longitude to determine whether data quality control procedures may bias the results.

No significant nor apparently trending associations were found, suggesting that the

informativeness of response patterns was largely idiosyncratic with respect to the

available data.

4.3 Results

Results of the negative binomial regressions are shown in Table 9. Emotion reg-

ulation δ and affect sum score means µSS were most consistently significant (p < .05)

across models, both uniquely and conditional on use with other predictors. After
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exponentiation, the significant effect sizes from the combined regression are inter-

preted as follows: Across participants, a 10% increase in emotion regulation rate

corresponded to a 6 to 39% reduction in nicotine use, a 2 to 42% reduction in alcohol

use, and a 2 to 34% reduction in cannabis use. A unit increase in mean negative

affect sum score corresponded to a 7 to 31% increase in nicotine use, a 1 to 27%

increase in alcohol use, and a 2 to 23% increase in cannabis use. Additionally, a unit

standard deviation increase in negative affect sum scores corresponded to a 10 to 50%

reduction in nicotine use. The true directions of causation responsible for these asso-

ciations cannot be determined by this cross-sectional approach, so we present these

effects only as the functional mappings given by the models. Negative affect sum

score standard deviations were not significant for alcohol or cannabis in the combined

model. Volatility, σw, was not significant, though with small p-values for cannabis

and nicotine, it is possible that effects would be detectable in a larger sample.

Total R2 values of each model are given in Table 10. Descriptive sum score

statistics were the most predictive for nicotine, explaining 28% of variance in its use.

By comparison, the model-based emotion regulation and volatility only explained

10% when used as the sole predictors. Similar proportions of the variance of alcohol

and cannabis use were explained by either approach, with 15% for alcohol and 11%

for cannabis. The variance explained by all predictors used in tandem was slightly

greater than the sum of their separate models, possibly owing to the approximate

nature of the the generalized R2 measure. Subtracting the R2 of the descriptive

statistics model from theR2 of the combined model reveals that the variance explained

by the novel, model-based predictors was independent from the variance explained

by descriptive statistics. The descriptors were correlated with model-based indices

between 0 and -.2, small enough to arise from sampling variation and insufficient to

suggest methodological redundancy.
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Table 10.: Generalized R2 values for models predicting with: (a) only descriptive

statistics of affect sum scores (mean and standard deviation); (b) only model-based

statistics (regulation and volatility); (c) all four predictors; and (c)-(a), the improve-

ment to R2 as a result of including the model-based predictors with descriptors.

Model Predictors Nicotine Alcohol Cannabis

(a) Descriptive Only µSS, σSS 0.28 0.15 0.11

(b) Model-based Only δ, σw 0.10 0.14 0.11

(c) Both µSS, σSS, δ, σw 0.42 0.31 0.23

(c)-(a) R2 improvement 0.14 0.16 0.12

4.4 Discussion

The results of our analyses demonstrate that the model-based index of emotion

regulation predicted substance use independently of simpler descriptive statistics. The

unique associations of each predictor were comparable in magnitude and explained

a moderate to large proportion of variance in nicotine use when combined in the

linear model. Less variance was explained in alcohol usage, and even further less in

cannabis. These effects roughly follow the observed frequencies of each drug in these

data, leading us to reserve judgment for larger and more general samples.

Causal interpretations of our results should be considered with caution and skep-

ticism. The most likely scenario is that bidirectional feedback cycles occur between

affective state and the decision to use a drug. The association of higher average

negative affect with nicotine may reflect a tendency to smoke when coping with un-

pleasant emotions. Conversely, the association of lower standard deviations of mood

with nicotine may be due to the damping effects of nicotine on emotional variability.

The regulation and volatility indices were estimated irrespective of how these causal
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sequences were ordered, and thus suffer from the same ambiguity. Does substance

use produce larger dynamic disturbances, or vice versa? Is substance use undertaken

as a surrogate for intrinsic emotion regulation? Elaborated process models can be

specified to include the reciprocal causation between emotional states and the choice

to use a drug, further distinguishing between the above scenarios. For instance, the

following model extends Equation 4.1 to include both direct effects and changes in

regulation as a consequence of substance use:

dxt
dt

= (λ0 + λ1ψt)xt + βψt + wt, w ∼ N(0, σw,0 + σw,1ψt), (4.8)

where ψt may be a vector of indicators or quantities of different drugs. λ1 therefore

determines the extent to which the substances impact emotion regulation, σw,1 indi-

cates the same for emotional sensitivity, and direct, immediate effects on affect are

scaled by β. In the current study, substance use was recorded as a binary variable,

requiring it to be mapped to a continuously varying probability of occurrence, or

liability. If we take φt as a dynamical state representing that liability, then that may

be in turn modeled as responsive to affect:

dφt
dt

= γxt + ζφt. (4.9)

In this model, γ would determine the direction and rate that the liability changes

with affect state, while ζ controls how long the liability lingers regardless of further

changes in affect. These parameters could therefore serve as indices for individual

liability to addiction based on emotional feedbacks.

For the purposes of this study, we only present these ideas as a motivating vi-

gnette. To successfully fit this kind of complex process model with empirical data, the

data must meet certain standards of quantity and information content for statistical

power and parameter identification. As we have shown, the available data did not
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meet a number of those standards. The majority of participants had either zero or

few instances of substance use, uninformative response patterns on affect question-

naires, and frequently insufficient within-person sample sizes, leading us to make more

conservative choices about model complexity. Our simplified modeling approach and

aggregation techniques were chosen to allow comparison across as many individuals

from the sample as possible despite that the majority did not report more than a few

occasions with a particular drug. Future studies aiming to fit a reciprocal feedback

model like Equations 4.8 and 4.9 will require consistent, high-frequency sampling of

both affect and substance use. Measured occasions of substance use should be inter-

spersed by occasions without use so that the subsequent patterns specific to affect can

be observed. Consequently, a study design should sample at least two or three times

the expected frequency of substance use or else include event-contingent sampling

strategies. If the parameters of the above model are used as indices in second-level

analysis, as we did here, then statistical power will depend on the ratio of param-

eter standard error to true between-person variation in parameter values. We used

simulations, described in the appendix, to compute power for our current, simplified

modeling strategy. Further analyses and power calculations for reciprocal feedback

models are beyond the scope of our current aims and are left for a subsequent study.

EMA studies involve many complex psychometric assumptions and analytic chal-

lenges. We attempted to address as many of the most common problems as possible,

though solutions are necessarily subject to discretion. One of the primary goals of our

study was therefore to demonstrate several effective methods of handling problems

with EMA affect data, including irregular response intervals, uninformative response

patterns, and questionnaire aggregation. With these strategies come basic limitations.

First, as our power calculations showed, the resulting analysis only had approx-

imately a 56% chance of detecting a moderate effect of emotion regulation on sub-
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stance use. The primary concern with low power is the inability to detect other im-

portant effects. For all three substances, emotional volatility consistently had small,

near-significant effects that may be observable in a larger sample. The same power-

calculation simulations showed that 80% power at α = .05 for the current analysis

could be achieved with at least 250 participants with 30 timepoints each or 130 par-

ticipants with at least 115 time points each.

One possible criticism may be aimed at our use of entropy for quality control. We

used the power analysis and analytic reasoning to present a general estimate of how

our results would change, but ultimately the chosen threshold for entropy is neither

strict nor final. Exact calculations that account for the information content of each

series would allow calibration of the minimum entropy based on the false positive rate.

Because our power calculations do not account for uninformative response patterns,

we consider the resulting estimate as a best case scenario.

It also is not certain whether the outcome of our quality control criteria was

entirely random. Because the study participants were underage adolescents, it is

possible that many individuals who used substances during the study period did not

report their usage or other psychological information to avoid possible social and legal

consequences. The under-reporting quantified by our methods, either as missing data

or uninformative data, may have been even more likely for the most severe cases

of substance use. Indeed, the majority of participants did not produce sufficiently

informative data, so we must therefore condition our conclusions on an above-average

willingness to cooperate with the study and a certain perceived security in doing so.

Another possible criticism regards the use of “safe” as an affect indicator. The

question was worded as “How safe are you right now?” leaving some ambiguity in

whether responses indicated feelings of safety or rational assessments of the current

environment. In the latter case, it may not be appropriate to include among the other
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affect indicators. Table 8 shows that it was strongly correlated with the other indi-

cators. Under a latent variable measurement model, we assume that it is correlated

with the other indicators because each observed variable represents the underlying

phenomenon, namely negative affect. From the alternative perspective of such indi-

cators as a directional network, it may indeed be a rational assessment of the environ-

ment from which the other reported subjective experiences follow as a consequence.

It is difficult to compare the validity of network and latent variable methods in a

general way, and alternative approaches to multivariate affect may yield unique and

important insights. We relied on a latent variable or dimension-reduction approach

and the assumption that “safety” corresponded to a subjective experience because

altogether, the combined information of the ordinal indicators produced a smooth

series with a nearly continuous sample space that is more amenable to state-space

modeling. The entropy of the safety measure in particular was greater on average

than the other indicators, which suggests that it was easier for the participants to

interpret and evaluate in a detailed way. Under either interpretation, as a subjective

feeling or an evaluation of the situation, safety likely increased the association with

substance use because the data were collected in adolescents below the legal age for

the consumption of alcohol or nicotine. Acquiring and using drugs likely required

engaging in other unsafe situations.

4.4.1 Conclusions

The current study examined the utility of a theoretically conceived measure of

emotional variability that describes individual tendencies toward homeostasis, i.e.,

emotion regulation. Our results showed that emotion regulation was uniquely and

independently associated with substance use in high-risk adolescents. Using model-

based indices lends to the development of more specific theoretical hypotheses as
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compared to generic descriptive indices. Combined use of theoretical and descriptive

indices appears to provide the greatest predictive utility. Further work is warranted

to determine the nature of the observed associations between emotion regulation and

substance use.

4.5 Appendix: Power Analysis

Simulations were used to obtain approximate estimates of the statistical power of

the two-step analysis. The following steps were taken to create a model of power given

number of people in the sample (N) and average timepoints per person (T ). First, a

random, Gaussian distribution of N autoregressive coefficients (β) was generated. N

random values representing substance use counts were then generated from a negative

binomial distribution with parameters dispersion of .2 and mean of 3β. Negative

binomial parameter values were chosen such that the descriptive statistics and visual

inspection approximated the joint distributions of estimated βi and substance use

counts from the data. Autoregressive time series of length T were generated by

convolving (convolve() with argument type=‘‘open’’) the cumulative sum of a

white noise variable of length T with the transfer function eln(βi)t values out to length

150, and trimming 150 points from the beginning and end of the resulting convolution.

R functions ar() and glm.nb() from package MASS [124] were used to estimate β

from the data and regress substance use counts upon the estimated β, respectively.

The simulation-estimation routine was carried out for 500 trials per condition, with

conditions defined as

N = 2k, k ∈ [5, 5.5, 6, 6.5, .....8],

and

T = 25k, k ∈ [2, 2.5, 3, 3.5, .....8].
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For each condition, a true positive rate was calculated as the total percentage of

results meeting statistical significance at p < .05. The percentage was then regressed

upon each corresponding N j and T j with j ∈ [1, 2, 3, 4], producing a quartic linear

model of statistical power. The model was used in the study to calculate approximate

power for the two-step analysis from inputs N and T .
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CHAPTER 5

STUDY III: CONSIDERATIONS FOR EXPERIENCE SAMPLING OF

TWIN PAIRS

5.1 Introduction

New study designs in Behavioral Genetics present new opportunities and chal-

lenges to classical modeling techniques. An increasing number of study designs utilize

time-series measures of behavior and cognition taken in the typical settings of daily

life, known as Ecological Momentary Assessment (EMA) [22] or Experience Sam-

pling [88]. It is necessary to adopt efficient modeling strategies for sometimes large

volumes of within-person repeated measures data that result from these studies. An

increasingly popular approach involves individual-level modeling to estimate station-

ary properties of the series, or dynamics, that represent trait-like phenotypes [25].

To estimate genetic and environmental influences on individual variation in dy-

namics, it is assumed that the estimated dynamics are unique to each individual.

However, when related individuals are simultaneously sampled in their daily envi-

ronments, the momentary states from which their dynamics are estimated are not

likely to be independent. Accounting for cohabitation and social interaction gener-

ally between study participants requires a multivariate modeling approach in which

the unique dynamics of each twin can be distinguished from mutual effects upon one

another. In this study, we considered technical challenges in obtaining twin-specific

dynamical phenotypes from time series data in cohabiting twin pairs who potentially

shared experiences and influenced one another throughout the study period. In the

process of explicitly modeling such effects, we were able to quantify and test assump-
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tions of the twin model that are typically only noted in cross-sectional studies. In

the first section, we outline multivariate time series modeling strategies and consid-

erations with respect to biometrical genetic modeling. Second, we use simulations to

validate a two-step procedure for estimating the heritability of time-invariant dynam-

ics. Third, we apply our procedure to affect data to estimate both the heritability of

emotion regulation dynamics and potentially confounding cross-twin effects.

