
Decision Algorithms for
Ostrowski-Automatic Sequences

by

Aseem Raj Baranwal

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Aseem Raj Baranwal 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/322934724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, we extend the notion of k-automatic sequences to Ostrowski-automatic
sequences. We develop a procedure for computationally deciding certain combinatorial
and enumeration questions about such sequences that can be expressed as predicates in
first-order logic.

In Chapter 1, we begin with topics and ideas that are preliminary to this work, including
a small introduction to non-standard positional numeration systems and the relationship
between words and automata. We also provide a brief history of previous work in this area
that concerns decidability and automatic theorem-proving. In Chapter 2, we define the the-
oretical foundations for recognizing addition in a generalized Ostrowski numeration system
and formalize the general theory that develops our decision procedure. Next, in Chapter 3,
we show how to implement these ideas in practice, and provide the implementation as an
integration to the automatic theorem-proving software package – Walnut.

Further, we provide some applications of our work in Chapter 4. These applications
span several topics in combinatorics on words, including repetitions, pattern-avoidance,
critical exponents of special classes of words, properties of Lucas words, and so forth.
In Chapter 5, we close with open problems on decidability and higher-order numeration
systems, and discuss future directions for research.

iii

Acknowledgements

I thank my supervisor Professor Jeffrey Shallit for his assistance, encouragement and su-
pervision of the research presented in this thesis. For the many insightful discussions that
helped shape this thesis, I thank Luke Schaeffer, Hamoon Mousavi, Narad Rampersad
and Lucas Mol. I also thank my parents for their everlasting support and encouragement.
Finally, I thank Professors Jason Bell and Eric Blais for serving as readers for this thesis.

iv

Dedication

This is dedicated to Joe Petrik, who consistently puts appropriate comic strips from several
amazing sources in every email he sends out. Thanks, Joe for keeping us happy! Your
emails always bring a smile to me. I wish the best for you.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Preliminaries . 2

1.1.1 Numeration Systems . 2
1.1.2 Continued Fraction Expansion . 3
1.1.3 Automatic Sequences . 4
1.1.4 Decision Procedures . 6

1.2 Previous Work . 6
1.2.1 Procedures for k-Automatic Sequences 6
1.2.2 Procedures for Fibonacci-Automatic Sequences 7
1.2.3 Applications to Combinatorics on Words 8

2 Theoretical Framework 9
2.1 Ostrowski Numeration System . 9
2.2 Decidability . 10
2.3 Constructing the Framework . 10

2.3.1 Recognizing the Canonical Representation 11
2.3.2 Recognizing the Addition Relation 12
2.3.3 States and Transitions of the Adder 12
2.3.4 Eliminating Redundant States . 15

vi

3 Implementation Details 17
3.1 Working with Walnut . 17
3.2 Generation Algorithm . 18
3.3 Mechanical Verification of the Adder . 20
3.4 Examples . 21

4 Applications 22
4.1 Repetition Threshold for Balanced Words 22

4.1.1 Definitions . 22
4.1.2 Constructing Balanced Words from Sturmian Words 24
4.1.3 Determining the Critical Exponents of xk 25

4.2 Critical Exponent of Rich Words . 27
4.2.1 Building the Candidate Rich Word r 28
4.2.2 Proof of Palindromic Richness . 31
4.2.3 Determining the Critical Exponent 33

4.3 Infinite Binary Words Avoiding Antisquares 35
4.3.1 Construction of the Candidate Word 36
4.3.2 Absence of Antisquares and the Critical Exponent 40

4.4 Properties of Lucas Words . 42

5 Open Problems 45
5.1 Stronger Decidability Results . 45

5.1.1 The Language of Quotients . 45
5.1.2 Computing the Largest Special Point 46

5.2 General Implementation for an Irrational Number 48
5.3 Higher-Order Numeration Systems . 49
5.4 Repetition Threshold for Infinite Words . 50

References 52

vii

List of Figures

1.1 DFAO computing the Thue-Morse sequence t. 6
1.2 DFAO computing the infinite Fibonacci word f. 7

2.1 Automaton recognizing a canonical Ostrowski representation. 11
2.2 Automaton recognizing an Ostrowski addition relation. 13
2.3 Minimized Ostrowski adder. 16

4.1 DFAO for the infinite rich word r. 29
4.2 Significance of i, j,m, n in the predicate RichFactor. 33
4.3 Pairs (n, p) satisfying the predicate HighestPowersR. 34
4.4 DFAO computing the infinite word w avoiding antisquares. 37
4.5 Periods associated with cubes and higher powers in w. 40
4.6 Pairs (n, p) accepted by the predicate HighestPowersW. 41
4.7 DFAO computing the infinite Lucas word. 43

viii

List of Tables

3.1 Global variables for the adder generation algorithm. 18
3.2 Walnut commands to generate and verify an Ostrowski adder. 21

4.1 Parameters α, y, and y′ for construction of balanced words xk. 24
4.2 Computational statistics for predicates involving xk. 27

ix

Chapter 1

Introduction

The goal of this thesis is to develop and explain a procedure for mechanically deciding
certain combinatorial and enumerative properties of sequences that are automatic in some
numeration system, that is, there exists a finite-state machine that, on input n expressed in
that numeration system, computes the nth symbol in the sequence. Our procedure works
for properties that can be expressed as predicates in first-order logic, and, in principle, is
applicable to any Ostrowski numeration system, which are a generalization of the standard
base-k number systems (defined in Section 2.1). We provide the fundamental decidability
result in Theorem 1.3. This is not a new result, but we apply it to a broader class of
automatic sequences, the Ostrowski-automatic sequences.

The primary contributions of this thesis are Theorems 2.1 and 2.2, where we provide
the main result about recognizing Ostrowski addition. This interesting result has led to
the application of these decision procedures to several problems in combinatorics on words.
For example, it enables us to decide certain combinatorial questions about a broad class
of sequences that was not possible computationally before this development. The second
contribution of this thesis is Section 3.2, where we provide an algorithm to implement the
decision procedure for the case of quadratic irrational numbers, as part of the software
package Walnut.

The third contribution is Chapter 4, where we discuss four different applications of the
developed procedures. First, we resolve a conjecture by Rampersad et al. [46] about the
repetition threshold for balanced words, for alphabets of size ≤ 8. Second, we make the first
progress on the problem of determining the repetition threshold for infinite palindrome-rich
words. Third, we show the existence of an infinite binary word that avoids large antisquares.
Fourth, we determine certain properties of Lucas words, which is not a new result, but we
show that our procedure can retrieve several such results in a few milliseconds, purely with

1

machine computation.
The implementation, along with the command files required for all proofs and examples

in Chapters 3 and 4 are available on GitHub. Some of the text in Chapters 2 and 5 and
Sections 4.1 and 4.2 is taken verbatim from previous papers that have contributions by
the author [4, 5], and a paper that will be submitted to the journal Theoretical Computer
Science.

1.1 Preliminaries

We begin with some preliminary definitions and ideas essential to the work in this thesis.

1.1.1 Numeration Systems

A numeration system (or a numeral system) is a method for expressing elements of N using
a consistent set of symbols.

Definition 1.1. A numeration system is a triple N = (Σ, L, fN) consisting of

• a finite alphabet, Σ;

• a language L ⊆ Σ∗; and

• an onto function fN : Σ∗ → N.

The elements of L are called representations, and we say w ∈ L is a representation for an
integer N ≥ 0 if fN (w) = N . For convenience, we write fN (w) as 〈w〉N , or sometimes as
[w]N .

Remark. Every integer n ∈ N has at least one representation ∈ L, and can have more than
one representation.

Below we list some of the most popular numeration systems in computer science and
mathematics.

• Base-b representation for b ≥ 2 is the most well known. It is defined by the triple
(Σb,Σ

∗
b , fb) where

Σb = {0, 1, . . . , b− 1}, and

〈an−1an−2 · · · a0〉b =
∑

0≤i<n

aib
i.

2

https://github.com/aseemrb/Walnut/

For example, in base-3, 〈1002〉3 = 29. This is the most significant digit (MSD) first
notation.

• Bijective base-b representation for b ≥ 1 is the triple ({1, . . . , b}, {1, . . . , b}∗, fb) where

〈an−1an−2 · · · a0〉b =
∑

0≤i<n

aib
i.

It is known that fb : {1, . . . , b}∗ → N is a bijection [27].

• Fibonacci (Zeckendorf) representation is based on Fibonacci numbers [59]. It is
defined by the triple ({0, 1}, LF , fF), where LF ⊂ {0, 1}∗ is the set of words that do
not contain two consecutive 1’s, and

〈an−1an−2 · · · a0〉F =
∑

0≤i<n

aiFi+2,

where (Fi)i≥0 is the Fibonacci sequence.

The Zeckendorf representation is a special case of a more general class of numeration
systems, called the Ostrowski numeration systems, which we introduce in Section 2.1.

1.1.2 Continued Fraction Expansion

Definition 1.2. We say that a sequence of integers [d0; d1, d2, . . .] with di ≥ 1 for i ≥ 1 is
the simple continued fraction (or just continued fraction) expansion of a real number α if

α = d0 +
1

d1 +
1

d2 + · · ·

.

Here are some examples of the continued fraction expansion of real numbers. As usual,
an overline or vinculum denotes a repeating block.

• The golden ratio ϕ = [1; 1].

•
√

2 = [1; 2].

• The base of the natural logarithm, e has a noticeable pattern in its continued fraction
expansion: e = [2; 1, 2, 1, 1, 4, 1, 1, 6, . . .] (A003417).

3

https://oeis.org/A003417

• The continued fraction of π has no known simple pattern: π = [3; 7, 15, 1, 292, . . .]
(A001203).

It is known that a real number α is rational if and only if its continued fraction is
finite. Furthermore, α is an irrational root of a quadratic equation, or simply a quadratic
irrational, if its continued fraction is ultimately periodic. For example,

63−
√

10

107
= 0.55923 · · · = [0; 1, 1, 3, 1, 2, 1].

Here we call the sequence 0, 1, 1, 3 the preperiod, and 1, 2, 1 the period.
For a real number α = [d0; d1, d2, . . .], we say that pi/qi = [d0; d1, d2, . . . , di] is a con-

vergent of α where the pi and qi satisfy the following relations:

p0 = d0, p1 = d1d0 + 1, pi = dipi−1 + pi−2, and (1.1)
q0 = 1, q1 = d1, qi = diqi−1 + qi−2. (1.2)

1.1.3 Automatic Sequences

In this section, we formalize the definition of an automatic sequence and state some char-
acterizations. First, we require some preliminary definitions.

Definition 1.3. A deterministic finite automaton with output or DFAO is defined by a
6-tuple (Q,Σ, δ, q0,∆, τ), where

• Q is a nonempty set of states,

• Σ is the input alphabet,

• δ : Q× Σ→ Q is the transition function,

• q0 ∈ Q is the initial state,

• ∆ is the output alphabet, and

• τ : Q→ ∆ is the output mapping.

The domain of δ is extended to Q × Σ∗ in the usual way, that is, for a word w = xa
where w, x ∈ Σ∗ and a ∈ Σ we define δ(q0, w) = δ(δ(q0, x), a). On input w, the DFAO
outputs τ(δ(q0, w)). When drawing a DFAO, we label the states q/b to denote that the
state q has output τ(q) = b associated with it. The function f : Σ∗ → ∆ is called a
finite-state function if it is computed by some DFAO M = (Q,Σ,∆, δ, q0, τ).

4

https://oeis.org/A001203

Theorem 1.1. ([1], Theorem 4.3.1) Let M = (Q,Σ, δ, q0,∆, τ) be a DFAO. Then the set

Id(M) = {w ∈ Σ∗ : τ(δ(q0, w)) = d}

is a regular language for all d ∈ ∆.

Definition 1.4. A k-automatic sequence is an infinite sequence a = (an)n≥0 over a finite
alphabet such that there exists a DFAO that reaches some state q with output an after
completely processing the input n expressed in base k [1].

Automatic sequences appear in the literature as early as 1960 by Büchi [14], and in
1969 by Cobham where he referred to them as uniform tag sequences [17, 18]. Eilenberg
also discussed these sequences in [26], where they are called k-recognizable. Since then,
there have been several characterizations of these sequences, and researchers have worked
on many problems associated with them [1]. In a review of Büchi’s paper [35], McNaughton
pointed out that Theorem 4 in [14] is incorrect. Specifically, Büchi falsely stated that the
system containing =,+, and the constant monadic predicate “is a power of 2” forms a first-
order arithmetic that is intertranslatable with weak second-order arithmetic. A version of
this claim is true, but relies instead on the function Vk(n): the highest power of k dividing
n, instead of vk(n): the exponent of the highest power of k dividing n.

When talking about the automatic sequence corresponding to the DFAO M , the set
Id(M) is sometimes also called a fiber. Thus, Theorem 1.1 shows that DFAOs, DFAs
and regular languages are closely related, and gives another characterization of automatic
sequences. We also note a crucial property of Definition 1.4: the property of being k-
automatic does not depend on whether the input is read MSD first or LSD first, due to
the following theorem.

