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Abstract 

 

KCC2: a novel therapeutic target to rescue GABAergic dysfunction and behavioral 
deficits induced by HIV and opiate use 

 

By Aaron J. Barbour 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University 

Virginia Commonwealth University, 2020 

 

Major Director: Pamela E. Knapp, Professor 

Department of Anatomy & Neurobiology 

 

 

With adherence to combined antiretroviral therapy (cART), HIV infection can be 

considered a controllable chronic condition, but quality of life issues remain. The 

preeminent of which, HIV-associated neurocognitive disorders (HAND), encompasses an 

array of neurological complications and has persisted despite cART implementation. The 

symptoms of HAND can be exacerbated by opiate use, a common comorbidity for people 

infected with HIV (PWH). While neurons are not infected by HIV, they incur sublethal 

damage, with γ-amino butyric acid- (GABA)ergic function being particularly vulnerable to 

viral and inflammatory factors released by infected/affected glia. This dissertation 

presents studies on novel organoid and dissociated primary human CNS models of 

HAND, the latter of which showed diminished levels of K+ - Cl- cotransporter 2 (KCC2), a 

neuronal transporter that maintains low intracellular Cl-, after exposure to HIV-1 and HIV 

proteins ± morphine. GABAAR-mediated hyperpolarization is predicated upon activity of 

KCC2 and functional examination of these neurons revealed decreased hyperpolarization 
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and disinhibition in response to GABAAR activation due KCC2 loss. Additionally, we 

identified the mechanisms through which HIV-1 mediates KCC2 reduction: the HIV 

protein, transactivator of transcription (Tat), through activation of N-methyl-D-aspartate 

receptor (NMDAR), and the HIV protein, glycoprotein 120 (gp120), through a novel 

mechanism involving CCR5 activation. We also found that morphine acts through the µ 

opioid receptor (MOR) to dysregulate KCC2. Pharmacological maintenance of KCC2 with 

the KCC2 enhancer, CLP257, rescued HIV, Tat, and morphine effects on KCC2 and 

GABAAR activity. 

Common neurological deficits in PWH include memory and motor dysfunction which are 

likely the manifestations of HIV-induced hippocampal and striatal degeneration. Thus, we 

expanded our in vitro results to the glial fibrillary acidic protein (GFAP)-driven, 

doxycycline(DOX)-inducible Tat-transgenic mouse model of HAND. No changes in KCC2 

in the hippocampus were seen, but we did find significant Tat-induced loss of KCC2 in 

the striatum which was associated with locomotor abnormalities in these mice. We also 

rescued phosphorylation of serine 940-KCC2 leading to increased KCC2 membrane 

localization and restoration of baseline motor activity with oral gavage of the prodrug of 

CLP257, CLP290. Overall, our in vitro and in vivo results demonstrate KCC2 as a 

promising, novel therapeutic target to alleviate the symptoms associated with HAND ± 

opiate use. 
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Chapter 1: Introduction 

 

The human immunodeficiency virus (HIV) 

 

Worldwide, 37.9 million people are infected with HIV with 1.7 million new infections 

in 2018 (UNAIDS, 2019). HIV infects cells of the immune system and can lead to nadir T-

cell counts below 200, a point at which someone is classified as having acquired 

immunodeficiency syndrome (AIDS). Both HIV subtypes (HIV-1, -2) are members of the 

lentivirus genus within the retrovirus family. HIV-1 is more transmissible and more 

prevalent worldwide than HIV-2 and is the focus of this dissertation. Four strains of HIV-

1 have been identified: M, O, N, and P. The most prevalent is strain M, which consists of 

10 clades (A, B, C, D, F, G, H, J, K), and circulating recombinant forms with clade B being 

the most prevalent subtype in America, Europe, and Australia (Gilbert et al., 2007). 

 HIV was first found to be the virus that causes AIDS in 1983 (Gallo et al., 1983) 

and later found to be derived from simian immunodeficiency virus  (Gao et al., 1999, 

Bailes et al., 2003, Chen et al., 1997). Initial cases were found in vulnerable communities 

including homosexual men (Brennan and Durack, 1981), injection drug users (CDC, 

1982b), and hemophiliacs (CDC, 1982a), reflecting the modes of HIV transmission. HIV 

can be passed through venous injection or exposure of mucous membrane or damaged 

tissue to certain bodily fluids (blood, semen, rectal fluids, vaginal fluids, and breast milk) 

of someone infected with HIV. Thus, HIV is most commonly transmitted by sexual 

intercourse and needle sharing. Initial treatments for HIV-infection primarily consisted of 

prophylaxis against opportunistic infections that arose due to reduced immune 

competence (CDC, 1997, Moore and Chaisson, 1996). Combined antiretroviral therapy 
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(cART), became the recommended treatment for HIV/AIDS patients in 1997 and 

dramatically shifted the progression of HIV (Gulick et al., 1997, Hammer et al., 1997, 

Moore and Chaisson, 1999). The World Health Organization estimates that 62% of PWH 

now have access to cART, which involves the administration of three or more 

antiretrovirals (ARVs) simultaneously. ARVs are designed to interfere with each stage in 

the life cycle of HIV. Until 2015, it was recommended to begin HIV+ patients on a cART 

regimen after their cluster of differentiation (CD) 4 count dropped below 350 cells/mL, but 

this was revised to begin cART as early as possible (UNAIDS, 2016).  Implementation of 

cART dramatically reduced viral replication and the viral load in many patients’ plasma to 

undetectable levels (<50 RNA copies/mL) and reduced the mortality rate of HIV by 50 – 

80%  in the first ten years of use (Delaney, 2006). 

HIV structure and life cycle 

The HIV membrane is comprised of a lipid bilayer and proteins crucial for binding 

and fusion with host cells, namely, glycoprotein 120 (gp120) and glycoprotein 41 (gp41). 

The core of the HIV virion houses the viral genome, two single stranded RNA molecules, 

and the viral proteins reverse transcriptase (RT) and integrase (IN) (Briggs et al., 2006).  

Following mucosal invasion via interactions with dendritic cells (Turville et al., 2005, 

Turville et al., 2004), HIV-1 has six major steps in its life cycle and, thus, there are six 

major classes of ARVs: (1) binding/fusion (entry inhibitors), (2) reverse transcription 

(Nucleoside/tide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse 

transcriptase inhibitors (NNRTIs)), (3) integration (integration inhibitors (INIs)), (4) 

transcription/translation, (5) budding, and (6) proteolysis/maturation (protease inhibitors 

(PIs)).  Viral entry is initiated with binding of the viral coat protein, gp120, to CD4, found 
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primarily on helper T cells and macrophages/monocytes. Bound gp120 induces a 

conformational change, exposing a binding site for either C-C chemokine receptor type 5 

(CCR5) or C-X-C chemokine receptor type 4 (CXCR4) co-receptors, introducing the 

different tropisms of HIV (Alkhatib et al., 1996, Deng et al., 1996, Feng et al., 1996, Trkola 

et al., 1996). CCR5-tropic strains (R5-tropic) are the predominant HIV-1 strains for active 

transmission and replication and preferentially bind CCR5 receptors found on 

macrophages, monocytes and T-cells (Roos et al., 1992, Zhu et al., 1993, Schweighardt 

et al., 2004) and are the most common type detected in the brain (Strizki et al., 1996, 

Cunningham et al., 1997, Gorry et al., 2001). Some variants may shift co-receptor 

preference to CXCR4 (X4-tropic variants) found on T-cells at later stages of infection (Ho 

et al., 2007, Tasca et al., 2008, Ribeiro et al., 2006). Engagement of the co-receptor leads 

to a conformational change in gp41, fusing the viral and host membranes to allow for the 

insertion of the viral core. Entry inhibitors (maraviroc (MVC) and efurvitide) block the 

actions of gp120/gp41 to prevent CD4/co-receptor binding and viral and host membrane 

fusion. MVC is a CCR5 antagonist; efuvirtide binds gp41 preventing membrane fusion. 

After membrane fusion, partial uncoating of the capsid proteins of the core occurs, 

providing RT access to host deoxyribonucleoside triphosphates (dNTPs) to initiate 

reverse transcription of viral RNA to cDNA, while forming the pre-integration complex 

which can pass through the intact nuclear envelope (Forshey et al., 2002). NRTIs and 

NNRTIs target reverse transcription to halt the virus life cycle. NRTIs are analogs of 

dNTPs that can enter the catalytic site of RT; NNRTIs are allosteric modulators of RT 

(Sarafianos et al., 1999, Huang et al., 1998). Both inhibit RT activity, preventing 

conversion of viral RNA to cDNA. Host enzymes complete integration by repairing the 
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single strand gaps resulting in the HIV provirus, which can remain latent indefinitely (Folks 

et al., 1986), which is a feature common to lentiviruses. Activation of immune cells by the 

transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) 

or nuclear factor of activated T-cells induce low level transcription of the integrated viral 

DNA from the U3 promoter located in the upstream long terminal repeat (LTR) (Nabel 

and Baltimore, 1987, Siekevitz et al., 1987, Duh et al., 1989, Kinoshita et al., 1998). 

Transactivator of transcription (Tat) and Rev are the first proteins transcribed and 

translated. Tat is necessary for efficient transcription of other viral proteins. Tat recruits 

the host cellular protein transcription elongation factor-b (p-TEFb) to viral transactivation 

response element (TAR) to enhance the activity of host RNA polymerase II (Tahirov et 

al., 2010, Barboric et al., 2001). Viral mRNAs are produced as numerous alternate splice 

forms.  Smaller viral mRNAs can be transported directly out of the nucleus, while larger 

species require Rev binding of Rev response element on the env protein to create a 

nuclear export sequence (Daugherty et al., 2010). Once in the cytoplasm, viral mRNAs 

are translated into immature polypeptides by host machinery. Viral proteins congregate 

on the cellular membrane and begin to bud off of the host cell (Briggs et al., 2009, Carlson 

et al., 2010).  Concurrent with or directly after budding, HIV-1 protease cleaves the 

immature polypeptides into mature proteins resulting in a mature infective virion (Pettit et 

al., 1994, de Marco et al., 2010). PIs do not affect the ability of HIV to replicate and escape 

host cells it has already infected, but do prevent affected virion from infecting new cells 

(Kohl et al., 1988). 

HIV-associated neurocognitive disorders 
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Snider et al. (Snider et al., 1983) found that neurological impairments accompany 

AIDS. Early investigations of this phenomenon discovered encephalopathy in many HIV 

patients, demonstrating that HIV can harm the CNS (Masliah et al., 1992, Shaw et al., 

1985). Neurological impairments can range from asymptomatic (ANI) to HIV-associated 

dementia (HAD), collectively termed HIV-associated neurocognitive disorders (HAND). 

Affected neurological domains from HIV damage can include verbal/language ability, 

attention/working memory, executive function, memory, speed of information processing, 

sensory perception, and motor skills (Antinori et al., 2007). ANI and mild neurocognitive 

impairment (MNI) are diagnosed as impairment in two cognitive domains with and without 

impairment to daily life activities, respectively. HAD requires marked impairment in two or 

more domains with significant daily functional impairment (Antinori et al., 2007, Saylor et 

al., 2016). While the introduction of cART has reduced the prevalence of HAD, ANI and 

MNI have increased with an overall prevalence of HAND remaining stable (Heaton et al., 

2010). While effective cART can reduce HIV to nondetectable levels in the periphery 

(Autran et al., 1997, Komanduri et al., 1998, Lederman et al., 1998), the brain can act as 

a reservoir of HIV, which may be implicated in the persistent neurological effects of HIV 

infection (Gelman et al., 2013). The introduction of cART has also shifted domains of 

neurocognitive impairment. Pre-cART era patients had a significantly higher percent of 

impairment in tasks related to motor skills, cognitive speed, and verbal fluency, whereas, 

cART era patients had a higher percent impairment in processing speed, memory, and 

executive functioning (Heaton et al., 2010, Maki et al., 2015, Rubin et al., 2017). These 

changes reflect a shift from subcortical and white matter disruption to cortical impairment 

from pre-cART to cART eras (Cysique et al., 2004). In a 2008 review, Anthony and Bell 
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(Anthony and Bell, 2008) posit that a shift in pathology has occurred from the basal 

ganglia to the hippocampus, entorhinal cortex, and temporal cortex, reflecting the 

neurocognitive findings of the clinical data. cART has had subtle/variable effects on 

HAND partially due to variable blood brain barrier (BBB) penetrance of the ARVs used. 

More effective penetrance may help dampen some aspects underlying HAND, but some 

studies have found that those on cART with higher BBB penetrance have worsened 

neurological impairment (Marra et al., 2009). This may be a result of direct ARV 

neurotoxicity, potentially contributing to the continuation of HAND and the shift in affected 

brain areas and symptomology noted. In vitro studies on ARVs have found that some 

induce dendritic beading at physiologically relevant concentrations (Robertson et al., 

2012) and can prevent microglial phagocytosis of amyloid β (Aβ) (Giunta et al., 2011) 

offering mechanisms by which certain ARVs may contribute to CNS pathology. Even with 

effective cART, the neurotoxic HIV protein Tat can be found in the cerebrospinal fluid 

(CSF) of PWH on cART and is correlated with worse performance in motor speed and 

information processing (Henderson et al., 2019). 

The predominant theory underlying HIV entry into the CNS, dubbed the Trojan 

Horse Theory, posits that HIV crosses the BBB early after infection via infiltrating 

monocytes/macrophages and, possibly T cells. Specifically, infected CD14+/CD16+ 

monocytes are highly vulnerable to infection and critical for viral seeding of the CNS 

(Fischer-Smith et al., 2001, Ellery et al., 2007). Additionally, they have increased 

transmigration across the BBB due to HIV-induced C-C chemokine receptor type 2 

(CCR2)  elevation and heightened sensitivity to chemokine C-C motif ligand 2 (CCL2) 

(Williams et al., 2013). After entry, monocytes establish residence and produce virus 
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within the brain, which then infects susceptible CNS cells. Productive infection occurs in 

perivascular macrophages and microglia. There is also strong evidence showing infection 

of astrocytes (with unproductive viral replication) (Eugenin et al., 2011, Wiley et al., 1986, 

Deiva et al., 2006), and neural progenitor cells (NPCs) (Balinang et al., 2017, Lawrence 

et al., 2004, Schwartz et al., 2007, Skowronska et al., 2018). While microglia and 

macrophages are widely accepted to actively replicate and release infective HIV, both 

infected astrocytes and microglia also release neurotoxic HIV proteins. Further, even 

uninfected microglia and astrocytes respond to viral insult by shifting towards a 

proinflammatory phenotype. While neurons themselves are not infected, they incur 

damage through viral and proinflammatory factors released by infected/activated glia 

resulting in reduced axodendritic complexity, hyperexcitability, and possibly excitotoxicity. 

This neuronal damage resulting in disrupted circuitry, is thought to underlie the symptoms 

associated with HAND (Masliah et al., 1997). 

The role of microglia and resident macrophages in HAND 

Microglia are the resident immune cells of the CNS and play an integral role in 

synaptic and dendritic maintenance and, thus, facilitate neuronal circuitry through 

phagocytosis of cellular debris and synapses. Expression of CD4 and CCR5 begets 

microglial susceptibility to R5-tropic strains of HIV-1 infection (Gelman et al., 1997, 

Epstein and Gendelman, 1993). Along with perivascular macrophages and monocyte 

derived macrophages microglia are the primary sites of active replication in the brain. 

Viral DNA can be found in all three cell types (Wiley et al., 1986, Koenig et al., 1986) even 

with effective cART (Ko et al., 2019) and are thought to be sites of viral reservoir in the 

CNS (Wallet et al., 2019). At basal conditions, microglia have  ramified morphology, 
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surveying synapses and extracellular matrix for debris, but microglia of the HIV-infected 

brain have a reactive, ameboid morphology (Everall et al., 2009). Pre-cART era, 

postmortem staining of human brain sections found increased interleukin-1 β (IL-1β) and 

tumor necrosis factor (TNF) in the cerebral cortex and white matter of HIV patients 

compared to controls. Microglial activation can be found even in patients receiving 

effective cART (Garvey et al., 2014). In addition to increased markers of reactive 

microglia/inflammation, HIV Tat-exposed microglia have reduced phagocytosis in vitro 

(Giunta et al., 2008) which may contribute to the accumulation of Aβ in the brains of cART 

era HIV patients, a hallmark of neurodegeneration and Alzheimer’s Disease (Green et al., 

2005).  

 Microglia are exposed to HIV proteins in vivo including, Tat, gp120, Vpr, and nef. 

In vitro studies have examined how these factors affect microglia and their 

cytokine/chemokine profile after exposure. Microglia respond to HIV-1 infection, and Tat 

or gp120 exposure with a proinflammatory phenotype releasing CCL2 , CCL4, CXCL10, 

interferon γ (IFNγ), C-X-C motif chemokine ligand type 8, IL-1β, TNF, CCL5, IL-6, and IL-

8 in vitro which contributes to neuroinflammation and neurotoxicity in the HIV-infected 

brain (D'Aversa et al., 2004, Chivero et al., 2017, Jin et al., 2012, Sheng et al., 2000, El-

Hage et al., 2015). Several of these factors are also upregulated in in vivo models of 

HAND including TNF and IL-1β (Chivero et al., 2017, Jin et al., 2012). Tat exposure can 

also induce glutamate release by microglia, directly contributing to hyperexcitability 

(Gupta et al., 2010). Overall, microglia are susceptible to HIV infection, serving as a 

reservoir of virus in the brain. They exhibit decreased phagocytic capacity, and release 

neurotoxic inflammatory mediators that are either directly neurotoxic, or that result in 
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secondary neurotoxic outcomes via the activation of astrocytes and other resident CNS 

cells. They are critical drivers of the neuronal dysfunction that underlies the symptoms 

associated with HAND. 

The role of astrocytes in HAND 

Astrocytes perform a myriad of functions including phagocytosis, 

cytokine/chemokine release, metabolic/trophic support to neurons, and synaptic cleft 

clearance. These functions become dysregulated as a result of viral and inflammatory 

insult. Some studies provided evidence that astrocytes can be infected by HIV, albeit, 

unproductively (Churchill et al., 2006). While astrocytes express no detectable CD4, 

evidence indicates that they can be infected by HIV in vivo (Tornatore et al., 1994, Ranki 

et al., 1995, Takahashi et al., 1996, An et al., 1999, Anderson et al., 2003, Churchill et 

al., 2009) and in vitro under specific conditions (Li et al., 2020). Lacking CD4, astrocytic 

infection requires an alternate route of viral integration or internalization. The generally 

accepted mechanism involves CD4-independent endocytosis (Chauhan et al., 2014, Hao 

and Lyman, 1999). A recently published study described in detail the mechanism 

underlying productive HIV infection in human fetal astrocytes (Li et al., 2020). Their 

proposed mechanism involves CD4-indpendent, CXCR4-dependent endocytosis of 

immature virion and escape of endolysosomal degradation to establish productive 

infection. Immature virions are vital to this proposed mechanism. Maturation of the HIV 

viral particle occurs soon after budding from the host cell, thus, an infected lymphocyte 

must be in close proximity to the astrocyte, which corresponds with earlier proposed 

mechanisms that require cell-to-cell contact (Nath et al., 1995, Li et al., 2015, Luo and 

He, 2015) and post mortem studies showing that infected astrocytes are primarily found 



12 

 

in close proximity to vasculature (whereby astrocytic end feet would be in close proximity 

to circulating, infected lymphocytes). While difficult to quantify, evidence from studies that 

combined immunohistochemistry for astrocytic and microglial markers, laser 

microdissection, and PCR demonstrated that as much as 19% of astrocytes contain HIV 

DNA and the frequency of astrocytic infection was correlated with severity of neurological 

complications (Churchill et al., 2009). There is still some dispute regarding the presence 

of astrocytic infection in vivo (Ko et al., 2019), but the small sample size in this study may 

suggest that astrocytic infection varies between PWH, and may be dependent on viral 

strains present and lymphocyte infiltration of the CNS. These variables exemplify some 

components of cellular and viral heterogeneity of HIV infection and disease progression 

which likely underlie the heterogeneity of HAND.  

Regardless of how much infection occurs in vivo, astrogliosis has been well 

documented in postmortem tissue of HIV-1-infected subjects (Vitkovic and da Cunha, 

1995, Desplats et al., 2013, Xing et al., 2009) and astrocytes show elevated release of 

proinflammatory cytokines/chemokines in response to HIV proteins in vitro. HIV-1 Tat and 

gp120 stimulate an inflammatory response and the release of IL1β, CCL2, IL6, TNFα, 

CCL5, and CCL2 (Wesselingh et al., 1997, Nottet et al., 1995, El-Hage et al., 2009, El-

Hage et al., 2005, Weiss et al., 1999). Astrocytes also release stromal cell-derived factor 

1 in response to IL1β released by HIV infected macrophages (Churchill et al., 2009). 