Classic twin modeling techniques estimate the proportions of variance attributable

to additive genetic, common environmental, and unique environmental variation by

comparing the phenotypic cotwin correlations for monozygotic (MZ) twins to those

of dizygotic (DZ) twins [13, 125]. In these models, heritability (a2) represents the

proportion of phenotypic variation in a population due to additive genetic variation.

With twin models, the genomic variation is not measured explicitly but assumed a

priori given that the genomes of MZ twins are completely correlated while those of

DZ twins are on average correlated one-half. In the simplest manifestation of the

twin model, any statistical differences between MZ and DZ phenotypic correlations

are thought to be attributable to additive genetic factors. If genetic variation is addi-

tive, an estimate is given by a2 = 2(ρMZ − ρDZ). Conversely, common environmental

variance is represented by the portion of the MZ twin correlation that exceeds the

additive genetic variation, c2 = ρMZ − a2.

To estimate the heritability, it is assumed that the environment contributes to

phenotypic similarity in MZ and DZ twins to an equal degree. If environmental

influences are present that increase the similarity of MZ twins but not DZ twins,

then the heritability will be upwardly biased. In EMA studies of cohabiting twins,

environmental effects include social influence from one’s cotwin. If aspects of the social

relationships between MZ twins systematically differ from DZ twins, then socially

relevant phenotypes in the MZ twins may be more or less similar than DZ twins as a
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consequence.

Previous discussion of the equal environments assumption (EEA) has been too

extensive and varied to cover comprehensively here, but many examples from the

literature are illustrative. Studies that focused on parental perceptions of twin simi-

larity generally have not found prominant EEA violations. Two such studies found no

violations of EEA across a range of psychiatric disorders [126, 127]. Plomin et al.[128]

considered similarity of appearance by personality rating and showed that MZs may

actually be treated by parents as more different as a result of visual similarity. Het-

tema et al. [129] had physical similarity rated by photographs and examined several

psychiatric conditions but only found evidence for EEA violations in one, namely

bulimia nervosa. However, the EEA for eating attitudes and behaviors was examined

with the same methods in a later study by Klump et al. [130], and the significant

result by Hettema et al. [129] did not replicate. Other studies examined similarity

of twin experiences and physical environments. Negative environmental exposures

involving trauma and abuse revealed several significant violations of EEA in models

of schizophrenia [131]. Littvay [132] examined the effect of shared physical environ-

ments on political attitudes and found negligible effects. Felson [133] conducted a

broad review of studies regarding the EEA for a wide range of phenotypes. They

conclude that while the EEA is not strictly and universally valid, only small biases

to heritability seem to result. Finally, Eaves [134] warned that many rejections of the

EEA do not take into account the role of genetic similarity in selection of environ-

ments, also known as gene-environment correlation. Such sources of twin similarity

may be regarded as nonetheless arising from genetic factors by indirect means.

For this study, we did not specifically aim to address the equal environments

assumption on its past terms. The problem of modeling intensive time series data in

psychology is relatively new, and the role of the EEA differs in a number of technical
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respects. Most twin studies to date have used cross-sectional data with trait measures

that are treated as relatively invariant over time. For any study in which state-based

measures are available, time-invariant properties of the series may serve as pheno-

types in the classical, cross-sectional sense. The central distinction we aim to make

is that confounding cross-twin effects may be observable and highly consequential in

patterns of state-based twin covariation over time. For instance, a time-lagged asso-

ciation between twins may imply a causal relationship between them, such as a social

influence. If the measurement interval of the series is short enough, a simultaneous

twin covariance in time may imply some degree of shared experience, be it parental

treatment or physical environments. It may therefore be necessary to disentangle

these sources of dynamic similarity to estimate dynamics that are unique to each

twin. The remaining correlation of time-invariant dynamics can be assumed to arise

from the time-invariant sources of genetic and common environmental variation that

are conventionally estimated.

We aimed to extract twin-specific parameters of emotion regulation from time

series EMA data of positive and negative affect collected in twin pairs over 45 days. In

the process, we describe how components of the extraction model represent shared and

unique twin experiences and cotwin social influences. We hypothesized that emotion

regulation effect sizes and twin correlations would differ when cross-twin effects were

not included in the model. Last, we aimed to determine whether the magnitudes of

cross-twin regressions and innovation correlations were greater in MZ twins than DZ

twins, suggesting a kind of violation of the EEA.

5.2 Models

A dynamical systems model of twin covariation over time can be specified using

a vector-autoregessive (VAR) state-space model (SSM) [36, 32]. State-space algebra
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is a highly general approach to time series data, combining common elements from

structural equation modeling such as latent variables [38] with iterative algorithms to

condition each estimate of the latent state on its previous states. The latent variables

may therefore be Markov processes in continuous or discrete time. Continuous time

processes take the form of differential equations with parameters that are invariant

to the potentially random measurement intervals. Discrete time processes assume a

constant interval between measurements and are formulated in terms of time lags.

Linear systems may be formulated equivalently in terms of either. A linear SSM in

discrete time is defined as follows:

xt = Axt−1 + But + wt, (5.1)

yt = Cxt + Dut + vt, (5.2)

w ∼ N(0,Q), v ∼ N(0,R), t ≥ 0, (5.3)

where xt is the vector of latent states and yt is the vector of observed measures. In

the state equation (5.1), A contains the transfer function parameters describing the

relation of the state to both its own prior states and those of other latent variables. B

contains regression coefficients of the state onto exogenous inputs (i.e., time-varying

covariates) ut. Q is the covariance matrix of innovations wt(also known as distur-

bances or process noise). When xt contains the state of affect or other psychological

variables, we might regard innovations as the effects of new experiences on the indi-

vidual.

The measurement equation maps the latent state xt to the indicators yt with

factor loading matrix C. D contains the regression coefficients of the indicators onto

any exogenous variables. R is the diagonal covariance matrix of the model residuals

vt, that is, i.i.d. random variation that does not affect the latent state, such as
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measurement error.

When u includes a column of ones, B may contain parameters representing

factor means or D can include indicator means. When A is matrix of zeros, the

model reduces to a factor analysis, where Q is the covariance matrix of the factors.

A state-space model specifying a lag-1 vector autoregression of latent states load-

ing onto p indicators per twin may be specified as follows:T1,t

T2,t

 =

 β1 γ1,2

γ2,1 β2


T1,t−1

T2,t−1

+

w1,t

w2,t

 , w ∼ N


0

0

 ,
1 ρ

ρ 1


 (5.4)



y1,1,t

...

y1,p,t

y2,1,t

...

y2,p,t


=

~λ 0

0 ~λ


T1,t

T2,t

+



µ1,1

...

µ1,p

µ2,1

...

µ2,p


+



v1,1,t

...

v1,p,t

v2,1,t

...

v2,p,t


. (5.5)

In measurement model, Equation 5.5, ~λ is a vector of p factor loadings relating

each indicator yi,j,t to latent states Ti,t. Dut reduces to a simple vector of indicator

means, µi,j. The complete model can be seen in a form of path diagram in Figure 9.

The path diagram resembles a cross-lagged panel model, except that there need not

be a defined or small number of occasions. Only the matrices stated in Equations 5.1

and 5.2 are used in a recursive way to compute the model likelihood at each occasion.

Alternative state equations may be substituted for Equation 5.4. For example,

the lag-1 vector autoregression may be specified in terms of a first-order differential

equation. Differential equations allow continuous-time modeling with parameters that
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Fig. 9.: Path diagram of state-space twin model

are invariant to irregularities in the observation interval. The expectation of the state

at each time is instead a function of its derivatives, x(t), ẋ(t), etc.

Ṫ1(t)

Ṫ2(t)

 =

 λ1 γ1,2

γ2,1 λ2


T1(t)

T2(t)

+

w1(t)

w2(t)

 , w ∼ N


0

0

 ,
σ1 ρ

ρ σ2


 (5.6)

A popular continuous-time model is the damped linear oscillator (DLO) and its

coupled version. These models have been popularized by their use in the Latent

Differential Equation approach [LDE, 43], but may also be specified as state-space

models for processes that include continuous random noise in the latent state:
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(5.7)

Iterative algorithms compute the likelihood of each observed occasion conditional

on prior observed and estimated values. Specifically, we used the Kalman filter, a

method of obtaining minimum-variance unbiased estimates of the latent state at each

occasion [46]. In brief, the Kalman filter recursively predicts the latent state at time

t from its optimal estimate at t − 1, then uses the observed data at t to make an

optimal correction to its prediction. The next occasion is then predicted from that

corrected estimate. The Kalman filter can be used with Full Information Maximum

Likelihood (FIML) as with other SEM,

−2 ln(L(θ̂|Y)) =
T∑
t=1

[
ln (2π|Σ̂|) + (yt − ŷt)TΣ̂−1(yt − ŷt)

]
(5.8)

with the important difference that in place of individual i we have time t, and in

place of the between-persons mean µ we have ŷt, a vector of predicted indicator val-

ues at time t conditional on a filtered state prediction from t − 1. This likelihood

function for state-space models can therefore be optimized to find parameters that

minimize the prediction error. Unlike SEM panel process models, an increase in the

number of measurement occasions does not increase the size of the model matrices or

the complexity of the likelihood function, making it suitable for intensive time series

data. Independently modeled individuals, twin pairs, or other kinds of groups may

be combined in a multi-group model by summing separate likelihood functions con-
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ditional on shared parameters. For a more complete description of the Kalman filter

algebra, see for example [36] or [46]. For a guide to specifying SSMs for estimation

with OpenMx, see [135].

After estimates of a model phenotype are obtained for each twin, the next step

is to estimate their heritability. This can potentially be done in a two-step pro-

cess by treating a matrix of estimates as observed data and applying conventional

twin-modeling strategies. A more statistically rigorous analysis must integrate the

precision of its estimates across all levels in a hierarchical manner. For this study,

we chose to use a two-step process and leave consideration of hierarchical modeling

techniques for future study. Regardless of the strategy used to estimate the heri-

tability of a parameter, it is necessary to consider systematic sampling covariance of

the parameters given the model. In small samples, the sampling covariance of the

parameters will confound the substantive twin correlations that are due to genetic

and environmental factors, leading to biased heritability estimates. The sampling

covariance of the parameters of a fully parameterized VAR is given as

Σ̂(Vec(θ̂)) = (ZTZ)−1 ⊗ Q̂, (5.9)

where Z is the t× q matrix of estimated latent states. As the covariance of the twin-

specific parameters is a function of their innovation covariance, simply accounting for

additional sources of phenotypic dependence is not enough to avoid bias. To adjust

for the bias, an estimate of the sampling covariance must be obtained and subtracted

from the empirical covariance of the parameters. In cases of structural model fitting

with constraints on parameter values and fixed parameters, the above algebra may

not lead to an accurate result. Alternatively, the Hessian, i.e., the matrix of second

partial derivatives of the −2 ln(L̂) with respect to the parameters, is a more general
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way to estimate the sampling covariance,

Σ̂(Vec(θ̂)) ≈ (
1

2
H)−1. (5.10)

Typically, the Hessian is used with maximum likelihood to compute confidence inter-

vals for parameter estimates. The off-diagonal elements are not generally of interest.

For any structural decomposition of the parameter covariance matrix however, it is

necessary to account for systematic sampling covariance to avoid biased estimation.

In the next sections, we first used simulations to verify the presence of systematic

sampling covariance when twin innovations are correlated. Second, we demonstrate

how estimates of twin parameter covariance and heritability are affected by inclu-

sion of cross-twin parameters in the model and adjustments for systematic sampling

covariance.

5.3 Simulations

Software All analyses were computed using R statistical computing environment

[74]. State-space models were specified and optimized using OpenMx, a free, open-

source modeling package for R [136]. Model optimization used a combined compute

plan consisting of a Simulated Annealing step [137] followed by gradient descent.

