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Abstract

Algorithms have increasingly been deployed to make consequential decisions, and there
have been many ethical questions raised about how these algorithms function. Three ethical
considerations we look at in this work are fairness, interpretability, and privacy. These
concerns have received a lot of attention in the research community recently, but have
primarily been studied in isolation. In this work, we look at cases where we want to satisfy
multiple of these properties simultaneously, and analyse how they interact. The underlying
message of this work is that these requirements come at a cost, and it is necessary to
make trade-offs between them. We have two theoretical results to demonstrate this. The
first main result shows that there is a tension between the requirements of fairness and
interpretability of classifiers. More specifically, we consider a formal framework to build
simple classifiers as a means to attain interpretability, and show that each simple classifier
is strictly improvable, in the sense that every simple classifier can be replaced by a more
complex classifier that strictly improves both fairness and accuracy. The second main result
considers the issue of compatibility between fairness and differential privacy of learning
algorithms. In particular, we prove an impossibility theorem which shows that even in
simple binary classification settings, one cannot design an accurate learning algorithm that
is both ε-differentially private and fair (even approximately, according to any reasonable
notion of fairness).
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Chapter 1

Introduction

Technology has entered most aspects of our lives, with algorithms deployed to make conse-
quential decisions such as predicting recidivism rates in released prisoners, and estimating
the probability of an applicant returning a loan. Another possible scenario, and also the
running example used in this thesis, is the case of university admissions. Students from
around the world apply to the computer science program at the University of Waterloo.
Instead of going through each profile manually, which is a pretty laborious task, let us say
that the university decides to deploy an automated classifier to do the job for them. Now,
because classifiers such as these are making decisions that are potentially life-altering for
many people, there have been many ethical questions raised about how these algorithms
function. We will look at three ethical considerations in this work: fairness, interpretability,
and privacy.

1. We would like the algorithm to be fair, and not discriminate against an applicant
just because of their membership in a minority/protected group (which could be a
particular race, gender, religion, etc.). For example, women have historically been un-
derrepresented in computer science programs, and we would ideally like our classifier
to not unfairly discriminate against female applicants.

2. We would also like the classifier to be interpretable, what that intuitively means is
that we would like to be able to understand how the classifier works and convincingly
explain any decisions it might make.

3. The third concern is privacy. Now, because these decision making systems are typ-
ically machine learning models, and are trained on potentially sensitive data, we
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would not like to inadvertently leak information about people in the training data,
and would like to protect their privacy.

These concerns have received a lot of attention in the research community in the last
few years. However, they have primarily been studied in isolation, that is, people have
primarily looked at scenarios in which we would want an algorithm to satisfy one of these
properties at a time. In this work, we look at cases where we want to satisfy multiple of
these properties simultaneously, and analyse how these properties interact. Overall, we
find that that these properties are often at odds with each other, and it is necessary to
make trade-offs between them.

1.1 Contributions

We show two theoretical results to demonstrate the necessity to make trade-offs between
the properties of fairness, interpretability, and privacy. The first result looks at cases where
we would like to have accurate classifiers that are also fair and interpretable, and shows how
the desiderata of fairness and accuracy are at odds with the property of interpretability.
In the second result, we look at cases where we would like a learning algorithm to be
both fair and private (while maintaining accuracy), and show that these two properties are
incompatible. We elaborate on both of the results below.

1. As decision making algorithms (i.e., black box models such as deep neural networks,
etc.) have become increasingly complex, they are becoming less transparent and
harder to audit. This is undesirable, and we would prefer if the models were more
interpretable (i.e., we are able explain their decisions).

Creating models that are intuitively ‘simple’ to humans is a natural strategy to in-
crease their interpretablilty. An example of such a simple model is linear classifiers.
Another way to build simple classifiers is to reduce the number of features that are
involved in the decision making process. We consider a formal framework developed
in Kleinberg et al. [16] to model he construction of simple classifiers, which captures
some commonly used methods of building interpretable models. We discuss the inter-
action between the desiderata of simplicity, fairness and accuracy of binary classifiers
in this framework.

Given a set of features, we have an optimal classifier (i.e., the most accurate classifier
that can be built from the given features). One may naturally wish to simplify the
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optimal classifier to increase interpretability. Another reason to simplify classifiers
could be to even increase fairness in some cases. Simpler and more interpretable
models can be easier to audit, and we can possibly identify sources of unfairness
and correct them with more ease in simple models. Deleting features that can be
potentially viewed as unfair, has also been adopted in practice, for example, in the
well known “ban the box” scenario, where the check box that asks if applicants have
a criminal record from hiring applications is removed [3].

In contrast, this work discusses the negative effects of building simple classifiers
on their fairness. More specifically, we show that every simple classifier can be
improved; i.e., replaced by a more complex classifier that strictly increases both
fairness and accuracy with respect to the simple classifier. It is quite expected that
using a simple model would result in a loss in accuracy, because imposing simplicity
requirements on a classifier reduces its expressive power. The surprising finding
here is that simplification leads to a loss in fairness as well, i.e., we can always
find a more complex classifier that is more fair, in fact, we can always find a more
complex classifier that is simultaneously more fair and accurate than the simple
classifier. Hence, we see that that the properties of fairness and accuracy clash with
interpretability (or simplicity).

2. Our second main result talks about the clash between the requirements of differential
privacy and fairness in learning algorithms. Although there are many settings where
one might only care about one of these issues, they are not always mutually exclusive,
for one can easily think of several scenarios where one might not only need privacy
but also need to ensure that the procedure is fair. A typical example of such a
setting is allocation of scarce resources—be it research funding, natural resources,
loans, etc. Given this, it is imperative that the issues of privacy and fairness be
studied together. However, unfortunately, there has been very little work that has
looked at these issues simultaneously. Especially in light of the fact that the 2020
U.S. census is going to employ differential privacy and that the annual distribution
of at least 675 billion dollars relies on census data [14], we believe that having a good
understanding of the privacy-fairness trade-offs involved is of prime importance.

Towards this end, our second main result in this work is an impossibility theorem
which states that even in a very simple binary classification setting, no learning
algorithm that is ε-differentially private (for any ε ≥ 0), and approximately fair (i.e.,
the algorithm is guaranteed to output an approximately fair classifier) can have non-
trivial accuracy. This shows how in certain applications it might be necessary to
make trade-offs between privacy and fairness and how one may not be able to hope
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for all these properties to hold together.

