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ABSTRACT

Over 90% of all goods in the world, at some point in their life, are on a vessel at sea.

Currently, the maritime industry relies on the Automatic Identification System (AIS) for collision

avoidance and vessel tracking. AIS is an unencrypted, unauthenticated protocol that is vulnerable

to various types of cyber attacks allowing malicious actors to alter the location of vessels. With the

advent of the Ocean of Things (OoT), vessels are sharing more information than vessel location

alone at sea. Increasingly, more information is becoming critical for safe and efficient operation at

sea. This thesis presents a novel approach of applying machine learning to build vessel behavior

models that exploit AIS information. These models will allow vessels to detect anomalous com-

munication from vessels nearby. This will enable vessels to determine the quality of the message

shared between each other and, more critically, identify malicious actors.
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CHAPTER 1

Introduction

Over 90% of the world’s trade is carried by vessels at sea [9]. The maritime industry is

looking forward to the future Smart Ocean to provide reduced operating costs, while simultane-

ously increasing crew safety. The Smart Ocean will consist of a large number of connected devices

comprising the Ocean of Things (OoT) [10,11]. Currently, vessels communicate via the Automatic

Identification System (AIS). AIS allows vessels to identify themselves, their direction, and speed

to other vessels within a 10 to 20-mile range of the transmitting vessel. AIS is essential to collision

avoidance and the safe operation of vessels. AIS uses a plain-text peer-to-peer (p2p) form of com-

munication that can easily be modified or spoofed to transmit false information [12]. AIS currently

assists a vessel’s crew with navigation and identification of nearby vessels [13]. Because of the

lack of authentication, AIS is susceptible to various modifications. To increase confidence in AIS

readings, and help vessels have greater assurance while at sea, machine learning can be applied to

model normal vessel behavior. This process allows vessels that report abnormal information to be

identified.
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1.1 Background

This thesis examines the intersection of machine learning and maritime AIS. The back-

ground includes information on the Automatic Identification System and how it is used in vessel

to vessel communication, along with vessel to shore communication. Along with AIS, an outline

of four different machine learning methods useful in anomaly detection will be discussed in this

thesis. The four machine learning methods are: isolation forest, local outlier factor, support vector

machine, and robust covariance elliptic envelope.

1.1.1 Automatic Identification System (AIS)

Currently, the maritime industry tracks vessels at sea through the Automatic Identification

System (AIS). The 2002 International Maritime Organization (IMO) Safety of Life at Sea (SO-

Figure 1.1 AIS communication between vessels and shore side stations [1]

LAS) requires vessels over 300 gross tonnages to be equipped with AIS [1]. A popular online

vessel tracking application, currently is tracking over 166,000 vessels close to shore using AIS,

with over 400,000 estimated installments, and up to 1,000,000, once fully deployed globally [13].

The SOLAS requirement accounts for the widespread adoption of AIS in the maritime industry.
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AIS is a Very High Frequency (VHF) Self Organizing Time Division Multiple Access (SO-

TDMO) protocol [2] allowing vessels to share National Marine Electronics Association (NMEA)

messages.

Figure 1.2 AIS display used on vessels showing nearby vessels [2].

AIS messages include, but are not limited to, latitude; longitude; speed over ground; course

over ground; position accuracy; timestamp; Maritime Mobile Service Identity (MMSI) number;

true heading; type of ship; name; dimensions of ship; draught of ship; and destination.

AIS distinguishes between vessels, aids to navigation (ATON), and vessel traffic service

(VTS). These messages occur through 2,250 time slots per second on two VHF frequencies, AIS-1

161.975 MHz and AIS-2 162.025 MHz. Using both channels AIS-1 and AIS-2, 4,500 slots are

available per second. Each time slot is 26.67 ms long with a message size of 256 bits per message.
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Figure 1.3 AIS protocol on two frequencies with 2,250 time slots on each channel [2].

AIS is an unencrypted, unauthenticated protocol [1]. This protocol allows various types of

attacks [12] in AIS to occur. One could assume that applying encryption to AIS could solve or

improve AIS. This suggestion has been made with many obstacles to adoption on a global scale

across many nationalities and economic zones [7].

1.1.2 Machine Learning

Machine learning is the process of utilizing computational methods using past information

to make accurate predictions. Machine learning can assists with many types of tasks including text

classification, natural language processing, computer vision, and problems such as fraud detection.

Classification is a problem well-suited for machine learning. Classification consists of assigning a

category to an item based on past information [14].

One type of machine learning classification is determining if an item is a member of a group

or not a member. This type of classification is anomaly detection. Ansecombe and Guttman [15]

define statistical anomalous behavior detection as “An observation which is suspected of being

partially or wholly irrelevant because it is not generated by the stochastic model assumed.” His-

torical normal kinematic behavior data is assumed to be Independent and Identically Distributed

(IID). Once collected, historical observations are compared to newmovement data with a statistical

inference test applied to determine if a new observation belongs to the model or not.
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A few different types of machine learning anomaly detection methods are isolation forest,

local outlier factor, support vector machine, and elliptic envelope.

Isolation Forest [3] (iForest) focuses on isolating anomalies instead of normal profiling

points. This is achieved by building isolation trees (iTree) for a given data set. Anomalies are those

instances that have short average path lengths in an Isolation Tree. The benefit of this method is with

a reduced subsampling size, a high detection performance can be achieved with high efficiency.

Isolation Forest’s key difference from standard profiling methods is that it is not distance-based,

nor density-based, which reduces the computational overhead needed to calculate the cost of dis-

tance or density. The time complexity of iForest is linear, with low constant and low memory

requirements. iForest can scale to handle considerable data sizes and high dimensional problems

with large numbers of irrelevant attributes.

(a) iForest Outlier (b) iForest Inlier

Figure 1.4 Isolation Forest adapted from [3] of the number of partitions needed to detect an inlier.

Anomalies are identified by a short path length (Figure 1.4). Given 135 points, a normal

point, Figure 1.4b, requires twelve random partitions for isolation. Outliers, (Figure 1.4a), require

only 4 partitions to be isolated.
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Local Outlier Factor (LOF) [4] utilizes k-nearest neighbor through k-distance. LOF con-

siders the relative density of observations and can detect both local and global outliers for skewed

datasets. LOF identifies an outlier as a Hawkins-Outlier which is, “an observation that deviates

so much from other observations as to arouse suspicion that it was generated by a different mech-

anism [4].” LOF calculates the k-distance of observations as any positive integer k between any

objects within a given data set. From these distances, a k-neighborhood is identified for a given k-

distance of observation; the k-distance neighborhood of an observation contains every object whose

distance from observation is not greater than the k-distance. When an observation is identified as

outside the local neighborhood, it is considered an outlier. Using LOF, multiple neighborhoods can

be identified in a data set so that both global and local outliers can be isolated.

Figure 1.5 K-distance between points used to identify a point [4].

Support Vector Machine (SVM) is an implementation of a Support Vector Network (SVN)

by Cortes and Vapnik [5]. The SVM maps the input vectors into a dimensional feature space Z

through a non-linear mapping chosen for the data set. Support vectors are smaller training data set

points near the edge of the data set that constructs a hyperplane. Using clean error-free training

data to create support vectors allows error detection by the ratio between the expected value of the

number of support vectors and the number of training vectors. Hyperplanes are constructed well

when the classifier has the most significant distance to the nearest training vector.
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Figure 1.6 Support Vector Machine (SVM) example classifying a number two from a drawing [5].

When a Robust Covariance Elliptic Envelope [6] detects a single outlier, the distance be-

tween normal observations and an outlier is quite easy to detect by theMahalanobis distance. How-

ever, this method suffers from multiple outliers by a masking effect. The masking effect occurs

when a classifier selects a model that is sub-optimum, masking that a better model could have been

selected. A solution to the masking effect is distance based on robust estimators of multivariate

location and scatter. The classifier selects the normal observations as an elliptic envelope around

the data for all inliers. Outliers are all data points outside the elliptic envelope.

Figure 1.7 Elliptic Envelope adapted from [6] of inlier classification from the elliptic shape.
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1.2 Outline

After the above stated background is a literature review of existing work in maritime AIS,

using machine learning along with the type of vulnerabilities in AIS. The background is followed

by a discussion of the problem statement about AIS, then our approach of using machine learning

to model vessel behavior using AIS is next. After demonstrating how behavioral models are built,

a numerical analysis presents the results of testing our method against specific use cases followed

by a discussion of the results. Finally, a discussion including future work and the conclusion.
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CHAPTER 2

Literature Review

The literature review examines existing machine learning approaches using AIS data and

the type of possible attacks against AIS. The majority of machine learning approaches focus on

self-reported vessel trajectory based on the received AIS information. The second section focuses

on reviewing the types of AIS attacks that can occur.

2.1 Machine Learning in AIS

Liang, et al. [16] propose a two-step Long Short-TermMemory (LSTM) supervised learning

method to reconstruct a vessel’s trajectory when AIS location data is lost. AIS allots 4,500-time

slots per minute, in a congested region, an AIS transceiver becomes starved for resources due to

a lack of available time slots to transmit on. When this occurs, missing AIS data creates a gap in

information for the location of a vessel. Missing AIS data can also happen in inclement weather.

As the signal drops, the information is lost after transmission. This allows those monitoring a

vessel’s movement to project more accurately the ship’s prior location, to better understand the

ship’s previous and future movements.

Sidibe, et al. [17] survey techniques to identify anomalous behavior in the maritime domain

using AIS. They categorize the detection methods based on three categories: statistical, machine

learning, and data-mining.
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Data-driven approaches are created using a two-phase method. First, a vessel’s normal

behavior is modeled based on historical data. Second, the learned model is applied to current

vessel movement data with any differentiation considered anomalous behavior.