5.3.1 Simulation I: Sampling Distributions

The first Monte-Carlo simulation used repeated iterations of a single twin-pair

model with constant parameter values to compare an observed sampling distribution

to an estimate from the Hessian of the model’s −2 ln(L̂). A single VAR SSM was

specified as shown in Equation 5.4 with 2 latent states and 3 observed indicators

per state. Data-generating parameter values were chosen to be unique and to result

in stable, stationary dynamics. Each indicator loaded equally (λi,j = .5) with zero
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means and residual variances of σ2
v = .01. VAR parameters were given the values

β1 = .6, β2 = .65, γ2,1 = .3, γ1,2 = .2. Innovations were correlated ρ = .5. Once

the model was specified using package OpenMx, the command mxGenerateData() was

used to generate multivariate series according to the parameter values.

The simulation was run for 500 unique iterations, each with 45 occasions per

series. Each iteration produced a set of parameter estimates and a Hessian-based

sampling covariance matrix. The average Hessian-based sampling covariance matrix

was computed across all iterations of simulation and compared to the distribution of

point estimates. Table 11 shows the sampling covariance of the point estimates. Table

12 shows the average Hessian for comparison. In both, the bolded upper triangle gives

the Pearson correlation coefficients.

Table 11.: Sampling covariance of VAR parameters from simulation. Correlations are

given in bold in the upper triangle.

β1 γ2,1 γ1,2 β2

β1 0.0280 0.50 -0.74 -0.34

γ2,1 0.0138 0.0276 -0.34 -0.71

γ1,2 -0.0186 -0.0084 0.0228 0.47

β2 -0.0079 -0.0162 0.0099 0.0192

The similarity of estimates in Tables 11 and 12 shows that even with the rel-

atively short series length used in this model, the Hessian-based covariance matrix

is accurate. Importantly, the twin-specific parameter estimates β̂ have a moderate,

negative correlation. If the model represents MZ twins, then the sampling covariance

will bias the heritability estimate downward. If the model represents the DZ twins,

then this sampling covariance would potentially bias the heritability upward.
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Table 12.: Estimated Hessian-based sampling covariance E[(1
2
H)−1]. Correlations are

given in bold in the upper triangle.

β1 γ2,1 γ1,2 β2

β1 0.0258 0.50 -0.78 -0.40

γ2,1 0.0131 0.0259 -0.40 -0.78

γ1,2 -0.0173 -0.0089 0.0192 0.50

β2 -0.0089 -0.0174 0.0097 0.0193

5.3.2 Simulation II: Heritability

The second Monte Carlo simulation was used to determine: 1) the effect of ex-

cluding cross-twin effects from the model; and 2) whether a bias adjustment using the

Hessian-based estimate of the sampling covariance was adequate to recover the true

additive genetic and common environmental variance of the parameters. Two models

were tested: One as specified in the previous simulation with cross-twin regressions

and correlated innovations, and one with those parameters fixed to zero, representing

independence of momentary states between twins.

The bias-adjusted twin covariances of β̂ were computed by taking the average

bias-adjusted correlation matrix. That is, each twin-pair model produced a Hessian-

based estimate of the sampling covariance of the β̂ estimates. The total, empirical

covariance of β̂ across all pairs was computed. The Hessian-based covariance from

each pair was then subtracted from the empirical, between-pairs covariance matrix,

Σ̄(θ)i =Σ̂(θ)− (
1

2
Hi)

−1, i ∈ 1...N. (5.11)

Each adjusted covariance matrix was converted to a correlation matrix, then the mean
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of the correlation matrices was taken as the final bias-adjusted correlation matrix:

Di =
√

diag(Σ̄i). (5.12)

Adj. Corr.(θ) =
1

N

N∑
i

D−1
i Σ̄iD

−1
i . (5.13)

Additive genetic and common environmental variances were specified as a2 = .6

and c2 = .3. Common environmental effects are often small in real applications, and

often shrink with age. We chose non-zero c2 to both test the maximally complex

scenario, and because our data were collected in younger, adolescent twins for which

c2 effects may be more prominant. By focusing on recovery of twin correlations, our

results should generalize to models with only a2 and e2 as well. R package MASS

was used to generate a multivariate distribution of β values for 100 MZ and 100 DZ

twin pairs. Constrained random generation (with argument empirical=TRUE) was

used to simplify our tests by ensuring that the empirical, data-generating parameter

correlations had exactly the specified values without sampling variation.

A covariance matrix of β was specified according to expected genetic and envi-

ronmental twin correlations as

Σ(β) = σβ



a2 + c2 + e2 a2 + c2 0 0

a2 + c2 a2 + c2 + e2 0 0

0 0 a2 + c2 + e2 .5a2 + c2

0 0 .5a2 + c2 a2 + c2 + e2


= .1



1 .9 0 0

.9 1 0 0

0 0 1 .6

0 0 .6 1


,

(5.14)

with e2 = 1− a2 − c2 = .1.

To include bias due to MZ cross-twin effects in the simulation, MZ twins had

larger cross-regressions and innovation correlations (γ ∼ N(0, .3), ρ = .5) than DZ
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twins (γ ∼ N(0, .1), ρ = .2). Other parameters, including the indicator means, resid-

ual variances, and factor loadings, were given the same values as the first simulation.

100 iterations of simulation were run with 750 observations per series. At each

iteration, a bias-adjusted correlation matrix was computed as shown in Equations

5.11-5.13.

Table 13 shows the twin correlations for both models, each with and without

the additional bias adjustment. The results demonstrate that the twin correlations

are most accurately recovered when the expected cross-twin effects are estimated

in the model and adjustments are made to correct for the bias due to sampling

covariances. The heritability when cross-twin effects were not included in the model

was approximately zero, with bias adjustment slightly boosting both MZ and DZ twin

correlations. This result is unexpected under the conventional intuition that cross-

twin effects linearly contribute to the covariance of a phenotype in typical cross-

sectional studies. The cross-twin effects in the SSM serve to explain part of the

autocovariance of the series. When excluded, the unexplained autocovariance biases

estimates of the autoregressive parameters, diminishing their twin correlations rather

than inflating them. In this simulation, the greater cross-twin effects in MZ twins

than DZ twins resulted in a lower twin correlation and obfuscation of the heritability

of β.

5.4 Application: Affect data

Data were supplied by the Michigan State University Twin Registry [138, 139,

140, 141] and included 314 twin pairs (NMZ = 171, NDZ = 143) between ages 15 and

25. All participants were adolescent females who met the following inclusion / exclu-

sion criteria for the original aims, including 1) menstruation every 22-32 days for the

past 6 months; 2) no hormonal contraceptive use within the past 3 months; 3) no psy-
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Table 13.: Estimated twin correlations True values were rMZ = .9, rDZ = .6

Model Bias r̂MZ r̂DZ

γ, ρ 6= 0, Unadjusted 0.76 (0.68, 0.836) 0.53 (0.47, 0.597)

γ, ρ 6= 0, Adjusted 0.87 (0.79, 0.956) 0.59 (0.52, 0.665)

γ, ρ = 0, Unadjusted 0.58 (0.45, 0.711) 0.56 (0.49, 0.639)

γ, ρ = 0, Adjusted 0.61 (0.47, 0.736) 0.62 (0.53, 0.697)

chotropic or steroid medications within the past 4 weeks; 4) no pregnancy or lactation

within the past 6 months; and 5) no history of genetic or medical conditions known

to influence hormone functioning or appetite/weight. Zygosity was determined by a

5-item physical similarity questionnaire and buccal swab DNA testing. The Positive

and Negative Affect Schedule (PANAS) [4] was used to assess affect in every partici-

pant once per day for 45 days in total. Participants were asked every evening to give

a general rating of affect for the course of that day. The PANAS instrument includes

twenty affect adjectives including “Enthusiastic”, “Alert”, “Distressed”, “Upset”, and

“Anxious”, with 5-point agreement rating scales for each. The instrument was de-

signed to reflect a two-factor affect structure resulting from an Exploratory Factor

Analysis (EFA) with “varimax” rotation of the affect indicators.

Quality Control For each twin pair, rows of affect data were aligned by their date

of assessment. Requirements for a minimum amount of complete data were necessary

to avoid an excess of parameter estimates with extreme error that would add noise to

the second-stage biometrical genetic analysis. If either twin had fewer than 15 rows

of complete affect data, the whole pair was excluded from the analysis. If a twin

pair as a whole had fewer than 15 rows of complete data, that is, had fewer than

15 days containing complete affect records in both twins, then that twin pair was
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excluded. These requirements ensured that twins individually had sufficient rows of

data for analysis while also sharing a sufficient number of simultaneous measurement

occasions. Out of 314 available twin pairs, 276 (NMZ = 153, NDZ = 123) met these

criteria for quality. The median number of complete rows per twin pair was 34, and

54 pairs had 15 to 25 complete rows of data. No associations were found linking the

outcome of our exclusion criteria to age, race, or body mass index (BMI).

Some participants did not respond with more than one rating on one or more

items of PANAS. Zero-variance data columns could not be modeled and had to be

excluded on a case-by-case basis, though no twin pair had enough of such columns

to be excluded as a whole. Table 14 gives the number of individuals per number of

unique responses for each item of the PANAS questionnaire. Where an individual only

had one unique response on an item, that item was excluded from their model. For

instance, “Hostile” was excluded for 102 participants. Across all items, individuals

most frequently used 4 response categories. Fewer categories were used for negative

affect than positive affect items on average.

5.4.1 Model

Because each twin pair had no more than 45 complete rows of data and only one

assessment per day, we chose the simplest parameterization possible and modeled

only a lag-1 autoregression in discrete time, giving the following state equation:
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Table 14.: Number of individuals per number of unique responses on each item of the

PANAS.

# unique responses: 1 2 3 4 5

Interested 1 33 149 235 134

Excited 1 8 69 198 276

Strong 15 70 182 190 95

Enthusiastic 4 30 121 198 199

Proud 7 49 124 194 178

Alert 12 55 160 213 112

Inspired 20 70 143 211 108

Determined 5 31 124 211 181

Attentive 19 54 160 180 139

Active 4 24 81 206 237

Total % (PA) 0.02 0.08 0.24 0.37 0.30

Distressed 9 81 162 167 133

Upset 5 52 127 186 182

Guilty 62 186 149 105 50

Scared 38 145 172 131 66

Hostile 102 167 136 101 46

Irritable 13 71 164 193 111

Ashamed 82 189 153 83 45

Nervous 9 63 159 184 137

Jittery 70 162 148 101 71

Afraid 54 162 162 109 65

Total % (NA) 0.08 0.23 0.28 0.25 0.16
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Fig. 10.: Path model representation of the positive and negative affect twin state-

space model with cross-twin effects.



P1,t

N1,t

P2,t

N2,t


=



βP ;1 0 γP ;1,2 0

0 βN ;1 0 γN ;1,2

γP ;2,1 0 βP ;2 0

0 γN ;2,1 0 βN ;2





P1,t−1

N1,t−1

P2,t−1

N2,t−1


+



wP ;1,t

wN ;1,t

wP ;2,t

wN ;2,t


, (5.15)

w ∼ N





0

0

0

0


,



1 0 ρP 0

0 1 0 ρN

ρP 0 1 0

0 ρN 0 1




, (5.16)

The A matrix above contains parameters (β) describing the autoregressive ten-

dency of positive (P ) and negative (N) affect in each twin. The off-diagonal elements

include parameters γ that regress Twin 1 P1 onto Twin 2 P2 and vice versa. The same
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is specified for negative affect. The covariance matrix specifies P and N as orthogonal

within-twin, but potentially sharing innovations between-twin. While it is possible

to expand the number of parameters to include cross-valence within and between-

twin correlations, we chose a simple specification to ensure model identification and

statistical power.

The measurement equations relating the PANAS indicators to their latent states

were specified as follows:

y1,1,t

...

y1,20,t

y2,1,t

...

y2,20,t


=



~λP 0 0 0

0 ~λN 0 0

0 0 ~λP 0

0 0 0 ~λN





P1,t

N1,t

P2,t

N2,t


+



µ1,1

...

µ1,20

µ2,1

...

µ2,20


+



v1,1,t

...

v1,20,t

v2,1,t

...

v2,20,t


, (5.17)

yt was arranged according to the intended dimensions of the PANAS, positive

indicators first, and with positive and negative indicators loading onto separate fac-

tors. No cross-loadings within or between twin were permitted. The C matrix is

consequently a block-diagonal 40× 4 matrix where each ~λ is a 10-element vector con-

taining factor loadings. For this model, ut was only a vector of ones, resulting in Dut

equaling the vector of indicator means.