Astrocytes take up extracellular Tat (Ma and Nath, 1997) and infected astrocytes can 

release Tat and gp120 (Fan and He, 2016, Rahimian and He, 2016, Chauhan et al., 2003, 

Toggas et al., 1994). These factors, along with those released by microglia, contribute to 

neuroinflammation of the HIV-infected brain. 
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Beyond their immune roles, astrocytes participate in the tripartite synapse, clearing 

excess neurotransmitters and, in some cases, releasing neurotransmitters themselves to 

modulate neuronal plasticity (Nedergaard, 1994, Parpura et al., 1994, Araque et al., 1998, 

Wang et al., 2012a). Astrocytic excitatory amino acid transporter (EAAT) 1 and EAAT2 

are the primary sources of glutamate clearance in the brain (Bergles and Jahr, 1997, 

Schousboe et al., 1977, Gundersen et al., 1995). EAAT2 is decreased after exposure to 

HIV proteins in vitro (Wang et al., 2003, Pappas et al., 1998) as well as in postmortem 

brain tissue of HIV-1 infected subjects (Xing et al., 2009). Resultant excess glutamate is 

then available to bind Ca2+ permeable channels such as N-methyl-D-aspartate receptor 

(NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) 

contributing to aberrant neuronal activation and, thus, neuronal hyperexcitability. 

 The extreme metabolic demands of neuronal activity beget their reliance on 

astrocytic support in the form of lactate via the astrocyte-neuronal lactate shuttle. Lactate 

derived from astrocytes is released into the extracellular matrix for neurons to uptake to 

allow neuronal adenosine triphosphate (ATP) generation needed for synaptic 

transmission while bypassing the glycolytic pathway (Suzuki et al., 2011, Vilchez et al., 

2007). Tat induced rises in Ca2+ were found to increase mitochondrial Ca2+ uniporter Ca2+ 

uptake in astrocytes, resulting in decreased glycolysis and lactate transport to neurons 

(Natarajaseenivasan et al., 2018). Thus, Tat-induced astrocytic misallocation of energy 

substrates may deprive neurons of the metabolic support needed for proper neuronal 

activity. 

HIV-induced neuronal dysfunction 
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In addition to HIV/HIV protein-induced, glial-mediated neuroinflammation and 

neural homeostasis disruption, Tat and gp120 have direct neuronal targets. Tat has 

affinity for NMDAR (Haughey et al., 2001, Prendergast et al., 2002, Chandra et al., 2005, 

Self et al., 2004), and can activate AMPAR (Longordo et al., 2006, Fitting et al., 2014), 

voltage-gated L-type Ca2+ channels (Napier et al., 2014), and the transient receptor 

potential canonical channel (Peng et al., 2012), all of which lead to increased neuronal 

[Ca2+]i. In addition to dysregulating cell membrane Ca2+ channels, Tat induces release of 

Ca2+ through internal sources. Tat induction of inositol 1,4,5-triphosphate receptor and 

ryanodine receptor signaling pathways leads to increased [Ca2+]i from endoplasmic 

reticulum stores (Haughey et al., 1999, Perry et al., 2010). External influx and internal 

release disrupts Ca2+ homeostasis leading to excessive activation, metabolic disruption, 

and neuronal death in vitro (Kim et al., 2018, Nath et al., 1996, Brailou et al., 2008, Cheng 

et al., 1998, Norman et al., 2007, Zou et al., 2011). gp120 targets vary depending on 

tropism (CXCR4, CCR5, or dual (CXCR4- and CCR5-tropic)) and CXCR4 and CCR5 can 

both be found on subpopulations of neurons. Thus, CXCR4, CCR5, and dual-tropic gp120 

can also induce enhanced [Ca2+]i and neuronal death in vitro (Podhaizer et al., 2012, Kaul 

et al., 2007, Xu et al., 2011). While neuronal death is not often seen in vivo, the pathways 

initiated by Tat and gp120 can lead to loss of synaptodendritic complexity, 

hyperexcitability, and circuitry disruption found in these models of HAND and regulate, 

along with glial-mediated inflammation and metabolic disruption, neuropathology seen in 

PWH. 

The prevailing viewpoint on HIV-induced neuronal excitotoxicity and/or 

hyperexcitability has centered around excessive glutamate and neuronal [Ca2+]i, which 
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can result in a positive feedback loop, through increased [Ca2+]i stimulating glutamate 

release, which, in turn, activates [Ca2+]i permeable channels; a process that is further 

exacerbated by decreased astrocytic glutamate transport and increased microglial 

glutamate release. While increased excitation certainly tips the scale of neuronal 

excitatory-inhibitory balance, this only takes into account one side of the story. Increasing 

evidence of vulnerability of GABAergic markers and function has underscored the 

importance of loss of inhibition in HIV-induced excitatory-inhibitory imbalance. Human 

post-mortem brain gene expression array studies found downregulation of mRNA 

associated with GABAergic transmission in the neocortex and striatum of patients with 

HAND correlating with neurocognitive impairment (Gelman et al., 2012a, Buzhdygan et 

al., 2016). Corollaries to the changes in human gene expression have been found in DOX-

inducible, GFAP-driven Tat transgenic mice. Mice expressing the Tat transgene (Tat+) 

showed decreased inhibitory synaptic markers in the hippocampus associated with 

deficits in spatial memory compared to those lacking the Tat transgene (Tat-) mice (Fitting 

et al., 2013). These results were expanded upon to demonstrate selective loss of 

parvalbumin+, nitric oxide synthase+, neuropeptide Y- interneurons (Marks et al., 2016). 

Additionally, Tat+ striatal GABAergic neurons, particularly dopamine receptor D2 (D2R)-

expressing medium spiny neurons (MSNs) displayed reduced spine density and 

increased dendritic varicosities compared to their control counterparts (Fitting et al., 2010, 

Schier et al., 2017). Studies have also found disrupted GABA release and reduced 

amplitude and frequency of miniature induced post synaptic currents (mIPSC) from Tat 

exposure (Musante et al., 2010, Xu et al., 2016). These studies provide evidence of 

disinhibition through loss of GABAergic synapses and transmission after exposure to HIV 
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or HIV proteins and impetus to further study loss of inhibition in relation to the HIV-induced 

excitatory-inhibitory imbalance.  

Opiate use and its impact on HAND progression 

The United States is in the midst of an opioid epidemic with approximately 11 

million people reported to have misused opioids in 2017 (SAMHSA, 2017). Opiates act 

by mimicking endogenous opioid ligands, activating the µ-opioid receptor (MOR), and δ-

opioid receptor (DOR) and κ-opioid receptor (KOR) to a lesser extent. Due to their strong 

analgesic effects, opioids have been the primary source of prescription pain medication 

(National Academies of Sciences and Medicine, 2017). Activation of the classic reward 

pathway by opiates occurs through MOR activation and subsequent inactivation of 

GABAergic neurons resulting in disinhibition of ventral tegmental area (VTA) dopamine 

(DA)-ergic neurons and increased DA release in the nucleus accumbens (NAcc) 

(Johnson and North, 1992) which underlies the abuse liability of opiates.  

HIV infection and substance use disorders (SUD) are interlinked epidemics. 

Injection drug use (IDU) contributed to 20% of recorded HIV cases in 2016 (NIDA, 2019) 

and people who inject drugs are 22 times more likely to acquire HIV (UNAIDS, 2019). 

Illicit drug use is not the only route through which PWH are exposed to opiates. Recent 

studies found that 36% of PWH had chronic pain diagnoses and up to 50% of PWH were 

prescribed opiates (Chilunda et al., 2019, Denis et al., 2019). Drug use is associated with 

poor cART adherence and increased viral load in the CSF (Denis et al., 2019, Canan et 

al., 2018, King et al., 2012). Clinical data has been inconsistent in establishing a clear link 

between opiate use and the progression of HAND. One consistent confound being that 

most drug abusers use more than one substance, limiting conclusions that can be drawn 
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about the effects of opiates themselves. Despite this, some evidence has linked opiate 

use to worsened neurocognitive progression and higher rates of dementia (Chiesi et al., 

1996, Bell et al., 1998, Bell et al., 2002, Lucas et al., 2006, Byrd et al., 2011). Byrd and 

colleagues (Byrd et al., 2011) found an association between lifetime heroin use and poor 

recall association among PWH. Post mortem studies have also found that HIV 

encephalopathy indicators and markers of neuroinflammation were more prevalent in IDU 

than non-IDU HIV patients (Smith et al., 2014, Bell et al., 1998). Despite confounds, much 

of the literature associates higher prevalence and more rapid progression of 

neurocognitive impairment in HIV+ IDU than non-IDU which is in accordance with studies 

involving models of HAND and opiate exposure. Mechanisms underlying these changes 

involve convergence of cellular and molecular pathways that induce activation of viral 

reservoirs, enhanced cytokine and chemokine release, enhanced reductions of 

synaptodendritic complexity, increased glutamate release/decreased uptake, resulting in 

circuitry disruption and subsequent behavioral and cognitive deficits. 

Accumulating evidence showing reward deficits in PWH (Anderson et al., 2016, 

Plessis et al., 2015) suggests that the HIV-exposed CNS may have altered responses to 

drugs of abuse, possibly increasing the likelihood of drug seeking behavior and relapse 

in PWH. Imaging and postmortem studies have shown disrupted DAergic systems, such 

as reduced DA, dopamine transporters (DAT), D2R, and DA reuptake in the striatum 

(Chang et al., 2008, Wang et al., 2004, Kumar et al., 2009, Ferris et al., 2010), suggesting 

that HIV targeting of DAergic systems may underlie changes in reward processing. 

Several studies utilizing the DOX-inducible, GFAP-driven Tat-transgenic (Tat-transgenic) 

mice have identified potential neuronal and molecular targets underlying these clinical 
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effects. Tat exposure decreased DA levels (Kesby et al., 2016), impaired DAT function 

(Ferris et al., 2009a), decreased stimulated DA release (Ferris et al., 2009b), and 

decreased DA receptor expression in these mice (Kesby et al., 2016). Acute Tat exposure 

also increased the rewarding effects of drugs of abuse measured by behavioral 

assessment (Paris et al., 2014a, McLaughlin et al., 2014). Together, these studies 

suggest HIV infection of the CNS may increase the risk of substance abuse by altering 

the rewarding properties of drugs of abuse through impairment of DAergic circuitry. 

Opiates primarily exert their effects through activation of MOR, which can be found 

heterogeneously on neurons and glia. Opiates can increase HIV replication by decreasing 

IFN expression (Wang et al., 2012b) and susceptibility to infection by increasing CCR5 

expression (Guo et al., 2002, Li et al., 2003). Morphine, the primary metabolite of heroin, 

can reduce EAAT1 and 2 in vivo, directly contributing to excess glutamate, and has an 

additive effect with Tat to decrease glutamate buffering and increase microglial glutamate 

release, in vitro and exacerbate reactive oxygen species (ROS) release in a MOR 

dependent manner (Zou et al., 2011, Gupta et al., 2010, Turchan-Cholewo et al., 2009). 

Morphine enhanced Tat effects can result in exacerbated neuronal death in vitro through 

glial MOR activation (Zou et al., 2011) and may be dependent on the presence of glial 

CCR5 (Kim et al., 2018). Elevated neurotoxicity due to gp120-morphine co-exposure is 

dependent on gp120 tropism. Morphine significantly enhanced dual CXCR4-CCR5 tropic 

(MN) gp120-induced neurotoxicity while having no effects on CCR5 (ADA) or CXCR4 

(IIIB) toxicity (Podhaizer et al., 2012). Viral factors and morphine neurotoxic interactions 

may be mediated by glycogen synthase kinase 3β (GSK3β) signaling (Masvekar et al., 

2014, Masvekar et al., 2015) and may be glial-mediated (Zou et al., 2011).  
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Neuroinflammation in the HIV-opiate co-exposed brain may be sustained by 

astrocytic-microglial crosstalk.  Further, Tat and gp120-induced release of cytokines and 

chemokines are synergistically increased with morphine co-exposure (El-Hage et al., 

2005, El-Hage et al., 2006, El-Hage et al., 2008). Combined inflammatory effects of 

morphine and Tat emerge from convergence in elevated [Ca2+] and NFκB activation (El-

Hage et al., 2008).  Thus, morphine and HIV-induced inflammatory astrocytic response 

activates microglia to release proinflammatory factors resulting in a positive feedback loop 

creating a cycle of sustained neuroinflammation and hyperexcitability (Hauser et al., 

2012). 

KCC2 

 Preferential vulnerability of inhibitory neurotransmission to HIV-induced 

degeneration has been studied in regard to reduction of GABAergic machinery and 

synaptic markers (mRNA and protein) and frequency and amplitude of IPSCs. Other 

neurological disorders are increasingly finding GABAergic disruption through collapse of 

postsynaptic ionic gradients important for fast synaptic inhibition. Importantly, therapeutic 

efficacy has been demonstrated in targeting the transporters responsible for this ionic 

balance, such as K+- Cl- cotransporter-2 (KCC2). 

 Slc12a encodes 9 cation-Cl- transporters, including the central neuron specific, 

KCC2 (Hebert et al., 2004). KCC2 is a 12 membrane-spanning protein that can exist as 

monomers, dimers, trimers, or tetramers (Uvarov et al., 2009). Alternative splicing of the 

KCC2 gene can give rise to two isoforms that differ by 40 N-terminal amino acid residues, 

KCC2a and KCC2b (Uvarov et al., 2007). The longer isoform, KCC2a, is found more 

prominently in the neonatal brain stem and spinal cord while KCC2b is strongly 
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upregulated during development and is the predominant isoform in the adult brain (~90% 

of KCC2 expression in mature cortex) (Uvarov et al., 2007, Uvarov et al., 2009). Studies 

have not noted a difference in function between the isoforms. Both are central neuron-

specific (Uvarov et al., 2009) due to activity of the RE1-silencing transcription factor 

(REST) on the neuron restrictive silencer element upstream of the KCC2 promoter (Yeo 

et al., 2009). 

 KCC2 is an electroneutral secondary active transporter that utilizes the K+ gradient 

established by Na+-K+ adenosine 5’-triphosphate-(ATP)ase to extrude Cl-. This activity 

maintains low intracellular Cl- ([Cl-]i) driving the influx of this anion via the ligand gated, 

Cl- permeable GABAA and glycine receptors. Upon ligand binding, the inward rush of Cl- 

leads to hyperpolarization and inhibition of the postsynaptic neuron. KCC2 maintains low 

(<10 mM) [Cl-]i in mature mammalian neurons resulting in the reversal potential of 

GABAergic currents near resting membrane potential (Delpire and Staley, 2014). While 

setting the stage for postsynaptic hyperpolarization and inhibition through Cl- regulation, 

KCC2 has also been implicated in excitatory transmission. It has somatodendritic 

localization and clusters around dendritic spines (Gulyas et al., 2001, Gauvain et al., 

2011, Chamma et al., 2013) and through its interaction with cytoskeleton-associated 

protein 4.1 N KCC2 participates in stabilizing actin (Li et al., 2007) and is integral to 

dendritic spine formation and stability (Fiumelli et al., 2013), and, thus, is vital for 

glutamatergic plasticity. Taking into consideration its Cl- extrusion capacity to increase 

GABAergic inhibition and its localization to spines, KCC2 is fundamental to the excitatory-

inhibitory balance of neurons. 
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KCC2 is upregulated during development, due to brain derived neurotrophic factor 

(BDNF) activation of tropomyosin receptor kinase B (TrkB) on immature neurons, while a 

transporter with opposing Cl- displacement, Na+-K+-2Cl- cotransporter (NKCC1), is 

downregulated. This developmental shift was thought to result in the change of GABA 

from an excitatory to an inhibitory neurotransmitter (Rivera et al., 1999, Ben-Ari et al., 

1989, Chudotvorova et al., 2005), although some data suggested that conditions of these 

studies produced confounds that resulted in GABAergic excitation (Bregestovski and 

Bernard, 2012). In particular, the metabolic changes that occur to neurons during the 

slicing process for ex vivo slice electrophysiology may result in the accumulation of 

neuronal Cl- (Dzhala et al., 2012), thus, confounding experiments performed in these 

conditions. In vivo studies also demonstrated that application of GABAAR antagonists 

(gabazine and bicuculine) increased neuronal activity in rat pups (P3 - P5), suggesting 

inhibitory effects of GABAAR activation in the immature brain (Baram and Snead, 1990, 

Bernard and Axelrad, 1993). Some evidence from these studies has been refuted (Ben-

Ari et al., 2012). In direct contradiction to the studies above, experiments demonstrated 

that in P1 – 5 rats GABA does, in fact, excite immature neurons of the intact hippocampus 

in vitro (Valeeva et al., 2013) and that, in immature slice preparations, physiological 

concentrations of lactate or pyruvate do not alter the depolarizing effects of GABA, 

suggesting that depolarizing GABA is not an artifact of inadequate energy supplies (Tyzio 

et al., 2011). Further, blockade of NKCC1 with bumetanide in vivo during the early post-

natal period suppressed sharp waves in the hippocampus (Sipila et al., 2006), and 

attenuated electrographic seizures (Dzhala et al., 2005), suggesting depolarizing actions 

of GABA. These inconsistencies may be resolved through a suggested dual excitatory 
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and inhibitory role for GABA in the developing brain (Ben-Ari, 2014). This paradox may 

be due to shunting inhibition, whereby depolarizing GABA initially increases synchronous 

neuronal activation followed by reduced network activity by inhibiting depolarization 

above the GABA reversal potential, decreasing glutamate receptor currents (Khalilov et 

al., 1999). An attempt to finally resolve the role of GABA during development was made 

by Kirmse and colleagues (Kirmse et al., 2015), in which in vivo whole-cell voltage-clamp 

and 2-photon Ca2+ recordings of P3 - 5 mouse V1 neurons were made during puff 

application of GABA. Their voltage-clamp findings demonstrated that GABA is 

depolarizing in the majority of cells, but did not induce action potentials and, thus, lacked 

direct excitatory effects. In vivo Ca2+ recording revealed that application of GABA did not 

induce Ca2+ transients and that application of GABA agonist (benzodiazepine) and 

antagonist (gabazine) strongly inhibited and promoted spontaneous networks, 

respectively. Taken together, these data show that GABA is depolarizing, but inhibitory 

at the network level (likely through shunting inhibition) in the immature CNS (Kirmse et 

al., 2015). While there has been debate as to the exact postsynaptic effects of GABA in 

the developing CNS, it should be noted that a shift in neuronal expression pattern from 

NKCC1 dominant to KCC2 dominant has not been questioned, but rather the 

physiological consequences of this phenomenon. 

Membrane localization of KCC2 is largely post-translationally regulated in mature 

neurons. With an average membrane turnover rate of 20 – 30 minutes (Lee et al., 2010, 

Rivera et al., 2004), its trafficking, membrane stability, and degradation are tightly 

regulated by several phosphorylation sites (Come et al., 2019). The KCC2 N-terminal 

domain (NTD) was demonstrated to be required for membrane trafficking through a study 
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involving NTD deletion and the C-terminal domain (CTD) is involved in membrane stability 

and contains the majority of phosphorylation sites (Friedel et al., 2017)  . Phosphorylation 

of S932, T934, S937, S940 increase membrane stability while phosphorylation of T1009, 

T1007, T906, Y903, Y1087, decrease its stability and activity. Proteomic studies identified 

several other phosphorylation sites on KCC2, but whether they play a role in 

transportation and/or stability remains unknown (Cordshagen et al., 2018, Weber et al., 

2014). Phosphorylation and consequential changes in KCC2 activity are mediated by 

several upstream pathways. One well-studied pathway involves protein kinase C (PKC) 

and protein phosphatase 1 (PP1)-dependent phosphorylation and dephosphorylation of 

serine 940 (S940), respectively. NMDAR activation and subsequent [Ca2+]i increase leads 

to a molecular pathway involving PP1 dephosphorylation of S940 and its internalization, 

evidenced by KCC2 rescue via AP5 antagonism of NMDAR (Lee et al., 2011). In contrast, 

PKC phosphorylation of S940 increases its membrane stability and decreases clathrin-

induced internalization (Lee et al., 2007). Conversely, phosphorylation of Y903 and 

Y1087 result in loss of KCC2 activity via clathrin dependent internalization and lysosomal 

degradation (Lee et al., 2010). Interestingly, both excitatory and inhibitory 

neurotransmission differentially regulate KCC2 membrane stability and activity. 