Anneken, et al. [18] uses Gaussian Mixture Model (GMM) and Kernel Density Estimator

(KDE) to predict anomalies incurred a high rate of false alarms. Gaussian Process and Active

Learning were used, but at the cost of high computational complexity in training models. Bayesian

Networks have been trained to account for AIS data, combined with real-world contextual data,

such as weather and time with vessel interactions.

Pallotta, et al. [19] identifies currently, point-based anomalous behavior and trajectory-

based anomalous behavior detection approaches. These two methods focus on the location of the

vessel’s travel, either where the vessel currently is located or the trajectory of the vessel.

Pallotta, et al. [20] use a Density-Based Spatial Clustering of Applications with Noise (DB-

SCAN) and Wang, et al. [21] Density-Based Spatial Clustering of Applications with Noise consid-

ering Speed and Direction (DBSCANSD). Both utilize Hadoop MapReduce clusters using parallel

meta-learning algorithms. The authors note that the algorithm improves linearly in time and accu-

racy with more nodes in the Hadoop cluster. These algorithms are of time complexity of O(n2)

for n number of data points in the training set. Traffic Route Extraction for Anomaly Detection

(TREAD) [19] is used to learn vessel routes from AIS data to predict the vessel’s future position.

Location-based approaches account for speed, either increased or decreased, based on historical

movement. They also detect anomalous heading for off-route vessels that normally follow an ex-

isting route.

Sidibe,et al. [17] note that anomalous vessel behavior detection causes a high rate of false-

positive anomalies detected.

Data-Mining methods seek to improve upon the high false-positive rates of trajectory and

point-based methods.
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Osekowska, et al. propose one such approach, [22] by developing and modeling traffic as

a potential field for the geographic tracks that a vessel moves through at sea. The field is stronger

with greater amounts of vessel traffic and weaker with less traffic. The field has three properties:

strength, decay, and distribution. The field strength increases with greater traffic. As fewer vessels

traverse a path, the path decays, and the strength value decreases. Distribution is the distance

between two points and is described by a two-dimensional Gaussian smoothing, using Euclidean

distance between two points. In this system, a vessel whose current position is detected outside the

local potential field is marked as anomalous.

Soleimani, et al. [23] propose a geometrical method based on the vessel trajectory for the

vessel’s near-optimal path. A near-optimal path is generated using a graph search algorithm. If a

vessel departs from the near-optimal path, then the unanticipated movement of a vessel generates

an abnormality score.

Roy, et al. [24] generate alerts based on rules in ports of known port parameters. Parameters

known are the maximum speed allowed in a port and marked restricted areas within a port. If the

parameters are broken, then a vessel is marked as anomalous.

The approaches discussed above consider only the vessel’s location (latitude, longitude),

Speed Over Ground (SOG), and Course Over Ground (COG). Sidibe et al. [17] identify two signif-

icant issues with current approaches to AIS anomaly detection. First, is the question of availability,

with high computational complexity, and the need to apply this globally. Second, is that vessels

can switch the AIS transceiver off so that vessel movement occurs off-line, creating gaps in vessel

movement.

Sidibe, et al. note the scarcity of literature on anomalous vessel behavior using big data

and real-time processing techniques from kinematic attributes and static characteristics of vessel

behavior.

Hanyang, et al. [25] develop a method to detect anomalously vessel trajectories over space-

based AIS (S-AIS). A newer technique in AIS is the use of space-based satellite monitoring of the
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Earth. Vessel to vessel AIS range is typically 20 nautical miles. AIS receivers on-shore can be

placed higher and have a slightly higher range of 35-40 nautical miles. The newer, space-based

AIS (S-AIS) range is much greater and, in clusters, can cover the entire globe. In stage one, data

pre-processing occurs by calculating the standard deviation of each vessel’s single day Speed Over

Ground (SOG) and Course Over Ground (COG) and applying logarithmic normalization. In stage

two, the Elbow Rule is applied to find the best number of clusters, then K-means is used to cluster

vessels.

2.2 AIS Attacks

Mazzarella, et al. [26] investigate the detection of and AIS signal from the vessels crew by

examining the signal strength of an AIS transmission. AIS is dependent on the system, receiving

a continuous stream of data, without interruption or intervention from the vessel crew. The crew

has used AIS, switching on or off, to hide the location of vessels. If a signal is strong or weak, and

a signal changes status, it can be an indicator that human intervention has occurred. Mazzarella

et al. account for electromagnetic propagation conditions of fixed AIS base stations to determine

the conditions under which the AIS signal strength should alternate due to physical conditions

without human intervention. Mazzarella et al. address the issue of detecting anomalies, presuming

a user is acting to conceal the location of a vessel using the physical properties of electromagnetic

propagation.

Balduzzi, et al. [12] detail the various type of AIS attacks and categorize them into two

categories: first, implementation-specific in software; second, protocol-specific in the AIS radio

transponders. At the software layer, one could spoof another vessel’s Maritime Mobile Service

Identity (MMSI) and pose as another vessel. Spoofing would make the vessel broadcasting appear

to be another vessel, along with spoofing the location of the vessel one is broadcasting as. Spoofing

as another vessel could also allow one to program a malicious route so that a vessel appears to
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have taken a false route. Software attacks occur when attacking the application layer based on the

applications used by various systems that log AIS messages. An example of this is a port authority.

If a port authority logs messages from AIS in a SQL database, one could craft a message to enter

into the SQL database executing arbitrary code through AIS.

For radio attacks, one can alter the message broadcast by a physical vessel. This allows

one to modify the location in real-time of vessels in transit. A type of attack is a man-in-water

Spoofing. An S.O.S is sent, then received by nearby vessels, compeling them by regulation to

attempt a rescue. Simulating an S.O.S would allow an attacker to lure a victim vessel to a hostile

location.

Closest Point of Approach (CPA) triggers a collision warning alert, encouraging a vessel

to alter course to avoid a collision. One can spoof a vessel’s location so that it appears close to a

vessel and the trajectory indicating a collision will occur. This will trigger an alarm on the victim’s

vessel that a collision is imminent.

Frequency Hopping (DoS++) can occur by an attacker spoofing as a port authority. This

forces the vessel’s transponder to a non-default frequency and masks the transponder to other ves-

sels operating nearby. This would render a ship invisible to other vessels nearby on AIS.

Slot Starvation (DoS++) occurs when a base station, such as a port authority, exhausts all

available slots for message broadcasting. A base station has a high priority compared to vessels.

Spoofing as a base station, one can book the next 100 milliseconds and then another 100 millisec-

onds continuously, so that all slots are continuously taken, barring any legitimate vessel’s messages

from being broadcast.

Timing Attack (DoS++) instructs an AIS transponder to delay its transmission for a period

in time. One can broadcast continuously, causing an AIS transponder to delay transmission, es-

sentially disabling the transponder continuously. One can also change the transponder to transmit

more often and flood all messages for a given region.
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Hardware Panic (DoS) attacks saturate the channel’s electromagnetic spectrumwith copious

quantities of noise. Based on the hardware, malfunctions can occur at the recipient’s memory or

processor, which could be overloaded.

As the maritime industry moves toward autonomous shipping, researchers are utilizing AIS,

the existing ship to ship communication and tracking technology. AIS is designed for ship avoid-

ance and self-broadcasting of vessel information. The AIS protocol is neither encrypted, nor au-

thenticated. Current public key infrastructure (PKI) models applied to the international maritime

industry have been developed and are in public use without widespread adoption. A possible reason

for this is the global international scope required to develop and maintain such a system. Goudos-

sis, et al. [7] suggest an Identity-Based Cryptography and Symmetric Cryptography (IBC) enhance

AIS security. Identity-Based schemes have also been suggested for aviation for its Automatic De-

pendent Surveillance-Broadcast (ADS-B).

A nefarious type of attack is the deliberate switching-off of AIS by vessel operators to

conceal a vessel’s location. Reasons for this type of action include: following official guidelines

in dangerous waters, violation of regulation to conceal the location of high value passengers.

Based on the vulnerabilities in AIS Goudossis et al. propose [7] these needed enhancements

to AIS security. Figure 2.1 demonstrates how a target could be tracked with AIS.

Figure 2.1 AIS Attacks illustrated on a plot of louring a vessel using AIS [7].
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1. Confidentiality AIS-broadcast messages should be encrypted.

2. Privacy and anonymity upon request where confidentiality offers some protection from threats

against privacy, full privacy and anonymity of a vessel upon request need to be offered, to

address authenticated adversaries. Thus, it must be possible to prove that even an anony-

mous vessel is an authorized and legitimate one; and that some non-repudiation capability

must exist even for anonymous vessels.

3. Message source authentication and data integrity AIS-broadcast messages must be authenti-

cated.

4. Non-repudiation of AIS messages.

5. Completeness, simplicity, and feasibility. Finally, yet importantly, the approach for a security-

enhanced AIS must be complete and feasible in the complex maritime domain where AIS is

a productive system, on-board the majority of vessels around the globe today. A proposed

solution for AIS needs to be flexible for use by crews, simple, widely acceptable, easy to

integrate, and financially affordable.

Goudossis, et al. suggest [7] a tiered scheme of Ad-hoc networks. Tier one is the IMO at

the international level; tier two is the individual nations and flag states; tier three is each individual

vessel creating its own network. The vessel level network is a type of Mobile Ad-hoc NETworks

(MANETs). This type of network is dynamic as the network changes over time as the vessel moves

around the globe.