Theorem 1.2. ([1, Theorem 4.3.3]) Let f : Σ∗ → ∆ be a finite state function. Then so is
the function fR defined by fR(w) = f(wR).

Cobham also described another characterization of k-automatic sequences, as images
of fixed points of k-uniform homomorphisms, i.e., morphisms h that map every symbol to
a word of k letters. In [16], Christol showed that for a sequence (an)n≥0 over the alphabet
Σ, it is k-automatic if and only if the formal power series

∑
n≥0 g(an)Xn is algebraic over

GF (k)[X] for an injective function g : Σ → GF (k). Following this result, Christol et al.
gave another characterization of these sequences for k = pn, a prime power.

Example 1.1. The Thue-Morse sequence t = t0t1t2 · · · = 01101001 · · ·, named after Axel
Thue [55], is given by the DFAO in Figure 1.1, where tn is the output associated with the
state reached on completely reading n in base 2.

5

Figure 1.1: DFAO computing the Thue-Morse sequence t.

1.1.4 Decision Procedures

The logical theory Th(N,+), called Presburger arithmetic, is decidable [44]. Büchi [14]
showed that the resulting theory from adding the function Vk(n) = ke, for some fixed
integer k ≥ 2, where e = max{i : ki|n} is also decidable. For more details on this topic,
see [12, 11, 53]. Therefore, we have the following theorem (see [53]).

Theorem 1.3. There exists an algorithm that, given a proposition P phrased using only the
universal and existential quantifiers, addition, subtraction, logical operations, comparisons,
and indexing into one or more automatic sequences, will decide the truth of P.

1.2 Previous Work

In this section, we provide a survey of previous work related to decidability and decision
procedures for automatic sequences.

1.2.1 Procedures for k-Automatic Sequences

It is known that several questions about an automatic sequence can be answered by per-
forming transformations on the corresponding DFAO. In his master’s thesis [50], Schaeffer
used a logical theory based on the first-order theory of N, by representing a sequence
w ∈ Σω as a finite set of unary predicates {Pa}a∈Σ, such that Pa(i) is true if wi = a. These
predicates enable indexing into the sequence w, and the logical theory is Th(N, {Pa}a∈Σ).
Thus, if w is automatic in a numeration system then this theory is decidable.

Schaeffer also gave several applications of this result. These applications include com-
puting the supremum of a set of rational numbers described by an automaton, and thus,
deciding the critical exponent and related properties of k-automatic words (see [51]). We
discuss such properties in more detail for a different class of sequences in Chapter 4.

6

1.2.2 Procedures for Fibonacci-Automatic Sequences

The notion of k-automatic sequence extends naturally to other numeration systems. We
say an infinite sequence a = (an)n≥0 is N -automatic if it is computable by a DFAO that
reads (n)N : the representation of integer n in the numeration system N , and produces
output an associated with the last state reached.

Example 1.2. The infinite Fibonacci word is given by f = hω(0) = 01001010 · · ·, where
the morphism h is defined as follows:

h: 0 7→ 01
1 7→ 0.

Here, hω(0) refers to the fixed point of the morphism h at 0, and is given by limn→∞ h
n(0).

The word f is Fibonacci-automatic, meaning that there exists a DFAO that reads in an
integer n in the Fibonacci representation and produces f [n] as the output associated with
the last state reached.

Figure 1.2: DFAO computing the infinite Fibonacci word f.

Note that the automaton only reads canonical (Zeckendorf) representations that do not
have two consecutive 1’s. In [37], the authors implement a procedure for deciding properties
of Fibonacci-automatic words. They also use the procedure to recover and improve several
results about the Fibonacci word from the literature, such as the existence of repetitions
and patterns, that is, squares, cubes, palindromes, and so on.

We can naturally extend Theorem 1.3 for k-automatic sequences to a broader class,
consisting of sequences that are automatic in a generalized numeration system, such that
addition in that numeration system can be performed by an automaton. It is known that
this is possible for the Fibonacci representation, and the authors in [37] provide an adder
automaton for the same. In Chapter 2, we provide an adder framework for the class of
Ostrowski numeration systems, which is, in a way, a generalization of the Fibonacci system.
Then, in Chapter 3, we implement the adder for the quadratic case.

7

1.2.3 Applications to Combinatorics on Words

The decision procedures developed for both k-automatic and Fibonacci-automatic se-
quences have unlocked answers to several combinatorial questions on these sequences. In
[23], Du et al. show that there exists an aperiodic infinite binary word avoiding the pattern
xxxR, where xR denotes the reversal of the word x. This is the first result on pattern
avoidance involving a nonuniform morphism to be proved purely by machine computation.
In another paper by the same authors [24], they examine enumeration questions such as
the number of distinct squares that occur in an infinite word, and abelian properties of
Fibonacci-automatic sequences.

With the right set of procedures, a wide variety of combinatorial questions can be an-
swered. For example, using only machine computation, we can comment on the existence
of certain kinds of repetitions and patterns in a given automatic sequence, such as palin-
dromes, reversals, squares, overlaps, and so forth. In [52], Schaeffer and Shallit proved
some results about closed, palindromic, rich, privileged, trapezoidal, and balanced words
in automatic sequences. In [38], Mousavi and Shallit studied properties of the tribonacci
word. Currie et al. have recently solved three open problems concerning squarefree arith-
metic progressions in infinite words [19]. In [54], the authors proved various results about
the largest exponent of a repetition in a circularly considered factor of the Thue-Morse
word. They also generalized some previous results in this area. In [39], Ng et al. presented
some pattern-avoidance results concerning squares and antisquares. They also proved the
existence of an infinite binary word simultaneously avoiding all occurrences of xh(x) for
every nonerasing morphism h and all sufficiently large words x. Bonardo, Frid and Shallit
[9] showed several recurrence relations and an explicit formula for the number of factoriza-
tions of the length-n prefix of the Fibonacci word into a decreasing sequence of standard
Fibonacci words. Another interesting application involves the class of balanced words,
which are discussed further in Section 4.1. In [46], Rampersad et al. studied the critical
exponent of infinite balanced words. They also explored a computational approach to the
problem using the procedure developed by Du et al. in [37].

Similar procedures have been applied to problems in number theory as well. In [6], Bell
et al. proved some new theorems in additive number theory. Specifically, they showed that
every natural number greater than 25 is the sum of at most three natural numbers whose
base-2 representation has an equal number of 0’s and 1’s.

8

Chapter 2

Theoretical Framework

In this chapter, we provide the formal definition of the fundamental framework that devel-
ops the decision procedure using automata theory. An implementation of the developed
procedure can then computationally decide certain questions about sequences automatic
in the corresponding numeration system. We start with a description of the Ostrowski
numeration system.

2.1 Ostrowski Numeration System

Named after the mathematician Alexander Markowich Ostrowski [40], the Ostrowski nu-
meration system is a representation system for integers, based on the continued fraction
of an irrational number α. Recall from Section 1.1.2 that the continued fraction of an
irrational number is infinite.

Definition 2.1. Let α = [d0; d1, d2, . . .], and let (pi)i≥0 and (qi)i≥0 be the sequences de-
noting respectively, the numerator and denominator of the convergents of α. Then, the
Ostrowski-α numeration system is defined as a representation system for non-negative in-
tegers, such that any N ≥ 0 can be uniquely represented in MSD-first notation as

N = [an−1an−2 · · · a0]α =
∑

0≤i<n

aiqi,

where

1. 0 ≤ a0 < d1,

9

2. 0 ≤ ai ≤ di+1, for i ≥ 1, and

3. for all i ≥ 1, if ai = di+1 then ai−1 = 0.

We call such a unique representation a canonical representation of N in the correspond-
ing Ostrowski α-numeration system and write it as N = [ak−1ak−2 · · · a0]α. We observe that
d0 plays no role in the representation. Therefore, for all practical purposes we can assume
d0 = 0, and hence 0 < α < 1. Furthermore, we observe that if d1 = 1 then q0 = q1 = 1,
implying that for every non-negative integer N , the least significant digit in the represen-
tation, a0, is always 0. Thus, we can further assume that d1 ≥ 2, so that 0 < α < 1/2.

Example 2.1. Consider α = 1/φ2 = [0; 2, 1], where φ is the golden ratio. The corre-
sponding Ostrowski numeration system is the Zeckendorf representation that we saw in
Section 1.1.1 defined by the Fibonacci sequence (qn)n≥0 = 1, 2, 3, 5, 8, For example, the
representation for N = 23 is [1000010]α.

Example 2.2. Consider β = 1/δS =
√

2 − 1 = [0; 2], where δS =
√

2 + 1 is the silver
ratio. The corresponding Ostrowski numeration system is based on the Pell sequence
(qn)n≥0 = 1, 2, 5, 12, For example, the representation for N = 27 is [2011]β.

2.2 Decidability

In Section 1.2 we discussed previous work on procedures developed for deciding properties
of k-automatic and Fibonacci-automatic sequences. We extend these results to a general-
ized Ostrowski numeration system by showing that addition in any Ostrowski numeration
system can be performed using an automaton.

Hieronymi and Terry [31] recently showed that addition for an Ostrowski-α numeration
system is recognizable when α is a quadratic irrational number. In Chapter 3, we provide
an implementation for this case. Frougny and Solomyak [28] have shown that addition is
computable in any of the Pisot numeration systems, and hence, a theorem analogous to
Theorem 1.3 holds for these systems as well.

2.3 Constructing the Framework

For a generalized Ostrowski-α numeration system with α = [0; d1, d2, . . .], let L denote the
language of canonical representations. To define the framework, we require two automata:
first, an automaton that accepts all canonical representations of non-negative integers and

10

rejects representations that do not obey the canonical rules, and second, an automaton
that recognizes the addition relation in this numeration system.

2.3.1 Recognizing the Canonical Representation

Recall the canonical rules for an Ostrowski-α numeration system. In this section, we
provide an automaton that recognizes the language L of valid canonical representations.
This automaton reads two inputs in parallel, in MSD-first notation — a representation
x = xk−1xk−2 · · ·x0, and the sequence of the continued fraction d = dkdk−1 · · · d1 — and
accepts if and only if the representation is canonical. For details on how two inputs are
read in parallel, see [37, Section 2]. Informally, to read m inputs over an alphabet Σ, we
project the ith symbols of all the inputs into an m-tuple, thereby extending the alphabet
to Σ× · · · × Σ︸ ︷︷ ︸

m-times

.

The input symbol being read by the automaton is denoted by the pair (di, xi−1), where
xi−1 is a symbol in x and di is the corresponding symbol in d (Figure 2.1). For example,
consider the Fibonacci numeration system where α = [0; 2, 1], and a representation x =
10010. The tuples read in order are (1, 1), (0, 1), (0, 1), (1, 1), (0, 2).

Figure 2.1: Automaton recognizing a canonical Ostrowski representation.

Theorem 2.1. For α = [0; d1, d2, . . .], the automaton in Figure 2.1 accepts an input (x, d)
if and only if x is a canonical representation in the Ostrowski-α numeration system.

Proof. Let Σ be the alphabet for all representations. According to the canonical rules, every
symbol in x that equals the corresponding symbol in the sequence of continued fraction d
must be followed by a 0. This rule is enforced by the transitions (di, di) for s0 → s1 and
(di, 0) for s1 → s0. Furthermore, the least significant symbol in x must be less than d1,
which is enforced by the transition (di, di) ending in the non-accepting state s1.

11

2.3.2 Recognizing the Addition Relation

In order to recognize the addition relation, we require an automaton that reads three
integers represented in their canonical representation x, y, z, along with the sequence of
continued fraction d in parallel, and accepts if [x]α + [y]α = [z]α. To construct this au-
tomaton, we use an idea given by Luke Schaeffer to encode information about the required
difference in values within the states of the automaton. Recall that (qn)n≥0 is the sequence
of denominators of the convergents of α, and is used as place values for the numeration
system. To work on parallel inputs, we pad the smaller inputs with leading 0’s so that
|x| = |y| = |z| = k. We let

x = xk−1xk−2 · · ·x0,

y = yk−1yk−2 · · · y0, and

z = zk−1zk−2 · · · z0.

We also define w = wk−1wk−2 · · ·w0 where wi = zi − (xi + yi) for all 0 ≤ i < k. Note that
the integer value represented by any sequence u = uk−1 · · ·u0 is [u]α =

∑
0≤i<k qiui.

For ease of notation, we say that the automaton reads a pair of parallel inputs (d, w)
instead of the 4-tuple (d, x, y, z). This does not affect the result as we are only concerned
with the difference zi − (xi + yi) instead of their actual values.

