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Abstract

Sand-textured soils are found in a wide range of landscapes, from dune fields to coastal
areas. The quantification of light penetration through these soils, particularly considering
possible variations in the presence of water in their pore space, is of considerable interest not
only for remote sensing applications, but also for agricultural, ecological and geophysical
studies. Despite its relevance, however, the literature on this topic is still scarce. Moreover,
the available light penetration (transmittance) datasets for these soils are affected by ex-
perimental and modeling limitations. These include, for instance, the use of samples with
morphological and mineralogical characteristics markedly different from those of naturally
occurring sand-textured soils. In the investigation described in this thesis, we demonstrate
the importance of properly accounting for the iron oxide contents and grain (particle) dis-
tributions of these soils in applied research initiatives linked to their spectral responses,
notably in the 400 to 1000 nm region of the light spectrum. In order to overcome the
limitations outlined above and strengthen the current knowledge in this area, we employed
a predictive simulation platform supported by measured data. This platform has as its
central component a first-principles light transport model for particulate materials whose
implementation has been substantially enhanced during this work. Thus, using this plat-
form, we were able to perform controlled in silico experiments on selected representative
samples of these soils by systematically varying their water content, their thickness and the
angle of light incidence. Our findings provide an original multi-faceted assessment, both
in terms of spectral and angular dependencies, of the light transmission profiles of dry and
wet sand-textured soils.
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Chapter 1

Introduction

Computer simulations, or in silico experiments, have been recognized to be instrumental to

resolve critical issues related to important remote sensing targets, notably vegetation, soil

and snow cover, especially at a global scale (e.g., monitoring of target status, prediction

of environmentally-triggered changes and retrieval of specific target properties), in the

quantitative remote sensing area [29, 30, 32, 39]. Similarly, the applied research described

in this thesis aims to contribute to the increase of the fidelity to cost ratio of remote sensing

applications and geoscience investigations involving naturally occurring sand-textured soils,

commonly referred to as natural sands. To achieve this goal, we employed a computational

platform significantly enhanced for this purpose during this work.

Sand-texture soils (Fig. 1.1) comprise over 20% of the planet’s land surface [21]. During

the last decades, they have become one of the primary focal points of remote sensing

research (e.g., [2, 3, 55, 58, 63]) and geoscience investigations (e.g., [44, 51, 61]). This

role is bound to become even more prevalent as aridification and desertification processes
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Figure 1.1: Examples of landscapes formed by sand-textured soils.

elicited by climate change continue to have a negative impact on more than two billion

people living in drylands [13]. Moreover, these soils may cover other important remote

sensing targets such as arable fields and crops [1]. The high-precision remote monitoring

of these targets requires reliable information about the depth from which the measured

signal originates [20]. This information, in turn, is directly associated with these soils’

light attenuation properties [66].

Besides their relevance for remote sensing application properties, the light attenuation

properties of sand-textured soils are also central in applications with a strong geoscience

component, i.e., involving Earth’s soil, mineral, water and energy resources, and their

interrelationships at macroscopic (e.g., erosion of coastal terrains) and microscopic (e.g.,

physicochemical reactions on the surface of mineral grains) scales [46]. For example, the

high-fidelity remote estimation of the depth at which light can penetrate natural sand

layers can lead to more reliable predictions about the germination of stress-adapted seeds

[12, 38, 69], particularly in arid landscapes. It also represents an important piece of data

in geophysical studies relying on the optical dating [43] to predict changes in sand deposits
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[56], specially those found in regions more vulnerable to environmental changes like coasts

and deltas [18].

Light penetration in natural sands can be directly measured (in terms of transmittance)

using a spectrophotometer [3, 12, 66, 69]. Alternatively, it can be indirectly gauged using

the germination of light-sensitive seeds or the presence of growing algae as bioindicators [12,

20, 38, 69]. However, despite noteworthy efforts in these areas, the number of transmittance

datasets available in the literature to date is still scarce. To make matters worse, besides

covering a limited range of naturally-occurring sand-textured soils and water saturation

states, these datasets have their generalization often hindered by experimental constraints.

Among these constraints, one can highlight the absence of key morphological features

of natural sands (e.g., the complex size distribution patterns of their constituent grains)

in soil samples artificially prepared and mixed in the laboratory [3, 65], as well as the

selection of samples with specific characteristics (e.g., negligible presence of iron oxides )

to facilitate the detection of transmittance signals [66]. Moreover, models (e.g., [3, 66])

used in conjunction with these experimental efforts do not explicitly incorporate in their

formulations the particulate nature of natural sands.

In this thesis, in order to overcome these constraints and strengthen the current knowl-

edge about light penetration in natural sands, we employed a predictive computational

(in silico) investigation framework that comprehensively takes into account the mineralog-

ical and morphological characteristics of these materials, including their granular structure

and composition. Using actual measured spectral datasets as references and sand charac-

terization parameter values consistent with well-established soil information provided in

the related literature, we performed controlled in silico experiments to evaluate the light
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penetration depth of representative samples of natural sands subject to distinct water sat-

uration states. Our in silico experiments were carried out considering the 400 to 1000 nm

region of the light spectrum, which corresponds to spectral domain often employed in the

remote assessment of natural sands’ mineralogy (e.g., [44, 61, 63]) and related geoscience

processes (e.g., [14, 33, 69]). The outcomes of our investigation demonstrate the importance

of taking into account the presence of iron oxides when estimating the light penetration

depth of these soils in the spectral region of interest, and provide a comprehensive picture

about a broad range of factors affecting these estimations.

Our findings demonstrate that the presence of iron oxides in natural sands needs to be

appropriately taken into account so that one can obtain reliable light penetration depth

estimations for these soils. The outcomes of our controlled in silico experiments also pro-

vide a high-fidelity portrait of variations on their transmittance in response to changes in

light incidence geometry and water saturation conditions.