5.4.2 Analyses

Affect variables were first standardized per individual. The Twin SSM was fit to

all twin pairs, resulting in sets of twin-pair specific parameter estimates and model

likelihoods. Constrained models with all γ and ρ parameters fixed to zero in the

A and Q matrices were also fit to each pair. Under certain regularity conditions,
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the difference between the −2 ln(L̂) of the saturated and constrained model, or the

Likelihood Ratio (LR), is distributed as a non-central χ2 on 6 degrees of freedom, as

we constrained 6 parameters in total [142]. Higher LRs indicate greater degradation

of model fit as a result of the parameter constraints. The Likelihood Ratio Test

(LRT) of statistical significance consists of determining if the LR is greater than a

critical value on the χ2 distribution computed for some false positive rate α. We used

α = .05, making χ2
df=6 critical value approximately 12.59.

First, the LRs were regressed onto zygosity, coded as the average genetic correla-

tion (rGDZ = 0.5, rGMZ = 1.0). The number of complete rows of data was included

in the model to account for LR differences due to sample size. Cohabitation as a

binary indicator was also included in the model, though only 17 twin pairs reportedly

did not cohabit.

Second, overall cotwin influence effect sizes were computed as γ̂P = γ̂2
P ;1,2 + γ̂2

P ;2,1,

and γ̂N = γ̂2
N ;1,2 + γ̂2

N ;2,1. These, along with shared experiences ρ̂P and ρ̂N were

regressed on zygosity.

5.5 Results

Results of model fitting were first examined for errors and problematic outliers.

MZ twins had a mean LR of 24.37, a median of 14.52, and a standard deviation of

44.38. DZ twins had a mean LR of 11.22, a median of 7.97, and a standard deviation

of 8.63. Three MZ twin pairs had LRs with extreme values of 203.12, 196.01, and

444.12. One MZ pair had an anomalous, negative LR of -3.14 that remained even

after alternative optimization strategies were attempted1. Figure 11 shows series

of estimated latent states from the saturated model of the anomalous twin pair.

1Reruns with simulated annealing followed by gradient descent, also gradient de-
scent with start values set to the estimates of the constrained model.
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While positive affect demonstrates typical variability, negative affect had practically

no variability other than two extreme values. The twins were highly correlated for

positive affect and almost perfectly correlated for negative affect. The twin pairs with

the three extreme LRs and the negative LR were excluded from further steps of the

analysis.
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Fig. 11.: Series of estimated latent states in one twin pair that showed statistical

anomalies, likely due to a problematic lack of variation.

Initial examination of effects showed extreme correlations driven by outliers in

the saturated model (Figure 12). The outlier effects tended to result from problem-

atic data such as shown in Figure 11. Values of β less than -1 and greater than 1

represented unstable systems with rapidly growing variance, and were therefore also

violations of the theoretical expectations for those parameters. Furthermore, they

were statistical outliers, falling outside of the 95% probability region of the distri-

bution of the remaining estimates. Values of β̂ > 1 fell into the upper tail with

probability of 1.18%, and β < −1 fell into the lower tail, having probability of .002%.
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The means of each γ estimate were 0 and standard deviations were all .29, mapping

values below -1 and above 1 to a probability of .03%, or about 3.45 standard devia-

tions from the mean. While the stability of the system does not strictly depend on γ

falling within [-1, 1], extreme values of γ tended to indicate problems with the fit of

the model and are not easily interpreted. Altogether, 47 of the 276 twin were esti-
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Fig. 12.: Bivariate distributions of estimated effects β̂. The saturated model (Left)

shows extreme correlation driven by outliers. The constrained model (Right) had

fewer outliers. Pearson correlations are shown in the upper right triangles.

mated to be unstable or theoretically unlikely systems constituting outliers given the

above percentiles. We excluded these twin pairs from the analysis to avoid biased or

nonsensical results (such as the correlation of -.99 shown in Figure 12) and focus only

on theoretically feasible values within the [-1, 1] interval. The remaining estimates

formed a reasonably Gaussian distribution with much smaller remaining correlations

(Figure 13).

LRTs on 6 degrees of freedom resulted in varying statistical significance of cross-

twin effects across twin pairs. Table 15 shows the frequencies of LRTs greater than
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Fig. 13.: Bivariate distributions of estimated effects β̂ from the saturated model after

exclusion of outliers. The extreme correlations disappear and a relatively Gaussian

distribution remains. Pearson correlations are shown in the upper right triangle.

the χ2
df=6, α = .05 critical value (12.59) by zygosity. The χ2

df=1 test of association

between zygosity and cross-twin effect significance was itself robustly significant with

p < .001, showing that cross-twin effects were statistically significant for more MZ

than DZ twin pairs.

Table 15.: Contingency table of significant Likelihood Ratio Tests (LRT) by zygosity.

A significant LRT indicates that the twin pair model fits significantly worse when

cross-twin effects are constrained to zero.

LRT: p > .05 p < .05 Total

DZ 78 23 101

MZ 63 63 126

Total 141 86 227

χ2
df=1 = 14.482, p = .0001415
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Cohabitation was checked as a possible source of increased cross-twin influence.

MZ and DZ twins were both found to cohabit at the same rate. 7 out of 116 DZs

did not cohabit and 10 out of 143 MZs did not cohabit, or about 6 and 7% of the

sample, respectively, showing no association with zygosity. After removal of outlier

twin pairs, these numbers changed to 7 out of 94 DZs and 8 out of 118 MZs, roughly

the same proportion and still with no statistical association with zygosity.

LRs were regressed onto zygosity (coded as rG, average genetic correlation,

DZ = 0.5,MZ = 1.0), cohabitation, and data completeness (as total number of

complete rows of data). Results of the multiple regression are shown in Table 16. On

average, the .5 increase in genetic correlation from DZ to MZ was associated with

an increase in the LR on average from 3.6 to 11.9, significant at p < .001. Data

completeness and cohabitation were not significant.

Table 16.: Results of multiple regression of twin-pair LRs onto zygosity, data com-

pleteness, and cohabitation. LRs were computed from the difference of the −2 ln(L̂)

of models in which twin effect parameters were freely estimated versus models in

which they were constrained to zero. Zygosity (rG) was coded as DZ = 0.5 and

MZ = 1.0.

Estimate CI- CI+ p

Intercept -8.143 -22.721 6.436 2.748E-01

rG 15.537 7.207 23.867 *3.202E-04

Data completeness 0.253 -0.050 0.556 1.035E-01

Cohabitation 3.764 -5.877 13.404 4.450E-01

Descriptive statistics for the estimated β̂ parameters are shown in Table 17 un-

der both the saturated (cross-twin effects, abbreviated CTFX 6= 0) and constrained
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(CTFX= 0) model. On average, effect sizes described a tendency to decay toward

equilibrium at a rate of approximately a 70% reduction per day from prior positive

affect and a 80% reduction per day from prior negative affect. Effects were slightly

larger when cross-twin effects were excluded from the model. γs of PA and NA both

had means of zero. Differences in average effect sizes are apparent between zygosities.

MZ twins show larger standard deviations of γ, meaning larger positive and negative

cross-twin effects on average. MZ innovations were also more than twice as correlated

as DZ innovations.

Table 17.: Descriptive statistics for the twin-specific phenotypic parameter estimates

β̂ and cross-twin effects γ and ρ. Excluding twin effects (CTFX) from the model

slightly inflated effect sizes, as cross-twin regressions accounted for part of the time

dependence.

MZ DZ

Model Parameter µ̂ σ̂ Median µ̂ σ̂ Median

CTFX6= 0

βP 0.300 0.319 0.313 0.283 0.306 0.278

βN 0.211 0.304 0.206 0.227 0.310 0.234

γP -0.032 0.320 -0.066 0.007 0.259 -0.001

γN 0.013 0.308 -0.040 0.035 0.245 -0.011

ρP 0.263 0.393 0.268 0.122 0.324 0.104

ρN 0.205 0.375 0.196 0.081 0.310 0.047

CTFX= 0
βP 0.312 0.276 0.315 0.306 0.278 0.309

βN 0.223 0.279 0.238 0.236 0.302 0.217

Table 18 shows the results of the multiple regression of twin cross-regressive

effects (γ) and innovation covariance (ρ) effect sizes onto cohabitation and zygosity,

113



which was coded as the expected genetic correlation (rG). All cotwin influence and

shared experiences parameters were significantly greater in MZ twins at p < .05.

Cohabitation was only significant for positive shared experiences ρP .

Table 18.: Coefficients from multiple regression of cross-twin effect sizes (γ2 and ρ)

onto zygosity (rG) and cohabitation status. All cross-twin effects were significantly

associated with zygosity at p < .05.

Effect ∼ rG Estimate CI- CI+ p

Cotwin Influence (γP ) 0.122 0.031 0.212 *8.972E-03

Cotwin Influence (γN) 0.142 0.029 0.255 *1.446E-02

Shared Experience (ρP ) 0.280 0.091 0.468 *3.970E-03

Shared Experience (ρN) 0.248 0.066 0.431 *8.104E-03

Effect ∼ Cohabitation Estimate CI- CI+ p

Cotwin Influence (γP ) -0.024 -0.115 0.066 6.027E-01

Cotwin Influence (γN) 0.080 -0.033 0.193 1.663E-01

Shared Experience (ρP ) 0.237 0.048 0.425 *1.462E-02

Shared Experience (ρN) 0.048 -0.134 0.230 6.069E-01

Using the procedures outlined in Simulation II, twin correlations for β̂ were

estimated and adjusted for bias due to sampling covariance. Table 19 shows the

resulting correlations. The correlations were generally small enough to fall within

error variation around zero. It can be seen that in the saturated model that included

the cross-twin effects, the sizes of the correlations variously increased or decreased

depending on the degree of sampling covariance subtracted out. For the constrained

model, the bias adjustment increased the correlations, as the only elements of the

sampling covariance that were not close to zero were the diagonals (i.e., sampling
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variances).

Table 19.: Twin correlations for autoregressive effects β̂ with and without bias ad-

justment.

Model Bias rMZ(βP ) rMZ(βN) rDZ(βP ) rDZ(βN)

γ, ρ 6= 0, Unadjusted -0.162 -0.164 0.149 0.113

γ, ρ 6= 0, Adjusted -0.093 -0.081 0.384 0.257

γ, ρ = 0, Unadjusted 0.159 0.195 0.327 0.159

γ, ρ = 0, Adjusted 0.284 0.356 0.596 0.261

5.6 Discussion

Behavioral genetic studies of phenotypes derived from experience-sampling present

a compounding number of statistical challenges over cross-sectional designs. State-

based measures of cohabiting twins are likely to reflect many sources of environmental

similarity, reflected in their contemporaneous and lagged correlations. In this study,

we have demonstrated and applied one strategy for extracting independent features

of behavior despite cohabitation and close interaction between twins. In the process,

we quantified those interactions and discovered important differences in emotional

dynamics dependent on zygosity. Different technical aspects of the twin-pair dy-

namical system were ascribed substantive interpretations. The correlation of random

innovations served as a direct indicator of environmental similarity by way of shared,

momentary, affective experiences. Cross-lagged regressions served as an indicator of

the average influence of one twin upon the other. The autoregressive parameters

unique to each twin modeled individual tendency to regulate emotions unrelated to

the two aforementioned environmental tendencies.
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We initially used simulations to test a two-step procedure for obtaining individ-

ual estimates of the emotion regulation phenotype and its estimated heritability while

accounting for unbalanced cross-twin effects. Our first simulation verified that the

Hessian-based sampling covariance of the phenotypic parameters is accurate. The re-

sults verified that non-negligible sampling covariance should be expected as a function

of the twin innovation correlation. Our second simulation demonstrated accurate es-

timation of the data-generating twin correlations of the phenotype using a correction

for its sampling covariance. We simulated MZ twins to have stronger psychologi-

cal effects on each other and experience more of the same events than DZ twins.

Their emotion regulation parameters were generated to covary according to additive

genetic and common environmental sources, which were recoverable only when the

model accounted for the confounding cross-twin effects.

Our application of the methods to affect data provides evidence that violations

of the EEA were present and quantifiable in a few forms. Mean differences in the

LRs by zygosity showed that on average, cross-twin effects were significantly more

critical to modeling MZ than DZ twins. Effect sizes for cotwin influence and shared

experiences were all significantly, positively associated with genetic similarity, even

after accounting for cohabitation status. Cohabitation did not appear to play a large

role in the model comparisons or cross-twin effects. It was significantly associated with

shared positive experiences, but none others. The results suggest that on average, MZ

twins participate in each others’ lives more completely than DZ twins, experiencing

the same events and having larger or more enduring reactions to each others’ daily

fluctuations. The observed differences of twin state correlation by zygosity may be due

to the interplay of genetic factors with environmental selection. Other authors have

examined the role of gene-environment correlation in the non-stationary heritability of

phenotypic states indexed, for instance, by time [134, 143] or by hormone levels [144].
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In the current study, we did not examine the heritability of momentary affect state

itself, which was considered transient. We leave the concept of momentary genetic

states and their influence on momentary affect to future discussion, as the current

study only aimed to account for more obvious, circumstantial sources of within-pair

twin covariation.