2.3.3 States and Transitions of the Adder

We label the states with a pair of integers (r, s). We denote the adder automaton by the
tuple A = (Q,∆, (r0, s0), F, δ), whereQ is the set of states (r, s) for all r, s ∈ {−1, 0, 1}, F =
{(r, s) ∈ Q : s = 0} is the set of final states, (r0, s0) is the initial state, and δ is the transition
function extended to the domain Q×∆∗ as usual. We construct the automaton such that
if we start from the state (r, s) and read the input (di, wi−1)(di−1, wi−2) · · · (d1, w0), then
we reach an accepting state if and only if∑

0≤j<i

qjwj = rqi−1 + sqi. (2.1)

Intuitively, we model the states (r, s) such that the remaining sequence of input eval-
uates to the difference rqi−1 + sqi. Before we proceed, there are two crucial observations.
In the canonical representation, every non-negative integer has a unique representation.
Therefore, a representation of the form u = 10k evaluates to [u]α = qk, analogous to
a representation in base b of the form 10∗ being a power of b. Hence, we have that
−2qi + 2 ≤ [wi−1wi−2 · · ·w0]α ≤ qi − 1.

12

Furthermore, we note that r0 = s0 = 0, since we want A to accept if and only if∑
0≤i<k qiwi = 0. For the same reason, we must have δ((0, 0), 0) = (0, 0), that is, in the

initial state the transition on reading the pair (di, 0) keeps the DFA in the same state.
Note that although the input being read is a pair (di+1, wi), yet to decide the transition
we are only concerned with how wi is related to di+1. Therefore, for ease of notation, we
write δ((r, s), wi) instead of δ((r, s), (di+1, wi)).

Figure 2.2: Automaton recognizing an Ostrowski addition relation.

Theorem 2.2. If the automaton in Figure 2.2 is to process an input of length i: wi−1 · · ·w0,
starting in an arbitrary state (r, s) for r, s ∈ {−1, 0, 1}, then the transitions from state (r, s)
that may lead to an accepting state are of the form wi−1 = r + sdi − t for t ∈ {−1, 0, 1},
and the destination state is (s, t).

Proof. After reading in the first symbol wi−1, the sum of the remaining input is bounded

13

as follows:
−2qi−1 + 2 ≤

∑
0≤j<i−1

qjwj ≤ qi−1 − 1.

The upper bound is achieved when all xj, yj are 0 for j < i− 1 and [zi−2 · · · z0]α = qi−1− 1,
while the lower bound is achieved when all zj are 0 and the xj’s and yj’s both evaluate
to qi−1 − 1. Combining these bounds with the definition of a state in Equation (2.1) and
separating out the immediate next transition, we get

−2qi−1 + 2 ≤ (rqi−1 + sqi)− wi−1qi−1 ≤ qi−1 − 1.

Therefore, for the upper bound on wi−1 we have

wi−1qi−1 ≤ rqi−1 + sqi + 2qi−1 − 2

≤ rqi−1 + s(diqi−1 + qi−2) + 2qi−1 − 2

≤ (r + sdi + 2)qi−1 + sqi−2 − 2.

For s > 0, we have

wi−1qi−1 ≤ (r + di + 2)qi−1 + qi−2 − 2.

Since wi−1 = zi−1 − (xi−1 + yi−1), we also have that wi−1 ≤ di. Hence, in this case we get

wi−1qi−1 ≤ (r + sdi + 1)qi−1

=⇒ wi−1 ≤ (r + sdi + 1).

For s ≤ 0, we have

wi−1qi−1 ≤ (r + sdi + 2)qi−1 + sqi−2 − 2

< (r + sdi + 2)qi−1

=⇒ wi−1 ≤ (r + sdi + 1).

Hence, we get the upper bound wi−1 ≤ (r + sdi + 1). For the lower bound, consider

wi−1qi−1 ≥ rqi−1 + sqi − qi−1 + 1

≥ rqi−1 + sdiqi−1 + sqi−2 − qi−1 + 1

≥ (r + sdi − 1)qi−1 + sqi−2 + 1

=⇒ wi−1 ≥ (r + sdi − 1).

14

Therefore, we have the following bounds on wi−1.

r + sdi − 1 ≤ wi−1 ≤ r + sdi + 1. (2.2)

Hence, all transitions are of the form r + sdi − t for some t ∈ {−1, 0, 1}. Furthermore,
consider the transition r+sdi−t originating at state (r, s). If we separate out the immediate
next transition, we have that∑

0≤j<i−1

qjwj + wi−1qi−1 = rqi−1 + sqi∑
0≤j<i−1

qjwj = rqi−1 + sqi − (r + sdi − t)qi−1

= s(diqi−1 + qi−2)− (sdi − t)qi−1

= sqi−2 + tqi−1.

This essentially gives us the transition function,

δ((r, s), r + sdi − t) = (s, t) for all t ∈ {−1, 0, 1}. (2.3)

The initial state is (0, 0). From Theorem 2.2, it follows that there are only 9 states
required, for r, s ∈ {−1, 0, 1} and each of them has three transitions from it, of the form
r + sdi − t for t ∈ {−1, 0, 1}. We provide this automaton in Figure 2.2, where states are
labeled (r, s) and a transition from state (r, s) to state (s, t) is labeled wi−1 = r + sdi − t.
In the next section, we show that two of these states are never part of an accepting path,
and hence, they can be removed.

2.3.4 Eliminating Redundant States

Observe that the bound in Equation (2.2) can be improved for specific values of r, s and
t. First, we have that wi−1 ≤ di. Therefore, all transitions labeled di + 1 and di + 2 can be
removed. Next, consider the initial state (0, 0). From this state we cannot have a transition
with wi−1 < 0, because the maximum value that zi−2 · · · z0 can take is qi−1 − 1 and the
sum required to close the gap will be qi−1, implying that it will never lead to an accepting
state. Hence, the transition −1 from (0, 0) to (0, 1) can also be removed.

After removing these transitions, the non-final state (1, 1) does not have a transition to
any other state, so it can be removed along with all its transitions. Since wi−1 = 0 implies

15

that zi−1 = di and zi−2 = 0, we now consider state (0, 1). The only outgoing transition from
this state is to state (1, 0) labeled di. In any canonical representation u = ui−1ui−2 · · ·u0,
we have u0 < d1; therefore, if we take the transition di from (0, 1), there must exist another
transition from (1, 0) with wi−2 ≤ 0. The only such transition is 0, which takes us back
to (0, 1). Therefore, there is no path from state (0, 1) that leads to an accepting state,
implying that the state can be removed. The minimized adder is given in Figure 2.3.

Figure 2.3: Minimized Ostrowski adder.

In the next chapter, we present an implementation of the Ostrowski adder and integrate
it with Walnut, automatic theorem-proving software written by Hamoon Mousavi [36]. Our
implementation considers the case where α is a quadratic irrational number. The more
general implementation for an arbitrary real α requires encoding the terms of the continued
fraction of α and reading it in parallel with the three inputs x, y, z of the addition relation.
We discuss this further in Section 5.2.

16

Chapter 3

Implementation Details

To decide properties of Ostrowski-automatic sequences that are expressible in first-order
logic, the adder must be expressed in a machine-readable format. Walnut has the feature
to generate a base-b adder for any b ≥ 2. In [37], Mousavi et al. extended Walnut by
providing an implementation of a Fibonacci adder. In this chapter, we extend it further
and generalize this feature to be able to generate any Ostrowski-α numeration system for
quadratic irrationals α.

An adder in Walnut is an automaton that takes in 3 inputs x, y, z in parallel, and
accepts if and only if x + y = z. Since the alphabet for the representations is finite, and
transitions in the constructed adder (see Figure 2.3) depend on wi = zi − xi − yi, we
model the transitions as triples (xi, yi, zi). For example, for an alphabet {0, 1} and wi = 0,
the transitions will be (0, 0, 0), (0, 1, 1) and (1, 0, 1). Since the current implementation
is restricted to a 3-input automaton, we implement the adder for the case where α is a
quadratic irrational.

3.1 Working with Walnut

To understand the preliminaries about Walnut and how it works, see [36]. We recall
that a custom numeration system can be introduced in Walnut by giving it the automata
recognizing a canonical representation in that system, and the addition relation. In theory,
the comparison automaton is also required, that is, recognizing (x, y) : x < y; however, if
representations are canonical then a simple lexicographical comparison suffices.

In this chapter, we write a module that generates the representation and addition au-
tomata for any Ostrowski-α numeration system for quadratic irrational α, using 3 input

17

parameters: a name for the numeration system, the preperiod, and the period of the con-
tinued fraction of α. The Walnut version equipped with this implementation supports a
new command ost. To create a numeration system based on some quadratic irrational α,
one can simply use the ost command with the desired parameters. An example is given
below.

Example 3.1. To generate the Fibonacci numeration system, we have α = 1/φ2 = [0; 2, 1].
So the preperiod is [0 2] and the period is [1]. Hence, we use the following command,
which generates the required representation and addition automata.

ost fib [0 2] [1];

Now one can use this numeration system in predicates like usual:

eval test "?msd_fib <predicate>";

Variable Initialized value Description
q0 ((0, 0), 0, 0) Denotes a state of the NFA.
Q {q0} Denotes the set of all states of the NFA.
F {} Denotes the set of final states of the NFA.
queue {} BFS queue used to explore new states.
δ {} Transition function for the NFA.
η Specified by Figure 2.3 Transition function for the 4-input adder.
d [d1, . . . , dm, dm+1, . . . , dm+n] Continued fraction expansion of α.

Table 3.1: Global variables for the adder generation algorithm.

3.2 Generation Algorithm

To generate the 3-input adder for a given set of parameters: the preperiod and the period,
we start simultaneously in all states in the 4-input automaton (see Figure 2.3) and traverse
through the states that are reachable in a breadth-first fashion. This creates an NFA
M = (Q,Σ, δ, q0 ∈ Q,F ⊆ Q), which we later determinize and minimize to produce the
final adder.

Let α be a quadratic irrational number, and let the continued fraction of α have prepe-
riod [d1, . . . , dm] and period [dm+1, . . . , dm+n]. A node (state) in the NFA is defined as a

18

triplet (b, is, ic), where b = (rb, sb) represents one of the seven states in Figure 2.3, and
1 ≤ is, ic ≤ m + n represent respectively the starting index and current index of the cor-
responding value in the continued fraction of α. We denote the transition function of the
minimized 4-input adder by η, so that η((r, s), r + sdi − t) = (s, t). For ease of nota-
tion, we denote by η((r, s), ∗) the set of all states (s, t) such that there exists a transition
(r, s)→ (s, t).

We present the algorithm as a set of three procedures. Informally, the algorithm con-
structs an NFA that accepts the desired continued fraction and intersects it with the
automaton in Figure 2.3. The main procedure is Procedure 1 – GenerateStates, which
calls two subroutines AddTransition and MarkFinalStates. The NFA is then mini-
mized using Hopcroft’s algorithm [32].

Remark. The initial values of the global variables that are accessible by all procedures are
given in Table 3.1.

Procedure 1 – GenerateStates — starts with the initial state, takes ε transitions to
all states where the input may start, and performs a breadth-first search over all possible
expected inputs, creating all the required states and adding all the transitions.

Procedure 1 GenerateStates
1: for i← 1 to m+ n do
2: q ← ((0, 0), i, i)
3: δ(q0, ε)← δ(q0, ε) ∪ {q}
4: Q← Q ∪ {q}
5: queue.push(q)
6: end for
7: while queue 6= {} do
8: q = ((r, s), is, ic)← queue.pop()
9: for (s, t) ∈ η((r, s), ∗) do
10: if ic > 1 then
11: AddTransition(q, s, t, ic − 1)
12: end if
13: if ic = m+ 1 then
14: AddTransition(q, s, t,m+ n)
15: end if
16: end for
17: end while
18: MarkFinalStates

19

Procedure 2 – AddTransition — adds a transition in the NFA. If the required desti-
nation state exists, then we only add the appropriate transition; otherwise, we also create
the new state and push it to the queue. This ensures that we explore all possible paths
from the new state in the breadth-first search.

Procedure 2 AddTransition(q, s, t, index)
1: u← ((s, t), is, idx)
2: δ(q, r + sdidx − t)← δ(q, r + sdidx − t) ∪ {u}
3: if u /∈ Q then
4: Q← Q ∪ {u}
5: queue.push(u)
6: end if

Procedure 3 – MarkFinalStates adds the final states to F . Recall from Section 2.3.2
that a state with label (r, s) is final if s = 0. Therefore, in the NFA, we mark those states
q = ((r, s), is, ic) as final, for which s = 0 and ic = 1. The latter condition is required in
order to make sure we completely read the input.

Procedure 3 MarkFinalStates
1: for q ∈ Q do
2: q = ((r, s), is, ic)
3: if s = 0 and ic = 1 then
4: F ← F ∪ {q}
5: end if
6: end for

3.3 Mechanical Verification of the Adder

In [37], the authors show that the generated adder can itself be verified mechanically. To
show that an adder A specifies a function A(x, y), we assert that there is exactly one sum
of x and y using the predicates

∀x ∀ y ∃z A(x, y, z), and (3.1)
∀x ∀ y ∀u ∀v (A(x, y, u) ∧ A(x, y, v)) =⇒ u = v. (3.2)

To check associativity, we use the predicate

∀x ∀y ∀z ∀w ∀r ∀s ∀t(A(x, y, r) ∧ A(r, z, t) ∧ A(y, z, s)) =⇒ A(x, s, t).