The remainder of this thesis, whose preliminary findings have been the object of a

conference publication [7], is organized as follows. In Chapter 2, we provide a concise

review about soil characteristics relevant for our investigation. In Chapter 3, we describe

our investigation framework. In Chapter 4, we present our findings, discuss their conceptual

and practical implications, and examine their significance in a broader applied research

context. Finally, in Chapter 5, we provide concluding remarks and outline directions for

future research.
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Chapter 2

Relevant Soil Characteristics

Soils are primarily composed of grains (particles) of weathered rocks immersed in a medium

of air and water (the pore space) [15]. The fraction of the total volume of a soil sample

not occupied by its constituent grains is defined as its porosity [16]. This quantity, in

turn, is affected by the soil texture, i.e., the proportion of sand-sized grains (particles with

dimensions between 0.05 to 2.0 mm), silt-sized grains (particles with dimensions between

0.002 to 0.05 mm) and clay-sized grains (particles with dimensions smaller than 0.002 mm)

forming the sample [47, 64], with coarse soils normally being less porous than finer soils

[16]. On average, naturally-occurring sand-textured soils contain at least 85% sand-sized

particles [64], and their porosity normally varies between 35 and 50% [15, 60].

The rocks forming the core (parent) material of the sand-textured soils’ constituent

grains are typically silicate minerals like quartz [41]. Trace amounts of impurities, notably

iron oxides (e.g., hematite, goethite and magnetite), can significantly affect the spectral

signatures of these soils, particularly in the visible to near-infrared region between 400
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Figure 2.1: A sand-textured soil (left) is composed of grains (right) immersed in a pore
space. Iron oxides are often present as pure particles, mixed with the grains’ core material
(e.g., quartz), or embedded in their coatings.

to 1000 nm, and their overall appearance (Fig. 2.1). In fact, these impurities are largely

responsible for the color of these soils [22, 35, 50, 67].

Depending on the weathering process responsible for the formation of sand-textured

soils, their core materials may occur as pure particles [17], coated particles [70] or mixed

with impurities [50]. A particle coating is formed by a mineral (e.g., kaolinite) matrix that

may embed impurities [70]. These may also occur as pure particles [17].

The presence of water in the pore space of a natural sand sample can be quantified

in terms of its degree of water saturation, denoted by S. This quantity corresponds to

the probability of light encountering water while traversing the pore space of a given sand

sample [35], and it can vary from zero (dry state) to one (water-saturated state).

There are also situations in which the grains of dry layers of natural sands, albeit

immersed in a pore space filled with air, may be encapsulated by water films [55]. This

may happen, for example, after the bulk of water in the pore space has been either drained

via gravity or partially evaporated, leaving only the water films around the grains [47].
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Figure 2.2: Diagrams (not to scale) illustrating distinct water saturation states (associated
with the presence, or absence, of water in the pore space) of a given natural sand sample.
For clarity purposes, only a relatively small number of grains (particles) are depicted in the
diagrams. From left to right, dry state, intermediate water-saturated state, water-saturated
state and dry state with the grains encapsulated by water films.

The diagrams presented in Fig. 2.2 illustrate these different patterns of water presence

in natural sand samples. These patterns can significantly affect the optical properties of

these soils [63, 69]. Consequently, they need to be properly taken into account by remote

sensing applications targeting these soils (e.g., aimed at the retrieval of information about

their moisture content [2, 66]), as well as related geoscience investigations (e.g., aimed

at the assessment of their capability of eliciting seed germination and sustaining plant

development [47, 11]).
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Chapter 3

Investigation Framework

In this chapter, we initially present the natural sand samples employed in our investigation

along with the data used in their characterization. We then concisely describe our in silico

experimental setup and the different sets of controlled experiments performed in this work.

Lastly, we review the outcomes of preliminary experiments performed to establish a baseline

for our investigation.

3.1 Selected Sand-Textured Soil Samples

In our investigation, we considered samples from four natural sand deposits with distinct

morphological and mineralogical characteristics, namely a red (hematite-rich) Australian

dune, a dark (magnetite-rich) Peruvian beach site, a yellowish Californian outcrop and

a red Saudi Arabian dune. These samples were employed in actual reflectance measure-

ments [59] whose results were made available in the U.S. Army Topographic Engineering
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Center (TEC) database [59] under the identifications TEC #10019201, TEC #10039240,

TEC #19au9815 and TEC #13j9823, respectively.

In the characterization of the selected samples, we considered quartz as their core

material and kaolinite as their coating matrix. In addition, we employed mean values for

their porosity (0.425) [15], grain roundness (0.482) [68] and grain sphericity (0.798) [68].

The remaining parameter values used in their characterization are given in Table 3.1. In

the absence of complete characterization datasets for the samples, these remaining values

were also chosen from physically valid ranges reported in the literature [35] so that we

could establish sound baselines for our investigation (Section 3.3).

samples sa si µp µm µc rhg ϑhg ϑm

Australian dune 90 10 0 50 50 0.80 0.012 0.0
Peruvian beach 95 5 50 0 50 0.375 0.05 0.17
Californian outcrop 92.5 7.5 50 25 25 0.25 0.042 0.0
Saudi Arabian dune 90 10 0 75 25 0.012 0.5 0.0

Table 3.1: Parameter values used to characterize the sand-textured soil samples considered
in this investigation. The texture of the samples is described by the percentages (%) of
sand (sa) and silt (si). The particle type distributions considered in the simulations are
given in terms of the percentages (%) of pure (µp), mixed (µm) and coated (µc) grains.
The parameter rhg corresponds to the ratio between the mass fraction of hematite to ϑhg

(the total mass fraction of hematite and goethite). The parameter ϑm represents the mass
fraction of magnetite, which is assumed to appear as pure particles [4].