Postsynaptic excitation by glutamate decreases KCC2 membrane stability through 

NMDAR-associated mechanisms discussed above. GABA was recently shown to be an 

upstream regulator of KCC2 as well. Post synaptic increase in Cl- reduced with-no-lysine 

1 (WNK1) activity and subsequent phosphorylation of T1007, increasing its stability 

(Heubl et al., 2017). Thus, NMDAR-mediated Ca2+-induced decrease in activity and 

GABAAR-mediated Cl--induced increase provides another mechanism by which neurons 
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can fine tune the balance of inhibition/excitation through KCC2 membrane stability within 

localized dendritic compartments. 

The link between KCC2 and neurological disorders has grown steadily over the 

last two decades. Loss of KCC2 activity was first linked to models of epilepsy (Rivera et 

al., 2002) and mutations in Slca12 were later found to underlie febrile seizures and 

generalized epilepsy in small cohorts of humans (Puskarjov et al., 2014, Kahle et al., 

2014). KCC2 loss precedes cyclothiazide-induced epileptiform activity, suggesting that it 

is the trigger setting the stage for seizures rather than a consequence of excessive 

NMDAR activation in these settings (Chen et al., 2017a). Hyperexcitability is a hallmark 

of many neuroinflammatory disorders. Evidence continues to accumulate linking KCC2 

loss and subsequent Cl- dysregulation as a mediator of hyperexcitability in several models 

of these diseases including Alzheimer’s disease (Chen et al., 2017b), traumatic brain 

injury (TBI) (Lizhnyak et al., 2019), Huntington’s (Dargaei et al., 2018), Rett syndrome 

(Tang et al., 2016), and neuropathic pain (Mapplebeck et al., 2019, Coull et al., 2005). A 

recent publication (Pisella et al., 2019) found that mice carrying a heterozygous KCC2 

mutation to reduce its Cl- extrusion capacity had ‘Autism-like’ phenotypes. Behaviors 

included abnormal ultrasonic vocalizations and social deficits which correlated with 

delayed GABAergic maturation.  

Opiate use and dependence are well known to dysregulate both spinal and striatal 

circuitry. Loss of KCC2 activity was found in lamina 1 neurons of the spinal dorsal horn 

disinhibiting spinal nociceptive output, after chronic morphine exposure inducing 

hyperalgesia (Ferrini et al., 2013, Ferrini et al., 2017). In contrast to immature neurons, 

TrkB activation downregulates KCC2 in mature neurons, which was shown to be the 
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mechanism here. Pharmacological maintenance of KCC2 was demonstrated to restore 

morphine’s analgesic effects in rats (Ferrini et al., 2017). During the development of 

morphine dependency, GABA switched from an inhibitory to excitatory signal in rats 

(Laviolette et al., 2004, Vargas-Perez et al., 2009). While not explicitly linked to KCC2, 

Cl- dysregulation is a likely mechanism underlying this switch and, thus, KCC2 is also 

likely dysregulated. 

Due to the increasing reports of KCC2 dysregulation in neurological diseases, 

Gagnon et al. (Gagnon et al., 2013) sought to design a compound that could maintain 

KCC2 activity. Through development of a novel KCC2 activity assay, they isolated 

CLP257, an arylmethylidine compound that restored Cl- extrusion in neurons treated with 

BDNF to reduce KCC2 activity and rescued KCC2 membrane expression. To enable in 

vivo study of pharmacological reintroduction of Cl- extrusion, a prodrug of CLP257, 

CLP290, was designed. CLP290 has a half-life of 5 h and is non-toxic with a maximum 

daily dose of 2,000 mg in rats (Gagnon et al., 2013). It was administered twice a day at 

100 mg/kg to rats to reverse morphine-induced hyperalgesia (Ferrini et al., 2017) and at 

50 mg/kg once a day to restore membrane expression and rescue rotarod performance 

after TBI (Lizhnyak et al., 2019). In mice, daily 35 mg/kg intraperitoneal injections of 

CLP290 restored stepping ability in spinal cord injured mice by restoring spinal cord 

inhibitory interneuron circuitry (Chen et al., 2018) and daily injections of 100 mg/kg to 

amyloid precursor protein knockouts rescued hippocampal inhibitory post synaptic 

current amplitude (Chen et al., 2017b). 

KCC2 activity and turnover is tightly regulated through the activity of REST, TrkB, 

kinase, and phosphatase activity mediated by numerous upstream pathways that play 
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important physiological roles in healthy CNS development and activity. These events 

include a developmental GABAergic switch, maintaining low [Cl-]i for postsynaptic 

hyperpolarization/inhibition, and maintenance of excitatory synapses and glutamatergic 

plasticity. These events can become dysregulated and contribute to hyperexcitability and 

circuit dysregulation under pathological conditions. 
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Chapter 2 

In vitro primary human CNS models 

(This chapter was, in part, accepted for publication in Neurobiology of Disease, article in 

press) 

 

 

Introduction 

In vitro models allow for the study of precise cellular and molecular pathways with 

control that may not be attainable using in vivo models. Rodent in vitro models have been 

instrumental in unravelling the mechanistic pathophysiology of many CNS disorders. 

Although, inherent drawbacks arise in the attempt to model human-specific diseases such 

as Alzheimer’s Disease, Parkinson’s Disease, and HIV-associated neurocognitive 

disorders (HAND) in nonhuman cells. Human induced pluripotent stem cells (hiPSCs) 

were first generated from reprogrammed human somatic skin cells (Takahashi et al., 

2007, Yu et al., 2007). hiPSCs have since advanced to the point of induction and 

differentiation of physiologically active human neurons with the capability of driving 

neuronal subset differentiation. These induced neurons (iNeurons) are critical to model 

human-specific CNS diseases. As with any model, there are inherent weaknesses found 

in iNeurons, including lost cytoarchitecture, reduced intercellular interactions, and artificial 

differentiation/development among others. Thus, for every study one must determine 

which model(s) can provide the most effective route towards answering the question at-

hand and must take into consideration the inherent strengths and weaknesses of each. 
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To attempt to restore aspects of cytoarchitecture and cellular diversity found in vivo 

while retaining the control provided by in vitro models, 3-dimensional (3D) organoid 

models have grown in favor. One early CNS organoid system, human brain aggregates 

(BrAgg), described by Pulliam and colleagues contain the major cellular subsets of the 

CNS in proportions similar to the human brain (40% neurons, 40% astrocytes, 15% 

oligodendrocytes, 5% microglia) (Pulliam et al., 1988, Pulliam et al., 1991, Pulliam et al., 

1998). Recent advances have shown the promise of such brain organoid development. 

Long-term culturing of hiPSC-derived organoids show major characteristics of the 

developing cortex including apical-basal polarity, interkinetic nuclear migration, neuronal 

migration and six cortical layers and brain region-specific organoids (Qian et al., 2018, 

Qian et al., 2016). 

  Here, we sought to develop and characterize translationally relevant primary 

human CNS models. We developed a differentiation protocol for a novel primary mixed 

astrocyte-neuron culture model (hNeuron) and further characterized BrAgg, initially 

described by Pulliam et al. (Pulliam et al., 1988) and demonstrate their utility as a model 

for HAND. The use of primary cells derived from human fetal CNS tissue, maintains 

natural cellular development until the point of pregnancy termination and BrAgg maintains 

critical intercellular interactions and provides stability for long-term culture experiments. 

Materials and Methods 

Primary hNPC dissociated culture.  

Human neural progenitor cells (hNPCs) were derived from human CNS tissue at 

15 - 17 weeks gestation (Advanced Biosciences Resources; Alameda, CA). Tissue was 
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passed through 120 µM mesh, centrifuged and washed with rinse media (DMEM 

supplemented with 1.5% glucose, 1% amphotericin B (Thermo Fisher), 50 ng/mL 

gentamycin, and 1% Pen/Strep) twice, and dissociated cells were plated on poly-L-lysine 

(10 µg/mL) and laminin (2 µg/mL) coated flasks. hNPCs were maintained in NPC media: 

DMEM F12 supplemented with 0.6% glucose, 10% B27 (without Vit A; Thermo Fisher 

Scientific), 20 ng/mL  fibroblast growth factor (FGF; R&D Systems, Minneapolis MN), 20 

ng/mL Epidermal growth factor (EGF; EMD Millipore, Billerica, MA), 10 ng/mL leukemia 

inhibitory factor (LIF; EMD Millipore, Billerica, MA), 1% Pen/Strep, 5 mM HEPES (N-2-

hydroxyethylpiperazine-N-3-ethane sulfonic acid; Thermo Fisher Scientific) with media 

changed every 3 or 4 days. 

Dissociated neuronal differentiation.  

Upon 80 - 90% confluency, hNPCs were detached using Accutase cell detachment 

solution (Millipore) and plated on poly-L-lysine (50 µg/mL) and laminin (100 µg/mL) 

coated 12-mm-diameter coverslips (immunostaining) or glass bottomed MatTek dishes 

(functional imaging) at 12,000 - 15,000 cells/coverslip in DMEM-F12 medium 

supplemented with 0.6% glucose, 10% B27 (without vitamin A; Thermo Fisher Scientific), 

1% Pen/Strep, 5 mM HEPES (Thermo Fisher Scientific), and 10 ng/mL brain derived 

neurotrophic factor (BDNF; Sigma). After 7 DIV, medium was exchanged gradually (50% 

on days 7 and 9) and then fully (100% every 72 - 96 h) to BrainPhysTM (STEMCELL 

Technologies Inc, Vancouver, BC, CAN) supplemented with SM1 (STEMCELL 

Technologies Inc). 

BrAgg culture.  
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BrAgg cultures were initiated and maintained using protocols established by 

Pulliam et al (Pulliam et al., 1988). Briefly, 15 – 17 wk human fetal CNS tissue (Advanced 

Biosciences Resources; Alameda CA) was passed through 120 µM mesh, centrifuged, 

and washed twice with rinse media. Cells were then transferred to SigmacoteTM (Sigma) 

coated 25 mL DeLong flasks at 30 million cells per flask containing 5 mL growth media 

(DMEM supplemented with 0.75% glucose, 50 ng/mL gentamycin (Thermo Fisher), 10% 

fetal bovine serum (FBS), and 1% Pen/Strep). After 48 h, BrAgg were transferred to 

sigmacote-coated 50 mL DeLong flasks containing 10 mL exchange media (DMEM with 

0.75% glucose, 50ng/mL gentamycin, 15% FBS, and 1% Pen/Strep). BrAgg were 

maintained rotating at 80 RPM in 10% CO2 and 37° C with 50% media change (exchange 

media) every 48 h. 

HIV-1 propagation and HIVsup preparation.  

HIV-1BaL was propagated using methods previously established (Balinang et al., 

2017). Briefly, isolated peripheral blood mononuclear cells (PBMCs) from peripheral 

blood Leuko Paks (ZenBio, Research Triangle Park, NC) were activated with 1 mg/mL 

phytohemagglutinin (PHA) for 48 h, then infected with HIV-1BaL (NIH AIDS Reagent 

Program) at 1 ng/mL [p24]. After 72 h, infection was assayed using p24 antigen ELISA 

kit (Advanced Bioscience, Rockville, MD) and supernatant harvested and frozen at −80° 

C for HIVsup experiments. HIVsup used in all BrAgg experiments was from the same source 

sample to reduce variability. 

Immunocytochemistry.  

hNeuron were fixed with 4% paraformaldehyde for 15 min after 21 DIV. Coverslips 

were then permeablilized with 0.1% Triton-X 100 in 0.1% BSA and blocked for 1 h at room 
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temperature in 0.1% BSA and 1% goat serum. Cellular markers were detected by 

incubating for 1 h with antibodies specific for microtubule-associated protein 2 (MAP2) 

(1:500; Millipore, Burlington, MA), glial fibrillary acidic protein (GFAP; 1:1000; Millipore), 

GAD67 (1:500; Abcam), glutaminase (1:500, Abcam), tyrosine hydroxylase (TH; 1:1000; 

Abcam), MOR (1:500; Antibodies Incorporated; Davis, CA), KCC2 (1:1000, Protein Tech), 

or NKCC1 (1:100; Abcam). AlexaFluor 488 and 594-conjugated secondary antibodies 

(1:1000, Thermo Fisher) were used and Hoechst 33342 (1:10000; Invitrogen) detected 

nuclei. 

BrAgg were fixed with 4% paraformaldehyde for 30 min, permeabilized for 30 min, 

and blocked for 1 h. BrAgg were incubated overnight with antibodies specific for MAP2, 

GFAP, Iba-1 (1:1000; Wako ), GAD67, and 2’3’-cyclic-nucleotide 3’-phosphodiesterase 

(CNPase; 1:500; Abcam) to determine cellular subsets present. AlexaFluor 488 and 594-

conjugatged secondary antibodies and Hoeschst33342 were used. 

Both hNeuron and BrAgg were visualized and images obtained with Zeiss LSM 

700 confocal module configured to an Axio Observer Z.1 and Zen 2010 software (Zeiss 

Inc.). 

BrAgg infection with HIV-1Ba-L.  

To determine infectivity of BrAgg, we incubated cultures with varying 

concentrations of purified HIV-1Ba-L or HIV-1Ba-L-infected PBMC supernatant (HIVsup) 

during culture initiation. BrAgg supernatants were collected and frozen with HALTTM 

Protease & Phosphatase inhibitor Cocktail (Thermo Fisher) to prevent protein 
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degradation at -80º C every 48 h. HIV-1 concentrations were then estimated using p24 

antigen ELISA kit (Advanced Bioscience, Rockville, MD). 

HIVsup Preparation. 

HIV-1BaL was propagated using methods previously established (Balinang et al., 

2017). Briefly, isolated PBMCs from peripheral blood Leuko Paks (ZenBio, Research 

Triangle Park, NC) were activated with 1 mg/mL PHA for 48 h, then infected with HIV-

1BaL (NIH AIDS Reagent Program) at 1 ng/mL p24. After 72 h, infection was assayed 

using p24 antigen ELISA kit (Advanced Bioscience, Rockville, MD) and supernatant 

harvested and frozen at −80° C for HIVsup experiments. HIVsup used in all experiments 

was from the same source sample to reduce variability.  

Statistics.  

Changes in BrAgg [p24] within subjects (across days) were assessed by repeated-

measures analysis of variance (ANOVA) in R. Bonferroni post hoc analysis corrected for 

multiple comparisons after comparisons of simple main effects. Effects were considered 

significant when p < 0.05. 

Results 

hNPC differentiation and hNeuron characterization.  

We developed a protocol to differentiate hNPCs into mature hNeurons. EGF, FGF, 

and LIF initially maintain hNPC pluripotency. These factors were replaced with BDNF to 

promote neuronal survival and differentiation for seven days. Next, cells were gradually 

transitioned to BrainPhys medium, which more accurately mimics in vivo physiological 

conditions, increases spontaneous and evoked action potentials, and increases 
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frequency and amplitude of spontaneous and induced inhibitory post synaptic potentials 

(IPSCs) compared to classic basal media (Bardy et al., 2015). After a total of 3 weeks in 

vitro, 53 ± 3.3% of cells are MAP2+/ GFAP- neurons and 44 ± 3.5% GFAP+ astrocytes 

(Fig. 2.1). Neurons were found to be primarily glutaminase+ (~75%), and glutamate 

decarboxylase+ (~25%), with few tyrosine hydroxylase+ (~1%) neurons (Fig. 2.2). Both 

neurons and glia present in these cultures were found to express MOR (Fig. 2.2). NKCC1 

is expressed on immature neurons and opposes KCC2 activity by increasing neuronal 

[Cl−]i. Its expression decreased to undetectable levels by 21 days in vitro (DIV), while 

KCC2 expression increased, as expected from studies on neuronal maturation (Schulte 

et al., 2018) (Fig. 2.1). These characteristics suggested that hNeurons had matured 

enough to hyperpolarize in response to GABAAR activation, as evident in experiments 

performed in Chapter 3.  

BrAgg characterization.  

BrAgg were fixed and stained for cellular markers from five to 29 DIV. We detected 

the presence of astrocytes (GFAP+), neurons (MAP2+/GFAP-), oligodendrocytes 

(CNPase+), and microglia (Iba1+) (Fig. 2.2). Neurons and astrocytes were present by 5 

DIV and make up a majority of the cellular subsets (~40% each) (Fig. 2.2). 

Oligodendrocytes and microglia make up the majority of the remaining cells present. 

Oligodendrocytes were detected at 21 DIV. Microglia were detected at 5 DIV (the earliest 

time point at which BrAgg were fixed and immunostained), but have distinct lineage from 

NPC derived neurons, astrocytes, and oligodendrocytes, appear in the human CNS by 5 

gestational weeks and, thus, are present in BrAgg from culture initiation (Bertrand et al., 

2005, Rezaie and Male, 1999). All microglia imaged have amoeboid morphology 
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suggesting a proinflammatory phenotype. The neurons present appear to be GABAergic, 

evidenced by detection of GAD67 on the majority of neurons visualized (Fig 2.2). 

HIV-1Ba-L infection of BrAgg. 

We sought to develop a model of HAND that more accurately mimics the 

cytodiversity and chronic infective and inflammatory environment of the HIV-infected brain 

while retaining the high levels of control and manipulation afforded by in vitro models. HIV 

is capable of infecting microglia and astrocytes, thus, we wanted to create a model 

reflecting this aspect of the disease. In order to achieve this goal, we determined if we 

could gain active HIV-1Ba-L infection of BrAgg. Challenges inherent to this process include 

determining the ideal paradigm (pure HIV-1Ba-L vs. HIVsup, concentration) to infect BrAgg 

and washing out potentially new infective virus with each media change. We exposed 

BrAgg to 0.5 – 2.5 ng of purified HIV-1BA-L or HIVsup (added to achieve a final concentration 

of 1 ng/mL [p24]). To tackle the issue of ‘lost’ virus at each media change (50% change 

every 48 h), we calculated the levels at which [p24] would be expected given day 1 

concentrations and simply divided by two for each consecutive media change ([p24exp]) 

and subsequently subtracted that from the observed [p24] of each sample ([p24obs]) . For 

example, if [p24] on Day 1 was 10 pg/mL, then by Day 9 (after media changes on days 

1, 3, 5, and 7) [p24exp] = 0.625 pg/mL. Thus, the adjusted [p24] ([p24adj]) = [p24obs] – 

[p24exp]. The resultant figure (Fig 2.4) displays this [p24adj] value. This is not an ideal 

model of infectivity, given the activity of proteases etc. that would further decrease p24 

concentrations, but quantifying these data in this way does allow for the quantification of 

‘new’ [p24], and, therefore, better represents the infectivity of BrAgg. Analysis with 

repeated measures ANOVA revealed a significant increase in [p24adj] within groups 
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exposed to 1.25 ng HIV-1Ba-L on days 9 and 21 compared to day 1 (p < 0.05; n = 4; Fig 

2.4), suggesting active infection of BrAgg by HIV-1Ba-L. 

Discussion 

The studies outlined here describe primary human CNS models involving the 

differentiation of human gestational CNS derived hNPCs. We demonstrated that hNeuron 

increase immunoreactivity for KCC2 while decreasing NKCC1 expression throughout our 

novel differentiation protocol. These features allow for the mechanistic study of human 

neuronal and GABAergic maturation and should be explored in future studies. hNeurons 

also show promise for the study of human specific disorders in which either of these 

proteins may become dysregulated resulting in disrupted GABAergic inhibition. We also 

characterized BrAgg and found that all major cellular subsets of the CNS are present and 

demonstrate its utility as a novel model for HAND in which there was active HIV-1 infection 

of CNS cells. 

Drawbacks are inherent to all models of neurodegenerative disorders and the 

models described here are not immune to certain pitfalls. Tissue samples acquired for 

these studies are tested for HIV infection prior to shipment, but not all potential confounds 

can be controlled for. We cannot determine reasons for pregnancy termination (whether 

medical necessity or otherwise), control for exogenous substance exposure (drugs of 

abuse and others), or obtain maternal or paternal genetic information. We also did not 

control for potential genetic abnormalities, nor did we determine if the tissue had been 

exposed to other viruses. Early gestational tissue may also be difficult to acquire 

depending on the everchanging legal landscape surrounding legal access to legitimate 

centers for termination procedures. Once acquired, this is less of a concern for the 
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dissociated cultures, for which, tissue from one source can be proliferated as hNPCs, 

frozen, and used for several passages, allowing for each sample to be used in several 

experiments. Due to the sheer number of cells necessary for one flask of BrAgg (30 million 

cells), it is not feasible to expand and freeze hNPC for use as BrAgg. Rather, for each 

BrAgg culture initiation, a separate sample source is required. The BrAgg studies here 

are limited by sample size. This particularly affects studies with higher variability, such as 

our assessment of infectivity, limiting conclusions from these results. A higher sample 

size may have resulted in significant changes in [p24adj] at levels other than 1.25 ng HIV-

1Ba-L. 

