
VIDEO ANALYTICS ON THE MLK SMART CORRIDOR TESTBED

by

Jose Stovall

Mina Sartipi
Professor of Computer Science
(Chair)

Farah Kandah
Professor of Computer Science
(Committee Member)

Yu Liang
Professor of Computer Science
(Committee Member)

VIDEO ANALYTICS ON THE MLK SMART CORRIDOR TESTBED

by

Jose Stovall

A Thesis Submitted to the Faculty of the University of Tennesse at Chattanooga in Partial Fulfillment of
the Requirements of the Degree of Master of Science: Computer Science

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

May 2020

ii

ABSTRACT

With the predicted boom of urban environment populations in the next 30 years, many

new challenges in urban transportation will surface. In an effort to mitigate these, the Center

for Urban Informatics and Progress (CUIP) has been introduced along with its testbed. One

opportunity this testbed provides is the ability to utilize computer vision and video analytics

to anonymously gather data on how citizens traverse the city. This thesis shall discuss an

approach to real-time object tracking that serves as a basis for further analytics such as

traffic flow data collection and near-miss detection. The proposed video analytics platform

will aid citizens with their day-to-day commute through the corridor by deriving real-time

data based on actual behavior seen in the citizens’ commute. Furthermore, since the testbed

is ever-expanding in both hardware and size the algorithms and software proposed in this

thesis are designed to prioritize scalability.

iii

ACKNOWLEDGMENTS

I would like to begin with thanking my family (all of them, including those that were

chosen). Your support has motivated me to become the best individual that I can be, and

without them I would be lost. I would like to extend my gratitude to Dr. Farah Kandah

for his guidance and support throughout my graduate-level education. Additionally, I would

like to thank Dr. Yu Liang for giving me support and motivation to continue my work and

understand the underlying theory in otherwise black-boxed software implementations.

I would like to thank the team members of the lab when I originally joined in 2017, all

of which helped me learn new concepts quicker than I ever have! Specifically, I would like

to thank Dr. Zhen Hu, Rebekah Thompson, Jin Cho, Austin Harris, and Hector Suarez.

Together, they helped keep me learning the many concepts I was so unfamiliar with at the

time and supported me the entire time. I would also like to thank the current lab team

for their support (both emotional and otherwise). These exceptional individuals have been

there to help me understand concepts I was stuck on, give me a good laugh when I needed

it, and help me up when I was down. Specifically, I’d like to thank Dr. Thanh Nam Doan,

Peter Way, Jeremy Roland, Katie Rouse, Bennett Bowden, Yatri Patel, Alnour Alharin, and

Sree Nukala.

I cannot extend enough thanks to thank Dr. Mina Sartipi, without whom I would have

never come as far as I have. Through her, I have built confidence in my work and ability

to develop cutting-edge algorithms that I would have never dreamt of doing otherwise. I

am forever grateful for the opportunity she has given me, first at SCAL then at CUIP, and

I cannot thank her enough for her major contribution to who I have become, both as an

individual and as a professional.

iv

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER .

1 Introduction . 1

1.1 Motivation for Thesis Applications . 1

2 Background Information . 4

2.1 Computer Vision . 4
2.2 Convolutional Neural Networks . 6
2.3 Object Tracking . 7

3 The Testbed Used . 9

3.1 Hardware and Infrastructure . 9
3.2 Data Architecture . 11

4 Scalable Object Tracking . 14

4.1 Introduction . 14
4.2 Goal of Scalable Object Tracking . 14
4.3 Related Works . 14

4.3.1 Object Tracking Implementations . 15
4.3.2 Object Detection Models . 17

4.4 Motivations and Contributions . 19
4.5 Methods . 19

4.5.1 Enhanced SORT . 19
4.5.1.1 Obsolete Tracklets . 20
4.5.1.2 Object Labels . 21
4.5.1.3 History of Locations . 21

4.5.2 Scalable Architecture . 22
4.5.2.1 Capture Processor . 22
4.5.2.2 Frame Processor . 24
4.5.2.3 Submission Processor . 24
4.5.2.4 Stream Processor . 25

4.6 Results . 25
4.6.1 Multiple-ID Instances . 26
4.6.2 No ID Instances . 27
4.6.3 Mislabeled Instances . 27
4.6.4 Real-time Visualizations . 27

v

4.7 Summary . 28

5 Near-Miss Detection . 30

5.1 Introduction . 30
5.2 Goal of Near-Miss Detection . 30
5.3 Related Works . 31
5.4 Motivations and Contributions . 33
5.5 Methods . 34

5.5.1 Velocity and Trajectory . 34
5.5.2 Near-Miss Detection . 35

5.5.2.1 Data Usage . 36
5.5.2.2 Time Til Collision Threshold . 37

5.6 Results . 38
5.7 Conclusions for Near-Miss Detection . 39

6 Traffic Flow Analysis . 42

6.1 Introduction . 42
6.2 Goal of Traffic Flow Analysis . 42
6.3 Related Works . 43
6.4 Motivations and Contributions . 44
6.5 Methods . 45

6.5.1 ROI Labelling . 46
6.5.2 ROI Matching . 47
6.5.3 Action Definition . 47

6.6 Results . 48
6.7 Conclusions for Traffic Flow Analysis . 49

7 Conclusion . 52

7.1 Closing Thoughts . 52
7.2 Future Work . 53

7.2.1 Scalable Object Tracking . 53
7.2.2 Near-Miss Detection . 54
7.2.3 Traffic Flow . 54

REFERENCES . 56

VITA . 59

vi

LIST OF TABLES

3.1 IoT Sensors on the MLK Smart Corridor Testbed . 10

3.2 Networking and Wireless Communications on the MLK Smart Corridor Testbed 11

3.3 Edge Computing Hardware on the MLK Smart Corridor Testbed 12

5.1 Results from TTC Threshold Testing . 38

vii

LIST OF FIGURES

1.1 Relationship Model of the Video Analytics in this Thesis . 3

2.1 A 16-by-16 Pixel Gray-Scale Sample . 5

2.2 A 16-by-16 Pixel Color Sample . 6

2.3 An Illustrated Example Arrangement of Neurons in a CNN . 7

3.1 Illustration of the MLK Smart Corridor’s Features . 10

3.2 Visualization of All Deployed Intersections on the MLK Smart Corridor 11

3.3 Smart City Data Integration Platform Architecture . 12

4.1 An Implementation of the MIL Object Tracker . 16

4.2 Scalable Object Tracking Architecture Overview . 23

4.3 Graph of Counts of Objects from Tracking for 24 Hours . 28

4.4 Heat Map of the Tracked Objects from One Camera . 29

5.1 Pixel-Relative Velocity Drawn Above a Tracked Bus . 34

5.2 Example of Trajectory Prediction Functionality . 35

5.3 Image of an Early Implementation Near-Miss Detection . 40

5.4 Image of a Possible Near-Miss Being Detected . 40

6.1 Illustration Portraying the Importance of Choosing Bottom-Center of a Bounding Box 46

6.2 ROI Visualized at Peeples St. 50

6.3 ROI Visualized at Georgia Ave. 50

6.4 JSON Document Resulting from ROI Labelling . 51

6.5 ROI Matching Implementation Example . 51

7.1 Screenshot of the new dashboard created using real-time data from the testbed. 54

viii

CHAPTER 1

Introduction

1.1 Motivation for Thesis Applications

In the last decade, the population of Hamilton County, Tennessee has grown by 25.85% [1].

With this population growth comes challenges for the existing roadway infrastructures, such

as increased roadway incidents. According to the Tennessee Department of Safety and

Homeland Security [2], Hamilton County roadway incidents have had an increasing trend; in

2015 there were 12,956 roadway incidents, but in 2019 there were 14,101 roadway incidents.

Furthermore, there were 95 incidents in 2015, however there were 107 incidents involving

pedestrians in 2019 [2]. This may only be the beginning, as it has been predicted that two

thirds of the world’s population will live in urban environments by 2050 [3]. With this rapid

urbanization, not only will roadway infrastructure challenges be exacerbated, but entirely

new ones may arise [4]. This trend of increased incidents can be seen in the data and

the expectation for greater challenges is cause for concern for the health and well-being of

citizens.

To help mitigate these day-to-day safety concerns, a wide range of initiatives have been

recently proposed, each defining and conceptualizing the range of sensors, IoT devices and

infrastructure that is required to help overcome these challenges. These sensors can be used

to gather data from citizens and their day-to-day actions, and this data can be used to help

the citizens that create it. By gathering data from real events that occur on the testbed,

it is possible to predict and analyze based on data from actual human behavior, instead of

simulated data. This data can have practical applications that help citizens make decisions

for their own safety and well-being while they commute through these sensor-equipped cities.

1

Unfortunately, there is no standardized method for augmenting a city with “smart” ca-

pabilities, so most solutions and design considerations must be designed from scratch. Addi-

tionally, there is no pre-existing collection of software specifically designed for data analytics

in a city-scale environment. This poses a question of how to apply data analytics at scale,

which is addressed by the video analytics discussed in this thesis. These video analytics

are written by hand to allow us to take into consideration any requirements given by the

environment of the testbed.

This thesis will discuss just three of the many methods of analytics in a smart city. These

methods are all video-based and prioritize privacy and urgency by performing real-time

analytics with no video storage. Amongst these video analytics are real-time scalable object

tracking, real-time near-miss detection and real-time traffic flow analysis. The data from

these real-time data analytics can be used to help citizens be aware of surroundings they

cannot see in real-time so that their commute can be made safer for all who travel within

the testbed.

The real-time scalable object tracking approach discussed in this thesis allows sensor-

equipped cities (also referred to as smart cities) to perform real-time data analytics such

as average traffic density and real-time object routes. The real-time object tracking imple-

mentation proposed in this thesis will discuss concerns for scalability so that the algorithms

can grow with the city and equipment. Real-time object tracking also serves as a basis for

further analytics such as real-time near-miss detection and traffic flow analysis. Near-miss

detection will detect events where any two objects are at risk of collision should no further

action be made, so this metric can be used to determine the driving safety of certain ar-

eas. Furthermore, traffic analysis makes it possible to perform real-time dynamic routing

to prioritize fuel efficiency or travel time. This analysis also enables us to determine higher

resolution traffic flow, such as which lanes are occupied and which streets are being turned

on to the most.

Using these modern approaches of video analytics in a live urban environment paves

the way for a connected city capable of helping the citizens within. In this environment,

2

Figure 1.1 A relationship model displaying how Scalable Object Tracking (purple) is used for Near-Miss
Detection (blue) and Traffic Flow Data Collection (orange).

video analytics can be used to prevent roadway incidents and decrease traffic congestion by

increasing all citizens’ awareness of their environment; by giving citizens a holistic view of

the city’s traffic activity they can more safely traverse it.