Organisation

The rest of this document is organised as follows. In Section 2 we go over some related
work, especially two papers that most relate to our work. Following this, Section 3.1
introduces the framework used to model simple classifiers, and some key definitions that
we will need throughout. In Section 3.2 we present our first main result, on the clash
between interpretability and fairness. Section 4 talks about our result highlighting the
incompatibility of privacy and fairness. Section 4.3 talks about some other directions we
pursued along the trade-offs between privacy and fairness, and finally in Section 5 we
conclude and present some potential directions for future work.
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Chapter 2

Related Work

Although the ethical issues concerning algorithms that we discuss in this work have been
considered widely in the now ubiquitous literature on differential privacy, model inter-
pretability, and algorithmic fairness, they have mostly been considered in isolation. In
particular, the literature on algorithmic fairness discusses how to handle issues such as
bias and discrimination (e.g., [5, 17, 11]), the literature on model interpretability addresses
the growing need for transparent models (e.g., [4, 24, 19]), and the literature on differential
privacy talks about protecting the privacy of individuals (e.g., [6, 8]).

Not much previous work has looked at cases where one would want to satisfy multiple
of these properties simultaneously, or analysed how these properties interact. Previously,
Doshi-Valez et al. [4] argued that increasing a model’s interpretability makes the model
easier to analyse, and therefore assists in (a) deciding whether the model is fair and (b)
modifying the model to ensure that it is. In contrast to their work, we present a result that
captures the fact that the interpretability of a model could be at odds with its fairness.

Our first main result has a similar message to the work of Kleinberg et al. [16]. We try
and address some of the limitations of the framework in Kleinberg et al. and prove similar
results to theirs, but in what be believe to be a less restrictive framework. We will compare
our work to Kleinberg et al.’s in greater detail in Section 3.1.7, and as we go along the
write-up, while describing the framework and necessary terminology.

The work that is most relevant to our second main result is that of Cummings et al.
[2]. Cummings et al. [2] consider the trade-offs when considering learning algorithms that
satisfy differential privacy and one particular notion of fairness, namely equal opportunity
(see Section 4.1 for a definition), and one of the results they claim is a weaker version of the
one we have here. In particular, they claim that there is no learning algorithm that achieves
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ε-differential privacy, satisfies equal opportunity (is guaranteed to output a classifier that
satisfies equal opportunity), and has accuracy better than a constant classifier. However, to
the best of our understanding, we believe that there is a gap in their argument (see Section
4.2 where we briefly describe what it is), and so unfortunately their proof idea does not
go through. So, in essence, our contribution here can be summarized as correcting their
proof and also generalizing it, by showing that such an impossibility holds with respect to
every reasonable notion of (even approximate) fairness.

Apart from the work of Cummings et al. [2], another important paper that was a
motivation for pursuing this line of work was that of Kuppam et al. [18]. Kuppam et al.
[18] empirically show how there might be privacy-fairness trade-offs involved in certain
settings. In particular, they consider three resource allocation settings and use census data
to which noise has been added to demonstrate how adding noise so as to achieve differential
privacy could disproportionately affect some groups over others in the settings that they
consider.

Besides the paper mentioned above, there is also work by Dwork and Mulligan [7],
Ekstrand et al. [9], and Jagielski et al. [15], where they consider the issues of privacy and
fairness together. The former two mainly raise questions along the direction of tradeoffs
involved, while the latter paper shows two algorithms that satisfy (ε, δ)-differential privacy
and equalized odds. Although at first glance it may seem like these algorithms contradict
the impossibility result in this work, it is important to note that it doesn’t, for we are
considering (ε, 0)-differential privacy throughout.
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Chapter 3

Trade-Offs between Fairness and
Interpretability

Before we dive into the exact setup, let’s briefly go over the broad message of this section
again. A common method to build interpretable classifiers is to essentially avoid using very
“complex” models such as neural networks which usually have a ton of parameters. Instead,
one could choose to use models that are intuitively ‘simple’ for humans to understand,
such as linear classifiers. We consider a formal framework that captures some commonly
used methods used in the construction of simple classifiers. Then, we show that if we
try to restrict our classifier to be simple within this framework, it can be replaced by
a more complex classifier that strictly improves both fairness and accuracy (there are
some variations of this theorem based based on different underlying assumptions, but the
message of all of the statements is roughly the same). Hence, we see that, in a sense,
interpretability, or simplicity in this case, is at odds with fairness and accuracy.

3.1 Formalising the Framework

Domain Set We denote the domain set by X.

Ground Truth Function Given some scenario, we assume the existence of a ‘Ground
Truth’ function, that assigns a label to each point in the domain set, that is,

G∗ : X → {0, 1}.
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For example, in the university admissions case, a point in the domain set is assigned
the label 1 if they would do well in university, and 0 otherwise. In general, we refer to an
instance labeled 1 as ‘good’, and ‘bad’ otherwise.

Remark. Our results and proofs also go through for the case where the ground truth
function G∗ is non-deterministic, that is, instead of being labeled 0 or 1, a particular
instance might be labeled 0 with probability 0.6, and 1 with probability 0.4. However, for
simplicity, we assume that the ground truth function is deterministic.

Probability Distribution We have an underlying distribution D over X.

Remark. If we allow G∗ to be non-deterministic, the underlying distribution D would be
over X × {0, 1}, not X.

Features Each instance in X is represented by the set of features F = {f1, . . . , fk}. For
example, in the university admissions case, the features could be things like age, SAT score,
school grades, and so on. Each fi : X → {0, 1} is a binary feature.

Remark. For simplicity, we assume that each feature is binary. However, the results, and
pretty much the same proofs also hold for the case when each feature can take finitely
many values.

Protected Group Membership Each instance also belongs to one of two groups - A
or D. A stands for the advantaged group, whereas D stands for the disadvantaged group.
D can be thought of as the minority group that we wish to protect from discrimination.
For example, in the university admissions case, the advantaged group could be thought
of as males, whereas the disadvantaged group is females. The group membership feature
fm : X → {A,D} maps an instance to their group.