In this chapter, we described a novel primary human mixed astrocyte-neuron 

culture model containing both GABAergic and glutamatergic neuronal subsets with 

matured Cl- transporter expression. This dissociated model is particularly useful to 

elucidate mechanisms underlying neuronal disruption for human specific disorders. We 

also characterized BrAgg organoids which maintain components of the cyto-diversity and 

proportionality of cell types of the intact human CNS. Both show promise as translationally 

relevant in vitro models of human-specific neurological disorders. 

 

 

 

 

 



37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.1. Differentiation and characterization of hNeuron. hNPCs differentiate to 

~55% MAP2+/GFAP- (green) and 40% GFAP (red)+ by 14 DIV (A). Representative 

images from hNeuron cultures showing immunofluorescence of MAP2 and GFAP after 

21 DIV (B). hNeurons lose NKCC1 (C) and gain KCC2 (D) immunoreactivity by 21 

DIV. 
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Figure 2.2. Extended hNPC Differentiation. Following our neuronal differentiation 

protocol, cells lose NKCC1 expression and gain KCC2 expression by 21 DIV (A). After 

21 DIV, immunoreactivity for glutaminase and GAD67 demonstrate both excitatory 

and inhibitory neuronal subsets were present, respectively (B). hNeuron express MOR 

(C). Scale bars = 50 µM. 
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Figure 2.3. BrAgg characterization. BrAgg contain neurons and astrocytes by 5 DIV, 

indicated by positive staining for MAP2 and GFAP, respectively (A). Most neurons 

present appear to be GABAergic due to high colocalization between MAP2+ and 

GAD67+ cells (B). A minority of cells are also CNPase+ or Iba1+ indicating the 

presence of oligodendrocytes and microglia, respectively (C, D). BrAgg can vary in 

size from ~150 – 400 µM in diameter (A, E). Scale bars = 50 µM.
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Figure 2.4 Infection of BrAgg with HIV-1Ba-L. Exposure to 1.25 ng/mL [p24] purified 

HIV-1Ba-L (blue) results in a significant increase in [p24] adjusted for initial [p24] and 

media changes on days 9 and 21 compared to day 1 (*; p < 0.05; n = 4) ([p24adj]). No 

significant differences were found at other exposure concentrations nor exposure to 

HIVsup. 
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Chapter 3 

HIV and opiates dysregulate K+-Cl- cotransporter 2 (KCC2) to cause GABAergic 

dysfunction in primary human neurons and Tat-transgenic mice 

(This chapter was accepted for publication in Neurobiology of Disease, article in press) 

 

 

Abstract 

Approximately half of people infected with HIV (PWH) exhibit HIV-associated 

neuropathology (neuroHIV), even when receiving combined antiretroviral therapy. Opiate 

use is widespread in PWH and exacerbates neuroHIV. While neurons themselves are not 

infected, they incur sublethal damage and GABAergic disruption is selectively vulnerable 

to viral and inflammatory factors released by infected/affected glia. Here, we demonstrate 

diminished K+-Cl− cotransporter 2 (KCC2) levels in primary human neurons after 

exposure to HIV-1 or HIV-1 proteins ± morphine, resulting in disruption of GABAAR-

mediated hyperpolarization/inhibition. We found that the HIV proteins Tat (acting through 

NMDA receptors), and R5-tropic gp120 (acting via CCR5), and morphine (acting through 

µ-opioid receptors) induce KCC2 loss. We demonstrate that modifying KCC2 levels or 

function, or antagonizing NMDAR, CCR5 or MOR rescues KCC2 and GABAAR-mediated 

hyperpolarization/inhibition in HIV, Tat, or gp120 ± morphine-exposed neurons. Using an 

inducible, Tat-transgenic mouse neuroHIV model, we found that chronic exposure to Tat 

also reduces KCC2. Our results identify KCC2 as a novel therapeutic target for 

ameliorating the pathobiology of neuroHIV, especially PWH exposed to opiates. 
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Introduction 

Close to 38 million people worldwide are infected with HIV, with 50,000 new 

diagnoses of HIV-1 infection per year in the US alone (UNAIDS, 2019). Up to 50% of 

those infected with HIV-1 have CNS complications including HIV-associated 

neurocognitive disorders (HAND) (Antinori et al., 2007, Heaton et al., 2010). It is widely 

accepted that neurons are not infected by HIV-1. Neurological deficits in patients 

receiving combined antiretroviral therapy (cART) are likely due to sublethal neuronal 

stress and injury induced by viral proteins released from infected cells and persistent 

neuroinflammation, resulting in hyperexcitability (Anthony et al., 2005, Everall et al., 2009, 

Nath and Steiner, 2014, Neuenburg et al., 2002). Exposure to HIV-1 transactivator of 

transcription (Tat) depolarizes neurons and leads to electrophysiological dysfunction and 

hyperexcitability, partly through interactions with N-methyl-D-aspartic acid (NMDA) and 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (Philippon et 

al., 1994, Krogh et al., 2014). Another HIV-1 protein, gp120, binds co-receptors C-C 

chemokine receptor type 5 (CCR5) and/or C-X-C chemokine receptor type 4 (CXCR4) 

(Wang et al., 2003) (Kaul et al., 2007), leading to neurotoxic glial and inflammatory effects, 

as well as direct neurotoxicity. Opiate use is often comorbid with HIV-1 infection and has 

been implicated in increased severity of HAND (Byrd et al., 2011, Carrico, 2011, Bell et 

al., 2006, Smith et al., 2014). This comorbidity is highlighted by recent HIV-1 outbreaks 

in communities experiencing a surge in opiate abuse (Conrad C, 2015). In vivo and in 

vitro models of HAND demonstrate that morphine, the primary bioactive metabolite of 

heroin in the CNS, exacerbates HIV-1-induced neuropathogenesis primarily through the 

activation of the µ-opioid receptor (MOR) on glia, and subsequent modulation of 
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neuroinflammation and reduced glutamate buffering (Rodriguez et al., 2017, Bokhari et 

al., 2009, Zou et al., 2011). 

GABAergic neurons seem to be selectively vulnerable to damage by Tat and HIV-

1 infection in mouse models and post-mortem brain tissue from HIV-infected patients, 

highlighting disinhibition as a potential mechanism underlying hyperexcitability in the HIV-

infected brain (Marks et al., 2016, Fitting et al., 2013, Buzhdygan et al., 2016, Gelman et 

al., 2012a). The deficits appear to result from a loss of GABAergic markers (including 

GAD1, GAD2, and GJD2) rather than the death of GABAergic interneurons in autopsy 

samples from PWH (Buzhdygan et al., 2016). Importantly, deficits in GABAergic markers 

differed significantly among brain regions and linked to worse cognitive performance, but 

these markers were unaffected by a history of drug abuse and differed minimally when 

comparing pre- and post-cART autopsy samples (Buzhdygan et al., 2016). 

KCC2 extrudes Cl− to maintain a low intracellular Cl− concentration ([Cl−]i) in 

mature neurons (Blaesse et al., 2009). GABAA and glycine receptor-induced fast synaptic 

inhibition is predicated on the maintenance of low neuronal [Cl−]i provided by KCC2 

activity. While upregulation and subsequent increases in KCC2 activity have been 

extensively studied in development, loss of KCC2 activity and/or expression have more 

recently been noted in a number of neurological disorders including epilepsy (Kahle et 

al., 2014, Puskarjov et al., 2014, Silayeva et al., 2015), traumatic brain injury (Lizhnyak 

et al., 2019), schizophrenia (Hyde et al., 2011, Tao et al., 2012, Arion and Lewis, 2011), 

Rett syndrome (Tang et al., 2016), Huntington’s disease (Dargaei et al., 2018), and 

morphine-induced hyperalgesia (Ferrini et al., 2013, Ferrini et al., 2017). The KCC2 

activity enhancer, CLP257, and its prodrug, CLP290, have allowed manipulation of KCC2 
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activity and rescued deficits in KCC2-deficient states (Gagnon et al., 2013). While models 

of HAND have been shown to disrupt GABAergic functioning, loss of KCC2 activity has 

not yet been implicated in these deficits. 

In addition to working with individual HIV-1 proteins, we exposed primary human 

neurons (hNeurons), derived and matured from neural progenitors (hNPC), to 

supernatant from HIV-1 infected monocytes (HIVsup). This supernatant reflects the 

complexity of an infective milieu in that it contains multiple inflammatory/reactive factors 

and virions, as well as viral proteins. The genetically encoded voltage (GEVI) and Ca2+ 

indicators (GECI), Archon1  (Piatkevich et al., 2018) and GCaMP6f (Chen et al., 2013), 

respectively, were used to examine the functional outcomes of interactions between an 

HIV+ environment and morphine on hNeurons. Specifically, we used Archon1 and 

GCaMP6f to examine changes in GABAAR-mediated hyperpolarization and inhibition, 

respectively. Importantly, this optical approach permitted us to manipulate and test 

functional outcomes absent the biohazards inherent with invasive electrophysiological 

measurements in the presence of infective HIV. Assessment of electrophysiological 

activity by Archon1 is equivalent to patch-clamp recording of neuronal spiking and 

subthreshold millivolt scale activity (Piatkevich et al., 2018). We demonstrate that HIVsup 

and morphine target KCC2 in hNeurons, resulting in loss of GABAAR mediated 

hyperpolarization (measured by Archon1) and inhibition (measured by GCaMP6f). This 

suggests that dysregulation of KCC2 may play a role in circuit hyperexcitability in the HIV-

infected brain. Further, we identify Tat, acting via an NMDA receptor (NMDAR)-mediated 

mechanism, and gp120ADA, acting via a novel, CCR5-mediated mechanism, as viral 

proteins that can dysregulate KCC2 and GABAAR-mediated inhibition. We also examined 
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the effects of Tat exposure on KCC2 in an in vivo model of HAND and found significantly 

diminished KCC2 in the striatum of these animals. Our results suggest KCC2 and its 

upstream regulators as promising therapeutic targets to alleviate the symptoms of HAND 

± comorbid opiate use.  

Materials and Methods 

Primary hNPC culture.  

Human neural progenitor cells (hNPCs) were derived from human CNS tissue at 

15 - 17 weeks gestation (Advanced Biosciences Resources; Alameda, CA). Tissue was 

passed through 120 µM mesh, centrifuged and washed with medium twice, and 

dissociated cells were plated on poly-L-lysine (10 µg/mL) and laminin (2 µg/mL) coated 

flasks. hNPCs were maintained in NPC medium: DMEM F12 supplemented with 0.6% 

glucose, 10% B27 (without vitamin A; Thermo Fisher Scientific), 20 ng/mL fibroblast 

growth factor (FGF; R&D Systems, Minneapolis, MN), 20 ng/mL epidermal growth factor 

(EGF; EMD Millipore, Billerica, MA), 10 ng/mL leukemia inhibitory factor (LIF; EMD 

Millipore, Billerica, MA), 1% Pen/Strep, 5 mM HEPES (N-2-hydroxyethylpiperazine-N-3-

ethane sulfonic acid; Thermo Fisher Scientific) with medium changed every 3 - 4 days. 

Neuronal Differentiation.  

Upon 80 - 90% confluency, hNPCs were detached using Accutase cell detachment 

solution (Millipore) and plated on poly-L-lysine (50 µg/mL) and laminin (100 µg/mL) 

coated 12-mm-diameter coverslips (immunostaining) or glass bottomed MatTek dishes 

(functional imaging) at 12,000 - 15,000 cells/coverslip in DMEM-F12 medium 

supplemented with 0.6% glucose, 10% B27 (without vitamin A; Thermo Fisher Scientific), 
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1% Pen/Strep, 5 mM HEPES (Thermo Fisher Scientific), and 10 ng/mL brain derived 

neurotrophic factor (BDNF; Sigma). After 7 DIV, medium was exchanged gradually (50% 

on days 7 and 9) and then fully (100% every 72 - 96 h) to BrainPhysTM (STEMCELL 

Technologies Inc, Vancouver, BC, CAN) supplemented with SM1 (STEMCELL). 

HIV-1 propagation and HIVsup preparation.  

HIV-1BaL was propagated using methods previously established (Balinang et al., 

2017). Briefly, isolated PBMCs from peripheral blood Leuko Paks (ZenBio, Research 

Triangle Park, NC) were activated with 1 mg/mL phytohemagglutinin (PHA) for 48 h, then 

infected with HIV-1BaL (NIH AIDS Reagent Program) at 1 ng/mL p24. After 72 h, infection 

was assayed using p24 antigen ELISA kit (Advanced Bioscience, Rockville, MD) and 

supernatant harvested and frozen at −80° C for HIVsup experiments. HIVsup used in all 

experiments was from the same source sample to reduce variability. 

Treatments.  

hNeuron cultures were treated with HIVsup at 125 - 500 pg/mL [p24] or HIV protein 

(10 - 100 nM HIV-1 Tat1-86 IIIB (clade B) or 250 pM - 1 nM R5-tropic gp120ADA, X4-tropic 

gp120IIIB, or dual-tropic gp120 MN; ImmunoDx, Woburn MA) ± 500 nM morphine sulfate 

for 6 or 24 h. Drug treatments: 10 µM CLP257 (Sigma), 50 µM AP5 (Alomone Labs, 

Jerusalem IL), 50 nM maraviroc (MVC; BOC Sciences, Shirley, NY) were applied 30 min 

prior to HIVsup, HIV protein, and morphine for 24 h experiments. 50 µM VU02440551 

(Tocris, Bristol UK) was applied 2 h prior to GEVI/GECI imaging experiments. 

Supernatant from uninfected but activated monocytes (UNF) was used as a control for 

HIVsup. Vehicle controls were used for all other treatments. 
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Immunocytochemistry and Cell Counting.  

Neuronal cultures were fixed for 15 min (4% paraformaldehyde), permeabilized for 

15 min (0.1% Triton-X 100, 0.1% BSA) and blocked for 1 h at room temperature (0.1% 

BSA, 1% goat serum in PBS). Coverslips were then immunostained with rabbit anti-KCC2 

(1:1000; Protein Tech, Rosemont, IL) and mouse anti-microtubule-associated protein 

(MAP2) (1:500; Millipore, Burlington, MA) for KCC2 immunoreactivity studies Alexa Fluor 

488 and 594-conjugated secondary antibodies (1:1000; Thermo Fisher, Waltham, MA) 

were used for all studies as well as Hoechst 33342 (1:10000; Invitrogen, Carlsbad, CA) 

to detect nuclei. Cells were visualized and images obtained using a Zeiss LSM 700 

confocal module configured to an Axio Observer Z.1 and Zen 2010 software (Zeiss Inc., 

Thornwood, NY). Cells were manually counted using the CellCounter plugin for Image J. 

At least 200 Hoechst+ cells were counted per sample. 

GEVI/GECI Expression.  

AAV serotype 1 containing GCaMP6f and Archon1 were acquired from AddGene 

(plasmid # 100837; Watertown, MA) and Vector Biolabs (Malvern, PA), respectively. 

hNeurons were treated with AAV1.hSyn.GCaMP6f.WPRE.SV40 or 

AAV1.hSyn.Archon1.WPRE.SV40 for 5 - 7 days prior to experiments. Human synapsin 

promoter (hSyn) was used to ensure neuronal specificity. 

GEVI/GECI Imaging and Analysis.  

Archon1 and GCaMP6f recordings were acquired at 2 or 1 KHz, respectively, with 

a Neuro-CCD camera (RedShirt Imaging, Decatur, GA) mounted on a Zeiss Axio 

Observer with 40× oil immersion objective. Archon1 and GCaMP6f illumination was 
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achieved with an LED (UHP-T-LED; Prizmatix, Holon, IL) 640 nm excitation, 660LP 

emission for Archon1 (custom-made filter cube; Omega Optical, Brattleboro, VT) and 

470/40 nm excitation, 495 dichroic, 525/50 nm emission for GCaMP6f (filter set 38; Zeiss). 

All recordings were performed in BrainPhys solution (STEMCELL) with 2 µM CGP55845 

(GABABR antagonist; Abcam) or 2 µM CGP55845 and 100 µM picrotoxin (PTX) (GABAA 

and glycine receptor antagonist; Tocris) to validate Archon1 results (Fig. S3).  

Soma ROI were used for all experiments. Archon1 and GCaMP6f traces were 

analyzed with a custom code in R. Both Archon1 and GCaMP6f traces were 5-point 

Savitzky-Golay smoothed and GCaMP6f traces were Loess subtracted, to remove slower 

transients. Fluorescence changes were calculated as ΔF/F = (FA - Fbl)/Fbl, where FA is the 

fluorescence level during perfusion and Fbl is the average baseline fluorescence intensity 

2.5 s prior to perfusion. Significant Ca2+ transients were counted when the trace increased 

by more than four-fold of the standard deviation (SD) of background activity (measured 

2.5 s prior to perfusion) and returned to baseline levels (defined as within 0.5 × SD of 

mean activity). 

Animals.  

Male, doxycycline (DOX)-inducible, GFAP driven HIV-1 Tat-transgenic mice (10 – 

12 weeks old) were used to explore the effects of Tat expression on KCC2. Mice 

expressing the tat and rtTA transgenes (Tat+) or mice lacking the tat transgene, but 

expressing the rtTA transgene (Tat−), were fed doxycycline-containing chow (6 mg/g, 

Harlan Indianapolis, IN) for 2 weeks prior to sacrifice. Animal procedures were approved 

by the Virginia Commonwealth University Institutional Animal Care and Use Committee 
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and are in accordance with Association for Assessment and Accreditation of Laboratory 

Animal Care guidelines. 

Immunoblot.  

KCC2 presence was examined by immunoblotting striatal tissue from Tat+ and 

Tat- mice. Striata were freshly harvested and homogenized in RIPA lysis buffer (Sigma) 

and HaltTM Protease & Phosphatase Inhibitor Cocktail (Thermo Fisher). Lysates were 

then centrifuged and stored at -80º C. Protein concentration was measured using BCA 

protein assay (Pierce, Rockford, IL). 40 µg of lysates were loaded per well onto 4 – 20% 

Tris-HCl Ready Gels (Bio-Rad Laboratories, Hercules, CA). Proteins were transferred to 

PVDF membranes (Bio-Rad) and probed with antibodies against KCC2 (1:2000; Protein 

Tech) and GAPDH (1:2000; Abcam). Alexa Fluor 647 and 488-conjugated secondary 

antibodies (1:2000; Thermo Fisher) were used to detect proteins. A Bio-Rad ChemiDocTM 

MP Imaging System and Image Lab were used to measure and analyze protein levels, 

respectively. 

Statistics.   

KCC2 immunocytochemistry studies were assessed using three or two-way 

analysis of variance (ANOVA; R) to determine the effects of Tat1-86/gp120/HIVsup, 

CLP257/AP5/MVC, and morphine on KCC2 expression at 24 h following viral/drug 

exposure. The 6 h studies were assessed using two-way ANOVA with HIV (i.e., Tat1-86, 

gp120, or HIVsup) and morphine treatments as factors. Interactions and main effects for 

both were examined via simple main effects using a Bonferroni post hoc test to determine 

individual group differences. Functional imaging studies were analyzed as above except 

the assessment of VU0240551 was determined separately using a two-tailed Student’s t 
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test. A two-tailed Student’s t test was also used to examine differences between Tat+ and 

Tat− mice in western blots. Data were expressed as mean value ± standard error of the 

mean. Analyses were considered significant if p < 0.05. Cook’s distance was used to 

determine and remove outliers. 

Results 

HIV-1-infected PBMC supernatant reduces KCC2 immunoreactivity.  

Previous studies have shown selective vulnerability of GABAergic neurons to HIV-

1 and Tat (Marks et al., 2016, Gelman et al., 2012a). Here, we examined KCC2 

immunoreactivity to determine if [Cl−]i dysregulation might relate to GABAergic deficits. 

To model the HIV-infected human brain, we exposed hNeurons to HIVsup. Experiments 

show ~55 % of Hoechst+ cells in control groups are immunoreactive for KCC2 (Fig. 3.1A), 

with significant reductions in co-expression when hNeurons were exposed for 6 or 24 h 

to HIVsup at 250 - 500 pg/mL [p24] (but not 125 pg/ml [p24]) or 500 nM morphine (p < 

0.01; n = 6) (Fig. 3.1A,B). Loss of KCC2 was not due to cell death in the exposure groups 

examined as evidenced by continued MAP2 antigenicity and the LIVE/DEADTM 

viability/cytotoxicity assay (Molecular Probes, Eugene, OR) (Fig. 3.8). Pretreatment (30 

min prior to HIVsup ± morphine) with the KCC2 enhancer, CLP257 (10 µM), restored KCC2 

immunoreactivity (p < 0.05; n = 6) (Fig 3.1B). These results suggest that Cl− regulation 

and, therefore, GABA function may be altered in neurons of the HIV-1-exposed brain. 