The remainder of this thesis consists of 5 chapters. Chapter 2 describes in thorough detail

the testbed on which these video analytics are performed. Chapter 3 discusses the object

tracking algorithm which enables the other forms analytics discussed in this thesis. Chapter

4 details the near-miss detection algorithm which has been built on top of the existing object

tracking platform, which enables us to detect when two objects on the testbed are at risk of

collision. Chapter 5 describes the traffic flow analytics that have also been built on top of the

discussed object tracking platform. Lastly, Chapter 6 concludes this thesis with an overview

of the work covered in this thesis and insight on future work that could be achieved.

3

CHAPTER 2

Background Information

This thesis will discuss many topics which are not considered common knowledge. Thus,

this section of the thesis is dedicated to explaining the requisite background knowledge for

the remainder of the thesis. The concepts discussed in this section include Computer Vision,

Convolutional Neural Networks (a basis to most object detection algorithms), and Object

Tracking.

2.1 Computer Vision

The entirety of computer vision can be considered overwhelmingly large, mostly due

to its multi-faceted nature. Summarily, computer vision is a means of manipulating or

analyzing imagery, be it a still image or a single frame in a video. The ability to modify

and manipulate images programmatically enables developers to design algorithms for many

tasks. Image manipulation includes simple tasks such as image resizing or flipping, but it also

includes more complex tasks such as applying filters or removing noise. Image analysis using

computer vision is often a more complex task which may require chains of image manipulation

in order to create any understandable form of output [5, 2–6]. Computer vision analysis tasks

include naive object detection, motion detection and even naive object tracking [6], which

can be combined to use computer vision for automated vision manipulation (to be discussed

throughout this work).

In order to understand how computer vision works, it is important to understand how

images are represented by a computer. In the majority of computer vision implementations,

4

imagery (whether it is a still image or a single video frame) is represented as a matrix

(grid). For gray-scale imagery, each item in the matrix represents a value between 0 and

255, where 0 represents black and 255 represents white (shown in Figure 2.1. In the case of

colored imagery, the representing matrix is three dimensional, where the new third dimension

represents the intensity values of their respective color (red, green, or blue). In this instance,

a value of 0 represents no intensity of that color, and a value of 255 represents full intensity

of that color. This has been visualized in Figure 2.2.

Figure 2.1 A 16 pixel by 16 pixel gray-scale sample, represented as a single matrix by averaging the three
color values together. Each value in the matrix represents the intensity, from 0 (no intensity,
black) to 255 (max intensity, white).

5

Figure 2.2 A 16 pixel by 16 pixel color sample, represented by three matrices, one for red, green and blue
respectively. Each value in each matrix represents the intensity of that color value, from 0 (no
intensity) to 255 (max intensity).

2.2 Convolutional Neural Networks

The task of automating the detection of objects has many applications from robotics and

machinery [7] to real-time video surveillance streams [8]. Automated object detection is made

possible by the underlying technology: a convolutional neural network, or CNN. A CNN is

a type of Artificial Neural Network (ANN), in which a group of nodes (called neurons) are

inter-connected to form a system, much like biological nervous systems. A nervous system is

capable of responding to external stimuli, such as seeing an object, and identifying that object

by following a path of interconnecting neurons. CNNs can be considered the computational

adaptation to this same concept, wherein neurons have been implemented, and different

inputs (e.g. stimuli like seeing an object) yield different outputs (e.g. identification). ANNs

in general must be trained with sample, pre-labeled inputs in order to build the model which

describes how the neurons within interconnect. During this process, neurons’ components

such as weight and bias are adjusted to control when and how that neuron is fired based on

various inputs (illustrated in Figure 2.3). Once the CNN has been trained on a set of labeled

6

images, it can begin detecting objects that it was trained to detect [9].

Figure 2.3 An illustrated sample arrangement of neurons, where the path in blue shows the path of fired
neurons based on the given imagery.

Computer vision plays a critical role in the process of creating a CNN, as it is the in-

termediary process which converts what humans see (for example, a picture of a dog), and

what the CNN can take for input (for example, the same picture of a dog represented by a

matrix); computer vision is used to translate the human-interpretable input into a computer-

interpretable input. The combination of computer vision and convolutional neural networks

form the basis of a robust object detection pipeline, which yields substantially higher accu-

racy as well as reduced latency. While the focus of this thesis does not specifically include

object detection using neural networks, object detection is a crucial component in many

implementations of object tracking approaches introduced in this thesis. Without a vague

understanding of how CNNs work, it may be more challenging to understand other compo-

nents in this thesis such as the scalable architecture discussed in Chapter 4.

2.3 Object Tracking

While object detection has many applications, it differs greatly from object tracking.

Object detection and object tracking sound like the same to most, but there is one critical

difference: object detection only detects objects with no concept of that objects’ permanence,

7

where as object tracking links the output from detecting objects and merges it with the

concept of object permanence. For example, using object detection alone will be able to tell

you that a vehicle is in the frame, and exactly where in the frame it is. Whether this vehicle

returns in the following frames or is present in previous frames is unknown to the object

detection model. Using object tracking adds this extra context; it is now possible to know

that this is the same object from previous / next frames, which can be used in additional

practical applications beyond detection alone [10]. There are a few implementations to

object tracking, some correlating object across frames using a predictive filter [11], others

use classification algorithms [12], and some use complex models for robust tracking [13]. Some

such applications include determining the exact path of each object in a video, accurately

counting objects without re-counting objects, and determining pixel-relative acceleration and

velocity. Some of these applications will be discussed in further detail in this thesis.

As we discussed in the section dedicated to object detection, the output of most object

detecting CNNs is a label and a defined bounding box which surrounds the detected ob-

ject. This output is often a dependency for the object tracking algorithm implemented;

some object tracking implementations do not perform the detection, they simply associate

detections across frames using geometric and linear algebra methods. Other object tracking

implementations have their own model dedicated solely to the tracking component, or are

able to perform both object detection and object tracking [10].

8

CHAPTER 3

The Testbed Used

In our paper titled “MLK Smart Corridor: An Urban Testbed for Smart City Applica-

tions” [14], we introduce the MLK Smart Corridor as an urban testbed and platform for

smart city development. The Center for Urban Informatics and Progress (CUIP) at the Uni-

versity of Tennessee at Chattanooga has designed and deployed this testbed with the help of

the The Enterprise Center, Chattanooga Department of Transportation, and Chattanooga

Electric Power Board (EPB). The testbed provides a real-world urban environment for test-

ing and developing smart city infrastructure, transportation, and security applications in

a real-world urban environment. The testbed facilitates experimentation, prototyping, and

validation of new smart city and Connected Autonomous Vehicle (CAV) technologies. An

illustration of the MLK Smart Corridor Testbed is shown in Figure 3.1.

3.1 Hardware and Infrastructure

The MLK Smart Corridor spans over a mile and a half of Downtown Chattanooga’s Martin

Luther King (MLK) Boulevard, as seen in Figure 3.2. Parallel to the University of Tennessee

at Chattanooga, MLK Boulevard is one of downtown Chattanooga’s busiest roadways [15].

It features ten signaled intersections, bike lanes, electric car charging stations, electric car

/ bike share stations, and roadside parking. Application specific enclosures deployed at

intersections allow for easy and accessible hardware expansion. A wide array of sensors and

communication devices are deployed at each intersection including IoT devices (listed in

Table 3.1, communication devices (listed in Table 3.2), and edge compute nodes (listed in

9

Figure 3.1 Graphical Representation of the MLK Smart Corridor’s Testbed and its features.

Table 3.3) [16].

Each device was chosen to provide baseline functionality for users. The MLK Smart Cor-

ridor is available for research and industry partners. An online web portal allows users to

submit projects and request resources; if a user would like to test vehicle-to-infrastructure

(V2I) messaging standards compatibility, they are not expected to procure and install their

own communications devices. In this case, the testbed provides DSRC Road-Side-Unit com-

patibility at each intersection that meets the United States Department of Transportation

(USDOT) standards. These devices are integrated with Chattanooga’s Department of Trans-

portation Intelligent Transportation System (ITS).

Table 3.1 IoT Sensors on the MLK Smart Corridor Testbed

Device Description
Purple Air PA-II-SD Air sensor providing current air quality conditions
Axis P1448-LE 4K 30 FPS camera with variable FOV
Axis M2025-LE 1080P 30FPS camera with wide FOV
Sound Card + Preamp Mic Mic connected to Raspberry Pi for audio analysis and processing
RP LiDAR LiDAR sensor for bathymetric depth calculations and more
Banner Q240R RADAR Narrow-beam Fixed RADAR sensor

10

Figure 3.2 All deployed intersections portrayed on OpenStreetMap. Each traffic signal icon represents an
intersection at which sensors have been deployed.

Table 3.2 Networking and Wireless Communications on the MLK Smart Corridor Testbed

Device Description
LimeSDR Handles I/O of numerous radio signal varieties
Locomate DSRC Dedicated short-range wireless communications
HackRF One Programmable peripheral for software defined radio
Aruba AP 270 802.11AC Wireless Router with 2.4 and 5.0GHz frequencies
TPLink AD7200 802.11AD Wireless Router with 2.4, 5.0 and 60GHz frequencies
LoRa Gateway Physical Layer IoT Wireless Networking Component

3.2 Data Architecture

Smart cities generate vast amounts of heterogeneous data. Low-latency transactions, high

throughput, flexibility, scalability, and interoperability are all key design traits to take into

consideration when designing a smart city’s server infrastructure. Traditionally, applications

may create direct data pipelines between systems, though at scale this is not an accepted

architecture. A notable consideration is that managing and maintaining dedicated data

11

Table 3.3 Edge Computing Hardware on the MLK Smart Corridor Testbed

Device Description
Nvidia Jetson TX2 Edge Computing node for GPU-intensive computation or processing
Raspberry Pi Edge Computing node for simple processing or data transmission
Industrial Compute Node Intel Core-i7-equipped machine capable of intensive work

pipelines becomes challenging at scale, but CUIP has equipped the testbed with a distributed

event driven architecture that can address these design considerations and issues.

A software architecture for a testbed like this will be responsible for ingesting, analyzing,

and storing all data generated by the testbed; this platform creates a central system where all

data generated can be accessed from external systems. All systems and devices will consume

data through this platform via integration tools and APIs, and its design eliminates the

need for dedicated communication between individual systems on the testbed. New systems

require some configuration, but no configuration is required on the central system. To

ensure that their platform will provide a long-term solution for providing services, CUIP’s

data infrastructure utilizes an ingestion and integration system that supports horizontal

scalability which provides the ability to scale up for new devices and systems that come

online. The core of their software stack includes a cluster of brokers that make up the core

of the infrastructure (shown in Figure 3.3).

Figure 3.3 Smart city data integration platform architecture. Data from sources such as APIs, other
databases or IoT sensors are submitted to the distributed event hub using producer applications
or connect clusters. Then, the data contained in the event hub can be used for consumer appli-
cations which read from and write to the event hub. Additionally, connect clusters or consumer
applications can also read from the event hub and can use that data freely.