20

Next, we can show that the function A(x, y) indeed performs addition using induction.
First, we check that for all x, A(x, 0) = x. This translates to the predicate

∀x ∀y A(x, 0, y) ⇐⇒ x = y.

We note that the successor can be defined in first-order logic. The following predicate
asserts that y is a successor of x if x < y and there do not exist any integers between x
and y.

Succ(x, y) := (x < y) ∧ (∀z z ≤ x ∨ z ≥ y).

Finally, we induct using the definition of the successor above.

∀x ∀y ∀z ∀u ∀v(Succ(y, u) ∧ Succ(z, v)) =⇒ (A(x, y, z) ⇐⇒ A(x, u, v)).

3.4 Examples

We show how the commands work using the Fibonacci numeration system as an example.
We already saw how to generate this system in Example 3.1. Now we provide a more
complete set of commands to create and verify an adder. We copy the adder automaton
file Custom Bases/msd_fib_addition.txt in the Automata Library directory and name
it Adder.txt for the below commands to work.

Generation ost fib [0 2] [1];

Verification

eval Function "?msd_fib
(Ax,y Ez $Adder(x,y,z)) &
(Ax,y,u,v ($Adder(x,y,u) & $Adder(x,y,v)) => u = v)";

def Succ "?msd_fib x < y & (Az (z <= x) | (z >= y))";
eval BaseCase "?msd_fib Ax,z ((x + 0 = z) <=> (x = z))";
eval Induction "?msd_fib Ax,y,z,u,v
($Succ(y, u) & $Succ(z, v)) =>
((x + y = z) <=> (x + u = v))";

Table 3.2: Walnut commands to generate and verify an Ostrowski adder.

Both the predicates BaseCase and Induction evaluate to true, showing that the gen-
erated automaton indeed recognizes the addition relation.

21

Chapter 4

Applications

In this chapter, we discuss several applications of our work in the area of combinatorics on
words.

4.1 Repetition Threshold for Balanced Words

In a paper by Rampersad et al. [46], the authors conjectured that the smallest possible
critical exponent of an infinite balanced word over a k-letter alphabet is (k − 2)/(k − 3)
for all k ≥ 5. We resolve this result for all k ≤ 8, using a formulation of first-order logic
and machine computation supported by the decision procedure developed in Chapter 2.

4.1.1 Definitions

We say that a word x is a factor of the word w if x appears as a contiguous subword inside
w. Let Fac(w) denote the set of all factors of w. We begin with some definitions that are
used throughout this chapter.

Definition 4.1. A word w over the alphabet Σ is balanced if for every symbol a ∈ Σ, and
every pair of words u, v ∈ Fac(w) with |u| = |v|, we have ||u|a − |v|a| ≤ 1.

Definition 4.2. Sturmian words, denoted by cα,β, can be defined in terms of two real
parameters α, β with 0 ≤ α, β < 1, and α irrational as follows:

cα,β[n] := bα(n+ 1) + βc − bαn+ βc.

22

A Sturmian word is called characteristic if β = 0, and is written as cα. In this case, it
is well-known that an alternative characterization for these words can be given in terms of
the continued fraction expansion of α = [d0, d1, d2, . . .] where di ∈ N for i ≥ 0 and di ≥ 1
for i ≥ 1. Then cα is produced as the limit of the sequence of standard words sn defined
as follows:

s0 = 0, s1 = 0d1−11, sn = sdnn−1sn−2 for n ≥ 2.

The class of Sturmian words and the class of infinite aperiodic balanced words coincide
over a binary alphabet. Vuillon [58] provides a survey on some previous work on balanced
words, and Berstel et al. [7] provide a survey on Sturmian words.

Definition 4.3. Let w = w0w1 · · ·wn−1 be a finite word of length n. Then p ∈ N is a
period of w if wi = wi+p for all i with 0 ≤ i < n− p.

We say that a word u has exponent e and write u = ze, where e = |u|/p is a positive
rational number, and z is the prefix of u of length p. A word may have multiple periods
and exponents. We say u is primitive if its only integer exponent is 1. If u is a finite
nonempty word, then uω denotes the infinite word uuu · · · .

Example 4.1. The word w = alfalfa has three periods: p1 = 3, p2 = 6, and p3 = 7.
The corresponding exponents are e1 = 7/3, e2 = 7/6, and e3 = 1. In this example, w is a
primitive word since its only integer exponent is 1.

Rampersad et al. [46] gave a method to construct infinite balanced words from binary
Sturmian words, using a characterization of recurrent aperiodic balanced words given by
Hubert [33]. Their method is based on the notion of the constant gap property.

Definition 4.4. An infinite word w has the constant gap property if, for each symbol a,
there is a positive integer d such that the distance between successive occurrences of a in
w is always d.

For example, (0102)ω = 010201020102 · · · has the constant gap property because the
distance between consecutive 0’s is always 2, while the distance between consecutive 1’s
(resp., 2’s) is always 4.

Definition 4.5. The critical exponent of an infinite word w is defined to be the supremum
of the set of all rational numbers e such that there exists a finite nonempty factor of w
with exponent e.

Definition 4.6. The repetition threshold on an alphabet of size k is the infimum of the set
of exponents e such that there exists an infinite word that avoids greater than e-powers.

23

4.1.2 Constructing Balanced Words from Sturmian Words

The authors of [46] constructed certain infinite balanced words over the alphabet Σk =
{0, . . . , k − 1}, denoted by xk, for 3 ≤ k ≤ 10. Their construction uses characteristic
Sturmian words cα and a pair of constant gap words y and y′, where α, y and y′ are
carefully chosen (see Table 4.1). Here ϕ = (1+

√
5)/2 is the golden ratio. The authors also

proved that E(x3) = 2 +
√

2
2

and E(x4) = 1 + ϕ
2
; furthermore, they showed that E(x3) is

the least possible critical exponent over an alphabet of 3 symbols. A proof that the critical
exponent for x4 is actually minimal was given by Peltomäki.

k c.f. α y y′

3
√

2− 1 [0; 2] (01)ω 2ω

4 1/ϕ2 [0; 2, 1] (01)ω (23)ω

5
√

2− 1 [0; 2] (0102)ω (34)ω

6 (78− 2
√

6)/101 [0; 1, 2, 1, 1, 1, 1, 1, 2] 0ω (123415321435)ω

7 (63−
√

10)/107 [0; 1, 1, 3, 1, 2, 1] (01)ω (234526432546)ω

8 (23 +
√

2)/31 [0; 1, 3, 1, 2] (01)ω (234526732546237526432576)ω

9 (23−
√

2)/31 [0; 1, 2, 3, 2] (01)ω (234567284365274863254768)ω

10 (109 +
√

13)/138 [0; 1, 4, 2, 3] (01)ω (234567284963254768294365274869)ω

Table 4.1: Parameters α, y, and y′ for construction of balanced words xk.

To prove that these words xk do indeed achieve the claimed critical exponent, we use
the computational approach based on the methods of Du et al. [24, 37]. Using Theorems 4.1
and 4.2, we can construct a DFAO for each of the balanced words xk. Due to the absence of
an implementation of numeration systems based on these irrational numbers, the authors
in [46] left the proofs for 5 ≤ k ≤ 10 as an open problem. We use our implementation
given in Chapter 3 to prove the results for 5 ≤ k ≤ 8. For k = 9 and 10, the memory
requirements made the computation infeasible on a machine with 400GB of memory. In
theory, the results might be provable on a machine with more memory.

Theorem 4.1. [1, Theorem 9.1.15] Let N ≥ 1 be an integer with Ostrowski-α representa-
tion bj · · · b0. Then cα[N] = 1 if and only if bj · · · b0 ends with an odd number of 0’s.

Theorem 4.2. [46, Theorem 12] Let α be a quadratic irrational and let cα be the char-
acteristic Sturmian word with slope α. Let x be any word obtained by replacing the 0’s in
cα with a periodic sequence y and replacing the 1’s with a periodic sequence y′. Then x is
Ostrowski α-automatic.

24

Proof. Let p and p′ be the periods of words y and y′ respectively. For a positive integer n,
the value of x[n] depends on

1. the value of cα[n],

2. the number of 0’s modulo p in the length-n prefix of cα[n], and

3. the number of 1’s modulo p′ in the length-n prefix of cα[n].

Let bjbj−1 · · · b0 be the Ostrowski-α representation of n. By [1, Lemma 9.1.9 and The-
orem 9.1.13], we have

|cα[1..n]|0 = bj(qj − pj) + bj−1(qj−1 − pj−1) + · · ·+ b0(q0 − p0), (4.1)
|cα[1..n]|1 = bjpj + bj−1pj−1 + · · ·+ b0p0. (4.2)

Here pi and qi are the numerators and denominators of the convergents of α (see Equa-
tions (1.1) and (1.2)). Since α is a quadratic irrational, its continued fraction is ultimately
periodic, implying that the sequences ((qi−pi) mod p)i≥0 and (pi mod p′)i≥0 are ultimately
periodic. Based on this periodicity, we can construct an automaton that computes the word
xk.

4.1.3 Determining the Critical Exponents of xk

For each of the words xk constructed using the parameters in Table 4.1, we perform the
following procedure to determine its critical exponent. Note that the values of the critical
exponents were already conjectured by the authors in [46].

1. Create the required Ostrowski numeration system N .

2. Construct the N -automaton producing xk.

3. Assert with first-order predicates that the maximum possible exponent of a subword
in xk is k−2

k−3
.

We observe that the DFAO for the words xk for 6 ≤ k ≤ 10 are smaller in size if we
construct them in LSD-first notation instead of MSD-first. Therefore, all commands below
follow the LSD-first notation.

We now present the commands that resolve the conjecture for 5 ≤ k ≤ 8. The bal-
anced word xk is denoted by Xk in the following commands. First, we create the required
numeration systems for 5 ≤ k ≤ 10.

25

ost ns5 [0] [2];
ost ns6 [0 1 2 1 1] [1 1 1 2];
ost ns7 [0 1 1 3] [1 2 1];
ost ns8 [0 1 3 1] [2];
ost ns9 [0 1 2 3] [2];
ost ns10 [0 1 4 2] [3];

Next, we show the commands to verify the critical exponent for each xk. As an example,
we show the commands for x6. For other words, the commands are similar and can be found
on Github. The claimed value of the critical exponent is the rational number (k−2)/(k−3),
and so, we assert the following two statements using first-order predicates.

1. There exist integers i, p ≥ 1 such that for all j with (k − 3)j < p, we have x[i+ j] =
x[i+ j+p]. In other words, there exists a subword that has exponent (k−2)/(k−3).
In Walnut, for x6 we write:

eval CritExp "?lsd_ns6 Ei,p (i >= 1) & (p >= 1) &
(Aj (3*j < p) => X6[i + j] = X6[i + j + p])";

2. There do not exist integers i, p ≥ 1 such that for all j with (k − 3)j ≤ p, we have
x[i + j] = x[i + j + p]. In other words, there does not exist a subword that has
exponent greater than (k − 2)/(k − 3). For x6 we write the predicate:

eval CritExp "?lsd_ns6 ~Ei,p (i >= 1) & (p >= 1) &
(Aj (3*j <= p) => X6[i + j] = X6[i + j + p])";

Both these predicates produce the true automaton for all 5 ≤ k ≤ 8, proving the result.
For reference, in Table 4.2 we provide the number of states in the DFAO, the approximate
amount of memory consumed, and the time taken by the computation for each xk. We
also provide below some specific factors of the words xk for 6 ≤ k ≤ 8 that realize the
critical exponent (k − 2)/(k − 3) as their exponent.

• The factor of x6 = 1203410530214 · · · , x6[7..10] = 0530, has exponent 4/3.

• The factor of x7 = 2031405216041 · · · , x7[2..6] = 03140, has exponent 5/4.

• The factor of x8 = 2340526713254 · · · , x8[1..6] = 234052, has exponent 6/5.

26

https://github.com/aseemrb/Walnut/

k States Memory Time
5 24 2 GB 30 seconds
6 210 40 GB 5 minutes
7 591 150 GB 45 minutes
8 781 360 GB 2 hours
9 780 — —
10 1458 — —

Table 4.2: Computational statistics for predicates involving xk.

We leave it as an open problem to compute the proofs for x9 and x10. Ideally, we
require a result that will prove or disprove the conjecture in its entirety. This conjecture
is analogous to Dejean’s conjecture about the repetition threshold of infinite words over
a k-letter alphabet [22], which was resolved in 2011 by Currie and Rampersad [20], and
independently by Rao [47].

