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Abstract 

 

Weather and climate have a powerful influence on humans and society. The ways in 

which individuals, organizations, and communities are sensitive to weather and climate 

varies considerably due to social, economic, institutional, and technological factors 

(Kirchhoff et al. 2013). The complexity and variability across space and time of the human-

environment interface motivates the demand for tools and techniques that are able to 

effectively translate climatic information into usable products and services for decision-

making. Furthermore, notwithstanding the extensive availability of weather and climate 

information, its use in informing both weather risk-management decisions and climate-

change adaptation initiatives remains limited. One factor in the underutilization of weather 

and climate information stems from the difficulty of translating weather and climate data into 

useable information for decision-makers (Rayner et al. 2005, Lemos 2008, Weaver et al. 

2013, Fellman 2012, Kirchhoff et al. 2013, Soares & Dessai 2015).  

Organizations have been increasingly seeking tools that can inform decision-making 

for both short-term weather risk management and long-term climate change adaptation 

measures (WMO 2016).  Regardless of the temporal scope of a decision, there is a need to 

identify and quantify the climatic sensitivity and associated risks and opportunities of 

climatic stimuli (Damm et al. 2019). The non-linearity of climate-society interactions 

combined with the highly context-dependent nature of societal sensitivities to climatic 

stimuli poses a number of practical challenges. This gap in research, and in practice, provides 

a novel research opportunity to investigate the prospect of developing techniques that can 

quantify weather sensitivity in a variety of applications.  

These context-specific and user-driven climatic information products and services are 

often referred to as climate translation products and services (Damm et al. 2019). A core 

impediment to the development of climate translation services is an incomplete 

understanding of how individuals, organizations, and sectors are sensitive to climatic stimuli.  

A number of methods has been used to define this sensitivity but to date and there has been a 

dominant focus on stated-preference methods to ascertain user needs and sectoral climatic 

sensitivities. Expert consultations, user interviews, and participant surveys have been used 
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extensively to define context-specific weather and climate sensitivities. However, a growing 

literature explores the use of data-driven techniques to explore societal sensitivity to weather 

and climate. Focusing on the highly climate-sensitive transportation and tourism sectors, this 

dissertation proposes a conceptualization of climatic sensitivity that is premised on the need 

for multiple climatic thresholds. This dissertation proposes a framework for data-driven 

techniques that can be used to develop climatic indices based on the underlying relationships 

between weather and society and presents the first data-driven approach to define multiple 

climatic thresholds for the climate-society nexus in two climate-sensitive sectors. 

The overarching purpose of this dissertation is to further the development of climate 

services and increase the scholarly understanding of context-specific climatic thresholds that 

communicate a societal response and can be applied to weather forecasts and climate 

projections at different temporal scales.  The first manuscript uses expert knowledge in 

combination with mathematical optimization to develop a data-driven winter severity index 

that works well in predicting winter maintenance activity across 20 road maintenance 

jurisdictions in Ontario. The second manuscript builds on the first paper through an extension 

to include climate change projections, and provides greater focus on role of co-production in 

climate services development. This second manuscript explores the frequency, and intensity 

of past and future winter weather as it relates to winter road maintenance of provincial 

highways in Ontario, Canada. The climate change analysis reveals that winter severity, as it 

relates to snow and ice control, is projected to decrease through to the end of the century. The 

third manuscript of this dissertation explores the feasibility of transferring the methods 

developed in the first two manuscripts to develop a data-driven tourism climate index for 

Ontario Provincial Parks.  This third study advances our understanding of beach park-

visitor’s climatic sensitivity and provides tourism planners, managers, and decision-makers 

with enhanced information to inform decision-making. The final manuscript of the 

dissertation examines the intra-annual effect of weather on tourism demand to three 

Caribbean destinations (Barbados, Antigua and Barbuda, and Saint Lucia) from Ontario, 

Canada. This study refines the Holiday Climate Index: Beach through optimization to 

develop two new indices which estimate the climatic pull-factor of the destination, and the 

climatic push-factor from the source market. Findings reveal that the data-driven indices 



 

  

vii 

have greater predictive accuracy than the extant climate indices for tourism. In conclusion, 

this dissertation demonstrates the feasibility of developing data-driven indices in the 

transportation and tourism sectors that can form the foundation of climate service translation 

tools. 
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Chapter 1: 

Introduction to Dissertation 

1.1 Problem Context 

Short-term weather stressors, inter-annual climate variability, and long-term climatic 

trends all have profound impacts on humans and society (Thomalla et al. 2006, IPCC 2014). 

A number of authors have sought to measure these weather sensitivities and associated risks 

across sectors such as agriculture (Stockle et al. 1992, Rosenzweig et al. 2013, Zhao et al. 

2014), energy (Beccali et al. 2008, Pernigotto et al. 2014), transportation (Koetse & Rietveld 

2009, Venner & Zamurs 2012, Meyer & Weigel 2011, Markolf 2019), tourism (Scott et al. 

2007, de Freitas 2015, Fisichelli et al. 2015, Rutty & Scott 2010, 2013, 2015), and health 

(Kunkel et al. 1999, Anderson & Bell 2009, Gachon et al. 2016). Much of the recent interest 

in weather sensitivities and associated risks has emerged as a by-product of the attention and 

interest in climate change impacts; because weather sensitivities often are measured as the 

first step in assessing the potential implications of climatic variability and change for society.   

However, developing methods that can be used to calculate climatic sensitivity across spatial 

and temporal scales from near-term episodic events to long-term climatic sensitivities 

remains challenging (Thomalla et al. 2006).  

The core challenge that transcends all studies of weather and society is the difficulty 

of establishing correlated risks across disparate sectors and scales. The specific climatic 

thresholds that reflect behavioural or societal sensitivities to climatic stimuli fluctuate over 

space and time because of complex interactions of social, economic, political, technological, 

institutional, and environmental relationships (Kovats et al. 2005, Lorenzoni et al. 2005, 
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Renaud et al. 2010).  The non-linearity of human and societal responses to weather/climatic 

stimuli also has posed a conceptual and methodological challenge in part due to the difficulty 

of establishing climatic thresholds that reflect societal sensitivity to climate (Kovats et al. 

2005, Lorenzoni et al. 2005, Eugenio-Martin & Campos-Soria 2010, Fellman 2012). While 

the biophysical components of a social-ecological system respond in a reactive, and often 

linear manner, the societal components of a social-ecological system respond in both reactive 

and proactive ways, and in a non-linear manner (Burton et al. 1993, Smithers & Smit 1997). 

For example, in a controlled setting, a crop will consistently perform well under specific 

weather conditions. Similarly, a solar panel will produce the same amount of energy for the 

same amount of incoming radiation. These relationships are predictable and are modelled in 

such a way as to provide information to enable decision-making (Fellman 2012). The social 

and economic aspects of a system, however, are sensitive in more complex ways (Renaud et 

al. 2010, Fellman 2012). This complexity presents a barrier for the translation of basic 

climate services (CS) to special CS intended to meet the needs of specific user 

groups/decision makers.  

It is specifically this complexity of the human-environment nexus that drives the 

demand for tools and techniques that can efficiently and effectively translate climatic 

information into salient products and services for decision-making in ways that reflect 

sensitivities in relevant and interpretable ways. Vaughan et al. (2016) found that a key barrier 

to the production of decision-relevant weather and climate information is a limited 

understanding of the extent and ways in which individuals, organizations, and sectors are 

sensitive to climatic stimuli.  A persistent gap in the science-policy research arena is the 

critical need to develop ways to produce decision-relevant information that is highly specific 
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to the unique contexts of each place and sector (Kirchhoff et al. 2013). Despite the ever-

increasing availability of weather and climate data, its use in informing decision-making in a 

variety of contexts remains limited, and stems from the challenge of establishing correlated 

relationships between weather and society (Rayner et al. 2005, Lemos 2008, Weaver et al. 

2013, Fellman 2012, Kirchhoff et al. 2013, Soares & Dessai 2015). Regardless of whether an 

organization is seeking to explore impact-based forecasting for high impact weather, or a 

company is endeavoring to project the impacts of climate change for their operations and 

investments, there is a need to identify and quantify the climatic sensitivity and associated 

risks and opportunities of climatic stimuli and their variability and change across timescales 

(Damm et al. 2019). This gap in the literature, and in practice, provides a unique research 

avenue to explore the potential for developing a framework and techniques that can quantify 

weather sensitivity in a variety of contexts. This specific type of information is often referred 

to as climate translation products and services (Damm et al. 2019). 

The necessity for research in climate translation services is highlighted in a number of 

high-profile documents and programs.  Importantly, the increasing demand for decision-

relevant climate information has led to calls for an improved standardization and 

coordination of the provision, utility, and application of weather and climate information. 

These calls led to the development of the Global Framework for Climate Services (GFCS) in 

2012.  The GFCS is funded by the World Meteorological Organization (WMO); its goal to 

enable informed climate-related decision-making (WMO, 2012). The vision of the GFCS is 

"to enable better management of the risks of climate variability and change and adaptation to 

climate change, through the development and incorporation of science-based climate 

information and prediction into planning, policy and practice on the global, regional and 
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national scale" (WMO, 2017). The GFCS seeks, specifically, to facilitate the 

contextualization, or translation, of scientific weather and climate information for decision-

making (WMO 2017, Vaughan & Dessai 2014).  

At the national scale in Canada similar efforts are emerging; specifically, with major 

investment in the development of the Canadian Centre of Climate Services (CCCS) which is 

a federal branch of the Environment and Climate Change Canada and was founded in 2018. 

The CCCS provides access to user-demand driven climate data, tools, and sector-specific 

information explicitly developed for the Canadian context. The CCCS has a mandate to 

support the implementation of the Pan-Canadian Framework on Clean Growth and Climate 

Change - the national equivalent to the GFCS. Both the GFCS and the CCCS promote the 

development, dissemination, and application of user-driven climate information to improve 

resiliency to climate variability and change. 

These CS providers are positioned at the intersection of climate science, policy, and 

practice (Vaughan & Dessai 2014) and, as such, CS research and practice is truly an 

interdisciplinary and transdisciplinary endeavor (McNie 2012, Vaughan & Dessai 2014). CS 

are envisioned as a way to enable climate change adaptation planning to both mitigate risks 

and to capitalize on opportunities (Damm et al. 2019). As such, CS providers facilitate the 

translation of observed weather conditions, forecast data, vulnerability assessments, and 

climate change projections into products and services to inform decision making (Vaughan & 

Dessai 2014, Vaughan et al. 2016). Translation service providers create tailor-made 

information to bridge the interface between the scientific community and the users. The 

challenge for these organizations is to facilitate collaboration and information flow between 
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diverse research disciplines and between the research and public policy community 

(Kirchhoff et al. 2013, WMO 2016).   

In order to develop CS, there is a requirement for data from the 

meteorological/climatological communities to be integrated with that from sectors of interest. 

Traditionally, government weather and CS providers have been concerned primarily with the 

development of infrastructure and processes for gathering, processing, and disseminating 

weather and climate observations, forecasts, alerts/warnings, and projections. These are 

considered basic services by the WMO. Basic services are “those services delivered at public 

expense to discharge a government’s sovereign responsibility for protection of life and 

property, for the general safety and well-being of the national community and for provision 

for the essential information needs of future generations” (Anderson et al. 2015, p. 19).  The 

top portion of Figure 1-1 depicts the hydro-meteorological value chain that are core to these 

basic services developed and disseminated by weather service providers internationally 

(Anderson et al. 2015).  Special services, however, extend beyond the traditional offerings 

and are: “those services beyond the basic services aimed at meeting the needs of specific 

users and user groups and that may include provision of specialized data and publications, 

their interpretation, distribution and dissemination. Many services, particularly special 

services, often go well beyond the simple dissemination of information to include 

consultative advice or scientific investigation into particular meteorological and hydrological 

phenomena and events or their impacts” (Anderson et al. 2015, p. 19).   

Translation services would be considered a special service under the WMO and the 

lower portion of Figure 1-1 depicts a schematic of the CS value chain as it is integrated 

within the hydro-meteorological production and delivery chain. Both impact-based 
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forecasting and socio-economic projections of climate impacts are considered ‘value-added’ 

services or special services (Anderson et al. 2015).   The areas highlighted in orange and 

yellow are related to CS translation services, and Figure 1-1 highlights where translation 

services are situated in the broader landscape hydro-meteorological products and services. 

These highlighted areas are also where contributions from this dissertation are focused.  

 

 
Figure 1-1. Schematic of climate services value chain integrated within the hydro-meteorological 
production and delivery chain (adapted from Anderson et al. 2015, p. 148). 

 
While there has been progress in improving the coordination, development, and 

delivery of CS through entities such as the GFSC and the CCCS, the challenge of developing 

tailored climate information remains an area of emerging scholarship and praxis (Damm et 

al. 2019).  A critical attribute of tailored translation services for climate risk management is 

their efficacy, i.e., how well the forecasts or projections of impacts reflect the actual impacts 

and responses. Part of the challenge of identifying correlated sensitivities is the difficulty of 
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identifying and describing societal thresholds to climatic stimuli, i.e., at what point does a 

weather element result in a stronger or weaker impact on humans and/or society.   

The concept of a climatic threshold can be exemplified through the instance of human 

exposure to extreme cold. A threshold of 0°C is not considered extreme in terms of human 

health (exposure), but this threshold is acutely important for transportation safety and 

maintenance as this freezing point results in more dangerous driving conditions (Thornes 

1993). Extending this example; there is a biophysical process that can inform the selection of 

thresholds to communicate a hazardous health event such as an extreme cold warning.  For 

example, while frostbite can occur at temperatures above -10 °C, there is a significant and 

rapidly increasing risk of developing frostbit at temperatures below -15 °C (Hassi & Makinen 

2000).  These biophysical responses to cold are not location-specific; regardless of where in 

the world a person is located, they will experience frostbite at a specific temperature. 

However, the point at which extreme cold warnings are issued by a weather or health 

authority actually varies geographically, even within the same jurisdiction.  For example, 

Environment and Climate Change Canada (ECCC), the Canadian national meteorological 

service provider, issues differential warnings based on the frequency with which different 

minimum temperatures are reached in a given geographic region; not the biophysical risk of 

acquiring frostbite. In 2019, David Phillips, a Senior Climatologist at ECCC, rationalized the 

variable thresholds at which severe cold warnings are issued in different parts of Canada 

(CBC, 2019).  In February 2019 both Toronto and Ottawa experienced temperatures of -32 

°C, but only Toronto received an extreme cold warning (CBC, 2019). Phillips highlighted 

that temperatures need to reach -30 °C in Toronto for an alert to be issued but for Ottawa it 

needs to reach -35 °C (CBC, 2019).   Further north in Northern Ontario temperatures needs 
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to reach -40°C, and in Nunavut -55°C (CBC, 2019).  This emphasizes that practitioners 

already conceptualize weather sensitivity and risk as a context-specific condition rather than 

a generic condition.  Further complicating these matters is that different health authorities 

within the same geographic region may release health warnings at different temperature 

thresholds. For example, while ECCC’s extreme cold warning is triggered at -30 °C in 

Toronto, the City of Toronto’s health authority releases extreme cold warnings at -15 °C 

(Gough et al. 2014). 

The conceptualization and operationalization of extreme heat is similarly complex. 

The precise definition of extreme heat varies geographically due to a variety of social and 

geographical considerations.  As outlined in Health Canada’s report, Adapting to Extreme 

Heat Events: Guidelines for Assessing Health Vulnerability, certain populations are more or 

less vulnerable to extreme heat because individuals have differential vulnerabilities due to 

age, income, health, fitness, medication and other community and socio-economic factors 

(Health Canada 2011). Furthermore, as highlighted by Gachon et al. (2016), the standard 

operating procedures for disseminating heat warnings varies based on the jurisdiction in 

question. These differential vulnerabilities to extreme heat events, and differential operating 

procedures, are illustrated by the vast array of thresholds at which heat advisories are 

disseminated locally and internationally (Casati et al. 2013).  

While some jurisdictions may use ambient air temperature at a specific threshold to 

administer an advisory, ECCC issues heat advisories when the humidex, a combination of 

relative humidity and temperature, are expected to reach or exceed a threshold (Health 

Canada 2011). However, the specific threshold at which heat advisories are administered 

varies geographically. For example, in the Windsor–Essex–Chatham–Kent region of Ontario, 
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Canada there needs to be more than two consecutive days with maximum daily temperatures 

≥ 31°C and minimum daily temperatures ≥ 21°C or a Humidex ≥ 42°C for an advisory to be 

issued. In Northern Ontario, by contrast, the thresholds are different and there needs to be 

more than two consecutive days with maximum daily temperatures ≥ 29°C and minimum 

daily temperatures ≥ 18 °C or a Humidex ≥ 36°C (Gachon et al. 2016). 

Across Canada these thresholds change in both the variable used (i.e., ambient air 

temperature or humidex), and the temporal aspect of the event (i.e., temperatures for one 

hour, or for two consecutive days depending on the region). For example, in Nova Scotia, 

New Brunswick, Prince Edward Island, and Newfoundland and Labrador, warnings are 

issued when temperatures meet a specific threshold for at least one hour (Gachon et al. 

2016).  Furthermore, other heat indices are used in different jurisdictions such as the 

simplified Wet Bulb Globe Temperature (WBGT), apparent temperature, or the heat index as 

used by the National Weather Services in the United States. These thermal indices take into 

account meteorological elements other than ambient air temperature that are crucial for 

human vulnerability to heat stress (Gachon et al. 2016). 

These two examples of extreme cold and extreme heat exemplify the challenge of 

establishing weather thresholds to single atmospheric parameters in diverse geographic 

regions. The challenge, however, becomes greater when the societal response is no longer 

biophysical (e.g., frostbite or heatstroke), but is instead a complex interaction of physical, 

social, technological, economic, political and environmental relationships. This has been a 

longstanding issue and in the 1993 edition of Environment as Hazard, Burton et al.  (1993) 

highlighted the importance of thresholds for understanding the impact of weather on society.  

Using the example of society’s sensitivity and risk to snowfall, Burton et al.  (1993) 
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underscore that the societal impacts of, and behavioural response to, climatic stimuli are not 

linear and are clearly context-specific.   

 
 “The relation between snowfall characteristics and impact is not a 
simple linear function: it depends upon the ways in which the people 
of the area commonly cope with the event. Snowfall below a critical 
threshold value may not cause any significant damage or disruption. 
Once a critical threshold has been passed, however, damage may 
mount rapidly. The specification of these relations and the definition 
of the threshold levels for a given place or society pose significant 
problems for research not normally approached by physical scientists. 
A threshold of crippling snowfall for Toronto, for example, is lower 
than the threshold for Northern Ireland. Indeed, the common units of 
measurement employed for physical delimitation may be unsuited for 
assessment of social impact. Where the units are appropriate, an 
accurate measure of social significance of hazard may be gained only 
by a specific combination of such measurements and requires 
research on both physical and social systems.”  

- (Burton et al. 1993, p. 33) 
 

Indeed, in the context of winter road maintenance (WRM) the response to a specific 

amount of snowfall accumulation will vary geographically for a variety of interacting social, 

cultural, economic, technological and political reasons. This is complicated even further 

when individuals or institutions are responding to the integrated or combined effects of 

multiple weather variables. In the context of WRM there is a sensitivity to a suite of 

meteorological phenomena including snowfall, but also rain, freezing rain, blowing snow, 

cold temperatures, freeze-thaw cycles, and combinations of these variables.  

While attempts have been made to integrate climatic variables into winter-road 

maintenance models and indices in an effort to inform decision-making (Rissel & Scott 1985, 

Boselly et al. 1993, Cornford & Thornes, 1996, Venäläinen 2001, Carmichael et al. 2004, 

Suggett et al. 2006), there is no universal physical unit of ‘winter weather’.  Similarly, when 

this concept is extended to tourism, there is no universal and physical unit of ‘beach weather’ 
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or ‘camping weather’ in existence despite efforts to develop such indices (Mieczkowski 

1985, Rotmans et al. 1994, Scott & McBoyle 2001, Scott et al. 2004, Hein et al. 2009, Scott 

et al. 2016).  

These two globally important sectors, transportation and tourism, are the focus of this 

dissertation as both transportation and tourism are sensitive to weather and climate in a 

variety of complex ways. Different individuals in different jurisdictions in different sectors 

respond to climatic stimuli in varied and complex ways and this has led to calls to explore the 

concept of flexible indices with multiple thresholds that are specific to both the geographic 

location, and the activity in question. 

Not all are convinced that CS can deliver products for all hazards and sectors.  Kovats 

et al. (2005) and Lorenzoni et al. (2005), for example, argue against scientific explorations 

of climatic thresholds for societal and economic studies in climate adaptation planning. 

These authors argue that clear thresholds for the socio-economic and health impacts of 

climate change are impossible to identify because of the complexity in human and social 

responses to climatic stimuli. Importantly, these scholars have conceptualized thresholds as a 

single value for a single climatic variable at which point “result in damages that could be 

considered unacceptable by policy makers” (Lorenzoni et al. 2005, p. 1389). Given the non-

linearity of the climate-society nexus, exploration of single thresholds that reflect specific 

sensitivity are likely to fail. With specific respect to road conditions in winter, there is no 

single definable snowfall threshold at which plows in all jurisdictions undertake road 

maintenance activities. Instead there are multiple and incremental thresholds that reflect 

differential sensitivities to climatic stimuli.  
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As such, investigations of weather and society interactions need to embrace this 

complexity by exploring multiple climatic thresholds for a combination of atmospheric 

events at which an increasing or decreasing number of tourists visit a destination, or at which 

point increasing or decreasing amounts of road maintenance are administered.  An index 

approach is a promising avenue to explore the notion of multiple thresholds with the potential 

of advancing CS translation tool development for a multitude of applications and is the focus 

of this dissertation. 

 

1.2 Methodological Approach 

In 1887, Halford Mackinder published "On the Scope and Methods of Geography" in 

which he strongly advocated that first, geography should be a distinct academic discipline, 

and secondly, the central role of geographers was to bridge the gaps between the natural and 

social sciences (Mackinder 1887 as cited in Castree et al. 2009).  This human-environment 

remains a central focus for many geographers today (Turner 2002). However, as the 

discipline of geography has evolved, the field of geography became increasingly segmented 

between the physical and human divide (Holt-Jensen 1999). A branch of geography that 

continues to primarily focus on this biophysical and human interaction is known as 

environmental geography or integrated geography. Environmental geography is often seen as 

a middle ground between these two ends of the disciplinary continuum. Geographers such as 

Turner (2002) and Castree et al. (2009) advocate that human-environment studies act as the 

unifying link between physical sciences and social sciences for modern geography. 
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Investigations of weather and climate translation services are situated in this human-

environment nexus.  

While there is no unifying epistemology for geography (Holt-Jensen 1999), elements 

of positivism and post-positivism have dominated physical geography in particular, with a 

focus on quantitative methods (Philip 1998).   However, postmodernism and critical theories 

have had more prominence in human geographical studies with a focus on qualitative 

methods (Philip 1998, Castree et al. 2009, Holt-Jensen 1999). Environmental geographers, 

caught in the proverbial middle, may hold either (or both) of these views, and may opt for a 

multiple-methods approach (Philip 1998, Turner 2002). For example, the pivotal work by 

Gilbert White (1945) on flood hazards in the United States was instrumental in infusing 

behavioural geography into what had been a primary focus on engineering solutions. The 

work of White was formative for the field of hazards geography and geography as a whole. 

These works gave rise to what has become modern hazards geography and has had a strong 

influence on work related to global environmental change (Burton et al. 1993) and studies of 

weather and society more broadly. Building on these early works, geographers have 

continued to research the climate-society interface, and the contributions of geographers to 

tackling global environmental change in research, policy, and practice remains significant 

today (Moser 2010, O’Brien 2011, Randalls 2017). 

The focus in this dissertation is the climate-society interface, an area of scholarly 

interest that is connected with two related, yet disparate, research traditions – environmental 

hazards and global environmental change.  While the environmental hazards and climate 

change fields share similar concepts, the timescales of interest are different. Further, the 

methods and conceptual frameworks by which researchers approach complex human-
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environment interactions dictate the types and utility of knowledge that is created. Recently 

there has been a movement away from the traditional deductive methodologies and more 

interest in the inductive and abductive approaches to geographical scholarship more 

generally (Miller & Goodchild, 2015).  

This dissertation aligns with the work of Barnett et al. (2008) in recognizing the 

importance of context in approaching human-environment studies.  Specifically, the concepts 

of scale, place, people, economy, society, environment are all relevant and the specific 

climatic thresholds that induce human- or societal-responses will vary over space and time 

because of these contextual realities. As such, this dissertation intentionally adopts an 

inductive and data-driven approach for all four manuscripts. The four manuscripts presented 

in this dissertation all use a shared method for developing mathematically optimized and 

context-specific climatic indices that can be tailored to the unique social, cultural, economic, 

and environmental realities of each place-based decision-making arrangement.  

While techniques, such as optimization may limit the generalizability of the results, 

the trajectory of data-driven geography and data-driven science in general is associated with 

richer and more complete description of phenomena at smaller scales, albeit with less 

information about larger scales. As Miller and Goodchild (2015, p. 455) state, data-driven 

geography will result in “…a shift away from the general and towards the specific—away 

from attempts to find universal laws that encompass all places and times and towards deeper 

descriptions of what is happening at particular places and times”.  This is precisely what this 

dissertation aims to achieve: a richer and deeper description of the human-environment nexus 

for specific decision-making contexts. This dissertation does not aim to contribute to a 

unifying theory about climate and society interactions, but instead seeks to explore a unifying 
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framework for translating climate-society interactions to describe the place-based and 

specific relationships between weather and society for specific purposes. This dissertation 

aims to demonstrate a method for developing customized metrics of weather and society 

interactions that are reproducible in a variety of societal applications, adding important 

conceptual and methodological insights into the notions of multiple thresholds and multiple 

timescales of application.  

 

1.3 Research Goal and Objectives 

Increasingly, there are calls to develop tools and techniques that can enable the 

effective translation of weather and climate observations into salient information for 

decision-making in a variety of contexts (Cash et al. 2006, Kirchhoff et al. 2013, Vaughan & 

Dessai 2014, WMO 2017). Weather and climate indices are a category of such tools that 

simplify weather and climate information in ways that are relevant to societal phenomenon.  

When integrated within the CS landscape (Figure 1-1), tools such as climate indices can 

enable the efficient translation of complex climatic phenomena into a societal response 

through the identification of multiple weather thresholds, and can be applied to decisions 

across multiple timescales and/or provide insights into behavioural responses to climatic 

stimuli.  Indices can be used for risk management, strategic planning, budgeting, public 

communications, and performance management in a variety of contexts. This dissertation 

explores a framework for developing flexible climate indices as a tool that can aid decision-

makers in reducing climate risk. A framework for flexible climate index development 

provides a unique avenue to explore climatic sensitivity and risk across temporal and spatial 
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scales in a way that can be calibrated and adjusted over time. Figure 1-2 illustrates the 

general framework that is used in developing the climate indices presented throughout this 

dissertation.  

 

Figure 1-2. Framework for the development of a flexible climate index (reproduced from Matthews et 
al. 2017b) 

 

The complexity and the non-linearity of these sectoral responses to climatic stimuli 

has posed scientific challenges in identifying climatic thresholds for different interactions. 

The methodological goal of this dissertation is to explore whether the methods developed for 

index construction in one sector (transportation) are transferable to a second sector (tourism). 

These are two sectors that are highly sensitive to climate variability and change and have a 

long history of using weather information for decision-making. While both sectors are 

climate-sensitive, the nature and specific thresholds of climate sensitivity are fundamentally 
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different. In the transport sector, the behaviours of individuals (drivers) occur within the 

context of an institutional arrangement that prescribes strict maintenance standards that are 

tied to specific weather events.  Furthermore, in the context of WRM, climatic stimuli exert a 

unidirectional force on human responses. The response to winter weather is to perform WRM 

activities, but the specific quantities and types of maintenance that follow or precede a 

weather event vary based on the nature of the weather elements in play and the types of 

infrastructures in need of treatment.  In the tourism sector, the relationship is less procedural, 

as the individual agency afforded to tourists does not have firm protocols of when to respond 

to climatic stimuli.  Tourist behaviours are individual and constrained by non-climatic drivers 

of tourism demand such as economic growth, travel pricing, geopolitical effects, and socio-

cultural factors such as the timing of school holidays (Scott 2019).  

Different individuals and organizations, undertaking different activities, respond to 

diverse climatic stimuli in diverse ways. Identifying exactly at which point(s) weather 

elements exert either a greater or lesser pull or push factor on human and institutional 

responses is a core methodological contribution of this dissertation. Thresholds are an 

element in many weather risk management decisions as well as climate change adaptation 

strategies. However, how thresholds are set, particularly as they relate to different kinds of 

sensitivities specific to the contextual realities of the situation in question, is under-explored 

in the CS literature. This dissertation presents the first data-driven approach to define 

multiple climatic thresholds for the climate-society nexus. It explores the concept of multiple 

thresholds that can provide insights into both peak/optimal/highest as well as the 

minimum/worst/least of a societal response in a way that is more illuminating than the other 

works. This dissertation begins with a fundamentally different approach to exploring the 
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climate-society nexus by acknowledging that, as Kovats et al. (2005) and Lorenzoni et al. 

(2005) argue, single climatic thresholds are impossible to determine and instead empirically 

identifying the multiple thresholds of the climate-society interactions is crucial for furthering 

the development of CS for both weather risk management and climate change adaptation. 

Overall, there are a number of conceptual and methodological considerations that 

have been highlighted throughout this introduction.  The core considerations for furthering 

the development of CS tool development are the challenges of working at multiple 

timescales, with multiple climatic thresholds, for diverse user groups with differential agency 

to make decisions, and doing so in such a way to create salient information for CS users. 

There is a practical requirement for CS tools to be usable for the users of the climate 

information. The establishment of correlated risk metrics with a high degree of fit and the 

overall usability of the resulting indices are also important considerations in the development 

of CS tools.   

This dissertation seeks specifically to overcome these conceptual challenges by 

exploring a framework that can be used to develop weather and climate indices based on 

underlying relationships between weather and society. The overall goal of this dissertation is 

to further the development of CS and increase our understanding of context-specific climatic 

thresholds, particularly the methodological challenges of simultaneously identifying multiple 

climatic thresholds that communicate a societal response and can be applied to weather 

forecasts and climate projections at different temporal scales. The practical benefit of this 

research is that it is intended to increase the level of climate risk management across sectors 

and informs decision making by focusing specifically on the issues of snow and ice control in 

the transport sector, and forecasting tourist flows in the tourism sector. Collectively, the 
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purpose of the four manuscripts is to improve our understanding of the human-climate nexus. 

To achieve this, four objectives were identified, each with specific research aims: 

 

Objective 1: Focusing on the transport sector, develop a Winter Severity Index (WSI) that 

reflects the sensitivity of road maintenance operations to winter weather. The objective is to 

develop a WSI that works well in predicting WRM activity (as measured by equipment 

hours) across space and time in the provincial jurisdiction of Ontario, Canada.  

Aim 1: Describe an approach for developing a context-specific weather index for use in 

WRM decision-making using Road Weather Information System data.  

Aim 2: Identify the climatic thresholds that are reflective of organizational climate 

sensitivity, and the relative importance of these thresholds for WRM in Ontario.  This 

will be completed through an exploration of how an optimization algorithm can 

simultaneously calibrate weather-attribute thresholds and scores, reflecting the specific 

maintenance regimes in each jurisdiction.  

Aim 3: Assess the utility of the resulting WSI for use across 20 climatically unique 

jurisdictions throughout the province of Ontario. 