A custom framework is used by systems generating data to push and pull data in and out

12

of the platform. This framework contains multiple features that in combination are designed

to handle high velocity, large volume, and all varieties of data types. This plays a critical

role in the work proposed in this thesis, as it produces approximately 200,000 messages each

day using only ten cameras as video sources.

13

CHAPTER 4

Scalable Object Tracking

4.1 Introduction

In this chapter we introduce our approach to scalable object tracking, allowing us to

anonymously detect and track objects as they pass through the MLK Smart Corridor testbed.

This implementation makes it possible for near-miss events to be detected (discussed in

Chapter 5) and traffic flow data to be collected (discussed in Chapter 6).

4.2 Goal of Scalable Object Tracking

Object tracking, unlike object detection alone, allows every detectable object to be treated

as an event where the event begins when the object enters the camera’s view and ends when

the object leaves the camera’s view. In order to bring this to the large-scale environment of

the MLK Smart Corridor testbed, any solution designed must be capable of scaling as the

testbed and city grow. Furthermore, since the testbed lies on a live urban environment, object

tracking makes it possible to anonymously gather data from real trends derived from citizens.

This data can be used to help the very citizens that created it, allowing for anonymized

analytics to increase driver awareness in the event of a near-miss and mitigate traffic density.

4.3 Related Works

As discussed in Chapter 2, many object tracking implementations do not perform detec-

tion of objects, but instead associate detections or seed trackable points based off of detected

14

objects. As a result, this related works section will explore related object tracking methods

as well as some of the more popular current object detection models. As object detection

has been studied extensively, only a few of the most unique (be it accuracy, implementation

or speed) will be discussed in this thesis.

4.3.1 Object Tracking Implementations

Object tracking poses a problem different from that of detection; in general, off-the-shelf

object detection algorithms do not offer any means to maintain object persistence between

the frames of a video. There are two common approaches within the subject of object

tracking: single-object, and multi-object. Single-object tracking focuses on tracking a single

object within the camera view, where multi-object tracking will track all given objects with

the camera view. For the purposes of a smart city there will almost always be more than

a single object within the camera’s view, so this thesis has also been written to address a

multiple-object environment (an environment in which multiple trackable objects are present

at the same time).

The authors of “Robust Object Tracking with Online Multiple Instance Learning” [17]

have proposed a Multiple Instance Learning (MIL) object tracker with online boosting (seen

in Figure 4.1). Their proposed tracking system does not require object detection (though it

can be augmented with it), as it only requires an initial bounding box which can be drawn

by multiple sources (such as a human or a model). While this is particularly effective for less

complex views, it is not an ideal solution for camera views with many objects entering and

leaving the scene. Therefore, for the purpose of this thesis we have considered this tracker

only in conjunction with a model, whose detections can be used to update the tracker’s

tracklets (also called “re-seeding”). Since new objects within the camera view can only be

tracked once the tracker is provided with a new bounding box, a compromise must be made

in how often to re-seed the tracker with model detections. One potential compromise would

be to re-seed the tracker with model detections every other frame. This approach has been

15

found to result in a higher number of instances where an object’s tracker instance is re-

initialized. Another compromise would be to wait longer to re-seed the tracker with model

detections (for example, every 10 frames). While this approach is a good compromise, it still

allows for objects to transfer their trackers to other objects.

Figure 4.1 An Implementation of the MIL Object Tracker with online boosting on the MLK Smart Corridor.
The yellow line indicates the point at which an object is counted, and the green indicates objects
being tracked by the algorithm.

The authors of “Visual Object Tracking using Adaptive Correlation Filters” [18] introduce

a correlation-filter based tracking algorithm which uses their proposed Minimum Output Sum

of Squared Error (MOSSE) filter. This filter allows for stabilization of correlation filters upon

initialization. This method is robust enough to maintain its performance through changes

of multiple conditions such as scale, lighting, and more, all-the-while performing at over

600FPS. As it is a correlation-filter based tracker, it also suffers from the same issues and

compromises that the work in [17] does.

The authors of “Simple Online and Realtime Tracking with a Deep Association Metric”

[11] have proposed a “Simple Online Real-time Tracker”. This tracker works by taking

detections from some model, and associating a tracklet to these detections using Intersection

16

of Unions (IoU) and a Kalman Filter. The Kalman Filter is used to predict the next location

of a tracklet, which is used with IoU and the current detections to associate a detection back

to the tracklet. This tracker requires a model’s detections every frame, as these detections

are how the tracker performs its reassociation to tracklets. The tracker manages old tracklets

by determining how recently the tracklet has been reassociated. If the tracklet has not been

reassociated within some threshold of frames (user-configurable), it is deleted for memory

conservation purposes. One shortcoming of this tracker is that it requires a model which

is not provided in the paper. Additionally, the tracker’s tracklets do not store some useful

information such as a history of that tracklet’s locations (and including timestamps would

also prove useful), and obsolete tracklets (those tracklets which cannot be reassociated with

detections) are simply deleted. This tracker is also heavily frame-rate dependent; the higher

the frame-rate of the video and detections, the fewer instances of ID reassignment and higher

the precision of the tracker.

The authors of “Multiple Object Tracking Using K-Shortest Paths Optimization” [12]

have proposed a multiple object tracking solution which uses a K-Shortest-Path algorithm

in conjunction with a linear equation to perform tracking. While this solution is highly

accurate, it fails to perform with the accuracy and efficiency required to run the many

cameras along the MLK Smart Corridor. Between the linear functions and the K-Shortest-

Path algorithm, this object tracking model is enable to meet our 30FPS requirement, and

would be problematic to scale with the smart city.

4.3.2 Object Detection Models

The authors of “You Only Look Once (YOLO)” [19–21] have introduced an incrementally

improved real-time object detection model. The authors have proposed a Convolutional

Neural Network (CNN), which solves the object detection problem by treating it similar to

a regression problem. Their model provides both labels and bounding boxes, and comes in

many variants. The original YOLOv1 is limited to only 20 different detectable objects, and

17

had two variants: YOLO and Fast YOLO. YOLO would perform at 45 FPS, and Fast YOLO

would perform at 155 FPS. YOLOv2 is capable of detecting 80 different types of objects,

and achieves over 40 FPS (depending on the variant). YOLOv3 brought about a series of

smaller quality-of-life changes, such as utilizing the GPU for more tasks than before.

The authors of “Mask-RCNN” [22], an extension to Faster-RCNN [23], not only detects

objects but also predicts each object’s mask. Mask R-CNN outperforms all other existing

single-model detectors (at the time the authors wrote their paper), and is designed for use

beyond its original scope as an object detection model - such as human pose estimation.

While Mask R-CNN is an excellent candidate for the detection component in a real-time

scalable object tracking solution for smart cities, it cannot run at the requisite frame-rate.

At a peak of 5 Frame Per Seconds (FPS), it is incapable of keeping up with the real-

time environment that a smart city encompasses. The extra 25 frames that most cameras

produce will be wasted, and such poor frame-rate may lead to issues with some object

tracking algorithms (such as SORT [11]) and poses a risk of missing important event details;

a near-miss may be undetectable at frame-rates so low.

The authors of “Objects as Points” [24] propose an implementation of object detection

using points to determine detections, claiming that they are more efficient than axis-aligned

bounding boxes. These points are found using keypoint estimation, and are located in the

center of the object’s bounding box. The additional information (such as the size, bounds,

three-dimensional location, pose, and more) are found using regression. The authors claim

that they have obtained the “best speed-accuracy trade-off” in their model implementation

of this idea, CenterNet. Results from testing with the Pascal VOC 2007 test prove this to be

true; CenterNET achieved as high as 142FPS average using CenterNet-Res101 (at a 512x512

input resolution) and still managed to achieve a 72.6 mean average precision (mAP) with

an Intersection of Unions (IoU) threshold of 0.5 (mAP@0.5). This approach is capable of

satisfying the needs of this thesis, and could be used as the detection model for the object

detection pipeline.

18

4.4 Motivations and Contributions

While the combination of SORT [11] and an off-the-shelf object detection algorithm solves

the challenge of tracking an object in real-time, it fails to address scalability concerns. We

must design a scalable software architecture for tracking objects in real-time, allowing for new

cameras to be added with ease to increase maintainability for the long term. As a part of this

scalable workflow, we will need to submit trackers to a real-time publish/subscribe database

(built around Apache Kafka) for graphing and analysis. In order to do so, SORT [11] will

require modifications to optimize certain elements for this software architecture.

4.5 Methods

Our approach to scalable object tracking utilizes a few different critical components, to

be discussed individually below. The first is our object detection model, which performs

basic detection of objects. Following is discussionon our modified object tracking model,

e-SORT, which is based off of the Simple Online Realtime Tracker (SORT) [11]. The last

component to be discussed is the proposed scalable architecture, which includes discussion

on the integration of various components including a detection and tracking model.

4.5.1 Enhanced SORT

Object tracking is one of many applications for video cameras in a smart city, and provides

important data to the city’s occupants. In most object detection algorithms, an image (be it

a video frame or single image) is fed into the model and the detections are made with their

corresponding bounding boxes and labels. While this addresses many challenges, a detection

model fails to maintain object permanence in between frames. This poses the issue that

object tracking must solve: how to maintain object permanence in between frames. Due

to the simplicity of the problem object trackers are usually used in conjunction with object

detection models (such as the aforementioned YOLO detection model) instead of developing

19

their own model to detect objects, and are only tasked to help correlate detections between

frames to maintain object permanence. Unlike object detection alone, object tracking offers

the ability to store all previous object locations, predict future ones, and calculate many

variables and statistics based on an individual event. This can provide the city with helpful

information on traffic trends, pedestrian density, jay-walking zones and more, allowing it to

use this data to make the city more intelligent.

The proposed “Simple Online Real-time Tracker” described in [11] is an already highly

optimal solution, but lacks many components that are required for our use-case on the MLK

Smart Corridor Testbed. As discussed in Section 4.3.1, the original SORT implementation

was observed to have several weaknesses such as its sub-optimal obsolete tracklet manage-

ment, lack of historic location mapping and dependency on frame-rate for accuracy and

performance. Due to the design of our scalable architecture combined with the desire to per-

form further analysis on tracked object data, many modifications to SORT [11] are required

to resolve some of these shortcomings. These enhancements are the basis of our modified im-

plementation of the SORT algorithm we call enhanced SORT, or e-SORT, and are discussed

in further detail in the paragraphs to follow. e-SORT makes modifications to SORT which

will address the many shortcomings and requirements for our implementation in a real-time,

scalable environment.