4.2 Critical Exponent of Rich Words

Palindromes are among the most widely studied repetitions in words. The class of rich
words — those words that contain, as factors, the maximum possible number of distinct
palindromes, was introduced in [10, 21, 29]. Since then, rich words have received much
attention in the combinatorics on words literature; see, for example, [13, 30, 56]. Yet, there
are still numerous interesting open problems concerning repetitions in rich words.

Example 4.2. The word 00010110 is rich because it contains 8 distinct nonempty palin-
dromes: 0, 00, 000, 1, 010, 101, 11, and 0110. The word 00101100 is not rich because it
contains only 7 distinct palindromes.

In this section, we study lower bounds on the repetition threshold of infinite rich words
over 2 and 3-letter alphabets and construct a candidate infinite rich word over the binary
alphabet with a small critical exponent of 2 +

√
2/2. This construction utilizes the frame-

work developed in Chapter 2. Thus, our work is the first progress on an open problem
of Vesti from 2017. Recently, Rampersad et al. [45] have proved that our candidate word
indeed achieves the repetition threshold, and hence, the problem is completely resolved
for the binary case. Before presenting our results, we provide a brief overview of previous
research in this direction.

27

Definition 4.7. For a given alphabet Σ, a mapping ϕ on Σ∗ is an involutive antimorphism
if ϕ(uv) = ϕ(v)ϕ(u), and ϕ2(u) = u for all u, v ∈ Σ∗.

Let the word w be the fixed point of a given involutive antimorphism Θ. We say w is
a Θ-palindrome if w = Θ(w). The set of Θ-palindromic factors of a word w is denoted by
PalΘ(w). In 2013, Pelantová and Starosta introduced the idea of Θ-palindromic defect.

Definition 4.8. The Θ-palindromic defect of a finite word w is defined as

DΘ(w) = |w|+ 1− γΘ(w)− |PalΘ(w)|,

where γΘ(w) = |
{
{a,Θ(a)} : a ∈ Σ, a occurs in w and a 6= Θ(a)

}
|. For an infinite word

w, the Θ-palindromic defect is the supremum of the set of DΘ(u), where u is a factor of w.

Pelantová and Starosta also proved that all recurrent words with a finite Θ-palindromic
defect contain infinitely many overlapping factors [41]. This result leads to the following
theorem.

Theorem 4.3. All infinite rich words contain a square.

Theorem 4.3 provides a trivial lower bound on the repetition threshold for infinite rich
words over a k-letter alphabet; namely RT (k) ≥ 2. In [57], Vesti gave both upper and
lower bounds on the length of the longest square-free rich words, and proposed the open
problem of determining the repetition threshold for infinite rich words.

4.2.1 Building the Candidate Rich Word r

We construct an infinite binary rich word and determine the value of its critical exponent.
The word r is defined as the image of a fixed point, r = τ(ϕω(0)) = 001001100100110 · · · ,
where the morphisms ϕ and τ are given by

ϕ: 0→ 01 τ : 0→ 0
1→ 02 1→ 01
2→ 022, 2→ 011.

Observing the lengths Li = |τ(ϕi(0))| for i ≥ 0, we note that L0 = 1, L1 = 3, and
Li = 2Li−1 + Li−2 for i ≥ 2. This suggests that the word r might be Pell-automatic, that
is, there exists a DFAO that takes as input an integer N represented in the Pell numeration
system, and outputs the symbol in r at index N).

28

Figure 4.1: DFAO for the infinite rich word r.

We guess the DFAO for the word r using a combination of membership and equivalence
queries as described in the L∗ algorithm given by Angluin [2]. Figure 4.1 represents the
constructed automaton. Before proceeding, we prove that this DFAO produces the same
word as τ(ϕω(0)).

Let f and g be the morphisms associated with the automaton in Figure 4.1. Then
g(fω(0)) denotes the infinite word produced. The morphisms f and g are given by

f : 0→ 012 g: 0→ 0
1→ 304 1→ 0
2→ 0 2→ ε
3→ 354 3→ 1
4→ 3 4→ ε
5→ 032, 5→ 1.

Lemma 4.4. For all n ≥ 2, we have g(fn(0)) = g(fn−1(0))g(fn−2(3))g(fn−1(0)).

Proof. We prove this by induction on n. For n = 2, we have that

g(f 2(0)) = g(f 1(0))g(3)g(f 1(0)) = 00100.

So the base case holds. Next, we construct the induction hypothesis,

H1 : g(fk(0)) = g(fk−1(0))g(fk−2(3))g(fk−1(0)),∀k ≤ n.

29

For the inductive step, consider g(fn+1(0)). Using the definition of the morphisms f and
g, we have that,

g(fn+1(0)) = g(fn(0))g(fn(1))g(fn(2))

= g(fn(0))g(fn−1(3))g(fn−1(0))g(fn−1(4))g(fn(2))

= g(fn(0))g(fn−1(3))g(fn−1(0))g(fn−2(3))g(fn−1(0)). (4.3)

Using the induction hypothesis H1 in Equation (4.3), we get

g(fn+1(0)) = g(fn(0))g(fn−1(3))g(fn(0)).

Lemma 4.5. For all n ≥ 2, we have g(fn(3)) = g(fn−1(3))g(fn−2(0))g(fn−1(3)).

Proof. The proof is similar to that of Lemma 4.4, by induction on n. For n = 2, we have

g(f 2(3)) = g(f 1(3))g(0)g(f 1(3)) = 11011.

So the base case holds. We have the induction hypothesis,

H2 : g(fk(3)) = g(fk−1(3))g(fk−2(0))g(fk−1(3)),∀k ≤ n.

For the inductive step, consider g(fn+1(3)). Using the definition of the morphisms f and
g, we have that

g(fn+1(3)) = g(fn(3))g(fn(5))g(fn(4))

= g(fn(3))g(fn−1(0))g(fn−1(3))g(fn−1(2))g(fn(4))

= g(fn(3))g(fn−1(0))g(fn−1(3))g(fn−2(0))g(fn−1(3)). (4.4)

Using the induction hypothesis H2 in Equation (4.4), we get

g(fn+1(3)) = g(fn(3))g(fn−1(0))g(fn(3)).

The following theorem proves the desired equivalence.

Theorem 4.6. The infinite words τ(ϕω(0)) and g(fω(0)) are equal.

30

Proof. We prove this by a simultaneous induction on n with 3 hypotheses.

τ(ϕk(0)) = g(fk(0))g(fk−1(3)) (4.5)
τ(ϕk(1)) = g(fk(0))g(fk(3)) (4.6)
τ(ϕk(2)) = g(fk(0))g(fk+1(3)) (4.7)

The base case k = 1 can be checked by hand. Assume that the hypotheses hold for k ≤ n.
Next, we consider the following inductive steps using the definitions of ϕ and τ .

τ(ϕn+1(0)) = τ(ϕn(0))τ(ϕn(1))

= g(fn(0))g(fn−1(3))g(fn(0))g(fn(3)) using Equations (4.5) and (4.6)
= g(fn+1(0))g(fn(3)). using Lemma 4.4.

τ(ϕn+1(1)) = τ(ϕn(0))τ(ϕn(2))

= g(fn(0))g(fn−1(3))g(fn(0))g(fn+1(3)) using Equations (4.5) and (4.7)
= g(fn+1(0))g(fn+1(3)) using Lemma 4.4.

τ(ϕn+1(2)) = τ(ϕn(0))τ(ϕn(2))τ(ϕn(2))

= g(fn(0))g(fn−1(3))g(fn(0))g(fn+1(3))g(fn(0))g(fn+1(3))

= g(fn+1(0))g(fn+2(3)) using Lemmas 4.4 and 4.5.

This proves that the hypotheses are true. From Equation (4.5), we have

τ(ϕk(0)) = g(fk(0))g(fk−1(3)).

Letting k →∞, we get
τ(ϕω(0)) = g(fω(0)).

4.2.2 Proof of Palindromic Richness

We claim that the infinite word r = g(fω(0)) = 001001100100110 · · · is rich1. The proof
is carried out using Walnut by constructing a set of predicates based on a characterization

1We learned from Edita Pelantová that the word r is a complementary symmetric Rote word [48], and
hence by [8, 42] it follows that r is rich. Yet, our approach is important because it lets us compute the
critical exponent of the word.

31

of rich words given by Glen et al. in [29], that is also used by Schaeffer and Shallit in [52].
We say that a word w has a unioccurrent suffix s if s is not a factor of any proper prefix
of w. The following theorem provides the characterization.

Theorem 4.7. (Glen et al. [29]) A word w is rich if and only if every prefix of w has a
unioccurrent palindromic suffix.

All of the computations we describe were carried out in a few seconds on a Linux
machine with an AMD Fx-8370e processor. In the following predicates, R denotes the
automaton in Figure 4.1. First, we introduce the fundamental predicates that form the
building blocks for verification of the richness property.

1. The predicate FactorEq takes 3 parameters i, j, n and evaluates to true if the length-n
factors of r starting at indices i and j are equal.

def FactorEq "?msd_pell Ak (k < n) => (R[i + k] = R[j + k])";

2. The predicate Occurs takes 4 parameters i, j,m, n and evaluates to true if the length-
m factor of r starting at index i occurs in the length-n factor starting at index j, i.e.,
R[i..i+m− 1] is a factor of R[j..j + n− 1].

def Occurs "?msd_pell (m <= n) &
(Ek (k + m <= n) & $FactorEq(i, j + k, m))";

3. The predicate Palindrome takes 2 parameters i, n and evaluates to true if the length-
n factor of r starting at index i is a palindrome.

def Palindrome "?msd_pell Aj,k ((k < n) & (j + k + 1 = n)) =>
(R[i + k] = R[i + j])";

By Theorem 4.7, for any finite word to be rich, it is sufficient to check if all its prefixes
have a unioccurrent palindromic suffix. We use this property to construct the predicate
RichFactor which takes two parameters i, n, and evaluates to true if the length-n factor
of r starting at index i is rich. Figure 4.2 shows the significance of the variables in this
predicate.

def RichFactor "?msd_pell
Am ((m >= 1) & (m <= n)) =>

(Ej (i <= j) & (j < i + m) &
$Palindrome(j, i + m - j) &
~$Occurs(j, i, i + m - j, m - 1))";

32

Figure 4.2: Significance of i, j,m, n in the predicate RichFactor.

Now, we simply check that all prefixes of r are rich to show that the infinite word r is
rich. The following predicate, R_Is_Rich evaluates to true, which completes the proof.

eval R_Is_Rich "?msd_pell An $RichFactor(0, n)";

4.2.3 Determining the Critical Exponent

First, we observe that the critical exponent of r is < 3. This can be checked in Walnut
with the following command.

eval CheckCritExp "?msd_pell ~(E i, p (p >= 1) &
Aj (j < 2*p) => R[i + j] = R[i + j + p])";

Next, we compute the periods p such that a repetition with exponent ≥ 5/2 and period
p occurs in r. The language accepted by the produced automaton is 0∗1100∗, which is the
Pell-base representation of numbers of the form Pt + Pt−1, for t ≥ 3.

eval HighPowPeriods "?msd_pell (p >= 1) &
(Ei Aj (2*j <= 3*p) => R[i + j] = R[i + j + p])";

Next, we compute pairs of integers (n, p) such that r has a factor of length n+ p with
period p, and this factor cannot be extended to a longer factor beginning at the same
position, of length n+ p+ 1 with the same period p.

def MaximalReps "?msd_pell Ei
(Aj (j < n) => R[i + j] = R[i + j + p]) &
(R[i + n] != R[i + n + p])";

33

Finally, we compute the pairs (n, p) where p matches the regular expression 0∗1100∗ in
the Pell-base representation, and n+ p is the maximum possible length of any factor with
period p.

eval HighestPowersR "?msd_pell
$HighPowPeriods(p) &
$MaximalReps(n, p) &
(Am $MaximalReps(m, p) => m <= n)";

Figure 4.3: Pairs (n, p) satisfying the predicate HighestPowersR.

Figure 4.3 shows the automaton produced by the predicate HighestPowersR. It accepts
pairs (n, p) of the following forms:(

0

0

)∗(
2

1

)(
0

1

)(
1

0

)
, (4.8)(

0

0

)∗(
2

1

)(
0

1

)(
2

0

)(
0

0

){(
2

0

)(
0

0

)}∗
, or (4.9)(

0

0

)∗(
2

1

)(
0

1

)(
2

0

)(
0

0

){(
2

0

)(
0

0

)}∗(
1

0

)
. (4.10)

Here, the length of the words is n+ p and the period is p. Equation (4.8) corresponds
to n = (201)P = 11 and p = (110)P = 7. Thus we have

e =
n+ p

p
=

18

7
≈ 2.57.

34

Equation (4.9) corresponds to

n =
∑

1≤i≤k

2P2i = P2k+1 − 1, p = P2k + P2k−1.

Equation (4.10) corresponds to

n = 1 +
∑

1≤i≤k

2P2i+1 = P2k+2 − 1, p = P2k+1 + P2k.