 

Objective 2: Present an empirical extension to Objective 1 through the development of a 

WSI based solely on publicly available and open access weather observation data to develop 

a WSI that can be applied to weather and climate products at multiple timescales highlighting 

the important role of co-production in the development of CS. 
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Aim 1: Redevelop the WSI from Objective 1 based solely on publicly available and 

open access weather observation data to create a WSI that can be applied to both 

historical weather observations and modelled climate data. 

Aim 2: Apply the WSI to 30 years of observed weather data for the 20 maintenance 

jurisdictions in Ontario and to assess whether there are any detectable trends and their 

significance in the frequency of these climatic conditions. 

Aim 3: Improve our understanding of the potential impacts of climate change on WRM, 

and how these projections differ spatially across the 20 maintenance jurisdictions in 

Ontario, and temporally over three future time periods into the end of the century. 

Aim 4: Describe the role and nature of co-production of CS in the context of Ontario’s 

WRM Planning.  

 

Objective 3: Focusing on the tourism sector, explore the feasibility of developing a data-

driven climate index for Ontario Provincial Parks that reflects the sensitivity of parks visitors 

to climatic stimuli. The objective is to develop a tool that can ultimately assist decision-

makers in reducing climate risk by identifying climatic thresholds of importance for the 

management and operations of the parks.  

Aim 1: Conduct an empirical validation and comparison of two existing climate indices 

for tourism, the Tourism Climate Index (TCI) and the Holiday Climate Index: Beach 

(HCI:Beach) as they apply to two provincial parks in Ontario, Canada. 
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Aim 2: Recalibrate an existing tourism index (HCI:Beach) using the methods 

developed in Objective 1 and refined in Objective 2 to identify the climatic thresholds, 

and the importance of these thresholds, for reflecting beach park visitor’s sensitivity to 

weather in Ontario. 

Aim 3: Examine whether two tourism segments (day visitors and overnight campers) 

are sensitive to climatic stimuli in the same ways and whether climatic sensitivity is 

similar between two geographic regions within the same provincial parks system.  

 

Objective 4: Explore the transferability of developing a data-driven climate index for 

international tourism flows between two climatically diverse regions (Canada and the 

Caribbean). Undertake an empirical investigation of the historical relationship between intra- 

and extra-regional climate and Caribbean tourist arrivals using a data-driven climate index 

approach developed and refined in Objectives 1 to 3 for both climatic push factors and 

climatic pull factors.  

Aim 1: Build on the work from Objective 3, which identified climatic pull-factors for 

shorter term tourism decision-making (day trips), and apply this method for longer term 

decision making (travelling to the Caribbean).  

Aim 2: Conduct an empirical validation and comparison of three existing indices, the 

TCI, the Holiday Climate Index: Urban (HCI:Urban), and the HCI:Beach as they relate 

to arrivals at three Caribbean nations from Ontario, Canada. 
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Aim 3: Recalibrate an existing tourism index (HCI:Beach) using the methods 

developed in Objective 1 and refined in Objective 2 and Objective 3 in order to 

identify the climatic thresholds and the importance of these climatic thresholds for 

reflecting the climatic sensitivity of arrivals to Caribbean tourism destinations 

(climatic pull factors) from Ontario, Canada (climatic push factors). The result is 

two new indices, an optimized in-situ index that measures the pull factor of the 

destination and an optimized ex-situ index that measure the climatic push factor at 

the origin market of Ontario.  

 

1.4 Outline of Dissertation 

This doctoral dissertation is written in a manuscript structure and comprises four 

manuscripts (Chapters two to five) that have been submitted for publication; one in a peer-

reviewed conference proceeding (Chapter two) and three in peer-reviewed journals (Chapters 

three to five). These four manuscripts are supported by this introduction (Chapter one) that 

outlines the problem context, methodological approach, and identifies the goals, objectives, 

and aims of this dissertation. Each of the four peer-reviewed manuscripts include specific 

literature reviews that are pertinent to each paper. Lastly a summary and conclusions section 

(Chapter six) summarizes the research findings, draws conclusions related to the thesis goal, 

and discusses the implications of this dissertation for weather, climate and society studies 

more broadly.    

Chapter two is the first methodological contribution of this dissertation and has been 

published in the Transportation Research Board’s 2017 peer-reviewed Conference 
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Compendium of Papers. The manuscript is entitled “Operational Winter Severity Indices in 

Canada – From Concept to Practice” (Matthews et al. 2017a). This manuscript uses expert 

knowledge in combination with mathematical optimization to address all three aims from 

Objective 1 to develop a WSI that works well in predicting WRM activity across 20 

maintenance jurisdictions in Ontario.  This index works by assigning daily weather scores for 

each day based on eight weather triggers and one warm-weather adjustment factor. These 

scores reflect the road authority’s sensitivity to different climatic conditions. These daily 

scores are aggregated to the 14-day period and are then correlated to maintenance activities. 

The WSI for Ontario provincial highways has a strong fit with maintenance activity that 

occurred, when measured as equipment-hours. Working at the provincial level, the R2 values 

for equipment-hours vary from 0.959 to 0.989 over seven maintenance seasons. This study 

demonstrates the utility of a province-wide WSI and describes how a WSI can be developed 

for road authorities.  

Chapter three is the second of two transportation-related papers and builds on this 

first paper through an empirical extension to broader timescales, including application to 

climate change projections, and provides a more nuanced discussion on the role of co-

production in CS development while addressing Objective 2 of this dissertation. This 

manuscript is entitled “The development of climate services for winter transportation 

planning” and will be submitted to the Journal of Climate Services. This manuscript explores 

the frequency, and intensity of past and future winter weather as it relates to WRM of 

provincial highways in the various maintenance areas in the province of Ontario, Canada.  

This manuscript presents a refinement of the WSI developed in Chapter two to conduct an 

investigation of the changing nature of winter weathers in Ontario, Canada over the past 30 
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years and into the next century. An analysis of past trends is conducted using the 

nonparametric Mann-Kendall Test and Sen's Slope Estimator to reveal that winters are 

indeed changing in Ontario, but the significance and magnitude of these trends varies 

spatially throughout the province. The climate change analysis portion of the paper reveals 

that winter severity as it relates to WRM is projected to decrease through to the end of the 

century. This study provides a rich description of the changing and variable nature of winter 

weather in Ontario, as it relates to WRM operations and outlines how a climate index can be 

developed with the exclusive use of publicly available data and applied to climate products at 

different timescales.  

Chapter four, published in the International Journal of Biometeorology is the first 

paper in this dissertation to explore the tourism-climate nexus. This manuscript entitled 

“Development of a data-driven weather index for beach parks tourism” (Matthews et al. 

2019) addresses Objective 3 to explore the feasibility of developing a data-driven tourism 

climate index for Ontario Provincial Parks.  Drawing on lessons learned from Objectives 1 

and 2, this paper assesses the design of the TCI (Mieczkowski, 1985), the HCI:Beach (Scott 

et al. 2019), and a then proposes a newly developed and mathematically optimized index 

developed specifically for the unique contextual realities of beach parks tourism in Ontario, 

Canada. This method combines the use of expert knowledge, insights from stated-preference 

studies, and mathematical optimization to develop an index that assigns daily weather scores 

for each day based on four weather sub-indices. Using this approach, each weather variable 

sub-indices is ranged to identify thresholds of sensitivity, and these thresholds are then 

weighted and combined in an additive manner to quantify the integrated effects of weather. 

These daily scores are then averaged to the monthly level and correlated to visitation data at 



 

  

25 

two provincial parks in Ontario. The optimized index demonstrates a strong fit (R2=0.734, 

0.657) with observed visitation at Pinery Provincial Park and Sandbanks Provincial Park, 

outperforming both the TCI (R2= 0.474, 0.018) and the HCI:Beach (R2=0.668, 0.427). This 

study advances our understanding of the magnitude and seasonality of weather’s effect on 

tourist visitation and provides tourism planners, managers, and decision-makers with 

enhanced information to inform decision-making. 

Chapter five is the final manuscript of this dissertation and has been accepted for 

publications in Current Issues in Tourism, and is entitled “Developing Climate Services for 

Caribbean Tourism: A Comparative Analysis of Climate Push and Pull Influences Using 

Climate Indices” (Matthews et al. Accepted).  In this study, the intra-annual effect of weather 

on tourism demand is empirically tested based on monthly departures (2008-2017) to three 

Caribbean destinations (Barbados, Antigua and Barbuda, and Saint Lucia) from Ontario, 

Canada. This chapter addresses Objective 4 while building on the work in Chapter four. This 

paper undertakes an investigation of the historical relationship between intra- and extra- 

regional climate and Caribbean tourist arrivals. Specifically, the investigation explores the 

role of climatic push factors and an exploration of identifying sensitivity thresholds for 

undesirable winter weather that may drive tourists from Ontario to depart to the Caribbean.  

This study refines the HCI:Beach through optimization to develop two new indices: the 

optimized in-situ index, which estimates the climatic pull-factor of the destination, and the 

optimized ex-situ index, which estimates the climatic push-factor from the source market. 

Findings reveal that the optimized ex-situ climate index explains 83 per cent (R2=0.830) of 

the variability in total monthly departures from Ontario and has greater predictive accuracy 

than the optimized in-situ indices for Barbados (R2=0.480), Antigua and Barbuda 
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(R2=0.629)., and Saint Lucia to (R2=0.710). Using a flexible climate index approach, this 

study advances our understanding of the magnitude and seasonality of climactic push and 

pull factors on Caribbean visitation and describes the foundation of a CS tool for destination 

managers and tourism marketers. 



 

 27 

Chapter 2: 

Operational Winter Severity Indices in Canada – From Concept to 

Practice 

 

Matthews, L., Minokhin, I., Andrey, J., Perchanok, M. (2017a). Operational Winter 
Severity Indices in Canada – From Concept to Practice, Proceedings of the 
Transportation Research Board, Standing Committee on Winter Maintenance (AHD65). 
Paper #17-03338. 
 
 

This manuscript has been modified for use in this dissertation 
 

2.1 Overview 

Public agencies are under increasing scrutiny to use their resources effectively 

and to demonstrate their effectiveness through performance measures. A variety of 

measures have been developed for winter maintenance operations, but the measures only 

provide meaningful information when they are normalized to the weather conditions that 

vary significantly from year to year and place to place. One method of normalizing is to 

use a measure the severity of winter weather conditions as they relate to winter 

maintenance activities.   The challenge is to develop a WSI that explains temporal and 

spatial variations in WRM activities across varied geographic areas. In this paper, a 

methodology for developing a province-wide and simple-to-use WSI is described using a 

case study approach on the provincial highway system of Ontario, Canada. This 

methodology combines the use of expert knowledge and mathematical optimization to 

develop a WSI that assigns daily weather scores for each day based on weather triggers 
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and an adjustment factor. These daily scores are aggregated to the 14-day period and are 

then correlated to maintenance activities. The WSI for Ontario provincial highways has a 

strong fit with maintenance measured as equipment-hours. Correlation of WSI values 

with equipment-hours at this temporal aggregation level vary from moderate to very high 

for each of the 20 maintenance areas across Ontario.  When spatially aggregated to the 

provincial level fit improves further to between 0.959 and 0.989 over seven seasons. This 

study demonstrates the utility of a province-wide WSI and describes how a WSI can be 

developed for road authorities.  

 

2.2 Introduction 

Road authorities allocate a substantial portion of road budgets to snow and ice 

control. It is estimated that more than three billion dollars is spent annually on WRM 

activities on North American roads. However, WRM practices and expenditures vary 

both spatially and temporally for numerous reasons (Venäläinen & Kangas 2003). 

Temporal variations in expenditures are partially explained by the phasing in of new 

technologies such as innovations in plow design, fuel efficiency, Global Positioning 

System tools, anti-icing chemical compositions, and communication technologies.  

Spatial variations in WRM practices can be partially attributed to dissimilarities in road 

networks (e.g., road classes, network length, population density). However, the most 

important consideration is variations in winter weather (Venäläinen & Kangas 2003).   

Road authorities are seeking tools that facilitate the planning, management, and 

communication of maintenance operations in the context of variable and changing winter 

weather. One such tool is WSIs that are used to quantify the severity of winter weather 
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conditions for a specific location at a particular time. An index is a measure that 

simplifies complex information (e.g., a number of different weather variables) for a 

particular application, typically representing this information as a single numeric value. 

Research on transportation-related weather indices has been ongoing for more than three 

decades (Thornes 1993, Venäläinen & Kangas 2003, Suggett et al. 2006) and WSIs have 

gained increasing prominence over the past decade because they can explain how 

different weather conditions impact maintenance costs or materials use.  

A variety of WSIs have been developed in North America and Europe with the 

goal of helping road authorities plan for and communicate WRM programs and 

expenditures. The most widely cited is the WSI designed by the US Strategic Highway 

Research Program (SHRP) (Thornes 1993); this WSI has been used to benchmark winter 

maintenance activities in some jurisdictions (McCullouch et al. 2004).  The regression-

type approach used in developing the SHRP model was also used in subsequent efforts by 

Venäläinen (2001), Venäläinen and Kangas (2003), and Strong and Shvetsov (2006).  

These WSIs are based on temporally aggregate data (e.g., monthly snowfall) and a small 

number of key weather variables as model inputs: temperature, snowfall and ground frost 

or freezing rain. A key disadvantage of this approach is that the weather severity scores 

cannot be directly linked to discrete storms or weather events. Furthermore, many of 

these WSIs can only be used for comparing WRM activities or expenditures between 

seasons in a single location. While these regression-type models may work well for the 

specific areas for which they were developed, sometimes reporting R2 values above 0.9, 

they do not perform as well when applied to jurisdictions in Canada (Andrey et al. 2001).  
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There have since been efforts to create an operational WSI for Canadian 

jurisdictions (Suggett et al. 2006, AMEC 2009, Andrey & Matthews 2012). These more 

recent approaches have assigned a point value to each day, and the points were then 

aggregated at coarser temporal resolutions and correlated to materials use.  An important 

advantage of working at the daily level and then aggregating the scores is that these 

indices are more easily interpretable as they are linked to distinct daily weather 

conditions/events. Another important innovation is the application of an optimization 

algorithm to define the key weather thresholds and weightings for daily scores which are 

then summed to the weekly, monthly, or seasonal levels and correlated to maintenance 

activities or expenditures. A similar approach has been used in the development of 

generic WSIs (Mayes Boustead et al. 2015) and has shown promise for use in a WRM 

context (Andrey & Matthews 2012, Matthews et al. 2015, Andrey et al. 2015).  

By comparing the performance of three WSIs that were developed for snow and 

ice control activities, Gustavsson (1996) outlined four attributes of a functional WSI. A 

WSI must 1) show a relationship between weather attributes and the need for WRM; 2) 

provide numeric values that can be easily interpreted on physical grounds; 3) use data at a 

time resolution that reflects the need for maintenance activities; and 4) include weighting 

functions that are directly related to maintenance demand.  The WSI developed in this 

study for the province of Ontario meets all four of these conditions. The WSI has the 

advantage of being transferable over space and time, having a strong relationship with 

WRM activity at the 14-day period, using variable weights that are directly related to 

WRM demand, and being easy to interpret.  
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2.3 Research Context 

In this paper, an optimization approach is used to develop, test and implement a 

WSI with application to snow and ice control activities on provincial highways in 

Ontario, Canada. The Province of Ontario, located in central Canada, extends 

approximately from 42°N at the United States border to 57°N and from 75°W at the 

provincial border with Quebec to 95°W with the provincial border of Manitoba (16). 

Ontario is approximately one million square km in size and has a mostly humid 

continental climate with cool winters and warm summers (Baldwin et al. 2000). Ontario 

has a population of 13.8 million and a provincial highway network that is 45,169 single-

lane kilometres long. 

The highway network is grouped into 20 Area Maintenance Contracts (AMCs), 

and five winter maintenance road classes, mainly by traffic level and with adjustment for 

surrounding population. Class 5 highways have WADT<500 and Class 1 have WADT 

>10,000.  Classes 3 through 5 are found mostly in the northern and rural areas of the 

province, whereas areas around the Greater Toronto Area are exclusively Class 1. 

Contract areas have centerline length of 600 to 1000 km, and each area has a different 

mix of highway classes. Direct annual costs of WRM on provincial highways amounts to 

approximately $140 million annually (Office of the Auditor General Ontario 2015). As of 

2014, five contractors are responsible for WRM in the 20 AMCs  

Developing a WSI that works equally well across the entire provincial network is 

a challenge given the variations in geography throughout the province. Ontario is a large 

province and is characterized by variations in topography, meteorology, road network 
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attributes, population density, and traffic volume. Dissimilarities between north and 

south, and east and west of the province are notable and thus the purpose of this research 

is to develop a WSI that performs equally well across the province. For this study, the 

WSI is developed at the AMC (contract) level.  This is an appropriate spatial unit of 

analysis because of the terms of maintenance contracts, purchases of equipment, 

implementation of practices, and monitoring of service performance are conducted at the 

AMC level.  

 

2.4 Data and Methods 

2.4.1 Information Needs 

As its name implies, a WSI is based entirely on weather information.  There are 

two data sources that are used in this research—weather station networks and Road 

Weather Information Systems (RWIS). Weather stations operated by ECCC have many 

positive attributes including high levels of quality control, extensive historical records, 

and stations with trained personnel (usually airports), that report a range of precipitation 

variables such as blowing snow, freezing rain, and fog. The records are publicly available 

and can be downloaded online for all stations and time periods of interest.  However, the 

relatively sparse network of stations, especially in the north, is a limitation for their utility 

in developing WRM indices on a province-wide basis, and this data source does not 

include information on road surface conditions.  

 RWIS networks record data that is directly relevant to WRM operations and are 

collected specifically for use by road authorities including variables such as road surface 

conditions and pavement temperature. Despite the added benefit of the transport-specific 
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variables, the RWIS data have a lower level of quality control than ECCC stations, and 

few RWIS stations have historically recorded rain and snowfall data – two variables that 

are crucial for WRM decisions. Both data sources were used in this project to provide the 

benefits of each. Overall, 103 RWIS sites and 64 ECCC climate stations were selected to 

cover all 20 AMCs.  This resulted in two to four ECCC stations and three to nine RWIS 

stations in each AMC area (Figure 2-1).  

 
 

 
 
Figure 2-1. ECCC (red) weather stations and RWIS (green) station locations with AMC 
boundaries 

 
While weather data are required for developing the WSI, there is also a need for 

maintenance data to be used as the response variable for model calibration. Winter 
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maintenance data for provincial highways is collected through a Maintenance 

Management Information System (MMIS). Once the data are quality-controlled all of the 

MMIS data are then aggregated to the daily level for each AMC. While the intention was 

to include data for each season for all 20 AMCs in Ontario, only 132 AMC-seasons were 

included due to incomplete MMIS data. Equipment-hours of operation during the seven-

year study period varied by AMC. The seasonal equipment-hours recorded range from 

2,750 hours for one AMC in the 2011-2012 season to 48,801 hours in the 2013-2014 

season. In the 2014-2015 season (the season that was selected as the testing set) 432,744 

equipment-hours were recorded across the province, marginally higher than the average 

of 387,958 equipment-hours were recorded over the six seasons in the training set (2008-

2009 to 2013-2014). Altogether, there were over 2.7 million hours of maintenance 

recorded in the MMIS system during the seven-year study period across all 20 AMCs. 

 

2.4.2 Approach to Index Development and Testing 

The WSI is designed so that each day during the study period is characterized as a 

single weather condition with an associated weather-severity score. The study period 

includes seven complete seasons of data. Six seasons were used to calibrate or train the 

model (2008-2009, 2009-2010, 2010-2011, 2011-2012, 2012-2013, and 2013-2014) and 

2014-2015, was used to test the model.  Daily weather severity scores range from zero 

(no weather that would reasonably trigger winter maintenance occurred) to a possible 

maximum of 1.5. The actual maximum value is determined though the optimization 

process.  The daily scores are summed to provide a 14-day or seasonal score.  
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Six weather conditions were selected for inclusion in the WSI based on both 

previous work (Andrey & Matthews 2012, Andrey et al. 2015) and data availability:   

1. Snowfall (snowfall data from ECCC) 

2. RWIS pavement ice warnings (ice warnings based on RWIS data) 

3. Rain with low temperatures (rainfall data from ECCC, temperature data from 

RWIS) 

4. Blowing snow (wind speed data from RWIS, snowfall data from ECCC)  

5. Series of cold days (temperature data from RWIS) 

6. Warm-weather adjustment factor (temperature data from RWIS) 

 

The first five weather conditions represent different weather triggers of 

maintenance activity.  The sixth condition is a warm-weather adjustment factor that 

reduces daily weather severity scores during the times of the year when the average mean 

temperature remains above freezing for an extended period.  The numerical order listed 

above reflects the hierarchy of weather triggers used in assigning daily scores. If two (or 

more) conditions were observed on the same day, the daily score was based on the 

condition that is higher on the hierarchy. For example, if measurable snowfall is observed 

on a given day, that day is assigned a ‘snowfall’ score, even if pavement ice warnings or 

blowing snow are also observed.  Similarly, if measurable snowfall is not observed on a 

given day and there are no RWIS pavement ice warnings on that day, but rain with low 

temperatures are observed, that day would be assigned a ‘rain with low temperatures’ 

score, even if there is also blowing snow.  
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After the weather triggers are selected it is also necessary to decide the temporal 

unit of analysis for the calibration of the WSI itself.  The first option is to work at a fine 

resolution. However, working at a fine resolution, such as the day, compromises model 

fit because of the maintenance lag that occurs after active winter weather, especially large 

snowfalls.  A second possibility is to work at a coarse resolution, such as a season or 

month, but this approach violates Gustavsson’s (1996) third criteria for a useful WSI, i.e. 

that the temporal resolution should connect with how maintenance decisions are made. 

The best alternative, therefore, is to work at an intermediate resolution. Thus, it was 

decided that 14-day reporting periods would be used. These reporting periods are 

predetermined by the provincial road authority and correspond directly to their reporting 

schedule.  There are up to 18 reporting periods in a given winter season and the reporting 

periods are consistent across all AMCs.  

Once the weather triggers are identified and the unit of analysis is determined 

then an optimization routine is executed in Microsoft Excel to simultaneously define 

weather trigger thresholds values as well as the daily scores. For example, for the 

snowfall trigger each day with measureable snowfall is identified (i.e., ≥ 0.2 cm of 

snowfall or ≥ 0.2 mm liquid precipitation equivalent). The optimization routine allocates 

each day to one of the possible three categories:  low accumulation, moderate 

accumulation, or high accumulation.  In addition to determining the cutoff values, the 

optimization algorithm assigns a score of between 0.0 and 1.5 for each of the weather 

triggers. This is completed in a way that maximizes the average fit across the 20 AMCs 

over the six years in the training set.  Days that do not meet the criteria for any of the 

weather triggers are assigned a daily score of zero. The benefit of using an optimization 
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approach is that the method ensures that thresholds and weighting of the triggers are 

directly related to maintenance demand (Gustavsson 1996).   

The daily upper limit determines that a value of 1.0 represents weather that 

typically triggers continual maintenance throughout the day of a weather event, and a 

score of 1.5 representative more severe weather that is associated with continual 

maintenance throughout the day with additional clean-up operations extending into the 

next day.  The extra 0.5 points reflect the maintenance lag that can be observed on the 

day following a winter weather event. A score of zero indicates an absence of weather 

sufficient to trigger WRM.  

 

2.4.3 Index Components and Optimization 

The information produced by the WSI can be used to characterize the winter 

weather for any given place and time using a single number.  More specifically, for each 

AMC in the province of Ontario, every day in the winter maintenance season is assigned 

a winter severity score.  The optimized threshold values and WSI scores for days with 

weather falling within each threshold are shown in Table 2-1.  This table is valid for all 

highways in the Province or for any Contract Area within it.   The table is organized such 

that, for each of the six weather triggers of winter maintenance, information is provided 

on the how ‘trigger days’ are classified and also on the weather scores for each category. 

Further, the number of days (n) in the study period that were classified to that weather 

trigger are identified in the last column.  For example, snowfall days are organized into 

three categories – low, moderate and high amounts of daily snowfall accumulation – with 

threshold cutoffs that are determined through optimization.  The corresponding weather 
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scores for these three types of days are 0.5, 1.0 and 1.3; again these were derived through 

optimization.  
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Table 2-1. Optimized weather thresholds and weather severity scores for winter weather factors in 
Ontario 

Weather 
Component Component Thresholds Score 

% of total 
WSI 

score* 
n days 

Snowfall 
component 

Low amount of snow 
(0.2 to 1.9 cm) 0.5 

84.9% 8,161  Moderate amount of snow 
(1.91 to 4.9 cm) 1.0 

High amount of snow 
(> 4.91 cm) 1.3 

Surface ice 
warning 
component 

Low: 
< 0.2 cm daily snowfall, 
and between 25% and 70% of road 
surface ice warnings 

0.3 

7.5% 1,890  
High: 
< 0.2 cm daily snowfall, 
and more than 70% of road surface ice 
warnings 

0.8 

Rainfall with 
low 
temperatures  

Daily snowfall < 0.2 cm,  
Conditions for ice warnings not met, 
Daily rainfall ≥ 0.4 mm, 
Min temp < -0.2 °C 

0.4 5.8% 1,148 

Series of cold 
days  

Daily precipitation < 0.2 mm,  
Conditions for ice warnings not met, 
Conditions for rainfall with low 
temperatures not met, 
Conditions for blowing snow not met, 
Max temp in previous three days < -12 °C 

0.5 0.9% 137 

Blowing snow  

Daily precipitation < 0.2 mm,  
Conditions for ice warnings not met, 
Conditions for rainfall with low 
temperatures not met, 
Wind speeds ≥ 15 km/h, 
Snowfall accumulations of previous three 
days ≥ 5 cm 

0.5 1.0% 150 

Warm-weather 
adjustment 
factor 

If ANY of the WSI weather triggers have 
been met AND 
The average mean temperature for the 6-
day period centered on the day for which 
the score is being assigned is >-1 °C 

-45% 
removed 

from 
daily 
score 

18.8%** 5,029 

* Average % of total WSI score that is from that weather component before the 
warm-weather adjustment factor is applied.  
**On average, the warm-weather adjustment factor reduces seasonal WSI scores 
by 18.8%.  

 

 
The second last column of Table 2-1 indicates that snowfall is the most frequent 

weather condition that triggers winter maintenance activity on provincial highways in 
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Ontario. The second most frequent condition for which daily scores are assigned is ice 

warnings, based on recordings in the RWIS data. The ice warning variable for each AMC 

is calculated by recording the total number of valid surface readings per day for each of 

the 19 pavement surface conditions.  Subsequently five ice readings (‘Black ice warning’, 

‘Ice warning’, ‘Ice watch’, ‘Snow/ice warning’, and ‘Snow/ice watch’) are counted to 

obtain the daily total number of ice warning readings. The surface ice warning 

component is normalized to a percentage of all valid surface readings. In previous studies 

the use of surface ice warnings was defined as a binary variable where either a threshold 

had been triggered and that day was given a score — or there was no trigger and thus a 

score of zero was assigned.  Given the significant influence of the surface ice warning 

trigger in Ontario, other options were explored. The decision was made to split this 

trigger into two categories, low and high.  

Rainfall with low temperatures, series of cold days, and blowing snow are 

triggered less frequently. It should be noted that in the absence of RWIS data, these final 

three weather components would be triggered more frequently. A situation that can lead 

to potential icing occurs when rainfall is coincident with or followed by cold 

temperatures.  Since this component of the index is about liquid precipitation, only those 

days when measurable rainfall of 0.2 mm is recorded, are considered. With a daily score 

of 0.4, the rainfall with cold temperatures component accounts for an average of 5.8 per 

cent of the weather severity scores in Ontario. Secondly, some have found a clear link 

between very cold temperatures and the need for WRM, which may relate to the 

polishing effect that tire friction can have on snow-covered roads in very cold 

temperatures.  The criterion for this series of cold days component simply counts days 
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when the maximum temperature does not exceed -12 °C at any point in the previous three 

days.  

The final weather trigger in the index is blowing snow – an important driving 

hazard. Often blowing snow happens during precipitation events, and these occurrences 

are included in the snowfall component described earlier.  Here the focus is on days 

where there is no measurable precipitation but where higher winds may be relocating 

snow from nearby fields and roadside deposits.  While at times ECCC reports on hourly 

occurrences of blowing snow, these observations can be inconsistent.  As such, we 

allowed for inclusion of a proxy variable for blowing snow based on two criteria: fresh 

snowfall accumulation above 5cm over the preceding three days, and average daily wind 

speed that exceeds 15 km/h. These last two weather triggers in the WSI both contribute a 

score of 0.5 points per day and each contribute approximately 1 per cent of the total WSI 

scores in Ontario.  

One significant aspect of this WSI is the attention given to seasonality, based on 

residual analysis.  In the initial iterations of the models through residual analysis, we 

appreciated the importance of seasonality. This analysis highlighted the extent to which 

warm weather mitigates the demand for WRM. Thus a warm-weather adjustment factor 

was included to reduce the WSI scores in periods that are relatively warm (>-1 °C over 

the course of six days).  The warm-weather adjustment factor takes into account the fact 

that weather triggers that occurs in autumn or spring may not result in as much 

maintenance activity because of warmer temperatures.  If this trigger occurs, then 45 per 

cent is removed from any day with a score exceeding zero. Overall, average annual WSI 

scores were reduced by 18.8 per cent because of the warm-weather adjustment factor. 
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The advantage of this approach is that while the focus is on the shoulder seasons, the 

warm-weather adjustment factor with reduce the scores at any time of year with warmer 

temperatures. For a province with substantial geographic variations in climate, the warm-

weather adjustment factor is crucial for ensuring the WSI performs equally well across 

the whole province.  

After the weather trigger thresholds and weights are identified, the WSI can then 

be calculated at different spatial scales (AMC, regions, or province-wide) and different 

levels of temporal aggregation (reporting-period level, monthly, seasonal).  This enables 

maintenance personnel or managers to compare the severity of the winter across both 

space and time.  For each AMC, daily scores are calculated for each day during the 

seven-year study period.  The daily scores are then aggregated to the 14-day and seasonal 

level (simple addition), with seasonal values ranging from 13.4 for an AMC in the 2011-

2012 season to 99 in another AMC for the 2013-2014 season (Table 2-2). 

 

2.5 Results  

Seasonal scores for all contract areas and the Province as a whole are shown in 

Table 2-2 and Figure 2-2 and the overall model fit is illustrated in Table 2-3.  The scores 

and the model fit illustrate geographic and temporal trends in winter severity that can be 

used to understand and communicate variations in highway maintenance performance.   

Of the seven years for which seasonal weather severity scores could be calculated, the 

highest values occurred for the 2013-2014 season with an average provincial WSI score 

of 64.9.  The least severe season was 2011-2012, with an average provincial WSI score of 
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33.6. Overall the scores displayed a near-normal distribution between a score of 10 and 

100 at the AMC-season level (Figure 2-2).  