4.5.1.1 Obsolete Tracklets

The original SORT algorithm, for the purposes of memory management, deletes obsolete

tracklets upon calling the update function. Since our publish/subscribe database is not de-

signed to handle the updating of an entry, it is required that the JavaScript Object Notation

(JSON) submission contain all of the data for the tracklet, as opposed to submitting the

data as it comes in. As a result, keeping the obsolete tracklets was a clear solution to this

problem, as it would allow us to have all of the information at once and will not be updated

(since the tracker is obsolete and won’t be updated again within SORT). Therefore, mod-

20

ifications to the update function have been made to allow it to also return these obsolete

tracklets. After enqueueing the tracklet to the Submission Queue, the obsolete tracklet is

deleted. This retains the much needed memory management while meeting our needs for

our real-time data infrastructure.

4.5.1.2 Object Labels

Each tracklet in SORT does not store its label - required to simplify the work-flow (as

detailed in the Obsolete Tracklets portion above) - but this can be resolved with modifications

to the original SORT algorithm. The update function now requires a labels argument,

such that when the tracklet is reassociated to a detection, it can also be reassociated with

the correct label. For further improvement, model detection labels may vary for the same

tracklet. Instead of overwriting the label each time, a list of all assigned labels from the

detection model are kept within the tracklet. When the tracklet’s label is then requested

using the get label function, the label which is most frequently found is returned. This

prevents any anomalies from the labelling process to be corrected in most instances.

4.5.1.3 History of Locations

Another trait required from SORT was a way for each tracklet to retain knowledge of

“when” and “where” it was. This takes form as a Python dict whose keys are timestamps

(in UTC) and whose values are a bounding box (of form x1, y1, x2, y2). A new key-value pair

are appended to the tracklet’s locations dict when update is called to the SORT instance.

This is also the time at which the timestamp is created which delays the timestamp less than

a second more than the actual event occurring, which for most use-cases in a smart city is

negligible. This history allows for a user to subscribe to the publish/subscribe database later

and perform later analysis and calculate properties such as velocity and acceleration. The

tracklet’s history of locations must be reduced before publishing to our real-time publish/-

21

subscribe database, as tracklets corresponding to still objects such as parked cars become

overwhelmingly large for our data infrastructure, as that is not the use-case for which it was

designed. This can be done by applying a threshold for the euclidean distances between

two timestamp, as seen in Algorithm 1. This algorithm is important as it prevents a still

car from creating thousands of entries to flood into the database, while retaining important

details such as how long it stayed in that location. In testing, a 30 pixel threshold has been

found to be most optimal within our environment.

Input: locations, threshold
for timestamp, bbox in locations do

if distance(last bbox, bbox) >= threshold then
ret val[timestamp] = bbox
last bbox = bbox

end

end
return ret val

Algorithm 1: Tracklet Location History Generalization Algorithm

4.5.2 Scalable Architecture

We propose a parallel architecture using multiprocessing, as seen in Figure 4.2. A blocking

queue is used to transfer data between four different types of processes, and there is a

queue dedicated for raw frames, processed frames and tracking results. Each of the queues’

placements within the architecture can be seen in Figure 4.2. The four types of processes

are:

4.5.2.1 Capture Processor

This architecture contains n Capture Processors (represented in blue in Figure 4.2, where

n is the number of cameras in the Smart City. Each of these is a dedicated process for

capturing video frames from one specific camera on the testbed. The Frame Processor is

assigned at the program’s start, allocating three Capture Processors to every one Frame

22

Figure 4.2 Architecture Overview, where n is the number of cameras in the Smart City. Blue indicates n
number of Capture Processors, whose purpose is solely to capture video footage. Red indicates
n/3 number of Frame Processors, whose purpose is to detect and track objects. Purple indicates
the Database Processor, whose purpose is to form data from the Frame Processor into a JSON
format and submit to our real-time publish/subscribe database. Green indicates the Stream
Processor, whose purpose is to stream all n streams for demonstration purposes.

23

Processor.

4.5.2.2 Frame Processor

This architecture contains n/3 Frame Processors (represented in red in Figure 4.2), where

n is the number of cameras in the Smart City. This number resulted from testing, where the

Frame Processor was allocated another Capture Processor until the output frame-rate was

below the input frame-rate. This distribution mechanism also serves as a rudimentary load

balancing mechanism for the application. The Frame Processor is responsible for performing

object detection and tracking. The results from detection are fed into the SORT instance

which corresponds to the frame. Obsolete tracklets from the results of SORT are then

fed into the Submission Queue. Following this, the original video frame is destroyed for

privacy purposes and the frame from the Frame Processor. Within the Frame Processor,

visualizations from tracking are drawn on the frame, which is to be fed into the Stream

Queue for real-time streaming.

4.5.2.3 Submission Processor

This architecture contains 1 Submission Processor (represented in purple in Figure 4.2).

The Submission Processor uses in the obsolete tracklets from the Submission Queue to create

a JSON message containing critical information. This JSON message contains a UUID for

the tracklet, the tracklet’s label, the tracklet’s hit count (the number of locations the tracklet

was found within the frame), and the tracklet’s history of locations. Once the JSON object is

created, it is published to our real-time publish/subscribe database for further consumption.

This data allows us to perform several useful analytics such as near-miss detection without

sacrificing the privacy of the city’s occupants.

24

4.5.2.4 Stream Processor

This architecture contains 1 Stream Processor (represented in green in Figure 4.2). The

purpose of the Stream Processor is purely visual; it enables us to show the results of our

tracking on a web interface, which has back-end authentication for privacy purposes. The

Stream Processor takes frames from the Stream Queue and streams them using Flask, a

flexible, Python-based web-server.

In order to communicate across the multiple types of processes discussed, blocking queues

are used. These queues are placed between each type of processor so that each processor

may communicate to the next. A queue is used to transfer video frames from the Capture

Processor to the Frame Processor. After processing through the Frame Processor, the re-

sulting frame is added to a queue to be streamed by the Stream Processor and the resulting

data is added to a queue to be submitted by the Submission Processor. While inter-process

communication via shared memory could yield better performance, this approach was not

explored due to a shortage of time.

4.6 Results

To test e-SORT and the scalable architecture discussed in Chapter 4.5, we used the testbed

located on Chattanooga’s MLK Smart Corridor (located in Tennessee). The testbed is an

open platform which permits research problems to be tested in a live urban environment. At

the time of writing, the testbed contains 27 cameras across 9 major intersections. All IoT

devices within the testbed have a 10-gigabit fiber backbone which supports real-time data

transfers to and from each pole. The results described in this section come from real-time

video stream from this testbed.

This approach has been deployed on two workstation computers equipped with eight-core

hyper-threaded processors, each with 16 gigabytes of system memory and an Nvidia GTX

1080Ti. The application discussed in this chapter is capable of running five cameras on each

workstation computer. This is mostly a CPU-bound issue resulting from video streaming,

25

as proven in testing where recorded GPU and memory utilization was low.

Determining the accuracy of our approach poses new challenges, as there are multiple

metrics by which accuracy can be determined. This is made possible by the login-protected

live streaming of our processed video streams, which allow an analyst to view what the

algorithm is detecting. The method of accuracy determination used and discussed in this

thesis was a process in which an analyst would count the number of times an event would

occur by hand, then calculate the accuracy using total count of objects from the beginning

and end of their session. The types of events counted for were multiple-ID instances, no ID

instances, and mislabeled instances.

4.6.1 Multiple-ID Instances

Multiple-ID instances are cases in which one object gets multiple IDs, meaning its tracklet

was lost too early. In observing the object tracking algorithm, on average for every 115

objects there would be five cases of ID reassignment. Considering that this count of objects

is gathered from the visualization, the object count should actually be approximately five

ID reassignments per 110 objects. This can be represented as a 95.45% ID retention rate or

a 4.55% ID reassignment rate.

The importance of ID reassignment is beyond aesthetic; ID reassignment is a direct result

of tracklet reassignment. This indicates that the tracklet prior to reassignment will be

considered as obsolete before the object actually is, resulting in a single object represented

by two tracklets. This poses a few issues, such as adding duplicate entries in the real-

time publish/subscribe database. Since we submit the data from tracking upon retrieval

of obsolete tracklets, one object will be represented by two events in the publish/subscribe

database. This means that traffic counts may be higher (albeit only by a difference of 5-10

objects), but more importantly the future use of the dataset being created by our approach

may be problematic, as two objects’ paths may be shorter than they should be.

26

4.6.2 No ID Instances

No ID instances are cases in which an object is not given an ID at all, indicating that

our detection algorithm did not detect the object to begin with. We have monitored these

events and have found that we have a 2.978% likelihood for improperly tracking / detecting

an object; that is to say, we have a 97.022% accuracy in this category. While the number

of objects this was analyzed for was 6421 according to the visualization, this is technically

incorrect. Considering that 6421 was the count for an average of 97.022% of all actual objects

through the scene, then the actual count should be approximately 6612 objects.

4.6.3 Mislabeled Instances

Mislabeled instances: cases in which the label from our object detection algorithm

failed to give the correct label for the object. We have gathered this metric for 8112 different

objects, revealing that only 2.79% of the time is an object mislabeled; that is to say, we have

a 97.21% accuracy in this category.

4.6.4 Real-time Visualizations

Visualizations serve a useful purpose in making large quantities of data easily digestible

for most individuals. While there are many options to achieve this, two have already been

implemented and receive regular use:

Graphing Dashboard: As a part of our server’s software stack, we have deployed a

graphic dashboard to read the data published to our real-time publish/subscribe database.

This allows us to visualize the data easily, making some traffic trends quite clear. Figure 4.3

shows a sample for 10 cameras on Chattanooga Tennessee’s up and coming smart city.

Overlay Generator: Written using the OpenCV library for Python, another visualiza-

tion that uses the real-time tracking data is an Overlay Generator. This overlay generator

uses an existing image of the camera view requested, and overlays paths of objects (retrieved

27

Figure 4.3 Graph of Counts of Objects from Tracking for 24 hours (aggregated into five-minute intervals),
where each different color represents a different camera’s object counts, e.g., mlk-central-cam-2
Avg: 251 indicates that an average of 251 objects have passed through that camera’s view in a
10-minute interval.

from our real-time publish/subscribe database) in different colors for each object. This al-

lows us to show off what the data looks like in an anonymous but still important way, and

makes more visible. For example, this imagery makes it possible to see jay-walking trends,

vehicles in the bike lanes and more, all of which are shown in Figure 4.4.

Utilizing only ten of the 27 cameras on the MLK Smart Corridor’s testbed (due to hard-

ware limitations), our proposed solution to scalable object tracking produces approximately

200,000 results per day. As the accuracy of our proposed solution shows improvement, this

number will more accurately reflect a day’s worth of traffic in the live urban environment

we have performed tests on.

4.7 Summary

In this work, we have discussed our solution to object tracking which has been designed

to scale with the size of a smart city. This approach allows for each detectable object

28

(a) Paths of all objects detected on the testbed. (b) Paths of pedestrians detected on the testbed.

Figure 4.4 Heat map of the tracked objects from one camera. The figure on the right (filtered to only show
pedestrian paths) visualizes jay-walking trends.