Note that the percentages of the sand-sized and silt-sized particles depicted in Table 3.1

are employed to compute the dimensions of the samples’ grains (Table 3.2) using a particle

size distribution provided by Shirazi et al. [62]. Also, based on the samples’ descriptions

[59], we assumed the presence of clay-sized particles to be negligible.
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samples ma mi

Australian dune 0.126 0.022
Peruvian beach 0.141 0.021
Californian outcrop 0.132 0.022
Saudi Arabian dune 0.126 0.022

Table 3.2: Average dimensions (given inmm) of the major axesma andmi that respectively
define the ellipsoids used to represent the sand-sized and the silt-sized particles forming
the sand-textured soil samples considered in this investigation.

It also worth mentioning that Rinker et al. [59] did not report any presence of water or

moisture when they performed the actual reflectance measurements employed as references

in this investigation. Accordingly, we set the samples’ degree of water saturation to zero

during the computation of the modeled reflectance curves presented in Section 3.3.

3.2 In Silico Experimental Setup

During our controlled in silico experiments, we have computed directional-hemispherical

reflectance and transmittance curves using an enhanced version of the first-principles light

transport model originally known as SPLITS (Spectral Light Transport Model for Sand)

[35]. The stochastic formulation employed by this model includes parameters describing

the morphology and mineralogy of the particles forming sand-textured soils, as well as

the distribution of these particles within the pore space. To enable the reproduction and

extension of our in silico experimental results, we have made an enhanced implementation

of SPLITS (Appendix A), termed SPLITS-2 [28], available online [54], via a model distri-

bution system [5], along with the supporting spectral datasets (e.g., refractive index and

extinction coefficient curves [53]) associated with the various minerals considered in this

10



investigation.

Each modeled radiometric curve was obtained using a virtual spectrophotometer [9]

and casting 106 rays (per sampled wavelength) onto the natural sand samples. For the

baseline reflectance experiments (Section 3.3), we considered the samples’ thickness equal

to 1 m, a default value that guarantees depth-invariant readings [20] like those obtained in

the actual measurements [59]. For the transmittance experiments, we considered distinct

values for the samples’ thickness to evaluate their light transmission profiles as described

below.

We have performed four sets of transmittance experiments (Section 4). These sets,

henceforth referred to as I, II III and IV, correspond to the four distinct patterns of water

presence depicted in Fig. 2.2, namely a dry state (S = 0), an intermediate water-saturated

state (S = 0.5), a water-saturated state (S = 1) and a dry state (S = 0) with the

grains encapsulated by water films, respectively. It is worth noting that the thickness

of a water film depends on the sand sample’s morphological characteristics, its previous

water saturation state [47, 48] and environmental factors such as temperature [42]. For the

purposes of our investigation, we assigned to the water film thickness a value of 5 µm, which

is consistent with actual experiments involving the presence of water films encapsulating

the grains of quartz-sand samples [48].

Each set of transmittance experiments, in turn, was composed of two subgroups of

simulations, one considering the values assigned to the samples’ iron oxide parameters

(ϑhg and ϑm) provided in Table 3.1, and the other considering a 10× reduction in these

values. Furthermore, to increase our scope of observations, the simulations were carried

out employing two distinct angles of light incidence (0◦ and 45◦) and three different values
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for the samples’ thickness.

In order to complement our analysis of the samples’ light transmission profiles, we

have estimated their light penetration depth ranges with respect to each different testing

condition stated earlier. The light penetration depth is defined as the depth at which

the impinging light is reduced by ≥ 99%, yielding transmittance readings ≤ 1% [20, 27].

Accordingly, in order to estimate these ranges, we have computed transmittance curves

for the samples considering distinct values for their thickness. We varied these values

in increments of 0.1 mm, which corresponds to the precision of light penetration depths

provided for sand-textured soils in the related literature (e.g., [12, 69]). The lower and

upper limits of an estimated range are represented by the thickness values resulting in

transmittance readings (in the 400 to 1000 nm region) below and above 1%, respectively.

These limits were then reported (Section 4.5) as the light penetration depth range for each

selected sample under each experimental condition considered in this investigation.

3.3 Baseline In Silico Experiments

We remark that, in the absence of complete characterization datasets for the selected nat-

ural sand samples [59], the values assigned to their parameters were chosen from physically

valid ranges reported in the literature [35]. Thus, to assess the suitability of our choice

of parameter values (Table 3.1), we computed reflectance curves (named modeled-R). We

then compared these curves with the reflectance curves measured for the selected samples

[59]. As it can be observed in Fig. 3.1, the modeled-R curves closely agree with their

measured counterparts (a quantification of this agreement is presented in Appendix B).
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Figure 3.1: Comparisons of measured [59] and modeled reflectance curves obtained for the
selected natural sand samples. From left to right: Australian dune, Peruvian beach, Cali-
fornian outcrop and Saudi Arabian dune samples. The modeled-R curves were computed
considering the values for the iron oxide parameters (ϑhg and ϑm) provided in Table 3.1,
while the modeled-U curves were computed considering a 10× reduction of these values.
All curves were obtained considering an angle of incidence of 0◦.
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Accordingly, we employed the same parameter values in our transmittance experiments,

the focus of our investigation. The results of these experiments are presented and discussed

in Chapter 4.

Note that the iron oxide amounts depicted in Table 3.1, albeit realistic, correspond to

a small fraction of the samples’ total mass. Thus, one might assume that the iron oxides

would have a low impact on the attenuation of light interacting with these samples. To

examine the plausibility of this assumption, we also computed reflectance curves (named

modeled-U) for both samples considering a 10× reduction in the values of the iron oxide

parameters (ϑhg and ϑm) depicted in Table 3.1. As it can be verified in plots presented

in Fig. 3.1, although these curves are qualitatively similar to their measured counterparts,

they have a distinctively higher magnitude. This illustrates the importance of properly

accounting for the relatively small, but pivotal, presence of iron oxides when computing

the reflectance of sand samples, particularly in the 400 to 1000 nm spectral domain [4].