Task So what is the task at hand? Given an unlabeled set of applicants T , we want to
admit a fixed fraction r (known as admission rate) of them such that we are as accurate
as possible (i.e., admit as many good applicants as possible). In practice, to build this
classifier, we have access to a labeled sample of points generated by the same distribution,
or the training set. In our setup, we assume we have full access to the distribution and
ground truth function to build the classifier.
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3.1.1 Partitions and Cells

We can partition the domain set X into different parts, and we call each part a cell.

Measure Let µ(C) denote the mass of the probability distribution D in cell C. We will
refer to this as the measure of C.

Some Natural Partitions

One could create a partition at random, but a more natural way to create cells is based
on their feature vectors. That is, two instances are part of the same cell if and only if
they have the same feature vector representation. Recall, a feature set is a set of all the
attributes that one is interested in. A feature vector is a vector that stores the values
of these features for a particular instance, in a specific order. For example, let’s say our
feature set consists of height and age. If Alice is 26 years old and she is 5′ tall, her feature
vector would be [26, 5] or [5, 26] depending on our choice of how to order the elements.
The order needs to be consistent across different entries.

Recall, we are given access to a set of features F = {f1, . . . , fk}. We also had the group
membership feature fm and if we append that to the feature set F , we denote the resultant
feature set by F ′. The partition induced by F is denoted by f , and we denote the cells of f
by C1, . . . , Cn, (where n = 2k, because each feature is binary). The partition induced by F ′

is denoted by f ′, and consists of 2k+1 cells, as there are k+1 binary features. The cells in f ′

are obtained by splitting each cell in f into two parts, according to the group membership
feature fm. For e.g., C1 is split into CA

1 and CD
1 , which represent the advantaged and

disadvantaged people in the cell C1 respectively. We denote the cells of f ′ by C ′1, . . . , C
′
2n.

3.1.2 Score Function

Score of a Cell

We say that the probability of a random instance sampled according to D being good
(given that it lies in some cell C) is the “score” of C. We denoted the score of C by S(C),
i.e.,

S(C) = Pr
x∼D

[G∗(x) = 1 | x ∈ C]
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Score of an Instance

By score of an instance x ∈ X, we mean the score of the cell it belongs to in the partition
f ′. Given the feature set, the score of an instance is the most accurate estimate we have
of the probability of the instance being good.

3.1.3 Classifiers

A classifier assigns every point in the domain set a label from {0, 1}. Because each point
in the domain set is represented by its feature vector, the classifier is essentially a function
from the space of all feature vectors to the label set. A classifier is a function from
{0, 1}k+1 → {0, 1} (and we allow for randomisation).

Equivalence between Classifiers and Partitions

A given partition h of the domain set and admission rate r induces a threshold classifier
that we denote by hr. We now explain how this classifier works. The classifier hr sorts the
cells of h in descending order of their scores. We then admit applicants in this order until
we admit the desired fraction r.

Remark. We will often use the term classifier and partition interchangeably.

More formally, consider an arbitrary partition h which partitions X into the cells
C∧1 , C

∧
2 , . . . C

∧
t , . . . , C

∧
d . We sort the cells of h in descending order of their scores. Without

loss of generality assume that h partitions X into cells C∧1 , C
∧
2 , . . . , C

∧
d with decreasing

(not necessarily strict) order of scores. We merge cells with the same scores to form a new
partition h∗ with cells C∗1 , C

∗
2 , . . . , C

∗
d′ , in strictly decreasing order of scores. Now, start

admitting applicants in order as follows until you admit a fraction r of them. Let rj be
the fraction of the first j cells of h∗ in the order they are represented (In fact, whenever
we will write a partition in this paper, we will assume the cells are ordered in descending
order of their scores.). If j(r) is the unique index j such that rj−1 ≤ r < rj, then the
instances admitted consist of all the applicants in the cells C∗1 , C

∗
2 , . . . , C

∗
j(r)−1, together

with a subset of C∗j(r) of fraction (r − rj−1). The instances in C∗j(r) to be admitted will be
picked randomly.
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Optimal Classifier

Recall that we had discussed the partition f ′ above, which is the partition induced by all
the features we have. Given the feature set we have, the most accurate classifier we can
construct is the one induced by the partition f ′.

In Practice

In reality, to build this classifier, we will only have access to a labelled sample of points
generated by D. We need to estimate the true score function values of each cell from their
empirical estimates from the sample. In our setup, we assume we have full access to the
distribution D and ground truth function G∗ to build the classifier. We do this because we
want to look at the behavior of these classifiers in isolation without considering any added
complications due to sampling error issues.

3.1.4 Modeling Simple Classifiers

We use the framework introduced in Kleinberg et al. [16] to model the construction of
simple classifiers. Two particular approaches to build simple classifiers that this frame-
work captures are (i) shallow decision trees, and (ii) using a small number of informative
features (feature selection). These approaches follow a common principle: they simplify
the underlying model by combining distinguishable applicants (applicants with different
feature vector representations) into larger sets and making a common decision at the level
of each set. What that means in our framework, is that we would simplify f ′ (the most
accurate classifier induced by all the features we have) (or simplify any classifier/partition
in general) by combining multiple cells of it to make one cell. We define it formally below.

Some Terminology

Definition 1 (Refinement). A partition r of a set X is a refinement of a partition c of X
if every cell of r is a subset of some cell of c.

Definition 2 (Coarsening). The partition c as in the above definition is a coarsening of r.

Definition 3 (Simplification). A ‘simplification’ h of a partition q is a coarsening of q such
that h 6= q.

Definition 4 (Complexification). A ‘complexification’ h of a partition q is a refinement of
q such that h 6= q.

11



Some Particular Simplification Methods

The approaches we aim to capture, which are (i) shallow decision trees, and (ii) feature
selection, do not combine cells at random, but they do it in a structured way. For example,
we observed that f is the simplification of f ′ associated with deleting the group membership
feature fm.

Below, we list some specific forms of simplification that we consider, that have some
natural structure to them.

Remark. Note that deleting a feature is a specific form of simplification that halves the
number of cells.

Definition 5 (Non-trivial partition). A partition h is non-trivial if it contains a cell C
that contains 2 instances x and y with different scores.

Definition 6 (Non-trivial cell). We say that such a cell C as above is a non-trivial cell.