 
Table 2-2. Seasonal winter severity scores 2008-2009 to 2014-2015 

 
AMC 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15    Mean Stdev 

A 49.1 26.0 44.2 30.9 40.4 46.6 44.8 40.3 8.0 
B 39.7 29.6 45.8 19.6 35.1 58.4 46.1 39.2 11.7 
C 69.4 53.8 65.8 65.4 71.1 83.0 72.5 68.7 8.2 
D 43.5 23.5 41.3 19.6 28.0 35.8 30.4 31.7 8.3 
E 32.7 18.3 29.7 13.4 19.4 35.2 28.1 25.3 7.6 
F 70.8 42.8 65.1 45.7 65.2 80.5 74.4 63.5 13.2 
G 58.6 40.0 58.4 39.1 57.1 77.8 67.1 56.9 12.8 
H 45.0 30.5 41.0 21.6 31.0 54.4 44.4 38.3 10.3 
I 38.1 18.1 44.2 17.9 28.5 51.0 37.5 33.6 11.7 
J 62.2 34.8 64.8 24.4 37.7 60.0 52.0 48.0 14.5 
K 33.6 19.9 33.4 16.8 24.2 43.2 37.2 29.8 8.9 
L 70.4 41.2 51.4 50.6 63.1 76.9 63.2 59.5 11.5 
M 46.0 34.2 47.4 35.6 44.9 56.0 52.8 45.3 7.5 
N 70.4 47.2 68.8 40.2 57.4 88.2 64.2 62.3 14.7 
O 78.0 49.9 49.1 46.3 77.6 99.0 89.1 69.9 19.7 
P 62.3 36.1 58.4 32.5 57.4 69.1 52.6 52.6 12.5 
Q 69.0 41.1 55.0 43.4 61.3 81.1 60.9 58.8 13.0 
R 59.7 40.7 56.6 49.5 64.6 81.8 71.4 60.6 12.7 
S 61.2 39.5 57.3 45.3 53.2 79.8 67.5 57.7 12.6 
T 40.1 21.4 35.6 14.3 24.9 39.6 31.0 29.6 9.0 
Provincial  55.0 34.4 50.7 33.6 47.1 64.9 54.4 48.6 10.5 

 
 
 

 
Figure 2-2. Frequency distribution of WSI scores at the seasonal level (n=140, 7 seasons x 20 
AMCs) 
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Table 2-2 illustrates how the average annual WSI scores vary across province. 

Northern areas of the province have the harshest winters and the southern, especially 

south-eastern, areas of the province experience the least severe winters (Figure 2-3). 

Furthermore, there is value in recognizing that winter weather is more variable year-to-

year in some AMCs than in others.   On average, there is a 10.5-point standard deviation 

in seasonal weather severity scores. At the AMC level the standard deviations range from 

7.5 to 19.7.  The AMC with the highest variation in winter weather experienced their 

most mild winter in 2010-2011 with a score of 49.1, then in 2013-2014 this AMC 

experienced a very harsh winter with a score of 99.0.  This 50-point spread in one AMC 

is particularly important to recognize when undertaking planning for equipment, 

materials, and labour requirements.   
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Figure 2-3. Maps of WSI scores for the 2011-2012 to 2014-2015 winter season for 20 Ontario 
AMCs  

 
As an overall measure of fit, a correlation analysis is conducted between the 14-

day level weather severity scores and the 14-day level maintenance activity. As indicated 

by the R2 values, there is good fit across the AMCs. This indicates that the index explains 

the majority of the temporal variability in WRM equipment-hours. Overall, as the WSI 

increases, equipment-hours increases proportionately. Similarly, as the WSI decreases, 

equipment-hours also decrease. The coefficient of determination (R2) between reporting-

period WSI scores and reporting-period equipment-hours ranges from 0.588 to 0.985 

(Table 2-3). Furthermore, confidence intervals are reasonably narrow for the majority of 



 

 46 

AMCs. While the R2 values at the AMC level vary, the majority of seasons have an R2 

above 0.800. On average, for any given season, 15 of the AMCs have a fit above 0.800 

and five of the AMCs are below this level.  Overall spatial aggregation increases fit. The 

R2 for 14-day, provincial-level data (total provincial equipment-hours vs. average 

provincial WSI scores at the reporting-period level) is between 0.959 (2012-2013) and 

0.989 (2009-2010) season. These values indicate that there is nearly perfect fit at the 

provincial level.  Overall the R2 values are very high thus indicating the WSI is an 

accurate tool for explaining variations in equipment-hours at both the AMC and 

provincial levels. 

 

Table 2-3. Seasonal R2 values between reporting-period level WSI scores and reporting-period 
level equipment-hours (2008-2009 to 2014-2015) 

AMC 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 
A 0.933 0.932 0.888 0.886 - 0.904 0.932 
B 0.959 0.864 0.931 0.774 0.943 0.946 0.942 
C 0.888 0.949 0.705 0.885 0.874 0.887 0.911 
D 0.849 0.766 0.886 0.588 0.818 0.695 0.928 
E 0.927 0.639 0.912 0.753 0.745 0.932 0.843 
F 0.966 0.985 0.835 0.983 0.873 0.909 0.975 
G 0.856 0.747 0.922 0.930 0.721 0.904 0.909 
H 0.950 0.934 0.948 0.808 0.962 - 0.968 
I 0.960 0.917 0.938 0.880 0.689 0.941 0.936 
J 0.926 0.636 0.860 0.784 0.931 0.932 0.931 
K 0.940 0.965 0.907 0.893 0.676 - 0.776 
L 0.960 0.925 0.845 0.952 0.938 0.896 0.891 
M 0.910 0.958 0.972 0.911 - - - 
N 0.892 0.917 0.942 0.905 - - 0.964 
O 0.941 0.939 0.712 0.788 0.831 0.934 0.937 
P 0.838 0.928 0.944 0.831 0.798 0.968 0.964 
Q 0.957 0.874 0.921 0.878 0.783 0.948 0.952 
R 0.798 0.708 0.917 0.874 0.616 0.858 0.853 
S 0.737 0.725 0.976 0.647 0.736 0.940 0.857 
T 0.972 0.684 0.960 0.835 0.897 0.928 0.777 
Provincial 0.985 0.989 0.982 0.978 0.959 0.975 0.983 

- Data unavailable 
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Another way to ensure that the WSI is capturing winter maintenance activities is 

to compare the number of winter maintenance equipment-hours that were recorded 

during days with WSI scores compared to maintenance hours that occurred on days 

without a WSI score. Of the total winter maintenance equipment-hours that were 

recorded during the study period, 85.0 per cent (2.35 million equipment-hours) occurred 

on days that had a weather score triggered by one of the above conditions, and a further 

8.5 per cent (234,642 equipment-hours) occurred on days that did not have a weather 

score but where the previous day did (e.g., cleanup after snowfall).  Most of the 

remaining hours of maintenance involved localized or short-duration winter maintenance.   

It is evident that this WSI is an effective tool for explaining variations in 

equipment-hours due to weather and is therefore an effective communication tool. There 

are three indications that this WSI will be a useful tool for explaining WRM activities 

due to weather in future seasons. First, the WSI has a broad spatial transferability across a 

province that includes a variety of climates. As measured by fit (R2), the fit is very 

similar in all areas of the province suggesting there is limited spatial bias.  Secondly, the 

WSI works well in the boundary conditions of the harshest and mildest seasons. The 

largest residuals tend not to be found in these mild and harsh time periods.  Lastly, the 

WSI was calibrated on the training set of data and the 2014-2015 season was reserved as 

the independent test period. An analysis of residuals was conducted to confirm that the 

WSI works equally well in the training and test periods. The Fligner-Killeen Test of 

Homogeneity of Variances is used to explore the assumption that the variances in the 

training and test set are equal. The results indicate that the variances of the residuals in 

the training and test sets are the same (Figure 2-4).    
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Figure 2-4. Boxplot of residuals for the training set (2008-2009 to 2013-2014 seasons) and test set 
(2014-2015 season) 

 
It is important to note that, while the WSI is calculated in the same way for all 

parts of the province, the number of equipment-hours varies by AMC, primarily because 

of differences in the road network (length of network, mix of road classes). Jurisdictions 

with larger networks, typically in the north, as well as time periods where the weather is 

more severe, have a greater variability of equipment-hours. Differences between AMCs 

can be illustrated by considering the way in which maintenance activity (equipment-

hours) increases when the two-week weather severity score increases from 2 (for 

example, during the shoulder season) to 8 (more typical of moderately severe winter).  

For example, in a southern AMC, this difference in weather would result in an increase in 

maintenance activity from less than 400 to just over 1500 equipment-hours.   In a 

northern AMC, by comparison, one would see much larger increases in maintenance 

activity—from approximately 1100 hours to more than 4700.      

To further understand whether these differences in network attributes could 
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impact WSI performance, a multiple linear regression was conducted. The multiple linear 

regression was developed where the 14-day level residuals are the response variable and 

attributes that could possibly impact WSI performance are the explanatory variables (n= 

2,418 reporting periods). The following variables were tested for their significance: road 

network length (km), per cent of the road network that is a 1st class highway (%), location 

(north or south), month of year, WSI score (no score, low, medium, high). The results of 

the multiple linear regression indicate that these explanatory variables are all insignificant 

at 5% significance level (p=0.079, F-statistic= 1.723, R2= 0.007), suggesting that there is 

no spatial bias in the applicability of the WSI across Ontario.  

 

2.6 Conclusions  

The WSI that has been developed for Ontario highways meets a number of 

attributes that are necessary for an operational index. First, the WSI for Ontario highway 

maintenance is simple to calculate and understand since it is based on a small number of 

weather triggers, all of which are easily understood. Further, when the same index is used 

across the province, comparisons of winter weather severity can be made across regions 

and over time. Second, the WSI for Ontario highway maintenance draws on available 

data that can be updated regularly, as they originate with the ECCC observation network 

(especially important for acquiring daily snowfall and rain amounts) and Ontario’s RWIS 

network (critically important for surface ice warnings).  Third, the WSI for Ontario 

highway maintenance has strong fit with maintenance activity that occurred, when 

measured as equipment-hours. The majority of seasons have a fit above 0.800. At the 

provincial level, the WSI works well with an R2=0.982 in the most recent 2014-2015 
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season. Lastly, the WSI for Ontario Winter Highway Maintenance performs well across 

different climatic regions and maintenance regimes.   

 The WSI that has been developed for Ontario Winter Highway Maintenance has 

the potential to be used in several different ways to support highway operations. A WSI 

can enable informed decision-making by clearly documenting the relationship between 

weather and WRM activities that can be applied in at least three ways to aid in agency 

accountability to the public. First, the WSI can be used as a tracking mechanism to 

monitor the severity of winter weather. As such, the WSI can be used to describe, 

quantify, review and compare winter weather severity from any time period to another 

and from one region to another. Second, it could be useful as a season-to-season risk 

management tool. Lastly, this WSI enables road authorities to clearly communicate 

winter weather severity to the public and other stakeholders in relation to observed levels 

of service.  
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Chapter 3: 

The Development of Climate Services for Winter Transportation 

Planning  

Matthews, L., Andrey, J., Fletcher, C., Oozeer, Y. (Submitted). The development of 
climate services for winter transportation planning.  Climate Services. Manuscript ID: 
CLISER-D-20-00027. 
 
 

This manuscript has been modified for use in this dissertation 

3.1 Overview 

Snow and ice control programs are critical for the efficiency and safety of 

transportation systems in all winter climates. However, climate variability and change 

present particular challenges for the tactical and strategic planning of snow and ice 

control. Accordingly, tools that help road authorities and snow and ice control 

practitioners plan for, assess, and communicate the relationship between climate and 

winter maintenance activities are increasingly requested.  Furthermore, there is increasing 

evidence that the development of these CS tools is an iterative, evolving, and long-term 

process between the producers and users of this climate information. This co-production 

of climate information is shown to increase the usability and application of climate 

science in a variety of sectors including transportation. This paper presents a case study 

describing the co-production of a climate translation service for a Canadian road 

authority grappling with the impacts of climate variability and change on WRM 

operations. Climatic indices that can rate the severity of winter conditions in a given time 

period at a specific location, are one subset of CS translation tools. The purpose of this 
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study is to: 1) refine an existing WSI to better understand how winter weather translates 

into inter-annual variations in WRM activities using publicly available data; 2) apply the 

index to historical weather observations to assess the magnitude and significance of 

historical winter weather trends, and 3) apply the index to modelled climate data to 

project the impacts of climate change for three future time periods on WRM operations in 

Ontario, Canada. Results indicate that the WSI for Ontario highways has strong fit with 

maintenance activity that occurred, when measured as equipment-hours. An analysis of 

trends reveals that winters are indeed changing in Ontario, but the magnitude and 

significance of these trends varies spatially throughout the province. Furthermore, the 

climate change analysis reveals that winters will continue to experience a reduction in 

overall weather severity.  

 

3.2 Introduction 

Global transportation systems are affected by weather in a variety of ways.  It is 

because of the significant and varied impacts of weather and climate on transportation 

that this sector was the world’s first user of weather information for decision-making 

(Koetse & Rietveld 2009, Markolf et al. 2019). The marine shipping sector is touted as 

the first user of wind records for optimizing sailing routes (Lewis, 1996, Anderson et al. 

2015), and modern marine operations use weather/ information to inform evasive 

maneuvers such as avoiding sea ice and hurricanes (Mannarini et al. 2013, Pietrzykowski 

et al. 2017, Lee et al. 2018) as well as the siting and construction of port facilities 

(Hallegatte 2009). The rail system uses weather observations to manage vulnerability to 

extreme heat and extreme cold (Doll et al. 2014), flooding (Changnon 2013, Koetse & 
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Rietveld 2009), and extreme weather events such as hurricanes and storm surges 

(Markolf et al. 2019). Aviation is also sensitive to a suite of climatic conditions including 

fog, storms, extreme heat, extreme cold, and high-winds (Krozel et al. 2008), and it is 

estimated that more than 70% of air travel delays are due to weather (Kulesa 2003). 

Lastly, weather impacts road transportation in a multitude of ways (Markolf et al. 

2019)—mobility patterns (Shah et al. 2003, Mahmassani et al. 2009, Maze et al. 2006, 

Strong et al. 2010), road safety (Andrey et al. 2003, Andrey 2010, Hambly et al. 2013, 

Dey et al. 2014), active transportation (Saneinejad et al. 2012, Flynn et al. 2012), transit 

ridership (Guo et al. 2007, Zhou et al. 2017), and mode choice (Böcker et al. 2013, 

Böcker et al. 2016).  

In recent years, road transportation has been arguably the most extensive 

developer and user of weather information, especially in the transportation sector’s 

development and use of Maintenance Decision Support Systems (MDSS).  Short-term 

weather products from federal weather service providers issue warnings and alerts to 

inform the public and road authorities about impending snowfall or ice storms 

(Kilpeläinen & Summala 2007, Pilli-Sihvola et al. 2012). Sub-daily to daily forecasts 

inform tactical decisions such as when to implement pre-wetting or plowing activities 

(Strong & Shi 2008, Petty & Mahoney 2008, Ye et al. 2009) and one particularly 

widespread MDSS was developed by the United States Federal Highways Administration 

(USFHA). The USFHA Maintenance Decision Support System (USFHA-MDSS) for 

WRM is an online tool that predicts and visualizes forecasted road weather conditions 

and presents multiple potential maintenance treatment options on a location-specific 

level. The USFHA-MDSS, for example, further takes into account resource availability 
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(e.g., equipment, staffing, materials) in the suggested maintenance treatment options 

(Petty & Mahoney 2008, Ye et al. 2009). In the longer term, weekly to seasonal forecasts 

can inform road authorities of when there is a need to stockpile additional salt and 

aggregate, or the timing of paving operations (Strong & Shi 2008, Ye et al. 2009). At the 

decadal timescale, climate projections inform long-term decisions in regards to 

infrastructure investments such as the design of bridges, pavement engineering standards, 

and culvert capacity upgrades in response to projections of more frequent and intense 

rainfalls (Mills et al. 2007, Fletcher et al. 2016, Markolf 2019).   

Shorter term decisions in the transportation sector have increasingly relied on 

RWIS (Usman et al. 2010, Ye et al. 2014) and other decision support tools such as the 

USFHA-MDSS (Petty & Mahoney 2008, Ye et al. 2009, Macharis & Bernardini 2015). 

However, the use of seasonal to inter-annual climate projections for informing strategic 

planning related to staffing, equipment needs, public engagement, or the establishment of 

decades-long road maintenance contracts is in its infancy.  In recent years, an emerging 

body of literature has examined how climatic variability and change will alter 

transportation risks and opportunities (Chapman 2007, Koetse & Rietveld 2009, 

Andersson & Chapman 2011, Markolf 2019). Much of this work focuses on flooding, sea 

level rise, and permafrost depletion in northern regions. One area that has received 

relatively limited attention—both in the climate change and CS fields—is the impact of 

climate variability and change on WRM (Warren et al. 2004, Mills et al. 2007, Millerd 

2011, Andersson & Chapman 2011).  This is despite the serious impacts of winter 

weather on travel risks, mobility delays, and government budgets (Norrman et al. 2000, 

Knapp et al. 2000, Maze et al. 2006, Strong et al. 2010, Mills et al. 2019).   
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Road authorities are responsible for reducing winter weather-related driving risk 

through a variety of interventions such as the use of electronic signage to warn of 

hazardous weather conditions, closing roads that are too dangerous, and providing up 

real-time intelligence on road conditions (Andersson & Chapman 2011). The most 

prevalent response by road authorities to winter weather is WRM. WRM involves 

clearing the snow and ice from roads (e.g., plowing) and using materials to improve 

pavement friction (e.g., salt, de-icers, sand, aggregate).  However, these WRM activities 

are costly for road authorities globally and, as such, developing CS tools that can better 

enable WRM planning, especially for strategic decisions, could result in significant fiscal 

savings. 

 Road authorities allocate substantial resources to snow and ice control; it is 

estimated that more than USD$3.3 billion is spent annually on WRM activities on North 

American roads (Venäläinen & Kangas 2003, SIMA 2016). More striking is the 

estimated USD$23 billion spent for snow and ice control in the private sector with retail 

and industrial markets spending approximately USD$11.8 billion while hospitals, 

airports, and educational institutions spend approximately USD$3.3 billion (SIMA 2016). 

However, snow and ice control activities vary considerably over space and time – making 

the budgeting, management, planning, and monitoring of WRM activities a complex and 

challenging endeavor (Venäläinen & Kangas, 2003). Temporal variations are partially 

explained by the phasing in of new technologies such as innovations in plow design, 

Global Positioning System tools, anti-icing chemical compositions, and communication 

technologies.  Spatial variations can be partially attributed to dissimilarities in road 

networks (e.g., road classes, network length, population density) and the proportion of 
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surfaces that require maintenance. However, the most important considerations over time 

and space are variations in winter weather (Venäläinen & Kangas 2003, Kangas et al. 

2015).  It is precisely this uncontrollable variability in winter weather that creates 

strategic planning challenges for road authorities globally and predicates the need for 

further CS development in the transportation sector.  

Strategic planning for WRM operations is challenging in part due to this temporal 

variability, but long-term changes in climate are adding further complexity and 

uncertainty to the planning process (Palin et al. 2016). While it has been established that 

there is a need to study the impacts of climate variability and change on transportation 

infrastructure and services, concrete adaptations in this sector are only beginning to gain 

traction (Koetse & Rietveld 2009, Picketts et al. 2015, Matthews 2017c, Markolf et al. 

2019). The use of weather and climate information for tactical and strategic purposes, 

such as planning for the staffing, equipment needs, or public engagement initiatives 

remains challenging.  Part of this challenge stems from the poor correlation between 

individual climatic stimuli (e.g., temperature or snowfall amount) and behavioural 

responses (e.g., hours worked, money spent, salt used, potholes fixed, collisions avoided). 

The larger issue, however, is that winter maintenance responses are intended to achieve 

specified standards, and these standards reflect conditions associated with multiple 

weather variables in particular ranges or beyond particular thresholds.  

The challenge of identifying societal thresholds that reflect organizational 

sensitivity to climatic stimuli has been a longstanding issue. In the 1993 edition of 

Environment as Hazard, Burton et al.  (1993) emphasize the impact of weather 

thresholds for understanding the non-linearity, and the context-dependency of society’s 
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sensitivity to snowfall. Burton et al. (1993) articulate that there are critical thresholds for 

snowfall accumulation after which damages or impacts increase more quickly. Further 

complicating the situation is that, in the context of WRM, the response to a specific 

condition varies geographically for social, cultural, economic, or political reasons; and 

there is sensitivity to a range of conditions. While attempts have been made to integrate 

the different climatic variables into models and indices (Rissel & Scott 1985, Boselly et 

al. 1993, Cornford & Thornes, 1996, Venäläinen 2001, Carmichael et al. 2004, Suggett et 

al. 2006), there is no universal physical unit of ‘winter weather’.  

Over the past four decades, road authorities and industry practitioners have been 

seeking tools that facilitate the planning, management, and communication of 

maintenance operations. One such set of tools is weather indices that are used to quantify 

the severity of conditions for a specific location at any particular time (Carmichael et al. 

2004, Nixon & Qui 2005, Matthews et al. 2017a,b,c, Walker 2019). An index is a 

measure that simplifies complex information (e.g., a number of different weather 

variables) for a particular application; typically representing this information as a single 

numeric value. Overall, the purpose of an index is to provide decision-makers with easily 

usable, interpretable, and credible information in relation to a given objective (Malkina-

Pykh 2000). Weather and climate indices have been proposed as tools for CS in other 

sectors such as tourism (Damm et al. 2019), but to date transportation-related climatic 

indices have not been integrated into the CS landscape despite their prevalence and value 

in practice by numerous road authorities internationally (e.g., McCullouch et al. 2004, 

Carmichael et al. 2004, Strong & Shvetsov 2006, Matthews et al. 2017c).  
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Tools such as indices can enable road authorities and industry practitioners to plan, 

communicate, manage, and assess WRM operations and expenditures. WSIs can be used 

to explore how specific weather conditions translate into higher- or lower-than-average 

maintenance costs on a variety of temporal scales (Nixon & Qui 2005), and they can be 

used to anticipate the probable resource requirements based on forecast conditions or 

projected longer term changes (Strong & Shvetsov 2006).  Strong and Shvetsov (2006) 

recommend that indices should be used as a public communication tool and disseminated 

through traditional media to warn drivers of the severity of the weather. Others such as 

Carmichael et al. (2004) promote the use of WSIs not only for public communication, but 

also for a variety of strategic decision-making contexts. Accordingly, integrating WSIs 

into the CS toolbox for the transportation sector is a promising endeavor to further 

expand their use for both weather risk management and climate change adaptation.  

While more than 20 WRM WSIs have been developed since the 1980s, WSIs 

have not been widely published or cited in the CS literature to date despite their utility as 

a weather and climate translation tool.  A fundamental role of climate translation services 

is to effectively contextualize weather and climate information (Cash et al. 2006). 

Translation service providers create tailor-made information to bridge the interface 

between the scientific community and the users. The challenge for these boundary 

organizations is to develop a system that enables the creation of salient weather and 

climate information that can be understood and used by decision makers (Kirchhoff et al. 

2013). In the context of WRM, WSIs have been used as a translation weather service for 

over four decades, albeit in a limited extent in practice, and this is only the second study 
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to extend beyond the historical assessment, and explore the impacts of the climate change 

through this WSI tool.   

The most widely cited WSI is the SHRP (Strategic Highway Research Program) 

index (Boselly et al. 1993) which was proposed by the US Strategic Highway Research 

Program.  The SHRP index was subsequently adapted in a number of other studies (see 

Andrey et al. 2001, Decker et al. 2001) and most include some combination of common 

winter weather variables (e.g., temperatures, snowfalls, freeze-thaw cycles, and freezing 

rain). Despite the prevalence of WSI development and a fair degree of agreement on 

variable usage within the WSIs, a core challenge remains in developing an index where 

the variable thresholds and weighting functions are directly related to maintenance 

demand. While most extant indices use multiple linear regression to assign weights, 

McCullouch et al. (2004) conducted interviews and Nixon & Qui (2005) conducted 

surveys with maintenance crews and management to identify which weather events that 

had the largest impact on WMR activities. However, the determination of variable 

thresholds is not explicitly articulated in these studies. The categorization of variables 

based on thresholds (e.g., temperature ranges, specific snowfall amounts) is often highly 

subjective (Ebert & Welsch, 2004), and none of the aforementioned studies, with the 

exception of Matthews et al. (2017b,c), have clearly articulated how the variable ranges 

are determined.  

Understanding climatic thresholds is critically important for the development of 

CS and impact-based forecasting more broadly.  The specific climatic thresholds that 

induce a transportation authorities’ response to weather vary over space and time because 

of the importance of context. As such, the development of a method that can identify 
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societal thresholds to climatic stimuli is an important scholarly and practical endeavor.  

One novel approach by Matthews et al. (2017b) uses an optimization algorithm to 

simultaneously determine both variable weights and the thresholds for these weather 

variables.  However, a disadvantage of the approach used by Matthews et al. (2017b) is 

their reliance on RWIS station data that can be cost prohibitive. As outlined by Hewitt et 

al. (2012), CS development should rely on publicly and freely available data. 

Furthermore, the management and processing of the RWIS data is cumbersome, and 

smaller road authorities or private snow and ice control firms may not have either access 

to the installations, or the means to store, process, and analyze the RWIS data. More 

acutely, the lack of RWIS in historical meteorological observations prohibits the ability to 

explore long-term trends and the development of CS.  These RWIS data are not available 

in the historical weather record, nor are these types of measurements incorporated into 

climate models.  Relying on weather variables that are available in both historical records 

and in climate models is an important consideration for long term planning of CS 

development in the transportation sector.  

In this research, a reassessment of the index by Matthews et al. (2017a) is 

conducted to explore whether similar levels of fit can be achieved with exclusive reliance 

on publicly available data.  This paper then provides the first comprehensive analysis of 

past variability and trends of winter weather that affect snow and ice control, and the 

study further extends the analysis to future projections of climate change for Ontario, 

Canada. Previous explorations of winter weather in Ontario have focused on the severity 

of the weather, and to date, there has been little examination of the historical trends and 

future projections of WRM-related weather events. 
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3.3 Study Objectives 

This article serves not only to outline the process of developing a WSI, but also to 

document the development of CS for WRM with both a historical and future climate 

perspective. The investigation began in 2016, when the research team received a request 

from the MTO to develop a WSI for Ontario Winter Highways Maintenance (see 

Matthews et al. 2017a). This initial WSI development for Ontario was favourably 

received and was integrated into the provincial RWIS system. At present, daily WSI 

scores are calculated and disseminated as part of the short-term RWIS forecasts for 

WRM managers, and these WSI scores are then recorded as part of the historical RWIS 

record, and also communicated on the provincial website for public announcement.  

Given the success of this initial project, the research was then extended to answer two 

more research questions. After discussions and feedback with road maintenance 

personnel on the findings from the 2016 project, the Ontario Ministry of Transportation 

(MTO) was interested in exploring whether a substitution in variables (i.e., snowfall 

intensities [cm/hr] instead of daily snowfall accumulation [cm]) would improve the WSI. 

This variable substitution did not result in an improvement in model fit. However, a 

second extension of the project was then granted to explore the long-term trends and 

future projections of climate change – results of which are presented in this paper.  This 

long-term relationship building with the climate information users underscores the 

importance of an iterative, evolving, and long-term process between researchers and 

users of climate information. 

Overall, this paper aims to increase the capability of road authorities to perform 

climate risk management by estimating the extent to which winter maintenance needs 
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have changed since the establishment of maintenance procedures and protocols and how 

they are projected to change into the future. This is achieved through three main 

objectives. The first objective is to recreate the WSI developed by Matthews et al. 

(2017a) using only publicly available weather observations in order to assess the 

robustness of the WSI should it be used in situations where proprietary data are not 

available. The second objective is to document trends in historical winter weather from 

the 1980-81 season to the 2014-15 season in order to understand the changing nature of 

winters in the study area. The third objective is to compute the WSI for the modelled 

climate data to assess the impact of climate change for each of the study area’s 20 AMCs 

to inform long-term thinking of maintenance needs for three future time periods. 

Furthermore, this paper provides a transferable framework for the development of a 

context-specific WSI that can be applied to weather and climate products at multiple 

timescales and highlights the important role of co-production in the development of CS in 

the transportation sector. 

 

3.4 Study Area 

The Province of Ontario, located in central Canada and is approximately one 

million square kilometers in size. There are approximately 332,000 two-lane kilometers 

of roadways (Transport Canada, 2015) in Ontario and the MTO is responsible for 

maintaining 43,000 single-lane kilometers of highways. These highways under the 

jurisdiction of the provincial government are mainly high-speed highways (90 – 100 

km/hr) and, as such, timely and effective maintenance is critical for maintaining good 

driving conditions, even during periods of snowfall and other winter weather.   
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The degree to which winter driving conditions in Ontario are changing is a matter 

of practical planning relevance. There is increasing concern that inter-seasonal variability 

and change will require re-thinking and adjustments in approaches to WRM, particularly 

as they relate to equipment complement requirements and the pricing of long-term 

maintenance contracts. In Ontario, there has been a trend of increasing winter 

precipitation since the 1960s (Vincent et al. 2015) and Regional Climate Models (RCMs) 

indicate that this trend will continue in the future (Wang et al. 2015).  Similarly, winter 

temperatures in Ontario have been increasing and are projected to continue increasing in 

the future (Wang et al. 2015).   

 

3.4.1 Information Needs 

ECCC provides public access to historical weather records for numerous 

observation sites in Ontario. In the current study, suitable stations for each of the AMCs 

were selected. The AMC is the primary spatial unit of analysis as this is the spatial unit 

that is most relevant to WRM operations on Ontario provincial highways. For objectives 

1 and 2, daily level rainfall, snowfall, precipitation, and maximum and minimum 

temperature data were obtained from the ECCC stations for the period between January 

1, 1980 and December 31, 2016. The 1993 calendar year is not included due to data 

quality issues. As such, the 1992/1993 season and the 1993/1994 season are not included 

in this assessment.  

While weather data are required for developing the WSI, there is also a need for 

maintenance data to be used as the response variable in refining a data-driven weather 

index that reflect the MTO’s particular sensitivity to weather conditions. Winter 
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maintenance data for provincial highways is collected through a MMIS system. The 

MMIS data were processed, quality controlled, and aggregated to the daily level for each 

AMC. Equipment-hours of operation were available for seven years from the 2008-09 

season to the 2014-15 season. The seasonal equipment-hours recorded range from 2,750 

hours for one AMC in the 2011-2012 season to 48,801 hours for another AMC in the 

2013-2014 season. Altogether, there were over 2.7 million hours of maintenance recorded 

in the MMIS system during the seven-year model calibration period across all 20 AMCs. 

For objective 3, the climate change data were obtained from the North American - 

Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) data archive 

(Mearns et al. 2017). The NA-CORDEX project involves a series of RCMs run over a 

North American domain driven by historical and future boundary conditions. The NA-

CORDEX simulations span the period 1950 – 2100, and simulations are available at finer 

(0.22°/25km) and coarser (0.44°/50km) spatial resolutions. The use of finer models is 

particularly important for the current study, as Ontario is a large and geographically 

diverse area. Two different types of simulation are available in the NA-CORDEX 

collection.  The first involves multiple RCMs driven by boundary conditions from the 

ERA-Interim historical (observation-based) reanalysis system, which are primarily used 

to quantify biases in the RCMs. The second type of simulation, which are used for this 

project, involves multiple RCMs driven by historical (1950-2005) and future scenario 

(2006-2100) output from multiple Global Climate Models (GCMs) that participated in 

phase five of the Coupled Model Intercomparison Project. The four RCM-GCM 

combinations used in this project are shown in Table 3-1, and this selection reflects the 

set of models for which all required output variables were available at the finer spatial 
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resolution (25 km). All four of these simulations use Representative Concentration 

Pathway (RCP) 8.5.  