The impact of this aspect on the samples’ transmittance is systematically examined in the

next section.

14



Chapter 4

Results and Discussion

In this chapter, we present the outcomes of our controlled in silico experiments involving

the simulation of light transmission in the selected natural sand samples subject to four

distinct water saturation states. We then discuss the conceptual and practical implications

of our findings.

4.1 Dry State Experiments

The results of our in silico transmittance experiments considering the selected natural

sand samples in a dry state (S = 0) are presented in Figs. 4.1 and 4.2. Examining the

graphs depicted in Fig. 4.1, we note a nonlinear decrease in the samples’ transmittance

as their thickness is increased. Although the transmittance values tend to zero, their de-

crease becomes less accentuated with larger thickness values. Moreover, the transmittance

values were higher at the longer wavelengths. This may be attributed to the relatively
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Figure 4.1: Comparisons of modeled transmittance curves computed for the selected sand-
textured soil samples, in a dry state (S = 0), considering the values assigned to their iron
oxide parameters (ϑhg and ϑm) provided in Table 3.1, and distinct thicknesses (1.0, 1.1 and
1.2 mm). From top to bottom: Australian dune, Peruvian beach, Californian outcrop and
Saudi Arabian dune samples. Left: angle of incidence of 0◦. Right: angle of incidence of
45◦.
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Figure 4.2: Comparisons of modeled transmittance curves computed for the selected sand-
textured soil samples, in a dry state (S = 0), considering a 10× reduction in the values
assigned to their iron oxide parameters (ϑhg and ϑm) provided in Table 3.1, and distinct
thicknesses (1.0, 2.0 and 3.0 mm). From top to bottom: Australian dune, Peruvian beach,
Californian outcrop and Saudi Arabian dune samples. Left: angle of incidence of 0◦. Right:
angle of incidence of 45◦.
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low extinction coefficients of the iron oxides, notably hematite and goethite [35], at those

wavelengths. These observations are consistent with the qualitative trends depicted in the

spectrophotometric experiments performed by Woolley and Stoller [69] and Benvenuti [12]

on colored sand samples. Also, in the graphs presented in Fig. 4.1, it can be verified that

an increase in the angle of incidence, from 0◦ to 45◦ (with respect to the zenith), resulted

in a slight, albeit noticeable, transmittance decrease, which has also been reported in the

literature [66].

It has been suggested [12, 20, 65, 69] that, for a given particle size distribution, a

lighter-colored (less absorptive) sand sample allows more and deeper light penetration

than a darker-colored (more absorptive) one. However, to the best of our knowledge, no

controlled experiments specifically performed to quantitatively examine this behaviour in

natural sands have been reported in the literature to date. Hence, for comparison purposes,

we repeated the transmittance experiments on the samples in a dry state considering a 10×

reduction in the values of their iron oxide parameters (ϑhg and ϑm) provided in Table 3.1.

As expected, the resulting transmittance curves presented in Fig. 4.2 are significantly

higher than those presented in Fig. 4.1. This aspect can undoubtedly be associated with

the reduced attenuation of the light traversing samples characterized by uncommon lower

amounts of iron oxides.
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4.2 Intermediate Water-Saturated State Experiments

The results of our in silico transmittance experiments considering the selected natural

sand samples in an intermediate water-saturated state (S = 0.5) are presented in Figs. 4.3

and 4.4. These results depict the same qualitative trends verified for the samples in a dry

state (Set I). More specifically, one can observe the nonlinear decrease in transmittance

following a linear increase in the samples’ thickness, and the slight decrease in transmittance

following an increase in the angle of incidence. In addition, one can also observe a similar

substantial increase in transmittance when the sample’s iron oxide contents are significantly

reduced (Fig. 4.4).

The presence of water, however, resulted in higher transmittance readings, as shown in

the graphs presented in Figs. 4.3 and 4.4, in comparison with the readings obtained for the

samples in a dry state. This behaviour is consistent with actual experimental observations

[45, 65, 69] on the transmittance of wet sand-textured soils. In the case of our experiments

considering a 10× reduction in the samples iron oxide contents, the presence of water

also resulted in a noticeable dip in the 940 to 980 nm region (Fig. 4.4). This spectral

feature is associated with a point of absorption maxima of water within this region [57].

By reducing the presence of iron oxides and having water in the samples’ pore space, the

light attenuation within this region becomes more dominated by the latter. This, in turn,

elicits this feature which is characteristic of wet sand samples with negligible amounts of

iron oxides [66].
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Figure 4.3: Comparisons of modeled transmittance curves computed for the selected sand-
textured soil samples, in an intermediate water-saturated state (S = 0.5), considering
the values assigned to their iron oxide parameters (ϑhg and ϑm) provided in Table 3.1, and
distinct thicknesses (1.0, 1.1 and 1.2 mm). From top to bottom: Australian dune, Peruvian
beach, Californian outcrop and Saudi Arabian dune samples. Left: angle of incidence of
0◦. Right: angle of incidence of 45◦.
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Figure 4.4: Comparisons of modeled transmittance curves computed for the selected sand-
textured soil samples, in an intermediate water-saturated state (S = 0.5), considering a 10×
reduction in the values assigned to their iron oxide parameters (ϑhg and ϑm) provided in
Table 3.1, and distinct thicknesses (1.0, 2.0 and 3.0 mm). From top to bottom: Australian
dune, Peruvian beach, Californian outcrop and Saudi Arabian dune samples. Left: angle
of incidence of 0◦. Right: angle of incidence of 45◦.
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4.3 Water-Saturated State Experiments

The results of our in silico transmittance experiments considering the selected natural sand

samples in a water-saturated state (S = 1) are presented in Figs. 4.5 and 4.6. Again, the

qualitative trends observed in our previous sets of experiments were also verified when the

presence of water was further increased in this set. Quantitatively, the resulting transmit-

tance values were higher than those obtained for the samples in an intermediate water-

saturated state (Figs. 4.3 and 4.4). Moreover, in the case of our experiments considering

a 10× reduction in the samples iron oxide contents, the dip in the 940 to 980 nm region

became more accentuated as depicted in Fig 4.6.