HIVsup and morphine interactions were examined at 125 pg/mL p24, but not found). This 

interaction was not examined at 250 - 500 pg/mL p24 since cell death can occur with 

morphine co-exposure at the higher p24 levels (Masvekar et al., 2015) and which might 

be confounding for KCC2 immunoreactivity.   
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The HIV proteins Tat and gp120 are both well-known to influence neuronal 

hyperexcitability and progression of HAND (Nath and Steiner, 2014), so we tested their 

contribution to the loss in KCC2 immunoreactivity induced by HIVsup. Since NMDAR and 

CCR5 are respective major targets of Tat and gp120, we pretreated cultures with the 

NMDAR antagonist AP5 (50 µM) and/or the CCR5 antagonist, MVC (50 nM). Independent 

exposures showed that both significantly increase KCC2 immunoreactivity at 500 pg/mL 

HIVsup and AP5 at 250 pg/mL HIVsup (p < 0.05, n = 5 – 6) with a trend towards rescue with 

MVC at 250 pg/mL HIVsup (p = 0.061, n = 5 – 6) (Fig 3.1D). When combined, MVC and 

AP5 are significantly different than either individually and completely restored KCC2 

immunoreactivity (p < 0.01; n = 5 - 6) (Fig 3.1D), suggesting NMDAR and CCR5 as the 

pathways mediating HIVsup-induced KCC2 reduction. Further examination revealed a 

significantly increased KCC2 after AP5 exposure compared to MVC exposure suggesting 

that while both CCR5 and NMDAR activation play a role, NMDAR is the dominant 

pathway towards diminished KCC2 in this context (p < 0.01; n = 5). Both the pan-opioid 

receptor antagonist, naloxone, and the selective MOR antagonist, CTAP, reversed KCC2 

losses induced by morphine, suggesting MOR activation can suppress KCC2 activity (p 

< 0.01; n = 6) (Fig 3.1C). 

HIVsup ± morphine diminishes GABAAR mediated hyperpolarization.  

The GEVI, Archon1, is a far-red-shifted, membrane-bound, voltage-sensitive, 

opsin-based fluorescent protein that changes fluorescence intensity with membrane 

potential. This high speed, noninvasive measurement of electrophysiological activity was 

shown to be identical to patch-clamp recording of neuronal spiking (100 Hz) and 

subthreshold millivolt scale activity (Piatkevich et al., 2018). To determine HIVsup ± 
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morphine effects on GABAAR activation, we measured Archon1 activity in cultures 

perfused with 100 µM GABA and GABABR antagonist, CGP55845 (2 µM) after 24 h 

exposure to 125 - 500 pg/mL [p24] HIVsup ± morphine or to vehicle/UNF controls. Archon1-

expressing hNeuron control groups showed robust hyperpolarization with peak ΔF/F 

deflection of −8.7 ± 0.5% during 115 s perfusion of 100 µM GABA, CGP55845 (Fig. 3.2). 

hNeurons exposed for 24 h to varying concentrations of HIVsup (125 - 500 pg/mL p24) or 

morphine (500 nM) showed 16 - 34% reductions of peak ΔF/F deflection during perfusion 

(p < 0.01; n = 15 - 24), suggesting reduced hyperpolarization in response to GABAAR 

activation (Fig. 3.2). Analysis revealed a main effect of CLP257 treatment in restoring 

GABAAR-mediated hyperpolarization. A comparison of individual groups revealed that 

CLP257 reversed the effects of 500 pg/mL [p24] HIVsup and morphine (p < 0.05; n = 15 - 

24) (Fig. 3.2). Groups exposed to the KCC2 antagonist, VU0240551 (50 µM), 

recapitulated results of HIVsup and morphine groups (28% ΔF/F reduction; p < 0.05; n = 

15) (Fig. 3.2). We confirmed that ΔF/F changes above were, in fact, due to GABAAR 

activation by perfusing GABA, CGP55845, and the noncompetitive Cl- channel blocker, 

PTX (100 µM), and found no fluctuations in ΔF/F (Fig. 3.3). These results suggest that 

loss of KCC2 activity due to HIVsup ± morphine exposure results in dysregulated [Cl−]i and 

subsequent deficits in GABAAR activity, and that these deficits can be rescued by 

maintaining KCC2 expression with CLP257.  

HIV-1 proteins reduce KCC2 immunoreactivity.  

Since HIVsup contains multiple inflammatory and viral factors found in the HIV-

infected CNS, it served as a more translational model of neuronal injury. To determine 

the contribution of individual viral proteins to effects seen with HIVsup, we exposed 
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hNeurons to Tat1-86 and gp120 (R5-tropic, X4-tropic, and dual-tropic), both of which are 

thought to be primary factors in neurodegenerative outcomes and HAND symptoms. We 

first examined the effects of Tat1-86 exposure in isolation because NMDAR is a primary 

target of Tat and its activation with regard to induction of KCC2 degradation is well-known 

(Medina et al., 2014). Both morphine (500 nM) and Tat1-86 (50 – 100 nM) alone 

significantly reduced percentages of Hoechst+ cells displaying KCC2 immunoreactivity, 

after both 6 and 24 h exposure, compared to vehicle groups (p < 0.01; n = 6) (Fig. 3.4B, 

C). Further, there was a significant interaction between Tat1-86 (50 nM) and morphine with 

24 h co-exposed groups displaying exacerbated KCC2 loss (p < 0.05; n = 5 – 6), 

suggesting signaling convergence. Again, cell death was not responsible for Tat1-86 

effects since the number of MAP2+ cells was stable (Fig. 3.4A) and no increases in 

dying/dead cells were evident using a cytotoxicity assay (Fig. 3.8). CLP257 significantly 

rescued KCC2 immunoreactivity in Tat1-86, morphine, and co-exposed groups (p < 0.01; 

n = 6) (Fig. 3.4C). Pharmacological blockade of NMDAR with AP5 rescued KCC2 

immunoreactivity (Fig. 3.4C). These data suggest that Tat1-86 activation of NMDAR may 

suppress KCC2 levels and may play a role in reducing the number of HIVsup-exposed 

KCC2 immunoreactive hNeurons without causing their death. 

Effects on KCC2 vary with gp120 tropism.  

We tested concentration -dependent effects of gp120 (250 pM-1 nM) from three 

different tropic strains of HIV. Exposure to gp120ADA (R5-tropic; p < 0.01; n = 6), but not 

gp120IIIB (X4-tropic) (p = 0.23; n = 5) or gp120MN (dual-tropic) (p = 0.078; n = 5) strains, 

significantly reduced KCC2 expression at both 6 h and 24 h compared to controls (Fig. 

3.5 A, B). Further, there was a trend towards interaction with morphine and gp120ADA at 
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the 500 pM level (p = 0.068; n = 6). The reduction in KCC2 immunoreactivity was not due 

to cell death, although exposure to 1 nM gp120MN trended towards significant cell loss (p 

= 0.06; Fig. 3.8). While KCC2 is a well-studied target of NMDAR activation in other 

neuropathologic diseases, CCR5-mediated KCC2 regulation has not been described by 

others. To validate that CCR5 activation triggered KCC2 loss, we pretreated cultures with 

the CCR5 antagonist, MVC (50 nM), which maintained KCC2 expression (49.19 ± 1.2%; 

p < 0.01; n = 5). Interestingly, pretreatment with CLP257 did not rescue KCC2 

immunoreactivity in these experiments. These results describe a novel mechanism of 

KCC2 regulation involving CCR5 and suggest that the activation of CCR5 by gp120ADA 

may contribute to KCC2 reductions after HIVsup exposure. 

HIVsup, Tat, and gp120 ± morphine did not alter NKCC1 immunoreactivity.  

NKCC1 acts in opposition to KCC2 and is the primary neuronal Cl- transporter in the 

immature brain. To examine another potential route of neuronal Cl- dysregulation, we 

immunostained hNeurons for NKCC1 after 24 h exposure to 125 – 500 pg/mL [p24] 

HIVsup, 10 – 100 nM Tat, and 250 – 1000 pM gp120 ± morphine. NKCC1 was not 

detectable with exposure any of the viral factors or morphine at any of the concentrations 

examined (n = 4) (data not shown). 

HIV-1 proteins reduce inhibitory potential of GABAAR activation.  

We next examined the functional effects of Tat1-86, gp120ADA, and morphine on 

GABAAR-induced inhibition by expressing the intracellular Ca2+ reporter GCaMP6f in 

hNeurons using AAV1.hSyn.GCaMP6f.WPRE. GABAAR-mediated inhibition was 

examined in these cells by recording neuronal Ca2+ activity during perfusion of BrainPhys 

solution containing 100 µM GABA, 25 µM glutamate, and 2 µM CGP55845 for 55 s and 
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quantifying resultant neuronal spiking (the total number of significant Ca2+ transients 

during 55 s recording period). Analysis revealed a significant increase in 50 nM Tat1-86 

and morphine groups, without interaction comparedto vehicle (p < 0.01; n = 15 – 21) (Fig. 

3.6B). Thus, Tat1-86 and morphine independently reduced the inhibitory potential of 

GABAAR activation. Pretreatment with CLP257 ameliorated Tat1-86 and morphine effects 

(p < 0.01; n = 15 - 21), suggesting rescue of inhibitory activity in these groups, consistent 

with immunoreactivity results showing restored levels of KCC2. We also found 

disinhibition of hNeurons, as determined by significantly increased Ca2+ spiking in groups 

exposed to 500 pM gp120ADA (Fig. 3.6B). Three-way ANOVA revealed a main effect of 

gp120ADA regardless of CLP257 or morphine application (p < 0.05; n = 15 - 18). 

Pretreatment with MVC showed a strong tendency to prevent gp120-induced excitation 

presumably by retaining/restoring KCC2 function (p = 0.059). Consistent with 

immunoreactivity results, these results suggest a failure of CLP257 to maintain KCC2 

expression following gp120ADA exposure and, thus a failure to restore the inhibitory effects 

of GABAAR activation. Selectively inhibiting KCC2 with VU0240551 recapitulated the 

effects of Tat1-86 or gp120ADA ± morphine effects (n = 15, p < 0.01) independently 

confirming the role of KCC2 in the overexcitation. These results suggest that hNeurons 

become disinhibited after Tat1-86 or gp120ADA ± morphine exposure due to a loss of KCC2 

activity and that pharmacological maintenance of KCC2 can prevent or rescue the 

deleterious effects of Tat and/or morphine. 

Tat expression reduces KCC2 in the striatum of Tat-transgenic mice.  

HIV-1 Tat transgenic mice show neuropathology and behavioral deficits similar to 

PWH (Schier et al., 2017, Fitting et al., 2013). To examine if KCC2 abnormalities found 
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in culture could be seen in Tat-transgenic mice, we performed western blot analysis of 

striatal tissue after two weeks of Tat induction by DOX. Tat+ mice showed a significant 

decrease in total KCC2 levels compared to Tat− control mice (Fig. 3.7) (p < 0.05; n = 12). 

These results confirm that chronic Tat exposure induces KCC2 loss in vivo as well as in 

cultured hNeurons. 

Discussion 

Previous studies including human post-mortem (Buzhdygan et al., 2016, Gelman 

et al., 2012a) and in vivo rodent studies (Marks et al., 2016, Xu et al., 2016, Fitting et al., 

2013) have shown selective changes in GABAergic markers and function, driving an 

emerging concept that disrupted GABAergic transmission may be central to the 

development of HIV-related CNS dysfunction. Our data strengthen this perspective by 

demonstrating that KCC2 levels and subsequent GABAergic activity are diminished by 

an infective, HIV+ environment and by exposure to gp120ADA in vitro or HIV-1 Tat, both in 

vitro and in vivo. Importantly, HIV-infected individuals demonstrate a loss of GABAergic 

markers without the loss of GABAergic neurons (Buzhdygan et al., 2016) as seen in the 

present study. Taken together, our data along with findings from other investigators 

suggest that there may be an overall loss of inhibition via reduced inhibitory synapses 

and/or GABAergic function, and as we demonstrate here, diminished hyperpolarization 

at remaining inhibitory synapses caused by deficits in KCC2. 

Endogenous levels of chemokine (C-C motif) ligand 5 (CCL5) are almost 

undetectable in the healthy CNS, but dramatic increases are found in several 

neuroinflammatory disorders (Louboutin and Strayer, 2013) including HAND (El-Hage et 

al., 2005, Letendre et al., 1999). In multiple sclerosis, CCL5 is elevated during early 
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stages of the disease and is correlated with hyperexcitability (Sorensen et al., 1999, Mori 

et al., 2016). Our results demonstrate KCC2 as a target of CCR5 activation that may 

underlie this hyperexcitability. Targeting CCR5, perhaps with MVC, should be further 

investigated for therapeutic potential in multiple sclerosis and in other disorders in which 

elevated CCL5-CCR5 signaling may be operative, such as in neuroHIV (Kim et al., 2018).  

Additionally, our results using the MOR-selective antagonist, CTAP (Fig. 3.1C) 

demonstrate that neuronal KCC2 expression is a target of MOR activation. It is important 

to note that we have used a mixed neuron-astrocyte culture model. Outcomes may thus 

be due to direct activation of neuronal MOR, or a secondary effect of MOR activation on 

astroglia. Our results only demonstrated an interaction between morphine and viral 

proteins at the 24 h timepoint. Our previous studies have shown neurotoxic interactions 

between morphine and HIV/viral proteins at 24 – 72h and also that neurotoxicity was 

largely if not completely driven by glia (Zou et al., 2011) [or similarly by CCR5 deletion 

from glia (Kim et al., 2018)]. Thus, astrocytes may be acting as the intermediary through 

which MOR activation leads to neuronal KCC2 loss in the data presented here. Overall, 

our implication of MOR in KCC2 loss is in line with previous findings that GABAAR 

activation on neurons in the ventral tegmental area of rats switches from an inhibitory to 

excitatory signal during the development of opiate dependency (Laviolette et al., 2004, 

Vargas-Perez et al., 2009), and that KCC2 loss contributes to states of opiate withdrawal 

and morphine-induced hyperalgesia via mechanisms involving microglia-mediated BDNF 

release and subsequent TrkB activation (Ferrini et al., 2013, Ferrini et al., 2017, Taylor et 

al., 2016). Further, we found an exacerbation of KCC2 losses at 50 nM Tat with co-

exposure to morphine, suggesting that opiates and HIV protein interactions may similarly 
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occur in the CNS and underlie the increased incidence/severity of HAND that has been 

noted in PWH who abuse opiates (Byrd et al., 2011, Bell et al., 2006, Carrico, 2011, Smith 

et al., 2014). 

Interestingly, CLP257 was able to maintain KCC2 expression and functional 

response of hNeurons to Tat, but had no effect on gp120-exposed groups. While many 

factors regulate KCC2 activity/degradation, the mechanism by which CLP257 preserves 

KCC2 activity remains elusive. KCC2 stability is regulated by phosphorylation at multiple 

sites. For example, phosphorylation of S940 or T1007 by protein kinase C and WNK 

increases and decreases KCC2 membrane stability, respectively (Lee et al., 2011, Inoue 

et al., 2012). NMDAR activation can lead to protein phosphatase 1 activation and S940 

dephosphorylation leading to decreased membrane localization and subsequent calpain-

induced KCC2 degradation in the cytoplasm (Lee et al., 2011). Thus, there are several 

mechanisms that may underlie the effects of CLP257. gp120 and Tat may have 

differential effects on one or more of these pathways, resulting in these inconsistencies. 

MVC, an FDA-approved CCR5 antagonist commonly prescribed to HIV-infected 

individuals to prevent HIV from binding to this co-receptor, was able to rescue both KCC2 

expression and functional responses to GABAAR activation in gp120ADA-exposed 

hNeurons. Thus, MVC treatment might prevent gp120ADA-induced KCC2 loss upstream 

of CLP257 and could be considered more widely for PWH with HAND symptomology.  

Neuronal electrophysiological properties govern CNS function, and elucidating 

deficits at the cellular level can identify circuitry imbalances that underlie neurological 

disorders. To study electrophysiological responses in HIV-1 exposed neurons, we used 

the GEVI, Archon1. This noninvasive interrogation has the advantages of allowing 
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ensemble activity to be studied both in vitro and in vivo, with the capability of tracking 

specific neurons long-term. This is a particularly useful alternative to traditional 

electrophysiology when biosafety is a concern. Most of the experiments here utilized 

acute exposure paradigms (6 and 24 h). While this approach allowed us to uncover novel 

targets and subsequent functional responses in primary human neurons, PWH are 

exposed to these factors over a much longer timeframe. Thus, we began to validate the 

observed changes using a chronic in vivo model and found reduced KCC2 in the striatum 

of Tat+ transgenic mice after 2 weeks of Tat exposure. Further studies are underway to 

test the effectiveness of a CLP257 prodrug (CLP290) to reverse KCC2 loss, the resultant 

electrophysiological and behavioral changes observed with Tat and/or CLP290 

exposures, and any preferential vulnerability between the prominent neuronal subtypes 

in the striatum (dopamine D1 receptor-expressing vs. dopamine D2 receptor-expressing) 

to KCC2 loss. Interestingly, the loss of the expression of GABAergic markers is inversely 

correlated with increases in dopamine D2 receptor (DRD2L) in PWH  and increases in 

DRD2L in the prefrontal cortex positively correlated with the development of HAND 

(Gelman et al., 2012b, Buzhdygan et al., 2016). HIV-induced neurocognitive detriments 

vary among individuals, and length of exposure is likely a contributing factor along with 

age, genetics, comorbidities (including drug use), and the particular strains of HIV 

present. We used the HIVBaL strain to generate HIVsup as R5 tropism is prominent in the 

CNS (Schnell et al., 2011). We also began to address viral heterogeneity by comparing 

effects of three different gp120 strains. Results here suggest that R5-tropic strains may 

be more likely to disrupt GABAergic circuitry. CSF viral titers and levels of HIV-1 Tat have 

been shown to vary among infected individuals whose blood titers are well-controlled 
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(Johnson et al., 2013, Henderson et al., 2019). Thus, we expect that levels of viral proteins 

and inflammation within the brain parenchyma must also vary among PWH. As these 

levels are not easily measured, our experimental paradigm may over- or underestimate 

CNS exposure levels in HIV-infected individuals.  

Similar situations of disinhibition through dysregulated [Cl−]i appear to contribute 

significantly to hyperexcitability in other neurological disorders, and restoration of KCC2 

with CLP257 or its prodrug, CLP290, has shown promise in reversing the hyperexcitability 

in models of these disorders (Chen et al., 2018, Ferrini et al., 2017). Overall, our studies 

further implicate KCC2 in novel ways that could have broad impact for human health. We 

established KCC2 and upstream pathways as promising therapeutic targets to restore 

GABAergic function and to treat the symptoms of HAND, and this approach may be 

particularly relevant for PWH that use opiates. We also identified KCC2 as a novel link 

underlying hyperexcitability in conditions that involve elevated CCL5 and/or CCR5 

activation in the CNS. Our results also highlight that opiate drugs of abuse may 

independently dysregulate KCC2 levels to cause GABAergic dysfunction. This finding has 

significance for the large population of opiate abusers who are not infected with HIV.    
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Figure 3.1. HIVsup and morphine significantly reduce the percentage of cells 

immunoreactive for KCC2. Treatment for 6 h (A) or 24 h (B) with 250 – 500 pg/mL 

[p24] HIVsup ± morphine significantly reduces the number of KCC2 immunoreactive 

cells (†p < 0.01 for respective controls; n = 6). CLP257 (blue) rescued this effect across 

all groups (*p < 0.05, n = 6). Naloxone and CTAP both antagonized the effects of 

morphine (C), suggesting the involvement of MOR (*p < 0.01; n = 6). AP5 (orange) 

restored KCC2 immunoreactivity after 250 – 500 pg/mL HIVsup exposure while MVC 

(maroon) significantly increased KCC2 in 500 pg/mL (*p > 0.05, n = 5 – 6). A trend 

towards MVC rescue of KCC2 immunoreactivity was found at 250 pg/mL HIVsup (p = 

0.061, n = 5 – 6). Co-exposure of HIVsup with both AP5 and MVC fully restored KCC2 

levels, suggesting NMDAR and CCR5 as the primary pathways of HIVsup-mediated 

KCC2 reduction. Representative images for KCC2 immunofluorescence of vehicle, 

morphine, and morphine + CTAP-treated hNeurons. Scale bar = 50 µm (E). 
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Figure 3.2. HIVsup and morphine decrease GABAAR-mediated hyperpolarization. 