Definition 7 (Group Agnostic-simplification). A simplication of f ′ such that instances
differing only in the group membership feature are mapped to the same cell. This ba-
sically means that as a simplification step, the classifier is constrained at the very least
to completely ignore the group membership feature. There may or may not be further
simplifications on top of this.

Now we move on from group-agnostic simplifications to a more general notion of sim-
plification called graded simplifications.

Definition 8 (Graded-simplification). Consider cell partition f ′ of X : C ′1, C
′
2, . . . , C

′
2n.

Consider simplification w of f ′ that partitions X into the cells C∧1 , C
∧
2 , . . . , C

∧
t , . . . , C

∧
d

with descending order of scores. Each cell C∧i ∈ w can be written as C∧i = ∪kj=1C
′
ij

(i.e.,
the union of some cells C ′i1 , C

′
i2
, . . . , C ′ik ∈ f ′). We denote the set of indices {i1, i2...ik}

corresponding to C∧i as V (C∧i ).

CA denotes the instances of cell C that are advantaged. Similarly, CD denotes the
disadvantaged instances of cell C. A graded simplification w of f ′ is one where each cell
C∧i ∈ w has the property that either V (C∧

A

i ) ⊆ V (C∧
D

i ) or V (C∧
D

i ) ⊆ V (C∧
A

i ).

3.1.5 Quantifying Niceness of Classifiers

Fairness

Our fairness objective function penalises FPA (False Positives for group A) and FND (False
Negatives for group D), and aims to minimise a weighted sum of the two.
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FPA(hr) = Expected fraction of bad instances in A that hr accepts

FND(hr) = Expected fraction of good instances in D that hr rejects

For some 0 < γ < 1,

Fairness(hr) = E[−(γ(FND(hr)) + (1− γ)FPA(hr))]

Accuracy

Accuracy(hr) =
Expected fraction of good instances hr accepts

Total fraction of instances hr accepts (i.e., r)

Equity

Equity(hr) =
Expected fraction of disadvantaged instances hr accepts

Total fraction of instances hr accepts (i.e., r)

Comparing Two Classifiers Consider two partitions of X, say h and g. We say that
a partition h strictly improves on partition g in criteria Q (e.g., accuracy) if for every
r ∈ [0, 1], Q(hr) is at least Q(gr), and there exists an r′ ∈ [0, 1] such that Q(hr′) is strictly
more than Q(gr′).

3.1.6 Assumptions in our Framework

We state below some ‘niceness’ assumptions on the data, which are also made by Kleinberg
et al. [16]. One of our contributions is to prove a similar result as theirs without the
disadvantage assumption (stated at the end of this section), which we believe to be quite
restrictive.

1. Equality assumption: For every cell Ci ∈ f , if we split it by group membership, both
resultant cells CA

i and CD
i have the same score.

This is a reasonable assumption and intuitively means that if we have enough in-
formative features about a person, their membership in a protected group does not
affect their performance.
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2. Denseness assumption: For every cell Ci ∈ f , if we split it by group membership,
both resultant cells CA

i and CD
i have positive measure.

3. For a set of cells R ⊆ f ′, use S(R) to denote the weighted average value of S in the
cells of R.

Genericity assumption: Let R, T ⊆ f ′ be two distinct sets of cells such that if R = CA
i

then T 6= CD
i . We then assume that S(R) 6= S(T ).

Remark. This in particular implies that the cells of f can be arranged in strictly
descending order of scores. Without loss of generality, we assume that S(C1) >
S(C2) > · · · > S(Cn).

The assumption below is used by Kleinberg et al. [16], but we do not use it for our
results.

Disadvantage assumption: Given cells Ci, Cj ∈ f such that S(Ci) < S(Cj), then

µ(CA
i )

µ(CD
i )

<
µ(CA

j )

µ(CD
j )
.

This condition intuitively means that for every two feature vectors a and b such that
instances having feature vector representation a have a higher chance of success than
instances having feature vector representation b, instances having feature vector represen-
tation a have a higher chance of belonging to the advantaged group than instances having
feature vector representation b.

3.1.7 Differences with Respect to Previous Work

As mentioned before, our results are similar in spirit to the main statement of Kleinberg
et al. [16]. However, our setup has some key differences and enjoys multiple advantages.

• We do not use the disadvantage assumption, which was quite a restrictive assumption.

• They use the notion of equity to quantify fairness, which essentially involves maxi-
mizing the number of minority group applicants the classifier labels positively. The
notion we use to quantify fairness is more aligned with accuracy, and penalises the
false negatives of the minority group, and false positives of the majority group. We
believe that a desirable property of any notion of fairness is that a classifier that is
perfectly accurate is also perfectly fair, which is something our notion satisfies but
theirs does not.

14



3.2 Result

We have introduced the necessary terminology to formally state the main result of this
section. We have multiple versions of the result, and based on different underlying as-
sumptions, are able to prove slightly different things in each of them. However, the mes-
sage of all of the statements is roughly the same. We show that if we try to restrict our
classifier to be simple within the framework previously discussed, it can be replaced by a
more complex classifier that strictly improves both fairness and accuracy. Therefore, we
see that simplicity clashes with the properties of fairness and accuracy.

3.2.1 Group Agnostic Simplifications

We first consider the case where we restrict simplifications to group agnostic ones.

Result

We first informally explain the result of this section. Recall that the classifier resulting
from partition f ′ is the most accurate classifier we can build with the features we have.
If we choose to use a simpler classifier than f ′, say w, it might lead to an increase in
fairness, interpretability, or equity, but we lose accuracy. That might have been a good
trade-off, but we show that the simple classifier w is not optimal if we ignore the require-
ment of interpretability, as there exists a partition h (achievable by the features we have)
that is simultaneously more fair, accurate, and equitable than w. Therefore, we would
strictly prefer h over w, if we ignore interpretability requirements, and therefore we see
that interpretability clashes with the desiderata of fairness, accuracy, and equity.

Remark. If we do not require partition h to be achievable with the features we have,
and the features of an instance do not completely determine its label (which is often the
case in practice), it is trivial to find an h that strictly improves in fairness and accu-
racy over any w (where w is a non-trivial simplification of f ′). For example, the follow-
ing partition would work: h = C∧1 , C

∧
2 , C

∧
3 , C

∧
4 , where C∧1 = Good instances in D, C∧2 =

Good instances in A, C∧3 = Bad instances in D, C∧4 = Bad instances in A. Here we ensure
to not merge any cells in h while admitting instances.