4.4 Set IV - Water Film Experiments

The results of our in silico transmittance experiments considering the selected natural sand

samples in a dry state (S = 0) with the grains encapsulated by water films are presented

in Figs. 4.7 and 4.8. Qualitatively, the same trends observed in the previous sets can also

be observed in this set. Quantitatively, the results obtained in this set are similar to those

obtained for Set II (Figs. 4.3 and 4.4).
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Figure 4.5: Comparisons of modeled transmittance curves computed for the selected sand-
textured soil samples, in a water-saturated state (S = 1), considering the values assigned
to their iron oxide parameters (ϑhg and ϑm) provided in Table 3.1, and distinct thicknesses
(1.0, 1.1 and 1.2 mm). From top to bottom: Australian dune, Peruvian beach, Californian
outcrop and Saudi Arabian dune samples. Left: angle of incidence of 0◦. Right: angle of
incidence of 45◦.
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Figure 4.6: Comparisons of modeled transmittance curves computed for the selected sand-
textured soil samples, in an water-saturated state (S = 1), considering a 10× reduction in
the values assigned to their iron oxide parameters (ϑhg and ϑm) provided in Table 3.1, and
distinct thicknesses (1.0, 2.0 and 3.0 mm). From top to bottom: Australian dune, Peruvian
beach, Californian outcrop and Saudi Arabian dune samples. Left: angle of incidence of
0◦. Right: angle of incidence of 45◦.
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Figure 4.7: Comparisons of modeled transmittance curves computed for the selected sand-
textured soil samples, in a dry state (S = 0) with the grains encapsulated by water films,
considering the values assigned to their iron oxide parameters (ϑhg and ϑm) provided in
Table 3.1, and distinct thicknesses (1.0, 1.1 and 1.2 mm). From top to bottom: Australian
dune, Peruvian beach, Californian outcrop and Saudi Arabian dune samples. Left: angle
of incidence of 0◦. Right: angle of incidence of 45◦.
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Figure 4.8: Comparisons of modeled transmittance curves computed for the selected sand-
textured soil samples, in a dry state (S = 0) with the grains encapsulated by water films,
considering a 10× reduction in the values assigned to their iron oxide parameters (ϑhg and
ϑm) provided in Table 3.1, and distinct thicknesses (1.0, 2.0 and 3.0 mm). From top to
bottom: Australian dune, Peruvian beach, Californian outcrop and Saudi Arabian dune
samples. Left: angle of incidence of 0◦. Right: angle of incidence of 45◦.
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4.5 Conceptual and Practical Implications

The light penetration depth ranges computed for the selected samples considering the entire

spectral region of interest (from 400 to 1000 nm) are provided in Table 4.1. For the samples

in a dry state, a thickness between 1.2 to 1.3 mm was required to obtain transmittance

values below 1% in the worst case (Saudi Arabian dune sample). We remark that the

literature on this topic is scarce, particularly with respect to actual measured data, and

direct comparisons are difficult to be performed in view of the limited descriptions of the

samples used in the actual experiments. Nonetheless, our estimated ranges are consistent

with values provided in related works. For instance, Woolley and Stoller [69] reported

transmittance values (from 350 to 800 nm) below 2% for a depth of 1.1 mm in a dry

natural sand sample. Also, Benvenuti [12] reported a light penetration depth of 1 mm in

his experiments (from 400 to 800 nm) on a dry sample with 93% of its granular structure

composed of sand-sized particles.

For the in silico experimental instances in which we accounted for the presence of water

in the samples’ pore space, the computed ranges, which are also presented in Table 4.1,

indicated an increase in the samples’ light penetration depth following an increase in their

degree of water saturation. In the worst case (water-saturated Saudi Arabian dune sample),

a thickness between 2.2 to 2.3 mm was required to obtain transmittance values below 1%.

Such an increase in the light penetration depth was to be expected in view of the increase

in transmittance elicited by the presence of water [20, 69].
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water saturation states

dry intermediate saturated dry with water films

samples 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦

Australian dune 1.0 - 1.1 0.9 - 1.0 1.3 - 1.4 1.2 - 1.3 1.7 - 1.8 1.6 - 1.7 1.3 - 1.4 1.2 - 1.3
Peruvian beach 0.7 - 0.8 0.6 - 0.7 0.8 - 0.9 0.7 - 0.8 0.9 - 1.0 0.8 - 0.9 0.9 - 1.0 0.8 - 0.9
Californian outcrop 1.1 - 1.2 1.0 - 1.1 1.3 - 1.4 1.2 - 1.3 1.7 - 1.8 1.6 - 1.7 1.3 - 1.4 1.2 - 1.3
Saudi Arabian dune 1.2 - 1.3 1.2 - 1.3 1.6 - 1.7 1.5 - 1.6 2.2 - 2.3 2.2 - 2.3 1.5 - 1.6 1.5 - 1.6