Table 3-1. Summary of RCM-GCM model combination selected from NA-CORDEX 
experiments 

RCM Driving GCM  
Canadian RCM v4 (CanRCM4) Canadian Earth System Model v2 (CanESM2) 
Canadian RCM v5 (CRCM5-UQAM) Canadian Earth System Model v2 (CanESM2) 
Canadian RCM v5 (CRCM5-UQAM) Max Planck Institute Earth System Model – Low 

Resolution (MPI-ESM-LR) 
Canadian RCM v5 (CRCM5-UQAM) Max Planck Institute Earth System Model – Medium-

Resolution (MPI-ESM-MR) 
 

For the historical analyses and assessment of trends, the Durham AMC uses the 

same data as the Toronto and Halton AMCs due to the lack of suitable ECCC data in 

these nearby AMCs. Similarly, the Sudbury and North Bay AMCs also share a weather 

dataset. However, because the climate change models are gridded products, a climate 

change assessment was conducted for each of the AMCs separately based on the AMC 

boundary GIS files provided by the MTO. As such, during the historical analyses section, 

the results for Toronto, Halton, and Durham are identical; similarly, the results for 

Sudbury and North Bay are also identical. However, in the climate change assessment the 

results for these AMCs diverge because of the fine spatial resolution provided by the NA-

CORDEX climate products. For the climate change assessment, analysis was conducted 

in R (R Core Team 2019) with figures produced using the package ggplot2 (Wickham 

2016). 

 

3.5 Objective 1: WSI Development 

The WSI presented in this paper uses mathematical optimization to determine 

variable thresholds and weights, based on the previous methods outlined by Matthews et 
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al. (2017 a,b,c). The recent publication by Matthews et al. (2017a) in particular 

demonstrates the potential in using mathematical optimization to create context-specific 

and robust WSIs for WRM practitioners.  Matthews et al. (2017a) developed a WSI to 

explain spatio-temporal variations in WRM activity (as measured by equipment hours) 

for 20 maintenance jurisdictions in Ontario over the course of seven years. The index was 

composed of eight weather triggers and one warm-weather adjustment factor (for a total 

of fifteen different ‘weather days’). This index was calculated daily but reported in 14-

day periods, to coincide with the reporting periods used by the MTO, and at the seasonal 

level. The resulting index values were shown to have a strong fit with maintenance 

activity, measured as equipment-hours. However, the limitation of this approach for 

exploring long-term trends and future projections in winter weather severity is its reliance 

on RWIS data, which are not available historically or in climate models. Furthermore, 

RWIS data are a paid product/service, and as underscored by the GFCS, CS should be 

based on freely accessible weather and climate data to facilitate CS use (Hewitt et al. 

2012).  Accordingly, in this current study, the index is recalibrated based exclusively on 

the publicly available ECCC data. 

The removal of the RWIS data led to the exclusion of two weather triggers, the 

surface ice warning and blowing snow triggers. The selected WSI conditions are outlined 

in Table 3-2. The optimization algorithm was run for all seven seasons to optimize the fit 

(R2) between the index and equipment hours. The thresholds and component scores did 

not change despite the removal of the two previous triggers and the two additional 

seasons of data relative to the work in Matthews et al. (2017a). The previous work in 

Ontario used training and testing datasets and two seasons of data were omitted from the 
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model training datasets.  Given that the purpose of this study is to explore the historical 

observation period as well as future projections into 2099, it is reasonable to train the 

index on the entirety of the available response/ impact dataset (equipment-hours).  Daily 

weather severity scores range from zero (none of the weather triggers occurred) to a 

maximum of 1.3. The numbering system in Table 3-2 reflects the order of consideration 

in assigning the daily scores. This order also reflects the relative frequency with which 

these conditions occurred. If two (or more) conditions are observed on the same day, the 

daily score is based on the condition that is higher on the hierarchy.  

 
 

Table 3-2. Summary of constants for the Ontario WSI for highway maintenance 

Day type Component thresholds Score WWAF adjusted 
Score 

Snowfall days 

High amount of snow 
(> 4.91 cm) 1.3 0.715 

Moderate amount of snow 
(1.91 to 4.9 cm) 1.0 0.55 

Low amount of snow 
(0.2 to 1.9 cm) 0.5 0.275 

Series of cold 
days  

Daily precipitation < 0.2 mm,  
Max temp in previous three days < -12 °C 0.5 NA 

Rainfall with 
low 
temperatures 
days 

Daily snowfall < 0.2 cm,  
Conditions for series of cold days no met, 
Daily rainfall ≥ 0.4 mm, 
Min temp < -0.2 °C 

0.4 0.22 

Warm-
weather 
adjustment 
factor 
(WWAF) 

If ANY of the WSI weather triggers have 
been met AND 
The maximum temperature for the 6-day 
period centred on the day for which the 
score is being assigned is >-1 °C 

-45% removed from daily 
score 

 
 

Once the WSI constants were defined, the WSI scores were calculated for each of 

the 248,200 AMC-days (20 AMCs x 34 years x 365 days) during the study period. 

Although the winter season is approximately seven months in duration, index score 
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calculations were computed for all days in all years, as winter weather is known to occur 

outside of the institutionalized maintenance season. Across the 20 AMCs, on average, 77 

days required winter maintenance each season. The average seasonal WSI score in 

Ontario is 46 and seasonal WSI score are approximately normally distributed. However, 

as is evident in Figure 3-1, there is considerable variation in the seasonal WSI scores 

across Ontario.  

Figure 3-1 clearly shows that the Cochrane AMC consistently experiences the 

most severe winter weather and the AMCs of Toronto, Halton, Durham, and Chatham 

experience the least severe weather on average, and the most consistent weather as shown 

by the smallest spread in seasonal index values and the smallest standard deviations. 

Conversely, Sault Ste. Marie, Owen Sound, Thunder Bay West, and Bancroft have more 

variable seasonal WSI values all with standard deviations greater than 12 index points 

(Table 3-3). This inter-seasonal variability can be particularly challenging for road 

authorities as it suggests that the personnel, equipment and materials use in one year may 

be markedly different than those in previous or subsequent seasons. The highest WSI 

score was experienced in Cochrane during the 1995-96 winter season with a score of 

92.0. The least severe winter season occurred in the Chatham AMC in the 1982-83 winter 

season with a score of 12.9. On average for Ontario the 2013-14 winter season had the 

most challenging winter conditions with a WSI score of 61.3. The second highest average 

seasonal WSI score was 57.7 in the 1995-96 winter season. The lowest average seasonal 

WSI score for the province occurred in the 2009-10 season (average 32.1) followed by 

the second least severe winter season in 2011-2012 (average 32.2).  
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Figure 3-1. Boxplots showing the interquartile range (25% to 75%) for observed seasonal WSI 
scores in each AMC from 1980-81 to 2015-16. 

 

In most cases, as the WSI increases, equipment-hours increase proportionately. 

Similarly, as the WSI decreases, equipment-hours decrease proportionately. With the 

exclusion of the RWIS data the fit is, on average 0.1% lower than in the WSI presented in 

Matthews et al. (2017a). The coefficient of determination (R2) between reporting-period 

level WSI scores and reporting-period level equipment-hours range from 0.607 (2012-13) 

to 0.990 (2010-11), as summarized in Table 3-3. The average annual R2 value (R2 values 

for each AMC-season averaged) is 0.874, which indicates that on average 87.4% of the 

variability in 14-day reporting period equipment-hours in the 20 Ontario AMCs is 

explained by the WSI. Overall the R2 values are high, thus indicating the WSI is reliable 

in explaining variations in equipment-hours.  

●

●

●

●

●

●

25

50

75
Ba
nc
ro
ft

Ch
at
ha
m

Co
ch
ra
ne

Du
rh
am

Ha
lto
n

Hu
nt
sv
ille

Ke
no
ra

Ki
ng
st
on
.E
as
t

Ki
ng
st
on
.W
es
t

Lo
nd
on

Ni
ag
ar
a

No
rth
.B
ay

O
tta
wa

O
we

n.
So
un
d

Sa
ul
t.S
te
..M

ar
ie

Si
m
co
e

Su
db
ur
y

Th
un
de
r.B
ay
.E
as
t

Th
un
de
r.B
ay
.W
es
t

To
ro
nt
o

AMC

W
SI

 S
co

re



 

 70 

 

Table 3-3. Seasonal R2 values between observed reporting-period level WSI scores and reporting-
period level equipment-hours 

 

AMC 2008-
2009 

2009-
2010 

2010-
2011 

2011-
2012 

2012-
2013 

2013-
2014 

2014-
2015 

A 0.934 0.908 0.896 0.815 NA* 0.881 0.866 
B 0.953 0.931 0.875 0.748 0.861 0.886 0.955 
C 0.869 0.95 0.665 0.881 0.869 0.863 0.875 
D 0.969 0.779 0.945 0.846 0.863 0.775 0.842 
E 0.913 0.652 0.975 0.758 0.716 0.926 0.837 
F 0.962 0.946 0.815 0.948 0.888 0.924 0.961 
G 0.907 0.655 0.935 0.93 0.717 0.939 0.905 
H 0.937 0.934 0.92 0.741 0.909 NA* 0.96 
I 0.936 0.962 0.976 0.891 0.661 0.922 0.926 
J 0.920 0.768 0.801 0.809 0.93 0.934 0.916 
K 0.944 0.981 0.92 0.901 0.799 NA* 0.763 
L 0.950 0.902 0.788 0.937 0.934 0.928 0.91 
M 0.936 0.965 0.963 0.901 NA* NA* NA* 
N 0.951 0.959 0.89 0.853 NA* NA* 0.947 
O 0.950 0.945 0.632 0.768 0.655 0.89 0.902 
P 0.790 0.928 0.958 0.824 0.865 0.97 0.956 
Q 0.970 0.842 0.935 0.904 0.794 0.929 0.965 
R 0.823 0.744 0.912 0.851 0.607 0.83 0.841 
S 0.734 0.666 0.99 0.611 0.934 0.963 0.828 
T 0.988 0.833 0.882 0.817 0.88 0.96 0.771 

*AMC-season not included in the analysis due to incomplete data and AMC names omitted for contractor 
privacy 

 
Table 3-3 Legend 
 

Range Classification Colour 
≥ 0.90 = Very strong  
0.80 to 0.89 = Strong  
0.70 to 0.79 = Moderately strong  
0.60 to 0.69 = Moderate  

 
 
 

3.6 Objective 2: Trends in Winter Severity  

Given this validation of the WSI for estimating WRM demand based on publicly 

available data, it is possible to assess how winter severity has changed in the past and 

how winter weather severity is projected to change into the future. With the computed 

WSI scores, the Mann-Kendall Test is used to detect if the trends in winter severity (WSI 
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scores) over the past 34 years are statistically significant at the 5% significance level 

(p<0.05). The Mann-Kendall Test used in this study is the rank-based nonparametric 

Mann-Kendall, a common test used to detect trends in climate and environmental data 

(Yue et al. 2002, Hamed 2008, Lacombe et al. 2012, Ahmad et al. 2015, Wani et al. 

2017). In the Mann-Kendall Test, the null hypothesis is that there is no trend in WSI 

scores over the past 34 seasons. The alternate hypothesis is that there is a significant 

trend, either decreasing or increasing over the study period. This study uses the Trend: 

Non-Parametric Trend Tests and Change-Point Detection R package developed by 

Pohlert (2018).   This package is also used to detect the magnitude of the slope (Sen’s 

Slope Estimator Test). While the Mann-Kendall Test detects the statistical significance of 

the trends over time, it does not tell us the magnitude of the trend. As such, Sen’s Slope 

Estimator Test is used to detect the magnitude of the trends, if present (Wani et al. 2017, 

Pohlert 2018). A summary of the historical trend analysis for the 20 AMCs is 

summarized in Table 3-4.  The test results for historical WSI trends reveals that 13 AMCs 

experienced a negative trend in winter severity, five AMCs show a positive trend in WSI 

scores, and two AMCs showed no trend.  However, the MK statistic reveals that only two 

of these locations show a statistically significant decreasing trend at the 5% significance 

level (Bancroft and Niagara, also shown in Figure 3-2).
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Figure 3-2. Linear trends in observed winter severity scores over time for 20 AMCs from 1980/81-2015/16 (shading represents the 95% 

confidence interval)
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Table 3-4. Mann-Kendall and Sen’s Slope Estimate test results for the observed seasonal time 
series 1980-2015 

 WSI Scores 
 Mean StDev M-K (Z) Sen’s Slope 

Bancroft 38.81 12.06 -2.55* -0.54 
Chatham 26.39 7.38 1.29 0.17 
Cochrane 73.89 10.44 -1.27 -0.29 
Durham 25.79 6.75 -0.44 -0.04 
Halton 25.79 6.75 -0.44 -0.04 

Huntsville 54.43 10.24 -0.83 -0.17 
Kenora 53.27 10.54 1.33 0.25 

Kingston East 33.67 8.02 -1.01 -0.15 
Kingston West 31.90 8.18 -0.65 -0.08 

London 42.52 9.60 0.42 0.10 
Niagara 30.69 8.44 -2.28* -0.38 

North Bay 58.81 9.72 0.03 0.00 
Ottawa 45.46 8.35 -0.65 -0.15 

Owen Sound 59.83 13.11 -0.77 -0.22 
Sault Ste Marie 60.39 13.59 0.03 0.02 

Simcoe 49.66 10.57 -0.18 -0.04 
Sudbury 58.81 9.72 0.03 0.00 

Thunder Bay East 64.36 10.08 -0.24 -0.05 
Thunder Bay West 59.36 12.10 1.04 0.23 

Toronto 25.79 6.75 -0.44 -0.04 
Ontario 45.98 7.94 -0.47 -0.10 
*Statistically significant at the 5% significance level 

 
 

3.7 Objective 3: Analysis of Future Change 

Using the optimized index parameters, the daily WSI scores were then calculated for each 

of the four modelled datasets for the simulated historical (1980-2009) and future periods (2010-

2099) for each of the 20 AMCs. While the NA-CORDEX data experiments are provided with a 

high degree of spatial and temporal precision, there are two notable limitations that were 

resolved as explained below. The first limitation is that these climate experiments have 

temperature and precipitation biases that need to be resolved.  To overcome this, the commonly 

used assumption that the model biases are constant in time was adopted; i.e., both the simulated 

historical (1980-2009) and future periods (2010-2099) have very similar biases relative to 

observations. As such, comparisons of the difference between the future and past temporal 

periods within the same climate experiment can be regarded as accurate, because the biases are 
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subtracted when taking the difference. It is precisely for this reason that it would be erroneous to 

compare the observed weather data from ECCC stations with simulated future projections. 

Accordingly, climate change is assessed as the model-simulated difference (future minus past). 

Consideration is also given to the imperfect representation of climate in an individual model, by 

presenting the results as the multi-model average of four different simulations. 

The second limitation of the modelled data is that climate models do not differentiate 

between snowfall (solid precipitation) and rainfall (liquid precipitation). Since the available 

output data from the NA-CORDEX models did not include separated liquid and solid 

precipitation, a temperature threshold is used to partition rain and snow from simulated total 

precipitation. While a 0°C average daily temperature threshold could be used to make this 

distinction, it may result in either an under or over estimation of snowfall and rainfall. To 

identify the optimal temperature threshold, all snowfall days, rainfall days, and days with mixed 

precipitation in the historical weather observations from ECCC were organized by both 

minimum daily temperatures and maximum daily temperature.  It was found that for Tmin 

between 0°C and -0.5°C, the number of snowfall days becomes fewer, and the number of mixed 

precipitation days (those with both snow and rainfall) becomes larger. This same analysis was 

completed based on maximum daily temperature and it was found that a threshold of Tmax 

3.5°C could also be used to differentiate between rain and snowfall. The decision was made to 

use the daily minimum temperature of less than -0.5°C to define snowfall and rainfall in the 

modelled climate data.  

While the assessment of the historical observations reveals mixed results for Ontario, the 

climate change experiments unanimously project a net decrease in WSI scores for all AMCs and 

for all three future time periods. These projections are summarized in Table 3-5 and Figure 3-3 
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and the uncertainty in these historical and future simulations stems from bother inter-annual 

variability (30 years of WSI scores in each time period) and the variability between models (four 

different climate models). This results in a sample of 120 annual WSI scores for each AMC for 

each of the four time periods.    

During the near-term (2010-2039), all AMCs are projected to have decreasing WSI 

scores relative to the baseline time period (1980-2009). In the near-term (2010-39) WSI scores 

are projected to decrease by a seasonal average of -12% (Table 3-5). As shown in Table 3-5, 

Niagara (-19.6%), Durham (-17.9%), and Toronto (-17.6%) are projected to experience the 

largest decreases in WSI scores during the near-term. However, much of this decrease would be 

within the range of normal interseasonal variability that is already observed in Ontario Exploring 

the impacts of climate change into the 2050s (2040-2069), an Ontario-wide average of 24.2% 

decrease in WSI scores seasonally is projected. Looking even further into the future indicates 

that by the end of the century (2070-2099), winters will be approximately half as severe as today 

with an average decrease of 43.7% in WSI scores.  
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Table 3-5. Future climate change simulations for seasonal mean WSI scores* relative to the 1980-2009 
simulated historical time period   

 1980-09 x̅WSI 2010-39 
x̅WSI 

Δ WSI vs. 
1980-09   

2040-69 
x̅WSI 

Δ WSI vs. 
1980-09   

2070-99 
x̅ WSI 

Δ WSI vs. 
1980-09   

Bancroft 52.9 (±2.4) 46.8 (±2.4) -11.6%  41.0 (±2.2) -22.6% 29.8 (±2.3) -43.8% 
Chatham 35.1 (±2.2) 29.5 (±2.1) -15.8% 24.7 (±2.0) -29.5% 16.8 (±1.7) -52.0% 
Cochrane 85.4 (±2.7) 80.8 (±2.8) -5.4% 71.7 (±2.7) -16.1% 59.6 (±3.1) -30.3% 
Durham 40.5 (±2.1) 33.3 (±2.2) -17.9% 27.6 (±2.0) -31.9% 18.6 (±1.8) -54.2% 
Huntsville 61.5 (±2.5) 54.0 (±2.8) -12.1% 46.8 (±2.5) -23.9% 34.2 (±2.6) -44.3% 
Kenora 64.1 (±2.6) 58.8 (±2.6) -8.2% 54.2 (±2.3) -15.5% 45.0 (±2.4) -29.8% 
Kingston East 41.1 (±1.9) 34.8 (±2.0) -15.2% 28.7 (±1.7) -30.0% 19.1 (±1.7) -53.5% 
Kingston West 40.5 (±2.1) 33.7 (±2.1) -16.8% 27.9 (±1.9) -31.1% 18.9 (±1.8) -53.4% 
London 41.7 (±2.4) 34.8 (±2.4) -16.6% 29.4 (±2.3) -29.5% 20.1 (±1.9) -51.8% 
Niagara 33.9 (±2.2) 27.3 (±2.3) -19.6% 22.0 (±2.1) -34.9% 13.6 (±1.7) -60.0% 
North Bay 60.5 (±2.4) 55.0 (±2.4) -9.1% 48.1 (±2.3) -20.5% 35.9 (±2.4) -40.6% 
Ottawa 48.7 (±2.1) 42.4 (±2.1) -12.9% 36.2 (±1.9) -25.6% 25.3 (±1.9) -47.9% 
Owen Sound 53.3 (±2.8) 44.3 (±3.0) -16.8% 36.9 (±2.8) -30.7% 25.0 (±2.5) -53.1% 
Peel Halton 38.3 (±2.3) 32.1 (±2.3) -16.0% 26.5 (±2.1) -30.7% 18.3 (±1.8) -52.1% 
Sault Ste Marie 76.0 (±2.8) 70.6 (±2.6) -7.2% 61.4 (±2.4) -19.2% 49.4 (±2.5) -35.0% 
Simcoe 52.2 (±2.5) 45.0 (±2.7) -13.7% 37.8 (±2.5) -27.6% 26.3 (±2.4) -49.7% 
Sudbury 58.9 (±2.7) 52.3 (±2.9) -11.2% 43.9 (±2.6) -25.5% 32.6 (±2.5) -44.7% 
Thunder Bay East 72.8 (±3.0) 66.2 (±3.3) -9.1% 57.3 (±3.0) -21.2% 45.9 (±3.0) -36.9% 
Thunder Bay West 76.2 (±2.8) 71.1 (±3.1) -6.6% 65.8 (±2.8) -13.6% 54.8 (±3.1) -28.0% 
Toronto 37.6 (±2.2) 31.0 (±2.3) -17.6% 25.7 (±2.1) -31.6% 17.4 (±1.8) -53.6% 
Ontario 52.8 (±2.3) 46.4 (±2.4) -12.0% 40.0 (±2.2) -24.2% 29.7 (±2.1) -43.7% 
*mean WSI scores presented with margin of error for the 95% confidence interval
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Figure 3-3. Boxplots of mean WSI scores computed from modelled climate data for four time periods 
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3.8 Discussion and Conclusions 

Overall, the WSI developed here demonstrates the utility of a CS translation tool that 

has the potential to be used in several different ways to support highway operations. This CS 

tool informs decision-making by clearly documenting the relationship between weather and 

WRM activities that can be applied in at least three practical ways to support in institutional 

accountability to the public or shareholders. First, the WSI can be used as a tracking 

mechanism to monitor the severity of winter weather. As such, the WSI can be used to 

describe, quantify, review and compare winter weather severity from any time period to 

another and from one region to another. Secondly, this WSI enables road authorities and 

private snow and ice control professionals to clearly communicate winter weather severity to 

the public and other stakeholders in relation to observed levels of service. Third, this WSI 

can be applied to climate projections to estimate the future demands for WRM activities in 

different jurisdictions. This application of a WSI on climate projections fills an important gap 

in the current weather and climate information offerings for the provincial road authority. 

The use of seasonal to inter-annual climate predictions to inform strategic planning; such as 

planning for staffing, equipment needs, materials stock-piling, or the establishment of multi-

year road maintenance contracts is an important area of CS development that is demonstrated 

in this study.  

More importantly, the method proposed in this study can foster the development of 

CS more broadly, as there is a clear market for the development of tools and techniques that 

provide easy to understand metrics of weather sensitivity and risk that also have strong 

statistical fit with the transportation impacts or responses.  This paper illustrates the value of 

using customized indices as a translation service to generate tailor-made information in the 
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context of WRM to bridge the interface between the scientific community and the weather 

and climate information users. The creation of salient and robust weather and climate 

information that can be easily understood and used by decision makers and the public is an 

important trait of CS provision (Kirchhoff et al. 2013), especially a tool that can efficiently 

and effectively identify both the societal or institutional thresholds of weather variability but 

simultaneously determines their importance through weighting. A tool such as a data-driven 

index can then be utilized and applied to multiple weather and climate products such as 

observed weather data, short-term weather forecasts, medium-range forecasts as well as 

multi-decadal climate projections, all of which are part of the CS landscape (Vaughan et al. 

2016). This information can then be used to then guide policy, inform strategic planning, and 

aid in decision-making more generally.  

The development of CS is important for both weather risk management and climate 

change adaptation, especially in the transportation sector. During the development of this 

index the provincial road authority clearly expressed a need to first explore the current and 

past relationships between weather and WRM and the final phase in this multi-year process 

was to then apply the WSI to the climate change projections; a phase that was initiated only 

after fostering a rapport and trust with the road authority through sound science and 

evidence.  This process underscores that the development of CS is long-term processes that 

requires input from both the user (road authority), researcher, and the eventual long-term 

producer of this information; the private weather service provider contracted by the 

provincial road authority. While developed in an academic setting, the index presented in in 

Matthews et al. (2017a) is now mandated in the weather service contract with the province’s 
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weather provider. Furthermore, the index values are disseminated on the provincial website 

to manage constituent expectations of WRM operations. 

In summary, the results presented in this paper are the culmination of a multi-year 

effort to identify and measure the sensitivity of WRM operation to weather in an easy to 

understand but robust fashion. The co-production of this information involved multiple 

iterations between the researcher and the provincial road authority and an exploration of 

alternative models and variable inclusions. The final step in this process was then to assess 

the impacts of climate change. In summary, this research describes the development of a WSI 

that has strong fit with observed maintenance activity based entirely on publicly available 

data.  On average, the R2 value indicating the fit between WSI scores and equipment-hours is 

0.874, which indicates that on average 87.4% of the variability in 14-day reporting period 

equipment-hours in the 20 Ontario AMCs is explained by the WSI. While the R2 values at the 

AMC level vary, the vast majority of seasons have a fit above 0.800. The second part of this 

paper analyzed trends in winter severity across Ontario, Canada over a 34-year study period 

of 1980-81 to 2015-16. The results obtained with the Mann-Kendall Test and Sen’s Slope 

Estimator Test reveal that the nature of winter weather in the province of Ontario is indeed 

changing but the nature of this change is complex; the WSI trends include a mix of positive 

and negative trends. The climate change experiments unanimously project a net decrease in 

WSI scores for all AMCs and for all three future time periods, suggesting that climate change 

may provide maintenance cost saving opportunities for road authorities. 
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Chapter 4: 

Development of a Data-driven Weather Index for Beach Parks Tourism  

Matthews, L., Scott, D., & Andrey, J. (2019). Development of a data-driven weather index for 
beach parks tourism. International Journal of Biometeorology, 1-14. doi:10.1007/s00484-019-
01799-7 
 
 

This manuscript has been modified for use in this dissertation  
 

4.1 Overview 

The complexity of the human-environment interface predicates the need for tools and 

techniques that can enable the effective translation of weather and climate products into 

decision-relevant information. Indices are a category of such tools that may be used to simplify 

multi-faceted climate information for economic and other decision-making. Climate indices for 

tourism have been popularized in the literature over the past three decades, but despite their 

prevalence, these indices have a number of limitations, including coarse temporal resolution, 

subjective rating and weighting schemes, and lack of empirical validation. This paper critically 

assesses the design of the TCI, the HCI:Beach, and a new, mathematically optimized index 

developed for the unique contextual realities of Great Lakes beach tourism. This new 

methodology combines the use of expert knowledge, stated visitor preferences, and mathematical 

optimization to develop an index that assigns daily weather scores based on four weather sub-

indices (thermal comfort, wind speed, precipitation, and cloud cover). These daily scores are 

then averaged to the monthly level and correlated to visitation data at two beach parks in Ontario 

(Canada). This optimized index demonstrates a strong fit (R2=0.734, 0.657) with observed 
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visitation at Pinery Provincial Park and Sandbanks Provincial Park, outperforming both the TCI 

(R2= 0.474, 0.018) and the HCI:Beach (R2=0.668, 0.427). This study advances our understanding 

of the magnitude and seasonality of weather impact on beach tourist visitation and can inform 

decision-making of tourism marketers and destination managers. 

 

4.2 Introduction 

There is substantial evidence that weather and climate have significant influence on 

tourist motivation (Gössling et al. 2012, Cocolas et al. 2016, Jeruing et al. 2017), destination 

choice (Hamilton & Lau 2005, Scott et al. 2008, Steiger et al. 2016), destination attractiveness 

(Gössling et al. 2016), and destination spending (Wilkins et al. 2018). While the relationship 

between climate and tourism is well-documented, the climate-tourism nexus is particularly acute 

for beach tourism where climate has been repeatedly identified as a critical pull factor (Rutty & 

Scott 2013, Rosselló & Waqas 2016).  Additionally, there is clear evidence that weather and 

climate has an influence on park visitation in many geographic contexts (Scott et al. 2007, 

Fisichelli et al. 2015) and more specifically relevant to this study, beach park visitation at 

Ontario Provincial Parks (Jones & Scott 2006, Hewer et al. 2015, 2016, 2018).  It is well 

documented that this relationship between climate and tourism is highly important for beach 

tourists (Rutty & Scott 2010, 2013, 2015); however, the strength and attributes of this 

relationship vary geographically and temporally. Advancing our understanding of the magnitude 

and seasonality of weather’s effect on tourist visitation would provide tourism planners, 

managers, and marketers with enhanced information for contemporary decision-making as well 

as better inform climate change impact studies that have featured prominently in academic 

literature, media, business, and government discourses. 
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An evaluation of climate information utilization in the tourism sector by Scott and 

Lemieux (2010) revealed that while weather/climate products and services are increasingly 

available, an understanding of how these weather/climate products are used to inform decision-

making remains limited. Furthermore, despite numerous studies that show a strong relationship 

between tourism and weather (e.g., de Freitas et al. 2008, Jones & Scott 2006, Rutty & Scott 

2015, Hewer et al. 2016, 2018), the application of this research to inform decision-making is 

only beginning to be explored (Scott et al. 2011, Damm et al. 2019). 

This challenge is not limited to the tourism sector. Despite the ever-increasing 

availability of weather/climate data, its use in informing decision-making for a range of climate 

sensitive sectors, such as energy use and production, retail, water management, finance, 

(re)insurance, transportation, agriculture, and forestry, remains limited due to the complexity of 

the human-environment nexus (Soares & Dessai 2015, Soares et al. 2018).  The specific climatic 

thresholds that induce behavioural or societal responses vary over space and time because of 

complex interactions of social, technological, institutional, economic, political, and 

environmental relationships.  It is precisely this complexity of the human-environment interface 

that predicates the need for tools and techniques that can efficiently and effectively translate 

weather/climate products into salient information for decision-making. Weather/climate indices 

are a category of such tools that can be used to simplify multi-faceted weather/climate 

information to enable an efficient societal response. 

There has been discussion in the climate and tourism literature for over 30 years on using 

indices for decision-making such as destination marketing, operations, and planning 

(Mieczkowski 1985, Scott et al. 2016, Dubois et al. 2016). The tourism research community is 

advanced in the application of tourism indices to project potential impacts of climate change.  A 
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number of studies have been conducted that apply existing indices to estimate the potential 

impacts of changing climate resources for tourism at continental and global scales (Scott et al. 

2004, Amelung et al. 2007).  However, their use as weather risk management decision-support 

tools has yet to be explored. This is perhaps not surprising because the intent of tourism climate 

index development to date has not been focused on weather risk management at the business or 

destination level, but rather as a way to objectively evaluate climate resources for tourism and 

compare between destinations (Dubois et al. 2016, Scott et al. 2016).  

Despite the prevalence of climate indices as a tool for evaluating climatic resources, there 

are a number of limitations to these indices, including coarse temporal resolution, subjective 

rating and weighting schemes, and lack of empirical validation (de Freitas et al. 2008, Scott et al. 

2016, Dubois et al. 2016). In particular, the majority of these indices are too coarse in spatial and 

temporal resolution to provide decision-relevant information for decision-making by comparing 

entire nations or regions rather than destination-specific information (de Freitas et al. 2008, Scott 

et al. 2016, Dubois et al. 2016).  Indices such as the TCI use monthly level data and are not 

contextual nor activity specific, neglecting the reality that different types of tourism such as ski 

tourism, urban tourism, or beach/coastal tourism have very different climatic needs and optimal 

conditions (de Freitas et al. 2008, Rutty & Scott 2010, Rutty & Scott 2014, Scott et al. 2016, 

Dubois et al. 2016). This literature has demonstrated that a ‘one-size-fits-all’ approach to tourism 

climate index development is neither conceptually sound (see de Freitas et al. 2008, Scott et al. 

2016) nor valuable for tourism management decision-making. Barnett et al. (2008) were broadly 

critical of the propensity of environmental researchers to develop indices that are applied to 

large-scale systems (often without validation or sector expert input, let alone sector stakeholders 

and potential users), and encouraged researchers to focus on smaller scales of analysis because 
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climate sensitivity and risk is so context-specific.  In the context of climate and tourism research 

this idea is supported by de Freitas et al. (2008: 405) who stated that “one necessary requirement 

for a useful tourism climate index is that the index is specifically designed for and relevant to a 

type of tourism.”   de Freitas et al. (2008) went further and suggested that indices might need to 

be recalibrated to take into account cross-cultural differences in climate preferences, a sentiment 

supported by Damm et al. (2019). 