(determined solely by the object detection model used) to be treated as an event with unique

attributes such as object label, path taken, timestamp of each location and more. With these

metrics, it is possible to perform further analysis such as near-miss detection using velocity

and trajectory prediction (discussed in Chapter 5) as well as analyze the overall flow of

various types of traffic (discussed in Chapter 6)

29

CHAPTER 5

Near-Miss Detection

5.1 Introduction

In this chapter, we will discuss how we utilize data from the object tracking solution

discussed in Chapter 4 for detecting near-miss events. To do so we utilize the stored mapping

of historic locations to calculate velocity, which can be used to predict future locations and

create potential collision paths.

5.2 Goal of Near-Miss Detection

A near-miss is considered any event in which two objects (often vehicles) are on a trajec-

tory to collide with each other, but some last-minute action is taken to prevent the accident.

The goal of successfully implementing a near-miss detection algorithm is two-fold: the first

goal is to be able to keep metrics on the environment in which near-miss events occur, such

as weather, location, and the objects’ locations in reference to each other; the second goal

is to create the foundations in which vehicles can receive near-miss alerts from the MLK

Smart Corridor testbed itself, rather than from within their car. The advantages to having

the testbed create the alert and open the communication to the vehicle is that the cam-

eras within the testbed have a more holistic view of objects’ surroundings than the objects

themselves. With a near-miss detection solution in deployment, it is possible to build a plat-

form for infrastructure-to-vehicle (I2V) communication for real-time near-miss notifications

within vehicles.

30

5.3 Related Works

As other works regarding near-miss detection on a fixed-location monocular camera have

not yet been written or published, this section will discuss other approaches to monocular

near-miss detection in varying environments. The reason for specifying a monocular camera

is that the approach discussed in this thesis utilizes a monocular camera as well. Unlike

a monocular camera (a camera with only a single sensor), stereo cameras - those with two

sensors at a fixed distance - have one major advantage that makes near-miss detection

substantially more trivial: the fixed distance between each sensor in the camera. Since the

distance between each camera is fixed, calculating the velocity and acceleration of an object

is reduced to a detection task, wherein the distance travelled in inches or centimeters can be

calculated by taking the time delta between the object’s initial detection in each lens. While

this approach is naive - as precision relies on the speed of the object detection model - it

still vastly simplifies the problem as acceleration and velocity play a critical role in detecting

near misses (discussed in further detail in Section 5.5).

The authors of “Video Analytics for the Detection of Near-Miss Incidents on Approach

to Railway Level Crossings” [25] introduce an algorithm for detecting near-miss events at

railway crossings. Their approach aims to using a train-mounted monocular camera to detect

the presence of a vehicle stopped at a railway crossing. As this camera is mounted on a train,

the authors exploit the fact that rail road tracks in their country are 1067 millimeters apart.

Not only does this allow the authors to trivially convert pixels to meters, but it enables

them to skew and distort the image to create an accurately-scaled birds-eye view of the

scene even though the camera isn’t mounted facing straight down. By creating this birds-

eye view, the problem of near-miss detection is reduced from three dimensions (which simple

video footage cannot perceive) to two dimensions. By reducing the dimensionality of the

problem, the authors have created a much simpler task for themselves, making the near-

miss detection a problem of algebra and geometry. Unfortunately, the testbed on which

the algorithms discussed in this thesis have been deployed on has no constants; overall lane

count changes, and a substantial margin of error can be found in the width of some lanes.

31

Without this advantage that the authors have, it becomes impossible to create an accurate

birds-eye view of the street, thus preventing the reduction of dimensionality.

In the work described in “A Cost-Effective Framework for Automated Vehicle-Pedestrian

Near-Miss Detection Through Onboard Monocular Vision” [26], the authors describe a near-

miss detection algorithm which uses video footage from on-board cameras on vehicles. Their

approach detects near-miss events between the vehicle recording and pedestrians within the

camera frame. Their approach detects pedestrians using a Histogram of Gradients (HOG)

[27], allowing the authors to detect pedestrians without the use of an object detection model.

They use the KLT tracker to track their detected pedestrians across video frames in order to

calculate relative speed using a delta in time and bounding box location. While this approach

is most similar to the one discussed in this thesis, it has a few shortcomings. To begin, the

authors’ approach is not developed for real-time use, preventing the data from ever being

usable for real-time I2V communication to prevent an accident from occurring. Additionally,

the authors’ approach uses a camera from inside the vehicle, forcing a myopic view for near-

miss detection to occur within. The approach described also only works on pedestrians,

meaning that their approach cannot work between vehicles or between that vehicle and

other objects such as bicycles or motorbikes. While this isn’t solely a limitation of using a

Histogram of Gradients, it certainly may exceed the abilities of HOG-based detection when

considering the ability to detect many types of many objects at once in a single frame.

The authors of “Drive Video Analysis for the Detection of Traffic Near-Miss Incidents” [28]

propose a near-miss detection algorithm which is used to create a near-miss incident database

(NIDB). This database, designed to be used to make driver assistance systems more robust,

stores extracted video footage of a near-miss event occurring. Their implementation uses

recorded video footage from in-vehicle mounted cameras, mounted inside of 100 taxis. These

cameras were designed to begin recording in the event that the driver had to break urgently.

Their cameras ran from 2006 to 2015, and in this range they gathered over 60,000 videos

from these urgent breaking events, which were manually annotated and stored in the NIDB.

Additionally, the authors have implemented a validation algorithm for detecting near-miss

32

using Trajectory-Pooled Deep-Convolutional Descriptors (TDD) [29] to take advantage of the

temporal dimension added by using a TDD to calculate trajectory. Having the trajectory

of an object allows the authors to determine if any trajectories cross. If the trajectories

cross, then they can calculate Time ’til Collision (TTC) [30] to determine how long until

the two objects may collide. With this, a threshold on TTC is applied to determine the

severity of the near-miss (high or low-risk, depending on how much time until the collision

may occur). One shortcoming of this approach is that the TDD used is not capable of

real-time implementations. Similarly, the authors’ approach uses pre-recorded in-vehicle

footage, which allows them to use more complicated approaches as there are no real-time

requirements. As such, this approach is also incapable of alerting drivers of the risk of

near-miss using I2V because of its offline nature.

5.4 Motivations and Contributions

All of the near-miss detection methods that have been discussed so far have some crit-

ical flaw that keeps them from being adaptable into the scalable, real-time environment

of the testbed. Fortunately, concepts from the work in [26] and [28]. From Chapter 4,

this thesis has introduced a robust tracking solution similar to the work discussed in A

Cost-Effective Framework for Automated Vehicle-Pedestrian Near-Miss Detection Through

Onboard Monocular Vision [26]. Unlike their approach, the approach discussed in this thesis

is able to track and detect more objects (such as other vehicles, busses, motorcycles and

bicycles), as well as functions in real-time. Similarly, the work in [28] has implemented an

approach that also tracks objects offline, as well introduces the concept of TTC [30]. The

implementation of near-miss detection discussed in this thesis integrates concepts such as

tracking-based velocity and acceleration calculation combined with trajectory prediction of

objects. With the predicted trajectory, a threshold of TTC can be applied to this predicted

trajectory to perform real-time, scalable near-miss detection that is built on top of the object

tracking architecture discussed in Chapter 4.

33

5.5 Methods

5.5.1 Velocity and Trajectory

As discussed in Chapter 4, the implementation of scalable object tracking discussed in this

thesis stores historic bounding box locations for each tracked object. Since these bounding

box locations are mapped to a UNIX timestamp, it is possible to calculate velocity (in terms

of x and y) using the change in time and bounding box. The formula for velocity is written

as velocity =
|poscurrent−posprevious|
timecurrent−timeprevious

. This formula yields a pixel-relative velocity for both x

and y (seen in Figure 5.1).

Figure 5.1 Pixel-Relative Velocity drawn above a tracked bus (indicated by the green rectangle) on the
testbed. Velocity is being calculated using the data from object tracking, using the delta in time
and position for calculation.

The calculated velocities for x and y can be applied to the tracked object’s current bound-

ing box in order to predict a future location, thus predicting the trajectory of the object.

Similar to velocity, trajectory prediction is also pixel relative, and is in terms of x and y. The

predicted trajectory of an object is formulated as trajpred = poscurr − (velocity × ∆time).

An application of this algorithm is shown in Figure 5.2.

34

Figure 5.2 Trajectory prediction drawn alongside tracked objects on the testbed. The circles trailing each
object represent previous locations of that object, and the colors are used to more easily match
which paths correspond to which object. The line from the center of the object represents the
predicted trajectory of that object.

5.5.2 Near-Miss Detection

Using the predicted trajectory of an object, we can compare the predicted trajectory of

all other tracked objects that are present in the video frame. With this, we can calculate

the TTC [30] between any of the objects whose trajectories cross. The algorithm for TTC

begins by calculating the delta in the predicted trajectory of two tracklets. If the delta of

the predicted trajectories is less than the delta if the known locations of the tracklets, we

begin the TTC calculation algorithm defined in Algorithm 2.

Input: predictedDistance, knownDistance
if predictedDistance < knownDistance then

ttc = 0
while knownDistance + (predDistance - knownDistance) × ttc > 0 do

ttc += 0.1
end
return ttc

end
return-1

Algorithm 2: The algorithm for calculating the TTC using a predicted distance and known distance as
inputs, and returning a numerical value representing how long until two objects may collide, or -1 if they
are not at risk of collision.

35

For these objects with intersecting trajectories, a threshold (similar to that in [28]) can

be applied to determine when a near-miss event has occurred. The authors of the near-miss

detection model in [28] have stated that they applied a threshold of 0.5 < TTC < 2.0, but

do not explain how they have derived these numbers. Since the authors fail to validate their

TTC threshold, an experiment must be performed in order to validate it ourselves.

5.5.2.1 Data Usage

One concern regarding the data usage is how the resulting should be used immediately

after creation; should detected near-miss events be sent to our real-time publish/subscribe

data infrastructure, or should this data be used directly for real-time alerts? Due to the

real-time nature of Apache Kafka (the basis of our real-time publish subscribe data infras-

tructure), the data is available to consumers (workers dedicated to reading data from Kafka)

as soon as the data is pushed to Kafka by a producer [31]. Therefore, it could be said that

as soon as the data is pushed, any EDGE-compute device deployed directly onto the testbed

could be used to read this data in real-time as well. Once the EDGE node receives the

message, it could then alert any potential victims of the near-miss before it is too late .

The benefit of this method is that the inter-device communication is handled by the already

implemented Kafka libraries and wrappers, so this would make the communication between

the near-miss-detecting server and the EDGE compute node trivial. Conversely, while this

is a perfectly practical approach, it could be argued that a custom implementation (such as

a socket-based one) could be created to directly notify an EDGE-compute node of the near-

miss event, thus reducing any latency as the messages travel through the network. This can

ensure that the data reaches the potential victims first, and is stored after the notification

has been made.