Goudossis, et al. also propose [7] Identity-Based Cryptography and Symmetric Cryptog-

raphy (IBC) to simplify the keying infrastructure, which derives the public key from a vessel’s

distinctive attributes and a private key created by IMO. The IMO would create keys and delegate

private key generation for vessels under their flag’s registration. In addition to secured AIS, a cryp-

tographic implementation is needed to assign public and private keys for secure communication.
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2.3 Maritime Digitalization

Sanchez-Gonzalez, et al. [8] report on the current status of the digitalization of the Mar-

itime Industry. They define the difference between digitization and digitalization. Digitization is

the process of changing from an analog to a digital format, digitalization is “the use of digital tech-

nologies to change business model and provide new revenue and value-producing opportunities,

that is, the process of entering a digital business [8].”

The leading countries inmaritime transport digitization studies are China, Korea, and Spain,

with Europe producing over 50% of all research studies. Figure 2.2 shows the number of papers

by country. Figure 2.3 shows the increase in interest to raise per year.

Figure 2.2 Map of Maritime Digitization Studies by Country [8].
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Figure 2.3 Graph of Maritime Digitization Studies by Year [8].

The maritime transport industry is in early-stage digitalization compared to other sectors,

such as financial services, retail, and land transport. An example of this study is a study on the

fundamental aspects of digitization for inter-organizational information systems (IOS). The results

of this study showed that over 70% of land transport companies used an IOS, while less than 25%

of maritime transport companies used an IOS.

A significant factor in the need to digitalize the maritime industry is the rapid growth of

40% within a single decade between the years 2005 and 2015. This growth occurred, even during

a global economic downturn.
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CHAPTER 3

Motivation and Contribution

Vessels at sea are susceptible to various attacks via AIS. Machine learning can help mitigate

this exposure to provide a safer operating environment. Currently, ships do not share sensor data.

As autonomous shipping and the OoT increases in scope [10,11], vessels can, and will, be sharing

more information. Themethod proposed is a novel approach of applyingmachine learning to vessel

sensor data to detect anomalous behavior. By sharing sensor data, vessels can increase awareness

and monitor each other.

3.1 Motivation

The issues surrounding AIS include the lack of encryption and authentication. AIS broad-

casts a message in plain text without verifying the sender or the content. A secure form of AIS

exists, but has not been widely adopted. Even with a secure version, the maritime industry has a

long cycle for the adoption and integration of new technology [8]. Besides slow adoption, many

geo-political issues exit to forming a global encryption key distribution mechanism. With this in

mind, a more localized approach is needed that integrates with the existing AIS protocol, allowing

vessels at sea to classify each message to determine message authenticity or if a vessel is acting

abnormally. By using machine learning to model a vessel’s normal behavior, when a vessel is

observed to be acting abnormally, it can be identified more easily.
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3.2 Problem Statement

The current maritime AIS vessel communication lack of encryption and authentication,

leaving the protocol and vessels susceptible to many types of manipulation. The Automatic Iden-

tification System is the primary means for vessel self-identification at sea. Since the protocol is

plain text and unauthenticated, any transmitter can broadcast any information, including fraudulent

information. There is no mechanism in AIS to check the validity of a message or the sender of a

message. AIS transmissions assume that any information broadcast is true, with no checks in place.

3.3 Contribution

In this thesis our contribution is as follows:

1. Developing a machine learning anomaly detection method for vessels at sea.

2. Analyzing different machine learning methods to select the best method of securing AIS

transmission accuracy.

3. Design multiple use cases that challenge the behavioral model built for vessels operating at

sea. We present results to determine which model produces the best results.

This method examines and demonstrates machine learning behavior modeling using tem-

perature sensors. Temperature sensors are the first step in demonstrating effectiveness. Once a

model is fit to normal observations, classification occurs. Classification consists of identifying the

validity of a message. With sufficient messages, a model is generated, determining whether a vessel

is broadcasting normally or abnormally.

As vessels operate within a given region, ships monitor messages to determine if the vessel

and its messages are normal or should be abnormal. Machine learning modeling, coupled with AIS,

would allow ships to track communications received via direct and indirect methods. The more a
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vessel interacts with another vessel, it would have a higher internal scale to rank the communication

received. With a shift in the industry toward autonomous shipping, ensuring that vessels are sharing

reliable information is crucial. Erroneous (or even nefarious) data could be both financially costly

and harmful to those interacting with these vessels.

Machine learning can be applied to model vessel messages to classify a vessel’s message

as an inlier or outlier. The adoption of machine learning in maritime is increasing and can provide

many benefits. Machine Learning models can be trained to classify [24] normal observations to

detect new messages or anomalies that deviate from normal operations. Most machine learning

research has focused onAIS tracking to determine vessel behavior [23]. This thesis’ novel approach

to cross-checking AIS data demonstrates that machine learning behavior modeling can be applied

to vessels at sea to increase confidence in AIS.

3.4 Threat Models

3.4.1 Impersonation

AIS plain text messages are susceptible to various attacks [12]. Many of the attacks can

be limited by identifying spoofing attacks where an attacker fraudulently poses as another vessel.

Slot Starvation attacks, can occur, if one impersonates a base station, when the attacker is not a

base station. Frequency Hopping attacks, can occur, if one impersonates a port authority, when the

attacker is not a port authority. Closest Point of Approach attacks originate from a false collision

being triggered by an attacker impersonating as another vessel.
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3.4.2 Selective Transmission

Another type of attack is a vessel intentionally turning AIS off [17] to conceal a vessel’s

location for a period of time and then turning AIS back on again when it is advantageous. This

can be dangerous as vessels are then operating without broadcasting their location to other vessels

nearby.

3.4.3 Model Manipulation

Once a model is fit, it becomes susceptible to attack as nefarious actors attempt to manip-

ulate the model used to classify observations on-board a vessel. Model manipulation attacks try

to play the system and determine locations where classification could be weak, allowing invalid

information not to be classified correctly. One such type of attack is “breakout fraud”, where an

attacker maintains a good rating for a period and then starts injecting invalid information [27].
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CHAPTER 4

Behavioral Model Anomaly Detection Methodology

This chapter presents a new approach of applying machine learning to model vessel behav-

ior in real-time. The chapter details the Behavioral Model Anomaly Detection approach, to deter-

mining if an AIS message is within a reasonable range of previous communication values, using

machine learning. This approach is composed of three primary phases: Model Induction, Progres-

sive Analysis, and Model Re-Induction. Model Induction consists of collecting initial readings for

new vessels and aggregating all collected data at a port and building machine learning models of

normal behavior. Progressive Analysis is the distribution of trained models from a port to vessels

that use these pre-built models offline to analyze messages from know vessels used in model in-

duction. Model Re-Induction occurs as vessels operate together in a common geographic location

often. This chapter introduces this novel approach first, followed by a detailed outline of each step

of the process.

4.1 Behavioral Model Anomaly Detection Introduction

When vessels are at sea, it is common for a vessel to be offline and without a reliable

internet connection. Vessels at sea communicate with each other using AIS. AIS is unsecured,

unencrypted, and lacks any integrity check. These weaknesses lend AIS to various vulnerabilities.

AIS is deployed on hundreds of thousands of vessels worldwide.

It is proposed that machine learning can be used to build vessel behavior models to assists

AIS. By using machine learning models to monitor various AIS data points, anomalies behaviour
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can be detected. To increase confidence in the models built, a shared information approach is used

such that vessels report AIS readings collected to a central location. At a collective location, such

as a port, by aggregating AIS readings from multiple vessels, a consensus can be formed of normal

vessel behavior. Using a consensus data set, a machine learning model is trained using a vessel

behaviors. Once a model is trained at the collection point, models are distributed to all vessels that

request a model for use. Once the normal ranges are modeled, anomalies or modifications can be

detected to determine if a vessel sensor is creating false data.
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Figure 4.1 Behavior Model Anomaly Detection Process Diagram

24



4.2 Behavioral Model Anomaly Detection Process

1. Model Induction

(a) Vessel Broadcast using AIS.

(b) Vessels within the vicinity receive the AIS and record readings.

(c) Once in port, the receiving vessels report the recorded readings.

(d) Using the recorded readings, a consensus is formed of what each vessel is reporting.

(e) Using the consensus data set, a model is fit to vessel behavior.

2. Progressive Analysis

(a) The trained models of each vessel are distributed to vessels that request a model.

(b) While at sea, vessels process all received messages for a vessel using the model fit for

anomaly detection.

• If an observation is classified as inlier, accept.

• If an observation is classified as outlier, reject.

3. Model Re-Induction

(a) While at sea, vessels are continuously recording messages and reporting new messages

when in port. As more readings are recorded for a vessel, the models are refit as more

information becomes available for each vessel.

To facilitate learning vessels, collect AIS data while at sea and record the received values.

Once alongshore or at the port, the values are transferred to a shore side server for processing.

By sharing sensor data, a model of the operation of a vessel can be created to determine each

vessel’s sensors’ normal operating range. At shore side, collections of all reports on a vessel are

weighted together to provide a single truth of how a vessel historically operates. The more reports,
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the stronger the data. Using the weighted vessel reports at shore side, a machine learning model is

trained for each vessel. While a vessel is at port, the models are transferred to the vessel for offline

AIS operation.

With a fit model, new AIS temperature sensor observations are fed into the model for clas-

sification. If the classifier identifies reported data as anomalous, said data is recorded and stored

to see how often the sensor generates an anomaly.