Table 4.1: Ranges of light penetration depth (in mm, as defined in Section 3.2) computed for the selected
natural sand samples considering the values assigned to their iron oxide parameters (ϑhg and ϑm) presented
in Table 3.1. Specific ranges are provided for each water saturation state (dry (S = 0), intermediate water-
saturated (S = 0.5), water-saturated (S = 1) and dry (S = 0) with the individual grains encapsulated by
water films) and angle of incidence (0◦ and 45◦) considered in this investigation.
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water saturation states

dry intermediate saturated dry with water films

samples 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦

Australian dune 2.3 - 2.4 2.2 - 2.3 3.0 - 3.1 3.0 - 3.1 4.4 - 4.5 4.4 - 4.5 2.9 - 3.0 2.8 - 2.9
Peruvian beach 2.1 - 2.2 2.0 - 2.1 2.7 - 2.8 2.6 - 2.7 3.7 - 3.8 3.6 - 3.7 2.8 - 2.9 2.7 - 2.8
Californian outcrop 2.8 - 2.9 2.6 - 2.7 3.5 - 3.6 3.4 - 3.5 5.3 - 5.4 5.2 - 5.3 3.4 - 3.5 3.3 - 3.4
Saudi Arabian dune 2.9 - 3.0 2.8 - 2.9 3.7 - 3.8 3.6 - 3.7 5.6 - 5.7 5.6 - 5.7 3.4 - 3.5 3.2 - 3.3

Table 4.2: Ranges of light penetration depth (in mm, as defined in Section 3.2) computed for the selected
natural sand samples considering a 10× reduction in the values assigned to their iron oxide parameters (ϑhg

and ϑm) presented in Table 3.1. Specific ranges are provided for each water saturation state (dry (S = 0),
intermediate water-saturated (S = 0.5), water-saturated (S = 1) and dry (S = 0) with the individual grains
encapsulated by water films) and angle of incidence (0◦ and 45◦) considered in this investigation.
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By examining the ranges presented in Table 4.1, one can also note that those depths

computed considering the samples’ grains encapsulated by water films were similar to

those depths computed considering the samples in an intermediate water-saturated state.

In the worst case (Saudi Arabian dune sample), a thickness between 1.5 and 1.6 mm was

required to obtain transmittance values below 1%. We note that Woolley and Stoller [69]

reported transmittance values (from 350 to 800 nm) below 1% for a depth of 2.2 mm

in a moist sand sample composed of particles with a diameter between 0.3 to 0.5 mm.

It has been reported that transmittance decreases following a reduction in the size of a

sample’s constituent grains [3, 12, 20]. Accordingly, for sand samples characterized by

smaller particles, like those considered in this investigation (Table 3.2), one should expect

a light penetration depth lower than that reported by Woolley and Stoller [69] .

The same trends outlined earlier were observed for the light penetration depth ranges

computed considering a 10× reduction in the samples’ iron oxide contents. However, the

magnitude of these ranges, which are presented in Table 4.2, was substantially higher than

that of the ranges presented in Table 4.1. In the worst case for the samples in a dry

state (Saudi Arabian dune sample), a thickness between 2.9 to 3.0 mm was required to

obtain transmittance values below 1%. Such higher values were also to expected due to an

increase in transmittance following a substantial reduction in light attenuation associated
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with a reduced presence of iron oxides [12]. Also, as expected, the presence of water

further increased the samples’ light penetration depths. In the worst case (water-saturated

Saudi Arabian dune sample), a thickness between 5.6 to 5.7 mm was required to obtain

transmittance values below 1%.

By comparing the ranges presented in Table 4.2 with their counterparts depicted in

Table 4.1, one can verify the importance of accounting for the fact that the relatively

small amounts of iron oxides found in natural sands can have a significant impact on their

light penetration depth. Consequently, experiments employing samples with mineralogical

characteristics that are not normally found in natural sand deposits are more suitable to

provide qualitative rather than quantitative predictions about these soils. For example,

recent spectrophotometric measurements [66] performed on a coarse (85% of the particles

with a diameter between 0.5 and 1 mm) “white” sand samples with insignificant iron

oxide amounts resulted in an upper bound for transmittance values (in the 400 to 1000

nm region) equal to 20% for a depth of 3 mm. This bound was substantially increased

when water was added to the samples, a behaviour qualitatively congruent with the trends

observed in our in silico experiments.

4.6 Interdisciplinary Outlook

We remark that the understanding and quantification of light penetration in sand-textured

soils is essential for the successful application of hyperspectral remote sensing technologies

to the solution of practical problems in a wide range of fields. In precision agriculture, for

example, such technologies are being explored for weed mapping and control [51]. Many
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species of plants are characterized by having seeds whose germination is influenced by

the ratio of red (≈ 645 nm) to infrared (≈ 735 nm) impinging light [8]. These species

include weeds that compete for natural resources, notably water and nutrients, with crop

species. Their seeds are capable of responding to relatively small amounts of light, and

vast populations of them are found in arable fields [14], notably buried in layers (of variable

thickness) of natural sands that may cover these fields (e.g., after being transported by

aeolian events originating from arid landscapes [1]). Thus, new strategies to consistently

reduce the proliferation of weed seeds in arable fields can certainly benefit from the use of

remote sensing technologies for the reliable detection of these targets. The efficacy of such

technologies, in turn, can be significantly enhanced by high-fidelity estimations of the light

penetration depth of sand-textured soils containing these targets.

Clearly, the fidelity of estimations of the light penetration depth of natural sands de-

pends on whether or not the actual morphological and mineralogical characteristics of these

materials, as well as their water saturation states, are properly taken into account. Our

findings, obtained using an in silico experimental framework centered on the particulate

composition of natural sands, demonstrated not only the key role played by the iron oxides,

but also how the light penetration depth of these soils can be largely overestimated if the

presence of these minerals is overlooked.
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Chapter 5

Conclusion and Future Work

In this thesis, we have investigated the interplay of key factors, namely the presence of iron

oxides and the distinct patterns of water saturation, affecting the penetration of light in

sand-textured soils. Using a first-principles in silico experimental setup, we were able to

conduct a series of controlled transmittance experiments on different samples of naturally

occurring sand-textured soils. Our findings demonstrate that the presence of iron oxides

in these soils needs to be appropriately taken into account so that can one can obtain

high-fidelity estimations of their light penetration depths.