However, there is potential to explore the value and operationalization of activity- or 

market-segment specific and location-specific indices for weather risk management.  The 

business community has begun this endeavour of developing activity-specific indices, as 

exemplified by the suite of indices developed by the weather channel (Scott & Lemieux 2010). 

The Weather Channel developed the ‘golf index’, ‘ski index’, ‘fishing index’, and ‘spectator 

index’. All of these indices are rated on a 0-10 scale; however, the exact calculation of these 

indices and the parameters used are not known and cannot be critiqued (Scott & Lemieux 2010).  

Furthermore, the 2019 version of the Weather Channel application for iPhone includes a ‘sweat 

index’, ‘umbrella index’, ‘mosquito index’, ‘allergy index’, as well as a personally customizable 

‘running index’. Despite the lack of transparency in the development of these recreation indices, 

these early developments and more recent workshops (Damm et al. 2018) demonstrate the 

demand for easily interpretable indicators.   

Much of the development of tourism indices has adopted a stated-preference 

methodology (Scott et al. 2016, Dubois et al. 2016), despite calls by de Freitas (2003) and de 

Freitas et al. (2008) who argue for a broader adoption of revealed preference methodologies.  

Visitation data can be used as an indicator of demand and tourist perception of the suitability of 

weather conditions for beach tourism (de Freitas et al. 2008, Jones & Scott 2006, Hewer et al. 
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2016, Scott et al. 2016). When the observed or forecast weather conditions are not satisfactory 

for the tourism activity being considered, then individuals are less likely to visit that destination 

(Rutty & Andrey 2014).  The challenge is in determining the weather thresholds and defining the 

climatic conditions that are deemed suitable or satisfactory by the potential visitors.  

This study presents a new approach for developing a data-driven tourism climate index 

than can be used for predicting visitation in the Great Lakes region based on a methodology that 

uses visitation data to reveal the multiple thresholds for visitation at Ontario beach parks. This 

new index is then compared against two existing indices, the TCI (Mieczkowski, 1985) and the 

HCI:Beach specification.  An optimization algorithm (as used in Matthews et al. 2017a,b,c) is 

applied to the HCI:Beach sub-indices, which are based on stated tourist climate preferences from 

Rutty and Scott (2014, 2015), to determine sub-index weights and weather variable rating 

thresholds that best correlate with park visitation. 

 

4.3 Study Area 

Two high-visitation provincial parks with major beach assets and complete visitation and 

meteorological data were selected for the study. Pinery Provincial Park was chosen due to its 

history as a study site in a number of weather/climate and park visitation studies (see: Jones & 

Scott 2006, Hewer et al. 2015, 2016, 2018).  Pinery is located in southwestern Ontario on the 

shore of Lake Huron and boasts an impressive 10 km-long sand beach (Ontario Parks, 2018a). 

The Pinery beach is popular with day visitors from nearby urban centers, including Windsor, 

Detroit, Sarnia, London, and Kitchener-Waterloo. Average annual visitation at Pinery during the 

study period is 598,000 with 19% as day visitors and 81% as overnight visitors. Sandbanks 

Provincial Park was selected as an additional site with a different tourism market catchment.  
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Sandbanks is located in southeastern Ontario on the shore of Lake Ontario and is home to the 

world’s largest baymouth barrier dune formation which draw visitors from across Ontario, 

Quebec and the Northeast USA (Ontario Parks, 2018b). Average annual visitation at Sandbanks 

during the study period is 520,000 with 57% as day visitors and 43% as overnight visitors.  

 

4.4 Data and Methods 

4.4.1 Park Visitation Data 

Visitation data used in this study were obtained from the Ontario Parks Service. Daily 

visitation data were obtained for Pinery and Sandbanks Parks from 2000 to 2010. This time 

period was selected to facilitate comparisons with previous related studies (i.e., Jones & Scott 

2006, Hewer et al. 2015, 2016). The visitation data reveal marked seasonality, with a strong 

summer peak in both beach parks.  At the Pinery, the highest median monthly visitation is in July 

(192,298 visitors) and August (187,339 visitors) with the lowest median monthly visitation in 

December (1,646 visitors).  Sandbanks sees similar visitation during the summer months with 

median visitation peaks in July (188,561) and August (178,134), with no visitation during the 

winter months because the park is closed. 

 

4.4.2 Weather Data 

All Meteorological Service of Canada climate stations in close proximity to Pinery and 

Sandbanks Parks were examined to determine the completeness of the nine variables required for 

calculation of the TCI and HCI:Beach indices (i.e., daily temperature, precipitation, wind, 

relative humidity, sunshine hours and cloud cover). For Sandbanks, the Trenton A station 
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(Climate ID: 6158875) was used and is approximately 36 km away from the park. For Pinery, 

two stations located approximately 50 km from the park were used to obtain the required daily 

climate variables: Sarnia station (Climate ID: 6127514, timeframe: 2000.01.01-2007.09.30) and 

the Sarnia Airport station (Climate ID: 6127519, timeframe: 2007.10.01-2010.12.31). 

Unfortunately, despite the better proximity to the park and its coastal location, the Sarnia stations 

did not have complete cloud cover data; as a result, the London International station (Climate ID: 

6144475, timeframe: 2000.01.01-2010.12.3) located approximately 60 km from the Pinery was 

used to obtain cloud cover and sunshine data. The climographs for the two parks are shown in 

Figure 4-1.  

 
a) 

 

b) 

 

Figure 4-1. Study period climographs at a) Pinery Provincial Park and b) Sandbanks Provincial Park 
(January 2000 to July 2010).   

 

4.4.3 Index Calculations 

The first TCI was developed in the mid-1980s by Mieczkowski (1985), who created the 

TCI as a means of integrating climatic conditions at a destination into a single numeric value. In 
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this instance, a total value of 100 is computed where the variable weights are interpreted as a 

percentage influence of the overall weather experience. The TCI was intended to provide a 

holistic interpretation of the climatic resources at each destination. Mieczkowski (1985) used 

mean monthly values to calculate the TCI, which ranges from scores of -30 to 100. The 

calculation for the TCI is provided as:  

TCI = 4CID + CIA + 2P +2S + W, where: 

CID (daytime comfort index) is a combination of the maximum daily temperature and 

minimum daily relative humidity) accounts for 40% of the index; 

CIA (daily comfort index - combination of mean daily temperature and mean daily 

relative humidity) is used for evening comfort and accounts for 10%;  

P is precipitation (mm) and accounts for 20%; 

S is sunshine (hours) and accounts for 20%; 

W is wind (m/s), accounting for 10%. 

 

The variable rating scales (outlined in Tables 4-1 to 4-4) and variable weighting (outlined 

in Table 4-5) of the TCI were based on expert opinion and an additive approach is used for 

aggregation. The TCI has been used for climate assessments and climate change impact studies 

in over 30 known studies between 1994 and 2018.  Notwithstanding the extensive application of 

the TCI, it has been extensively criticized with the most common criticism being the subjective 

nature of the variable ranking schemes and the component weighting (Gomez-Martin 2005, de 

Freitas et al. 2008, Rutty & Scott 2010, Rutty & Scott 2014, Scott et al. 2016, Dubois et al. 

2016). For the purposes of this research the TCI is calculated daily and averaged to the monthly 
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level and, because beach tourism is a daytime activity, evening temperatures are not included as 

a separate component and the calculation will be TCI = 5CID + 2P +2S +W. 

 

Similar to the TCI, the HCI:Beach is based on five weather variables that are used to 

calculate three sub-indices based on the work of de Freitas (2003): thermal comfort, aesthetic, 

and physical dimensions of climate relevant to tourism.  The calculation for the HCI:Beach 

specification is derived from Scott et al. (2019) and is represented as:  

HCI = 2 (TC) + 4(A) + (3(P) + W), where: 

TC is the thermal comfort sub-index (combination of daily maximum temperature and 

mean relative humidity) and accounts for 20% of the index; 

A represents the aesthetic sub-index and is based on the daily per cent of cloud cover and 

accounting for 40%;  

the physical sub-index is a combination of P (precipitation) and W (wind speed), which 

represent 30% and 10%, respectively.  

 

The HCI:Beach furthers the development of indices for the tourism sector by using daily 

level data and tailoring the index to a specific tourism segment based on the stated preferences of 

beach tourists (i.e., the development of variable ratings and the variable weightings, including an 

over-riding effect of P and W) (Rutty & Scott 2010, 2014, 2015). Despite the advances made by 

the HCI:Beach, there remain areas for improvement in calibrating indices to the realities of 

placed-based and market segment specific tourism decision-making (as recommended by Dubois 

et al. 2016).  
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The initial list of weather variables and rating thresholds by Mieczkowski (1985) was 

developed through expert judgment, and the HCI:Beach furthered this research by incorporating 

stated preference evidence from tourist target markets to refine rating scales (Scott et al. 2019).  

The current study uses mathematical optimization to further improve the fit of the index so that 

the information becomes more ‘useful, useable, and used’ by tourists, tourism planners, and 

managers.  Thus, based on the previous empirical work for the TCI and HCI:Beach, an 

optimization routine is employed on the HCI:Beach index to explore if improvements in model 

fit can be achieved, while maintaining the integrity of the index structure.  Further, the 

subsequent index adheres to the six characteristics of a useful index set out by de Freitas et al. 

(2008): 1) theoretically sound, 2) integrates the effects of all relevant facets of climate, 3) simple 

to calculate, 4) easy to understand, 5) recognizes the overriding effect of certain weather 

conditions, and 6) empirically tested.  

 The approach taken adapts an optimization routine developed by Matthews et al. 

(2017a,b,c) for road transport WSIs, using observed weather conditions and reported visitation to 

define weights of the sub-indices, thresholds in the sub-indices, and index scores assigned on a 

daily basis. The optimization routine is set to maximize the fit (R2) values between daytime 

visitors (excluding overnight campers) during the peak months of June to September. The 

optimization routine utilizes the Generalized Reduced Gradient (GRG2) algorithm that is 

standard in Microsoft Excel to simultaneously identify threshold values and sub-index scores.  

These daily index scores are then averaged to create weekly, monthly, or seasonal beach tourism 

index scores. The optimization routine is run for each of the sub-indices sequentially, as to 

maximize the fit between the sub-index scores and visitation, and then the weights of the sub-
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indices are optimized. The resulting constants (threshold values, sub-index scores, sub-index 

weights) for each of the sub-indices are outlined in the following section. 

 

4.5 Results 

4.5.1 Thermal Comfort Facet 

The TCI and the HCI:Beach use two different rating schemes for the thermal comfort 

facet (Table 4-1). The thermal comfort rating scheme for the TCI assigns days to 23 different 

temperature ranges and assigns a score from minus six for ‘very undesirable’ temperatures to 

plus ten for ‘ideal’ temperatures.  The HCI:Beach is similarly designed with 20 different 

temperature ranges and associated scores ranging from minus ten for ‘very undesirable’ 

temperatures to plus ten for ‘ideal’ temperatures. For this study, the optimization algorithm was 

set to maximize the R2 values between the sub-index scores, and visitation at Pinery and 

Sandbanks (as measured by the average R2 between the two parks). The algorithm was set to 

allow for any number of temperature ranges, but the sub-index scores were constrained to values 

between zero and ten. The justification for removing the penalty functions (scores of less than 

zero) was due to the impossibility of having negative (less than zero) visitors at a destination.  

All three of the indices, the TCI, HCI:Beach, and optimized index use a combination of 

daily temperatures and relative humidity for the thermal comfort components. The challenge is 

that different studies, including Mieczkowski (1985) and Scott et al. (2016), use different heat 

index algorithms and these algorithms are not explicitly identified or defined in much of the 

literature (Anderson et al. 2013).  Complicating the situation, there have been more than 100 

bioclimatic indices have been developed over the past century (Blazejczyk et al. 2012); and in 

the past three decades, there has been an explosion in algorithms developed to calculate thermal 
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perception indices (Anderson et al. 2013).  The variety of calculations used makes inter-

comparison studies challenging as the basic assumptions of the studies may be dissimilar 

(Anderson et al. 2013).   It is especially problematic when the exact calculations for these 

thermal indices are not explicitly stated. Anderson et al. (2013) conducted an assessment of over 

20 heat index algorithms to determine which ones most closely matched the original conceptual 

heat index developed by Steadman (1979), based off the seminal work of Missenard and 

Balthazard (1933).  Anderson et al. (2013) found that the majority of algorithms matched quite 

closely to one another. Based on the findings from Anderson et al. (2013), and given that this is a 

Canadian study, the Humidex, a Canadian innovation, was used to calculate the thermal 

component of the indices. This is also consistent with the work of Scott et al. (2019) who used 

the Canadian Humidex in the development of the HCI:Beach index.   
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Table 4-1. Thermal comfort facet rating schemes 

TCI HCI:Beach 

 

Optimization 
Rating THumidex (°C) Rating THumidex (°C) Rating 

0 ≥36.0 ≥39.0 0 ≥41 0 38.0 - 38.9 2 
1 35.0 - 35.9 37.0 - 37.9 4 39.0 - 40.9 7 
2 34.0 - 34.9 36.0 - 36.9 5 
3 33.0 - 33.9 35.0 - 35.9 6 35.0 - 38.9 8 
4 32.0 - 32.9 34.0 - 34.9 7 
5 31.0 - 31.9 33.0 - 33.9 8 30.0 - 34.9 9 6 30.0 - 30.9 31.0 - 32.9 9 
7 29.0 - 29.9 28.0 - 30.9 10 

23.0 - 29.9 10 
8 28.0 - 28.9 26.0 - 27.9 9 
9 27.0 - 27.9 23.0 - 25.9 7 

10 20.0 - 26.9 22.0 - 22.9 6 
9 19.0 - 19.9 21.0 - 21.9 5 
8 18.0 - 18.9 20.0 - 20.9 4 21.0 - 22.9 9 
7 17.0 - 17.9 

19.0 - 19.9 3 19.0 - 20.9 8 6 16.0 - 16.9 
5 10.0 - 15.9 18.0 - 18.9 2 

14.0 - 18.9 6 4 5.0 - 9.9 17.0 - 17.9 1 
3 0.0 - 4.9 15.0 - 16.9 0 11.0 - 13.9 5 
2 −0.1 - −5.9 10.0 - 14.9 -5 7.0 – 10.9 2 
0 −6.0 - −10.9 

≤9.9 -10 

1.0 – 6.9 1 
−1 −11.0 - −15.9 

≤0.9 0 −2 −16.0 - −20.9 
−6 ≤−21.0 

 
 

As shown in Table 4-1, the optimization algorithm identified eleven different thermal 

comfort ranges and assigned sub-index scores between zero and ten.  Interestingly, the range for 

‘ideal’ THumidex (°C), or THumidex (°C) rated as a ten, is broader than what was considered in 

the HCI:Beach.  Furthermore, the drop in sub-index scores as THumidex increased was less 

pronounced than in the previous indices. Findings reveal that tourist visitation numbers are 

highest when THumidex °C is between 23.0 - 29.9°C whereas the HCI:Beach index had ideal 

thermal comfort as between 28.0 - 30.9 °C indicating that tourists in this geographic context may 

be more accepting of cooler temperatures than in other markets, particularly those of Caribbean 

beach holiday destinations surveyed by Rutty and Scott (2014, 2015). While the TCI assigns a 

score of zero for THumidex ≥36°C, and the HCI:Beach assigns a zero for  ≥39°C, the 
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optimization algorithm assigns a score of zero for days with THumidex ≥41°C. However, the 

algorithm assigns a score of zero because there are too few days with such high temperatures and 

as such there are few visitors.  

A regression analysis between THumidex (°C) and visitation reveals that thermal comfort 

is the dominant factor for the climatological preferences of visitors to the Pinery and Sandbanks 

(Table 4-6 and Table 4-7).  In fact, the relationship is evident for both day use visitors (R2= 

0.709, 0.610), overnight campers (R2= 0.721, 0.691), and total visitors (R2= 0.734, 0.657), at the 

Pinery and Sandbanks, respectively. When assessing day visitors, findings reveal that at Pinery, 

there is an improvement in fit from an R2 of 0.408 for the TCI thermal comfort sub-index and 

R2= 0.678 for the HCI:Beach to R2= 0.705 for the optimized thermal comfort sub-index when all 

months of the year are assessed.  This relationship is strongest when all months in a year are 

analyzed and the relationship is least evident during July and August months alone. Findings 

reveal that at Sandbanks, the highest fit came from the optimized sub-index (R2= 0.632) and the 

lowest was for the TCI thermal comfort sub-index (R2= 0.114), revealing that day use visitor 

behaviours are similar between the two parks though the strength of the relationship is dissimilar.  

 

4.5.2 Aesthetic Facet 

The TCI and the HCI:Beach use two different rating schemes for the aesthetic facet 

(Table 4-2). The original TCI uses the number of sunshine hours in a day for the aesthetic factor. 

In contrast, the HCI:Beach index uses percentage of cloud cover for calculating the aesthetic 

facet. In their work on the HCI:Urban, Scott et al. (2016) selected cloud cover data due to the 

absence of sunshine data from some meteorological stations and this decision was extended to 

the development of the HCI:Beach (Scott et al. 2019).  The rating scheme developed for the 
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HCI:Beach aesthetic facet assigns the highest score to days with 15% to 25% cloud cover instead 

of on days with completely clear skies (zero% cloud cover) as this was revealed to be the ideal 

preference for tourists from studies on stated and revealed climate preferences of tourists (e.g., 

Rutty & Scott 2010, 2014, 2015).  

 

Table 4-2. Aesthetic facet rating schemes 

TCI HCI:Beach  Optimization 
Rating Sunshine hours Cloud cover (%) Rating 

 

Cloud cover (%) Rating 
10 10 0-0.9%  8 0.0-2.9% 9 
9 9 1.0-14.9%  9 3.0-14.9% 10 8 8 15.0-25.9% 10 
7 7 26.0-35.9% 9  

15.0-36.9% 7 6 6 36.0-45.9% 8 
5 5 46.0-55.9% 7 
4 4 56.0-65.9% 6 36.0-44.9% 5 
3 3 66.0-75.9% 5 45.0-65.9% 6 
2 2 76.0-85.9% 4 66.0-76.9% 4 
1 1 86.0-95.9% 3 77.0-97.9% 2 
0 0 ≥96.0% 2 ≥98.0% 0 

 
 

The optimization routine was utilized to calibrate the cloud cover sub-index where the 

percentage of cloud cover was used instead of sunshine hours to ensure consistency with the 

work from Scott et al. (2016, 2019). As outlined in Table 4-2, the optimization algorithm 

identified eight different cloud cover ranges and assigned sub-index scores between zero and ten.  

Findings are mostly consistent with those of the HCI:Beach index with two notable exceptions.  

First, the optimization approach assigns all cloud cover between 15% and 36.9% a score of seven 

whereas the HCI:Beach assigns three separated categories in this cloud cover range. This 

indicates that there is minimal, if any, difference in visitation based on moderate cloud cover. 

Similarly, between 77% and 97.9%, a single aesthetic range was identified rather than the three 

separate ranges in the HCI:Beach. This again underscores that visitors may not be as discerning 
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to smaller differences in aesthetic conditions and that climatological thresholds may be more 

important than incremental changes.  

A regression analysis between the aesthetic facet variables and visitation revealed that 

sunshine and cloud cover are not dominant factors for the climatological preferences of visitors 

to the Pinery and Sandbanks (Table 4-6 and Table 4-7). At the monthly level R2 values between 

total visitors are lower at Sandbanks (R2= 0.034, 0.039) for both per cent cloud cover and the 

number of sunshine hours than what is seen at the Pinery (R2= 0.253, 0.337) for cloud cover and 

the number of sunshine hours, respectively.  At Sandbanks, there is not strong evidence to 

suggest that per cent cloud cover or the number of sunshine hours has an influence on visitation 

to the park.  This may be influenced by the distance of the park to main day trip markets, so that 

some cloud cover will not deter visitation, or perhaps that the world-class dune complex is an 

important enough attraction that the importance of typical beach activities is lower at Sandbanks.  

 

4.5.3 Physical Facet: Precipitation 

The TCI and the HCI:Beach use two different rating schemes for the precipitation 

component of the index (Table 4-3). The TCI has ten evenly sized ranges with one point being 

removed for each additional 0.50 mm of precipitation.  Any day that receives more than 4.99 mm 

of precipitation is assigned a score of zero. The HCI:Beach has six categories, and only after 12 

mm of precipitation is a zero assigned. An additional difference is the inclusion of a -1 penalty 

function in the HCI:Beach that is assigned on days with more than 25 mm of precipitation, an 

event that occurs 59 times at the Pinery and 75 times at Sandbanks over the 10-year study period. 

This penalty function is employed with the rationale that these high precipitation days will have 

an overriding effect on tourist activities (i.e., even if temperature conditions are suitable, a large 
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rain event will cause people to leave the beach or cancel their trip).  In this current research, 

penalty functions are not permitted during the optimization routine for the same reason that a 

penalty function was eliminated in the temperature sub-index: the impossibility of negative (less 

than zero) tourists and as such, zero is the lowest score assigned to any given day.  

 
Table 4-3. Physical facet: precipitation rating schemes 

TCI HCI:Beach  Optimization 

Rating Precipitation (mm) Rating  Precipitation (mm) Rating 
10 0.00-0.49 0 10 

 

0 10 
9 0.50-0.99 

0.01-2.99 9 
0.01-1.99 5 8 1.00-1.49 

7 1.50-1.99 
6 2.00-2.49 

2.00-6.99 4 

5 2.50-2.99 
4 3.00-3.49 

3.00-5.99 8 

3 3.50-3.99 
2 4.00-4.49 
1 4.50-4.99 

0 ≥5.00 
6.00-8.99 6 

7.00-8.99 3 
9.00-11.99 4 

≥9.00 0 12.00-24.99 0  
≥25.00 -1  

 
 
As shown in Table 4-3, the optimization algorithm identified five different precipitation 

ranges and assigned sub-index scores between zero and ten. Findings are not consistent with 

those of the TCI or the HCI:Beach. While days with zero precipitation receive a score of ten, any 

precipitation at all is assigned a score of five or lower.  This again underscores that visitors may 

not be as discerning to smaller difference in physical climate conditions and that precipitation 

thresholds may be more important than incremental changes. As shown in Table 4-6 and Table 

4-7, for both daily visitors and overnight campers, the fit between all precipitation variables and 

visitation is less than R2 = 0.500. When assessing the whole year, the spring months, and the 
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summer months, the R2 values are nearly all less than R2 = 0.100.  However, during the autumn 

months there is a notable improvement in fit to R2 = 0.212 for the Pinery and R2 = 0.439 for 

Sandbanks with the optimized precipitation sub-index component.  This indicates that, in 

general, visitors during the summer months attend regardless of precipitation. However, in the 

autumn months as temperatures drop, there is stronger evidence that visitors may avoid visiting 

parks on cool and rainy days, a finding supported by Hewer et al. (2016). One area of future 

research is to explore the timing of precipitation events as evening and nighttime precipitation 

may not impact visitation as strongly as morning and daytime precipitation (Yu et al. 2009). 

 

4.5.4 Physical Facet: Wind  

The original TCI has four different rating schemes for wind (Table 4-4). Each of these 

four schemes, ‘normal’, ‘trade wind’, ‘hot climate’, and ‘wind chill’ has a unique rating system 

and the selection of which rating scheme to use is based on daily maximum temperatures. In 

Mieczkowski’s (1985) TCI the wind chill rating system is only used when the wind speed is 

faster than 8 km/hr and the daily maximum temperature is below 15.0°C. Given that the purpose 

of this article is to assess beach tourism, the fourth wind speed rating system is excluded. The 

HCI:Urban advanced the development of the wind sub-index by acknowledging that temperature 

and aesthetics are already accounted for in other sub-indices and the inclusion of another 

temperature constraint in the wind index would lead to double counting of the temperature aspect 

of weather (Scott et al. 2016, 2019).  As such, the HCI:Beach includes one rating scheme with 

eight wind speed categories and it is the sub-index from the HCI:Beach that is optimized in this 

study.    
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Table 4-4. Physical facet: wind rating schemes 

 TCI  HCI:Beach Optimization 
Wind speed 

(km/hr) Wind chill* Normal 
(<-23.9 °C) 

Trade wind 
(24-32.9 °C) 

Hot climate 
(≥33 °C) 

 Wind speed 
(km/hr) Rating Wind speed 

(km/hr) Rating 

 
Rating 

    
 

0-0.5 8 
= 0 8 

≤2.88 10 10 4 4 0.1-9.4 10 

2.89-5.75 9 9 5 3 
0.6-9.9 10 9.5-18.9 5 

5.76-9.03 8 8 6 2 

9.04-12.23 7 7 8 1 
10.0-19.9 9 

19.0-39.9 1 
12.24-19.79 6 6 10 0 
19.80-24.29 5 5 8 0 

20.0-29.9 8 24.30-28.79 4 4 6 0 
28.80-38.51 3 3 4 0 
≥38.52 0 0 0 0 30.0-39.9 6 

≥40.0 0 

 

40.0-49.9 3 
50.0-69.9 0 
≥70.0 -10 

* The wind chill category was not included due to the focus on beach tourism 
 
 

As shown in Table 4-4, the optimization algorithm identified five different wind speed 

ranges and assigned sub-index scores between zero and ten. The highest rating (ten) is given to 

wind speeds of between 0.1 and 9.4 km/hr.  The lowest ratings are for wind speeds above 40.0 

km/hr whereas the HCI:Beach assigned a zero for wind speeds above 50.0 km/hr.  Given the 

moderate R2 values of the wind variables alone it is evident that wind is a factor for the 

climatological preferences of visitors to the Pinery and Sandbanks (Table 4-6 and Table 4-7).  At 

Pinery there is an improvement in fit between the wind sub-indices and total visitation from an 

R2 of 0.428 for the TCI temperature sub-index and 0.518 for the HCI:Beach, to R2 of 0.596 for 

the optimized temperature sub-index.  At Sandbanks, a strong relationship between wind and 

visitation was not found for all months of the year (R2 < 0.3). 
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4.6 Overall Results and Discussion 

Through the calibration of the sub-indices, this research makes a number of empirical 

advancements. First, the number of categories for the sub-indices is dramatically reduced in 

every instance, indicating that tourists are not as sensitive to incremental variations in weather as 

expert-based or stated-preference methods might suggest. This finding further underscores that 

tourists’ sensitivity to weather is non-linear, and that a proportionately large change in visitation 

can result from a relatively small change in weather conditions when a key threshold is 

surpassed. Secondly all of the sub-indices perform better during the shoulder seasons and when 

all months in a year are taken into account, rather than when the summer months are explored in 

isolation, despite the calibration of the index on day visitors for the peak visitation period. This 

confirms that the July and August months are fundamentally different than the other months of 

the year (as argued by Jones & Scott 2006). This is true even though the weather is similar in 

June and September as it is in July and August, suggesting that the institutional seasonality may 

exert and overriding influence on visitation.  

Overall, both the TCI and HCI:Beach utilize an additive approach whereby each of the 

sub-indices is weighted to represent the proportional impact of each climatic variable. While 

Mieczkowski (1985) used expert judgment and the HCI:Beach uses insights from tourists’ stated 

preferences, the optimization algorithm using visitation data determined notably different 

weights for each of the sub-indices (Table 4-5). The optimization routine gave an overwhelming 

75%of the index weight to the thermal comfort facet of the index, with 15% going towards the 

aesthetic facet and 5% to each precipitation and wind facets.   

 
 
 

Table 4-5. Optimized beach weather components and calculation 
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Index component Weather variable TCI 
weight (%) 

HCI:Beach 
weight (%) 

Optimization 
weight (%) 

Thermal comfort (TC) 

Humidex Temperature (a 
combination of maximum 

daily air temperature °C and 
minimum daily relative 

humidity %) 

50% 20% 75% 

Aesthetic (A) Cloud cover (%) 20% 40% 15% 
Precipitation (P) Total precipitation (mm) 20% 30% 5% 

Wind (W) Mean wind speeds (km/hr) 10% 10% 5% 
Overall index score range -30 to 100 -25 to 100  0 to 100 

Index calculation for optimized index: 
Index = 7.5 (TC) + 1.5(A) + 0.5(P) + 0.5(W) 

 
The TCI, HCI:Beach, and optimized index scores were then calculated for each day in the 

10-year study period for both Pinery and Sandbanks Parks to assess the empirical relationship 

between index scores and beach visitation. For each beach park, the monthly index value is the 

mean of daily scores.  The results of the regressions are shown in Table 4-6 and Table 4-7 and 

illustrated in Figure 4-2 and Figure 4-3. As indicated by the R2 values, there is good fit at the 

monthly levels indicating that most of the variability in beach parks visitation is explained by the 

index. This suggests that using an optimization routine, to determine threshold values and scores 

is a viable method for developing a beach parks tourism climate index.  

At Pinery, the index derived through mathematical optimization has greater predictive 

accuracy at the monthly level than the TCI or HCI:Beach for both day use visitors and campers.  

The results outlined in Table 4-6 and Table 4-7 are separated by season and by visitor type. The 

highest fit (R2 = 0.802) is found when the 19 autumn months are assessed for all visitors. The 

second highest fit (R2 = 0.734) is found when all 126 months in the study period are assessed for 

all visitors. At Sandbanks, the highest fit (R2 = 0.866) is found when the 21 spring months in the 

study period are used for total visitors. As shown in Figure 4-3, the optimized index is more refined 

at capturing the seasonality of visitation than the TCI or HCI:Beach at both Sandbanks and Pinery 

Parks.  What is evident in Figure 4-3 is that there is enormous potential to increase visitation during 
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June and September where the climatic resources are only moderately less welcoming than in July 

and August. Potential policy implications are to encourage more visitation during these shoulder 

months through differential pricing and/or increasing marketing and educational group visitation 

to the parks during these shoulder season months.  

This highlights a noteworthy finding that while all three indices perform well during the 

shoulder seasons and when all months in a year are taken into account, there is a consistent finding 

that these indices have a weak relationship with visitation during the months of July and August. 