The results of each test case are compiled into a final summary. The total number of inlier

and outliers along with false readings are listed. The average of all tests are listed with the results

of analyses.
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CHAPTER 5

Numerical Analysis

This chapter contains an analysis of test cases to demonstrate the application of machine

learning for anomaly detection using synthetic temperature samples. Designed use cases test the

classification of each type of machine learning model after it is fit to a training set with normal

observations. The designed use cases check model classification to determine the machine learning

model and consensus method to attain the highest true accuracy for classification. We examine Four

machine learning methods for use in classification. The four models are selected based on usage

for anomaly detection. The four selected are Isolation Forest, Local Outlier Factor, Support Vector

Machine, and Elliptic Envelope. Section 5.1 details the data set designed to determine the efficacy

of our behavioral modeling methodology using simulated temperature sensor readings. Section 5.2

includes code snippets explaining our machine learning model configuration. Section 5.3 gives an

example of behavioral modeling with a reduced number of vessels follow by section 5.4 showing

the method of use case result evaluation. The results of each use case in section 5.5 detail each case

with an analysis of the results.

5.1 Synthetic Example

A python random weather generator was used to create weather samples. The weather

generator randomly generates sample weather data for a given position by latitude and longitude

for a date and time. By using historical weather measurements for these locations from Dark Sky

API, a set of synthetic samples can be generated for a location, date, and time. Weather samples of
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one week are generated, simulating interactions for two vessels over six days that are then used for

training a model and one day used for model validation.

A range of dates, along with the number of requested samples, is given for sample gen-

eration. Fives sets of samples are created for six days, generating 1000 samples for the two sets,

simulating five vessels. The difference between each sample, at each index, is taken to create a

single vessel behavior set. The single vessel behavior set simulates the interaction between two

vessels with one set for the vessel receiving samples from another vessel within operating range.

Using the multiple vessel behavior sets, three methods are used to determine a fit for model be-

havior. The three methods are mean, median and maximum. Mean is the average of all numbers

for a given time period from all sample collected, creating a new synthetic number from a mixture

of all the numbers. Median selects the middle reading from all the readings for a given time pe-

riod. Maximum is taken from the absolute value from the data of either negative or positive for the

largest difference recorded.

5.2 Software

Using the difference set for each scenario, different models were trained to detect outliers.

The models compared are Isolation Forest, Local Outlier Factor, Support Vector Machine, and the

Robust Covariance Ellipitic Envelope.

All simulations are performed in python use scikit-learn models for Isolation Forest, Sup-

port Vector Machine, Local Outlier Factor, and Elliptic Envelope. [28]

Model Parameters

1. IsolationForest(behaviour='new', max_samples=1000, random_state=rng,

contamination=0.003, n_jobs=-1, n_estimators=1000)

(a) behaviour - Behaviour of the decision function which can be either ’old’ or ’new’.

Passing behaviour=’new’ makes the decision function change to match other anomaly
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detection algorithm API which will be the default behaviour in the future.

(b) max samples - The actual number of samples

(c) random state - If int, random state is the seed used by the random number generator;

If RandomState instance, random state is the random number generator; If None, the

random number generator is the RandomState instance used by np.random.

(d) contamination - The amount of contamination of the data set; that is, the proportion

of outliers in the data set. Used when fitting to define the threshold on the decision

function. If ’auto’, the decision function threshold is determined as in the original

paper. With our training data set there are no errors present so the value is set to a low

value. It still needs some value or it is trained that no outliers ever exists.

(e) n jobs - The number of jobs to run in parallel for both fit and predict.

(f) n estimators - The number of base estimators in the ensemble.

2. svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)

(a) nu - An upper bound on the fraction of training errors and a lower bound of the fraction

of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken.

(b) kernel - Specifies the kernel type to be used in the algorithm. It must be one of ’linear’,

’poly’, ’rbf’, ’sigmoid’, ’precomputed’ or a callable. If none is given, ’rbf’ will be used.

If a callable is given it is used to precompute the kernel matrix.

(c) gamma - Kernel coefficient for ’rbf’, ’poly’ and ’sigmoid’.

3. LocalOutlierFactor(novelty=True)

(a) novelty - Set novelty to True to use LocalOutlierFactor for novelty detection.
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4. EllipticEnvelope(random_state=0)

(a) random state - The seed of the pseudo random number generator to use when shuffling

the data.

5.3 Model Analysis

To simulate multiple vessels collecting data on a vessel, a python weather simulator gener-

ated five synthetic sample sets of 1,000 samples. Each set of samples is the sea surface temperature

readings for a vessel. In this case, the vessels will be labeled Vessel A, Vessel B, Vessel C, Vessel

D, and Vessel E.

Three cases are given for analysis to select the vessels’ weight. First, is the mean of all

reports for a given time period. Second, is the median for a given time period. Third, is the max in

absolute value for a given time period.
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(a) An example vessel communication between vessels A,B,C,D, and E.

(b) Marine Traffic Density Map adopted from [13] of well used vessel routes.

Figure 5.1 Figure demonstrating vessel to vessel communication
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Vessels commonly operate within shipping lanes along well-used vessel routes. Marine

Traffic, a company that logs vessel movement via AIS, illustrates this fact with a heat map of vessel

AIS locations (Figure 5.1b). Areas in red are well-used routes by vessels showing that ships share

the same routes in the same region. In some cases, vessels will operate outside of conventional lanes

for various reasons. This approach builds off cases in which vessels are within the same area within

AIS range, and multiple vessels can communicate with each other. While vessels are within range

of each other, AIS observations are recorded by each vessel. As each vessel arrives at a port, they

offload the stored AIS observations to port data collection centers for consensus building. Figure

5.1 is a microcosm of the larger case to demonstrate the principles of vessel communication.

Figure 5.1 shows five vessels in a given region. Vessel A is transmitting its AIS readings.

Vessels B, C, D, and E are receiving and calculating their difference from Vessel A. The difference

is taken into account to factor in change in water temperature over time and regions. What is sought

to be known is the difference and the change in reading from one vessel to another. Once in port,

the deltas are combined to form a consensus of what difference vessel A is from other vessels. With

a consensus, a model is trained and distributed back to vessels for use offline at sea.

Use cases are given below to demonstrate model fit and attempts to falsify information.

Attempts to falsify AIS data occurs for many reasons, including spoofing a vessel, generating false

readings by error, or to degrade another vessel’s rating. Once a valid model is trained, an attacker

might attempt to give false readings. The cases below demonstrate the scenario where an attacker

attempts to send false readings at various time frames to demonstrate how the machine learning

models would classify those readings.

32



5.3.1 Experimental Use Cases

• Synthetic Reduced Set (Section 5.5.2)

– This set is for initial testing to demonstrate the model fit on a reduced set with a few

inliers and outliers.

• Errors Beginning and End (Section 5.6.1)

– Anomalies are inserted at the beginning and the end to test if the model detects errors

at the start or end of a session.

• Errors in Middle (Section 5.6.2)

– Errors are inserted in the middle of a session to determine if the model correctly clas-

sifies anomalies inserted in the middle of a session.

• Errors at the Edge (Section 5.6.3)

– This case tests the model to see if it can detect errors outside of the training set to

demonstrate what the model fit at the edges.

• Errors Breakout Fraud (Section 5.6.4)

– Breakout fraud shows the model where one might begin spoofing as a user within the

range of the original vessel, but tries to push the readings to a new normal outside of

the vessel model.

• Errors Significant (Section 5.6.5)

– Significant errors demonstrate the model fit for large values outside of the training set

to see if the model can accurately classify the errors as outliers. This might be the case

in an on-off attack scenario where a vessel shuts off its AIS. If a vessel does not receive

a reading from another vessel, then the difference would be significant compared to

33



previous readings. This would indicate that the vessel is not sending accurate readings

or potentially no readings at all.

• Errors Large Uniform (Section 5.6.6)

– Large uniform errors check that a model correctly classifies errors outside of the set.

The model does not determine those readings to be inlier observations, even if those

errors appear on a consistent regular basis.

• Errors Random Frequency Selective (Section 5.6.7)

– This test case combines features from the previous test case to determine model classi-

fication if readings are random.

5.4 Analysis Methodology

Model analysis consists of five primary factors: true outlier, false outlier, true inlier, false

inlier, true accuracy.

1. True outliers are observations the model detects as being an anomaly and are not contained

in the original data set.

2. False outliers are observations that the model identifies as an outlier but are in the original

data set.

3. True inliers are observation the model identifies as inliers and that are in the original data set.

4. False inliers are observations the model identifies as inliers and they are not in the original

data set.

5. Model accuracy is calculated as the total number of correct identifications over the total

number of observations.
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5.5 Experimental Analysis

The experimental analysis examines each of the selected machine learning methods against

use cases designed from the types of cyberattacks AIS is susceptible to while at sea. The section

begins with the induction of each model in section 5.5.1 used in each use case. A reduced example

demonstrates how each model trains given a smaller data set similar to the larger data sets used

in the use case test. After the presentation of the initial setup of each model, section 5.6 contains

results from the designed use cases.

5.5.1 Model Induction

Model Induction is the training and fit of the machine learning models. Using the consensus

data sets of mean, median and max, models are fit using each type iForest, SVM, LOF and EE. The

models are fit to a sample of 1,000 readings with the last 100 being fed back into the trained model

to demonstrate model fit. The models are trained at shore-side, based on vessel consensus. Once a

model is fit, the models are distributed to the vessel for offline use while at sea. For every vessel,

a model is fit, and used to model one specific vessels’ behavior.

Model fit data is plotted using black, dots and lines while test data is illustrated in green and

red dots. Green dots indicate an inlier classification, while red dots indicate an outlier classification

from the model. A correct model will show only green dots as the test samples are from the original

data set without a consensus.

Errors are those readings that are not generated by the original system and are from a dif-

ferent system. In the case of AIS readings, the errors are readings generated by a faulty sensor or

another vessel spoofing as another vessel.
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5.5.1.1 Model Induction: Isolation Forest

(a) Mean (b) Median (c) Max

Figure 5.2 Isolation Forest Model Induction

Figure 5.2 illustrates model fit using and Isolation Forest using mean, median, and max.