Putting m = 2k−1 for Equation (4.9), and m = 2k for Equation (4.10), we notice that
the expressions for n and p coincide.

e =
Pm+2 + Pm+1 + Pm − 1

Pm+1 + Pm

= 2 +
Pm+1 − 1

Pm+1 + Pm
.

Since Pell numbers are the convergents of
√

2 − 1, and the ratio Pm+1/Pm converges to√
2 + 1, we have that

e = 2 +
Pm+1 − 1

Pm+1 + Pm

< 2 +

√
2 + 1 + 1/P 2

m − 1/Pm√
2 + 2− 1/P 2

m

. (4.11)

Form ≥ 4, asm→∞, the value in Equation (4.11) is increasing, and tends to 2+
√

2/2.
Thus, the critical exponent of the word r is 2 +

√
2/2. All Walnut commands for verifying

richness and computing the critical exponent are available on GitHub.
In [5], we conjectured using computational evidence that the word r achieves the repe-

tition threshold for rich words over the binary alphabet. Very recently, Rampersad et al.
[45] proved our conjecture by giving a lower bound of 2+

√
2/2 on the repetition threshold.

We leave it as an open problem to determine the exact value of the threshold for larger
alphabets and construct candidate words that achieve the same.

4.3 Infinite Binary Words Avoiding Antisquares

In this section, we explore another application of our work to pattern avoidance. We con-
struct an infinite binary word with critical exponent = 2 + φ, which avoids all antisquares

35

https://github.com/aseemrb/Walnut/blob/master/Command Files/rich2.txt

other than 01 and 10. Here φ is the golden ratio. We also claim that this is the mini-
mum possible critical exponent that can be achieved by any infinite binary word with this
property.

An antisquare is defined as a finite word w = xx′ where x′ is the binary complement of
x. For example, 00101101 is an antisquare since 1101 is the binary complement of 0010.
Naturally, studying antisquare avoidance is meaningful only for the binary alphabet.

4.3.1 Construction of the Candidate Word

Consider the morphisms below:

ϕ: 0 7→ 001 τ : 0 7→ 0001
1 7→ 01 1 7→ 01.

We claim that the infinite word w = τ(ϕω(0)) does not have antisquares other than 01
and 10, and has the critical exponent 2+φ. To prove this, we follow an approach similar to
that in Section 4.2. First, we build the DFAO producing this word (see Figure 4.4). Then,
we show that the word avoids all antisquares other than 01 and 10 and also compute its
critical exponent. Let f and g be the morphisms associated with this automaton. Then
g(fω(0)) denotes the infinite word produced. These morphisms are defined as follows:

f : 0 7→ 01 g: 0 7→ 0
1 7→ 2 1 7→ 0
2 7→ 34 2 7→ 0
3 7→ 56 3 7→ 1
4 7→ 3 4 7→ 0
5 7→ 27 5 7→ 0
6 7→ 8 6 7→ 0
7 7→ 5 7 7→ 1
8 7→ 9a 8 7→ 0
9 7→ 81 9 7→ 0
a 7→ 2, a 7→ 1.

Before we proceed, we show that the set of morphisms (ϕ, τ) produce the same word
as that produced by (f, g). First, we need a lemma.

Lemma 4.8. For all n ≥ 0, we have g(f 2n(8)) = g(f 2n(0)).

36

Figure 4.4: DFAO computing the infinite word w avoiding antisquares.

Proof. We prove this by induction on n. For the base case, we have g(8) = g(0) = 0.
Assume that the hypothesis is true for all k ≤ n. Consider the inductive step:

g(f 2n+2(8)) = g(f 2n+1(9))g(f 2n+1(a))

= g(f 2n+1(9))g(f 2n(2))

= g(f 2n(8))g(f 2n(1))g(f 2n(2))

= g(f 2n(0))g(f 2n(1))g(f 2n(2)) (using induction hypothesis)
= g(f 2n+1(0))g(f 2n+1(1))

= g(f 2n+2(0)).

Lemma 4.9. Given the definitions of f and g above, we have

g(fn(1))g(fn(2)) = g(fn(5))g(fn(6)), (4.12)
g(fn(6))g(fn(3)) = g(fn(9))g(fn(a)). (4.13)

Proof. We prove this by a simultaneous induction on n. For n = 0 and n = 1, we have the

37

following base cases.

g(1)g(2) = g(5)g(6) = 00,

g(f(1))g(f(2)) = g(f(5))g(f(6)) = 010,

g(6)g(3) = g(9)g(a) = 01,

g(f(6))g(f(3)) = g(f(9))g(f(a)) = 000.

Assume that the hypothesis is true for all k ≤ n. Consider the inductive steps:

g(fn+1(1))g(fn+1(2)) = g(fn(234))

= g(fn(2))g(fn−1(563))

= g(fn(2))g(fn(7))g(fn−1(63))

= g(fn(2))g(fn(7))g(fn−1(9a)) using induction hypothesis
= g(fn(2))g(fn(7))g(fn(8))

= g(fn(27))g(fn(8))

= g(fn+1(5))g(fn+1(6)).

g(fn+1(6))g(fn+1(3)) = g(fn(856))

= g(fn(8))g(fn(5))g(fn(6))

= g(fn(8))g(fn(1))g(fn(2)) using induction hypothesis
= g(fn+1(9))g(fn(2))

= g(fn+1(9))g(fn+1(a)).

Theorem 4.10. The word w = τ(ϕω(0)) = g(fω(0)).

Proof. For n > 0, we claim that

τ(ϕn(0)) = g(f 2n+1(0))g(f 2n+1(5)), (4.14)
τ(ϕn(1)) = g(f 2n−2(0))g(f 2n+1(5)).

The proof is again by a simultaneous induction on n. The base case for n = 1 can be
checked by hand. Assume that the hypothesis is true for all k ≤ n. For the inductive step,

38

we have the first statement of the claim,

τ(ϕn+1(0)) = τ(ϕn(001))

= g(f 2n+1(05))2g(f 2n−2(0))g(f 2n+1(5))

= g(f 2n(0127))2g(f 2n−2(0))g(f 2n(27))

= g(f 2n−1(012345))2g(f 2n−2(0))g(f 2n−1(345))

= g(f 2n−2(0123456327))g(f 2n−2(0123456327))g(f 2n−2(0))g(f 2n−2(56327))

= g(f 2n−2(0123456327))g(f 2n−2(8563459a27))g(f 2n−2(8))g(f 2n−2(56327)).

Using Lemmas 4.8 and 4.9, we get

τ(ϕn+1(0)) = g(f 2n−2(0123456327856))g(f 2n−2(3459a27856327))

= g(f 2n−1(01234563))g(f 2n−1(27856345))

= g(f 2n(01234))g(f 2n(56327))

= g(f 2n+1(012))g(f 2n+1(345))

= g(f 2n+2(01))g(f 2n+2(27))

= g(f 2n+3(0))g(f 2n+3(5)).

For the inductive step on the second statement of the claim, we have

τ(ϕn+1(1)) = τ(ϕn(01))

= g(f 2n+1(0))g(f 2n+1(5))g(f 2n−2(0))g(f 2n+1(5))

= g(f 2n(0))g(f 2n(1))g(f 2n+1(5))g(f 2n−2(0))g(f 2n+1(5))

= g(f 2n(0))g(f 2n−2(34))g(f 2n−2(56327))g(f 2n−2(0))g(f 2n−2(56327))

= g(f 2n(0))g(f 2n−2(3456327056327)).

Using Lemmas 4.8 and 4.9, we get

τ(ϕn+1(1)) = g(f 2n(0))g(f 2n−2(3459a27856327))

= g(f 2n(0))g(f 2n−1(27856345))

= g(f 2n(0))g(f 2n(56327))

= g(f 2n(0))g(f 2n+1(345))

= g(f 2n(0))g(f 2n+2(27))

= g(f 2n(0))g(f 2n+3(5)).

Now we let n→∞ in Equation (4.14) to get τ(ϕω(0)) = g(fω(0)).

39

4.3.2 Absence of Antisquares and the Critical Exponent

We now prove that the word w does not contain antisquares other than 01 and 10, and
has the critical exponent 2 + φ. In the commands below, FASQ denotes the automaton in
Figure 4.4.

eval AntisqLengths "?msd_fib Ei
(p >= 1) &
(Aj (j < p) => ~(FASQ[i + j] = FASQ[i + j + p]))";

The predicate AntisqLengths produces an automaton accepting only 1 as the input. This
shows that only antisquares of length 2 are present in the word, and they are 01 and 10.

We now compute the periods that are associated with factors that have exponent >= 3.

eval HighPowPeriods "?msd_fib Ei
(p >= 1) &
(Aj (j <= 2*p) => FASQ[i + j] = FASQ[i + j + p])";

Figure 4.5: Periods associated with cubes and higher powers in w.

The predicate above produces the automaton in Figure 4.5, which shows that these
periods are of the form 0*10010* in Fibonacci representation. Next, we compute the pairs
(n, p) such that w contains a factor of length n + p with period p of the form 0*10010*
and n+ p is the longest length of any factor with this period.

reg Pows msd_fib "0*10010*";
def MaximalReps "?msd_fib Ei

(Aj (j < n) => FASQ[i + j] = FASQ[i + j + p]) &
(FASQ[i + n] != FASQ[i + n + p])";

eval HighestPowersW "?msd_fib (p >= 1) & $Pows(p) &
$MaximalReps(n, p) & (Am $MaximalReps(m, p) => m <= n)";

40

Figure 4.6: Pairs (n, p) accepted by the predicate HighestPowersW.

The automaton produced by the predicate HighestPowersW is given in Figure 4.6.
The larger pairs (n, p) accepted by this automaton have the form(

0

0

)∗(
1

0

)(
0

0

)(
0

1

)(
0

0

)(
1

0

)(
0

1

){(
1

0

)(
0

0

)}∗(
0

0

){
ε,

(
1

0

)}(
0

0

)
.

From this format, we can deduce the following values for n and p. Consider the Fibonacci
numbers denoted by Fk, where F0 = 0, F1 = 1, and Fk = Fk−1 + Fk−2 for k ≥ 2.

We have two cases for n,

n = Fk+2 + Fk−2 + Fk−4 + . . .+ F7 + F5, or
n = Fk+2 + Fk−2 + Fk−4 + . . .+ F8 + F6 + F3.

41

Both these expressions sum up to 2Fk+1 − 3. We have p = 2Fk−1. Thus, the exponent is

n+ p

p
=

2Fk+1 + 2Fk−1 − 3

2Fk−1

(4.15)

=
2Fk + 4Fk−1 − 3

2Fk−1

(4.16)

= 2 +
2Fk − 3

2Fk−1

. (4.17)

Dividing the numerator and denominator in Equation (4.17) by 2Fk−1 and taking the limit
k →∞, we see that the critical exponent is 2 + φ, since the ratio of consecutive Fibonacci
numbers converges to φ.

4.4 Properties of Lucas Words

In [3], the authors introduced what they called periodic words (or LLP-words) connected
with the Lucas numbers and investigated their properties. In this section, we show how
our decision procedure lets us study the same properties purely by machine computation.

Analogous to the definition of Fibonacci numbers, the Lucas numbers are given by L0 =
2, L1 = 1, and Ln = Ln−1 + Ln−2 for n ≥ 2. Similarly, analogous to the infinite Fibonacci
word, the infinite Lucas word u is given by the limit of un at n → ∞, where u0 = 10,
u1 = 1, and un = un−1un−2 for n ≥ 2. The combinatorial properties of the Fibonacci and
Lucas infinite words are of great interest in mathematics and physics, including topics like
number theory, fractal geometry, cryptography, and quasicrystals. For details, we refer to
Lothaire and Pirillo [34, 43].

Theorem 4.11. ([3, Theorem 3]) The infinite Lucas word u and the finite Lucas words
un satisfy the following properties.

1. The words 1111 and 00 are not subwords of u.

2. For all n > 1, if ab are the last two symbols of un, then ab = 10 if n is even, and
ab = 01 if n is odd.

3. For all n, |un| = Ln.

The authors also state the hypothesis that the infinite Lucas word is aperiodic. We
prove statements 1 and 2 in Theorem 4.11 along with this hypothesis purely mechanically

42

using our decision procedure. To enable working in Walnut, we begin by constructing an
automaton that produces the Lucas word. Since the recurrence relation associated with
Lucas numbers is the same as Fibonacci numbers, the infinite Lucas word is Fibonacci-
automatic, that is, the corresponding DFAO reads in as input an integer N in the Fibonacci
numeration system and outputs the symbol u[N]. Figure 4.7 shows the DFAO producing
u = h(gω(0)), where morphisms g and h are defined as follows:

g: 0 7→ 01 h: 0 7→ 1
1 7→ 2 1 7→ 1
2 7→ 43 2 7→ 0
3 7→ 0 3 7→ 1
4 7→ 65 4 7→ 1
5 7→ 4 5 7→ 0
6 7→ 87 6 7→ 1
7 7→ 8 7 7→ 0
8 7→ 29 8 7→ 1
9 7→ 6, 9 7→ 1.