This underscores the importance of other socio-cultural and institutional factors, i.e., regardless of 

the weather during July and August, visitation is consistently high. The narrative of climatic 

influence is more compelling for the shoulder seasons in this study, further confirming the findings 

of Jones and Scott (2006) and Hewer et al. (2016) who found that for parks in the Great Lakes 

region the shoulder seasons are primarily influenced by climatic factors whereas the summer 

months are not. This highlights a limitation of a weather index approach that is based entirely on 

climate data. These indices do not account for social, cultural, economic and institutional factors 

that are of importance in explaining visitation patterns. Future studies may further explore these 

other factors in conjunction with a climate index approach through multiple linear regression or 

other econometric modelling techniques.  
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Table 4-6. Relationships between index scores and visitation at Pinery Provincial Park by visitor type and season (monthly from 
January 2000 to July 2010) 

   Day users Overnight campers Total visitors 

  

 

All year 
(N=126) 

Spring 
(n=21) 

Summer 
(n=20) 

Autumn 
(n=19) 

All year 
(N=126) 

Spring 
(n=21) 

Summer 
(n=20) 

Autumn 
(n=19) 

All year 
(N=126) 

Spring 
(n=21) 

Summer 
(n=20) 

Autumn 
(n=19) 

Pi
ne

ry
 P

ro
vi

nc
ia

l P
ar

k 

T
he

rm
al

 
fa

ce
t (

T
) Humidex °C 0.654 0.426 0.502 0.731 0.640 0.593 0.007 0.686 0.656 0.626 0.060 0.729 

TempTCI 0.408 0.029 0.466 0.604 0.441 0.067 0.006 0.750 0.445 0.038 0.052 0.764 
TempHCI:B  0.678 0.312 0.062 0.767 0.697 0.597 0.006 0.805 0.709 0.603 0.016 0.841 
TempOpt 0.705 0.310 0.260 0.737 0.722 0.590 0.021 0.764 0.735 0.596 0.062 0.800 

A
es

th
et

ic
 fa

ce
t 

(A
) 

%cloud 0.365 0.205 0.088 0.618 0.230 0.028 0.043 0.335 0.253 0.052 0.013 0.394 
SunHrs 0.447 0.260 0.108 0.654 0.312 0.077 0.048 0.401 0.337 0.113 0.013 0.461 
AesTCI 0.455 0.260 0.121 0.647 0.317 0.078 0.048 0.401 0.342 0.114 0.012 0.460 
AesHCI:B 0.416 0.227 0.101 0.626 0.277 0.048 0.035 0.388 0.301 0.078 0.008 0.445 
AesOpt 0.423 0.308 0.077 0.653 0.291 0.052 0.050 0.417 0.315 0.090 0.018 0.475 

Ph
ys

ic
al

 
fa

ce
t:

 
pr

ec
ip

 (P
) Prcp (mm) 0.004 0.219 0.046 0.012 0.013 0.035 0.137 0.005 0.012 0.062 0.144 0.006 

PrcpTCI  0.010 0.274 0.002 0.295 0.003 0.025 0.134 0.189 0.004 0.055 0.098 0.215 
PrcpHCI:B 0.000 0.225 0.022 0.094 0.001 0.050 0.119 0.067 0.001 0.079 0.116 0.075 
PrcpOpt 0.026 0.274 0.002 0.257 0.012 0.035 0.167 0.192 0.014 0.067 0.138 0.212 

Ph
ys

ic
al

 
fa

ce
t:

  
w

in
d 

(W
) Wind (km/hr) 0.473 0.498 0.002 0.440 0.575 0.577 0.106 0.572 0.571 0.627 0.078 0.579 

WindTCI  0.355 0.043 0.298 0.742 0.430 0.273 0.004 0.624 0.428 0.244 0.034 0.676 
WindHCI:B 0.424 0.488 0.000 0.453 0.523 0.560 0.133 0.551 0.518 0.610 0.105 0.563 
WindOpt 0.500 0.505 0.004 0.484 0.599 0.494 0.097 0.553 0.596 0.552 0.084 0.571 

T
ot

al
 

In
de

x 
Sc

or
e TCI  0.463 0.061 0.330 0.777 0.465 0.152 0.062 0.759 0.474 0.149 0.127 0.802 

HCI:Beach 0.680 0.472 0.030 0.798 0.651 0.482 0.065 0.727 0.668 0.535 0.034 0.777 
Optimized 0.709 0.394 0.177 0.756 0.721 0.614 0.002 0.763 0.734 0.637 0.019 0.802 
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Table 4-7. Relationships between index scores and visitation at Sandbanks Provincial Park by visitor type and season (monthly from 
January 2000 to July 2010) 
 

   Day users Overnight campers 
Total visitors 

  

 
All year 
(N=52) 

Spring 
(n=21) 

Summer 
(n=20) 

Autumn 
(n=9) 

All year 
(N=52) 

Spring 
(n=21) 

Summer 
(n=20) 

Autumn 
(n=9) 

All year 
(N=52) 

Spring 
(n=21) 

Summer 
(n=20) 

Autumn 
(n=9) 

Sa
nd

ba
nk

s P
ro

vi
nc

ia
l P

ar
k 

T
he

rm
al

 
fa

ce
t (

T
) Humidex °C 0.693 0.870 0.320 0.145 0.644 0.760 0.000 0.005 0.688 0.876 0.234 0.067 

TempTCI 0.114 0.003 0.349 0.249 0.028 0.041 0.000 0.484 0.073 0.004 0.261 0.407 
TempHCI:B  0.518 0.742 0.079 0.275 0.637 0.792 0.130 0.116 0.578 0.817 0.016 0.228 
TempOpt 0.632 0.802 0.003 0.256 0.719 0.837 0.073 0.084 0.682 0.874 0.017 0.194 

A
es

th
et

ic
 

fa
ce

t (
A

) %cloud 0.039 0.066 0.170 0.282 0.025 0.030 0.076 0.027 0.034 0.051 0.070 0.155 
SunHrs 0.045 0.090 0.135 0.251 0.029 0.034 0.108 0.015 0.039 0.066 0.044 0.126 
AesTCI 0.048 0.101 0.164 0.240 0.030 0.044 0.106 0.016 0.041 0.077 0.059 0.124 
AesHCI:B 0.079 0.080 0.151 0.217 0.063 0.044 0.080 0.020 0.074 0.066 0.058 0.119 
AesOpt 0.096 0.082 0.072 0.236 0.086 0.064 0.127 0.010 0.094 0.079 0.013 0.112 

Ph
ys

ic
al

 
fa

ce
t:

 
pr

ec
ip

 (P
) Prcp (mm) 0.036 0.050 0.022 0.043 0.019 0.008 0.000 0.009 0.029 0.028 0.014 0.006 

PrcpTCI  0.037 0.031 0.006 0.477 0.027 0.000 0.146 0.104 0.034 0.010 0.036 0.320 
PrcpHCI:B 0.054 0.024 0.001 0.481 0.038 0.000 0.039 0.123 0.048 0.006 0.007 0.338 
PrcpOpt 0.029 0.054 0.001 0.619 0.012 0.000 0.253 0.163 0.022 0.018 0.019 0.439 

Ph
ys

ic
al

 
fa

ce
t:

  
w

in
d 

(W
) Wind (km/hr) 0.089 0.218 0.110 0.392 0.157 0.203 0.052 0.127 0.117 0.225 0.044 0.297 

WindTCI  0.191 0.417 0.010 0.002 0.250 0.592 0.020 0.000 0.219 0.526 0.017 0.001 
WindHCI:B 0.059 0.139 0.212 0.390 0.116 0.123 0.002 0.018 0.082 0.141 0.145 0.189 
WindOpt 0.051 0.188 0.172 0.489 0.109 0.173 0.013 0.078 0.074 0.193 0.102 0.303 

T
ot

al
 

In
de

x 
Sc

or
e TCI  0.038 0.021 0.357 0.554 0.002 0.101 0.028 0.362 0.018 0.053 0.317 0.541 

HCI:Beach 0.401 0.623 0.019 0.399 0.442 0.543 0.023 0.094 0.427 0.626 0.005 0.274 
Optimized 0.610 0.805 0.009 0.336 0.691 0.819 0.003 0.111 0.657 0.866 0.010 0.256 
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a) 

 
b) 

 
Figure 4-2. Regression plots showing the relationship between monthly level index scores and total 
park visitation at a) Pinery and b) Sandbanks (January 2000 to July 2010) 

a) 

 

b) 

 
Figure 4-3. Mean daily visitation and mean monthly index scores at a) Pinery Park and b) Sandbanks 
Park (January 2000 to July 2010).   
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4.7 Conclusions 

This research advances our understanding of the magnitude and seasonality of 

weather’s effect on beach park tourism in Ontario. Here a weather translation service tool is 

outlined that can be utilized by tourism managers and visitors to improve weather risk 

management in the recreation sector. This climate-visitation index developed for Ontario 

beach parks makes extensive use of regularly updated weather observations from the 

Meteorological Service of Canada in order to create an index that can be used to describe, 

benchmark, and compare the appeal of weather for beach tourism in the Great Lakes region.  

This research highlights that precipitation is critical in the shoulder seasons and future 

empirical investigations could explore seasonal refinements of the index for specific times of 

year and/or specific recreational activities.  This research could be further improved through 

the use of hourly meteorological and visitation data; as the timing of climatological events 

and visitation is an intriguing area of future inquiry that could lend further insights into the 

relationship between weather and beach parks visitation. Related to this, an exploration of 

extreme events, such as the presence of extreme thunderstorms could be conducted.  Lastly, 

this climate-visitation index could be an influential tool in the development of CS for the 

beach tourism sector in Ontario and this research enables a new approach for conducting 

climate change impact assessments with a focus on multiple thresholds rather than single 

specific temperature threshold that is commonplace in the literature. As such, the next steps 

are to conduct a climate change assessment to explore climate variability and change and the 

projected impacts on visitation at beach parks in Ontario to enable the provision of decision-

relevant CS for beach parks management in Ontario. 
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In summary, this paper provides a methodological and empirical contribution to the 

tourism field by outlining a method for developing a decision relevant tourism-climate index, 

an index that show considerable potential to be integrated with weather and CS providers for 

the Ontario region.   The index that has been developed for Ontario Parks meets the six 

criteria that were identified by de Freitas et al. (2008) as being necessary for an operational 

index.  First, this study presents a theoretically sound index built on the theoretical 

foundations ubiquitous in the tourism research community for three decades.  Secondly, the 

index integrates all relevant facets of climate, utilizing the same climatic variables from 

previous works.  Third, this index is simple to calculate and understand since it is based on 

only four weather sub-indices, using the same premise of the extant tourism climate indices, 

but fine-tuned through mathematical optimization to the specific and unique context of 

Ontario beach parks. Fourth, this index is easy to understand as the scores are confined to a 

maximum score of 100, representing an ideal beach experience.  Fifth, this index recognizes 

the overriding effect of certain weather conditions. And lastly, this index has been 

empirically tested and validated with actual observed visitation data; demonstrating its 

superior predictive abilities over existing tourism climate indices in the literature.  
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Chapter 5: 

Developing Climate Services for Caribbean Tourism: A Comparative 

Analysis of Climate Push and Pull Influences Using Climate Indices 

 
Matthews, L. Scott, D., Andrey, J., Mahon, R., Trotman, A., Burrowes, R., Charles, A. 
(Accepted). Developing Climate Services for Caribbean Tourism: A Comparative Analysis 
of Climate Push and Pull Influences Using Climate Indices, Current Issues in Tourism.  
 

This manuscript has been modified for use in this dissertation 

5.1 Overview 

The complexity of the tourism-climate nexus and sensitivity to changing global 

climate conditions predicates the need to develop new CS for the tourism sector. Climate 

indices have a long history of use to combine multi-faceted climate information for tourism 

resource evaluation. Most available indices have been criticized for their subjective rating 

and weighting schemes and limited predictive capabilities. Traditionally, indices have been 

used to assess tourists’ sensitivity to destination climatic pull factors, not tourists’ sensitivity 

to source market climate as a push factor for seasonality-driven markets.  Recent works have 

begun to explore the dual influence of push and pull climatic factors, but these studies have 

not been conducted in the realm of CS development to inform decision making.  This study 

addresses this gap by using tourism climate indices to assess the influence of climatic push 

and pull factors for seasonal fluctuations in arrivals to Antigua and Barbuda, Barbados, and 

Saint Lucia, from the province of Ontario, Canada (from January 2008 to December 2017). 

Building on the conceptual foundation of the HCI:Beach, this study uses an optimization 
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algorithm to develop two indices: (1) an optimized in-situ index that estimates the climatic 

pull-factor of the destination, and (2) an optimized ex-situ index that estimates the climatic 

push-factor from the source market. Findings reveal the optimized ex-situ (push) index 

explains 83% (R2=0.830) of the variability in total monthly arrivals from Ontario and has 

greater predictive accuracy than the in-situ (pull) index. The research advances understanding 

of climatic influences on Caribbean tourism arrivals and provides the foundation for new 

seasonal forecast-based CS for destination managers and marketers. Additional analysis with 

other main source markets from the US, Europe, and Canada to other countries of the 

Caribbean is needed to advance this index and sectoral CS development in the future.  

 

5.2 Introduction 

Global tourism receipts are estimated at USD$1,260 billion (UNWTO, 2016), with 

USD$37 billion estimated to be spent in the Caribbean (CTO, 2018). In 2016, the World 

Travel and Tourism Council (WTTC) ranked the Caribbean region as the most tourism-

dependent destination in the world with 14.8% of GDP in the region originating from the 

tourism sector (Mackay & Spencer 2017, WTTC 2016).  Despite this high level of 

dependence on tourism, The United Nations World Tourism Organization (UNWTO) 

estimates slowing tourism growth for the Caribbean region through 2030 given the changing 

dynamics of global tourism flows and the emergence of alternative tourism markets and 

destinations (UNWTO 2016, Mackay & Spencer 2017).  In addition to economic and 

political drivers, the potential impacts of global climate and environmental change are deeply 

concerning for the region (Laframboise et al. 2014, Mycoo 2018, Spencer 2019, Scott et al. 
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2019). Projected increases in sea level rise (Sweet et al. 2017, Nerem et al. 2018), ocean 

acidification (Albright & Langdon 2011, Weijerman et al. 2018), and increased intensity of 

hurricanes (Kossin et al. 2017) could all affect coastal tourism in the Caribbean region 

(Mackay & Spencer 2017). In fact, according to the 2019 Climate Change Vulnerability 

Index for Tourism (CVIT), the Caribbean region is projected to become one of the global 

tourism regions most highly vulnerable to climate change into the future (Scott 2019). 

The influence of climate on the global and Caribbean travel and tourism systems is 

also well documented (Martin 2005, Scott & Lemieux 2010, Rosselló-Nadal 2014).  There is 

significant evidence that climate stimuli have an important influence on tourist motivation 

(Ryan & Glendon 1998, Gössling et al. 2012), destination attractiveness (Steiger et al. 2016, 

Gössling et al. 2016), destination choice (Hamilton & Lau 2005, Scott et al. 2008), and 

seasonal tourism demand (Kulendran & Dwyer 2012, Goh 2012, Li et al. 2018). Studies 

consistently emphasize that, outside of pricing, the suitability or attractiveness of the 

destination is one of the most critical factors for tourist decision-making and climate is a 

central characteristic of attractiveness (Hamilton et al. 2005, Li et al. 2018). Much of this 

literature is conceptualized on the notion that climatic resources of destinations are a crucial 

pull factor (Goh 2012, Li et al. 2018). What has been less explored is the effect of origin or 

source market climate as a push factor for tourism patterns (Eugenio-Martin & Campos-Soria 

2010, Scott & Lemieux 2010, Li et al. 2018).  Even less explored is the dual or combined 

effect of destination and origin climate on tourism flows (Hamilton et al. 2005), an area of 

research that only recently is gaining attention (Chen et al. 2017, Li et al. 2018). 
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While it is clear that a tourists’ decision-making process is influenced by climate 

resources at the destination, quantifying the salience and impact of this influence is less-well 

understood (Rutty & Scott 2016).  Advancing our understanding of the seasonal and inter-

annual climatic push factors and pull effects on tourist flows would enable the development 

of decision-relevant CS for tourism planners, managers, and marketers. In a multi-sectoral 

investigation of CS perspectives and priorities, Vaughan et al. (2016) found that a key barrier 

to the production of decision-relevant weather and climate information is a limited 

understanding of extent and ways in which weather/climate impacts specific individuals, 

businesses/organizations, and sectors; a finding supported by Weaver et al. (2013). This CS 

literature is an emerging area of scholarship that explores the extent to which weather and 

climate information is actionable for decision-makers across diverse economic sectors and 

professions (Kirchhoff et al. 2013).  

In the tourism sector, there is clear evidence that climate and weather services are 

being used to some degree in the management of tourism operations and destinations (Scott 

& Lemieux 2010, Damm et al. 2019).  Short-term weather products like warnings and alerts 

inform emergency management decisions, such as an impending thunderstorm or hurricane, 

where tourism business may opt to close facilities and implement evacuation protocols 

(Cahyanto et al. 2014). Daily to weekly forecasts can inform destination management 

decisions, such as when to commence snowmaking at the start of the season or a mid-season 

melt (Doyle 2014, Steiger et al. 2019). Daily to weekly forecasts also can influence tourists’ 

decision-making (Scott & Lemieux 2010). A suite of tailored CS tools such as the Weather 

Channel’s ‘running index’, ‘ski index’, ‘golf index’, and ‘spectator index’ can target tourism 
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and recreation participants directly (Scott & Lemieux 2010). The long-term climate 

projections can inform decision-making with regards to infrastructure investments, such as 

whether to build a resort in a coastal area that may be at risk of changing storm surge and/or 

sea level rise (Bosello et al. 2007, Scott et al. 2012). However, evidence of the development 

and use of CS for strategic planning on seasonal or annual scales remains elusive in the 

tourism sector. 

Notwithstanding the improved availability of weather and climate products, 

seasonality is consistently cited as one of the most challenging issues for tourism destinations 

(Scott & Lemieux 2010, Goh 2012, Li et al. 2018).  Natural seasonality (the combined effect 

of temperature, precipitation, wind, sun and humidity) has long been considered one of the 

most significant elements that cause seasonal fluctuations in tourist flows (Butler 1998, 

Baum 1999, Ridderstaat et al. 2014, Li et al. 2018). Seasonality has an impact on resource 

and supply utilization, the marketing and pricing of tourism packages, and human resources 

and operational decisions at the destinations (Li et al. 2018). It is critical to develop methods 

of appropriately integrating these climatic elements into a measure that reflects the complete 

influence of climate on tourism demand (de Freitas et al. 2008, Scott et al. 2008, Li et al. 

2018).  

Climate indices for tourism, such as the seminal TCI or the more recent HCIs have 

been used as tools to evaluate the climate resources, or the climatic pull factor, of 

destinations (usually for the purpose of objectively comparing multiple destinations). 

Furthermore, these indices have been applied to numerous climate assessments and climate 

change impact studies by applying the index under climate projections in order to estimate 
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future changes in climate resources for tourism (e.g., Rotmans et al. 1994, Scott & McBoyle 

2001, Scott et al. 2004, Amelung & Viner 2006, Amelung et al. 2007, Hein et al. 2009, 

Moore 2010, Amelung & Nicholls 2014, Grillakis et al. 2016, Jacob et al. 2018).  

Notwithstanding the widespread application of the TCI (developed by Mieczkowski 

1985), it has been criticized extensively. The most frequent criticisms being the subjective 

nature of the variable ranking schemes and the component weighting (Gomez-Martin 2005, 

de Freitas et al. 2008, Eugenio-Martin & Campos-Soria 2010, Scott et al. 2016, Dubois et al. 

2016). Scott et al. (2016) further expressed concerns that there was an unjustified over-

emphasis on thermal comfort. This criticism may be especially valid in Caribbean sun-sand-

surf (3S) tourism, where spatial and annual variability of air temperature is much less 

pronounced than at higher latitudes.  Furthermore, the results of the TCI are not contextual 

and are not tourism segment/activity specific (i.e., tailored to the different climate 

requirements of say city, beach or mountain tourism). Mieczkowski (1985) did note that the 

TCI could be calibrated by modifying the rating and weighting schemes for different tourism 

activities, but there has been limited discussion of how this can be completed rigorously.   

More recently, the HCI:Urban was introduced (Scott et al. 2016) to directly address 

several of the limitations of the TCI. The HCI:Urban overcame some limitations of the TCI 

by using daily level data instead of monthly level data and being tailored to a specific tourism 

segment (urban tourism whereby the destination is the cities and its attractions), and by 

establishing the rating schemes and sub-index weighting based on a comprehensive review of 

tourist preference and perceptions research. The specification for the HCI:Urban 
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specification is outlined in Scott et al. (2016); the sub-index weighting schemes are included 

in Table 5-1 to Table 5-4; and the overall index calculation is outlined in Table 5-5.   

This HCI:Urban index has been recently specified for beach tourism in the 

HCI:Beach by Scott et al. (2019) and Rutty et al. (2020) and recalibrated by Matthews et al. 

(2019) for the Canadian domestic beach parks market. The HCI:Beach uses a similar 

structure to the HCI:Urban but the HCI:Beach is tailored to a specific tourism segment based 

on the stated preferences of beach tourists (Rutty & Scott 2013, 2015). The calculation for 

the HCI:Beach specification is outlined in Rutty et al. (2020) and the sub-index weighting 

schemes are included in Table 5-1 to Table 5-4; and the overall index calculation is outlined 

in Table 5-5.   

The use of these tourism climate indices has been lauded as an important piece of CS 

for tourism (Damm et al. 2019), in part due to the ability of indices to account for the 

integrated or combined effects of weather (de Freitas 2003). However, the limited CS for 

tourism literature has focused only on the use of indices as a tool to measure climatic pull of 

destinations. There is a need to assess the potential use of these indices to measure the 

climatic push factor from the source market, not solely as a unidirectional tool to assess the 

pull factor of a destination. Li et al. (2018) were the first to expand the application of these 

indices to assess the impact of climate as a push factor for seasonality-driven tourism 

markets. They found that the pull factor was stronger than the push factor for travel to 

different cities in China from Hong Kong. However, this analysis of climatic push factors is 

particularly important where the major regional tourism flows are thought to be cold climate 

driven (e.g., North America to the Caribbean, Scandinavia and Northern continental Europe 
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to the Mediterranean). As such, this paper will be the first study to use a data-driven tourism 

index approach to assess climatic push factors from a temperate region of North America to 

the Caribbean, with important implications for research into global tourism flows.  

Furthermore, few of the indices developed to date have been empirically validated with 

observed tourist flows, particularly destination specific arrivals that would be of interest for 

CS development. Accordingly, this research will further progress the development of tourism 

climate indices in support of CS. If CS for tourism are to expand and improve their predictive 

capacity, there may be a need to re-conceptualize CS provision in the tourism sector to 

account for salient climate push factors, or to evaluate the use of tourism indices as a tool that 

can account for climatic pull factors as well as climatic push factors. This speaks to the 

broader necessity to develop CS for the tourism industry; where there is a need to reflect on 

the types and scales of weather and climate information that is important for travelers, 

tourism operators and marketers, and other decision makers (Scott et al. 2011). If climate 

elements, such as temperature and precipitation, are not well correlated with actual visitation, 

but the ex-situ climate in major source markets is strongly correlated with departures, then 

there is a need to foster partnerships between CS providers in different geographic locations 

to support international CS use. Given the highly climate-sensitive nature of Caribbean 

tourism, and 3S tourism globally, there is a practical need to better understand this climate-

tourism nexus both in-situ and ex-situ.  

There is an acute awareness of the region’s vulnerability to climate variability and 

change. Regional tourism institutions, including the Caribbean Tourism Organization 

(CTO) and the Caribbean Hotel and Tourism Association, are exploring novel 
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methodologies of integrating climate information into tourism decision-making processes 

to foster climate risk management. It is evident that the development, application, and 

integration of CS tools, particularly CS translation tools, that can be tailored to the unique 

contextual realities of Caribbean tourism are increasingly sought. Regional CS providers 

such as the Caribbean Institute for Meteorology and Hydrology (CIMH) are looking to 

provide this useable climate information to users. CIMH is operating as the World 

Meteorological Organization’s-designated Regional Climate Center to promote the region-

wide implementation of the Global Framework for Climate Services (CIMH 2018). 

Accordingly, the CTO, in partnership with the CIMH, organized this international CS 

research team to investigate the development of new data-driven CS tools to enable climate 

risk management for tourism in the Caribbean region.  

The purpose of this research is to examine the capacity of climate indices for tourism 

(encompassing temperature, rainfall, snowfall, wind, and cloud coverage), representative of 

both climatic push and pull factors, to explain fluctuations in tourism demand from Ontario, 

Canada to three Caribbean countries (Antigua and Barbuda, Barbados, and Saint Lucia). It is 

hypothesized that for the mid-latitude Ontario source market, climatic push factors are more 

important in accounting for seasonal and inter-annual variability in arrivals than climatic pull 

factors at the destination. Furthermore, despite the enhancements made by the HCI:Beach, 

there remain areas for improvement in calibrating indices to the context-specific realities of 

tourism decision-making (Dubois et al. 2016). While Mieczkowski (1985) used expert 

judgment and the HCI:Urban (Scott et al. 2016) and HCI:Beach (Rutty et al. 2020) use 

insights from tourists’ stated preferences, in this study an optimization algorithm, as applied 
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by Matthews et al. (2019) to parks arrivals in Ontario, Canada, will be implemented using 

arrivals data to determined different weights for each of the sub-indices and for the overall 

index calculations.  

This study has three objectives related to the tourism-climate nexus. This first is to 

use a mathematical optimization algorithm to refine the HCI:Beach to develop to new two 

indices: (1) an optimized in-situ index which estimates the climatic pull-factor of the 

destination, and (2) an optimized ex-situ index which estimates the climatic push-factor of 

the source markets. Both of these data-driven and empirically validated indices assign daily 

weather scores based on four weather sub-indices (thermal comfort, wind speed, 

precipitation, and cloud cover). These daily scores are then averaged to the monthly level and 

correlated to tourist flows to Antigua and Barbuda, Barbados, and Saint Lucia. This 

methodology identifies the climatic thresholds, and the importance of these climatic 

thresholds for arrivals to Caribbean tourism destinations (climatic pull factors), and 

departures from Ontario (climatic push factors). The second objective of this study is to 

compare and contrast the index structure and variable rating schemes of the newly optimized 

data-driven indices against three existing indices, the TCI, HCI:Urban, and HCI:Beach. The 

third objective is to calculate and assess the degree to which each of these indices can be 

used to explain variations in visitor flows from Ontario to the three Caribbean nations. This 

analysis of model fit using the ordinary least squares regression (R2) provides insights into 

the relative importance of climatic push and pull factors as refined through a data-driven 

revealed preference methodology. 
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5.3 Data and Methods 

5.3.1 Visitation Data 

Monthly level visitation data for arrivals from January 2008 to December 2017 were 

obtained from the Caribbean Tourism Organization (CTO) for three countries in the 

Caribbean. These visitation data were processed from arrival declaration forms submitted by 

travelers upon entry to each country.  Data provided by the CTO were disaggregated by 

country of residence and separated by residency status in the destination country. For the 

purposes of this research, expatriate visitors were not included in the analysis.  There are 

some limitations to the use of these visitation data.  First, these data do not capture the length 

of stay for each visitor or represent the nature of the visit, as they include business, family, 

and leisure travel, which are thought to have differential climate sensitivities.  While the 

expatriate visitors were excluded from the analysis this does not account for second or third 

generation immigrants who may visit family in the Caribbean.   

5.3.2 Climate Data 

Weather observations for the three Caribbean study areas were obtained from the 

Caribbean Institute for Meteorology and Hydrology for the period of January 2008 to 

December 2017. Monthly climographs for the three Caribbean destinations and the Ontario 

source market are shown in Figure 5-1, showing strong consistency among the destinations 

and strong contrast to the Canadian source market. The destination observations provided at 

the daily level included temperature, rainfall, relative humidity, cloud cover and wind speed. 

Weather data for the Ontario source market region were obtained from ECCC. The Toronto 
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International Airport station was selected as this location is representative of the Greater 

Toronto Area, a metropolitan area in Ontario that is largest provincial source of outbound 

flights to the Caribbean region. Weather variables that are only available at the hourly 

resolution (wind speed, relative humidity, and cloud cover) were downloaded and computed 

to the daily average values.  The temperature and precipitation (rainfall and snowfall) data 

were downloaded at the daily scale. 

For an assessment of thermal comfort, the temperature and relative humidity data 

were combined to calculate Humidex values, a Canadian innovation used by public and 

private sector weather service and public heat-stress warnings (Anderson et al. 2013). The 

Canadian Humidex is used instead of other thermal indices such as Effective Temperature 

(ET) or Apparent Temperature (AT) because the humidex is more salient to the outbound 

travel market (Canada) in this study and the Humidex is thermal comfort unit provided in 

Canadian weather forecasts and has been used in numerous studies to assess heat exposure in 

Canada (Chebana 2013, Ho 2016).  The Humidex is defined as:  
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Figure 5-1. Climographs for Antigua and Barbuda, Barbados, Saint Lucia, and Ontario - Canada 
(January 2008 to December 2017) 

 

5.3.3 Index Calculations 

The method used in this research adapts an optimization routine developed by 

Matthews et al. (2017a,b,c) for road transport weather indices, and as applied in Matthews et 

al. (2019) for beach park visitation in Ontario, Canada. The optimization algorithm is set to 

maximize the fit (R2) values between monthly tourist flows between Ontario and the three 

Caribbean destinations. The optimization routine utilizes the Generalized Reduced Gradient 
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(GRG2) algorithm that is standard in Microsoft Excel to simultaneously identify threshold 

values and sub-index scores.  The algorithm was set to maximize the R2 values between the 

sub-index scores, and tourism flows and is set up in such a way to allow for any number of 

weather variable ranges, but the sub-index scores were constrained to values between zero 

and ten. After each of the sub-indices are optimized, the algorithm is run again to determine 

the weights for each of the climatic facets. The optimization routine is run for each of the 

sub-indices sequentially (i.e., thermal comfort, aesthetic, precipitation, and wind). These 

daily index scores are then averaged to create weekly, monthly, or seasonal beach tourism 

index scores. The resulting constants (threshold values, sub-index scores, sub-index weights) 

for each of the sub-indices are outlined in the following section. 