Theorem 1. For every non-trivial group-agnostic simplification, say w, there exists a
partition h (achievable by the features we have) which strictly improves accuracy, fairness
and equity with respect to w.
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Proof. Consider non-trivial simplification w of f . It partitions X into the cells

C∧1 , C
∧
2 , · · · , , C∧j , C∧j+1, · · ·C∧t , . . . , C∧d

with descending order of scores. Take a non trivial cell of w, say C∧t . The non trivial
cell C∧t consists of two or more cells of f with different scores. Say C∧t is the union of
Ca, Cb, . . . , Cz ∈ f . Let the cell of f in C∧t with the highest score be Cb.

Construct h as follows: Remove ε > 0 measure of X from CD
b to create a separate

cell C ′. This is the new partition h. Denote the remainder of C∧t by C ′′. Observe that
S(C ′) > S(C∧t ) > S(C ′′). Take ε small enough to not change order of C ′′ in the partition
w. It should be in the same position as C∧t was before. (we can do this because of the
genericity assumption) The only change in the order is that C ′ jumps to some position
ahead of C ′′. The new partition h is

C∧1 , C
∧
2 , · · · , C∧j , C ′, C∧j+1, · · ·C∧t−1, C ′′, C∧t+1 · · · , C∧d

with descending order of scores.

Remark. Removing ε > 0 measure of a cell to create a separate new cell can be viewed as
randomising over instances in that cell. Each instance goes to the new cell with probability
ε, and stays in the old cell with probability 1− ε.

We can show that for all rates r, the fairness, equity and accuracy of h is at least as
good as w, and for at least one value of r, strictly better in all 3 criteria.

Case 1: r ≥ rt or r ≤ rj:

We note that in h, the measure of all cells uptil C ′′ is rt. The classifiers resulting from
w and h with admission rate r as above classifies all cells the same way. Therefore, hr has
the same accuracy, equity and fairness as wr.

Case 2: rj + µ(C ′) ≥ r > rj:

Both hr and wr classify all instances of C∧1 , . . . C
∧
j as 1. The admission rule hr classifies

instances of C∧j+1, · · ·C∧t−1 as 0 and some mass µ = r − rj of C ′ as 1, while the admission
rule wr classifies some mass µ of C∧j+1, · · ·C∧t as 1, and the remaining as 0 (we start by
classifying instances from from C∧j+1 as 1, if µ(C∧j+1) < µ, then we move on to Cj+2, and
so on). Since the score of C ′ is greater than the score of each cell C∧j+1, · · ·C∧t , the mass µ
of C ′ that hr classifies as 1 has a higher measure of expected true 1’s than the mass µ of
C∧j+1, · · ·C∧t that wr classifies as 1. Therefore, hr is in expectation more accurate than wr.
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The mass µ of C ′ that hr classifies as 1 has a higher measure of disadvantaged in-
stances than the mass µ of C∧j+1, · · ·C∧t that wr classifies as 1 because C ′ only consists of
disadvantaged instances, while each cell in C∧j+1, · · ·C∧t consists of both disadvantaged and
advantaged instances (because of the denseness assumption). Hence, hr has higher equity
than wr.

It is also easy to see that the mass µ of C ′ that hr classifies as 1 has on expectation
lower FPA and FND values than the mass µ of C∧j+1, · · ·C∧t that wr classifies as 1. Hence,
hr has higher fairness than wr.

Case 3: rt > r ≥ rj + µ(C ′):

Both hr and wr classify all instances of C∧1 , . . . C
∧
j as 1 and all instances of C∧t+1, . . . C

∧
d

as 0. hr classifies all instances of C ′ as 1, while wr classifies some mass µ of them as 0 and
instead classifies some mass µ from C∧j+1, . . . C

′′ with expected score lower than that of C ′

as 1. This is where the two classifiers differ. Cells C∧j+1, . . . C
′′ have a lower score and lesser

proportion of disadvantaged instances than C ′. Reasoning similarly as Case 2, we observe
that the classifier wr is less fair, less accurate and has lower equity than hr.

3.2.2 Graded Simplifications

Now we move on from group-agnostic simplifications to a more general notion of simplifi-
cation, called graded simplification.

Result

We first informally explain the result of this section. If we use a simpler classifier than
f ′, say w, it might lead to an increase in fairness, interpretability, or equity, but we lose
accuracy. We show that the simple classifier w is not optimal if we ignore the requirement
of interpretability, as there exists a partition h (achievable by the features we have) that
is simultaneously both more fair and accurate than w (without compromising on equity).
Therefore, we would strictly prefer h over w, if we ignore interpretability requirements, and
therefore we see that interpretability clashes with the desiderata of fairness and accuracy.

Remark. Note that unlike the previous result, the partition h does not guarantee an
increase in equity. This makes sense, as we are now considering a more general notion of
simplification.
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Theorem 2. For every non-trivial graded-simplification, say w, there exists a partition h
(achievable by the features we have) that strictly improves accuracy and fairness (without
hurting equity) with respect to w.

Proof. Consider simplification w. It partitions X into the cells C∧1 , C
∧
2 , . . . C

∧
t , . . . , C

∧
d with

descending order of scores. Take a non trivial cell of w, say C∧t . Say C∧t is the union of
Ca, Cb, . . . , Cz ∈ f ′.

Case 1: V (C∧
A

t ) ⊆ V (C∧
D

t )

There exists a cell Ca such that Ca ∈ f ′, Ca ⊂ C∧t , such that Ca has the highest score
amongst all cells Ca, Cb, . . . , Cz ⊂ C∧t and only consists of disadvantaged instances.

Construct h as follows: Remove ε > 0 mass of X from Ca to create a separate cell
C ′. Denote the remainder of C∧t by C ′′. Observe that S(C ′) > S(C∧t ) > S(C ′′). Take
ε small enough to not change order of C ′′ in the partition w (we can do this because of
the genericity assumption). It should be in the same position as C∧t was before. The only
change in the order is that C ′ jumps to some position ahead of C ′′.

The new partition h is

C∧1 , C
∧
2 , · · · , C∧j , C ′, C∧j+1, · · ·C∧t−1, C ′′, C∧t+1 · · · , C∧d

with descending order of scores.