Detected near-miss events are sent to our real-time publish/subscribe database for later

analysis and visualization. These messages are stored separately from the other messages

from ordinary object tracking, but include the information required to cross-reference the

36

datasets in order to re-create the scenario in simulation for further analysis. To implement

this behavior, we include the UUIDs of both objects when we submit the message to our

data infrastructure. Doing so allows us to cross-reference the two datasets using UUID as

jthe common key, thus allowing analysis on the objects’ entire paths, object types, time,

pixel-relative location and more (as discussed in Chapter 4.5.2).

5.5.2.2 Time Til Collision Threshold

Another concern to address deals with the TTC threshold applied - what does the thresh-

old mean and how was it chosen? In this portion of this section, we discuss the interpretability

of the TTC threshold and validate the threshold used in [28] as it pertains to our imple-

mentation. To begin, the TTC threshold defines the minimum and maximum acceptable

threshold to be considered a near-miss. Should the TTC exceed the upper bounds of this

threshold, then this generally means that two object’s trajectories at low risk of collision [28].

Conversely, should the TTC fall below the lower bounds of threshold, this does not neces-

sarily mean that a collision has occurred - this is only plausible (at best) if the TTC reaches

zero or near zero - but it means that one of the two objects involved must take imminent

action. In the authors’ TTC threshold 0.5 < TTC < 2.0, this means that one of the objects

has less than 0.5 seconds to react and prevent a collision. Results from this test can be seen

in Table 5.1.

Based on this information, the purpose of the threshold and its importance to the accuracy

of the detection algorithm should be clear. Therefore, it seems necessary to address how the

TTC thresholds are chosen. The authors of [28] do not discuss why they chose the threshold

0.5 < TTC < 2.0, thus testing and validating this threshold is a necessary step for the

purposes of this thesis. A testing approach was created, wherein the TTC between two

tracked objects is compared against a range of thresholds. The lower and upper bounds are

tested using increments of 0.5 between 0.5 and 5. By doing so we can compare a range of

TTC thresholds and determine in which values the TTC was accepted. By applying this

37

Table 5.1 Results from TTC Threshold Testing

Threshold Percent Accepted Threshold Percent Accepted
0.5 < ttc < 1.0 0% 2.5 < ttc < 4.0 23%
0.5 < ttc < 1.5 0% 2.0 < ttc < 4.5 27%
0.5 < ttc < 2.0 0% 2.0 < ttc < 5.0 27%
1.0 < ttc < 1.5 0% 2.5 < ttc < 4.5 27%
1.0 < ttc < 2.0 0% 2.5 < ttc < 5.0 27%
1.5 < ttc < 2.0 0% 0.5 < ttc < 2.5 64%
2.0 < ttc < 2.5 0% 0.5 < ttc < 3.0 64%
2.0 < ttc < 3.0 0% 1.0 < ttc < 2.5 64%
2.5 < ttc < 3.0 0% 1.0 < ttc < 3.0 64%
3.0 < ttc < 3.5 0% 1.5 < ttc < 2.5 64%
3.0 < ttc < 4.0 0% 1.5 < ttc < 3.0 64%
3.5 < ttc < 4.0 0% 0.5 < ttc < 3.5 88%
4.0 < ttc < 4.5 0% 0.5 < ttc < 4.0 88%
4.0 < ttc < 5.0 0% 1.0 < ttc < 3.5 88%
4.5 < ttc < 4.5 0% 1.0 < ttc < 4.0 88%
4.5 < ttc < 5.0 0% 1.5 < ttc < 3.5 88%
3.0 < ttc < 4.5 3% 1.5 < ttc < 4.0 88%
3.0 < ttc < 5.0 3% 0.5 < ttc < 4.5 91%
3.5 < ttc < 4.5 3% 0.5 < ttc < 5.0 91%
3.5 < ttc < 5.0 3% 1.0 < ttc < 4.5 91%
2.0 < ttc < 3.5 23% 1.0 < ttc < 5.0 91%
2.0 < ttc < 4.0 23% 1.5 < ttc < 4.5 91%
2.5 < ttc < 3.5 23% 1.5 < ttc < 5.0 91%

algorithm, we are able to modify the TTC threshold to determine which results in the most

accurate boundary of time in which a tracked object must respond to avoid collision. The

results from this experimentation is discussed in the next section.

5.6 Results

In order to perform tests on the TTC threshold, a dataset was created by performing near-

miss detection on 6 hours of data and 90 potential near-miss candidates using the near-miss

detection methods discussed in this chapter. In this dataset, we were able to determine some

of the weakest and strongest candidates for intervals in which TTC can lie to be considered

a near-miss. Astonishingly, the threshold 0.5 < TTC < 2.0 provided by the authors of [28]

rejected all 90 events as possible near-misses. This may represent a strict near-miss threshold,

38

allowing only the most last minute of events from being considered as likely near-miss events,

which may in fact be accurate. Due to the environment and circumstances of the experiment,

obtaining known good misses for repetitive use is both against CUIP’s privacy policy, and

highly difficult to accomplish from a technical perspective. Therefore, in the case of the

experiment performed, this threshold was too strict to justify any candidates and near-

misses. On the other end of the spectrum, a larger interval (such as 0.5 < TTC < 4.5)

allowed up to 91% of candidates to be considered a near-miss. When prioritizing safety-first,

allowing more potential near-misses pass through the threshold is ideal; conversely, when

conservation takes priority, the stricter thresholds such as the one suggested are more ideal.

In general, the interval between 0.5 < TTC < 2.5 resulted in 64% of the near-miss

candidates to be considered a near-miss. Overall, the threshold chosen for TTC is highly

dependent on the use-case; an on-board unit (OBU) creating dozens of false-positive near-

miss alerts would be frustrating to the user, but not receiving an alert at all due to a false-

negative circumstance could prove both dangerous and impractical. For the purposes of this

thesis and the long-term deployment of this technology, we will use the median threshold of

0.5 < TTC < 2.5 which yields approximately 10 near-miss events per hour. Images resulting

from our approach are shown in Figures 5.3 and 5.4.

5.7 Conclusions for Near-Miss Detection

In this chapter, we introduced the concept of determining near-miss events using the

pre-existing software architecture discussed in Chapter 4. This work makes it possible for

any monocular camera to determine near-miss events automatically. In order to detect a

near-miss event, we use the historic location data stored in tracked objects to calculate

pixel-relative velocity, which is used to calculate Time ’til Collision, or TTC. With this TTC

value, a threshold can be applied to filter out only the events whose TTC is considered

within the definition of a near-miss. To apply the best threshold, an experiment was created

to determine that the threshold 0.5 < TTC < 2.5 yielded a median number of near-miss

39

Figure 5.3 A near-miss event being detected between two vehicles at MLK and Peeples St., shown by the
red line and number drawn near the top of the image.

Figure 5.4 A near-miss event being detected between two pedestrians at the intersection of MLK and Georgia
Ave., portraying the success of the near-miss approach introduced in this chapter.

events at approximately 10 near-miss events hourly.

The approach discussed in this chapter allows us to notify travelers on the MLK Smart

40

Corridor Testbed of the event as it’s happening. While our approach is naive in the sense

that it does not take consideration for the third dimension (depth), it can still be used

practically on many of the camera angles of the many cameras on the MLK smart corridor

testbed. Where it is not practical or possible to ignore the depth component in near-miss

detection, an approach similar to the work in [32, p.32-33] can be used to approximate depth.

Using depth, we can continue to apply the same near-miss and TTC algorithms using this

third dimension to greatly improve the accuracy and usability of the approach discussed in

this chapter. This will be discussed further in Section 7.2.2.

41

CHAPTER 6

Traffic Flow Analysis

6.1 Introduction

This chapter will introduce our approach to traffic flow analysis, which uses the scalable

object tracking implementation discussed in Chapter 4 to gain insight on what paths objects

on the testbed take. This approach allows us to see details in citizens’ commutes such as

which lanes are being driven or which crosswalks are taken.

6.2 Goal of Traffic Flow Analysis

The ability to determine the routes taken by objects (such as pedestrians and vehicles)

on the MLK Smart Corridor testbed has many practical uses such as real-time route opti-

mization and robust traffic congestion data acquisition. The goal of implementing a traffic

flow analytics platform is to be able to determine in real-time what actions travelers on the

testbed choose to take. Not only would this make it possible to build a model for predicting

traffic flow, but it allows us to show users the real-time congestion status of the intersections

throughout the testbed. In the long-run, this enables us to build out route-optimization

algorithms using this real-time data in order to optimize the travel time and fuel efficiency

of vehicles in downtown Chattanooga Tennessee [33].

Having real-time analytics on the state of traffic in the testbed allows us to optimize

traffic management in many ways [33], but automating this process without duplicating

results can often be challenging. The goal of this chapter is to use the real-time object

tracking implementation discussed in Chapter 4 to determine object routes. Data from

42

these routes can be used to help citizens with real-time information to help re-route them

on the best path for fuel-efficiency or time. Additionally, this route data can be used to give

a robust definition of traffic congestion, detailing exactly in which lanes the congestion lies.

In order to accomplish this, a directed graph approach will be used to interpret the possible

movements of pedestrians, cyclists and vehicles as they traverse the testbed. This graph can

enforce “regular” traffic paths (such as ensuring that a vehicle isn’t on a sidewalk), while

also reporting anomalies such as these for safety assessment in the future.

6.3 Related Works

The authors of “CarWeb: A Traffic Data Collection Platform” [34] introduce CarWeb,

their GPS-based implementation of a traffic data collection platform. Their paper, intro-

duced in 2008, introduces a collection platform that utilizes the GPS of mobile phone devices

within vehicles. This platform is said to be designed to provide real-time traffic information

for route optimization [35] and intelligent transportation systems [36]. While their approach

achieves their goal of creating a network which provides real-time traffic flow analytics and

the concept was novel when it was introduced, this concept has been seen in many modern-

day mobile mapping applications (such as Apple Maps and Google Maps), where traffic

congestion is not crowd-sourced (such as Waze’s implementation of traffic flow). Conversely,

this implementation does not take into account those individuals without mobile devices or

with GPS capabilities disabled. In these cases, these individuals are not recorded or taken

into account when considering congestion and overall traffic flow.

The authors of “Microscopic Traffic Data Collection by Remote Sensing” [37] have devel-

oped an offline method for creating a dataset from traffic flow patterns in recorded footage.

This data was collected by a digital camera inside of a helicopter, and was used with their

software capable of detecting and tracking vehicles from video footage. While this paper

was introduced in 2003, their approach to using traffic flow analytics through object track-

ing is an approach very similar to the one to be discussed in this thesis. Conversely, the

43

scale and practicality greatly differ; the utilization of a helicopter for offline imagery of the

Dutch highway is highly impractical in both costs and benefit, especially since it only cap-

tures 210m of the highway. A dedicated internet-capable camera would allow for constant

real-time analysis and greatly expand the scope that their algorithms could run. In their

paper, the authors state that the algorithms are greatly influenced by weather and camera

movement, both of which are greatly improved when using modern-day object detection and

tracking approaches such as the ones discussed in this thesis. Lastly, the authors explicitly

state that their approach only works on vehicles, which is a valid goal for a motorway though

a shortcoming for our necessities in a live urban environment. Many of the shortcomings

and impracticalities of this approach are addressed by the work discussed in this thesis.