In this case, using a python weather simulator, the first 1000 samples are those used for training

from the consensus. The last 100 samples are simulated readings without consensus, simulating

vessels, communicating offline at sea. Figure 5.2a shows the mean training with some false outliers

detected. Figure 5.2b shows the selection of the median sample with fewer false outliers. Figure

5.2c demonstrates the max selected samples of valid values for testing. Max has no false outliers.
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5.5.1.2 Model Induction: Support Vector Machine

(a) Mean (b) Median (c) Max

Figure 5.3 Support Vector Machine Model Induction

Figure 5.3 illustrates the model fit of a support vector machine using the mean, median, and

max consensus. The fit set is shown in black while the test set is in both green and red. Green

indicates an inlier is detected. Red indicates an outlier is detected. A perfect fit would show no red

outliers.
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5.5.1.3 Model Induction: Local Outlier Factor

(a) Mean (b) Median (c) Max

Figure 5.4 Local Outlier Factor Model Induction

Figure 5.4 illustrates the model fit by the local outlier factor using the mean, median, and

max consensus. The fit set is shown in black, while the test set is in both green and red. Green

indicates an inlier is detected. Red indicates an outlier is detected. A perfect fit would show no red

outliers.
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5.5.1.4 Model Induction: Elliptic Envelope

(a) Mean (b) Median (c) Max

Figure 5.5 Robust Covariance Elliptic Envelope Model Induction

Figure 5.5 illustrates themodel fit determining the robust covariance elliptic envelope, using

the mean, median, and max consensus. The fit set is shown in black while the test set is in both

green and red. Green indicates an inlier is detected. Red indicates an outlier is detected. A perfect

fit would show no red outliers.

5.5.2 Synthetic Reduced Set

The synthetic reduced set is a subset of the initially generated set for training. Errors are

inserted for initial model testing to demonstrate model fit at index 0, 2, 3, and 5.

39



Table 5.1 Synthetic Reduced Set Summary

(a) Mean

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 5 2 1 3 3 4 1 5 0 0.9
SVM 6 2 1 4 3 4 2 4 0 0.8
LOF 5 2 1 3 3 4 1 5 0 0.9
Elliptic Envelope 6 2 1 4 3 4 2 4 0 0.8

(b) Median

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 5 2 1 3 3 4 1 5 0 0.9
SVM 5 2 1 3 3 4 1 5 0 0.9
LOF 5 2 1 3 3 4 1 5 0 0.9
Elliptic Envelope 6 2 1 4 3 4 2 4 0 0.8

(c) Max

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 4 2 1 2 1 4 0 6 0 1.0
SVM 7 3 1 3 1 4 3 3 0 0.7
LOF 0 0 0 0 0 0 0 6 4 0.6
Elliptic Envelope 5 2 1 3 3 4 1 5 0 0.9

Table 5.1 compares each model, along with each consensus method of mean, median and

max. In this case, Isolation Forest using Max (Figure 5.1c) attains the highest true accuracy rating

of 1.0, correctly identifying all true inliers and outliers with no false positives inliers or outliers.

The highest attained true accuracy is an isolation forest, using a max consensus method at 100 %.
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5.5.2.1 Synthetic Reduced Set: Isolation Forest

(a) Mean (b) Median (c) Max

Figure 5.6 Isolation Forest Small Synthetic Set

Table 5.2 Isolation Forest Small Synthetic Set

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 5 2 1 3 3 4 1 5 0 0.9
Median 5 2 1 3 3 4 1 5 0 0.9
Max 4 2 1 2 1 4 0 6 0 1.0

Using an isolation forest and max, (Figure 5.6c) the highest true accuracy is attained at

1.0. Max is the only case to correctly identify all the outliers, while not selecting any inliers as

false outliers. Table 5.2 numerically compares the isolation forest against the consensus methods

of mean, median, and max.

This data indicates that using max as a consensus for the training set correctly fits an isola-

tion forest to identify anomalies outside of the original dataset.
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5.5.2.2 Synthetic Reduced Set: Support Vector Machine

(a) Mean (b) Median (c) Max

Figure 5.7 Support Vector Machine Small Synthetic Set

Table 5.3 Support Vector Machine Small Synthetic Set

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 6 2 1 4 3 4 2 4 0 0.8
Median 5 2 1 3 3 4 1 5 0 0.9
Max 7 3 1 3 1 4 3 3 0 0.7

Using a support vector machine and median, (Figure 5.7b), the highest true accuracy is

attained at 0.9. Table 5.3 numerically compares the support vector machine against the consensus

methods of mean, median, and max.

This test indicates highest confidence that a SVM achieves is a correct classification of 90%

of the readings for small synthetic data set using a median consensus.
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5.5.2.3 Synthetic Reduced Set: Local Outlier Factor

(a) Mean (b) Median (c) Max

Figure 5.8 Local Outlier Factor Small Synthetic Set

Table 5.4 Local Outlier Factor Small Synthetic Set

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 5 2 1 3 3 4 1 5 0 0.9
Median 5 2 1 3 3 4 1 5 0 0.9
Max 0 0 0 0 0 0 0 6 4 0.6

Figure 5.8 and Table 5.4 shows the training and fit for the small synthetic set, using the

local outlier factor with mean, median, and max consensus methods. Both mean, (Figure 5.8a),

and median, (Figure 5.8b), attain a 0.9 true accuracy, identifying some of the errors while also

identifying one false outlier. The max, (Figure 5.8c), does not identify any errors.

This indicates highest confidence a LOF model, using mean or median consensus, attains a

90% correct classification.
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5.5.2.4 Synthetic Reduced Set: Elliptic Envelope

(a) Mean (b) Median (c) Max

Figure 5.9 Robust Covariance Elliptic Envelope Small Synthetic Set

Table 5.5 Robust Covariance Elliptic Envelope Small Synthetic Set

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 6 2 1 4 3 4 2 4 0 0.8
Median 6 2 1 4 3 4 2 4 0 0.8
Max 5 2 1 3 3 4 1 5 0 0.9

Figure 5.9 demonstrates a model fit for a robust covariance elliptic envelope using mean,

median, and max consensus methods. Table 5.5 presents a numerical comparison of each method

with max (Figure 5.9c), attaining the highest at 0.9 with only one false outlier and all true outliers

being identified.

This review indicates the highest confidence an elliptic envelope attains is 90% using a max

consensus method.
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5.6 Experimental Use Cases

The experimental use case section provides tests to determine how each machine learning

model performs using each consensus method. Each use case is based upon different types of

cyber-attacks that AIS is susceptible to during operation.
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5.6.1 Errors: Beginning and End

This case demonstrates a model fit for outlier classifiction at the beginning and end of a

dataset.

Table 5.6 Errors: Beginning and End Summary

(a) Mean

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 10 7 1 3 1 2 8 90 0 0.92
SVM 26 16 2 10 1 2 24 74 0 0.76
LOF 21 8 2 13 1 2 19 79 0 0.81
Elliptic Envelope 28 16 2 12 2 2 26 72 0 0.74

(b) Median

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 5 4 1 1 1 2 3 95 0 0.97
SVM 25 16 2 9 1 2 23 75 0 0.77
LOF 12 7 1 5 1 2 10 88 0 0.9
Elliptic Envelope 26 16 2 10 1 2 24 74 0 0.76

(c) Max

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 2 1 1 1 1 2 0 98 0 1.0
SVM 37 21 2 16 2 2 35 63 0 0.65
LOF 1 0 0 1 1 0 1 97 2 0.97
Elliptic Envelope 5 4 1 1 1 2 3 95 0 0.97

Comparing mean, median, and max, (Table 5.6) the highest score attained is an isolation

forest using a max consensus with 100% correct classification of temperature difference readings.
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5.6.1.1 Errors Beginning and End: Isolation Forest

(a) Mean (b) Median (c) Max

Figure 5.10 Isolation Forest Errors at Beginning and End

Table 5.7 Isolation Forest Errors at Beginning and End

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 10 7 1 3 1 2 8 90 0 0.92
Median 5 4 1 1 1 2 3 95 0 0.97
Max 2 1 1 1 1 2 0 98 0 1.0

Figure 5.10 illustrates model fit and outlier detection of the isolation forest. Table 5.7 in-

dicates that an isolation forest, using a max consensus, attains the highest correct classification at

100%.
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5.6.1.2 Errors Beginning and End: Support Vector Machine

(a) Mean (b) Median (c) Max

Figure 5.11 Support Vector Machine at Beginning and End

Table 5.8 Support Vector Machine at Beginning and End

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 26 16 2 10 1 2 24 74 0 0.76
Median 25 16 2 9 1 2 23 75 0 0.77
Max 37 21 2 16 2 2 35 63 0 0.65

Figure 5.11 illustrates SVM model classification for errors at the beginning and the end of

a session. Table 5.8 shows the highest accuracy attained using the median consensus method at

77%.
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5.6.1.3 Errors Beginning and End: Local Outlier Factor

(a) Mean (b) Median (c) Max

Figure 5.12 Local Outlier Factor at Beginning and End

Table 5.9 Local Outlier Factor at Beginning and End

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 21 8 2 13 1 2 19 79 0 0.81
Median 12 7 1 5 1 2 10 88 0 0.9
Max 1 0 0 1 1 0 1 97 2 0.97

Figure 5.12 plots the classification of the local outlier factor using mean, median, and max.