The outcomes of our controlled in silico experiments also provide a comprehensive

portrait of variations on their transmittance in response to changes in light incidence

geometry and water saturation conditions. This information, in turn, can contribute to the

development of more cost-effective technologies for the remote monitoring of landscapes

covered by natural sand deposits. Moreover, through its incorporation into multiscale

geoscience models, it can also lead to more reliable predictions about the expansion of
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these landscapes and the consequent systemic and abrupt changes in multiple attributes

of surrounding ecosystems [13].

As future work, we intend to further explore phenomena connecting soil optical prop-

erties to the life cycle of plants. For example, the field capacity of a soil (approximately

equivalent to an the intermediate degree of water saturation considered in this investiga-

tion) corresponds to the amount of water available for plant uptake until the permanent

wilting point is reached [47]. This point, in turn, corresponds to the stage in which the

water is held too firmly by the soil grains (forming encapsulating films created by surface

tension between the water and the grains) for plants to extract it [47]. Although this

water cannot directly influence plant growth, it can have an impact on the penetration of

light affecting the germination of photoblastic seeds. Accordingly, we plan to investigate

the effects of distinct water film characteristics on the light transmission profiles of moist

sand-textured soils.

We also intend to examine the sensitivity of the natural sands’ transmission profiles to

the presence of other natural materials. For example, organic matter, or humus, can be

found in relatively small amounts in these soils [15, 24]. This black substance, composed of

animal and/or plant remains [15], is characterized by strong light attenuation properties,

with low concentrations (≈ 2%) leading to the masking of iron oxides’ effects on the spectral

responses of natural sands [10, 25]. Salts can also be found in these soils, notably forming

arid and semiarid landscapes where evaporation exceeds precipitation [47]. Similarly, the

presence of these substances can also affect the spectral responses of these soils.

Finally, we plan to extend our research to other soil types, notably clay-textured soils.

Besides the macropores found in sand-textured soils, clayey soils are characterized by the
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presence of micropores within peds formed by the aggregation of clay particles and the

adhesion of iron oxides, organic matter and other substances (e.g., carbonates) [47]. The

combined effects of iron oxides and water on the penetration of light in soils with these

morphological arrangements is likely to be quantitatively and qualitatively distinct from

those verified in sand-textured soils. We intend to include the assessment of this hypothesis

in our agenda of future investigations in this area.

The number of works aimed at the study of light penetration in natural sands is still

relatively small. In many cases, researchers had to resort to the use of artificially-prepared

sand samples and simplified experimental conditions due to logistics constraints. Given

the relevant environmental and economical ramifications of this topic, we believe that

the scientific community needs to provide a continuing support for efforts involving the

measurement of soils’ radiometric properties and the acquisition of fundamental data (e.g.,

hyperspectral extinction coefficients and refractive indices) for their constituent materials.

Moreover, it should also foment the pairing of these efforts with the use of computer

simulation frameworks that can predictively reproduce and analyze the spectral responses

of these soils without oversimplifying their intrinsic nature. These synergistic collaborations

will be instrumental for the achievement of robust advances in remote sensing applications

and geoscience investigations involving light interactions with soil.
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Appendix A:

SPLITS-2 Implementation

Since the development of the SPLITS model [35, 34], it has been used in a number of

investigations in computer graphics and remote sensing (e.g., [6, 36, 37]). We remark

that this model employs an innovative approach for the stochastic simulation of light

transport in particulate materials. This approach allows the direct simulation of light

(ray) interactions with specific material constituents (e.g., sand grain, cells and organelles)

without having to explicitly store them. Accordingly, it has been incorporated into other

first-principles models, like CLBlood (Cell-based model of Light interaction with whole

Blood) [40, 71] and HyLIoS (Hyperspectral Light Impingement on Skin) [19], developed

by our group.

It is a well-known fact that any computer simulation code, regardless of its complexity

and the programming skills of the people responsible for its implementation, is subject to

the occurrence of “bugs”. These apparently tiny errors (e.g., a flipped minus sign) may

not necessarily cause a simulation to break down, but they can have a significant impact

on its results [49].
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Within this context, our group has found out that it pays off to obtain a “fresh” version

of a model’s code. That is, have it rewritten by researchers not involved in its original

formulation and implementation. However, we also noted that, if such an undertaking can

be carried out with the support of those that have been involved in the development of the

model, the chances of amplifying problems instead of fixing them are mitigated.

This code rewriting strategy has been systematically employed by our group [5]. It has

enabled us not only to filter out possible bugs in the implementations of our models, but also

to increase their fidelity to cost ratio through the use of more efficient software resources.

Moreover, it has also facilitated the maintenance and the incorporation of new features to

our models since the revised code tends to be structured in a more straightforward manner.

These aspects have also served as a motivation for a project which had two main goals.

The first was to revisit the model’s formulation and rewrite its code from a “fresh” stand-

point. The second was to release an enhanced version of its implementation, henceforth

referred to as SPLITS-2, for online deployment through our model distribution framework

NPSGD (Natural Phenomena Simulation Group Distributed) [5].

In this appendix, we concisely present refinements performed in the model’s implemen-

tation in order to completely align it with the model’s original formulation while preserving

its predictive capabilities. More precisely, we identify the implementation problems, briefly

explain their underlying causes and state how we fixed them. Note that, in this appendix,

we address specific code modifications employed in the in silico experiments described

in this thesis. The reader interested in more information about these modifications and

other enhancements is referred to the document [28] describing the project leading to the

deployment of SPLITS-2.
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Non-Fixed Soil Texture Issue

Recall that soil samples are normally composed of particles (grains) of weathered rock

immersed in a medium of air and water (the pore space). They are classified by assigning

individual particles to classes according to their size. For example, the United States

Department of Agriculture (USDA) defines three soil classes, namely sand, silt, and clay,

from the largest to the smallest particles [35]. The relative masses of each component are

then compared to determine the texture of a soil sample (e.g., 85% sand-sized particles and

15% silt-sized particles). Also recall that, within the SPLITS formulation, the dimensions

of the particles within each texture class are determined using a particle size distribution

provided by Shirazi et al. [62].