The model phenotype, emotion regulation, did not appear to be heritable or

even strongly a product of common environmental variation in the classical sense.

However, the study was severely underpowered to test for that, having only 227 twin

pairs in the final analysis. The twin correlations likely varied as a function of sampling

error, given that they were close to zero and showed no consistent pattern of positive

or negative sign, and the MZ correlation was not positive and greater than the DZ

correlation. Despite the lack of statistical power, we nonetheless included the results

for the purpose of completeness. Future studies will require many more of both twin

pairs and occasions of measurement per twin to obtain reliable heritability estimates of

twin-specific parameters. Further simulations to calculate adequate statistical power

were beyond the scope of the current study, though they are needed to provide critical

guidance for future data collection.

There are many reasons other than statistical power for why emotion regulation

as defined here may not be heritable. For one, it may not be as time-invariant as

the model assumes. It is likely that the recovery rate of emotional perturbations will

change over the lifespan, if not over the course of days, as biological and environmental

circumstances change. Our conception would therefore be regarded only as an average

value that, though estimable, may not accurately represent any single instance.

Second, the dynamics we specified may not accurately describe the true mech-

anisms of regulation, whereas alternatives may be more suitable. For instance, one

or more second order differential equations may be specified that describe compound
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damped oscillations around equilibrium, and such patterns have been previously ob-

served in affect data [44]. Alternatively, models might describe a finite impulse re-

sponse function unique to a certain kind of perturbation, i.e. a moving average (MA)

model. There are numerous ways to characterize the dynamic properties of time se-

ries, including autoregressive moving average (ARMA) models, stochastic differential

equations, Fourier-transform-based spectra, wavelet analyses, and simple descriptive

statistics like the series mean and variance [36].

Third, the observation interval may be too large to detect the short-term dy-

namics of the given affect states. The PANAS questions elicit day-long retrospective

ratings for relatively fleeting emotional experiences, and it is not clear how each re-

spondent arrives at their summary response of each day’s emotions. Shorter intervals

might capture more momentary assessments and rapid fluctuations that are otherwise

forgotten or discounted by the respondent by the end of the day.

Fourth, if we take our result at face value, we might conclude that regulation is

largely an idiosyncratic product of learning and experience unique to each individual.

This possibility is not exclusive from the previous three, and the current construct

of emotion regulation may be a useful indicator in studies of mental health. While it

is certainly possible to conceptualize complex traits that are useful and informative

without a strong genetic basis, some non-zero heritability is typically expected due

to the unavoidable and innumerable genetic covariates involved in the execution of

any given human behavior. The complete lack of a genetic signal here most strongly

suggests problems of model specification or statistical power.

Other limitations of the data made extraction of a meaningful emotion regulation

phenotype difficult. The PANAS has known psychometric problems, namely a lack

of clear meaning for zero or neutral values. Russell [145] points out, among other

critiques, that dividing a bipolar scale into two unipolar scales in the manner of the
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PANAS results in an L-shaped distribution that may be arbitrarily correlated. Studies

have variously allowed factors to correlate, but the practical significance of doing so is

not clear, particularly when the correlation may be due to problems with measurement

itself. To avoid introducing several additional parameters and associated problems

with model solvability, we did not include cross-valence factor correlations. For the

same reasons, we also treated the 5-point PANAS items as continuous and did not use

Item Response Theory (IRT) models [146] or other methods of handling ordinal data.

To date, the latter options are not yet available in the OpenMx state-space modeling

user interface. As a consequence of this exclusion, we expect that the standard

errors of our parameter estimates may be slightly inaccurate and associations with

the indicators may be underestimated. Treating the ordinal variables as interval only

caused computational problems when the variability of many items was extremely

low. It could be seen in Table 14 and Figure 11 that negative affect scores from many

participants were grossly invariant. While most of the problematic variables were

omitted from the analyses beforehand, those that ended up being modeled produced

a variety of anomalous parameter estimates and fit statistics that were ultimately

discarded from the analysis.

Obtaining novel and heritable endophenotypes is a popular goal of behavioral ge-

netics, and our list of limitations toward that goal is admittedly quite long. There are

currently few data sets like the one used here, with both a large number of intensive

repeated affect measures and genetic information, whether by way of twin pairs or

genotypes. The most important goal of this study is therefore not to validate a novel

phenotype, but to further illuminate the methodological path towards doing so and

our current place along it. Our simulations and results should be considered when

investigating the dynamics of emotions and the extraction of theoretical phenotypes

from twin pair time series in general. Following conventions for the validation of
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latent variables, biometrical genetic signals such as heritability and common environ-

ment may be considered possible criteria by which to validate candidate phenotypes.

It may be informative to compare biometrical genetic analyses of parameters from

competing dynamical models to compare their biological proximity, or conversely,

statistical artifice. As mentioned above, even moderate degrees of heritability offer

some indication that the specified dynamics are stable and statistically reliable.

Summary We proposed a vector-autoregessive state-space model of twin behavior

in experience-sampling designs. The model accounts for cross-twin effects to ex-

tract unique, twin-specific indices on a model phenotype. Our analyses showed that

cross-twin effects were statistically present in affect data in two forms: cotwin social

influence and shared experiences. Accounting for cotwin influence and shared experi-

ences in the model had a substantial effect on both estimates of the model phenotype

and its subsequent twin correlations. Further study is required to establish best prac-

tices in data collection, psychometrics, and modeling to improve the reliability of

within-person effect sizes and biometrical genetic inferences.
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CHAPTER 6

HIERARCHICAL MODELING FOR BIOMETRICAL GENETIC

ANALYSIS OF DYNAMICS

6.1 Introduction

In the previous chapter, we used a two-step procedure to estimate the heritabil-

ity of a stationary dynamic representing emotion regulation. Our analyses used an

approximate method to account for the imprecision of the estimated dynamics in

computing their twin correlations. We did not provide confidence intervals for the

resulting biometrical genetic variance components, nor did we use conventional hy-

pothesis testing to determine their significance. It is a major limitation of two-step

analyses that these crucial elements of statistical inference are difficult to accurately

assess. In this chapter, we give a brief overview of the most common modeling

strategies and study design requirements for a complete analysis of the heritability of

dynamical phenotypes.

A maximally rigorous approach to hierarchical analyses should jointly estimate

the phenotypic parameters with their biometrical genetic variance components. Si-

multaneous, single-step approaches, or hierarchical models, allow us to accurately es-

timate the precision of parameters at the highest levels of the hierarchy that depend

strongly on the precision of lower-level parameters. Hypothesis testing by generic

methods such Likelihood Ratio Test may also be possible and simple to conduct with

the results of a hierarchical model.

Additionally, hierarchical models allow information at one level of analysis to

be utilized during estimation of other levels. The manner in which this is done
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depends on the statistical approach chosen for the model, which we will discuss in

the next section. For example, in Bayesian analyses, biometrical genetic variance

components define a prior distribution for the individual dynamics. Conditioning

parameter estimates on a prior distribution can have a regularizing effect, drawing

them closer to their mean value and counteracting additional variance due to their

sampling error. Models fit with maximum likelihood can be specified equivalently by

including the multivariate density function of the parameters in the total likelihood

to be maximized.

6.2 Power and Bias by Sample Size

Before we examine hierarchical modeling strategies, it is useful to test the sample

requirements of a hierarchical two-step analysis. Sample size involves both a number

of individuals or twin pairs, N , and the number of occasions comprising each indi-

vidual’s series, T . We need to determine the power, bias, and variance of a 2-step

process under various combinations of N and T .

We can set realistic expectations by examining model limitations under the best-

case scenario: a simple model, no measurement error, and a high heritability of the

parameters. For several values of the number of twin pairs, N , and occasions per pair,

T , N pairs of univariate, lag-1 autoregressive processes without measurement error

were simulated with T occasions for both MZs and DZs. AR(1) parameters unique

to each twin were distributed according to a large heritability (σ2
A = .8). Denoting

time as t, family index as i, twin index as j, and zygosity as z, we have:
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yi,j,t = αi,jyi,j,t−1 + εt, ε ∼ N(0, σε), i ∈ {1...N}, j ∈ {1, 2} (6.1)

α ∼MVN(.5,Σ), (6.2)

Σ = σα

σ2
A + σ2

C + σ2
E zjσ

2
A + σ2

C

zjσ
2
A + σ2

C σ2
A + σ2

C + σ2
E

 , z ∈ {0.5, 1}. (6.3)

We defined power as the probability of rejecting a null hypothesis that σ2
A = 0

when the true σ2
A = .8. Figure 14 and Table 20 show empirical, simulation-based

estimates of the power, effect size, and standard error derived from 500 iterations of

simulation per combination of sample sizes N and T .
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Fig. 14.: Bias, variance, and statistical power for σ2
A,α = .8 given within (T) and

between (N) person sample sizes.

Generally, smaller T leads to a larger sampling variance of α, diluting its covari-

ance and leading to downward bias of σ2
A. This is only strictly the case when twins’

parameters αi,1 and αi,2 are not additionally dependent due to shared disturbances

or unmodeled, cross-regressive effects, as discussed in the Chapter 5. Smaller values

of N primarily lead to a larger variances of σ2
A, as is expected in the case of a simple,

non-hierarchical correlation. As T →∞, the power conditional on N should approach
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Table 20.: Statistical power for a σ2
A,α = .8 given within (T) and between (N) person

sample sizes.

Measurement occasions (T)

20 40 80 160 320 640 1280 2560 5120

T
w

in
p
ai

rs
(N

)

8 0.06 0.09 0.12 0.15 0.19 0.22 0.24 0.26 0.26

16 0.06 0.10 0.15 0.21 0.27 0.32 0.37 0.40 0.41

32 0.07 0.13 0.22 0.32 0.43 0.53 0.61 0.66 0.69

64 0.07 0.18 0.35 0.55 0.72 0.85 0.92 0.96 0.97

128 0.09 0.28 0.59 0.86 0.98 1.00 1.00 1.00 1.00

256 0.10 0.43 0.87 1.00 1.00 1.00 1.00 1.00 1.00

512 0.11 0.55 0.96 1.00 1.00 1.00 1.00 1.00 1.00

that of a non-hierarchical twin model. The estimates in the last column of Table 20

are just slightly lower than the power to reject H0 : rDZ = 0 when HA : rDZ = .4

given the same respective values of N . It is a key aim of hierarchical modeling to

reduce or eliminate the downward bias to α due to small values of T . This can be

done via the regularizing effect of jointly estimating σ2
A with α. In the next section,

we will examine a few modeling approaches to doing so.

As a final note on power, these cursory simulations are only intended to demon-

strate the dependence of bias, variance, and power on sample size. They are not

to be taken as a power calculation table in general, as the precision of a dynamic

parameter depends on the specification of the model, the signal-to-noise ratio, depen-

dence of parameters as studied in Chapter 5, and empirical identification in certain

nonlinear models such as that presented in Chapter 3. If the above sample sizes

appear unattainable for certain study designs, then it may be worthwhile to check
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the necessary power for alternative dynamic specifications that might account for a

greater proportion of variability in yt.

6.3 Modeling Strategies

A hierarchical biometrical genetic analysis of dynamics requires two main com-

ponents: a phenotype model with individual and group level parameters, and a struc-

tural genetic model of the unique and shared heritability of those parameters. For

the sake of simplicity and generality, we will only examine a univariate twin model of

a phenotype drawn from simple Gaussian processes.

The density of data Y conditional on dynamics, θ, and biometrical genetic vari-

ance components, ACE, can be determined according to Bayes theorem:

f(Y |ACE) =
f(Y |θ, ACE)f(θ|ACE)

f(Y )
(6.4)

A maximum likelihood approach to a fixed-effects hierarchical model involves op-

timizing all of the individual parameters jointly with the between-persons parameters.