Figure 4.7: DFAO computing the infinite Lucas word.

In the following Walnut commands, LUCAS denotes the automaton in Figure 4.7. The
hypothesis about the infinite Lucas word being aperiodic can be proved with a simple

43

predicate that negates the existence of any pair of integers n ≥ 0, p ≥ 1 such that u[i] =
u[i+p] for all i ≥ n. In other words, the predicate asserts that u is not ultimately periodic,
and hence, aperiodic. It produces the true automaton, showing that u is indeed aperiodic.

eval LucasAperiodic "?msd_fib
~En,p (p>=1) & (Ai (i>=n) => (LUCAS[i] = LUCAS[i+p]))";

Next, we show that 1111 and 00 are not subwords of u. Both the following commands
produce a true automaton, proving the statement.

eval AbsetZero2 "?msd_fib ~Ei LUCAS[i]=@0 & LUCAS[i+1]=@0";
eval AbsentOne4 "?msd_fib ~Ei

LUCAS[i]=@1 & LUCAS[i+1]=@1 &
LUCAS[i+2]=@1 & LUCAS[i+3]=@1";

To prove statement 2 of Theorem 4.11, we use the fact that |un| = Ln. Notice that
Lucas numbers Ln are related to Fibonacci numbers Fn, and the following relation between
them is known.

Ln = Fn−1 + Fn+1

The Fibonacci numeration system uses F2 as the least significant value, so we prove
the statement for L2 separately, and for Ln, n ≥ 3 together. For even n ≥ 3, Ln is of the
form 1010(00)∗ in the Fibonacci numeration system, while for odd n ≥ 3, it is of the form
101(00)∗. First, we define these two regular expressions to denote Ln for even and odd n.

reg LnEven msd_fib "0*1010(00)*";
reg LnOdd msd_fib "0*101(00)*";

Next, we use the command below to assert the required statement, which produces the
true automaton, and hence, proves the result.

eval Alternate01 "?msd_fib An
($LnEven(n) => (LUCAS[n-2]=@1 & LUCAS[n-1]=@0)) &
($LnOdd(n) => (LUCAS[n-2]=@0 & LUCAS[n-1]=@1))";

44

Chapter 5

Open Problems

5.1 Stronger Decidability Results

We can decide any first-order predicate concerning addition, comparison, and indexing into
an Ostrowski-automatic word using our procedure. However, these decision procedures
work for a predicate only if all sequences in the predicate are automatic in the same
numeration system. We also propose that stronger decidability results are obtainable.
In [51], the authors showed that for standard base-k automatic sequences, the critical
exponent is always either a rational number or infinite, and its value is computable. A
similar result for Ostrowski-automatic sequences should be obtainable, as suggested by
several examples in Chapter 4.

5.1.1 The Language of Quotients

Consider an Ostrowski numeration system based on the irrational number α. Given a
finite word w ∈ (Σ2

α)∗, the projections πi(w) for i = 1, 2 are defined onto the ith coordinate.
For example, consider the pair of integers (6, 3), which has the following 2-dimensional
representation in the Fibonacci base:

x = [1, 0][0, 1][0, 0][1, 0].

Here, π1(x) = 1001 and π2(x) = 0101. Note that [π1(x)]α = 6 and [π2(x)]α = 3. For a
finite word w with [π2(w)]α 6= 0, we define the quotient as

quoα(w) =
[π1(w)]α
[π2(w)]α

.

45

In [51, Section 4], the authors showed that for a standard base-k number system, there
exists an algorithm that, given a DFA accepting L ⊆ (Σ2

k)
∗, will compute γ = sup quok(L).

They also introduce the idea of a special point. We present an equivalent definition with
respect to the Fibonacci number system.

Let L ⊆ ({0, 1}2)∗ be a language. We define the set

S = {(x, y) : x = [π1(w)]F , y = [π2(w)]F for all w ∈ L}.

Then the language of quotients over L is defined as follows:

quoF (L) =
{x
y

: (x, y) ∈ S
}
.

5.1.2 Computing the Largest Special Point

First, we define a special point in the Fibonacci number system for a language, analogous
to the definition given by Schaeffer and Shallit in [51] for base-k number systems.

Definition 5.1. Let L ⊆ (Σ2
2)∗ be a language. We say a real number β is a special point

of quoF (L) if there exists an infinite sequence (xj)j≥1 of distinct words of L such that
limj→∞ quoF (xj) = β.

Note that every infinite language L has a special point, and indeed, the largest special
point. Schaeffer and Shallit showed that when the integer values are expressed in a standard
base-k number system, then the largest special point is computable. In fact, they proved
something more general, that the largest special point is computable if the integer values
are expressed as a sum of the powers of a constant. We extend this idea to the Fibonacci
number system. The irrational number associated with this system is φ − 1, and the
corresponding alphabet is {0, 1}. Consider a finite word z ∈ {0, 1}∗ in the Fibonacci
representation. We can express [z]F as the sum of a finite set of Fibonacci numbers. Let
[z]F =

∑
2≤i≤k aiFi, where ai ∈ {0, 1} and the Fi are the Fibonacci numbers. We define a

function f : N→ R such that

f([z]F) =
1√
5

∑
2≤i≤k

aiφ
i.

Note that f([z]F) is a real-valued approximation for the integer [z]F since we have that

[z]F =
1√
5

∑
2≤i≤k

ai(φ
i − (1− φ)i).

46

We now define another set and the corresponding set of quotients as follows:

S ′ = {(u, v) : u = f(x), v = f(y) for all (x, y) ∈ S}, (5.1)

quoφ(L) =
{x
y

: (x, y) ∈ S ′
}
. (5.2)

Lemma 5.1. Let w ∈ {0, 1}∗ be a word. Then

|[w]F − f([w]F)| ≤ 1√
5
.

Proof. Let [w]F =
∑

2≤i≤k aiFi, where ai ∈ {0, 1}. We have that

[w]F =
1√
5

∑
2≤i≤k

ai(φ
i − (1− φ)i)

=
1√
5

∑
2≤i≤k

aiφ
i − 1√

5

∑
2≤i≤k

ai(1− φ)i

= f([w]F)− 1√
5

∑
2≤i≤k

ai(1− φ)i.

Therefore, we have that

|[w]F − f([w]F)| =

∣∣∣∣∣ 1√
5

∑
2≤i≤k

ai(1− φ)i

∣∣∣∣∣
≤ 1√

5

∑
2≤i≤k

ai|1− φ|i

≤ 1√
5

∑
2≤i≤∞

|1− φ|i

≤ 1√
5

(
(1− φ)2

1− |1− φ|

)
≤ 1√

5
.

For any w ∈ {0, 1}∗, we observe that the ratio of f([w]F) and [w]F is bounded as follows:

f([w]F)

[w]F
=

[w]F ± |[w]F − f([w]F)|
[w]F

= 1± |[w]F − f([w]F)|
[w]F

. (5.3)

47

Using Lemma 5.1 on Equation (5.3), we obtain

lim
[w]F→∞

f([w]F)

[w]F
= 1. (5.4)

As a result, we have the following theorem.

Theorem 5.2. Let L ⊆ (Σ2
2)∗ be a language. A real number β is a special point of quoF (L)

if and only if it is also a special point of quoφ(L).

Proof. Consider the special point β of quoF (L). By definition, there exists an infinite
sequence of distinct pairs of words (xj, yj)j≥1 in L, such that limj→∞([xj]F/[yj]F) = β. We
now consider the corresponding quotient of the approximated real numbers for [x]F and
[y]F . We have, using Equation (5.4):

lim
j→∞

f([xj]F)

f([yj]F)
= lim

j→∞

[xj]F
[yj]F

= β.

A similar argument in the other direction shows that the special points of both the lan-
guages quoF (L) and quoφ(L) coincide.

Thus, we have shown that the special points of the language quoF (L) remain the same
if the language is replaced by its real approximation quoφ(L). The methods of Schaeffer
and Shallit in [51] can now be used to compute the largest special point if the language L
is Fibonacci-automatic, as the values in quoφ(L) are expressed as a sum of powers of the
constant φ. We leave it as an open problem to determine if the critical exponent is also
computable in the Fibonacci number system and other Ostrowski systems in general.

5.2 General Implementation for an Irrational Number

Our implementation in Chapter 3 can only generate automata recognizing the addition
relation for Ostrowski numeration systems based on quadratic irrational numbers. Recall
that this implementation generates an automaton that takes three inputs x, y, z in the cor-
responding Ostrowski numeration system, and accepts if and only if x+y = z. The crucial
problem with a more general implementation is that the continued fraction expansion of
an arbitrary irrational number α may have unbounded partial quotients, and hence, may
not be ultimately periodic.

To work around this problem, a 4-input implementation is required such that all the
four inputs: the partial quotients of the continued fraction, x, y, and z are encoded in a

48

common numeration system that the underlying framework understands. For example, if
all the four inputs are encoded in binary and are read in parallel, then we can simulate
the adder given in Figure 2.3 in its entirety without the restriction of α being a quadratic
irrational.

Note that the adder automaton in Figure 2.3 decides a transition only based on how
the difference zi−1− (xi−1 + yi−1) compares to di, the corresponding term in the continued
fraction. To compare the two quantities, the only requirement is that both are expressed in
the same numeration system, hence, in principle, we can encode the four inputs in binary
and replace the transitions in the automaton in Figure 2.3 with automata that recognize
the corresponding set of four inputs in binary.

5.3 Higher-Order Numeration Systems

Ostrowski numeration systems are characterized by an irrational number α (see Sec-
tion 2.1). We can introduce more irrational numbers to extend this idea to a broader
class of numeration systems. Consider an order-m numeration system characterized by a
sequence ofm irrational numbers, Γ = (α1, α2, . . . , αm). For 1 ≤ k ≤ m, let [0; dk,1, dk,2, . . .]
be the continued fraction of αk. We define a sequence (qi)i≥0 as follows:

qi =

0, if i < 0;

1, if i = 0;∑
1≤k≤m dk,iqi−k, otherwise.

We can now represent an arbitrary integer N in this order-m numeration system defined
by the sequence Γ as follows:

N = [an−1an−2 · · · a0]Γ =
∑

0≤i<n

aiqi.

However, to have any practical utility, we also require the following rules for enforcing
a canonical representation:

1. a0 < d1,1;

2. 0 ≤ ai ≤ d1,i+1, for i ≥ 1; and

3. for all i ≥ 1, if ai = d1,i+1 then there exists a k ≤ m such that ai−k < dk,i+1.

49

Clearly, the Ostrowski numeration system is an example of an order-2 numeration
system with Γ = (α, φ − 1), where φ = (1 +

√
5)/2 is the golden ratio. The second

irrational number is φ − 1 because the continued fraction for φ − 1 = [0; 1]; therefore,
if α = [d0; d1, . . .], then we have that qi = diqi−1 + qi−2. We propose the open problem
to construct an adder for a generalized order-m numeration system. A possible direction
to explore is to design an automaton with m-dimensional states and produce a result
analogous to Theorem 2.2.

5.4 Repetition Threshold for Infinite Words

Another open problem is to determine the repetition threshold for several classes of infinite
words. In Section 4.1, we resolved a previous conjecture by Rampersad et al. for infinite
balanced words for alphabets of size ≤ 8, but the problem remains unsolved in general. For
infinite rich words, we resolved the problem for the binary case, but it remains unsolved
for larger alphabets.

Before Rampersad et al. [45] proved our conjecture about infinite rich words, we relied
on a backtracking search to obtain the lower bound and construct the candidate infinite
word. Our backtracking algorithm utilizes the EERTREE data structure given by Rubinchik
and Shur [49]. Using this data structure, if we are given the number of distinct palindromes
for a word w over an alphabet Σ, we can find the number of distinct palindromes in the
word wa for all a ∈ Σ in constant amortized time. Our computation suggests that the
repetition threshold for rich words, RRT (k), for larger alphabets might have the following
lower bounds:

RRT (3) ≥ 9

4
,

RRT (4) ≥ 11

5
, and

RRT (5) ≥ 13

6
.

In general, for an alphabet of size k ≥ 3, it seems that RRT (k) ≥ (2k+3)/(k+1), which
agrees with Theorem 4.3. We leave it as an open problem to prove this and determine the
exact value.

In [15], Chen et al. gave a survey of fast space-efficient algorithms for computing all
maximal runs in a string. They also proposed some new and faster algorithms for this task.
A possible direction for future work is to implement these algorithms in the backtracking

50

search. Faster computation of maximal runs will help us to efficiently reject those paths
in the backtracking search that violate the critical exponent threshold. Thus, we may be
able to compute tighter lower bounds on the repetition threshold for larger alphabets.