For this study, the optimization is applied to develop two indices. The first in-situ 

index is optimized to quantify the relationship between arrivals and climate at the destination, 

which represents the climatic pull-factor. The method uses the average fit (R2) between 

arrivals and index scores for the three Caribbean destinations individually. The second ex-

situ index is optimized to quantify the relationship between the source .  This ex-situ climate 

index is developed on the premise that there is an inverse relationship between climate rating 

and outbound departures – (i.e., low index scores for a source market represents a higher 

climatic push and thus higher departures), whereas for the in-situ index there is a positive 

relationship between climate and arrivals (i.e., low index scores represent lower pull and 

reflect low numbers of arrivals). 
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5.4 Results and Discussion 

5.4.1 Optimized Index Design and Index Inter-comparison  

For thermal comfort, an ordinary least squares regression analysis with monthly 

THumidex (°C) as the explanatory variable and monthly tourism flows as the dependent 

variable (January 2008 to December 2017) reveals that, for Ontario-to-Caribbean tourism, 

thermal comfort is a dominant pull-factor and push-factor (Table 5-6).  The relationship is 

evident for both in-situ (pull) THumidex (°C) (R2= 0.553, 0.462, 0.678), and ex-situ (push) 

THumidex (°C) (R2= 0.639, 0.619, 0.675) for Antigua and Barbuda, Barbados, and Saint 

Lucia, respectively. Notably, the relationship between THumidex (°C) in Ontario and total 

departures to all three countries (R2= 0.716) is stronger than the relationship between 

THumidex (°C) in Ontario and departures to the individual countries. As shown in Table 5-1, 

the optimization algorithm identified ten different thermal comfort rating categories for the 

in-situ index and seven different rating categories for the ex-situ index, both with sub-index 

scores between zero and ten. Interestingly, for the ex-situ index, the range for THumidex 

(°C) rated as a zero, is much broader than what was determined for any of the other indices in 

the literature. All temperatures below THumidex 7°C are rated as a zero, indicating that this 

is when most tourists depart from Ontario to these Caribbean destinations.   Interestingly, 

temperatures above THumidex 36°C are also rated as a zero, indicating that during peak 

summer temperatures in Ontario, travelers continue to visit to the Caribbean. This can be 

explained by the confounding variable of institutional seasonality from school breaks which 

is not accounted for in the current analysis.  
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Table 5-1. Thermal comfort facet rating schemes 

 
 

The aesthetic facet is the second strongest climactic factor for Caribbean-bound 

travelers.  The ordinary least squares regression analysis with monthly cloud cover (%) as the 

explanatory variable and monthly tourism flows as the dependent variable (January 2008 to 

December 2017) reveals a relationship for both in-situ cloud cover (%) (R2= 0.338, 0.252, 

0.330), and ex-situ cloud cover (%) (R2= 0.279, 0.226, 0.219) for Antigua and Barbuda, 

Barbados, and Saint Lucia, respectively. As outlined in Table 5-2, the optimization algorithm 

identified seven different cloud cover rating categories for the in-situ index and nine rating 

TCI HCI:Beach HCI:Urban Pull-factor (in-situ index) Push-factor (ex-situ 
index) 

Rating THumidex (°C) Rating THumidex 
(°C) Rating THumidex (°C) Rating THumidex (°C) Rating 

0 ≥36.0 ≥39.0 0 ≥39.0 0 ≥42.0 0 

≥36.0 0 38.0 - 38.9 2 37.0 - 38.9 2 38.0-41.9 1 1 35.0 - 35.9 37.0 - 37.9 4 
2 34.0 - 34.9 36.0 - 36.9 5 

35.0 - 36.9 4 34.0 – 37.9 2 3 33.0 - 33.9 35.0 - 35.9 6 33.0 – 35.9 2 
4 32.0 - 32.9 34.0 - 34.9 7 33.0 - 34.9 5 

26.0 - 33.9 3 

29.0 - 32.9 6 5 31.0 - 31.9 33.0 - 33.9 8 31.0 - 32.9 6 
6 30.0 - 30.9 31.0 - 32.9 9 29.0 - 30.9 7 

26.0 – 28.9 8 7 29.0 - 29.9 28.0 - 30.9 10 27.0 - 28.9 8 
8 28.0 - 28.9 26.0 - 27.9 9 26.0 - 26.9 9 
9 27.0 - 27.9 23.0 - 25.9 7 23.0 - 25.9 10 23.0-25.9 10 

10.0 - 25.9 10 

10 20.0 - 26.9 22.0 - 22.9 6 
20.0 - 22.9 9 

21.0-22.9 6 
9 19.0 - 19.9 21.0 - 21.9 5 20.0-20.9 5 
8 18.0 - 18.9 20.0 - 20.9 4 18.0 - 19.9 7 19.0-19.9 4 
7 17.0 - 17.9 

19.0 - 19.9 3 
15.0 - 17.9 6 17.1 - 18.9 3 

6 16.0 - 16.9 11.0 - 14.9 5 

≤17.0 0 

5 10.0 - 15.9 18.0 - 18.9 2 7.0 - 10.9 4 

7.1 - 9.9 8 
4 5.0 - 9.9 17.0 - 17.9 1 0 - 6.9 3 
3 0.0 - 4.9 15.0 - 16.9 0 
2 −0.1 - −5.9 10.0 - 14.9 -5 −0.1 - −5.9 2 
0 −6.0 - −10.9 

≤9.9 -10 ≤−6.0  1 −1 −11.0 - −15.9 
≤7.0 0 −2 −16.0 - −20.9 

−6 ≤−21.0 
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categories for the ex-situ index. Interestingly, the number of categories for the sub-indices is 

reduced suggesting that travelers may not be as sensitive to incremental fluctuations in cloud 

coverage as the expert-based or stated-preference based indices may suggest. Of note, 

Mieczkowski’s TCI uses the number of sunshine hours in a day for the aesthetic factor, 

whereas the HCI:Beach, the HCI:Urban, and optimized indices use cloud cover (%) for 

calculating the aesthetic facet because of much wider international data availability.  

 

Table 5-2. Aesthetic facet rating schemes 

TCI  HCI:Beach HCI:Urban Pull-factor (in-situ 
index) 

Push-factor (ex-situ 
index) 

Rating S-hours CC (%)* CC (%) Rating CC (%) Rating CC (%) Rating CC (%) Rating 
10 10 0.0-16.6 0-0.9 8 0.0-0.9 8 0.0-1.9 9 0.0-1.9 0 
9 9 16.7-24.9 1.0-14.9 9 1.0-9.9 9 
8 8 25.0-33.2 15.0-25.9 10 11.0-20.9 10 2.0 -2.9 10 2.0 -2.9 5 
7 7 33.3-41.6 26.0-35.9 9 21.0-30.9 9 

3.0-56.9 7 
3.0-14.9 4 

6 6 41.7-49.9 36.0-45.9 8 31.0-40.9 8 15.0-25.9 10 
5 5 50.0-58.2 46.0-55.9 7 41.0-50.9 7 26.0-36.9 7 
4 4 58.3-66.6 56.0-65.9 6 51.0-60.9 6 57.0-77.9 6 37.0-64.9 3 3 3 66.7-74.9 66.0-75.9 5 61.0-70.9 5 
2 2 75.0-83.2 76.0-85.9 4 71.0-80.9 4 78.0-83.9 4 65.0-84.9 2 1 1 83.3-91.6 86.0-95.9 3 81.0-90.9 3 84.0-97.9 3 
0 0 ≥91.7 ≥96.0 2 91.0-99.9 2 85.0-97.9 1 

100.0 1 ≥98.0 0 ≥98.0 0 
*S-hours=sunshine hours; CC%= percentage of cloud cover. Sunshine hours were not available so the CC% were 
transformed to hours of sunshine 
 

For the TCI, HCI:Beach, HCI:Urban and the in-situ index, total precipitation (mm) is 

used as the explanatory variable. However, for the ex-situ index, which represents the climate 

in the Ontario source market, total snowfall (cm) is used. This decision was made based on 

an exploratory analysis with monthly rainfall (mm) and snowfall (cm) used as explanatory 

variables in two ordinary least squares regression analyses, and total monthly departures 

from Ontario as the dependent variable for the study period (Table 5-6). These analyses 
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found that snowfall was more strongly related with departures (R2 = 0.434) than rainfall (R2 = 

0.275). 

The relationship between arrivals in the Caribbean and precipitation at the destination 

is quite small with R2 values of 0.173, 0.093, and 0.191 for Antigua and Barbuda, Barbados, 

and Saint Lucia, respectively. The relationship between departures and snowfall in Ontario is 

stronger with R2 values of 0.396, 0.362, and 0.423 for the same three countries. Similar to the 

findings with temperatures, the relationship between weather and departures is strongest 

when calculating total departures from Ontario (R2 =0.434). This suggests that it is perhaps 

less important to which Caribbean/warm weather destination one travels, and more important 

to escape the cold and snowy winter weather. As shown in Table 5-3, the optimization 

algorithm identified only four different precipitation rating categories for the in-situ index 

and seven rating categories for the ex-situ index. The findings for the in-situ index are quite 

consistent with those of the HCI:Beach and HCI:Urban, but the ex-situ index has remarkably 

different results, as one would expect. For the ex-situ index, days with no snow were 

assigned a score of zero, however the scores drop dramatically to six with even 0.1cm of 

snow. This indicates that even a small amount of frozen precipitation is correlated with 

higher departures from Ontario. In contract, the in-situ index assigned a score of ten for up to 

1.9mm of precipitation, and even upwards of 9mm of precipitation was assigned a score of 

nine. This underscores that tourists may be more sensitive to frozen precipitation as a push-

factor.  
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Table 5-3. Physical facet: precipitation rating schemes 

TCI HCI:Beach HCI:Urban Pull-factor (in-situ 
index) 

Push-factor (ex-
situ index) 

Rating Precipitation (mm) Rating Precipitation 
(mm) Rating Precipitation 

(mm) Rating Snow 
(cm) Rating 

10 0.00-0.49 0 10 0 10 0-1.9 10 0 10 
9 0.50-0.99 

0.01-2.99 9 0.01-2.99 9 

0.1-1.9 6 
8 1.00-1.49 

2.0-8.9 9 2.0-6.9 5 

7 1.50-1.99 
6 2.00-2.49 
5 2.50-2.99 
4 3.00-3.49 

3.00-5.99 8 3.00-5.99 8 
3 3.50-3.99 
2 4.00-4.49 
1 4.50-4.99 

0 ≥5.00 
6.00-8.99 6 6.00-8.99 5 9.0-12.4 6 

7.0-8.9 4 

9.0-11.9 3 
9.00-11.99 4 9.00-11.99 2 

12.00-24.99 0 12.00-24.99 0 ≥12.5 0 12.0-24.9 5 
≥25.00 -1 ≥25.00 -1 ≥25.00 0 

 
 
In terms of the physical wind facet, as shown in Table 5-4, the optimization algorithm 

identified five different wind speed rating categories for both the in-situ and ex-situ indices 

and assigned sub-index scores between zero and ten. The relationship between in-situ wind 

and arrivals to Antigua and Barbuda (R2 =0.003), Barbados (R2 =0.037), and Saint Lucia 

(R2= 0.195) are all small. Similarly, the relationship between ex-situ wind and departures to 

Antigua and Barbuda (R2 = 0.059), Barbados (R2= 0.058), and Saint Lucia (R2= 0.098) are all 

small. Given the small R2 values of the wind variables as both a push-factor and a pull-factor 

it is evident that wind is not a factor for the climatological preferences of tourists to the three 

Caribbean nations (Table 5-6), nor is it a push factor for tourists departing Ontario. This 

stands in important contrast to the TCI and HCIs stated preference ratings where wind 

represents 10% of the index scores. 
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Table 5-4. Physical facet: wind rating schemes 

TCI HCI:Beach HCI:Urban Pull-factor 
(in-situ index) 

Push-factor 
(ex-situ index) 

Wind 
(km/hr) 

Normal 
(<-23.9 

°C) 

Trade wind 
(24-32.9 

°C) 

Hot climate 
(≥33 °C) 

Wind 
(km/hr) Rating Wind 

(km/hr) Rating Wind 
(km/hr) Rating Wind 

(km/hr) Rating 

≤2.88 10 4 4 0-0.5 8 = 0 8 
= 0 10 

0-0.9 8 0.1 – 
0.9 8 

2.89-5.75 9 5 3 0.6-9.9 10 0.1 – 9.9 10 1-9.4 10 5.76-9.03 8 6 2 1.0-9.9 6 
9.04-12.23 7 8 1 10.0-19.9 9 10.0 – 

19.9 9 

10-39.9 1 

9.5-18.9 5 12.24-19.79 6 10 0 
19.80-24.29 5 8 0 

20.0-29.9 8 20.0 - 
29.9 8 

19.0-39.9 1 
24.30-28.79 4 6 0 
28.80-38.51 3 4 0 

≥38.52 0 0 0 30.0-39.9 6 30.0 - 
39.9 6 

 
40.0-49.9 3 40.0-49.9 3 

≥39 0 ≥40.0 0 50.0-69.9 0 50.0-69.9 0 
≥70.0 -10 ≥70.0 -10 

 
This research makes a number of empirical discoveries through the calibration of the 

sub-indices. First, all of the individual weather variables have a stronger relationship when 

exploring the relationship between weather in Ontario and departures, rather than the 

relationship between weather in the Caribbean and arrivals. Secondly, the relationship is 

strongest when assessing total departures from Ontario rather than departures to specific 

countries. This indicates that for seasonality-dependent source markets, it is perhaps less 

important where in the Caribbean one travels, it is more important for tourists to escape the 

harsh winter climate, regardless of specific destination.  

After the calibration of the sub-indices it was then necessary to weight each of the 

sub-indices.  While Mieczkowski (1985) used expert judgment and the HCI:Urban and 

HCI:Beach use insights from survey-derived tourist stated preferences, the optimization 

algorithm using travel data determined different weights for each of the sub-indices (Table 

5-5). For the in-situ climate index, the optimization routine gave 40% of the index weight to 

the thermal comfort facet of the index, with 50% going towards the aesthetic facet, 10% to 
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precipitation and no weight to the wind sub-index. This most closely matches the HCI:Beach 

index outlined in Rutty et al. (2020).  For the ex-situ climate index, the optimization routine 

gave 55% of the index weight to the thermal comfort facet of the index, with 20% going 

towards the aesthetic facet, and 25% to precipitation (snow) and no weight to the wind sub-

index. Interestingly, this most closely matches the Mieczkowski’s (1985) TCI.  Given the 

non-existent relationship between wind and tourism flows it is not included in the optimized 

index.  Eugenio-Martin & Campos-Soria (2010) report similar findings in their work on 

traveler climate preferences for tourists in Europe and hypothesized that it may not be 

appropriate to include wind conditions in their model because of the large variations in wind 

speeds over relatively small spaces and timescales. While averaging temperatures or sunshine 

over larger areas was deemed more reasonable, the spatial heterogeneity of wind makes it 

unsuited for inclusion in such climate indices of tourism (Eugenio-Martin & Campos-Soria 

2010).  

Table 5-5. Comparison of beach climate index component weightings 

 

*for the optimized ex-situ index snowfall is used as the predictor variable instead of total precipitation. 
 

Index 
component 

TCI 
weight 

(%) 

HCI:Beach 
weight (%) 

HCI:Urban 
weight (%) 

Optimization 
weight (%) 

(in-situ 
weather) 

Optimization 
weight (%) 

(ex-situ 
weather) 

Thermal 
comfort (TC) 50% 20% 40% 40% 55% 

Aesthetic (A) 20% 40% 20% 50% 20% 
Precipitation (P) 20% 30% 30% 10% 25%* 

Wind (W) 10% 10% 10% 0% 0% 
Overall index 
score range -30 to 100 0 to 100 0 to 100 0 to 100 0 to 100 

In-situ Caribbean pull-factor index = 4 (TC) + 5(A) + 1(P) 
Ex-situ Ontario push-factor index = 5.5 (TC) + 2(A) + 2.5(P) 
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5.4.2 Comparisons in Model Fit  

The daily scores for the TCI, HCI:Urban, HCI:Beach, and optimized indices were 

calculated daily for the 10-year study period for the three Caribbean destinations and the 

Ontario source market region to explore the relationship between index scores and tourism 

flows (January 2008 to December 2017). For each country, the monthly index value is the 

mean of the daily scores and serves as the explanatory variable in the subsequent results.  

The results of the ordinary least squares regressions are shown in Table 5-6. As indicated by 

these R2 values, there is moderate fit at the monthly level indicating that some of the 

variability in Caribbean visitation is explained by the climate indices, and that an 

improvement in fit can be achieved through the optimization approach.  In the Caribbean, the 

in-situ index derived through optimization has greater predictive accuracy at the monthly 

level than the TCI, HCI:Urban, or HCI:Beach for Antigua and Barbuda (R2= 0.629), 

Barbados (R2=0.480), and Saint Lucia (R2=0.710). The ex-situ index, representing the 

climatic push factor, also has greater predictive accuracy at the monthly level than the TCI, 

HCI:Urban, or HCI:Beach for Antigua and Barbuda (R2= 0.703), Barbados (R2=0.735), and 

Saint Lucia (R2=0.783).  When taken as a whole, the ex-situ climate index explains 83% 

(R2=0.830) of the variability in total monthly departures from Ontario (i.e., total departures 

from Ontario to the three Caribbean nations). 

 
 
 
 

  



 
 

 
131 

 
Table 5-6. Relationships between weather variables and visitation to three Caribbean nations from 
Ontario (January 2008 to December 2017) 

 
In-situ climate 

Pull-factor index 
Ex-situ climate 

Push-factor index 

 
Antigua & 
Barbuda Barbados Saint Lucia Antigua & 

Barbuda Barbados Saint 
Lucia 

Total 
departures 

Thumidex-min (°C) 0.520 0.353 0.475 0.668 0.629 0.707 0.740 
Thumidex-max (°C) 0.553 0.462 0.678 0.639 0.619 0.675 0.716 
%cold days ** NA NA NA 0.511 0.433 0.579 0.553 
Rain (mm) 0.173 0.093 0.191 0.290 0.209 0.275 0.275 
% raindays 0.063 0.020 0.079 0.273 0.202 0.302 0.276 
Snow (cm) NA NA NA 0.396 0.362 0.423 0.434 
% snowdays * NA NA NA 0.562 0.520 0.567 0.607 
% cloud 0.338 0.252 0.330 0.279 0.226 0.219 0.261 
Wind 0.003 0.037 0.195 0.059 0.058 0.098 0.078 
Relative Humidity (%) 0.263 0.153 0.439 0.033 0.043 0.022 0.037 
TCI 0.584 0.317 0.620 0.637 0.657 0.717 0.751 
HCI:Urban 0.583 0.372 0.572 0.508 0.530 0.533 0.587 
HCI:Beach 0.595 0.449 0.673 0.573 0.609 0.606 0.670 
Optimized 0.629 0.480 0.710 0.703 0.735 0.783 0.830 

 
 

As shown in Figure 5-2, the optimized ex-situ index is more capable of capturing the 

seasonality of departures from Ontario than the TCI, HCI:Urban, or HCI:Beach at all three of 

the destinations. Furthermore, this inverse relationship between the source market weather 

and departures is stronger than the relationship between the destination weather and arrivals. 

This suggests two important findings. First, climate indices can be used not only to assess the 

climate resources at a destination, but in this seasonality-driven market they can be more 

effective in quantifying the climatic push-factor of the source market.  The second key 

finding is that using an optimization routine to define threshold values and scores is a 

promising approach for developing a more robust market specific tourism climate index for 

both climatic pull-factors and climatic push-factors.  
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Figure 5-2. Mean monthly tourist flows and mean monthly index scores for Antigua and Barbuda, 
Barbados, and Saint Lucia (January 2008 to December 2017) 
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The relationship between individual weather variables and departures, as well as the 

relationship between the total index scores and departures, is strongest when exploring total 

departures from Ontario rather than destination-specific departures. While Figure 5-2 

illustrates the dual-directional value of tourism indices for explaining the seasonality of 

tourism flows as a function of both the destination and source market climate, the 

relationship is actually strongest when total departures from Ontario are explored rather than 

that country-specific basis shown in Figure 5-2. Following this, Figure 5-3a demonstrates 

how the tourism indices can better capture the seasonality of total departures to the Caribbean 

from Ontario. Furthermore, Figure 5-3a illustrates how the optimized index has the closest 

relationship with departures – making progress towards the development of a usable CS tools 

for tourism decision-making. Similarly, Figure 5-3b displays the relationship between 

individual weather variables and departures from Ontario. Figure 5-3b evidently illustrates 

that while individual weather variables have a weak relationship with departures, the 

integrated effects of the variables have a considerably stronger relationship with 83% of the 

variability in departures explained by the optimized ex-situ index.  
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a) 

 
b) 

 
Figure 5-3. Depiction of a) mean monthly departures from Ontario and mean monthly index scores 
for the ex-situ TCI, HCI:Urban, HCI:Beach and optimized index; and b) the relationship between 
individual weather parameters and mean monthly departures from Ontario.   

 

Despite this strong relationship between total departures and the optimized ex-situ 

index, there are large residuals that occur during the months of November and March. For 
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has actually been observed. The opposite is found in March where the optimized ex-situ 

index predicts that departures should be less than what was observed.  There are a number of 

possible explanations for this. First, there could be a time lag in decision-making or a degree 

of cumulative impact of winter weather that occurs before some Ontarians decide travel 

south. Second, for the March residuals this could be due to institutional factors such as the 

spring break holiday that occurs in March for Ontario schools. Third, for the November 

residuals, the lower than expected departures could also be a response to the higher 

possibility of extreme weather events at the destinations (i.e., hurricane season).  These 

higher residuals in the months of March and November do highlight a limitation of a weather 

index approach for tourism - the singular focus on daily weather data; there are a multitude 

climatic events that occur on different temporal scales that may exert an influence on 

tourists’ travel behaviours.  The singular focus on daily level data which is then aggregated to 

weekly, monthly, seasonal, or annual scales neglects to account for low frequency high-

impact weather events.  

 

5.5 Conclusion 

Tourism climate indices are lauded for their application to observational, present, 

near future, and long-term weather and climate products (Rosselló-Nadal 2014).  

Importantly, Damm et al. (2019) promote the use of tailored climate information, including 

the TCI, as an important tool for CS provision in the tourism sector. However, the results 

from this research draw attention to two fundamental limitations with the conceptualization 

of the TCI and of other generic climate indices for tourism in the provision of CS. First, the 
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TCI, and most extant tourism climate indices, are conceptualized to assess the climatic pull 

factor, or the climate resources, of the destination. A novel innovation is to invert these 

tourism climate indices to measure the push factor from the source market. A second 

limitation of the extant indices is that they have not been empirically validated against 

visitation data (i.e., revealed preference).  

While indices such as the HCI:Urban and HCI:Beach make progress towards 

developing activity-specific climatic indices based on stated tourist climate preferences and 

thresholds, these are not mathematically defined or calibrated to either the activity or regional 

tourism arrivals data that would facilitate CS development. However, revealed preference 

methodologies are also imperfect for study of tourists’ sensitivity to climate given the bias 

introduced from institutional seasonality, economic, and political factors that are imbedded in 

these data.  In exploring these two limitations of the extant tourism indices, this study reveals 

three principal conclusions.  

First, for the source market of Ontario, Canada there is a stronger relationship 

between the source market climate and departures than there is between the destination 

market climate and arrivals. If a similar relationship holds for other temperate climate source 

markets across Canada and the northern US and European latitudes, this research indicates 

that information about the source market climate may be more important for destination 

managers in the Caribbean for strategic planning than the in-situ climate.  While nearly all 

tourism weather indices developed to date have used indices to assess climatic resources at 

the destination (Mieczkowski 1985, Rotmans et al. 1994, Scott & McBoyle 2001, Scott et al. 

2004, Amelung & Viner 2006, Amelung et al. 2007, Hein et al. 2009, Amelung & Nicholls 
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2014, Scott et al. 2016), this research provides groundbreaking evidence that it is the impact 

of climatic push factors that are more important in predicting tourist flows in the Caribbean. 

Further, the use of tourism indices, especially when empirically calibrated, are an effective 

measure of climatic push factors.  Therefore, the provision of CS for the tourism sector needs 

to be re-conceptualized to account for tourists’ sensitivity to climatic push factors both on 

their own and in combination with destination characteristics. If long-term trends in climate 

for the Caribbean for in-situ variables such as temperature and precipitation are not 

correlated with actual visitation, but the ex-situ climate is more strongly correlated with 

departures, then there is a need to foster relationship building between CS providers in 

different geographic locations to support CS use.  

 Second, this research finds that the original TCI has the lowest predictive accuracy, 

as measured by R2, relative to the HCI:Urban, HCI:Beach or the optimized indices for both 

in-situ and ex-situ analyses.  This highlights a fundamental limitation with using the TCI as a 

fit-for-purpose CS tool – the information elucidated from the TCI is not tailored to the unique 

decision-making arrangements or impacts on the locations in question. This has important 

implications for climate change impact assessments in the tourism sector that have utilized 

the TCI and applied the TCI to climate change projections (Amelung & Viner 2006, 

Amelung & Nicholls 2014, Grillakis et al. 2016, Jacob et al. 2018). If the TCI is not 

reflective of actual tourism activities in a particular location, then its application to climate 

change projections perpetuates the uncertainty in future projections of impacts on the tourism 

sector. Accordingly, for destination or activity-specific decision-making there is a necessity 

to tailor the CS tools to the contextual realities of this unique climate-tourism nexus. Even if 
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organizations continue to explore the development of in-situ climatic indices for tourism, 

then there is a need to calibrate the indices to the unique context of a given sector and region 

in order to develop tailored CS translation tools.   

Third, a notable finding of this research reveals that the sub-index weights and rating 

schemes can be mathematically optimized to improve model fit with tourism flows, whether 

as push factors or pull factors. This research clearly shows that an improved understanding of 

tourists’ sensitivity to climate, and improved CS for tourism more broadly, will depend less 

on the weight of the climatic elements, and more on the thresholds within the sub-index 

rating categories. To date, none of the tourism indices have been data driven in either their 

weighting of climate parameters, but especially in the establishment of thresholds within the 

sub-indices; a limitation of the existing approaches (Eugenio-Martin & Campos-Soria 2010).  

A number of future research directions emanate from the findings. First, the influence 

of hurricane season avoidance is an intriguing area of future inquiry. Research has been 

conducted on tourist’s responses to hurricane exposure (Villegas et al. 2013, Laframboise et 

al. 2014, Cahyanto et al. 2014, 2016), yet the influence of hurricane risk on decision-making 

weeks or months in advance has not been studied extensively.  This is an important area of 

future research, especially in light of the continually evolving accuracy of seasonal hurricane 

forecasts that may have an increasing influence on traveler’s decisions of when and whether 

to travel to the Caribbean during the hurricane season. Furthermore, the Caribbean is a 

region-wide tourism destination and it is unknown whether high-impact events on one island 

may impact visitation on adjacent islands that may have been included in the hurricane 

forecast zone.  It is unknown whether these high-impact events in the Caribbean would result 
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in a decrease in total departures from Ontario or perhaps a transfer from the affected 

destination to an alternative, unaffected destination in the Caribbean.   

 A second area of future research to further the development of CS for the tourism 

sector could explore other main Caribbean tourism source markets such as the United States, 

European nations, and other regions of Canada. This second area of research would allow for 

a deeper exploration of the optimization approach for different source markets visiting the 

same destinations. This could be further extended to explore of 3S destinations.  While a 

crucial strength for market and activity-specific CS development, the generalizability of these 

data-driven indices could be limited. Future research, however, can explore whether similar 

rating schemes emerge for other destinations and source markets that might provide broader 

guidance on adjustments to the broader resource rating indices in the literature. Thirdly, the 

indices presented in this paper do not account for economic, social, cultural, promotional, 

and institutional influences that are of significance in explaining visitation patterns. An 

exploration of other source markets and destination should further explore these other 

factors, possibly in conjunction with a tourism climate index approach. Fourth, in the drive 

for decision-relevant and real-time decision support tools, particularly the use of artificial 

intelligence, which are promising given the ability of these algorithms to model travel flows 

in a way that allows for the differential timescales of the predictor weather variables and 

multiple temporal lags for decision-making (Wu et al. 2017). 

Overall, this paper provides a contribution to the tourism and CS fields by describing 

a method and approach for developing a decision relevant climate-tourism index. This study 

utilized a mathematical optimization algorithm to refine the HCI:Beach to develop two new 
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indices: the optimized in-situ index which estimates the climatic pull-factor of the 

destination, and the optimized ex-situ index which estimates the climatic push-factor of the 

source markets. The results indicate that the seasonal importance of climatic pull factors in 

the three Caribbean nations is not as strong as the influence of climatic push factors on the 

seasonal distributions of tourism demand from Ontario, Canada. In the Caribbean, the in-situ 

index derived through mathematical optimization has greater predictive accuracy at the 

monthly level than the TCI, HCI:Urban, or the HCI:Beach. Furthermore, the optimized ex-

situ index, representing the climatic push factor, has greater predictive accuracy than any of 

the in-situ indices, including the optimized in-situ index. When taken as a whole, the 

optimized ex-situ climate index explains 83% (R2=0.830) of the variability in total monthly 

departures from Ontario. This study improves our knowledge of the degree and seasonality of 

climactic pull and push factors on Caribbean visitation and outlines a CS tool that can be 

used to by tourism marketers and destination managers to inform strategic decision-making.  
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Chapter 6: 

Dissertation Summary and Conclusions 

 This dissertation focuses on two climate-sensitive sectors with specific interest paid 

to the issues of planning for snow and ice control in the transport sector, and modelling 

tourist flows in the tourism sector. Collectively, the four manuscripts lend novel and 

important insights into the development of climate indices as a CS tool with detailed 

attention paid to the concepts of thresholds, timescales, transferability, usability and fit. This 

summary and conclusions chapter commences with a synopsis of important findings and is 

followed by a discussion of the scholarly and practical implications of these findings; future 

research directions; and concluding remarks. The scholarly benefit of this research is its 

contribution to an understanding of the climatic thresholds at which individuals and 

organizations respond to weather and climate stimuli. The practical benefit of this research is 

that it is intended to increase the level of climate risk management across sectors and outlines 

a framework for CS tool development that can inform decision making.  

 

6.1 Study Synopsis 

Geographers have long been interested in sensitivity, vulnerability, and risk to 

environmental change (Barnett et al. 2008), and the complexity of the human-environment 

system predicates the need for tools and methods that can consolidate information to support 

decision-making.  Indices are a category of such tools that are used to simplify multifaceted 
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information about the outcome of a process or the state of a phenomenon. They are 

particularly valuable because of the multiple ways in which they capture societal sensitivities 

to external climatic conditions.  The purpose of an index is to provide decision-makers with 

easily usable, interpretable, and credible information in relation to a given objective 

(Malkina-Pykh 2000). While originally developed for the social sciences (e.g., GDP, World 

Corruption Index, Cost of Living Index, Government Stability Index), indices are used 

extensively in a variety of contexts (Jones & Andrey 2007).  In the natural sciences, 

climatological indices such as the UV index, air quality index, humidex, and the drought 

index have all been developed and applied internationally (Vicente-Serrano & López-Moreno 

2005, van den Elshout et al. 2014, Spinoni et al. 2015, Zhang et al. 2016). There has also 

been an array of thermal comfort and stress indices developed to explain the thermal 

relationship between weather and the human body (Fanger 1970, Steadman 1979, Kalkstein 

& Valimont 1986, Anderson et al. 2013). In the context of environmental studies, there has 

been an especially intense interest in the development of indices that explore the spatial 

patterns of vulnerability to natural hazards (Odeh 2002, Cutter et al. 2003, Chakraborty et al. 

2005, Cutter & Finch 2008, Jones & Andrey 2007). 

Climate indices are a specific subset of environmental indices with a unique set of 

characteristics that look to explore specific climate-society sensitivities. Further, there have 

been various efforts since the 1990s to develop indices that can be applied to climate change 

projections in order to obtain an estimate of projected impacts. However, the development 

and application of climate indices to inform decision-making as a CS tool is still in the early 

stages, with a number of limitations to be overcome.  
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With specific regard to climate indices, Eugenio-Martin & Campos-Soria (2010) 

identified the establishment of non-subjective thresholds as one of the greatest challenges in 

index development and in researching climate-society sensitivities more broadly.  This 

perspective is shared by Kovats et al. (2005) and Lorenzoni et al. (2005) who contend that 

scientific explorations of climatic thresholds for societal and economic studies in climate 

adaptation planning are an impossible endeavor because of the complexity in human and 

social responses to climatic stimuli. The non-linearity and non-transferability of human and 

societal responses to weather/climatic stimuli have posed conceptual and methodological 

challenges in part due to the difficulty of establishing climatic thresholds for climate-society 

interactions (Kovats et al. 2005, Lorenzoni et al. 2005, Eugenio-Martin & Campos-Soria 

2010, Fellman 2012).  Furthermore, while the demand for climate indices is unequivocal in 

the transportation and tourism contexts, many of the weather and climate indices developed 

to date have only been empirically validated against actual societal responses in areas where 

societal response data have been available (e.g., expenditures, hours, visitors) and, as such, 

have not been able to illuminate the ways in which thresholds are linked to societal impacts.   

Following this, a unifying approach to index development that works across systems 

and sectors and works for both individual decisions and decisions in the context of 

institutional structures had yet emerge.  Accordingly, this dissertation explores a framework 

for improved index construction that improves fit, improves usability, is understandable, and 

addresses some of the core challenges faced by weather, climate, and society scholars in 

these sectors. Specifically, this dissertation explores whether a framework for CS tool 

development could be used to first, identify multiple societal thresholds of sensitivity; and 
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second be applied to data products at multiple timescales. Furthermore, this dissertation 

assessed whether the same framework for index development can work for different 

agencies, making diverse decisions, in two separate sectors. 