This approach is described as the hierarchical likelihood, or h-likelihood, as detailed

by Lee, Nelder, and Pawitan [147]. If we assume that both the prediction errors of

the individual dynamical system and the parameters of those systems are multivariate

normally distributed, then the joint density function, excluding the denominator, is

computed as
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fY (yi,t ∈ Y|ACE) =
N∏
i=1

[
T∏
t=0

[
f(yi,t|θi, ACE)

]
f(θi|ACE)

]
(6.5)

=
N∏
i=1

[
T∏
t=0

[
exp

(
−0.5(ri,t − x̂i,t)Σ̂

−1
i,t (ri,t − x̂i,t)

T
)

√
(2π)k|Σ̂i,t|

]
(6.6)

×
exp

(
−0.5(θi − θ̄)Θ̂−1(θi − θ̄)T

)
√

(2π)k|Θ̂i|

]

By taking minus two times the log of this function, we obtain the deviance

function to minimize:

−2 ln L̂(θ, ACE|Y) =
N∑
i=1

[ T∑
t=0

[
ln |Σ̂i,t|+ (ri,t − x̂i,t)Σ̂

−1
i,t (ri,t − x̂i,t)

T
]

(6.7)

+ ln |Θ̂|+ (θi − θ̄)Θ̂−1(θi − θ̄)T
]

(6.8)

+kN(T + 1) ln(2π) (6.9)

This likelihood function can be described as a combination of the twin pair-

level state space model likelihood and the biometrical genetic model likelihood. Each

total person likelihood is summed and added to the likelihood of each individual

parameter θi given the ACE model-expected covariance Θ (6.8). The constant terms

are aggregated in (6.9). For maximum likelihood estimation, both the solution and

its estimated precision depend on derivatives with respect to θ and ACE in which

the constant term disappears and is inconsequential.

Maximum likelihood fitting is not advisable for hierarchical models because a

hierarchical likelihood like the one above will not have a global maximum. In equa-

tion 6.4, the second term, f(θi|ACE) describes a density that approaches infinity

as the sum of the hierarchical variance components approaches zero. Because θ are
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degrees of freedom that are jointly determined with their variance components, the

global maximum is infinity where θi = E[θ] and σ2
θ = 0. If T is large enough, then

f(yi,t|θi, ACE) may create local maxima sufficiently far from the mean value to avoid

the singularity. However, obtaining a local maximum may require limiting the preci-

sion or number of iterations of the optimization procedure and is thus arbitrary and

potentially unreliable.

The h-likelihood function may also be difficult to optimize in large samples due

to the high dimensionality of the fixed effects. In a typical study of twin pairs or

independent individuals, most of the fixed effects will be independent and do not need

to be optimized jointly. A highly efficient strategy is to iteratively fit each person or

twin-pair model with fixed start values of the latent variance components. After all

fixed effects are estimated this way, the latent variance components can be fit to the

last, best solutions of the individual or twin pair models. Repeating this procedure

results in convergence to a joint solution of the person and hierarchical parameters,

as optimization alternates between levels of the hierarchy while conditioning each on

the most recent solutions of the others. This and any other optimization procedure

should be restricted to avoid the aforementioned global singularity in the hierarchical

likelihood. Figure 15 presents the results of a simulation in which the alternating

optimization procedure was executed with a very high model convergence tolerance.

The results show substantial regularization of estimates toward their true values.

The estimates of σ2
A are biased slightly upward toward the singularity, as the chosen

tolerance was not specifically optimal for this case.

An alternative random-effects method involves marginalizing out θ for Twin 1

and Twin 2 such that no individual fixed effects need to be estimated. Marginalizing

out a parameter in this case means integrating over the likelihood of the data given

that parameter, and weighting by the likelihood of that parameter given the variance
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Fig. 15.: Simulation of hierarchical AR(1) processes(N = 64, T = 1280) with the

autoregressive parameters distributed according to σ2
A = .6, σ2

C = .3, σ2
E = .1. 60 iter-

ations were run. Blue letters represent data-generating parameter values. Estimates

were obtained using Maximum Likelihood Estimation.

components:

fY (yi,t ∈ Y| ACE) =
N∏
i=1

[
T∏
t=0

∫ ∫
f(yi,t|θ1, θ2)f(θ1, θ2|ACE)dθ1, dθ2

]
. (6.10)

The integral for this strategy can be computed in a variety of ways. For one, a cu-

biture approximation evaluates the likelihood of the data given a set of combinations

of θ1,g and θ2,h over a Q×Q grid, where g, h ∈ 1...Q.

fY (yi,t ∈ Y| ACE) =
N∏
i=1

[
T∏
t=0

Q∑
g

Q∑
h

f(yi,t|θ1,g, θ2,h)ω(θ1,g, θ2,h|ACE)

]
, (6.11)

where ωg,h are weights to be computed as a function of the bivariate normal density

of θ parameterized by ACE.
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Marginal maximum likelihood with cubature can be used with convex optimiza-

tion because it involves far fewer parameters than the fixed-effects model. However,

its computational feasibility is limited by the need for a large value of Q to accurately

approximate the integral and span the space of likely values of ~θ. For large samples,

this may become prohibitive without parallel computation. Furthermore, the max-

imization process will result in the same convergence problems as the fixed-effects

h-likelihood, with a singularity at Θ = 0.

The convergence problems and computational demands of hierarchical modeling

via maximum likelihood have led many to consider Bayesian methods to be the gold

standard. Relevant applications of Bayesian hierarchical modeling to emotion regu-

lation and affect have been demonstrated by Oravecz et al. [148, 117]. The authors

briefly cite the problems with marginal likelihood maximization, but do not consider

the non-marginalized h-likelihood approach.

In brief, Bayesian modeling algorithms do not rely on optimization of an objective

function. Rather, they use Markov Chain Monte Carlo (MCMC) to randomly sample

the posterior distribution of each parameter conditional on the data, the model, and

prior distributions. As the name suggests, the MCMC algorithm uses Markov chains

to randomly explore the parameter space according to step-wise acceptance criteria.

Acceptance of a new random step in the chain is probabilistic and a function of the

relative posterior densities of the data at the current and previous steps. The result

is that the steps of the chain will accumulate to an approximation of the posterior

distribution of the parameters. An introduction to Bayesian methods with R and

STAN is given by McElreath [149].

The point estimates obtained through maximum likelihood correspond to the

mode of an estimated posterior distribution sampled over a uniform prior. When a

posterior distribution can be produced through MCMC, there is no particular reason
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to favor the mode, or maximum a posteriori (MAP) estimate, and often the mean,

median, or other statistics are used instead.

In some ways similar to the h-likelihood method demonstrated in Figure 15, this

algorithm also avoids the singularity at Θ=0 by way of its limitations. Theoretically,

the singularity would only be expressible by the MCMC given infinitely small step size

and an infinitely long chain. Otherwise, the problem is avoided through sufficiently

large step sizes and random acceptance rates.

Simulations were used to test the computational, convergence, and regularization

properties of the Bayesian approach. Using R package rstan, a model was specified ac-

cording to equations 6.1 through 6.3 and data were simulated identically to the power

simulations, with the exception that the data-generating α values were themselves

generated to produce empirical variance components of exactly σ2
A = .6, σ2

C = .3, and

σ2
E = .1. Empirical correlations were fixed to gauge bias and variance from a single,

large-sample simulation while gauging the computation time, rather than averaging

over several small iterations.

In the first simulation, 300 twin pairs of each zygosity were generated, with 5000

occasions per twin. These dimensions correspond roughly to those of the postural

control data set used in Chapter 3, though that did not involve twin pairs. In the sec-

ond, 800 twin pairs of each zygosity were generated, with only 150 occasions per twin,

representing the conventional requirements for a fully powered twin study and the

typical amount of within-person data that can be afforded in a momentary assessment

study of self-reported experiences. Only 500 steps of MCMC were performed, and

results were computed after discarding the first 150 samples as part of the warmup

period and every second sample to reduce autocorrelation in the remaining 175 sam-

ples. Results should be considered in light of the fact that this is a smaller posterior

sample to use than would be ideal for a complete analysis. With these specifications,
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the MCMC took approximately 6 hours to compute the first set and 2 hours to com-

pute the second. Figure 16 shows the posterior distributions of parameter estimates

from these simulations.
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(a) N = 300, T = 5000
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(b) N = 800, T = 150

Fig. 16.: Resulting Bayesian posterior parameter distributions from simulated large-

sample studies. The dotted red line is the mean of the posterior distribution, and the

solid black line is the true data-generating value.

In the first simulation with N = 300 MZ and DZ pairs, and T = 5000, the

posterior means are remarkably close to their true values, at σ2
A = .602, σ2

C = .298,

and σ2
E = .101. In the second simulation withN = 800 MZ and DZ pairs and T = 150,

they remained far closer than expected given the biases found in our simulations, with
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σ2
A = .555, σ2

C = .295, and σ2
E = .151. Figure 14a shows that in a 2-step analysis, we

should expect to estimate to be at most half of its true heritability. Remarkably, it

appears that with N = 800 twin pairs, the regularizing effect of the between-persons

distribution on the estimates was sufficient to nearly eliminate that expected bias.

We conclude this section with a final simulation of the data dimensions from

Chapter 5, N = 150, T = 45, which by our power calculations has too few of both twin

pairs and occasions per twin to reliably estimate heritability. For these simulations,

the empirical twin correlations were not constrained to exact values, and results were

averaged over 30 iterations. 500 steps of MCMC were used per iteration, discarding

the first 200 and every second posterior sample.

For comparison, the same simulation was conducted with the alternating-optimization

h-likelihood algorithm described earlier. Because the data are relatively few, the pro-

cedure is prone to the singularity where Θ̂ = 0. After a few preliminary diagnostic

tests, it was determined that at N = 150, T = 45, σ2
E and hence the diagonal ele-

ments of Θ̂, shrink excessively relative to the off-diagonals after 3 alternations. No

tolerance criteria were defined, and instead this maximum number of 3 iterations was

used. Such tuning is not necessarily possible without a prior expectation for the effect

sizes. If only one iteration is used, the algorithm reduces to a two-step analysis and

the results resemble those of our simulations in the previous section. If too many

iterations are used, the twin correlations will approach unity, i.e., singular Θ̂.

The results of this brief vignette, shown in Figure 17, further demonstrate the

property that in a hierarchical model, bias in between-person statistics that would

otherwise result from insufficient within-person precision is greatly mitigated. In

this case however, it appears both sample dimensions are insufficient to completely

overcome the downward bias to the heritability in the Bayesian model, and with

h-likelihood, σ2
A and σ2

C are variously inflated to unpredictable degrees.
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(a) Bayesian model with MCMC, 500
steps.
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(b) Alternating h-likelihood optimiza-
tion, 3 iterations.

Fig. 17.: Simulation of hierarchical AR(1) processes(N = 150, T = 45) with the

autoregressive parameters distributed according to σ2
A = .6, σ2

C = .3, σ2
E = .1. 30

iterations were run. Blue letters represent data-generating parameter values.

6.4 Application: Heart Rate

A simple data application was conducted with ECG sensor data collected in 306

MZ twins and 478 DZ twins. The ECG series were collected as part of CO2 challenge

by Roberson-Nay [150]. Only the first four minutes of data were used, representing

only baseline variation before CO2 was administered. Heart rate sampled at 1Hz

was computed from the ECG data, which was originally sampled at 1000 Hz. The

resulting rate series was modeled as the same hierarchical AR(1) process examined

above. An alternative model was fit describing a hierarchical, biometrical genetic

analysis of just individual series means µ and standard deviations σ. Models were

fit using R package rstan as before. Table 21 gives the mean estimates and 95%

credible intervals of the standardized variance components for the parameters of the
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two models.

Table 21.: Biometrical genetic variance components of model parameters from two

models of heart rate measures: independent and identically distributed (i.i.d.) and

an AR(1) model. µ is mean heart rate, σ is the standard deviation, and β is the lag-1

autoregression coefficient from the AR(1) model.

Mean Variance Component (95% Credible Interval)

σ2
A σ2

C σ2
E

i.i.d model: µ 0.43 (0.35-0.48) 0.08 (0.00-0.17) 0.50 (0.45-0.54)

i.i.d model: σ 0.45 (0.36-0.51) 0.09 (0.01-0.20) 0.47 (0.42-0.51)

AR(1) model: β 0.38 (0.30-0.44) 0.07 (0.01-0.17) 0.55 (0.50-0.60)

All three parameters result in substantively interesting heritabilities, but the

model-based AR(1) parameter was not more heritable than the simpler descriptive

statistics. We can interpret this as an indication that the parameter of an AR(1)

process model does not represent a biological mechanism better than generic indices

of variability.
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CHAPTER 7

DISCUSSION

7.1 Summary of Findings

The aims of this dissertation were to define and estimate new control-theoretic

phenotypes from individual data for health-related research, then consider biometrical

genetic analysis of such phenotypes. As a matter orienting to an effective long-term

methodology, we studied an ideal case of high-quality data with precise theoretical

propositions. That is, we estimated theoretical model-based indices of many phys-

iological functions involved in stable, upright standing from COM data. Then, we

defined a simplified control scheme to estimate the regulatory properties of emotion

from affect data exhibiting a large number of standard psychometric deficiencies and

challenges. In the second half, we turned our attention to several issues prerequisite

to the biometrical genetic modeling of such dynamics. We considered the variety of

conceptual and statistical complications to our goals that arise from the dependence of

affect states in cohabiting twins. Then we briefly compared statistical frameworks for

hierarchical genetic models of dynamics. Finally, a Bayesian procedure was demon-

strated to obtain correct, unbiased results in simulation and subsequently applied

to a sample of heart rate data, yielding moderate heritability estimates for three

potentially useful indices.