The authors of “Video-Based Vehicle Detection and Classification System for Real-Time

Traffic Data Collection Using Uncalibrated Video Cameras” [33] discuss their approach to

collecting data on traffic patterns while foregoing the use of typical traffic sensors. The au-

thors propose their cost-effective approach to create a video-based vehicle detection and

classification system in order to effectively detect and count vehicles using pre-existing

surveillance cameras. Their implementation resolves issues with negative effects from object

occlusion and slight camera vibrations in order to detect vehicles with 97% accuracy. These

issues are no longer present in modern-day implementations of object detection and object

tracking, wherein occlusion is an expectation that is accounted for (seen in [11, 19–21, 38]

and many more). While their approach allows them to gather vehicle count with reasonable

reliability, the authors were unable to resolve their issues with headlight reflection, cam-

era vibrations, and occlusion, adding additional inaccuracies to their traffic data collection

approach.

6.4 Motivations and Contributions

While the authors’ works discussed in Section 6.3 were unique for their given environ-

ments and limitations, none fit directly into the MLK Smart Corridor testbed. We want to

44

be able to integrate real-time traffic flow analysis with the already implemented real-time

object tracking approach discussed in Chapter 4. This implementation should be able to

detect anomalies in individuals’ commute (such as driving on the sidewalk and jay-walking),

while also making it possible to consume these metrics in real-time using our real-time data

infrastructure. Lastly, this approach makes it possible to quickly and easily associate a

tracked object with some action for events such as turning, crossing crosswalks, and more.

This approach should run after the obsolete tracklets (discussed in Chapter 4) are gathered,

avoiding any additional latency or overhead for the original object tracking and near-miss

detection approach.

6.5 Methods

Determining the location of an object in terms of a region of interest (ROI) is a multi-stage

process. This process begins with mapping polygon coordinates (pixel-relative) to ROIs; we

must define a polygon that describes an area, such as the left turn lane. Next, we must

apply these polygons to objects’ mapping of historic bounding boxes to determine which

section it is in. To help mitigate issues with depth, our approach should focus on a point

at the bottom-center of the bounding box as it is most accurately represents the change in

an object’s position without being skewed by depth. This is necessary to most accurately

describe the paths of objects, and is visually explained in Figure 6.1. There may be the

possibility that the bottom-center point of the object lies on the intersection of two regions

of interest, as the creation process of the ROI-representing polygons is approximate. In the

event that the bottom-center point lies inside of two ROIs, the intersection of unions, or IOU,

is taken between the polygons and the objects bounding box. Whichever intersection has

the highest area will be chosen as the ROI for the object at that time. Lastly, the locations

are applied to a directed graph to determine and validate the actions of the tracked objects,

detect any anomalous movement (such as jay-walking or dangerous driving), and describe

the action taken in plain terms.

45

Figure 6.1 Top: Skewed delta in Y-value, showing a delta of only 42 pixels due to depth. Bottom: Actual
delta in Y-value, showing a delta of 134 pixels. This difference is important as it indicates the
actual movement of the object instead of the perceived movement produced by the camera’s lack
of depth.

6.5.1 ROI Labelling

In order to create polygonal representations of every ROI seen by cameras on the MLK

Smart Corridor testbed, a tool named LabelMe [39] (based the original web-based annota-

tion tool [40]) was used for its ability to annotate polygons, rather than rectangles. This

advantage allows us to annotate every ROI across every camera deployed on the testbed,

with a label corresponding to its purpose. During the labelling process, single-lane por-

tions of Martin Luther King Boulevard were simply labeled “MLK-EB” or “MLK-WB” for

east-bound or west-bound traffic respectively. Crosswalk labels describe the street they are

crossing with their cardinal direction, and sidewalks are labelled with the assumption that

pedestrians, like drivers, walk on the right side of the road. The LabelMe tool produces

a JSON file (seen in Figure 6.4), organized by camera id similar to the other algorithms

described in Chapter 4. The polygons were turned into objects using the Python library

shapely [41], which handles the complexities of polygonal geometry for us. You can see some

examples of the labelling process in Figures 6.2 and 6.3.

46

6.5.2 ROI Matching

Once the polygon-representations of ROIs-per-intersection have been created, it is then

possible to apply these ROI representations in-code. To do so, the set of points created

from the labelling process are used to create polygon instances using the Python library

shapely [41]. Once these are created, we are able to use the library to determine if some

point of form (x, y) lies within this polygon. As discussed in our methods, we use the bottom-

center of the object’s bounding box as this point to both avoid skewed y-values due to depth

and to best determine what surface the object is on.

Also discussed in our methods is the chance that an object’s bottom-center point lies

inside of more than one ROI polygon. In the event that this happens, we take the IOU of

the object’s bounding box against the polygons (once again using geometry utilities provided

by shapely [41]). Whichever polygon has the highest IOU with the object’s bounding box is

chosen. This algorithm can be seen in detail in Algorithm 3.

Input: collidedPolygons, boundingBox
highestIou = 0
highestPoly = None
for label, shape in collidedPolygons do

iou = shape.intersection(boundingBox).area / shape.union(boundingBox).area
if iou > highestIou then

highestIou = iou highestPoly = shape
end

end
return highestPoly

Algorithm 3: The algorithm for picking an ROI Polygon based on intersection of unions. Inputs include
a list of the polygons which the bounding box collided with, and the bounding box itself. Outputs the
polygon which the bounding box most collided with.

6.5.3 Action Definition

The last goal was to create easily understandable actions for objects using the implemen-

tations of traffic flow discussed in this chapter. These actions should be formatted similar to

“took left turn”, “crossed crosswalk”, “continued straight”, etc.. In order to accomplish this,

a directed graph approach can be taken to gain multiple benefits. The first of these benefits

47

is that the directed graph can be used verify the path of the object by enforcing possible

movements of the object. By defining the permissible path for each type of object tracked

on the testbed, we can catch anomalous actions such as pedestrians walking in streets or

vehicles driving on the sidewalk.

The second benefit of using a directed graph is that it can allow us to understand the path

that was taken in mathematical context, upon which we can apply algorithms to determine

the action taken. An example of the logic for determining the action of a pedestrian can be

seen in Algorithm 4. In lines 2 through 3, we ensure that the iteration is still within the

bounds of the graph. Lines 4 and 5 initialize temporary variables for easier understanding

of index positions. Line 6 begins traversing a path in which the sidewalk is currently being

taken. If it is, lines 7 through 12 verify if a crosswalk was recently traversed. If the currently

traversed path isn’t at a sidewalk, then lines 16 through 21 verify if a sidewalk was recently

traversed assuming that a crosswalk is currently traversed. If in any of these cases these

predictable paths are not adhered to (for example, starting or ending in a crosswalk), then

this is reported as an anomalous action.

6.6 Results

In a real-time testing environment ROI matching have been proven successful. While

this approach has many uses beyond the scope of traffic flow analysis, we have tested this

approach on a real-time video stream from the MLK Smart Corridor’s testbed. The success of

the ROI matching process can be seen in Figure 6.5. In this figure we can see that the objects

are properly correlated to the current lane they are in, and this data is recorded for later

analysis such as the path generalization discussed in this section. While implementations

for all objects traversing the testbed have not yet been established, the action generalization

process has also proven successful in preliminary testing. Unfortunately, a use-case for this

data has not yet been proposed or developed.

48

Input: objectGraph
1 for index, node in objectGraph do
2 if index− 1 >= 0 then
3 if index + 1 < len(objectGraph) then
4 previous = objectGraph[index - 1]
5 next = objectGraph[index + 1]
6 if node.label == “sidewalk” then
7 if previous.label == “crosswalk” then
8 return “Crossed Crosswalk”
9 end

10 if next.label == “crosswalk” then
11 return “Crossed Crosswalk”
12 end

13 end
14 else
15 if node.label == “crosswalk” then
16 if previous.label == “sidewalk” then
17 return “Crossed Crosswalk”
18 end
19 if next.label == “sidewalk” then
20 return “Crossed Crosswalk”
21 end

22 end

23 end

24 end

25 end

26 end
27 return “Continued Straight”

Algorithm 4: The algorithm for picking an action based on the graph made for the object’s path.

6.7 Conclusions for Traffic Flow Analysis

Designing and implementing a traffic flow data collection algorithm which works in con-

junction with the object tracking approach discussed in Chapter 4 requires some manual

pre-labelling, but yields significantly helpful results for use in intelligent routing systems and

real-time mapping applications. The approach discussed in this chapter allows us to accu-

rately determine routes of vehicles and pedestrians, as well as catch any anomalies such as

jay-walking and poor driving practices. The data produced by the methods discussed in this

chapter allow for predictive modelling and forecasting based to further help the community

in which the MLK Smart Corridor presides.

49

Figure 6.2 Polygonal ROI layout visualized at the intersection of MLK and Peeples. These are provided as
a result of using LabelMe to hand label each segment of the street and sidewalk.

Figure 6.3 Polygonal ROI layout visualized at the intersection of MLK and Georgia.

50

Figure 6.4 Resulting JSON Document from Labelling the Intersection of MLK and Peeples, which makes it
possible to read in the data from manual labelling into our script automatically.

Figure 6.5 The ROI matching implementation live on the MLK Smart Corridor at Central Ave., showing
each vehicle being both tracked and matched to a road segment from manual labelling.

51

CHAPTER 7

Conclusion

7.1 Closing Thoughts

This thesis discusses three implementations of video analytics using the testbed on the

MLK Smart Corridor. We utilize the testbed’s cameras to perform video analytics task

at large-scale, and consider the city’s growth to create video analytics applications with

scalability in mind. All forms of video analytics discussed in this thesis prioritize real-time

analytics and personal privacy to create fully anonymous solutions that can still aid citizens

in their day-to-day commute throughout the corridor.

The basis of the video analytics tasks discussed in this thesis is scalable object tracking,

discussed in Chapter 4. This implementation of tracking allows us to treat objects as events,

wherein the object is able to be tracked for the entirety of its existence within the camera’s

viewing angle. Once the object leaves the viewing angle, we are able to submit the data

from the tracked object to our real-time data infrastructure, wherein the data can pursue

further processing or can be consumed by another software implementation.

This basis makes the remaining two video analytics possible. The near-miss detection

approach discussed in this thesis utilizes the object tracking implementation of historic object

locations to calculate a pixel-relative velocity for use in trajectory prediction. This predicted

trajectory can be used to obtain the TTC between objects on the testbed. Should the TTC

fall within the threshold, then a near-miss is detected and recorded.