Similar to the proof of Theorem 1, it is easy to check that for all rates r, the fairness
and accuracy of h is at least as good as w, and for at least one value of r, strictly better
in both criteria. We also see that the equity does not reduce.

Case 2: V (C∧
D

t ) ⊆ V (C∧
A

t )

There exists a cell Ca such that Ca ∈ f ′, Ca ⊂ C∧t , such that Ca has the lowest score
amongst all cells Ca, Cb, . . . , Cz ⊂ C∧t and only consists of advantaged instances.

Construct h as follows: Remove ε > 0 mass of X from Ca to create a separate cell
C ′. Denote the remainder of C∧t by C ′′. Observe that S(C ′) < S(C∧t ) < S(C ′′). Take
ε > 0 small enough to not change order of C ′′ in the partition w. It should be in the same
position as C∧t was before (We can do this because of the genericity assumption). The only
change in the order is that C ′ jumps to some position behind C ′′.

The new partition h is

C∧1 , C
∧
2 , · · · , C∧t−1, C ′′, C∧t+1 · · · , C∧v , C ′, C∧v+1, · · ·C∧d
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with descending order of scores.

Similar to the proof of Theorem 1, it is easy to check that for all rates r, the fairness
and accuracy of h is at least as good as w, and for at least one value of r, strictly better
in both criteria. We also see that the equity does not reduce.

Adding the Disadvantage Condition

In Theorem 2, if we make the disadvantage assumption, we can find a partition h that
guarantees a strict increase in equity as well. That is, we get the following statement
below. We omit the proof because essentially the same construction as in the main result
of Kleinberg et al. [16] works for this result as well.

Theorem 3. For every non-trivial graded-simplification, say w, there exists a partition h
(achievable by the features we have) that strictly improves accuracy, fairness, and equity
with respect to w (if we make the disadvantage assumption).
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Chapter 4

Trade-Offs between Fairness and
Privacy

The result in this section essentially shows that there is no learning algorithm that is fair
(even approximately), and differentially private, while maintaining good accuracy. Hence,
we see that, the properties of fairness, differential privacy, and accuracy, are at odds with
each other and it is not possible to satisfy the three of them simultaneously.

4.1 Setup

Notation To keep in line with previous work in this area, we use slightly different nota-
tion in this section as compared to the previous one.

Throughout, we use X to denote the domain set. There is probability distribution D
over X. The domain set consists of elements of the form z = (x, a, y), where x refers to
the element’s features (e.g., this could be income, name, etc.), a is a protected (binary)
attribute (as before we have an advantaged and a disadvantaged group, and use a = 0
to denote the protected class). y is a binary label, that is the thing we want to predict.
Additionally, throughout, we assume that y = 0 denotes the ‘bad’ label—meaning, for
instance, in the context of, say, giving loans, this means that the person will not return
the loan.
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4.1.1 Differential Privacy

The notion of privacy we consider is called differential privacy. Differential privacy aims
to protect the privacy of each individual in a database. In the case of learning algorithms,
the database is the training set.

Database

We will first define what we mean by a database. We talk two different notions of a
database.

The first one, is a finite sample, with entries drawn i.i.d. from the distribution D over
the domain X. The second notion is to consider the whole distribution D as a database.
The first notion is standard in the privacy literature, where databases are viewed as a finite
collection of data points from n individuals. The second notion is standard for statistical
notions of fairness, where the goal is to ensure fairness over a large population. Notion 2
can simply be considered a generalization of Notion 1. We will be using the second notion,
but the same results and proofs also work for the first notion.

Neighbouring Databases

Given our definition of a database, it now remains to be defined what we mean by neigh-
boring databases. Here we use the notion of σ-closeness as proposed by McGregor et al.
[20], which is also used by Cummings et al. [2].

Definition 9 (σ-closeness [20]). Distributions D and D′ are said be σ-close if

1

2

∑
z∈X

|D(z)−D′(z)| ≤ σ.

We calculate the distance between two distributions (databases) by the above expression
(this is also known as total variation distance), and if the distance is lesser than σ, for some
pre-specified value of σ, then the distributions are said to be neighboring.

Now that we have what it means for two databases to be neighboring, we can formally
define differential privacy as shown below.
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The Privacy Guarantee

Definition 10 ((ε, δ)-differential privacy [6]). For an ε, δ ≥ 0, a randomized algorithm A
is said to be (ε, δ)-differentially private if for all pairs of neighboring databases D, D′ and
for all sets S ∈ Range(A) of outputs,

Pr[A(D) ∈ S] ≤ exp(ε) · Pr[A(D′) ∈ S] + δ.

Differential privacy essentially ensures that an algorithm will generate similar outputs
on neighboring databases (or distributions). It roughly protects the privacy of an individual
in the database in the following way; changing an individual’s entry, or deleting or adding
it, will lead to what we call a neighboring database, and because the algorithm will generate
similar outputs on neighboring databases, an observer seeing its output essentially cannot
tell if a particular individual’s information was used in the computation, or what that
information is.

Remark. Although we have defined differential privacy in its full generality, note that
throughout we will be talking about (ε, 0)-differential privacy.

4.1.2 Fairness

What notion of fairness do we use? Essentially, our results hold for any reasonable notion
of fairness, that do not allow one group to be treated much worse than the other. By
“much worse,” we mean, for example, high difference in true positive rates between the two
groups, or some other sensible measure. Pretty much all the standard notions proposed fit
this description. For example: Demographic Parity, Equal Opportunity, Equalised Odds,
Calibration, etc. all work. These in turn are defined below. More importantly, even relaxed
or approximate versions of these notions fit this description.

Definition 11 (Demographic parity). A binary classifier h satisfies demographic parity if
with respect to random variables A and Y

Pr
z∼D

[h(z) = 1|A = 1] = Pr
z∼D

[h(z) = 1|A = 0].

Definition 12 (Equal opportunity [13]). A binary classifier h satisfies equal opportunity
if with respect to random variables A and Y

Pr
z∼D

[h(z) = 1|Y = 1, A = 1] = Pr
z∼D

[h(z) = 1|Y = 1, A = 0].
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In words, h satisfies equal opportunity if it produces equal true positive rates across
the two groups.