In our analysis of postural sway, conclusions were not as simple as total accep-

tance or rejection of the theoretical model. Indices varied in their intraclass reliability,

association with previously linked covariates, and replication of previous findings such

as those of Tietäväinen et al.[65]. Direct fitting via state-space modeling permitted
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a more detailed post-hoc analysis than was possible in the other preceding meth-

ods. The theoretical processes appeared to be quite accurate for some individuals

with some variation in others. In reality, such processes are not likely a clear choice

between Langevin random walk, harmonic oscillation, and the system proposed by

Asai et al.[48]. Our results suggest that at different times and in different people,

the active mechanisms may vary substantially leading to the intertwined expression

of all such patterns. Further progress could be made by using the same methods to

to consider the many competing theoretical control schemes from the literature.

The case of postural control represents a desirable level of detail to achieve with

models of psychological processes. In both studies of emotion regulation, the data

were not sufficiently numerous nor interpretable to test comparably complex theo-

retical propositions. The simplest possible control scheme had to be chosen as a

starting point. This decision was informed partly by the way the simplified alter-

native posture control models, denoted SDDE and SDE, seemed to produce more

reliable parameters with stronger associations to their known covariates. Informally,

the complex model allowed the more specific theoretical assertions to be tested but

diffused relevant information in the data across many more parameters. Similarly,

picking a simple model of emotion regulation allowed us to look for more general and

reliable associations with substance use than would have likely been possible with the

bivariate regulation-risk model that was subsequently proposed. While conjectures

may be as complicated as one desires for the sake of developing a theory, our results

demonstrate the costs of model complexity when designing indices for practical use.

Chapter 5 demonstrated that one domain of applications for these methods,

namely EMA or Experience Sampling, entails problems of subject dependence that

may not be solved by integrated hierarchical modeling alone. It is relatively straight

forward to account for twin state dependence using a multivariate model such as
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vector autoregression. Accounting for the sampling correlation of dynamics in the

higher-order genetic model is more nuanced. The most direct solution would be to

collect within-person samples large enough to minimize the sampling error of the

estimated dynamics, but that is unlikely to be a fair option for the few available data

sets nor potential data sets generated with a limited budget. The method chosen for

the two-step analysis was somewhat crude in that it averaged the sampling covariance

matrix across all twin pairs. In the MLE hierarchical modeling approach considered

in Chapter 6, recalculation of each twin pair Hessian during optimization might allow

us to account for each pair exactly in the expected covariance matrix. This is not

currently possible with OpenMx, as there are no front-end way to reference the Hessian

in algebraic operations. It is unclear how to best approach the same problem in the

Bayesian framework. Possibly, a prior joint distribution can be analytically derived as

a function of the estimated disturbance covariance that counteract the exact amount

of expected inflation of the twin covariances, as the latter is known to be (ZTZ)−1⊗Q̂,

where Z is the state estimates and Q̂ is the disturbance covariance matrix.

7.2 Limitations

As we have seen, much statistical power is gained through the regularizing prop-

erties of hierarchical models, and that can partly mitigate the limitations on model

complexity in most EMA study designs. The broader paradigmatic problem with

EMA remains an issue of valid measurement strategies for subjective mental con-

tent like affect. Most psychological self-report instruments incorporate Likert scales,

which use a small range of integers to represent different levels of agreement with

a statement of inquiry [151]. Most often, five and seven-point scales are considered

to capture a gradation of agreement that is sufficiently fine-grained, with additional

response options having diminishing utility. Bipolar scales may designate a middle
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value and two or three graded degrees of agreement and disagreement to either side,

whereas unipolar scales start with 0 to represent “not at all,” and each additional

increment represents an increase in the level of agreement.

What exactly is happening when respondents attempt to quantify their subjec-

tive states? A Likert scale for assessing affect requires the respondent to dissociate

happiness, sadness, anger, etc. from the context in which each arises and map it

to a numerical value. This process takes place entirely in the respondent’s mind,

and is inaccessible. Although scales are coded in linear increments, there is no basis

to assume that one’s perceived magnitude of subjective intensity across experiences

varies in a linear way. E. C. Poulton [152] wrote, “The easiest way to bias a person’s

judgements is to ask him to judge stimuli for which he has no familiar units.” Poul-

ton authored several papers on the quantitative estimation of subjective judgments,

typically those of real, auditory and spatial stimuli. These comparisons between sub-

jective judgment and objective magnitudes revealed a number of biases in intuitive

quantification resulting from, for instance, anchoring [153], limited range of both scale

and the available stimulus, and variable subjective discernment. We can consult re-

views of these biases [154, 152, 155] for ideas about what likely occurs in the reporting

of affect as well:

1. Centering Bias: Responses are centered according to the available range of the

stimulus.

2. Stimulus or Response Equalizing: The full scale of responses is used for only

the available range of the stimulus. Also the converse, that only the available

scale is used for the full range of the stimulus.

3. Stimulus Spacing and Frequency Biases: Equal intervals on the scale are taken

to represent equal intervals of estimation of the magnitude or probability of the
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stimulus.

4. Contraction: Responses regress to the center; Upper extremes and differences

are underestimated and lower extremes and differences are overestimated.

5. Sequential Contraction: Ratings tend to contract toward prior ratings in se-

quence.

6. Local contraction: At the lower end of a rating scale, subjective incremental in-

creases require greater objective increase, and subjective incremental decreases

require lower objective decrease. The reverse is true for the upper end of a scale.

7. Asymmetric Transfer Bias: When a majority portion of the rating scale is fit

to an available range of the stimulus as with (2), the remaining portion may

be inadequate to represent an increase in the range of the stimulus, causing

unevenly proportioned representation.

These biases commonly stem, in part, from the basic problem of quantizing and

bounding observations for which there are no obvious boundaries or proportional

subdivisions. They apply insofar as we regard the act of reporting any subjective

experience, like affect, as an attempt of the respondent to estimate and quantize a

true, experiential dimension that happens to have no empirical measure.

Are affect questionnaire items what Kendler [156] called indexical, i.e., indicators

of a true underlying dimension subject to measurement error, or constitutive, in which

affect is defined to be their sum, taken at face value? The latter interpretation might

be justified by the question, who are we to tell respondents that their subjective

reports are erroneous? In the constitutive view, they may be valid expressions and

an aggregate dimension is nothing more than their total. The distinction between

indexical and constitutive corresponds respectively to the decision to use either factor
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scores or sum scores, though the choice is not often made for that reason. Using

factor scores means discarding potentially useful sources of variance specific to each

indicator. If the psychometric theory supposes an indexical nature, then much work

must be done with techniques like Item Response Theory to examine the kind of

nonlinear mapping problems raised by Poulton [154] and Measurement Invariance to

ensure consistency of the latent construct.

While much work has been done to understand subjective assessment, it does not

mean that the most common psychometric instruments in use have taken that work

into account. In Chapter 5, affect was measured using the PANAS, which is just one

subjective report instrument that has been developed and proliferated via a process of

ignoring all criticism. Its authors used low-powered, exploratory analyses of adjective

checklists to determine a certain correlation structure of two underlying dimensions,

positive and negative affect. They proclaimed the correlation structure to be a “fun-

damental psychometric principle” of affect[157]. James Russell, whose original work

on adjective checklists led to the PANAS [3], subsequently demonstrated how their

principle result was an artifact of poor instrument construction [158]. In brief, he

showed that splitting a univariate distribution by measuring it with two independent,

unipolar items results in arbitrary correlation structure between them because the

null responses on one can only be interpreted by knowing their place on the other.

Variation in the possible overlap of the low ends of each scale results in arbitrary

correlation between them that depends on both how the scale is subjectively under-

stood by the respondent and their resulting response distributions. If the boundaries

of the scale are not clearly defined or individually calibrated, there is no strong basis

for comparing ratings directly between participants or drawing conclusions about the

distributions of affect in general. We should not only expect that poorly constructed

and insufficiently validated psychometric instruments to have a large amount of mea-
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surement error or bias, as if they were just faulty sensors, but in the ways Russell

explains, they may also be prone to producing meaningless and misleading artifactual

features.

7.3 Future Directions

In Chapter 6, we produced heritability estimates for both a token candidate

phenotype and two descriptive statistics for comparison. We did not proceed to

the more complex issue of multivariate genetic analysis when the ontology of multi-

ple dynamics are of interest. Multivariate genetic variance decompositions can take

many forms, including atheoretical cholesky decompositions and the independent or

common pathway models[159]. The problem of multivariate genetic modeling can be

summarized as one of determining the number and overlap of additive genetic sources

of the covariance structure relating multiple phenotypes.

Multivariate genetic analysis is usually intended to investigate the genetic eti-

ology of relatively well-established phenotypic constructs, such as DSM psychiatric

disorders [160, 161]. It can also be used to obtain a deeper understanding of new

phenotypes derived from theoretical models in the ways we have considered here.

Suppose that we specify multivariate genetic models that include phenotypic dy-

namics from multiple, competing models fit to the same time series data. A strong

genetic covariance of parameters derived from different models suggests that they

may be representing similar biological pathways. If the parameters of one particu-

lar model are heritable but do not share additive genetic sources of variation among

themselves, that would seem to indicate that the model accesses multiple, distinct

biological pathways- a validating result if theoretically expected.

Multivariate analyses of heritability is a particularly interesting tool for theo-

retical model validation because it enables us to link the ontology of new constructs
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together at any level of abstraction, even when the relevant biological paths cannot yet

be known. This is potentially important for fields like cognitive science, where theories

of mental processes are necessarily posed in terms of emergent computational, statis-

tical, and information-theoretic abstractions. The studies conducted here concerned

similarly abstract cognitive phenotypes. Emotion regulation, as have discussed, is

likely a broad aggregate of cognitive and situational factors each contributing par-

tial regulatory functions. They are likely too diffuse to relate to particular neural

circuits, at least in the complex, in situ mode of EMA. Some of the components of

posture control have been conceptualized in the cognitive domain as well. The tilt

insensitivity radius that we estimated is thought to relate to the resolution of a cog-

nitive model of one’s body in space, and thus reliably estimating it would access an

otherwise obscure fact of human perception and information processing. With the

modeling strategies explored in this dissertation, we can anticipate many new appli-

cations in psychophysiology that will bridge the gaps between biology and emergent

behaviors.
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Appendix A

AR(1) ACE HIERARCHICAL LIKELIHOOD MODEL AND

SIMULATION IN OPENMX

The following R code uses package OpenMx to specify a hierarchical model that es-

timates the biometrical genetic components of the parameters of twin-pair specific

state space model. The simulation is set up to generate the data for each twin while

building the complete model, which is then fit using a custom compute plan.