Table 5.9 shows the local outlier factor attains a 97% true accuracy rating. Themodel does correctly

identify most of the inliers, but does not identify any of the outliers. Using LOF with max would

not detect any of the outliers properly. The other consensus methods could detect the outliers, but

they also classify many inliers as outliers.
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5.6.1.4 Errors Beginning and End: Elliptic Envelope

(a) Mean (b) Median (c) Max

Figure 5.13 Robust Covariance Elliptic Envelope at Beginning and End

Table 5.10 Robust Covariance Elliptic Envelope at Beginning and End

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 28 16 2 12 2 2 26 72 0 0.74
Median 26 16 2 10 1 2 24 74 0 0.76
Max 5 4 1 1 1 2 3 95 0 0.97

Figure 5.10 illustrates a robust covariance elliptic envelope fit to mean, median, and max

consensus sets. Table 5.10 shows the max consensus method attains the highest true accuracy of

97%, while identifying the errors correctly.

5.6.2 Errors: Middle

Anomalies are inserted at the beginning and the end of the data to determine if the model

detects errors at the start or end of a session.
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Table 5.11 Errors: Middle Summary

(a) Mean

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 10 7 1 3 1 2 8 90 0 0.92
SVM 26 16 2 10 1 2 24 74 0 0.76
LOF 21 8 2 13 1 2 19 79 0 0.81
Elliptic Envelope 28 16 2 12 1 2 26 72 0 0.74

(b) Median

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 5 4 1 1 1 2 3 95 0 0.97
SVM 25 16 2 9 1 2 23 75 0 0.77
LOF 12 7 1 5 1 2 10 88 0 0.9
Elliptic Envelope 26 16 2 10 1 2 24 74 0 0.76

(c) Max

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 2 1 1 1 1 2 0 98 0 1.0
SVM 36 20 2 16 2 2 34 64 0 0.66
LOF 1 0 0 1 1 0 1 97 2 0.97
Elliptic Envelope 5 4 1 1 1 2 3 95 0 0.97

Table 5.11 presents a summary of mean, median, and max consensus methods for each

machine learning model. For errors in the middle, the highest attained true accuracy is using an

isolation forest using max consensus for a 100% true accuracy. This indicates that all observations

were classified correctly.
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5.6.2.1 Errors Middle: Isolation Forest

(a) Mean (b) Median (c) Max

Figure 5.14 Isolation Forest Errors in The Middle

Table 5.12 Isolation Forest Errors in The Middle

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 10 7 1 3 1 2 8 90 0 0.92
Median 5 4 1 1 1 2 3 95 0 0.97
Max 2 1 1 1 1 2 0 98 0 1.0

Figure 5.14 plots the classification of an isolation forest on the data set, inserting anomalies

in the middle of the data set. Table 5.12 shows the numerical results of the classifier. The highest

attained true accuracy is 100%, using the max consensus method.
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5.6.2.2 Errors Middle: Support Vector Machine

(a) Mean (b) Median (c) Max

Figure 5.15 Support Vector Machine Errors in The Middle

Table 5.13 Support Vector Machine Errors in The Middle

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 26 16 2 10 1 2 24 74 0 0.76
Median 25 16 2 9 1 2 23 75 0 0.77
Max 36 20 2 16 2 2 34 64 0 0.66

Figure 5.15 shows the results of classification using a support vector machine for the data

set containing errors in the middle. Table 5.13 contains the numerical results and that the highest

attained support vector machine occurs using the median consensus method in that 77% of the

observations were classified correctly.
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5.6.2.3 Errors Middle: Local Outlier Factor

(a) Mean (b) Median (c) Max

Figure 5.16 Local Outlier Factor Errors in The Middle

Table 5.14 Local Outlier Factor Errors in The Middle

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 21 8 2 13 1 2 19 79 0 0.81
Median 12 7 1 5 1 2 10 88 0 0.9
Max 1 0 0 1 1 0 1 97 2 0.97

Figure 5.14 illustrates classification using the local outlier factor for the data set containing

errors in themiddle. Table 5.14 shows the numerical results in that the highest attained true accuracy

is using the max consensus at 97%. With this, the local outlier factor only classifies the inliers, but

does not classify the outlier correctly.
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5.6.2.4 Errors Middle: Elliptic Envelope

(a) Mean (b) Median (c) Max

Figure 5.17 Robust Covariance Elliptic Envelope Errors in The Middle

Table 5.15 Robust Covariance Elliptic Envelope Errors in The Middle

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 28 16 2 12 1 2 26 72 0 0.74
Median 26 16 2 10 1 2 24 74 0 0.76
Max 5 4 1 1 1 2 3 95 0 0.97

Figure 5.17 illustrates classification using a robust covariance elliptic envelope for the data

set containing errors in the middle. Table 5.15 shows the numerical results in that the highest

attained true accuracy is using the max consensus at 97%.

5.6.3 Errors: Edge

This case tests the model to see if it can detect errors at the edge of the training set within

a one to two temperature degree difference.
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Table 5.16 Errors: Edge Summary

(a) Mean

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 59 29 26 30 29 54 5 41 0 0.95
SVM 69 35 26 34 29 54 15 31 0 0.85
LOF 66 30 26 36 29 54 12 34 0 0.88
Elliptic Envelope 70 35 26 35 29 54 16 30 0 0.84

(b) Median

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 52 27 26 25 25 50 2 44 4 0.94
SVM 68 35 26 33 29 54 14 32 0 0.86
LOF 60 29 26 31 29 54 6 40 0 0.94
Elliptic Envelope 69 35 26 34 29 54 15 31 0 0.85

(c) Max

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 30 16 10 14 6 30 0 46 24 0.76
SVM 64 33 26 31 23 48 16 30 6 0.78
LOF 1 0 0 1 1 1 0 46 53 0.47
Elliptic Envelope 52 27 26 25 25 50 2 44 4 0.94

Table 5.16 presents the results of each model fit using a consensus of mean, median, and

max. For the test case of errors at the edge of normal observations, the highest score is attained by

the isolation forest using the mean consensus method for a 95% true accuracy rating.
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5.6.3.1 Errors Edge: Isolation Forest

(a) Mean (b) Median (c) Max

Figure 5.18 Isolation Forest Errors at Edge

Table 5.17 Isolation Forest Errors at Edge

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 59 29 26 30 29 54 5 41 0 0.95
Median 52 27 26 25 25 50 2 44 4 0.94
Max 30 16 10 14 6 30 0 46 24 0.76

Figure 5.18 illustrates classification using the isolation forest for the data set containing

anomalies at the edge. Table 5.17 shows the numerical results in that the highest attained true

accuracy is using the mean consensus at 95%. In this case, the isolation forest does not detect

anomalies for values that are within the range of the observation set the model is fit to. The mean

fit set, (Figure 5.18a), appears to only classify the anomalies correctly for the training set mean

training set (Figure 5.2a), when the fit is much more narrow than the median or max consensus set.
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5.6.3.2 Errors Edge: Support Vector Machine

(a) Mean (b) Median (c) Max

Figure 5.19 Support Vector Machine Errors at Edge

Table 5.18 Support Vector Machine Errors at Edge

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 69 35 26 34 29 54 15 31 0 0.85
Median 68 35 26 33 29 54 14 32 0 0.86
Max 64 33 26 31 23 48 16 30 6 0.78

Figure 5.19 illustrates classification using a support vector machine for the data set contain-

ing errors at the edge of the data set within one to two degrees difference. Table 5.18 shows the

numerical results in that the highest attained true accuracy is using the mean consensus at 85%.
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5.6.3.3 Errors Edge: Local Outlier Factor

(a) Mean (b) Median (c) Max

Figure 5.20 Local Outlier Factor Errors at Edge

Table 5.19 Local Outlier Factor Errors at Edge

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 66 30 26 36 29 54 12 34 0 0.88
Median 60 29 26 31 29 54 6 40 0 0.94
Max 1 0 0 1 1 1 0 46 53 0.47

Figure 5.20 illustrates classification using the local outlier factor for the data set containing

errors at the edge of the data set. Table 5.19 shows the numerical results in that the highest attained

true accuracy is using the median consensus at 94%.
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5.6.3.4 Errors Edge: Elliptic Envelope

(a) Mean (b) Median (c) Max

Figure 5.21 Robust Covariance Elliptic Envelope Errors at Edge

Table 5.20 Robust Covariance Elliptic Envelope Errors at Edge

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 70 35 26 35 29 54 16 30 0 0.84
Median 69 35 26 34 29 54 15 31 0 0.85
Max 52 27 26 25 25 50 2 44 4 0.94

Figure 5.21 illustrates classification using the local outlier factor for the data set containing

errors in at the edge. Table 5.20 shows the numerical results in that the highest attained true accuracy

is using the median consensus at 94%.

5.6.4 Errors: Breakout Fraud

Breakout fraud test the model where one might begin spoofing as a user within the range

of the original vessel reading, but the attacker tries to push the readings to a new normal outside of

the vessel model.
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Table 5.21 Errors: Breakout Fraud Summary

(a) Mean

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 17 16 12 1 1 12 5 74 9 0.86
SVM 34 27 17 7 1 17 17 62 4 0.79
LOF 30 19 14 11 1 14 16 63 7 0.77
Elliptic Envelope 35 27 17 8 1 17 18 61 4 0.78

(b) Median

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 12 12 10 0 0 10 2 77 11 0.87
SVM 33 26 16 7 1 16 17 62 5 0.78
LOF 20 17 12 3 1 13 7 72 8 0.85
Elliptic Envelope 34 27 17 7 1 17 17 62 4 0.79

(c) Max

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 7 7 7 0 0 7 0 79 14 0.86
SVM 40 28 10 12 2 10 30 49 11 0.59
LOF 2 1 1 1 1 1 1 78 20 0.79
Elliptic Envelope 13 13 11 0 0 11 2 77 10 0.88

For breakout fraud table 5.21 shows the highest attained true accuracy is through an elliptic

envelope using a max consensus model at 88%.
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5.6.4.1 Errors Breakout Fraud: Isolation Forest

(a) Mean (b) Median (c) Max

Figure 5.22 Isolation Forest Breakout Fraud

Table 5.22 Isolation Forest Breakout Fraud

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 17 16 12 1 1 12 5 74 9 0.86
Median 12 12 10 0 0 10 2 77 11 0.87
Max 7 7 7 0 0 7 0 79 14 0.86

Figure 5.22 illustrates breakout fraud model testing for the mean, median, and max consen-

sus methods using an isolation forest. Table 5.22 presents the numerical results of model analysis.