(A) Representative traces of 500 pg/mL [p24] HIVsup treated (red) and vehicle control 

(black) during GABA and CGP55845 perfusion (115 s). Arrow is representative of the 

diminished hyperpolarization quantified in the bar graph. (B) Bar graph shows peak 

ΔF/F deflection from each treatment groups normalized as a percentage of vehicle 

control corresponding to that sample during 115 s perfusion of 100 µM GABA and 

CGP55845. hNeurons expressing Archon1 exposed to 125 - 500 pg/mL [p24] HIV ± 

morphine shows reduced hyperpolarization (†p < 0.01, n = 15 - 21) and/or UNF (ǂp < 

0.01, n = 15 - 21). Analysis revealed a main effect of CLP257 and group comparisons 

showed that CLP257 significantly reversed the effects of 500 pg/mL HIVsup and 

morphine groups (blue) (*p < 0.05, n = 15 - 21). Further, 2 h treatment with 

VU02440551 showed similar results as HIVsup ± morphine groups, significantly 

reducing percentage of cells immunoreactive for KCC2 (#p < 0.05, n = 15 - 21), 

suggesting that effects of HIVsup and morphine are due to loss of KCC2 activity. Data 

were analyzed from 15 - 21 cells from 5 – 6 separate tissue samples per group.  
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Fig. 3.3. Validation of Archon1.  Representative trace of Archon1 activity in hNeuron 

during perfusion of 100 µM GABA and CGP55845 (Top) and 100 µM GABA and 

CGP55845 and PTX (bottom). Antagonizing GABAAR and GABABR prevented ΔF/F 

changes, suggesting that fluorescence shifts seen in the top trace and Fig. 3.2 are due 

to GABAAR activation (n = 9). 
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Figure 3.4. hNeurons lose KCC2 immunoreactivity after exposure to HIV-Tat ± 

morphine. (A) Representative images of hNeuron cultures immunolabeled for MAP2 

and KCC2. Loss of KCC2 immunoreactivity can be noted in cells treated with both 50 

nM Tat1-86 and 50 nM Tat1-86 + morphine. Rescue is seen in 50 nM Tat1-86 + AP5 (scale 

bar = 50 µm). (B, C) The percentage of cells immunoreactive for KCC2. Both 6 h (B) 

and 24 h (C) exposure to 50 - 100 nM Tat1-86 ± morphine results in significant decrease 

in KCC2 immunoreactivity compared to their respective controls (†p < 0.01; n = 6 – 7). 

Further, a significant interaction between morphine and Tat1-86 was found at the 50 nM 

Tat1-86 level after 24 h exposure (#p < 0.05). Application of CLP257 (blue) and AP5 

(white) showed significant restoration of KCC2 immunoreactivity across all groups and 

Tat1-86 exposed groups, respectively (*p < 0.01). 
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Figure 3.5. gp120 ADA reduces KCC2 immunoreactivity. (A, B) Bar graphs 

quantifying percentage of cells immunoreactive to KCC2. Both 6 h (A) and 24 h (B) 

exposures to 500 pM - 1 nM gp120 ADA significantly reduced the percentage of KCC2 

immunoreactive cells compared to their respective controls (†p < 0.01; n = 6), while 

gp120 IIIB or gp120 MN had no significant effect on KCC2 expression. Interestingly, 

CLP257 co-exposure failed to maintain KCC2 immunoreactivity in gp120 ADA 

exposed groups, but MVC showed significant rescue (*p < 0.05; n = 5 - 6), suggesting 

that CCR5 activation is responsible for gp120 loss.  
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Figure 3.6. Tat1-86, gp120 ± morphine exposure decreased GABAAR mediated 

inhibition. (A) Representative 30 s sample GCaMP6f traces of vehicle (top) and 50 

nM Tat1-86 + morphine (bottom) exposed hNeurons during 25 µM glutamate, 100 µM 

GABA, and CGP55845 perfusion. (B) Exposure to 50 nM Tat1-86 ± morphine (500 nM) 

resulted in significantly increased Ca2+ transients measured by GCaMP6f activity 

during 55 s perfusion of 25 µM glutamate, 100 µM GABA, and CGP55845 compared 

to control (†; p < 0.05; n = 15 - 21). CLP257 (blue) rescued these effects (*; p < 0.01; 

n = 15 - 21). Exposure to 500 pM gp120 ADA showed significant increase in neuronal 

activity, regardless of CLP257 or morphine cotreatment (†; n = 15 - 21; p < 0.05). MVC 

exposure trended towards reversing gp120 effects (p = 0.059, n = 18). KCC2 

antagonist, VU02440551 recapitulated results of Tat1-86, gp120, and morphine, 

suggesting that these effects are due to loss of KCC2 activity (#p < 0.01, n = 15). Ca2+ 

transients were considered significant and counted when the spike amplitude was > 4 

SD above background activity (determined 2.5 s prior to perfusion; red line) and 

returned to within 0.5 x standard deviation of background activity (blue line).  
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Figure 3.7. Tat+ mice show reduced striatal KCC2 compared to control Tat- mice.  

Two weeks of Tat expression significantly reduced the amount of KCC2 detected by 

western blot (n = 12; p < 0.05). Data are displayed as KCC2 intensity normalized to 

GAPDH. 
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Fig. 3.8. HIVsup, Tat, gp120 ± morphine effects on cellular viability. Treatments for 

24 h of 125 – 500 pg/mL [p24] HIVsup, 50-100 nM Tat ± 500 nM morphine had no 

significant effect on cellular viability (A, B). Treatments for 24 h of 250 – 1000 pM 

gp120 ADA and 1 nM gp120 IIIB do not affect cellular viability while 1 nM gp120 

trended towards significantly increasing cellular death (C). n = 4. 
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Chapter 4 

Restoration of KCC2 membrane localization in striatal D2R-expressing medium 

spiny neurons rescues behavioral deficits in HIV Tat-transgenic mice 

(This chapter is in preparation for publication) 

 

Abstract 

People infected with HIV (PWH) are highly susceptible to hippocampal and striatal 

damage from the neurotoxic HIV protein, transactivator of transcription (Tat). Memory and 

motor impairment are common among these patients, likely as behavioral manifestations 

of damage to these brain regions. GABAergic dysfunction from HIV infection and Tat 

exposure has been well documented. We recently demonstrated that the neuron specific 

Cl- extruder, K+ Cl- cotransporter (KCC2), is diminished after exposure to HIV proteins 

resulting in disrupted GABAAR-mediated hyperpolarization and inhibition. Here, we 

utilized doxycycline (DOX)-inducible, GFAP-driven Tat transgenic mice to further explore 

this phenomenon. We found no changes in hippocampal KCC2, but a significant decrease 

in the striatum associated with hyperlocomotion in the open field assay in mice expressing 

the Tat transgene with two wks of DOX treatment. We were able to restore KCC2 activity 

and baseline locomotion with the KCC2 enhancer, CLP290. Additionally, we found that 

CLP290, whose mechanism of action had yet to be described, acts to restore 

phosphorylation of serine 940 resulting in increased KCC2 membrane localization. We 

also examined neuronal subpopulation contributions to the noted effects and found that 

dopamine receptor D2-expressing MSNs are selectively vulnerable to Tat-induced KCC2 
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loss with no changes seen in dopamine receptor D1-expressing MSNs. These results 

provide a mechanism underlying motor impairment in PWH and suggest that targeting 

KCC2, perhaps with CLP290, is a viable treatment for those with HIV-associated 

neurocognitive disorders. 

Introduction 

While the advent of combined antiretroviral therapy (cART) has greatly improved 

the prognosis of HIV-1 infection, quality of life issues remain. One of the most prevalent 

being HIV-associated neurocognitive disorders (HAND), with about half of people infected 

with HIV (PWH) experiencing detriment in varying neurocognitive domains including 

memory recall and sensorimotor function (Heaton et al., 2010, Antinori et al., 2007). 

These cognitive and behavioral alterations are likely due to synaptodendritic damage and 

circuitry disruption caused by direct and secondary damage from HIV proteins and 

persistent neuroinflammation (Masliah et al., 1997, Brailou et al., 2008, Tavazzi et al., 

2014, Alakkas et al., 2019). While neurons are not infected by HIV, both microglia and 

astrocytes can be infected and release viral proteins and inflammatory factors damaging 

neurons as bystanders. Both the hippocampus and striatum seem to be particularly 

vulnerable to these factors in humans and in vivo models of HAND (Fitting et al., 2010, 

Marks et al., 2016, Fitting et al., 2013, Gelman et al., 2006, Chang et al., 2008, Maki et 

al., 2009, Alakkas et al., 2019). 

The HIV-1 protein, transactivator of transcription (Tat), is a primary mediator of 

HIV-induced CNS degeneration, is secreted by infected cells, and its expression is seen 

in PWH even when receiving effective cART (Henderson et al., 2019). Use of the 

doxycycline (DOX)-inducible, glial fibrillary acidic protein (GFAP)-driven Tat transgenic 
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mouse has been used to study the neuropathological features of Tat exposure in vivo and 

recapitulates many of the behavioral abnormalities seen in HAND patients (Paris et al., 

2014b, Hahn et al., 2016, Fitting et al., 2012, Marks et al., 2016, Fitting et al., 2013, Carey 

et al., 2012, Kim et al., 2003). Tat is capable of inducing proinflammatory phenotypes in 

both astrocytes and microglia, promoting neuroinflammation and has direct neuronal 

targets. Through activation of NMDAR, AMPAR, L-type voltage gated Ca2+ channels, Tat 

can induce focal disruptions in Ca2+ homeostasis resulting in loss of synaptodendritic 

complexity (Fitting et al., 2014, Schier et al., 2017, Fitting et al., 2010, Chandra et al., 

2005, Napier et al., 2014).  

Hyperexcitability is a hallmark of the HIV-exposed CNS and excessive glutamate 

release and reduced clearance have been well studied (Longordo et al., 2006, Pappas et 

al., 1998, Wang et al., 2003, Musante et al., 2010). Accumulating evidence has also 

revealed the importance of GABAergic disruption in hyperexcitability. Human postmortem 

tissue from HAND patients as well as in vivo models of HAND display reduced GABAergic 

markers (Fitting et al., 2013, Marks et al., 2016, Buzhdygan et al., 2016, Gelman et al., 

2012a) and functionality (Xu et al., 2016) as we also demonstrated in Chapter 3. K+ -Cl- 

cotransporter 2 (KCC2) is neuron-specific and functions to extrude Cl- to maintain low the 

intracellular levels upon which GABAAR mediated hyperpolarization is predicated. 

Membrane localization and, therefore, functionality of KCC2 is mediated by several 

phosphorylation sites (Cordshagen et al., 2018). One well-studied residue, serine 940 

(S940), can be phosphorylated by protein kinase C (PKC) to increase membrane stability 

and localization and can be dephosphorylated by protein phosphatase 1 (PP1) resulting 

in internalization (Lee et al., 2007, Lee et al., 2011). A loss of KCC2 and/or its membrane 
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localization results in diminished GABAAR-mediated hyperpolarization/inhibition and has 

been found to be a mediator of neuronal disinhibition in several neurological disorders 

(Lizhnyak et al., 2019, Arion and Lewis, 2011, Boulenguez et al., 2010, Chen et al., 2017a, 

Dargaei et al., 2018, Chen et al., 2017b). Importantly, these deficits have been rescued 

in many cases with the KCC2 activity enhancer, CLP257, and its prodrug, CLP290, 

although the mechanism underlying their mechanism of action remains elusive. We have 

recently shown that KCC2 is a target of the HIV proteins Tat and gp120 in primary human 

neurons in vitro and in an in vivo model of neuroHIV and, thus, may be implicated in 

neuronal dysfunction underlying HAND. 

The striatum is composed primarily of dopamine receptor D1 (D1R)-expressing 

medium spiny neurons (MSNs) and dopamine receptor D2 (D2R)-expressing MSNs. This 

area is particularly vulnerable to HIV-induced damage in PWH (Gelman et al., 2006, 

Alakkas et al., 2019), and in vivo models of neuroHIV (Fitting et al., 2014, Schier et al., 

2017, Fitting et al., 2010). Striatal MSNs, particularly those expressing D2R (Schier et al., 

2017) are vulnerable to Tat-induced spine reductions due to dendritic Ca2+ influx (Fitting 

et al., 2014). Given striatal vulnerability to Tat-induced KCC2 loss, and clinical evidence 

demonstrating motor deficits in PWH, we sought to further explore this phenomenon by 

examining potential motor dysfunction caused by diminished striatal KCC2, whether these 

effects were reversible using CLP290, and if there was preferential vulnerability between 

D1R-expressing or D2R-expressing MSNs. We found a loss of KCC2 selectively in D2R-

expressing MSNs of the striatum of mice expressing the Tat transgene (Tat+) vs those 

without the transgene (Tat-), correlating with motor hyperactivity after two wks DOX 
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administration. Additionally, we were able to rescue phosphorylation of S940-KCC2, 

membrane localization of KCC2, and motor activity with CLP290 oral gavage.  

Methods 

Animals 

All animal procedures were approved by the Institutional Animal Care and Use Committee 

at Virginia Commonwealth University and were in accordance with ethical guidelines 

defined by the National Institutes of Health. 

Mice used for behavioral and western blot experiments were male, doxycycline (DOX)-

inducible, GFAP driven HIV-1 Tat-transgenic mice aged 10 – 12 weeks. Mice that 

expressed the rtTA and Tat transgenes (Tat+) or mice only expressed rtTA without Tat 

(Tat-), were fed DOX-containing chow (6 mg/g, Harlan indianapolis, IN) for two weeks 

prior to experimentation.  

Tat+ and Tat- mice were crossed with B6.Cg-Tg (Drd1a-tdTomato)6Calak/J line 6 mice 

(#016204; The Jackson Laboratory) or Drd2-eGFP (#036931 – UCD; Mutant Mouse 

Resource and Research Centers) mice (Ade et al., 2011) to detect D1R-expressing and 

D2R-expressing neuronal subpopulations, respectively, and were used for 

immunohistochemistry (IHC)/colocalization and electrophysiological experiments. 

All mice were housed two to five per cage with ad libitum access to food and water in a 

temperature- and humidity-controlled facility on a 12:12 h light – dark cycle. 

Drug administration 
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Mice were treated with either the KCC2 enhancer, CLP290 (50 mg/kg; Aobious), freshly 

suspended in dimethyl sulfoxide (DMSO) and 20% 2-hydroxypropyl-β-cyclodextrin 

(HPCD; Tocris) or vehicle once per day (morning) by oral gavage (200 µL total volume) 

for seven days during the second week of DOX administration. 

Behavior 

After two weeks DOX administration, mice were assayed for locomotor effects with the 

open field assay by placing mice in the top left corner of a 40 x 40 x 35 cm Plexiglas box 

and recording their activity for 20 min. Rearing responses were recorded when the animal 

breaks the array of photo-beams and total distance and time spent in center was recorded 

and encoded using the ANY-maze behavioral tracking system (Stoelting). 

Western Blot 

KCC2 was quantified by western blot of striatum from Tat+ and Tat- mice. Freshly 

harvested whole striata were homogenized in RIPA buffer (Sigma) with HALTTM Protease 

& Phosphatase inhibitor Cocktail (Thermo Fisher) to prevent protein degradation. Lysates 

were separated and stored at -80º C. Protein concentration was measured using BCA 

protein assay (Pierce, Rockford, IL). 40 µg lysate per sample were loaded into 4 – 20% 

Tris-HCl Ready Gels (Bio-Rad Laboratories, Hercules, CA). Proteins were transferred to 

PVDF membranes (Bio-Rad) and probed with anti-KCC2 (1:2000; Protein Tech, 

Rosemont, IL) or anti-pS940 KCC2 and GAPDH (1:2000; Abcam) antibodies. KCC2 and 

GAPDH proteins were detected measuring fluorescent signal from Alexa Fluor 647 and 

488-conjugated secondary antibodies (1:1000; Thermo Fisher), respectively. pS940-

KCC2 proteins were detected using pS940-KCC2 specific antibody (1:2000; Novus Bio), 
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horseradish peroxidase (HRP; Southern Biotech; Birmingham AL) and SuperSignalTM 

West Femto Maximum Sensitivity Substrate (Thermo Fisher). 

Membrane bound KCC2 was examined by western blot by first performing membrane 

fractionation on striata from Tat transgenic mice. Briefly, tissue was homogenized in lysis 

buffer (4 mM HEPES (N-2-hydroxyethylpiperazine-N-3-ethane sulfonic acid; Thermo 

Fisher Scientific), 320 mM sucrose, 5 mM EDTA (ethylenediaminetetraacetic acid; 

Thermo Fisher Scientific), and HALTTM Protease & Phosphatase inhibitor cocktail 

(Thermo Fisher Scientific)), centrifuged at 100,000 x g, and the pellet containing 

membrane fraction was resuspended in lysis buffer and stored at -80º C. Protein 

concentration measurement and western blot for these samples were performed as 

above, except that a 20-µg lysate load was used per sample lane. KCC2 was normalized 

to total lane protein detected by RevertTM 700 Total Protein Stain (LI-COR, Lincoln, NE), 

and Alexa Fluor 488-conjugated secondary antibodies (Thermo Fisher) were used to 

detect KCC2. 

IHC 

After two wks DOX administration, Drd1a-tdTomato/Drd2-eGFP X Tat+/Tat- mice were 

fixed by cardiac perfusion with 4% paraformaldehyde (PFA). Brains were then dissected, 

submerged in 4% PFA for 24 h, washed in PBS, and sequentially placed in 10%, 20%, 

and 30% sucrose for 24 h each before being embedded in OCT. Serial 20 µM sections 

were cut on a cryostat, thaw mounted, dried, and stored frozen at -80º C. IHC was then 

performed by permeabilizing for 30 min (0.01% Triton-X100), blocking for 1 h, and 

overnight incubation with primary antibody for KCC2 (1:500; Protein Tech) at 4º C. The 

following day, Drd1a-tdTomato and Drd2-eGFP sections were washed and incubated for 
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1 h with 488 and 594 Alexa-Fluor conjugated secondary antibodies (1:1000; Invitrogen, 

Carlsbad, CA), respectively, for 1 h. Hoechst 33342 (1:10000, Thermo Fisher) was used 

to identify nuclei and weighted coverslips were adhered with ProLongTM Gold Antifade 

Mountant (Thermo Fisher). 

Colocalization 

To visualize KCC2 immunofluorescence and tdTomato or eGFP, Z-stack images were 

obtained with a Zeiss LSM 700 confocal module configured to an Axio Observer Z.1 with 

20 x objective and Zen 2010 software (Zeiss Inc., Thornwood, NY). 3D reconstruction 

and colocalization between KCC2 and tdTomato (D1R-expressing MSNs) or eGFP (D2R-

expressing MSNs) was performed with Imaris software (Bitplane, South Windsor, CT). 

Colocalization thresholding was determined using secondary control (without primary 

antibody incubation) sections from the same mice. Thresholds were equivalent across all 

mice and set to virtually no colocalization (< 1%) between tdTomato/eGFP and KCC2 

immunofluorescence for control slices. Colocalization results are displayed as the 

percentage of voxels with tdTomato or eGFP fluorescence colocalized with voxels 

containing KCC2 immunofluorescence. 

Statistics 

A two-tailed Student’s t test was used to examine potential differences in KCC2 western 

blots between Tat+ and Tat- mice and for colocalization experiments. Two-way analysis 

of variance (ANOVA) was used to examine behavioral assays and western blots with drug 

(CLP290/Vehicle) and genotype (Tat+/Tat-) as factors. Interactions and main effects were 

examined via simple main effects using Bonferroni post hoc test to determine group 
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differences. Data are displayed as mean value ± standard error of the mean. Results were 

considered significant when p < 0.05. All statistical analyses were performed in R.  

Results 

Two weeks of DOX-induced Tat expression reduces total KCC2 in the striatum of 

Tat-transgenic mice.  

Clinical evidence and results from Tat-transgenic mice have demonstrated 

vulnerability of the striatum and hippocampus to HIV- and Tat-induced neuropathology. 