PART=1 #For running multiple simulation files at once

nCores<-4

nTrials<-60

p<-1 #Number of indicators per factor

q<-2 #Number of factors (2, ie. twin 1 and 2)

t<-45 #Occasions of measurement per twin

N<-150 #Number of twin pairs

VA<- .6

VC<-.3

VE<-1-(VA+VC)

meanBeta<-.5

varBeta<-.1^2

exactSigma<-FALSE

exactTheta<-FALSE

outputFile<-paste0("sPFX_",t,"xN",N,"_part",PART,".RDS")

library(OpenMx)

library(MASS)

library(foreach)

library(parallel)
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mxOption(NULL, ’Number of Threads’, parallel::detectCores()) #now

cl<-makeCluster(nCores)

library(doSNOW)

registerDoSNOW(cl)

clusterEvalQ(cl, library(OpenMx))

#Make sure random data from OpenMx is not too exact by taking a center

portion

genDat<-function(model, exact=F){

if(exact)return(mxGenerateData(model))

nObs<-model$data$numObs

sInd<-sample(1:(nObs*3-nObs), 1)

randDat<-mxGenerateData(model, nrows=nObs*3)[sInd:(sInd+nObs-1),]

return(randDat)

}

# Build model -------------------------------------------------------------

varnames <- c(paste0("T1y",1:p),paste0("T2y",1:p))

latentnames<-paste0("x",1:q)

Amat<-matrix(c(.7,0,0,.7),2,2)

cLab<-rbind(cbind(paste0("C1_", 1:p),NA), cbind(NA, paste0("C1_", 1:p)))

rLab<-rep(paste0("r",1:p),2)

qLab<-c("q11","q12","q11")

ssModel <- list(

mxMatrix("Full", q, q, free=c(T,F,F,T), Amat, labels=c(paste0("a",row(

Amat),col(Amat))), name="A"),

mxMatrix("Zero", q, 1, name="B"),

mxMatrix("Full", 2*p, q, free=F, values=diag(q), labels=cLab, name="C",

dimnames=list(varnames, latentnames )),

mxMatrix("Zero", 2*p, 1, name="D"),

mxMatrix("Symm", q, q, free=c(T,F,T), values=c(1,0,1), name="Q", lbound=c

(1e-8,-.95,1e-8), ubound=c(NA,.95,NA)),

mxMatrix("Diag", 2*p, 2*p, FALSE, 0.00, labels=rLab, name="R", lbound=1e

-8),

mxMatrix("Full", q, 1, FALSE, labels="x",values=c(0,0), name="x0"),

mxMatrix("Diag", q, q, FALSE, 1, labels="px", name="P0", lbound=1e-8),

mxMatrix("Zero", 1, 1, name="u"),

mxData(observed=matrix(NA, t, p), type="raw"),#fewer rows = fast

mxExpectationStateSpace("A", "B", "C", "D", "Q", "R", "x0", "P0", "u"),

mxFitFunctionML()

)
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###START ITERATIONS

output<-NULL

for(trial in 1:nTrials){

# Simulate data

-----------------------------------------------------------

rBeta<-matrix(c(

VA+VC+VE, VA+VC, 0, 0,

VA+VC, VA+VC+VE, 0, 0,

0, 0, VA+VC+VE, .5*VA+VC,

0, 0, .5*VA+VC, VA+VC+VE

),4,4,byrow=T)

betas<-mvrnorm(N, mu=rep(meanBeta, 2*q), Sigma = rBeta*varBeta, empirical

=exactSigma)

clusterExport(cl, c("ssModel","betas", "genDat"))

# Create MZ models and data

-----------------------------------------------

MZ.models<-foreach(i = 1:N, .inorder=T)%dopar%{

current.MZ<-mxModel(name=paste0("MZ",i,"ssm"), ssModel)

current.MZ<-omxSetParameters(current.MZ, labels=c("a11","a22"), values=

betas[i,1:2], newlabels=paste0("MZb",1:2,"_",i) )

MZsimdat<-genDat(current.MZ, exact=exactTheta)

current.MZ<-mxModel(current.MZ, mxData(MZsimdat, type="raw"),

mxAlgebra( log(det(modelACE.bCovExpMZ)) + 2*log(2*pi)

+ (cbind(A[1,1],A[2,2])-mean_beta)%*%solve(

modelACE.bCovExpMZ)%*%t(cbind(A[1,1],A[2,2])-

mean_beta), name="ACEm2LL" ))

diag(current.MZ$A$values)<-.2

current.MZ.shell<-mxModel(name=paste0("MZ",i), list(current.MZ),

mxMatrix("Full",1,1,values=t,name="t"),

mxAlgebraFromString(paste0("MZ",i,"ssm.ACEm2LL +

MZ",i,"ssm.fitfunction"), name="ffc"),

mxFitFunctionAlgebra("ffc"))

return(current.MZ.shell)

}

# Create DZ models and data

-----------------------------------------------

DZ.models<-foreach(i = 1:N, .inorder=T)%dopar%{
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current.DZ<-mxModel(name=paste0("DZ",i,"ssm"), ssModel)

current.DZ<-omxSetParameters(current.DZ, labels=c("a11","a22"), values=

betas[i,3:4], newlabels=paste0("DZb",1:2,"_",i) )

DZsimdat<-genDat(current.DZ, exact=exactTheta)

current.DZ<-mxModel(current.DZ, mxData(DZsimdat, type="raw"),

mxAlgebra( log(det(modelACE.bCovExpDZ)) + 2*log(2*pi)

+ (cbind(A[1,1],A[2,2])-mean_beta)%*%solve(

modelACE.bCovExpDZ)%*%t(cbind(A[1,1],A[2,2])-

mean_beta), name="ACEm2LL" ))

diag(current.DZ$A$values)<-.2

current.DZ.shell<-mxModel(name=paste0("DZ",i), list(current.DZ),

mxMatrix("Full",1,1,values=t,name="t"),

mxAlgebraFromString(paste0("DZ",i,"ssm.ACEm2LL +

DZ",i,"ssm.fitfunction"), name="ffc"),

mxFitFunctionAlgebra("ffc"))

return(current.DZ.shell)

}

names(MZ.models)<-unlist(lapply(MZ.models, function(x) x$name))

names(DZ.models)<-unlist(lapply(DZ.models, function(x) x$name))

pairModels<-list("MZ"=MZ.models, "DZ"=DZ.models)

pairNames<-c(names(pairModels$MZ),names(pairModels$DZ))

# Set up compute sequence and ACE model

-----------------------------------

bigSeq<-list()

for(h in pairNames){

bigSeq<-c(bigSeq, mxComputeGradientDescent(fitfunction=paste0(h,".

fitfunction"), freeSet = c(paste0(h,"ssm.A"),paste0(h,"ssm.Q")) ))

}

mgSSM<-mxModel("modelACE", pairModels[["MZ"]], pairModels[["DZ"]],

#ACE expected covariance:

mxMatrix("Full",nrow=1,ncol=3, labels=c("VA", "VC", "VE"),

values=c(.01, .01, .1), free=T, lbound=1e-8, name="ACE")

,

mxMatrix("Full",1,6, labels=c("VUMZ1","VUDZ1","VUMZ2","VUDZ2

","CUMZ", "CUDZ"), values=0,free=F, name="rfxSE"),

mxAlgebra( rbind(

cbind(VA+VC+VE+VUMZ1, VA+VC+CUMZ ),
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cbind(VA+VC+CUMZ, VA+VC+VE+VUMZ2)

), name="bCovExpMZ"),

mxAlgebra( rbind(

cbind( VA+VC+VE+VUDZ1, .5*VA+VC+CUDZ),

cbind( .5*VA+VC+CUDZ, VA+VC+VE+VUDZ2)

), name="bCovExpDZ"),

#Observed covariance:

mxMatrix("Full", 1, 1, values=.5, free=T, labels="mean_beta

", name="meanMatExp"),

mxFitFunctionMultigroup(pairNames),

mxComputeIterate(

steps=list(mxComputeSequence(c(bigSeq,

mxComputeGradientDescent(

freeSet=c("ACE","

meanMatExp") ))))

,maxIter = 3) ###SET OPTIMIZATION RESTRICTIONS HERE

)

mgSSM<-mxRun(mgSSM)

ests<-coef(mgSSM)[c("VA","VC","VE")]/sum(coef(mgSSM)[c("VA","VC","VE")])

cat("Runtime:",mgSSM$output$cpuTime[[1]]/60, "minutes\n")

print(ests)

output<-rbind(output, ests)

saveRDS(output, outputFile)

}
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Appendix B

AR(1) ACE BAYESIAN HIERARCHICAL MODEL IN STAN

The following model may be loaded with R package rstan to fit an ACE model to

the parameter of simple AR(1) processes in simulated twin pairs.

data {

int<lower=0> N; // num individuals

int<lower=0> T; // num individuals

matrix[T, N] MZ1; // MZ Twin 1 series

matrix[T, N] MZ2; // MZ Twin 2 series

matrix[T, N] DZ1; // DZ Twin 1 series

matrix[T, N] DZ2; // DZ Twin 2 series

}

parameters {

vector<lower = -1, upper =1>[2] betaMZ[N];

vector<lower = -1, upper =1>[2] betaDZ[N];

real <lower=-1, upper=1> betaMu;

real <lower=0, upper=1> q;

real<lower=0, upper=1> a;

real<lower=0, upper=1> c;

real<lower=0, upper=1> e;

}

model {

matrix[2,2] SigMZ;

matrix[2,2] SigDZ;

vector[2] betaMuVec = rep_vector(betaMu, 2);

vector[T*N*4] err;

real nu;

int u = 0;

SigMZ[1,1] = a^2+c^2+e^2;

SigMZ[2,2] = a^2+c^2+e^2;

SigMZ[1,2] = a^2+c^2;

SigMZ[2,1] = a^2+c^2;
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SigDZ[1,1] = a^2+c^2+e^2;

SigDZ[2,2] = a^2+c^2+e^2;

SigDZ[1,2] = .5*a^2+c^2;

SigDZ[2,1] = .5*a^2+c^2;

for(i in 1:N){

nu = 0;

u+=1;

err[u] = MZ1[1,i] - nu; //needs to be

for (t in 2:T) {

u+=1;

nu = betaMZ[i,1] * MZ1[t-1,i];

err[u] = MZ1[t,i] - nu;

}

u+=1;

nu = 0;

err[u] = MZ2[1,i] - nu;

for (t in 2:T) {

u+=1;

nu = betaMZ[i,2] * MZ2[t-1,i];

err[u] = MZ2[t,i] - nu;

}

u+=1;

nu = 0;

err[u] = DZ1[1,i] - nu;

for (t in 2:T) {

u+=1;

nu = betaDZ[i,1] * DZ1[t-1,i];

err[u] = DZ1[t,i] - nu;

}

u+=1;

nu = 0;

err[u] = DZ2[1,i] - nu;

for (t in 2:T) {

u+=1;

nu = betaDZ[i,2] * DZ2[t-1,i];

err[u] = DZ2[t,i] - nu;

}

}

err ~ normal(0,q);

betaMZ ~ multi_normal(betaMuVec, SigMZ);

betaDZ ~ multi_normal(betaMuVec, SigDZ);
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betaMu ~ normal(.1,.3);

q ~ normal(.5, 1) T[0, ];

}
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Appendix C

SIMULATION SCRIPT FOR BAYESIAN AR(1) ACE MODEL

The following code simulates AR(1) data in twin pairs and uses R package rstan to

fit the model specified in Appendix B.

library(rstan)

library(MASS)

#Rapidly generate random AR1 processes using convolution

rAR<-function(N, b, q){

f<-exp(log(b)*1:N)

g<-rnorm(N,0,q)

return(convolve(f,g))

}

#Set up hierarchical AR parameters

pars<-list(

"q" = 0.75,

"a"=.6,

"c"=.3,

"e"=.1,

"bMu"=.5,

"bSig"= .1

)

#Sample dimensions

N<-150

TT <- 45

nTrial<-60

output<-NULL

for(i in 1:nTrial){

z<-with(pars,{

Sig.MZ<-matrix(c(a+c+e,a+c,a+c,a+c+e),2,2)

Sig.DZ<-matrix(c(a+c+e,.5*a+c,.5*a+c,a+c+e),2,2)

betas.MZ<-mvrnorm(N, rep(bMu,2), Sig.MZ*bSig^2, empirical=F)

betas.DZ<-mvrnorm(N, rep(bMu,2), Sig.DZ*bSig^2, empirical=F)
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t1mz<-vapply(betas.MZ[,1], function(x) rAR(TT, x, q), rep(0,TT))

t2mz<-vapply(betas.MZ[,2], function(x) rAR(TT, x, q), rep(0,TT))

t1dz<-vapply(betas.DZ[,1], function(x) rAR(TT, x, q), rep(0,TT))

t2dz<-vapply(betas.DZ[,2], function(x) rAR(TT, x, q), rep(0,TT))

betas.est<-

cbind(apply(t1mz, 2, function(x)ar(x,order.max=1,aic=F)$ar),

apply(t2mz, 2, function(x)ar(x,order.max=1,aic=F)$ar),

apply(t1dz, 2, function(x)ar(x,order.max=1,aic=F)$ar),

apply(t2dz, 2, function(x)ar(x,order.max=1,aic=F)$ar))

return(list("MZ1"=t1mz,"MZ2"=t2mz,"DZ1"=t1dz, "DZ2"=t2dz))

})

dat<-c(list("N"=N, "T"=TT), z)

fit <- stan(file = "ar_ACE.stan",

data = dat,

warmup = 200,

iter = 500,

chains = 1,

cores = 1,

thin = 2,

init=.3,

control=list("adapt_delta"=.95, "max_treedepth"=10))

res<-extract(fit)

res.mu<- unlist(lapply(res, function(x) mean(x^2) ))

ACE<-res.mu[c("a","c","e")]

print(rbind("Raw"=ACE, "Std"=ACE/sum(ACE)))

print(nrow(output))

output<-rbind(output, ACE/sum(ACE))

}
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