 

6.1.1 Climate Indices for Transportation 

Tools such as WSIs can enable road authorities and maintenance practitioners to plan, 

communicate, manage, and assess WRM practices and expenditures (Carmichael et al. 2004, 

McCullouch et al. 2004, Walker et al. 2019). A WSI can be used to explore how specific 

weather conditions translate into higher or lower than average maintenance costs on a variety 

of temporal scales (Nixon & Qui 2005), and WSIs can be used to anticipate the probable 

resource requirements based on forecasted weather conditions (Strong & Shvetsov 2006).  

Strong and Shvetsov (2006) recommend that WSIs can be used as a public communication 

tool and disseminated through traditional media to warn drivers of the severity of the 

weather. WSIs have only recently been used to explore the possible implications of climate 

change (Matthews et al. 2017c). Carmichael et al. 2004 outline the diverse ways in which 

WSI can be operationalized for road authorities: 

“The winter weather index will be used by the IADOT to judge how well all 
maintenance personnel performed statewide during each winter season. The index 
will estimate what costs should have been incurred, along with the amount of hours 
that should have been spent treating roads. The index can be used on smaller scales 
to identify particular regions (or even garages) that were particularly efficient or 
perhaps could benefit from additional training. Those garages that performed well 
could be highlighted and their practices used as a guide for training procedures. 
Systematic deviations from the index values over periods of several years could 
indicate more efficient techniques being used statewide or identify policy changes 
that may have been more costly than expected.”  

- Carmichael et al. (2004, p. 1790) 
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The development of WRM indices has been dominated by the geographers working 

closely with the engineering community and more than 20 WSIs have been developed and 

used throughout North America and Europe since the 1980s. The most widely cited WSI is 

the SHRP index (Boselly et al. 1993) which was proposed by the US Strategic Highway 

Research Program. Many of these early WSIs reported good model fit; however, many of 

these models did not perform well when transferred to other geographic areas, even after they 

had been locally calibrated (McCullouch et al. 2004). Accordingly, Objective 1 of this 

dissertation sought to develop a WSI that works well in predicting WRM activity (as 

measured by equipment hours) across space and time in the provincial jurisdiction of 

Ontario, Canada using daily level data that can be linked to discrete weather events. This 

research was furthered in Objective 2 through an empirical extension that applies a modified 

and daily level WSI to climate products at multiple timescales.    

 

6.1.1.1 Objective 1 Synopsis  

Road authorities are facing mounting pressure to use their resources efficiently and to 

demonstrate the value and efficacy of their WRM services through performance measures. 

Road authorities are seeking tools that can explain temporal and spatial variations in WRM 

activities due to weather.  These tools are required to communicate within the road authority 

but also as a communication tool for public stakeholders. The WSI developed for Objective 1 

addresses many of the characteristics that are required for a useful and usable WSI. 

The first manuscript describes an approach for developing a context-specific WSI for 

use in WRM decision-making using RWIS data. The conceptualization of the WSI is simple: 
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each day (24-hour period) is allocated a score that denotes winter weather severity in a way 

that communicates WRM activities. These scores are then aggregated to the reporting-period 

(14 days), monthly, or seasonal level and are correlated against maintenance activity as 

measured by maintenance equipment hours.  

This approach is similar to previous index studies (e.g., Rissel & Scott 1985, Andrey 

et al. 2001, McCullouch et al. 2004); however, the assignment of scores was conducted in a 

novel way. An optimization algorithm was used to simultaneously calibrate weather-attribute 

thresholds and scores in such a way as to reveal the specific maintenance requirements in the 

province. This approach has the benefit of being locally calibrated to reflect the MTO’s 

unique sensitivity to winter weather. The WSI was then used to quantify temporal and spatial 

variations in WRM behaviours across a sizable and diverse geographic region. Ontario is 

approximately one million square km in size (Baldwin et al. 2000) and is home to 20 unique 

AMCs, each with a different contractor. Despite this variability, the resulting WSI 

substantiates the feasibility of developing WSIs that has similarly high levels of fit (as 

measured by R2) for diverse climatic regions and maintenance regimes, indicating limited 

spatial bias in the WSI. The vast majority of seasons in this study have a fit above 0.800. At 

the provincial level, the WSI works extremely well with an R2 between 0.959 and 0.989 over 

seven seasons.   

This broad spatial transferability across the province of Ontario indicates that the WSI 

is a useful tool for explaining WRM activities due to weather in future seasons. In fact, the 

MTO is currently calculating and disseminating daily, 14-day, monthly, and annual WSI 

scores through their online WRM portal. The WSI is communicated to WRM managers, 
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recorded as part of the historical RWIS record, and communicated on the provincial website 

for public announcement. 

The WSI developed for Objective 1 can be applied in numerous ways to support 

highway operations. This WSI can facilitate informed decision-making by clearly calculating 

the connection between winter conditions and WRM and can be useful in at least three 

practical ways. First, the WSI can be used as a tracking mechanism that quantifies and 

compares winter severity over space and time. Secondly, this WSI supports road authorities 

in clearly communicating winter weather severity to the public and other stakeholders in 

relation to observed levels of service. Further to this, significant deviations from historical 

WSI scores can detect unusually severe or unusually mild winter seasons which can inform 

the allocation of performance and/or salt expense bonuses. Lastly, the WSI also could be 

used to design maintenance contracts; maintenance contracts in the province of Ontario are 

often in excess of ten years long. Therefore, an understanding of historical climatic norms 

and projections of future winter weather severity can enable informed contract establishment.  

 

6.1.1.2 Objective 2 Synopsis 

The second manuscript of the dissertation addresses explores the feasibility of 

developing and applying a data-driven WSI for climate change impact assessment that relies 

on publicly available and open access weather observation data. Open access data is an 

important attribute of CS development (Hewitt et al. 2012) and ensures transparency and 

accessibility for stakeholders and other researchers and practitioners.  The redevelopment of 

the WSI from Objective 1 was applied to 30 years of observed weather data for the 20 AMCs 
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to assess whether there are any detectable trends and their significance in the severity of 

winter weather conditions as measured by the WSI.  

Findings from the historical analysis reveal that winters have changed, but the 

magnitude and direction of these trends varies geographically. The results indicate that 13 

AMCs experienced a negative trend in winter severity, five AMCs show a positive trend in 

winter severity, and two AMCs showed no trend.  However, the MK statistic reveals that 

only two of these locations show a statistically significant decreasing trend at the 95% 

confidence interval. However, the results from the climate change assessment suggest that 

winters will become decreasingly severe into the future.  

When the WSI was computed for the modelled climate data from the four climate 

experiments, the results indicate that there will be a net benefit for the province of Ontario. 

Despite projections of increasing total precipitation, the warmer temperatures are projected to 

result in much less precipitation falling as snowfall. Because a substantial portion of WRM 

expenditures and equipment hours are allocated to snow removal, it is anticipated that there 

will be a net benefit for WRM expenditures in Ontario. Based on the average of the four 

climate experiments, it is estimated that seasonal demand for WRM activities, as measured 

by the WSI scores, will decrease by -15.3% to -38.6% for the 2050s with a province-wide 

mean decrease of -25.1%. Overall, the empirical results from the second manuscript 

increases our scholarly understanding of climate change on WRM, and how these projections 

of climate change will have differential impacts both spatially across the 20 maintenance 

jurisdictions in Ontario, and temporally over three future time periods into the end of the 

century.  
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More broadly, this manuscript also describes the role and nature of co-production of 

CS in the context of Ontario’s WRM planning. This work was conducted in an effort to 

support evidence-based decision-making for WRM planning.  While this particular WSI was 

co-produced and user driven in its inception, the use of this data-driven WSI for WRM 

climate change adaptation has yet to be explored. However, the WSI meets a number of the 

criteria previously identified as valuable for the development of climate translation services. 

First, this climatic index is based on a limited number of variables which are easy to 

understand and the resulting index scores are salient for the CS users (Vaughan & Dessai 

2014).  Additionally, this second manuscript describes the development of a climate index 

that can be used and applied to both historical and future weather and climate products, an 

important attribute of useable CS (Vaughan et al. 2016, Damm et al. 2019).  

A crucial role of climate translation services is to effectively contextualize weather 

and climate information in such a way as to correlate with the climatic risks and sensitivities 

(Cash et al. 2006, Damm et al. 2019). Accordingly, the high coefficients of determination 

(R2) between reporting-period level WSI scores and reporting-period level equipment-hours 

are another indication that this approach to climate index development is a promising 

direction for climate translation services. The R2 values range from 0.607 (2012-13) to 0.990 

(2010-11) with average annual R2 value (R2 values for each AMC-season averaged) being 

0.874, which indicates that on average 87.4% of the variability in 14-day reporting period 

equipment-hours in the 20 Ontario AMCs is explained by the WSI over the course of seven 

years.  Lastly, the WSI is transferable over space, a fourth criteria for useful and usable CS.  
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There are consistently high levels of fit across the large and diverse geographic area that is 

the province of Ontario.  

 

6.1.2 Climate Indices for Tourism  

Climate indices for tourism have been used extensively to assess the climatic 

resources of a destination and to objectively compare the climatic resources between 

destinations. In the context of 3S tourism, it is the integrated or combined effects of weather 

that are essential to tourist preferences and satisfaction (de Freitas 2003). Consequently, an 

index approach that integrates the multi-faceted nature of climatic influence is appropriate.  

A generally applicable index can serve as an efficient means to assess climate change 

impacts across temporal and spatial scales (Scott et al. 2016).  However, the tourism climate 

indices published to date have not been predictive of tourist flows and, as such, their utility as 

a tourism CS tool has been uncertain as the relationship between climatic influence and 

actual tourist activity is not clearly defined. While the extant indices have not been predictive 

in their conceptualization, these indices have been developed with the intention of informing 

decision-making processes to some degree. For example, de Freitas et al. (2008) state that an 

index could be used by tourism operators to plan when and where to hold activities and 

promotions, and could be used in the resort planning stages to estimate potential visitor 

numbers (de Freitas et al. 2008).  

While there has been much debate in the tourism climatology literature on using 

indices for local decision making and informing destination marketing, operations, etc. (de 
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Freitas et al. 2008); as it stands, existing indices are sometimes too coarse in resolution and 

do not provide sufficient actionable information to trigger an actual response or adaptation.  

Furthermore, nearly all of the tourism indices to date have focused on the tourism pull 

factors of a destination or the climatic assets at that destination, and little work has been done 

to develop a tourism push factor index for areas where tourists are leaving due to 

unfavourable winter weather as well as being drawn to certain climatic conditions.  There is 

potential in the tourism industry to explore the value and use of context-specific indices for 

climate risk management. Specifically, there is value in empirically validating indices against 

visitation or expenditures in an effort to develop actionable CS for the tourism sector as they 

relate to the influence of climate as a push and pull factor for tourist decision-making.     

 

6.1.2.1 Objective 3 Synopsis  

The third manuscript of this dissertation explores the feasibility of developing a data-

driven and empirically validated tourism climate index for Ontario Provincial Parks. 

Methodologically, the goal of this research was to explore whether the framework developed 

in Objective 1 and refined in Objective 2 was transferrable to the tourism sector in an effort 

to identify the climatic thresholds, and the importance of these thresholds, for beach parks 

visitation in Ontario.  

The first aim of this paper was to conduct an empirical validation and critical 

assessment of two existing indices, the TCI and the HCI:Beach as they apply to two 

provincial parks in Ontario, Canada. In this analysis it was found that the HCI:Beach has 

stronger fit with visitation (R2=0.668, 0.427) than the TCI (R2= 0.474, 0.018)  at both Pinery 
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Provincial Park and Sandbanks Provincial Park. This is unsurprising as the HCI:Beach was 

developed specifically for the beach tourism segment (Scott et al. 2019), whereas the TCI 

uses monthly level data and is not market segment or activity specific.  

The second aim of this research was to recalibrate the HCI:Beach index using the 

methods developed in Objective 1 and refined in Objective 2.  This was accomplished in an 

effort to identify the climatic thresholds, and the importance of these thresholds, for beach 

parks visitation in Ontario using revealed preference data (park visitation). Additionally, an 

empirical aim of this research was to examine the differential climate sensitivities between 

two tourism segments: day visitors and overnight campers at two unique geographic regions 

within a single provincial parks system in Canada.  

The index optimized for beach parks visitation demonstrates the strongest fit with 

observed visitation (R2=0.734, 0.657), outperforming both the TCI and HCI:Beach.  This 

manuscript provides a methodological and empirical contribution to the study of tourism 

climatology by describing the design of a method for producing a decision relevant climate 

translation tool for beach parks tourism.  

The data-driven index created in this research demonstrates substantial potential for 

being integrated with weather and CS providers for Ontario Parks. Most importantly, this 

research provides critical insights into climatic thresholds for beach parks users in Ontario 

and can be used to assist decision-makers in reducing climate risk by identifying climatic 

thresholds of importance for the management and operations of the parks. This study furthers 

our understanding of the influence and seasonality of weather on beach tourist visitation and 

can increase the capability of decision-makers to perform climate risk management.  
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6.1.2.2 Objective 4 Synopsis  

The fourth manuscript of this dissertation explores the transferability of developing a 

data-driven tourism climate index for international tourism flows between two climatically 

diverse regions (Ontario, Canada and the Caribbean). The purpose of this final manuscript 

was to extend the application of climate indices to explore the historical relationship between 

intra- and extra- regional climate and Caribbean tourist arrivals using a data-driven climate 

index approach developed and refined in Objectives 1 to 3.   

The first aim of this paper was to extend the work from Objective 3, which identified 

climatic pull-factors for shorter term tourism decision-making (day trips) and apply the 

methodology for longer-term decision making (travelling to the Caribbean). This manuscript 

recalibrated the HCI:Beach using the methods developed in Objective 1 and refined in 

Objective 2 and Objective 3 in order to identify the climatic thresholds, and the importance 

of these climatic thresholds for arrivals to Caribbean tourism destinations (climatic pull 

factors). Findings reveal that because the climate in the destination market is climatically 

steady throughout the year (very little seasonal fluctuations in climate elements), there was 

an insignificant relationship between the in-situ climate and tourist arrivals. However, the in-

situ index derived through optimization did have greater predictive accuracy at the monthly 

level than the TCI, HCI:Urban, or HCI:Beach for Antigua and Barbuda (R2= 0.629), 

Barbados (R2=0.480), and Saint Lucia (R2=0.710).  

The second aim of this manuscript was to explore the role of source market (ex-situ) 

climate as a push factor for tourists from Ontario, Canada. Despite the extensive use of 

climate indices for tourism to assess the climatic resources of a destination, they have rarely 
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utilized to assess the climate push factor for seasonality-driven markets (Li et al. 2018). This 

study addressed this gap by using an index-based approach to assess the influence of climatic 

push factors for seasonal fluctuations in arrivals to the Caribbean from Ontario, Canada. The 

optimized ex-situ index, representing the climatic push factor, is found to have greater 

predictive accuracy at the monthly level than the TCI, HCI:Urban, or HCI:Beach for Antigua 

and Barbuda (R2= 0.703), Barbados (R2=0.735), and Saint Lucia (R2=0.783).  When taken as 

a whole, the ex-situ climate index explains 83% (R2=0.830) of the variability in total monthly 

departures from Ontario to the Caribbean.  

The implications of this research are twofold. First, this research illustrates that for 

the tourists travelling from Ontario to the Caribbean there is a stronger relationship between 

the source market climate and departures than there is between the destination market climate 

and arrivals. As such, this research indicates that information about the source market climate 

may be more important for destination managers in the Caribbean for strategic planning than 

the in-situ climate. Secondly, this research again establishes that the use of context-specific 

and data-driven indices are an effective measure of climatic influence on tourists.  This 

research advances the scientific understanding of climatic influences on Caribbean tourism 

and provides the foundation for new seasonal forecast based CS for destination managers and 

marketers.  
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6.2 Reflections and Opportunities for Future Research 

Flexible climate indices provide a unique avenue to explore weather and climate 

sensitivity across sectors and scales. Furthermore, if integrated within the CS landscape, tools 

such as climate indices can enable the efficient translation of weather phenomena into 

societal responses.  These have the potential to transform the knowledge landscape of the 

ways in which climatic stimuli impacts individuals, businesses, and government 

organizations more broadly. This dissertation addresses the complex interaction between 

climatic stimuli and societal responses to these stimuli by focusing on the development of 

context-specific and data-driven climate indices, which are still in their infancy. Although 

there is a plethora of studies that demonstrate the importance of the transportation- and 

tourism-climate nexus, few studies have focused on the development of a practical and 

applied CS tool for climate risk management. Accordingly, opportunities for future research 

are plentiful. There are a number of potential lines of inquiry that can contribute to an 

improved understanding of weather and CS and their role in climate risk management. With 

a vision of supporting evidence-based decision-making for climate risk management and the 

advancement of CS more broadly, numerous areas for future explorations are outlined below. 

First, it is acknowledged that in order for scientific information to be used by decision 

makers the information needs to be understood and credible. Lemos and Morehouse (2005) 

contend that the usability of scientific information is affected by three related factors: quality, 

fit, and interplay.  The quality of the information relates to the credibility and scientific rigor 

of the information. Fit relates to how well the information provided meets the needs of the 

individuals or institutions using the information. Lastly, interplay relates to how well the 
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produced information can be integrated with the existing decision-making frameworks 

currently used by an organization.  The four manuscripts presented in this dissertation make 

significant progress towards achieving these goals.  All four manuscripts provide scientific 

rigour, and the resulting indices have high fit with the societal responses explored. 

Future studies could foster further dialogue with CS users to assess the role of 

interplay through an assessment of CS user needs. There is a need to understand their needs 

with regard to usability and value of CS products and services. Although it is widely 

acknowledged that institutions use and need CS, there have not been many studies to date 

that explicitly investigate the means by which these products are obtained, how they are 

being used, and how valuable these products and services are for their organization. CS 

scholarship may benefit from a more comprehensive study to obtain a richer understanding 

of the uses and values of these CS.  This could be done through surveys, workshops, and 

interviews with CS users. This will create the foundation for subsequent research into 

developing tools and techniques that can enable an efficient and salient translation of weather 

and climate products for the contextual realities of different decision-making environments. 

 

6.2.1 Future Areas of Research for the Transportation Sector 

Exploring flexible climate indices as a tool that can quickly and accurately create 

location-specific and activity-specific indicators of weather sensitivity is a promising 

academic and practical endeavor. Consistent with the findings from a climate change 

assessment of WRM in British Columbia, Canada (Matthews et al. 2017c), this dissertation 

also finds that climate change is projected to result in a net benefit for WRM Ontario.  While 
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this dissertation provides strong evidence that flexible climate indices are an important tool 

for climate risk management for WRM in the transportation sector, it remains to be seen 

whether this framework can be applied to other facets of the transportation system such as 

road safety, traffic demand management modelling, or pavement deterioration . 

Transportation infrastructure, planning, and maintenance are all sensitive to climatic 

stimuli in a variety of complex ways (Koetse & Rietveld 2009, Markolf et al. 2019).  This is 

particularly pertinent for transportation infrastructures that are constructed for multi-decadal 

lifespans that will be exposed to changing climatic conditions (Eisenack et al. 2012, 

Schweikert et al. 2014, Markolf et al. 2019). Accordingly, there are significant expenses that 

may be accumulated through inadequate design and management of these transportation 

features and as such there is a need to further integrate CS into the design and management 

of transportation services and infrastructure (Koetse & Rietveld, 2009, Mills et al. 2009, 

Hambly et al. 2013, Stamos et al. 2015, Jacobsen et al. 2016). 

The findings from the second manuscript confirm that Ontario is projected to 

experience a warming trend into the future. This warming trend may be of specific concern 

for road authorities, construction companies, and maintenance organizations in all warming 

climates. One area of particular concern is related to pavement performance during high heat 

events. Future research could explore the projected impacts of high heat stress on asphalt 

performance under climate change (Mills et al. 2007, Fletcher et al. 2016). Identifying the 

specific thresholds of extreme heat that result in a disproportionate or rapid deterioration of 

the pavement could aid road authorities, construction companies, and maintenance 
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organizations in planning for and implementing anticipatory adaptations (Chinowsky et al. 

2013).  

An additional facet of the transportation system that has been long researched in the 

transportation-climate nexus is the field of road safety. There is considerable evidence that 

rainfall and snowfall increase the frequency and seriousness of collisions (Andrey & Olley 

1990, Andrey & Yagar 1993, Andrey 2010, Jaroszweski & McNamara 2014, Mills et al. 

2019). Moreover, assessments of climate change and road safety from diverse jurisdictions 

(Andersson & Chapman 2011, Hambly 2011, Hambly et al. 2013, Amin et al. 2014), reveal 

that increasing trends in precipitation may result in increased collision rates. While it has 

been long established that rainfall and snowfall increase the risk of road collisions, the 

precise thresholds at which the relative risk of collisions increases is unknown. This is an 

area of potential research that may be of interest to road authorities and insurance companies 

(Husnjak et al. 2015, Fan & Wang 2017).  Determining the specific thresholds of rain or 

snowfall that results in disproportionate increases in collisions could aid road authorities in 

implementing variable speed limits (Lee et al. 2006, Liu et al. 2015), in initiating road 

closures (Jacobsen et al. 2016, Frauenfelder et al. 2017), and inform the pricing of telematics 

insurance that is customized for each vehicle trip (Husnjak et al. 2015, Fan & Wang 2017). 

 

6.2.2 Future Areas of Research for the Tourism Sector 

This dissertation further demonstrates that predictive climate indices are attainable for 

both domestic and international tourism, however the transferability to other facets of the 

tourism sector such as winter tourism, urban tourism, mountain tourism, remains to be 
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explored.  Activity-specific indices such as those developed for skiing, golfing, or running 

are calculated and promoted by companies such as the Weather Channel, but these indices do 

not take into account geographic variations in participants’ climatic perceptions, preferences, 

and thresholds to participating in these activities (Scott & Lemieux 2010). Furthermore, these 

rating systems remain a black box and their scientific basis and validation remain unknown 

(Scott & Lemieux 2010). 

Accordingly, while manuscript four explores the relationship between source market 

climate and departures to three Caribbean nations, next steps could include an extension to 

other Canadian source markets. The development of CS in this context would allow for 

destination management to potentially alter future pricing based on the climatic push-pull 

factors for diverse geographic source markets. More importantly from a vulnerability 

perspective, the current approach does not include an analysis of hurricane impacts on 

Caribbean tourism. The WTTC (2016) has identified hurricane damages and lost revenues 

from these major tropical storms as a critical for Caribbean tourism. Future research could 

examine the impact of both direct landfalls and near landfalls for destinations that may have 

been in the hurricane warning zone.  An important piece of this investigation could explore 

whether travelers cancel their trips in their entirety, or whether there is an amount of intra-

regional substitution to other unaffected destinations in the Caribbean region. Lastly, with 

this improved information about thresholds, a reassessment of climate change impacts on the 

tourism sector in the Caribbean, and other winter getaway destinations, is required and there 

is a clear obligation to tailor this information to the contextual realities of each unique 

climate-tourism nexus. 
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More broadly, there is the potential to advance CS scholarship in the use of climate 

indices to other sectors such as energy use, water use, or public health impacts. Exploring the 

potential for flexible climate indices to serve as a weather and climate translation service in a 

variety of applications is an important avenue for further the development and application of 

CS. Moreover, there is a need to explore the ways in which flexible indices can be used in 

conjunction with data products at multiple timescale. While the second manuscript applied 

the WRM WSI to climate change projections, the application of data-driven indices for 

climate change assessments in the tourism sector has not been conducted to date. Future 

research could conduct an evaluation of how climate indices are used and valued in practice 

by organizations after they have been developed for specific applications. Understanding the 

roles and applications of these indices in both individual and institutional decision-making 

for a variety of timescales is an intriguing line of inquiry for the future.  

 

6.3 Concluding Remarks 

Collectively, the four manuscripts that comprise this dissertation provide compelling 

evidence that a data-driven and flexible framework approach to climate index development is 

an important tool in the climate risk management toolbox. A crucial role of CS providers is 

to operate as a translator to effectively contextualize weather and climate information in such 

a way as to correlate with the risks and opportunities for these sectors (Cash et al. 2006, 

Damm et al. 2019). Translation service providers develop tailor-made information to connect 

the scientific community and the climate information users. The challenge is for these CS 

organizations to develop a system that enables the creation of salient weather and climate 
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information that can be understood and used by decision makers (Kirchhoff et al. 2013). In 

order to further the development of CS, investigations of climate and society interactions 

must embrace the variability, complexity, and uncertainty of these context-dependent 

relationships.  Part of embracing this contextual variability and complexity can be 

accomplished through an exploration of the multiple climatic thresholds for a combination of 

atmospheric events at which there is an increasing or decreasing response in behaviours and 

actions.  

CS are important for both weather risk management and climate change adaptation 

and the information provided by tailored CS products can be used to inform policy, planning, 

and decision-making (Goddard et al. 2010). However, societal responses to climatic stimuli 

vary geographically and temporally and, as such, there is a necessity to develop metrics that 

can be calibrated geographically, and updated periodically, to better reflect the particular 

society-environment interaction in question as these climate-society relationships evolve over 

time. The challenge for researchers and practitioners is to consider the decision-response 

timescales and ensure that the timescale of the explanatory variables in the index 

development aligns the timescale of decisions. Developing tools that are effective for 

multiple timescales of application and can be applied to products and services that are used at 

different temporal scales (i.e., near-term forecasts, mid-range, seasonal, and multi-decadal 

projections) is an important continuing need in the CS field as decision makers continue to 

grapple with the multiple sources of uncertainty inherent in long-term decision making.  

Related to the difficulty of developing a framework for CS tool development that 

works across temporal scales is the challenge of developing a framework that enables tool 
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development that can lend insights into both individual decision-making as well as 

organizational and institutional decision-making. The processes that govern decision-making 

in these contexts are fundamentally different. In the context of tourism, individual travelers 

are actively seeking experiences, and can select to travel at any undefined time in the future. 

However, in the context of WRM, organizations are mandated to respond to climatic stimuli 

for risk reduction on an immediate timescale.  Furthermore, within road maintenance 

organizations, individual drivers and maintenance managers have the agency to adjust how 

maintenance is performed. These are two fundamentally different contexts with different 

actors, operating on different timescales, and responding to climatic stimuli in variable and 

complex ways. This solicits a novel scholarly question of whether a framework for CS tool 

development can be created in such a way that works for both individual decisions and 

decisions in the context of organizational structures across two disparate sectors. The 

evidence presented in this dissertation suggests that a framework for CS development can 

achieve these goals.  

Based on these considerations, the four manuscripts that comprise this dissertation 

were designed to demonstrate that these conceptual challenges can be addressed through the 

use of data-driven climatic indices. Further, in addition to the overarching conceptual and 

methodological contributions, this dissertation makes a number of empirical contributions 

that can be used to inform decision-making in a variety of contexts.  The scholarly benefit of 

this research is its contribution to an understanding of the varying and multiple thresholds at 

which individuals and institutions respond to climatic stimuli and the degree to which this 

response can be captured through a data-driven index-based approach.  
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Glossary 

 

Climate: “climate in a narrow sense is usually defined as the average weather, or more 

rigorously, as the statistical description in terms of the mean and variability of relevant 

quantities over a period of time ranging from months to thousands or millions of years. The 

classical period for averaging these variables is 30 years, as defined by the World 

Meteorological Organization. The relevant quantities are most often surface variables such as 

temperature, precipitation and wind. Climate in a wider sense is the state, including a 

statistical description, of the climate system” (IPCC 2018, p. 544). 

 

Climate Services (CS): “may be defined as providing scientifically based information and 

products that enhance users’ knowledge and understanding about the impacts of climate on 

their decisions and actions. These services are made most effective through collaboration 

between providers and users” (AMS 2015). 

 

Climate Services (CS) – Basic Services: “those services delivered at public expense to 

discharge a government’s sovereign responsibility for protection of life and property, for the 

general safety and well-being of the national community and for provision for the essential 

information needs of future generations” (Anderson et al. 2015, p. 19).  

 

Climate Services (CS) – Special Services (climate translation services): “those services 

beyond the basic services aimed at meeting the needs of specific users and user groups and 

that may include provision of specialized data and publications, their interpretation, 

distribution and dissemination. Many services, particularly special services, often go well 

beyond the simple dissemination of information to include consultative advice or scientific 

investigation into particular meteorological and hydrological phenomena and events or their 

impacts” (Anderson et al. 2015, p. 19).   
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Climate Service (CS) Users: “employ climate information and knowledge for decision 

making; they may or may not participate in developing the service itself. In some cases, 

climate information users may also pass information along to others, making them both users 

and providers” (Vaughan & Dessai 2014, p. 588). 

 

Climate Service (CS) Providers: “supply climate information and knowledge. Climate 

service providers may operate on international, national, regional, or local levels and in a 

range of different sectors; they may be public or private, or some mixture of both” (Vaughan 

& Dessai 2014, p. 588). 

 

Climatic Thresholds: deals with the establishment and measurement of climatic thresholds 

within a particular societal context, defining a threshold value for a climatic variable, or a 

combination of climatic variables (temperature, humidity, wind, etc.) that play a key role in 

modulating human action or behaviour (adapted from Meze-Hausken 2008, p. 300). 

 

Exposure: “the presence of people, livelihoods, species or ecosystems, environmental 

functions, services, and resources, infrastructure, or economic, social, or cultural assets in 

places and settings that could be adversely affected” (IPCC 2018, p. 549). 

 

Index: An index is intended to measure that which cannot be measured by common units of 

measurement (such as mm of precipitation). The purpose of an index is to provide decision-

makers with easily usable, interpretable, and credible information that integrates multiple 

facets of climatic conditions in relation to a given objective. 

 

Risk: “the potential for adverse consequences where something of value is at stake and 

where the occurrence and degree of an outcome is uncertain. In the context of the assessment 

of climate impacts, the term risk is often used to refer to the potential for adverse 

consequences of a climate-related hazard, or of adaptation or mitigation responses to such a 

hazard, on lives, livelihoods, health and well-being, ecosystems and species, economic, 
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social and cultural assets, services (including ecosystem services), and infrastructure. Risk 

results from the interaction of vulnerability (of the affected system), its exposure over time 

(to the hazard), as well as the (climate-related) hazard and the likelihood of its occurrence” 

(IPCC 2018, p. 557).  

 

Sensitivity: “the degree to which a system is affected, either adversely or beneficially, by 

climate-related stimuli” (IPCC, 2001).  

 

Threshold: “a threshold is defined with respect to a causal stimulus and an exposure unit 

exhibiting a response to that stimulus. When the stimulus exceeds a certain point or value, 

the exposure unit reacts, and no longer functions in its usual way, either for a given time or 

with respect to certain elements” (Meze-Hausken 2008, p. 302). 

 

Tourism: “Refers to the activity of visitors” (UNWTO 2008, p. 10). 

 

Visitor: “A visitor is a traveller taking a trip to a main destination outside his/her usual 

environment, for less than a year, for any main purpose (business, leisure or other personal 

purpose) other than to be employed by a resident entity in the country or place visited” 

(UNWTO 2008, p. 10). “A visitor (domestic, inbound or outbound) is classified as a tourist 

(or overnight visitor), if his/her trip includes an overnight stay, or as a same-day visitor (or 

excursionist) otherwise” (UNWTO 2008, p. 10). 

 

Vulnerability: “the propensity or predisposition to be adversely affected. Vulnerability 

encompasses a variety of concepts and elements including sensitivity or susceptibility to 

harm and lack of capacity to cope and adapt” (IPCC 2018, 560). 

 

Winter Road Maintenance (WRM): WRM involves prevention and clearing of snow and 

ice from roads (e.g., plowing) and using materials to improve pavement friction (e.g., salt, 

de-icers, sand, aggregate).   