Thus, we examined total KCC2 by western blot in hippocampal and striatal tissue from 

Tat-transgenic mice with DOX administration for two and four weeks (striatum) or two, 

four, and eight weeks (hippocampus). There was no difference found in hippocampus at 

any time points (two wk DOX: p = 0.82, n = 6; four wk DOX: p = 0.51, n = 6; eight wk 

DOX: p = 0.65, n = 7) (Fig 4.1A).  Nor were significant differences found in the striatum 

after four wks of DOX-induced Tat exposure (p = 0.28, n = 6) (Fig 4.1B). However, we 

found a significant decrease in total KCC2 in the striatum of Tat+ mice compared to Tat- 

mice on DOX for two wk (p = 0.001, n = 11 - 12) (Fig 4.1B; data also shown in Fig 3.8, 

included here for clarity). These results suggest that the striatum is vulnerable to Tat-

induced KCC2 loss in a biphasic, or possibly, more complex manner. This suggests that 

striatal circuitry may be disrupted due to deficits in GABAAR-mediated inhibition after two 

wks of Tat exposure. 

Tat expression reduced total KCC2 in the striatum and CLP290 rescued pS940-

KCC2 and KCC2 membrane localization.  
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To determine if striatal KCC2 loss could be reversed, we treated Tat+ and Tat-  

mice with 50 mg/kg CLP290 or vehicle by oral gavage once per day during the second 

week of DOX administration. Western blot analysis revealed a main effect of genotype to 

reduce total KCC2 in the striatum of Tat+ compared to Tat- mice without interaction (main 

effect: p = 0.002, n = 12 – 18), suggesting that Tat induction diminished the presence of 

KCC2 and that CLP290 failed to rescue total KCC2 levels (Fig 4.2A). Membrane 

localization of KCC2 and, thus, Cl- extrusion activity is promoted by phosphorylation of 

S940. We sought to determine if CLP290 treatment was capable of rescuing 

phosphorylation of S940 (pS940). Analysis of western blot of striata harvested from Tat+ 

and Tat- mice treated with either CLP290 or vehicle for pS940-KCC2 revealed a drug by 

genotype interaction (p < 0.05, n = 8 – 12). Investigation of simple main effects determined 

that Tat expression reduced pS940-KCC2 and administration of CLP290 rescued this 

effect (p < 0.05; n = 8 - 12) (Fig 4.2B) and, thus, likely restores membrane localization 

and Cl- extrusion capacity of KCC2. To confirm this, we performed a membrane fraction 

separation and western blot for KCC2 and found that membrane localization of KCC2 

was, again, significantly reduced by two wks Tat exposure and was, in fact, restored by 

CLP290 administration (p < 0.05, n = 8 – 9) (Fig 4.2C). These data suggest that CLP290 

is able to rescue the functional state of KCC2 and provide insight into a mechanism 

involving phosphorylation of S940 that may underlie the effects of CLP290. 

Tat+ mice displayed hyperactive locomotion with rescue seen via CLP290 

administration. 

To determine potential behavioral manifestations of Tat effects on disrupted striatal 

activity, we assayed locomotor activity of Tat+ and Tat- mice treated with either CLP290 
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or vehicle with the open field test. Significant increases were found in the distance 

travelled and rearing number in the Tat+/Veh groups with rescue in the Tat+/CLP290 

group (p < 0.05, n = 8 – 9) (Fig 4.3 A, B). These results suggest motor hyperactivity in 

Tat+ animals with CLP290 restoration of KCC2 membrane localization sufficient to 

restore baseline activity. We also examined the time spent in center zone as one measure 

of anxiety-like behavior and found no significant differences (n = 8 – 9) (Fig 4.3C). Overall, 

these results suggest that diminished KCC2 activity in the striatum, likely resulting in 

neuronal disinhibition, leads to excessive locomotion.  

Previous work in our lab demonstrated a loss in dendritic spines selectively in D2R-

expressing MSNs of Tat+ mice (Schier et al., 2017). Given the biochemical and behavioral 

results presented here and the role KCC2 plays in dendritic spine maintenance (Li et al., 

2007, Fiumelli et al., 2013), we hypothesized that D2R-expressing MSNs are selectively 

vulnerable to Tat-induced KCC2 loss, contributing towards disrupted striatal circuitry 

manifesting as hyper locomotor activity. 

D2R-expressing MSNs show enhanced KCC2 loss in response to Tat induction 

compared to their D1R-expressing counterparts.  

We crossed Tat+ and Tat- mice with Drd1a-tdTomato and Drd2-eGFP mice to 

allow for independent examination of D1R-expressing and D2R-expressing MSNs to 

determine if there is a preferential vulnerability of D1R or D2R-expressing MSNs to Tat-

induced KCC2 loss. To visualize KCC2 colocalization with tdTomato (D1R-expressing 

MSNs) or EGFP (D2R-expressing MSNs) we performed IHC with antibodies specific for 

KCC2 and either 488 or 594 secondary antibodies, respectively. Z stacks of striata were 

obtained and 3D reconstruction and subsequent colocalization analysis was performed 
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with Imaris. We found a loss of KCC2 colocalization with eGFP in Tat+ x Drd2-eGFP mice 

compared to Tat- x Drd2-eGFP mice (p < 0.05, n = 8) and no significant changes in KCC2 

colocalization between Tat+/Tat- x Drd1a-tdTomato mice (n = 3 – 12) (Fig 4.4). It does 

not appear that there is overt, total loss of KCC2 in some D2R-expressing MSNs, thus, 

there is likely a more subtle decrease across a large proportion. Particularly noticeable is 

that somatic KCC2 staining appears primarily around the membrane in D1R-expressing 

MSNs and Tat- D2R-expressing MSNs (yellow arrows, Fig 4.4), this localization is lost in 

Tat+ D2R-expressing MSNs (white arrows, Fig 4.4), suggesting shifted reversal potential 

of Cl- and diminished hyperpolarization in this population of neurons. Overall, data from 

these experiments suggest a preferential vulnerability D2R-expressing MSNs to Tat-

induced KCC2 loss and provide some insight to the circuit disruption underlying the 

behavioral abnormalities found above. 

Discussion 

These studies highlight a novel route of Tat-mediated neuronal damage to induce 

motor dysfunction. Loss of KCC2 detection was associated with motor hyperactivity after 

two wks of DOX-induced Tat exposure and we found preferential vulnerability of D2R-

expressing MSNs. Importantly, we were able to rescue membrane-localized KCC2 and 

behavioral abnormalities with the KCC2 activity enhancer, CLP290, demonstrating the 

potential efficacy of KCC2 as a therapeutic target for the treatment of HAND.  

The classic striatal model of motor initiation involves a balance between activation 

of the D1R-expressing MSN-mediated ‘Go-pathway’ and D2R-expressing MSN-mediated 

‘No Go-pathway’ (Gerfen and Young, 1988, Kravitz et al., 2010). Based on this model, 

we would expect to have seen a preferential vulnerability of D1R-expressing MSNs to 
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Tat-induced KCC2 loss resulting in disinhibition of the D1R-mediated ‘Go pathway’ of 

motor initiation. Our data do not support this hypothesis of motor initiation and lend 

credence to the growing body of evidence refuting this model. Recent prevailing theories 

suggest more subtle circuitry underlying striatal motor initiation and have demonstrated 

increased D1R- and D2R-expressing MSN activity during movement (Parker et al., 2018, 

Cui et al., 2013, Klaus et al., 2017, Barbera et al., 2016, Kupchik et al., 2015). Thus, 

disinhibition of either D1R- or D2R-expressing MSNs may lead to abnormal locomotion 

and as our data suggest, D2R-expressing MSN disinhibition induces motor hyperactivity 

in the open field assay. 

Motor impairment in PWH was initially described in the first publication outlining 

neurocognitive decline associated with HIV (Navia et al., 1986) and has persisted into the 

era of cART treatment (Valcour et al., 2008, Heaton et al., 2010, Robinson-Papp et al., 

2008). Typically, HIV-induced motor deficits are associated with hypokinetic symptoms 

such as bradykinesia (Mirsattari et al., 1998, Bhidayasiri and Tarsy, 2012, Sullivan et al., 

2011, Valcour et al., 2008), but hyperkinetic states like tremor which can be caused by 

disinhibition of the striatum (Oran and Bar-Gad, 2018) can be seen as well and may occur 

with or without other signs of Parkinsonism (Mirsattari et al., 1998, Cardoso, 2002, Nath 

et al., 1987). Our results demonstrate motor hyperactivity after two wks of DOX-induced 

Tat exposure (Fig 4.3 A, B) associated with reduced membrane localization of KCC2 (Fig 

4.2 C) and may serve as a mechanism underlying heightened striatal output of HIV-

induced tremor. Studies utilizing positron emission tomography to measure basal ganglia 

metabolism found that early stages of HIV-infection/HAND were associated with 

hyperactivity of the basal ganglia, followed by basal ganglia hypometabolism and 



87 

 

bradykinesia as the disease progresses (von Giesen et al., 2000). Our results with two 

wks DOX treatment may represent early disease stages, resulting in excessive striatal 

activity caused by hyperactivity in D2R-expressing MSNs of the striatum and increased 

locomotion. In fact, we have found that Tat transgenic mice also display a biphasic change 

in locomotor activity, whereby, as we have demonstrated here, hyperactivity after two wks 

of Tat exposure (Fig 4.3 A, B) and previous studies from our lab found decreased 

locomotion after four wks DOX-induced Tat expression (Hahn et al., 2016), a time point 

at which we found no differences in KCC2 (Fig 4.1), mirroring the clinical results showing 

increased then decreased striatal activation (von Giesen et al., 2000). Importantly, we 

also found that we could mitigate Tat-induced motor deficits with pharmacological 

maintenance of membrane-bound KCC2 exemplifying the utility of targeting this pathway 

as a potential therapy for PWH with motor impairment. Based on the involvement of KCC2 

in motor behavior, it is reasonable to hypothesize that KCC2 dysregulation may contribute 

to other behavioral or behavioral and cognitive deficits in Tat-transgenic mice and PWH, 

respectively, and should be explored going forward. While we found no overt changes in 

total KCC2 in the hippocampus, there may be more subtle alterations in specific neuronal 

subsets that may not be detectable by western blot of the entire hippocampus and 

changes to KCC2 localization and/or function may be present and operative in memory 

deficits seen in Tat-transgenic mice and PWH. 

Our results should be validated and expanded upon by examining the functional 

responses of D1R- and D2R-expressing MSNs by either gramicidin perforated patch 

clamp or tight-seal cell-attached current-clamp to measure Cl- reversal and GABA-

mediated postsynaptic potentials (Perkins, 2006), respectively. We hypothesize that 
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D2R-expressing MSNs would preferentially show functional deficits based on our 

colocalization results demonstrating selective vulnerability of D2R-expressing MSNs to 

Tat-induced KCC2 loss. We previously demonstrated D2R-expressing MSN vulnerability 

to Tat-induced decrease in dendritic spine density (Schier et al., 2017). Given the 

importance of KCC2 in dendritic spine stability (Fiumelli et al., 2013, Li et al., 2007), and 

our results demonstrating D2R-expressing MSN vulnerability to both KCC2 and dendritic 

spine loss, future studies should examine whether maintenance of KCC2 with CLP290 is 

sufficient to restore dendritic spines. This would further increase the therapeutic scope of 

CLP290 for utility in restoration of GABAergic function as well as excitatory circuitry. 

Interestingly, we had previously not found significant changes in locomotion in the open 

field assay after two wks DOX treatment (Schier et al., 2017). It is important to note that 

in our previous studies, we had used Tat+ and Tat- mice crossed with D1-tdTomato and 

D2-eGFP mice for all experiments reported in that paper, while the behavioral assays 

here utilized Tat+ and Tat- mice (not crossed), potentially suggesting strain differences in 

the effects of Tat on locomotion. Previous examinations of D1-tdTomato and D2-eGFP 

mice showed no difference and elevated motor activity, respectively, compared to 

C57Bl/6 control mice (Ade et al., 2011). Motor hyperactivity found in the D2-eGFP mice 

may have confounded data from the open field assay in our previous study, resulting in 

the disparate outcomes between the data presented here and those from our earlier study 

(Schier et al., 2017). Other subtle differences in experimental paradigm may explain these 

differences as well. The behavioral battery in the prior study more intensively explored 

anxiety-like behaviors measured with the elevated plus maze on the same day as the 

open field assay and differences in assay length: 20 min versus 30 min for the present 
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study and previous examinations, respectively. Whether these or other potential 

confounds (such as experimenter or prior handling) produced the discrepancies between 

these studies should be examined going forward. 

HIV infection has many comorbidities including substance use disorder (SUD) and 

drug use can affect the progression of HAND (NIDA, 2019, Canan et al., 2018, Denis et 

al., 2019, Bell et al., 2002, Byrd et al., 2011). PWH have also been shown to have 

disrupted reward processing, placing them at higher risk for adverse outcomes associated 

with SUD (Anderson et al., 2016, Plessis et al., 2015). Drugs of abuse have profound 

impact on striatal circuitry and can result in long term circuit changes resulting in 

dependency (Koob and Volkow, 2010). Our previous work demonstrated that activation 

of µ-opioid receptor by morphine can reduce KCC2 in human neurons in vitro (Chapter 

3) and previous studies have shown that opiate dependency can induce a GABA switch 

from inhibitory to excitatory (Laviolette et al., 2004, Vargas-Perez et al., 2009). While not 

directly explored, changes in KCC2 activity may underlie this shift. Fitting et al. (2010) 

also demonstrated that opiate exposure can exacerbate Tat-induced striatal dendritic 

pathology (Fitting et al., 2010). Given striatal vulnerability to disruption from both HIV and 

drugs of abuse, the experiments performed here should be expanded to examine how 

drugs of abuse may interact with Tat to affect striatal KCC2, GABAergic function, and 

associated behavioral outputs. Further, Tat exposure has increased cocaine induced 

motor hyperactivity (Harrod et al., 2008, Paris et al., 2014a). Thus, these factors may 

converge to dysregulate KCC2, exacerbating motor hyperactivity.  

CLP290 administration had previously been utilized to restore KCC2 Cl- extrusion 

and walking in spinal cord injured mice (Chen et al., 2018), morphine-induced 



90 

 

hyperalgesia in rats (Ferrini et al., 2017), and somatosensory-related behavior after 

traumatic brain injury (Lizhnyak et al., 2019). Here, we increased membrane-localized 

KCC2 and restored motor activity to baseline levels after two wks of CNS exposure to 

Tat. Membrane-localization and degradation of KCC2 is tightly regulated by several 

different phosphorylation events. While its efficacy has been well documented, the 

mechanism by which CLP290 reestablishes KCC2 activity remains elusive. Our results 

suggest that CLP290 rescues KCC2 activity by restoring phosphorylation of S940 to 

increase membrane stabilization of KCC2 and, therefore, Cl- extrusion. Whether CLP290 

directly interacts with KCC2 to maintain S940 phosphorylation, or if it enhances PKC or 

inhibits PP1 to increase or decrease S940 phosphorylation, respectively, is unknown and 

should be explored in future studies. 

These experiments demonstrate the role of KCC2 in behavioral deficits induced by 

CNS exposure to Tat which add to our previous in vitro studies in which we first identified 

dysregulation of KCC2 by HIV-1 and the Tat and gp120ADA HIV proteins. KCC2 is 

emerging as a key regulator of hyperexcitability in several neurological disorders and the 

use of CLP290 has shown promise for pharmacological reintroduction of KCC2 and 

rescue of physiological and behavioral deficits. We provided evidence that begins to 

uncover the mechanism by which CLP290 reinstates KCC2 activity which had previously 

not been described. Overall, we add in vivo biochemical and behavioral evidence to the 

utility of targeting KCC2, perhaps with CLP290, as a potential therapy for PWH with 

HAND, particularly those with motor impairment. 
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Figure 4.1. Two wk DOX-induced Tat expression in Tat+ mice reduced total 

striatal KCC2. Analysis of western blot from hippocampus animals administered DOX 

for two (p = 0.82, n = 6), four (p = 0.51, n = 6), and eight wks (p = 0.65, n = 7) show 

no significant differences between Tat+ and Tat- mice (A). Two wk DOX administration 

significantly reduced total KCC2 in the striatum of Tat+ mice compared to Tat- mice 

(** p = 0.001, n = 11 – 12) and four wk DOX groups showed no significant differences 

(p = 0.28, n = 6). Representative blots showing decreased KCC2 in Tat+ mice 

compared to Tat- after two wk DOX treatment (B; right). All KCC2 western blots are 

represented as relative intensity to GAPDH normalized to Tat- groups.  
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Figure 4.2. CLP290 administration rescues phosphorylation of S940 and 

membrane localization of KCC2. Two-way analysis revealed a main effect of Tat 

expression to reduce total KCC2 (**, p < 0.01, n = 12 – 18) suggesting that CLP290 

failed to rescue total KCC2 levels (A). Examination of phosphorylation of S940 

revealed a significant decrease in the Tat+/Vehicle group compared to control (** p < 

0.01, n = 8 – 12) and rescue with CLP290 (* p < 0.05, n = 8 – 12) (B) suggesting that 

membrane bound KCC2 may be altered, which was confirmed by western blot on from 

membrane fractionation (** p < 0.01; *p < 0.05, n = 8 – 9) (C). Blots for total and pS940-

KCC2 are represented as intensity relative to GAPDH normalized to Tat-/Vehicle 

controls (A, B). Blots for membrane bound KCC2 are relative to total lane protein 

normalized to controls (C).  
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Figure 4.3. Tat+ mice show hyperactive locomotion in the open field assay with 

CLP290 able to rescue this effect.  Tat+ mice given vehicle showed increased motor 

activity compared to controls in the open field assay measured by both total distance 

travelled (A) and rearing number (B) (**, p < 0.01, n = 8 – 9). CLP290 administration 

significantly decreased total distance travelled and rearing number in Tat+ mice (*, p 

> 0.05, n = 8 – 9), suggesting that restoration of membrane-localized KCC2 was 

sufficient to rescue abnormal locomotor activity in these animals. We also examined 

time spent in center zone as a measure of anxiety-like behavior and found no 

significant differences (n = 8 – 9) (C). 
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Figure 4.4. D2R-expressing MSNs display Tat-induced KCC2 loss while D1R-

expressing MSNs do not. Colocalization analyses revealed no change in KCC2 

immunofluorescence with tdTomato between Tat+ x Drd1a-tdTomato and Tat- x 

Drd1a-tdTomato mice (n = 3 (Tat-), 12 (Tat+)) (A, B). Representative images showed 

no change in KCC2 immunofluorescence in D1R-expressing MSNs (tdTomato). 

Yellow arrows exemplify somatic KCC2 staining, localized around the cell membrane, 

in D1R-expressing MSNs (A). Tat+ x Drd2-eGFP mice showed decreased 

colocalization with KCC2 immunofluorescence compared to Tat- x Drd2-eGFP mice 

(*p < 0.05; n = 8) (C, D). Representative images showed strong colocalization in D2R-

expressing MSNs of Tat- mice, while Tat+ mice showed decreased 

immunofluorescence colocalized with D2R-expressing MSNs (eGFP) (C). Yellow 

arrows exemplify somatic membrane KCC2 colocalization with D2R-expressing MSNs 

(top C). White arrows exemplify D2R-expressing neurons with reduced KCC2 cell 

membrane localization and decreased colocalization with eGFP (bottom C). These 

results suggest a preferential vulnerability of D2R-expressing MSNs to Tat-induced 

KCC2 loss. Scale bar = 20 µM. 
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Chapter 5 

Conclusions and Future Directions 

 

 The introduction of cART has changed the prognosis of an HIV-1 infection from a 

virtual death sentence to a manageable chronic condition. Thus, the focus of treatments 

for these patients has shifted from prophylaxis against opportunistic infection to viral 

suppression and improvement of quality of life. Even with cART adherence, HAND is a 

preeminent complication for up to 50% of PWH (Heaton et al., 2010). Neuronal 

hyperexcitability along with reduced synaptodendritic complexity underlies disrupted 

circuitry that manifests as cognitive and behavioral alterations associated with HAND 

(Masliah et al., 1997). Heightened glutamatergic signaling plays a significant role and has 

classically been the center of focus when studying hyperexcitability. Mounting evidence 

also demonstrates disrupted GABAergic signaling as a vital component to this process 

(Gelman et al., 2012a, Buzhdygan et al., 2016). The evidence presented in this 

dissertation demonstrates that KCC2 plays an integral role in disrupting the postsynaptic 

response in GABAergic signaling, contributing to hyperexcitability of the HIV-exposed 

CNS. Through experiments involving a novel human in vitro model and DOX-inducible, 

GFAP-driven Tat-transgenic mice we determined that HIV-1, and viral proteins diminish 

KCC2 resulting in GABAAR signaling deficits and behavioral abnormalities. Most of these 

deficits were ameliorated pharmacologically using the KCC2 enhancer, CLP257, and its 

prodrug, CLP290, demonstrating the efficacy of targeting KCC2 as a novel therapy for 

HAND. 
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 SUD is a common comorbidity of HIV-infection. IDU was responsible for ~20% of 

new HIV-1 cases in 2016 and up to 50% of PWH are prescribed opiates (NIDA, 2019, 

Denis et al., 2019, Chilunda et al., 2019). Regardless of whether use is illicit or prescribed, 

opiate exposure results in faster progression of AIDS (Peterson et al., 1990, Peterson et 

al., 2004), and possibly, exacerbated HAND symptomology (Bell et al., 2002, Bell et al., 

1998, Byrd et al., 2011, Chiesi et al., 1996, Lucas et al., 2006). These enhanced 

symptoms are likely the result of cellular signaling convergence from HIV proteins and 

opiate activation of MOR in areas of the brain vulnerable to insult from both factors, such 

as the hippocampus and striatum. Previously identified targets of morphine-HIV neuronal 

signaling convergence include GSK3β (Masvekar et al., 2015), and p38 mitogen activated 

protein kinases (MAPK) (Mukerjee et al., 2008, Hu et al., 2005) which can enhance 

neuronal death in vitro. Our results demonstrate that morphine activation of MOR can 

independently reduce KCC2 and disrupt GABAAR-mediated hyperpolarization and 

inhibition and has a significant or trend toward a combinatorial effect with HIV-Tat and 

gp120, respectively, to enhance KCC2 loss under certain conditions (Chapter 3; Fig 3.1, 

3.2, 3.4, 3.5, 3.6). Thus, our in vitro results provide a cellular/molecular substrate upon 

which opiates disrupt GABA signaling and can converge with HIV protein-mediated 

pathways to enhance these effects. 