Definition 13 (Equalized odds [13]). A binary classifier h satisfies equalized odds if

• h has equal false positive rates across the two groups, i.e., with respect to random
variables A and Y

Pr
z∼D

[h(z) = 1|Y = 0, A = 1] = Pr
z∼D

[h(z) = 1|Y = 0, A = 0]

• h satisfies equal opportunity.

4.2 Main Result

As stated previously, our main result is an incompatibility theorem showing how differential
privacy and fairness are at odds with each other when we consider a learning algorithm
with non-trivial accuracy. In particular, we consider the task of learning a classifier for a
simple binary classification setting even when the learning algorithm is given full access to
the underlying distribution and show that any learning algorithm that is (ε, 0)-differentially
private, and even approximately fair, cannot achieve accuracy better than that of a constant
classifier. Note that the theorem also holds for the case where the algorithm has access to
a finite training set, and not the whole distribution.

Before we state and prove our result, as mentioned previously in Section 2, our result
here is a stronger version to one claimed in a paper by Cummings et al. [2], but as mentioned
there, we believe that their proof has a gap. Below we first briefly describe what this gap
is, and subsequently we move on to our theorem.

Gap in Proof in Previous Work [2, Theorem 1]. We noticed that we couldn’t
proceed with the argument as mentioned in the proof of Theorem 1 in Section 3. On a high
level, what their proof tries to do is, given a distribution D and a classifier h that satisfies
equal opportunity for this distribution, to essentially construct a distribution D′ on which
h does not satisfy equal opportunity. However, to the best of our understanding, there is
error here (and in particular in the line claiming “...h does not satisfy equal opportunity
with respect to D′”) since h does satisfy equal opportunity on the D′. The error seems to
stem from an incorrect usage of conditional probability arguments, and unfortunately this
error does not seem fixable within the same proof idea. In any case, we do think that the
statement is correct, and as we will show next, we can show a stronger claim.

23



Theorem 4. If a learning algorithm A is (ε, 0)-differentially private and is guaranteed to
output an approximately fair classifier, then A : D → ∆(H), where D denotes the set of
all distributions, and

H = {h : X → {0, 1} | h is a constant function} .

Before we present a formal proof, we start with an informal overview of the main idea.
The main idea in the proof is to first observe that, due to differential privacy constraints, if
there is a classifier that is output with positive probability by A on a distribution D1 ∈ D,
then A has to output this classifier with positive probability on any other distribution
D′1 ∈ D. Now, what the claim above implies is that, if algorithm A has to be fair as
well, and it outputs h on some input, then h is always fair, irrespective of the underlying
distribution. Now, once we have the observation above, then it just remains to show that
such classifiers—i.e., ones that are fair with respect to any underlying distribution—belong
to a very restricted set, namely H as defined in the statement of theorem.

This concludes the overview. Below, we present a formal argument by first proving the
following claim.

Claim 5. Let A be a learning algorithm that is (ε, 0)-differentially private. Then, ∀D1, D
′
1

∈ D, and for all classifiers h,

Pr[A(D1) = h] > 0 =⇒ Pr[A(D′1) = h] > 0.

Proof. Consider an arbitrary distribution D1 ∈ D and an arbitrary classifier h such that
Pr[A(D1) = h] > 0. Next, consider any arbitrary distribution D′1 ∈ D. We need to show
that Pr[A(D′1) = h] > 0.

To see this, first let us consider, for any i ∈ [n] and η > 0, two η-close distributions
Di and Di+1 (i.e., they are neighboring databases). Since A is ε-differentially private, if
Pr[A(Di) = h] > 0, then we have that Pr[A(Di+1) = h] > 0, for if otherwise, then we have,

0 < Pr[A(Di) = h] ≤ exp(ε) Pr[A(Di+1) = h] = 0,

which is a contradiction.

Now, given the observation above, observe that, for any η > 0, one can construct a
(finite) series of distributions D2, · · · , Dn such that ∀i ∈ [n], Di and Di+1 are η-close (i.e.,
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they are neighboring databases) and where Dn+1 = D′1. This in turn implies that we have,

Pr[A(D1) = h] > 0 =⇒ Pr[A(D2) = h] > 0

=⇒ Pr[A(D2) = h] > 0

...

=⇒ Pr[A(Dn+1) = h] > 0,

where all the implications above are obtained by using the argument made above that for
two neighboring databases Di and Di+1, Pr[A(Di) = h] > 0 =⇒ Pr[A(Di+1) = h] > 0.
This in turn proves our claim.

Equipped with the claim above, we are now ready to show the proof of our theorem.

Proof of Theorem 4. From Claim 5 we know that if a learning algorithm A is (ε, 0)-
differentially private and is guaranteed to output a fair classifier, then for all fair classifiers
h and ∀D1, D

′
1 ∈ D, Pr[A(D1) = h] > 0 =⇒ Pr[A(D′1) = h] > 0. In other words, what

this implies is that, for a fair learning algorithm A, any fair classifier h that is output by
A is fair with respect to any distribution in D. Below, we show how any h satisfying the
property mentioned above should belong to H, where H is as defined in the statement of
the theorem.

To do this, consider for the sake of contradiction any h /∈ H. This implies that, for
y1, y2 ∈ {0, 1}, there exist points p1 = (x1, 0, y1) and p2 = (x2, 1, y2) such that, either

1. h(p1) = 0 and h(p2) = 1, or

2. h(p1) = 1 and h(p2) = 0.

Now, if this is the case, then we will construct a distribution on which h is unfair. We
construct a distribution for Case 1. To construct such a distribution, let us first consider
the following points.

q1 = (x1, 0, 1)

q2 = (x2, 1, 0)

Next, let us define the following distribution D′.

D′(q1) =
1

2

D′(q2) =
1

2
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Note that h(q1) = 0 and h(q2) = 1. However, if this is the case, then note that by any
reasonable notion of fairness, h is unfair to group 0 as compared to group 1, since group
0 always has true label 1 but is always labeled 0, whereas group 1 always has true label 0
but is always labeled 1.

We omit the construction for Case 2, as essentially the same idea as Case 1 can be
applied to Case 2 as well.