The highest attained is by using a median consensus at 87%.
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5.6.4.2 Errors Breakout Fraud: Support Vector Machine

(a) Mean (b) Median (c) Max

Figure 5.23 Support Vector Machine Breakout Fraud

Table 5.23 Support Vector Machine Breakout Fraud

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 34 27 17 7 1 17 17 62 4 0.79
Median 33 26 16 7 1 16 17 62 5 0.78
Max 40 28 10 12 2 10 30 49 11 0.59

Figure 5.23 illustrates breakout fraud model testing for the mean, median, and max consen-

sus methods using a support vector machine. Table 5.23 presents the numerical results of model

analysis. The highest accuracy attained is obtained by using a mean consensus at 79%.
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5.6.4.3 Errors Breakout Fraud: Local Outlier Factor

(a) Mean (b) Median (c) Max

Figure 5.24 Local Outlier Factor Breakout Fraud

Table 5.24 Local Outlier Factor Breakout Fraud

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 30 19 14 11 1 14 16 63 7 0.77
Median 20 17 12 3 1 13 7 72 8 0.85
Max 2 1 1 1 1 1 1 78 20 0.79

Figure 5.24 illustrates breakout fraud model testing for the mean, median, and max con-

sensus methods using the local outlier factor. Table 5.24 presents the numerical results of model

analysis. The highest attained accuracy is obtained by using a median consensus at 85%.
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5.6.4.4 Errors Breakout Fraud: Elliptic Envelope

(a) Mean (b) Median (c) Max

Figure 5.25 Robust Covariance Elliptic Envelope Breakout Fraud

Table 5.25 Robust Covariance Elliptic Envelope Breakout Fraud

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 35 27 17 8 1 17 18 61 4 0.78
Median 34 27 17 7 1 17 17 62 4 0.79
Max 13 13 11 0 0 11 2 77 10 0.88

Figure 5.25 illustrates breakout fraud model testing for the mean, median, and max con-

sensus methods using the elliptic envelope. Table 5.25 presents the numerical results of model

analysis. The highest attained is by using a max consensus at 88%.

5.6.5 Significant Errors

Significant errors demonstrate the model fit for large values outside of the training set to

see if the model can accurately classify them as outliers. This might be the case in an on-off attack

where a vessel shuts off its AIS. If a vessel does not receive a reading from another vessel, then the

data difference would be significant compared to previous readings. This would indicate that the
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vessel is not sending accurate readings or potentially no readings at all.

Table 5.26 Errors: Significant Errors Summary

(a) Mean

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 16 11 6 5 4 11 5 82 2 0.93
SVM 30 19 7 11 4 11 19 68 2 0.79
LOF 27 12 6 15 4 11 16 71 2 0.82
Elliptic Envelope 32 19 7 13 4 11 21 66 2 0.77

(b) Median

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 12 8 6 4 4 10 2 85 3 0.95
SVM 30 19 7 11 4 11 19 68 2 0.79
LOF 18 11 6 7 4 11 7 80 2 0.91
Elliptic Envelope 30 19 7 11 4 11 19 68 2 0.79

(c) Max

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 10 6 6 4 4 10 0 87 3 0.97
SVM 41 25 6 16 4 10 31 56 3 0.66
LOF 3 2 2 1 1 2 1 86 11 0.88
Elliptic Envelope 12 8 6 4 4 10 2 85 3 0.95

Table 5.26 presents the numerical results of each machine learning model fit to a mean,

median, and max consensus set for a data set with significant errors, both positive and negative. In

this case, the highest performing model, with the greatest true accuracy, is an isolation forest using

the max consensus set at 97%.
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5.6.5.1 Significant Errors: Isolation Forest

(a) Mean (b) Median (c) Max

Figure 5.26 Isolation Forest Significant Errors

Table 5.27 Isolation Forest Significant Errors

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 16 11 6 5 4 11 5 82 2 0.93
Median 12 8 6 4 4 10 2 85 3 0.95
Max 10 6 6 4 4 10 0 87 3 0.97

Figure 5.26 showsmodel classification for significant positive and negative anomalies using

an isolation forest. Table 5.27 presents the numerical results of each test. The highest attained true

accuracy is through the max consensus fit at 97%.
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5.6.5.2 Significant Errors: Support Vector Machine

(a) Mean (b) Median (c) Max

Figure 5.27 Support Vector Machine Significant Errors

Table 5.28 Support Vector Machine Significant Errors

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 30 19 7 11 4 11 19 68 2 0.79
Median 30 19 7 11 4 11 19 68 2 0.79
Max 41 25 6 16 4 10 31 56 3 0.66

Figure 5.27 showsmodel classification for significant positive and negative anomalies using

a support vector machine. Table 5.28 presents the numerical results of each test. The highest

attained true accuracy is through the mean and median consensus fit at 79%.
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5.6.5.3 Significant Errors: Local Outlier Factor

(a) Mean (b) Median (c) Max

Figure 5.28 Local Outlier Factor Significant Errors

Table 5.29 Local Outlier Factor Significant Errors

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 27 12 6 15 4 11 16 71 2 0.82
Median 18 11 6 7 4 11 7 80 2 0.91
Max 3 2 2 1 1 2 1 86 11 0.88

Figure 5.28 showsmodel classification for significant positive and negative anomalies using

the local outlier factor. Table 5.29 presents the numerical results of each test. The highest attained

true accuracy is through the median consensus fit at 91%.
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5.6.5.4 Significant Errors: Elliptic Envelope

(a) Mean (b) Median (c) Max

Figure 5.29 Robust Covariance Elliptic Envelope Significant Errors

Table 5.30 Robust Covariance Elliptic Envelope Significant Errors

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 32 19 7 13 4 11 21 66 2 0.77
Median 30 19 7 11 4 11 19 68 2 0.79
Max 12 8 6 4 4 10 2 85 3 0.95

Figure 5.26 showsmodel classification for significant positive and negative anomalies using

a robust covariance elliptic envelope. Table 5.27 presents the numerical results of each test. The

highest attained true accuracy is through the max consensus fit at 95%.

5.6.6 Errors: Large Uniform

Large uniform errors checks that a model correctly classifies errors outside of the set and

that themodel does not determine those readings to be inlier observations even if those errors appear

on a consistent regular basis.
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Table 5.31 Errors: Large Uniform Summary

(a) Mean

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 18 13 1 5 1 10 8 82 0 0.92
SVM 33 22 3 11 1 10 23 67 0 0.77
LOF 28 14 2 14 2 10 18 72 0 0.82
Elliptic Envelope 34 22 3 12 1 10 24 66 0 0.76

(b) Median

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 13 10 1 3 1 10 3 87 0 0.97
SVM 32 22 3 10 1 10 22 68 0 0.78
LOF 20 13 1 7 1 10 10 80 0 0.9
Elliptic Envelope 33 22 3 11 1 10 23 67 0 0.77

(c) Max

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 10 7 1 3 1 10 0 90 0 1.0
SVM 45 27 2 18 2 10 35 55 0 0.65
LOF 1 0 0 1 1 0 1 89 10 0.89
Elliptic Envelope 13 10 1 3 1 10 3 87 0 0.97

For large uniform anomalies, Table 5.31 shows the mean, median, and max consensus fit

test results. The highest attained true accuracy is from an isolation forest using a max consensus at

100%.
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5.6.6.1 Errors Large Uniform: Isolation Forest

(a) Mean (b) Median (c) Max

Figure 5.30 Isolation Forest Large Uniform

Table 5.32 Isolation Forest Large Uniform

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 18 13 1 5 1 10 8 82 0 0.92
Median 13 10 1 3 1 10 3 87 0 0.97
Max 10 7 1 3 1 10 0 90 0 1.0

Figure 5.30 plots the large uniform case using an isolation forest for mean, median, andmax.

Table 5.32 contains the numerical analysis of each case with the highest true accuracy attained using

the median consensus at 97%.
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5.6.6.2 Errors Large Uniform: Support Vector Machine

(a) Mean (b) Median (c) Max

Figure 5.31 Support Vector Machine Large Uniform

Table 5.33 Support Vector Machine Large Uniform

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 33 22 3 11 1 10 23 67 0 0.77
Median 32 22 3 10 1 10 22 68 0 0.78
Max 45 27 2 18 2 10 35 55 0 0.65

Figure 5.31 plots the large uniform case for a support vector machine using mean, median,

and max. Table 5.33 contains the numerical analysis of each case with the highest true accuracy

attained using the median consensus at 78%.
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5.6.6.3 Errors Large Uniform: Local Outlier Factor

(a) Mean (b) Median (c) Max

Figure 5.32 Local Outlier Factor Large Uniform

Table 5.34 Local Outlier Factor Large Uniform

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 28 14 2 14 2 10 18 72 0 0.82
Median 20 13 1 7 1 10 10 80 0 0.9
Max 1 0 0 1 1 0 1 89 10 0.89

Figure 5.32 plots the large uniform case using the local outlier factor using the mean, me-

dian, and max. Table 5.34 contains the numerical analysis of each case with the highest true accu-

racy attained using the median consensus at 90%.
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5.6.6.4 Errors Large Uniform: Elliptic Envelope

(a) Mean (b) Median (c) Max

Figure 5.33 Robust Covariance Elliptic Envelope Large Uniform

Table 5.35 Robust Covariance Elliptic Envelope Large Uniform

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 34 22 3 12 1 10 24 66 0 0.76
Median 33 22 3 11 1 10 23 67 0 0.77
Max 13 10 1 3 1 10 3 87 0 0.97

Figure 5.33 plots the large uniform case using an robust covariance elliptic envelope for

mean, median, and max. Table 5.35 contains the numerical analysis of each case with the highest

true accuracy attained using the median consensus at 97%.