Opiate administration activates MOR on GABAergic interneurons of the VTA, 

inhibiting GABA release from this neuronal subpopulation, thus, disinhibiting DAergic 

neurons, increasing DA release on the NAcc inducing feelings of euphoria and promoting 

opiate dependence. Previous studies have demonstrated that opiate dependence and 

withdrawal cause a switch of GABA on VTA GABAergic terminals from inhibitory to 
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excitatory, although they did not provide a mechanistic cause of this physiological reversal 

(Laviolette et al., 2004, Vargas-Perez et al., 2009). Our results provide the first direct link 

between MOR activation and diminished KCC2 and neuronal disinhibition (Chapter 3; Fig 

3.1, 3.6). Thus, it is feasible that MOR activation after repeated exposures to opiates in 

vivo results in decreased KCC2 on GABAergic interneurons of the VTA. This, in turn, 

necessitates continual MOR activation to maintain their inhibition (through neuronal Gi/o 

signaling) thereby maintaining VTA DAergic activity, which would promote opiate 

dependency. Removal of MOR activation disinhibits these GABAergic interneurons, 

which is now exacerbated by reduced KCC2 and GABAAR-mediated excitation and thus, 

strongly inhibits VTA DAergic neuronal activity on the NAcc inducing a withdrawal state. 

This proposed mechanism of KCC2-driven opiate dependency and withdrawal should be 

investigated in vivo to determine if opiate dependency and withdrawal reduce KCC2 in 

GABAergic interneurons of the VTA and if modulation (perhaps with CLP290) affects 

outcomes associated with excitatory GABA and opiate dependency and withdrawal. 

Signaling from HIV and drugs of abuse converge on the striatum and studying their 

interactive effects may give insight to the vulnerability of PWH to reward deficits. These 

deficits have been reflected in studies in which Tat+ mice showed a three-fold increase 

in both ethanol and cocaine conditioned place preference (CPP) compared to controls 

(Paris et al., 2014a, McLaughlin et al., 2014). These behavioral changes are 

accompanied by significant changes in DAergic markers (Kesby et al., 2016, Ferris et al., 

2009a, Ferris et al., 2009b) and drug of abuse enhancement of striatal MSN damage 

(Fitting et al., 2010, Bruce-Keller et al., 2008). Classic theories on reward circuitry, 

typically studied in regard to drugs of abuse, proposed a diametrically opposed role of 
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D1R and D2R-expressing MSNs. D1R-expressing MSNs theoretically encode reward and 

are activated by drugs of abuse and whose stimulation can induce/potentiate CPP, 

whereas D2R-MSNs encode aversion and inhibit drugs of abuse-induced CPP (Lobo et 

al., 2010, Hikida et al., 2010, Tai et al., 2012, Kravitz et al., 2012). This controversial 

theory of reward circuitry has come into question in more recent studies (Soares-Cunha 

et al., 2016, Natsubori et al., 2017, Cole et al., 2018) exemplified by a 2019 publication 

that demonstrated that both D1R and D2R-expressing MSNs can encode reward, 

dependent on neuronal stimulation frequency, determined by selective optogenetic 

activation of D1R and D2R-expressing MSNs (Soares-Cunha et al., 2019). Our data 

suggests GABAergic disruption in the striatum of Tat+ mice, specifically, disinhibition of 

D2R-expressing MSNs is mediated through reduced KCC2 (Chapter 4, Fig 4.3, 4.4). 

These may be involved in the sequelae of events resulting in Tat-potentiated cocaine and 

ethanol reward salience and reward deficits in PWH. Future studies should examine if 

modulation/restoration of GABAergic inhibition of D2R-expressing MSN could ameliorate 

Tat-potentiated CPP. 

It is important to note the hNeuron in vitro model described in Chapter 2 and utilized 

in Chapter 3 is a mixed neuron-glia (astrocyte) co-culture. Thus, it may be direct neuronal 

MOR activation or activation of MOR on glia, which through an unknown mediator, acts 

on neurons to diminish KCC2. Ferrini et al (Ferrini et al., 2013) demonstrated that 

morphine-induced KCC2 reductions in the spinal cord induce hyperalgesia and were 

mediated by microglial purinergic receptor activation. Additionally, previous studies in our 

lab have rarely found interactions between HIV proteins and opiates in vitro with less than 

24 h exposures and combinatorial effects from these factors at later time points are 
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consistently mediated by glia (Zou et al., 2011, Kim et al., 2018). When taken together 

with our results showing morphine-Tat interactions at 24 h, but not at 6 h, it may be that 

morphine-induced KCC2 loss is glial-mediated (Fig 5.1). 

 The role of KCC2 dysregulation has been investigated in several neurological 

disorders (outlined in Chapter 1) and we are the first to demonstrate its role in neuroHIV 

(Chapters 3, 4). While these neurodegenerative disorders have different etiologies, there 

are several common hallmarks between them such as neuroinflammation and elevated 

glutamatergic signaling. Another emerging commonality is neuronal Cl- gradient collapse 

via reduced KCC2 activity, resulting in neuronal disinhibition through diminished 

GABAAR- mediated hyperpolarization and inhibition, and in some cases, GABAAR-

mediated depolarization and excitation. While there are common pathways, the cognitive 

and behavioral consequences are often vast. These differences arise in age of onset, 

brain regions and neuronal subsets affected, white matter involvement, and differences 

in immune recruitment, among others. For example, Rett Syndrome has large-scale 

behavioral and cognitive abnormalities compared to those typically seen with HAND. 

These differences arise in their separate etiologies: Rett is a genetic disorder and, thus, 

these KCC2 deficits result in improper GABAergic tuning during a critical period of CNS 

development (as well as other cellular and molecular sequelae differences), resulting in 

large-scale cognitive deficits. HIV is typically acquired after these critical periods of 

development, and, thus, the deficits of HAND are comparatively, subtle. Loss of KCC2 

function has a well-established link to epilepsy via neuronal disinhibition, but seizures are 

not always seen in states of lowered KCC2 and while the rates of epilepsy due to HIV 

infection (~4%) are higher than the general population (1.2%), they are still low 
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(Kellinghaus et al., 2008). The involvement of KCC2 in epileptogenesis is likely due to 

extent of KCC2 activity loss and brain regions and neuronal subsets affected. Extreme 

loss of KCC2 activity may result in accumulation of [Cl-]i to the point of Cl- efflux upon 

GABAAR activation resulting in depolarization, and possibly neuronal excitation. The 

subsets of neurons affected have drastic effects on neuronal micro- and macro-circuitry. 

For example, ablation of KCC2 in pyramidal neurons of the hippocampus resulted in 

GABAAR-mediated depolarization and was sufficient to induce temporal lobe epilepsy 

(Kelley et al., 2018). In contrast, our results suggest that HIVsup ± morphine-induced KCC2 

activity loss are not as profound, as there is still hyperpolarization due to GABAAR 

activation (Fig 3.2). Our in vivo data showed KCC2 loss in D2R-expressing MSNs of the 

striatum, but we found no overt loss of KCC2 in the hippocampus (Fig. 4.1, 4.4) and while 

Tat+ mice have displayed lower kainite-evoked seizure thresholds (Zucchini et al., 2013), 

epilepsy has not been noted in Tat-transgenic mice. Thus, HIV exposure may be 

associated with KCC2 loss and hyperexcitability, but the development of epilepsy 

depends on differences in extent of [Cl-]i accumulation and neuronal subsets and brain 

regions with reduced KCC2 activity. Despite differing etiologies, neuronal subpopulation 

and brain region involvement, and cognitive/behavioral consequences, the commonalities 

underlying the neuropathology of these disorders suggest that there may be common 

therapies between them. 

 CLP257 and its prodrug, CLP290, are capable of maintaining membrane 

expression of KCC2, and thus maintain neuronal Cl- extrusion, but the mechanism 

underlying these effects has yet to be elucidated. We demonstrated its utility in vitro in 

maintaining KCC2 immunoreactivity and GABAAR-mediated hyperpolarization and 
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inhibition after exposure to HIVsup, Tat, and morphine exposure (Chapter 3, Fig 3.1, 3.2, 

3.4, 3.5, 3.6). In vivo studies found that CLP290 could restore KCC2 and GABAergic 

activity to reactivate neuronal circuitry after spinal cord injury reinstating walking (Chen et 

al., 2018), restore somatosensation after TBI (Lizhnyak et al., 2019), and reverse 

morphine induced hyperalgesia (Ferrini et al., 2017). We found that daily oral gavage of 

CLP290 for seven days during the second week of DOX treatment was capable of 

ameliorating abnormal motor activity in Tat+ mice (Chapter 4, Fig 4.4). While unable to 

rescue total KCC2 levels, CLP290 administration did rescue pS940-KCC2, and 

membrane localized KCC2, suggesting rescued neuronal Cl- gradient and proper 

GABAergic transmission (Chapter 4, Fig 4.3). These results also provide insight to a 

possible mechanism that CLP290 acts. Our results demonstrate that CLP290 rescues 

membrane localization of KCC2 through maintenance of pS940. Although whether 

CLP290 interacts directly with KCC2 to prevent PP1 dephosphorylation of KCC2, inhibits 

PP1 itself, enhances PKC phosphorylation of S940, or modulates activity upstream of 

PP1 or PKC is unknown. It is also possible that CLP290 maintains other phosphorylation 

states important for membrane localization/degradation and these phosphorylation 

specific residues should be examined going forward. Our results demonstrated a failure 

of CLP257 to restore KCC2 and GABAAR-mediated inhibition after exposure to gp120ADA 

(Chapter 3, Fig 3.5, 3.6). Taken together with our data implicating involvement of pS940 

in CLP290s mechanism of action, suggests that gp120ADA may dysregulate pathways 

involved in the mechanism of action of CLP290.  

The primary therapy for HAND is viral suppression via cART. Since its introduction, 

there has been a reduction of the most severe form of HAND, HAD, but there has been 
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an increase in the two milder forms with an overall prevalence remaining the same 

(Heaton et al., 2010). While able to control viral loads in the periphery, the CNS can act 

as a reservoir for HIV which may play a role in the persistence of HAND. Other factors 

that may be implicated in continuing neurocognitive detriment include an aging HIV 

population and, potentially, neurotoxic effects from some ARVs. Regardless of the cause, 

this preeminent quality of life issue for PWH underscores the necessity for adjuvant 

therapies to ameliorate the symptoms of HAND. As the preeminent theories for neuronal 

dysfunction in HAND centered around glutamatergic and Ca2+ signaling, so did trials for 

adjuvant therapies. Trials for NMDAR antagonist, memantine, and voltage gated L-Type 

Ca2+ channel, nimodipine had little to no success at restoring or decelerating deficits of 

HAND (Schifitto et al., 2007, Navia et al., 1998). Other adjuvant therapies to reach clinical 

trial have been a monoamine oxidase B inhibitor, selegiline, (Sacktor et al., 2009), TNF 

antagonist, CPI-1189 (Clifford et al., 2002) an acetylcholinesterase inhibitor, rivastigmine 

(Sacktor et al., 2011), and valproic acid (Schifitto et al., 2006), none of which significantly 

improved symptoms of HAND. Going forward, targeting KCC2, perhaps with CLP290 may 

prove to be beneficial to restore GABAergic inhibition and ameliorate the excitatory-

inhibitory imbalance of the HIV-exposed CNS as discussed thoroughly in chapters 3, 4, 

and 5. At this time, CLP290 has not been tested in clinical trials. Bumetanide, a diuretic 

that is approved for clinical use, has been shown to restore neuronal Cl- gradient via 

antagonism of NKCC1. Acting in opposition to KCC2, NKCC1 increases neuronal [Cl-]i, is 

the dominant neuronal Cl- transporter in the immature brain and is aberrantly increased 

in some neurological disorders. Clinically, bumetanide significantly reduced seizure 

frequency in temporal lobe epilepsy (Eftekhari et al., 2013) and benefited neurocognitive 
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and behavioral outcomes for those suffering from drug-resistant epilepsy (Gharaylou et 

al., 2019), autism (Lemonnier and Ben-Ari, 2010, Lemonnier et al., 2012, Lemonnier et 

al., 2017), and schizophrenia (Lemonnier et al., 2016) through restoration of inhibitory 

GABAergic signaling. While we saw no changes in NKCC1 in our in vitro experiments, 

future studies should examine NKCC1 changes in Tat transgenic mice and human tissue 

to determine if this could be a potential adjuvant therapy for PWH experiencing 

neurocognitive decline. 

Our discovery that CCR5 mediates KCC2 immunoreactivity and inhibitory effects 

of GABA (Chapter 3; Fig 3.5, 3.6) is a novel mechanism of neuro-immune interaction and 

may have implications for PWH as well as other neuroinflammatory disorders. MVC, an 

FDA approved CCR5 antagonist, is a commonly prescribed ARV to prevent viral entry 

with high CNS penetrance (Yilmaz et al., 2009). A clinical study found that when MVC 

use was intensified, PWH with neurocognitive impairment had significant improvements 

in global functioning, learning and memory, and executive function (Ndhlovu et al., 2014). 

Thus, restored KCC2 and GABAergic hyperpolarization may be a molecular and 

physiological mechanism underlying improvements in these subjects. To our knowledge, 

this is the first time a chemokine receptor has been linked to changes in KCC2. This route 

of neuro-immune crosstalk demonstrates a novel pathway by which immune activation 

can fine-tune neuronal circuitry and induce hyperexcitability and, therefore, may be 

involved in other disorders that show operative CCR5-CCL5 signaling. For example, 

multiple sclerosis increases CCL5 (Sorensen et al., 1999). Of particular relevance, one 

study with multiple sclerosis patients used a paired pulse transcranial magnetic 

stimulation (TMS) protocol to induce intracortical inhibition (inter stimulus interval of 2 
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ms), which is GABAAR mediated (Di Lazzaro et al., 2006), and found decreased paired 

pulse-induced cortical inhibition was significantly correlated with subjects CSF CCL5 

levels (Mori et al., 2016). Thus, these results may be explained by decreased GABAAR 

inhibition via increased CCR5 activation and subsequent reduction in KCC2 activity. 

Given this novel CCR5-KCC2 signaling cascade, MVC should be considered more 

heavily for PWH experiencing neurocognitive decline and should be examined for use in 

other disorders in which elevated CCL5-CCR5 signaling is a component of 

neuroinflammation. 

 D2R-expressing MSNs seem to be particularly vulnerable to hyperexcitability 

(Cepeda et al., 2008) and excitotoxicity through glutamate receptor activation (Mesco et 

al., 1992). Previous studies from our lab have demonstrated vulnerability of striatal 

neurons, particularly D2R-expressing MSNs, of Tat+ mice to dendritic spine loss induced 

by elevated [Ca2+]i (Fitting et al., 2014, Fitting et al., 2010, Schier et al., 2017). KCC2 

interactions with cytoskeletal elements to maintain dendritic spines and our results 

showing Tat-induced, NMDAR-dependent KCC2 loss (Fig 3.1, 3.4), suggest that the Tat-

induced neuropathology (dendritic spine and KCC2 loss) noted between these studies 

may be part of the same signaling cascade. We propose that Tat-mediated NMDAR-

dependent [Ca2+]i elevation induces dephosphorylation of S940 and KCC2 internalization 

and degradation, preferentially in D2R-expressing MSNs, destabilizing and ultimately 

reducing dendritic spine density. Thus, Tat induction induces striatal inhibitory and 

excitatory dysfunction through KCC2 reduction and subsequent dendritic spine loss, 

respectively. These interactions should be examined by determining if KCC2 

maintenance (with CLP290) is sufficient to restore dendritic spines on D2R-expressing 
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MSNs which may also broaden the therapeutic potential of targeting KCC2 with drugs like 

CLP290. 

While motor disorders associated with HAND typically involve hypokinetic states, 

such as bradykinesia, our results demonstrate hyper locomotion in the open field assay 

after two wks DOX treatment. These seemingly paradoxical results may actually reflect 

the biphasic nature of striatal activation and motor impairment seen in PWH (von Giesen 

et al., 2000). Early in disease progression, subjects showed hypermetabolism of the 

striatum measured by positron emission tomography, while in more advanced stages of 

HIV infection subjects showed striatal hypometabolism and motor slowing. When taken 

together, the behavioral results presented in this dissertation showing increased motor 

activity after two wks of DOX-induced Tat expression (Fig 4.3) and previous work form 

our lab demonstrating decreased locomotion after 4 wk DOX treatment, reflect the 

progression of motor changes in PWH. Further, these locomotor changes also follow the 

biphasic response of KCC2 loss examined in Chapter 4 (Fig 4.1, 4.2). In accordance with 

decreased KCC2 in D2R-expressing MSNs (and, therefore, likely disinhibition of these 

cells), there is an increase in motor activity and as we see a recovery of KCC2 to baseline 

levels at four wk DOX-induced Tat exposure, there is a reversal in motor effects to 

hypolocomotion in the open field assay (Hahn et al., 2016). These results stand in 

contradiction to the classic ‘Go/ No Go’ theory of striatal motor activation and support 

emerging evidence showing that either D1R- or D2R-expressing MSN activation are 

implicated in motor initiation which is covered in the discussion of Chapter 4. Overall, we 

propose that the increased striatal output seen early in disease progression in PWH may 

be a result of decreased striatal KCC2 (preferentially in D2R-expressing MSNs), resulting 
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in neuronal disinhibition, thus increasing striatal activity, and as KCC2 returns to baseline, 

giving way to more prolonged circuit changes and DA depletion, there is a reversal of 

striatal activity manifesting as hypokinesia, resulting in the striatal hypometabolism and 

Parkinsonian-like states described clinically. 

 

Final Conclusion 

The work performed for this dissertation described two in vitro models with 

particular utility for HAND, one of which we used to identify a novel target of HIV and 

opiates to disrupt GABAergic signaling. Pharmacological manipulation of this novel target, 

KCC2, with CLP257 restored GABAAR-mediated hyperpolarization and inhibition. In vitro 

experiments performed in Chapter 3 have implications beyond the neuroHIV and drug 

abuse fields. We identified CCR5-KCC2 as a novel intermediary of neuro-immune 

interaction by which chemokine receptor signaling can disrupt GABAAR activity. 

Additionally, these studies demonstrated that morphine activation of MOR decreases 

KCC2, and may provide insight to the molecular substrate implicated in the synchrony of 

events resulting in GABAergic reversals in opiate-dependent animals. We expanded our 

in vitro KCC2 results to the Tat-transgenic mouse and found reduced striatal KCC2 after 

two wks of Tat expression. Additionally, D2R-expressing MSNs of the striatum seem to 

be preferentially vulnerable to KCC2 loss and these changes were associated with hyper 

locomotion. We were able to restore basal motor activity and membrane localized KCC2 

through rescue of phosphorylation of S940-KCC2 with CLP290 oral gavage, providing 

insight to a potential mechanism by which this drug works. In total, the studies presented 

describe a promising therapeutic target for HAND and implicate a common mechanism 
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between HIV proteins and morphine to dysregulate GABAergic activity, which may have 

additional relevance in opiate abusing populations. 
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Figure 5.1. Mechanisms underlying Tat, gp120ADA, and morphine-induced KCC2 

loss and GABAAR dysfunction.   
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