When running a simulation using the original implementation of the model available

for online use [52], henceforth referred simply as SPLITS, one can choose from a fixed set

of six soil textures that will guide the size distribution of the particles within each class.

These distributions are precomputed using MATLAB [26] scripts, and saved in files that

do not change between model runs.

The enhanced model implementation, termed SPLITS-2, incorporates this precompu-

tation as part of the model run framework. This means that the user can input any desired

soil texture. The performance overhead is minimal. In fact, the computation of the particle

size distribution can be performed fast enough to allow an interactive visualization of the

process [28].
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Particle Size Issue

While examining the SPLITS implementation, we noticed an error associated with the

generation of the particles. In Listing A.1, we provide a code fragment showing how

the size of the particles were generated by SPLITS. In this code fragment, the result

of the sampling size distribution, (m_size_warp)(Random::seed1()), is passed directly to the

semi-major axis of the spheroid, denoted by c. However, the result of the sampling size

distribution corresponds to the entire major axis, denoted by s in Section 6.2.5 of the

original publication describing SPLITS [34], i.e., s = 2c. In order to correct this mistake,

we simply divided c by 2.

70 Scalar c = (∗ m_size_warp ) ( Random : : seed1 ( ) ) ;
71 Scalar a = sphericity ∗ sphericity ∗ c ;
72 re turn new SpheroidParticle (a , c , Point3 : : Origin , axis ) ;

Listing A.1: Code fragment inside generate() in RandomSpheroidParticleGenerator.cpp.

Coated Particles Issue

We remark that three types of particles, namely, pure, mixed and coated, are considered

in the model’s formulation. A mixed particle is made of two materials combined together

using the Maxwell Garnet equation [35, 34]. Lastly, a coated particle is simulated as a pure

particle with a layer (whose thickness is proportional to the particle size [35, 34]) formed

by a distinct mineral matrix (possibly embedding impurities like iron oxides) around it.

Here the issue was a variable being passed by reference to different parameters employed
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by a function used in the simulation of light scattering by a particle coating. One of the

parameters was the output direction and the other the input direction. Thus, when the

coating light scattering function set the output direction, it unintentionally also set the

input direction to this value.

This was a problem because the function checked for an edge case where the light ray

should have been reflected, when in fact it was not. However, since the input direction was

modified, this edge case was detected more often than it should. We note that the edge

case handling procedure set the output ray to a uniform random hemispherical direction

[28].

While finding this bug was difficult, fixing it was not. All that was required was to

make sure that the input and output direction were different variables when calling the

function.

We remark that in the deployed version of SPLITS-2 [54], the percentages of mixed,

pure, and coated particles are to be selected by the user, instead of being limited to a fixed

number of choices like in the version of SPLITS available for online use [52].

Water Saturation Randomization Enhancement

In the SPLITS formulation, every time a ray enters the pore space (e.g., after interacting

with a particle), the traversing medium (water or air) is stochastically decided based on

the water saturation parameter (S between 0 and 1).

This means that for a non-coated particle the pore space is randomized when the ray
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tries to leave its core. In the case of coated particles, this means that the pore space is

randomized when a ray exits the uppermost layer of coating. A concrete example: a ray

is about to leave a particle and the soil has 10% water saturation (S = 0.1). This means,

that each time the ray enters the pore space, there is a 10% chance of it being water and

a 90% chance of being air (or vacuum).

In SPLITS-2, we have slightly modified this algorithm. More precisely, the medium

changes only when the location of the ray does. The location is relevant because the

distances in the coating are assumed to be small, i.e., the ray does not deviate from its

entry point to its exit point. This means that, when the ray is inside the coating, the pore

medium is fixed as all the points within the coating are considered to be one point on the

particle.

Incorporation of Water Film around Particles

Recall that the particles of dry sand layers (S = 0), albeit immersed in a pore space

filled with air, may be encapsulated by water films [47]. In this case, the pore space may

have been previously occupied and/or traversed by water, which has either percolated to

underneath layers or partially evaporated, leaving only water films around the particles

[47]. Related investigations in this area [23, 47] indicate that the thickness of a water film

encapsulating a particle is likely to be independent of the particle size.

In the SPLITS-2 implementation, we have incorporated the possibility of having water

films around the particles. The value assigned to the film thickness is selected by the user

from physically-valid ranges reported in the related literature. This procedure matches
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the procedures employed in other simulations and analyses involving particulate materials

[48, 72]. Moreover, it allows the users to directly control the water film thickness and assess

its effects on sand samples subject to varying environmental conditions.
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Appendix B:

Root Mean Square Errors

In this appendix, for completeness, we provide root mean square error (RMSE) values

computed for the modeled reflectance curves with respect to their measured counterparts

(Section 3.1). These RMSE values were calculated using the following expression:

RMSE =

√√√√ 1

N

N∑
i=1

(ρa(λi) − ρb(λi))2, (B.1)

where ρa and ρb respectively correspond to measured and modeled directional-hemispherical

reflectance values, and N is the total number of wavelengths sampled with a 5 nm resolu-

tion.

The resulting RMSE values are presented in Table B.1. It is worth mentioning that there

is an accepted understanding [31] that RMSE values below 0.03 indicate good spectrum

reconstruction, notably for remote sensing applications.
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samples RMSE

Australian dune 0.0068

Peruvian beach 0.0132

Californian outcrop 0.0076

Saudi Arabian dune 0.0051

Table B.1: RMSE values computed for the modeled curves, which were obtained using the
SPLITS-2 model implementation (Appendix A), with respect to their measured counter-
parts [59].

As it can be verified in Table B.1, the resulting RMSE values are below 0.015. This

indicates that the modeled reflectance curves obtained using SPLITS-2 closely agree with

their measured reflectance curves provided by Rinker et al. [59].
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