4.3 Other Directions

As mentioned in Section 2, Kuppam et al. [18] consider scenarios in which personal data
collected about individuals (e.g., census data) is used to decide the allocation of funds or
resources. Because of privacy concerns, noise is added to the data in such a way that the
queries on it satisfy ε-differential privacy. In this setting, Kuppam et al. [18] show, through
empirical analysis, that this process of adding noise to the data often leads to ‘unfairness’,
i.e. disproportionately impacts some groups over others.

One direction that we believe is promising, and which in fact was the direction we were
initially planning to pursue, is to abstract the phenomena observed in Kuppam et al. [18]
and come up with a framework that captures the situation more concretely. Within this
framework, we hope to try and identify the sources of unfairness and back it with theoretical
justification, and study more carefully the trade-offs between privacy and fairness. Note
that although our result is a strong impossibility, it only says how one cannot always hope
for fairness and differential privacy to hold together in the case of learning algorithms with
non-trivial accuracy, and so this does not preclude the existence of reasonably fair and
private algorithms for specific applications like that in Kuppam et al. [18].

We believe that this can be done by considering solutions that can broadly be classified
into two categories based on their approach:

1. Analysing the step where we add noise to the data, and trying to modify this step so
that it leads to less unfairness, while still giving similar privacy guarantees. This could
potentially involve coming up with alternative differentially private algorithms—and
especially in the context of our result, (ε, δ)-differentially private algorithms for δ >
0—that are more constrained in the way they add noise, and is therefore in line
with the existing research on differential privacy. This could also involve alternative
privacy preserving techniques which do not satisfy differential privacy.
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2. Analysing the step where we use the modified data to make decisions. That is, we
could analyze the allocation algorithms that are used and modify them in such a way
that they lead to less unfairness by taking into consideration the fact that the data
is noisy (and hence uncertain). This in turn is more in line with the literature on
fair division that has been extensively pursued for about a century in economics and
more recently in computer science as computational social choice (e.g., [1, 22, 23]).

We elaborate our thoughts regarding both of these two approaches in the subsections
below.

4.3.1 Understanding the Need for, and Looking at Alternatives
to, Differential Privacy

As a first step towards analysing if we can have modify existing differentially private
algorithms or suggest new alternatives, we need to understand [12] why differential privacy
is a requirement in the settings like the ones described in Kuppam et al. [18], since, as
also noted by Mervis et al. [21], it is possible that differential privacy may be too strong a
technique for some scenarios.

To see this, consider the following naive method, which at least at first glance seems
to satisfy the privacy needs described in Kuppam et al. [18] and also gives more accurate
and more fair outcomes. Consider a database, which is represented as a table. Each row
corresponds to a particular person, and each column corresponds to an attribute or feature
(such as age or income) of that person. Now we anonymise the data (remove names etc.
to protect against membership attack) and remove outliers for an attribute (let’s say we
remove Bill Gates from the table because his net worth is more than 100 Billion). Let us
say there are m rows and n columns. Now, consider a specific column Ci and choose a
random permutation πi of [1, 2, · · · ,m] for that column, and permute the entries of that
column according to the chosen permutation. Similarly, for every column Cj choose a
random permutation πj of [1, 2, · · · ,m], and permute the entries of Cj according to the
chosen permutation. We now publish this modified table.

We can now get almost exactly accurate and fair answers to the queries we might have
over single attributes (e.g., average income, number of people in a certain age group, etc.).
However, we note that we cannot get accurate answers to queries over multiple attributes
(e.g., average income of people in a certain age group, etc.). Although this clearly limits
the utility of this method, we would like to argue that most of the scenarios described
in Kuppam et al. [18] seem to consider only queries over single attributes. It would also
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therefore be reasonable to assume that such single attribute queries would be useful in a
real world setting, and a refinement of this naive model for these queries, or in general
alternatives to differential privacy, is a possible thing to explore.

4.3.2 New Algorithms for Resource Allocation

Another direction we believe is promising is to look at the issue of resource allocation under
input uncertainty. To be more concrete, consider the output of a differentially private
algorithm as a random variable. Since we know its posterior distribution, we can think of
the inputs to the resource allocation problems that are described in Kuppam et al. [18] as
just being uncertain and try to come up with algorithms that take this uncertainty into
account. This would likely involve showing that some algorithms can give better worst-case
or average-case bounds (in terms of the regret) and we believe that this is related to some
work, for example in mechanism design [10], that explores designing mechanisms under
input uncertainty.

In summary, despite the result in this work, we do think that there is much scope in terms
of the kind of questions or directions one can explore to better understand the trade-offs
between privacy and fairness.
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Chapter 5

Conclusion and Future Work

Through this work, we see that in decision making algorithms, the desiderata of fairness,
interpretability, and privacy may be at odds with each other and it is often necessary to
make trade-offs between them, if we want to maintain accuracy. We prove two theoretical
results to demonstrate this.

The first main result considers a formal framework to build interpretable classifiers
by ‘simplicity’, and shows that if we try to restrict our classifier to be simple within this
framework, it can be replaced by a more complex classifier that strictly improves both
fairness and accuracy. Therefore, we see that simplicity/interpretability clashes with the
properties of fairness and accuracy.

There are many variants of the setup for the first main result that we could investigate
for further work. While this result talks about the tradeoffs between fairness and sim-
plicity, it is important to note that not all forms of simplicity (for e.g., linear classifiers)
are captured by this framework. It would be interesting to investigate the compatibility
between fairness and other notions of simplicity. Also, we deploy a particular objective
function to quantify unfairness, and it might be worth looking into the interplay between
interpretability and fairness for other fairness objectives.

The second main result is an incompatibility theorem showing how differential privacy
and fairness are at odds with each other when we consider a learning algorithm with
non-trivial accuracy. In particular, we consider the task of learning a classifier for a simple
binary classification setting and show that any learning algorithm that is (ε, 0)-differentially
private, and even approximately fair, cannot achieve accuracy better than that of a constant
classifier.

29



In the second result, the current statement allows the the learning algorithm to be faced
with any underlying distribution (without any restrictions). But in reality, it’s probably
more likely that the set of distributions the learning algorithm will encounter follow some
niceness properties. So, if we restrict the distributions by these niceness properties, can
we prove something similar?

Another interesting direction of work could be to look at situations where one would
want to have both interpretability, and privacy, and study the trade-offs these two require-
ments.
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