5.6.7 Errors: Random Frequency Selective

This test case combines different types of features to determine the model classification if

the input values are with random selective frequency. This could be the case if an adversary were

attempting to send different types of values to see what would and would not be accepted.
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Table 5.36 Errors: Random Frequency Selective Summary

(a) Mean

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 20 14 5 6 4 13 7 57 23 0.7
SVM 36 25 5 11 4 16 20 44 20 0.6
LOF 29 15 5 14 4 13 16 48 23 0.61
Elliptic Envelope 37 25 5 12 4 16 21 43 20 0.59

(b) Median

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 16 12 5 4 4 13 3 61 23 0.74
SVM 33 23 5 10 4 14 19 45 22 0.59
LOF 23 15 5 8 4 14 9 55 22 0.69
Elliptic Envelope 35 24 5 11 4 15 20 44 21 0.59

(c) Max

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Isolation Forest 13 9 5 4 4 13 0 64 23 0.77
SVM 44 30 8 14 4 21 23 41 15 0.62
LOF 2 1 1 1 1 1 1 63 35 0.64
Elliptic Envelope 16 12 5 4 4 13 3 61 23 0.74

In this case, table 5.36 shows the numerical results of testing for each model with mean,

median, and max consensus methods. The highest attained true accuracy is through an isolation

forest using the max consensus set at 77%.
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5.6.7.1 Errors Random Frequency Selective: Isolation Forest

(a) Mean (b) Median (c) Max

Figure 5.34 Isolation Forest Random Frequency Selective

Table 5.37 Isolation Forest Random Frequency Selective

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 20 14 5 6 4 13 7 57 23 0.7
Median 16 12 5 4 4 13 3 61 23 0.74
Max 13 9 5 4 4 13 0 64 23 0.77

Figure 5.34 illustrates an isolation forest using each of the mean, median, and max con-

sensus sets. In this case, anomalies that fall within the same values as the training set are falsely

classified as inliers. Anomalies presenting the same values would not be detected as anomalies.

Anomalies that are values outside of the training set, however, are classified as outliers correctly.

Table 5.37 presents the numerical results of each case with the highest attained true accuracy using

the max consensus method at 77%.
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5.6.7.2 Errors Random Frequency Selective: Support Vector Machine

(a) Mean (b) Median (c) Max

Figure 5.35 Support Vector Machine Random Frequency Selective

Table 5.38 Support Vector Machine Random Frequency Selective

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 36 25 5 11 4 16 20 44 20 0.6
Median 33 23 5 10 4 14 19 45 22 0.59
Max 44 30 8 14 4 21 23 41 15 0.62

Figure 5.35 illustrates a support vector machine using each of the mean, median, and max

consensus sets. In this case, max, (Figure 5.35c), detects the most errors for values that fall within

the training data set in contrast to the isolation forest (Figure 5.37). Table 5.38 presents the numer-

ical results of each case with the highest attained true accuracy using the max consensus method at

62%.
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5.6.7.3 Errors Random Frequency Selective: Local Outlier Factor

(a) Mean (b) Median (c) Max

Figure 5.36 Local Outlier Factor Random Frequency Selective

Table 5.39 Local Outlier Factor Random Frequency Selective

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 29 15 5 14 4 13 16 48 23 0.61
Median 23 15 5 8 4 14 9 55 22 0.69
Max 2 1 1 1 1 1 1 63 35 0.64

Figure 5.36 illustrates the local outlier using each of the mean, median, and max consensus

sets. Table 5.39 presents the numerical results of each case with the highest attained true accuracy

using the median consensus method at 69%.
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5.6.7.4 Errors Random Frequency Selective: Elliptic Envelope

(a) Mean (b) Median (c) Max

Figure 5.37 Robust Covariance Elliptic Envelope Random Frequency Selective

Table 5.40 Robust Covariance Elliptic Envelope Random Frequency Selective

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Mean 37 25 5 12 4 16 21 43 20 0.59
Median 35 24 5 11 4 15 20 44 21 0.59
Max 16 12 5 4 4 13 3 61 23 0.74

Figure 5.37 illustrates using a robust covariance elliptic envelope using each of the mean,

median, and max consensus sets. Table 5.40 presents the numerical results of each case with the

highest attained true accuracy, using the max consensus method at 74%.
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5.7 Summary

Table 5.41 Machine Learning Model Comparison Summary

Model Total Positive Positive
Frequency Negative Negative

Frequency
True
Outlier

False
Outlier

True
Inlier

False
Inlier

True
Accuracy

Elliptic Envelope 5439.0 2908.0 194.0 2531.0 145.0 333.0 5106.0 26598.0 93.0 0.8167888888888889
Isolation Forest 1324.0 663.0 144.0 661.0 110.0 287.0 1037.0 30667.0 139.0 0.9194037037037037
LOF 3925.0 1629.0 130.0 2296.0 111.0 225.0 3700.0 28004.0 201.0 0.8306629629629629
SVM 8917.0 4574.0 205.0 4083.0 151.0 336.0 8581.0 23123.0 90.0 0.7349999999999999

Figure 5.41 presents a summary of the numerical analysis by averaging the accuracy of

all the tests, using synthetic and real data sets, showing that an isolation forest produces the most

accurate classification model at 91.9% overall. In some cases, other models performed similarly or

occasionally better. Notably, the Elliptic Envelope, (Figure 5.25), detected the breakout case first

and even with false positives. True Outlier Detection: In detecting true outliers, SVM detected the

most at 336. False Outlier Detection: The most false outliers were generated by the SVM at 8,581,

compared to the Isolation Forest,that only mislabeled 1,037 false messages as outliers. True Inlier

Detection: The Isolation Forest detected the most true inliers at 30,667, and the SVM detected the

least at 23,123. False Inlier Detection: The SVM generated the least amount of false inliers at 90.
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CHAPTER 6

Discussion

In an unauthenticated environment, behavior can be a method to determine the actions of

others. This is why modeling the behavior of a vessel provides a layer of monitoring to detect ab-

normal behavior. Anomalous behavior alerting, gives the crew of a vessel an edge to help maintain

a safe operating environment.

The use of temperature sensors is used to illustrate the principle of applying machine learn-

ing to model vessel behavior from AIS in real-time on vessels at sea. Future work would consist

of also adding additional sensors as features to add degrees of information for machine learning

modeling. An example of this type of data would be AIS reported position, along with a vessel’s

local radar readings, to determine the accuracy of each vessel’s location information of what is

observed and what is reported. Additional sensors could also increase the accuracy and confidence

of a vessel’s model.

Currently, AIS has no consensus method, and all AIS receivers display all information as

valid. The approach given here seeks to provide a higher degree of confidence than the existing AIS

implementation. For a consensus to be formed, and a model to be fit, a few key factors properly

need to be in place. First is the need for the original training data to be valid data. If a model is

trained on bad data, then anomalies would be built into the vessel behavior. In this case, no proper

determination could be made as the model would not correctly identify true inliers or outliers. With

any consensus, when fifty-one percent of those participating in data generation agree on a value,

a value is selected as the consensus. Future work could study the application of blockchain as a

consensus method to determine what vessels are reporting.
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Future work could also investigate using machine learning models to influence trust net-

works built to operate in the maritime domain for vessels to vessel communication. For an example

of trust-building, for vessels broadcasting normally, a trust rating is maintained or increased. For

vessels broadcasting abnormally, a trust rating is decreased.

Behavior modeling provides an additional layer to a layered security approach. Adding

additional sensors increases the number of layers of anomaly detection providing higher levels of

confidence in the process. Adding trust, along with behavior models, also adds additional layers

of security towards higher levels of confidence and assurance.
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CHAPTER 7

Conclusion

Vessels at sea are susceptible to various attacks via AIS that machine learning can help

mitigate to provide a safer operating environment. The current maritime vessel communication

method, AIS, lacks encryption and authentication leaving the protocol and vessels susceptible to

many types of manipulation. By using machine learning to model a vessel’s normal behavior, when

a vessel is observed to be acting abnormally, it can be identified more easily.

This thesis’ provides a novel approach to cross-checking AIS data demonstrates that ma-

chine learning behavior modeling can be applied to vessels at sea to increase confidence in AIS.

The contributions include; developing a machine learning anomaly detection method for vessels at

sea, then analyzing different machine learning methods to select the best method of securing AIS

transmission accuracy, finally, designing multiple use cases that challenge the behavioral model

built for vessels operating at sea.

Applying machine learning anomaly detection to maritime communication procedures pro-

vides a method to allow vessels to identify when a vessel is not operating in a manner consistent

with past observations. This allows the crew of a vessel to identify in real-time new situations that

should be monitored. Because of the widespread adoption of AIS, many vessels could benefit from

implementing behavior modeling into the reception of messages, without the need for the vessels

being monitored to be using the same equipment.
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