Based on a suggestion by Edita Pelantová, we note another interesting direction to
explore in this regard. The word we constructed in Figure 4.1 is a complementary sym-
metric Rote word [48]. We say that an infinite word u = u0u1u2 · · · over the alphabet
{0, 1} is a complementary symmetric Rote word if and only if there exists a Sturmian word
v = v0v1v2 · · · , such that vi = ui + ui+1 mod 2 for all i. The Sturmian word associated
with our word r is the one fixed by the Sturmian substitution:

ξ: 0 7→ 011
1 7→ 01.

It is known that complementary symmetric Rote words are rich in palindromes [8].
Therefore, a possible direction to explore the construction of infinite rich words using
Sturmian words over larger alphabets. These words could serve as good candidates for
achieving the repetition threshold. There has been a very recent development in this
regard by Dvořáková et al. [25], where the authors determine the critical exponent and
the recurrence function of complementary symmetric Rote sequences based on the study
of return words to bispecial factors of Sturmian sequences. A factor w of a word u is called
right-special if there exist two distinct characters a, b such that wa,wb are factors of u.
Left-special is defined symmetrically. Bispecial words are those that are both left and right
special.

Another natural extension to the problem is to ask the same question on several other
classes of infinite words; e.g., words avoiding certain patterns. We explore such a class in
Section 4.3 where we study repetitions in infinite binary words avoiding large antisquares.

51

References

[1] J. P. Allouche and J. Shallit. Automatic Sequences—Theory, Applications, General-
izations. Cambridge University Press, 2003.

[2] D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

[3] G. Barabash, Y. Kholyavka, and I. Tytar. Periodic words connected with the Lu-
cas numbers. Вiсник Львiвського унiверситету. Серiя механiко-математична,
84:62–66, 2017.

[4] A. R. Baranwal and J. Shallit. Critical exponent of infinite balanced words via the Pell
number system. In Robert Mercaş and Daniel Reidenbach, editors, Combinatorics on
Words, pages 80–92, Cham, 2019. Springer International Publishing.

[5] A. R. Baranwal and J. Shallit. Repetitions in infinite palindrome-rich words. In
Robert Mercaş and Daniel Reidenbach, editors, Combinatorics on Words, pages 93–
105, Cham, 2019. Springer International Publishing.

[6] J. P. Bell, T. F. Lidbetter, and J. Shallit. Additive number theory via approxima-
tion by regular languages. In International Conference on Developments in Language
Theory, pages 121–132. Springer, 2018.

[7] J. Berstel and P. Séébold. Sturmian words. In M. Lothaire, editor, Algebraic Combi-
natorics on Words, volume 90 of Encyclopedia of Mathematics and Its Applications,
pages 45–110. Cambridge University Press, 2002.

[8] A. Blondin Massé, S. Brlek, S. Labbé, and L. Vuillon. Palindromic complexity of
codings of rotations. Theoret. Comput. Sci., 412:6455–6463, 2011.

[9] P. Bonardo, A. E. Frid, and J. Shallit. The number of valid factorizations of Fibonacci
prefixes. Theoret. Comput. Sci., 775:68–75, 2019.

52

[10] S. Brlek, S. Hamel, M. Nivat, and C. Reutenauer. On the palindromic complexity of
infinite words. Internat. J. Found. Comp. Sci., 15:293–306, 2004.

[11] V. Bruyère and G. Hansel. Recognizable sets of numbers in nonstandard bases. In
R. Baeza-Yates, E. Goles, and P. V. Poblete, editors, LATIN ’95: Theoretical Infor-
matics, volume 911 of Lecture Notes in Computer Science, pages 167–179. Springer-
Verlag, 1995.

[12] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-recognizable sets
of integers. Bull. Belg. Math. Soc., 1:191–238, 1994. Corrigendum, Bull. Belg. Math.
Soc. 1 (1994), 577.

[13] M. Bucci, A. De Luca, A. Glen, and L. Q. Zamboni. A new characteristic property of
rich words. Theoret. Comput. Sci., 410:2860–2863, 2009.

[14] J. R. Büchi. Weak secord-order arithmetic and finite automata. Zeitschrift für math-
ematische Logik und Grundlagen der Mathematik, 6:66–92, 1960. Reprinted in S. Mac
Lane and D. Siefkes, eds., The Collected Works of J. Richard Büchi, Springer-Verlag,
1990, pp. 398–424.

[15] G. Chen, S. J. Puglisi, and W. F. Smyth. Fast & practical algorithms for computing
all the runs in a string. In B. Ma and K. Zhang, editors, CPM 07, volume 4580 of
Lecture Notes in Computer Science, pages 307–315. Springer-Verlag, 2007.

[16] G. Christol. Ensembles presque périodiques k-reconnaissables. Theoret. Comput. Sci.,
9:141–145, 1979.

[17] A. Cobham. On the base-dependence of sets of numbers recognizable by finite au-
tomata. Math. Systems Theory, 3:186–192, 1969.

[18] A. Cobham. Uniform tag sequences. Math. Systems Theory, 6:164–192, 1972.

[19] J. Currie, T. Harju, P. Ochem, and N. Rampersad. Some further results on squarefree
arithmetic progressions in infinite words. Theoret. Comput. Sci., 799:140–148, 2019.

[20] J. Currie and N. Rampersad. A proof of Dejean’s conjecture. Math. Comp.,
80(274):1063–1070, 2011.

[21] A. de Luca, A. Glen, and L. Q. Zamboni. Rich, Sturmian, and trapezoidal words.
Theoret. Comput. Sci., 407:569–573, 2008.

[22] F. Dejean. Sur un théorème de Thue. J. Combin. Theory. Ser. A, 13(1):90–99, 1972.

53

[23] C. F. Du, H. Mousavi, E. Rowland, L. Schaeffer, and J. Shallit. Decision algorithms for
Fibonacci-automatic words, II: related sequences and avoidability. Theoret. Comput.
Sci., 657:146–162, 2017.

[24] C. F. Du, H. Mousavi, L. Schaeffer, and J. Shallit. Decision algorithms for Fibonacci
automatic words, III: enumeration and abelian properties. Internat. J. Found. Comp.
Sci., 27(8):943–963, 2016.

[25] L. Dvořáková, K. Medková, and E. Pelantová. Complementary symmetric Rote
sequences: the critical exponent and the recurrence function. arXiv preprint
arXiv:2003.06916, 2020.

[26] S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press, 1974.

[27] J. E. Foster. A number system without a zero-symbol. Math. Mag., 21(1):39–41, 1947.

[28] C. Frougny and B. Solomyak. On representation of integers in linear numeration sys-
tems. In M. Pollicott and K. Schmidt, editors, Ergodic Theory of Zd Actions (Warwick,
1993–1994), volume 228 of London Mathematical Society Lecture Note Series, pages
345–368. Cambridge University Press, 1996.

[29] A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni. Palindromic richness. European
J. Combinatorics, 30:510–531, 2009.

[30] C. Guo, J. Shallit, and A. M. Shur. Palindromic rich words and run-length encodings.
Inform. Process. Lett., 116:735–738, 2016.

[31] P. Hieronymi and A. Terry Jr. Ostrowski numeration systems, addition, and finite
automata. Notre Dame J. Formal Logic, 59(2):215–232, 2018.

[32] J. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In
Theory of Machines and Computations, pages 189–196. Elsevier, 1971.

[33] P. Hubert. Suites équilibrées. Theoret. Comput. Sci., 242:91–108, 2000.

[34] M. Lothaire. Algebraic Combinatorics on Words, volume 90 of Encyclopedia of Math-
ematics and Its Applications. Cambridge University Press, 2002.

[35] R. McNaughton. Reviewed works: Weak second-order arithmetic and finite automata
by J. Richard Büchi; on a decision method in restricted second order arithmetic by J.
Richard Büchi. J. Symbolic Logic, 28(1):100–102, 1963.

54

[36] H. Mousavi. Automatic theorem proving in Walnut. arXiv preprint arXiv:1603.06017,
2016.

[37] H. Mousavi, L. Schaeffer, and J. Shallit. Decision algorithms for fibonacci-automatic
words, I: basic results. RAIRO Inform. Théor. App., 50(1):39–66, 2016.

[38] H. Mousavi and J. Shallit. Mechanical proofs of properties of the Tribonacci word. In
International Conference on Combinatorics on Words, pages 170–190. Springer, 2015.

[39] T. Ng, P. Ochem, N. Rampersad, and J. Shallit. New results on pseudosquare
avoidance. In International Conference on Combinatorics on Words, pages 264–274.
Springer, 2019.

[40] A. Ostrowski. Bemerkungen zur Theorie der Diophantischen Approximationen. Abh.
Math. Sem. Hamburg, 1:77–98, 250–251, 1922. Reprinted in Collected Mathematical
Papers, Vol. 3, pp. 57–80.

[41] E. Pelantová and S. Starosta. Languages invariant under more symmetries: Overlap-
ping factors versus palindromic richness. Discrete Math., 313:2432–2445, 2013.

[42] E. Pelantová and Š. Starosta. Constructions of words rich in palindromes and pseu-
dopalindromes. Discrete Math. & Theoret. Comput. Sci., 18:Paper #16, 2016. Avail-
able at https://dmtcs.episciences.org/2202.

[43] G. Pirillo. Fibonacci numbers and words. In Séminaire Lotharingien de Combina-
toire (Gerolfingen, 1993), number 34 in Prépubl. Inst. Rech. Math. Av., Univ. Louis
Pasteur, Strasbourg, 1993, pages 77–85, 1993.

[44] M. Presburger and D. Jacquette. On the completeness of a certain system of arith-
metic of whole numbers in which addition occurs as the only operation. History and
Philosophy of Logic, 12(2):225–233, 1991.

[45] N. Rampersad, L. Mol, and J. D. Currie. The repetition threshold for binary rich
words. Discrete Mathematics & Theoretical Computer Science, 22(1), 2020.

[46] N. Rampersad, J. Shallit, and É. Vandomme. Critical exponents of infinite balanced
words. Theoret. Comput. Sci., 777:454–463, 2019.

[47] M. Rao. Last cases of Dejean’s conjecture. Theoret. Comput. Sci., 412(27):3010–3018,
2011.

55

https://dmtcs.episciences.org/2202

[48] G. Rote. Sequences with subword complexity 2n. J. Number Theory, 46:196–213,
1994.

[49] M. Rubinchik and A. M. Shur. EERTREE: an efficient data structure for processing
palindromes in strings. In International Workshop on Combinatorial Algorithms, pages
321–333. Springer, 2015.

[50] L. Schaeffer. Deciding properties of automatic sequences. Master’s thesis, University
of Waterloo, 2013.

[51] L. Schaeffer and J. Shallit. The critical exponent is computable for automatic se-
quences. Internat. J. Found. Comp. Sci., 23(08):1611–1626, 2012.

[52] L. Schaeffer and J. Shallit. Closed, palindromic, rich, privileged, trapezoidal, and
balanced words in automatic sequences. Electronic J. Combinatorics, 23, 2016.

[53] J. Shallit. Decidability and enumeration for automatic sequences: A survey. In An-
drei A. Bulatov and Arseny M. Shur, editors, Computer Science – Theory and Appli-
cations, pages 49–63, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[54] J. Shallit and R. Zarifi. Circular critical exponents for thue-morse factors. RAIRO
Inform. Théor. App., 53(1-2):37–49, 2019.

[55] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid.
Selsk. Skr. Mat. Nat. Kl., 1:1–67, 1912. Reprinted in Selected Mathematical Papers of
Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413–478.

[56] J. Vesti. Extensions of rich words. Theoret. Comput. Sci., 548:14–24, 2014.

[57] J. Vesti. Rich square-free words. Theoret. Comput. Sci., 687:48–61, 2017.

[58] L. Vuillon. Balanced words. Bull. Belg. Math. Soc., 10(5):787–805, 12 2003.

[59] E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de
Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Liège, 41:179–182, 1972.

56

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Numeration Systems
	Continued Fraction Expansion
	Automatic Sequences
	Decision Procedures

	Previous Work
	Procedures for TEXT-Automatic Sequences
	Procedures for Fibonacci-Automatic Sequences
	Applications to Combinatorics on Words

	Theoretical Framework
	Ostrowski Numeration System
	Decidability
	Constructing the Framework
	Recognizing the Canonical Representation
	Recognizing the Addition Relation
	States and Transitions of the Adder
	Eliminating Redundant States

	Implementation Details
	Working with Walnut
	Generation Algorithm
	Mechanical Verification of the Adder
	Examples

	Applications
	Repetition Threshold for Balanced Words
	Definitions
	Constructing Balanced Words from Sturmian Words
	Determining the Critical Exponents of Lg

	Critical Exponent of Rich Words
	Building the Candidate Rich Word Lg
	Proof of Palindromic Richness
	Determining the Critical Exponent

	Infinite Binary Words Avoiding Antisquares
	Construction of the Candidate Word
	Absence of Antisquares and the Critical Exponent

	Properties of Lucas Words

	Open Problems
	Stronger Decidability Results
	The Language of Quotients
	Computing the Largest Special Point

	General Implementation for an Irrational Number
	Higher-Order Numeration Systems
	Repetition Threshold for Infinite Words

	References