Our object tracking basis also allows us to perform traffic flow analytics and data col-

lection. With the data collection implementation, we are able to determine any anomalous

activity such as jay-walking pedestrians or poor driving habits. Additionally, a directed

52

graph approach was used to translate the path taken by an object into a string which best

describes the action overall. The approach used for traffic flow data collection can be used

to build a predictive model, and analytics on this collected data can be used to determine

traffic trends throughout the MLK Smart Corridor.

7.2 Future Work

Below we discuss tasks for future work as they relate to each variant of video analytics

proposed in this thesis.

7.2.1 Scalable Object Tracking

There are a few methods which can be applied to improve the proposed solution for

scalable object tracking, the first of which has to do with frame-rate. Due to the nature

of how SORT [11] works, it is very frame-rate dependent; since it uses a Kalman Filter to

predict the next location, a higher frame-rate will increase the accuracy of this prediction.

The testbed on which this work is deployed is equipped with cameras which stream two types

of video stream in parallel: H.264, and Motion Joint Photographic Experts Group (MJPEG).

MJPEG is the most convenient solution to use in code as it has little-to-no overhead to utilize,

but comes at the cost of low frame-rate (6 to 8 FPS) as a result of the camera itself. This

is believed to be the main contributor to the re-assigned ID issue discussed in Chapter 4.6.

Since the H.264 stream does maintain 30FPS with no issue it would is the ideal solution,

but includes a decoding overhead which is not present when using the MJPEG stream. A

solution has been implemented, but not yet deployed, which utilizes Compute Unified Device

Architecture (CUDA) to accelerate the decoding process. This implementation is still not

yet finalized nor has it been deployed on a dedicated compute device, so official metrics and

reporting have not been reassessed using the improved frame-rate.

53

7.2.2 Near-Miss Detection

While this approach is naive in the sense that there is no consideration for the depth as

the third dimension in the actual space, it allows us to calculate a pixel-relative velocity

which has many practical approaches on its own. With some mathematics similar to the

work in [32, p.32-33], depth can be approximated using average pixel-heights for detected

objects at a known distance. Utilizing depth will greatly reduce the number of false-positives

due to depth.

Figure 7.1 Screenshot of the new dashboard created using real-time data from the testbed.

7.2.3 Traffic Flow

The implementation of traffic flow data collection discussed in this thesis was implemented

solely for pedestrians and vehicles. This approach has not yet been implemented to take

into account bicycle lanes, as the ROI Labelling process did not include bicycle lanes. Re-

performing the labelling process with bicycle lanes in consideration, it will be possible to

implement bicycle traffic flow as well.

54

Additionally, the data from the traffic flow data collection process has not yet been

utilized. There are a few possible use-cases for the traffic flow data, such as creating a

predictive model using the historic traffic flow data. This can be merged with additional

data such as weather to determine what routes are taken as a response to these conditions.

This data can also used for real-time route optimization, avoiding intersections along the

testbed where the traffic volume is above average. Lastly, this data can be integrated into

the work-in-progress dashboard made for the MLK Smart Corridor testbed (shown in Figure

7.1), showing a real-time view of traffic volume at the intersections on the dashboard.

55

REFERENCES

[1] “Hamilton County, Tennessee Population 2020.” [Online]. Available: https:
//worldpopulationreview.com/us-counties/tn/hamilton-county-population/

[2] “Tennessee County Crash Data.” [Online]. Available: https://www.tn.gov/safety/
stats/crashdata.html

[3] Department of Economic and Social Affairs, “World Urbanization Prospects,” United
Nations, 2018.

[4] M. d’Aquin, J. Davies, and E. Motta, “Smart Cities’ Data: Challenges and Opportu-
nities for Semantic Technologies,” IEEE Internet Computing, vol. 19, no. 6, pp. 66–70,
Nov 2015.

[5] G. Bradski and A. Kaehler, Learning OpenCV, 1st Edition, 1st ed. O’Reilly Media,
Inc., 2008.

[6] P. N. Druzhkov, V. L. Erukhimov, N. Y. Zolotykh, E. A. Kozinov, V. D. Kustikova,
I. B. Meerov, and A. N. Polovinkin, “New Object Detection Features in the OpenCV
Library,” Pattern Recognition and Image Analysis, vol. 21, no. 3, p. 384, sep 2011.
[Online]. Available: https://doi.org/10.1134/S1054661811020271

[7] R. C. Luo and C. C. Lai, “Multisensor Fusion-Based Concurrent Environment Mapping
and Moving Object Detection for Intelligent Service Robotics,” IEEE Transactions on
Industrial Electronics, vol. 61, no. 8, pp. 4043–4051, Aug 2014.

[8] A. Raghunandan, Mohana, P. Raghav, and H. V. R. Aradhya, “Object Detection Al-
gorithms for Video Surveillance Applications,” in 2018 International Conference on
Communication and Signal Processing (ICCSP), April 2018, pp. 0563–0568.

[9] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,” 2015.

[10] A. Yilmaz, O. Javed, and M. Shah, “Object Tracking,” ACM Computing Surveys, 2006.

[11] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple Online
and Realtime Tracking,” CoRR, vol. abs/1602.00763, 2016. [Online]. Available:
http://arxiv.org/abs/1602.00763

[12] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple Object Tracking Using K-
Shortest Paths Optimization,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 9, pp. 1806–1819, Sep. 2011.

[13] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep
association metric,” in Proceedings - International Conference on Image Processing,
ICIP, 2018.

56

[14] A. Harris, J. Stovall, and M. Sartipi, “Mlk smart corridor: An urban testbed for smart
city applications,” in 2019 IEEE International Conference on Big Data (Big Data),
2019, pp. 3506–3511.

[15] “Busiest Streets in Chattanooga in Tennessee, United States of America.” [Online].
Available: http://www.gomapper.com/travel/busiest-streets-in/chattanooga.html

[16] “CUIP.” [Online]. Available: https://utccuip.com/

[17] B. Babenko, M. Yang, and S. Belongie, “Robust Object Tracking with Online Multiple
Instance Learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 33, no. 8, pp. 1619–1632, Aug. 2011.

[18] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object tracking using
adaptive correlation filters,” in 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, June 2010, pp. 2544–2550.

[19] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” CoRR, vol. abs/1506.0, 2015. [Online].
Available: http://arxiv.org/abs/1506.02640

[20] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” arXiv preprint
arXiv:1612.08242, 2016.

[21] ——, “YOLOv3: An Incremental Improvement,” arXiv, 2018.

[22] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” CoRR, vol.
abs/1703.06870, 2017. [Online]. Available: http://arxiv.org/abs/1703.06870

[23] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks,” CoRR, vol. abs/1506.01497, 2015.
[Online]. Available: http://arxiv.org/abs/1506.01497

[24] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as Points,” CoRR, vol.
abs/1904.07850, 2019. [Online]. Available: http://arxiv.org/abs/1904.07850

[25] S. Aminmansour, F. Maire, and C. Wullems, “Video Analytics for the Detection of Near-
Miss Incidents on Approach to Railway Level Crossings,” in 2014 Joint Rail Conference,
JRC 2014, 2014.

[26] R. Ke, J. Lutin, J. Spears, and Y. Wang, “A Cost-Effective Framework for Automated
Vehicle-Pedestrian Near-Miss Detection Through Onboard Monocular Vision,” in IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops,
2017.

[27] T. Surasak, I. Takahiro, C. H. Cheng, C. E. Wang, and P. Y. Sheng, “Histogram of ori-
ented gradients for human detection in video,” in Proceedings of 2018 5th International
Conference on Business and Industrial Research: Smart Technology for Next Generation
of Information, Engineering, Business and Social Science, ICBIR 2018, 2018.

[28] H. Kataoka, T. Suzuki, S. Oikawa, Y. Matsui, and Y. Satoh, “Drive Video Analysis
for the Detection of Traffic Near-Miss Incidents,” in Proceedings - IEEE International
Conference on Robotics and Automation, 2018.

57

[29] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-pooled
deep-convolutional descriptors,” 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun 2015. [Online]. Available: http://dx.doi.org/10.
1109/CVPR.2015.7299059

[30] Y. Matsui, M. Hitosugi, K. Takahashi, and T. Doi, “Situations of Car-to-Pedestrian
Contact,” Traffic Injury Prevention, 2013.

[31] K. M. M. Thein, “Apache kafka: Next generation distributed messaging system,” Inter-
national Journal of Scientific Engineering and Technology Research, vol. 3, no. 47, pp.
9478–9483, 2014.

[32] R. Thompson, “Data-fused urban mobility applications for smart cities,” Masters
Theses and Doctoral Dissertations, 2018. [Online]. Available: https://scholar.utc.edu/
theses/571

[33] G. Zhang, R. P. Avery, and Y. Wang, “Video-based vehicle detection and classification
system for real-time traffic data collection using uncalibrated video cameras,” Trans-
portation Research Record, 2007.

[34] C. H. Lo, W. C. Peng, C. W. Chen, T. Y. Lin, and C. S. Lin, “CarWeb: A traffic data
collection platform,” in Proceedings - IEEE International Conference on Mobile Data
Management, 2008.

[35] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag, “Adaptive fastest path
computation on a road network: A traffic mining approach,” in 33rd International
Conference on Very Large Data Bases, VLDB 2007 - Conference Proceedings, 2007.

[36] X. Li, J. Han, J. G. Lee, and H. Gonzalez, “Traffic density-based discovery of hot routes
in road networks,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2007.

[37] S. P. Hoogendoorn, H. J. Van Zuylen, M. Schreuder, B. Gorte, and G. Vosselman,
“Microscopic Traffic Data Collection by Remote Sensing,” in Transportation Research
Record, 2003.

[38] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Occlusion-Aware R-CNN: Detecting
Pedestrians in a Crowd,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018.

[39] K. Wada, “labelme: Image Polygonal Annotation with Python,” https://github.com/
wkentaro/labelme, 2016.

[40] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “LabelMe: A database
and web-based tool for image annotation,” International Journal of Computer Vision,
2008.

[41] S. Gillies, A. Bierbaum, K. Lautaportti, and O. Tonnhofer, “Shapely,” 2014.

58

VITA

Jose Stovall, born in Pensacola Florida, grew up in the Middle Tennessee area where he

attended grade school. Upon graduating from LaVergne High School in 2011, he pursued

an education in Digital Animation at Middle Tennessee State University, where he later

found his passion for computer science. After taking a three-year hiatus from a college

education due to a lack of funding, he returned to academia in 2015 at the University of

Tennessee at Chattanooga. Upon finishing his undergraduate with a Bachelor’s of Science

in Computer Science with a focus in Software Systems, he continued his education at the

university. Beginning his pursuit for even higher education in 2018, Jose has graduated from

the University of Tennessee at Chattanooga with a Master’s of Science in Computer Science

with a focus of Data Science in May of 2020.

59

