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Abstract

Hydraulic fracturing is a stimulation technique in which fluid is injected at high pressure into
low-permeability reservoirs to create a fracture network for enhanced production of oil and
gas. It is the primary purpose of hydraulic fracturing to enhance well production. The three
main mechanisms during hydraulic fracturing for oil and gas production which largely impact
the reservoir production are: (1) fracture propagation during initial pad fluid injection, which
defines the extent of the fracture; (2) fracture propagation during injection of proppant slurry
(fluid mixed with granular material), creating a propped reservoir zone; and (3) shear dilation
of natural fractures surrounding the hydraulically fractured zone, creating a broader stimulated
zone. The thesis has three objectives that support the simulation of mechanisms that lead to
enhanced production of a hydraulically-fractured reservoir.

The first objective is to develop a numerical model for the simulation of the mechanical deforma-
tion and shear dilation of naturally fractured rock masses. In this work, a two-dimensional model
for the simulation of discrete fracture networks (DFN) is developed using the extended finite
element method (XFEM), in which the mesh does not conform to the natural fracture network.
The model incorporates contact, cohesion, and friction between blocks of rock. Shear dilation
is an important mechanism impacting the overall nonlinear response of naturally fractured rock
masses and is also included in the model—physics previously not simulated within an XFEM
context. Here, shear dilation is modeled through a linear dilation model, capped by a dilation
limiting displacement. Highly nonlinear problems involving multiple joint sets are investigated
within a quasi-static context. An explicit scheme is used in conjunction with the dynamic relax-
ation technique to obtain equilibrium solutions in the face of the nonlinear constitutive models
from contact, cohesion, friction, and dilation. The numerical implementation is verified and its
convergence illustrated using a shear test and a biaxial test. The model is then applied to the
practical problem of the stability of a slope of fractured rock.

The second objective is to develop a numerical model for the simulation of proppant transport
through planar fractures. This work presents the numerical methodology for simulation of
proppant transport through a hydraulic fracture using the finite volume method. Proppant models
commonly used in the hydraulic fracturing literature solve the linearized advection equation;
this work presents solution methods for the nonlinear form of the proppant flux equation. The
complexities of solving the nonlinear and heterogeneous hyperbolic advection equation that
governs proppant transport are tackled, particularly handling shockwaves that are generated due to
the nonlinear flux function and the spatially-varyingwidth and pressure gradient along the fracture.
A critical time step is derived for the proppant transport problem solved using an explicit solution
strategy. Additionally, a predictor-corrector algorithm is developed to constrain the proppant
from exceeding the physically admissible range. The model can capture the mechanisms of
proppant bridging occurring in sections of narrow fracture width, tip screen-out occurring when
fractures become saturated with proppant, and flushing of proppant into new fracture segments.
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The results are verified by comparison with characteristic solutions and the model is used to
simulate proppant transport through a KGD fracture.

Thefinal objective is to develop a numericalmodel for the simulation of proppant transport through
propagating non-planar fractures. This work presents the first monolithic coupled numerical
model for simulating proppant transport through a propagating hydraulic fracture. A fracture is
propagated through a two-dimensional domain, driven by the flow of a proppant-laden slurry.
Modeling of the slurry flow includes the effects of proppant bridging and the subsequent flow
of fracturing fluid through the packed proppant pack. This allows for the simulation of a tip
screen-out, a phenomenon in which there is a high degree of physical interaction between the
rock deformation, fluid flow, and proppant transport. Tip screen-out also leads to shock wave
formation in the solution.

Numerical implementation of the model is verified and the model is then used to simulate a tip
screen-out in both planar and non-planar fractures. An analysis of the fracture aperture, fluid
pressure, and proppant concentration profiles throughout the simulation is performed for three
different coupling schemes: monolithic, sequential, and loose coupling. It is demonstrated that
even with time step refinement, the loosely-coupled scheme fails to converge to the same results as
the monolithic and sequential schemes. The monolithic and sequential algorithms yield the same
solution up to the onset of a tip screen-out, after which the sequential scheme fails to converge.
The monolithic scheme is shown to be more efficient than the sequential algorithm (requiring
fewer iterations) and has comparable computational cost to the loose coupling algorithm. Thus,
the monolithic scheme is shown to be optimal in terms of computational efficiency, robustness,
and accuracy. In addition to this finding, a robust and more efficient algorithm for injection-rate
controlled hydraulic fracturing simulation based on global mass conservation is presented in the
thesis.
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Ē Average slurry velocity along the fracture width
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Ē3 Velocity of fracturing fluid through packed proppant particles
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Chapter 1

Introduction

1.1 Introduction to hydraulic fracturing simulations

Hydraulic fracturing is the process by which fluid is injected at a high pressure into the earth to
create a network of fractures [4]. This process is most commonly associated with oil and gas
production but is also used in enhanced geothermal systems [5] and hydraulic fracturing occurs
naturally such as in the creation of magma-driven dikes [6]. This thesis is focused on the use
of hydraulic fracturing in oil and gas production as a stimulation technique for reservoirs with
low permeability in which conventional means cannot be used to extract resources. Currently,
hydraulic fracturing treatments are predominantly being used in shale reservoirs. The combination
of horizontal drilling and hydraulic fracturing has allowed for large volumes of shale reservoirs
to be stimulated for production, leading to a 50% increase in natural gas production in the United
States over the past decade [7].

During hydraulic fracturing, a mixture of fluid, chemicals, and proppant, called fracking fluid, is
injected into the subsurface in various stages to create fractures along a well. A horizontal plan
view of a rock mass undergoing injection from the center of the domain is depicted in Figure
1.1, where the well is oriented perpendicular to the image. A treatment cycle begins with the
injection of a “pad” of clean fluid to create and propagate the fracture network. Afterward, a
slurry mixture of fluid and proppant (small solid particles, such as sand) is injected, creating a
propped reservoir zone. The role of the proppant is to hold open any fractures after the fluid
injection ceases (shut-in). The propped zone represents the volume of reservoir that remains
open after shut-in, shown in blue in Figure 1.1. During the treatment cycle, changes in the stress
state cause pre-existing natural fractures in the surrounding area to shear and remain self-dilated
due to the roughness of the natural fracture surfaces. Shear dilation of natural fractures creates a
broader stimulated zone, as shown in orange in Figure 1.1. Once the proppant has been distributed
throughout the fracture network, the pumping is stopped and the fracture network finds a new
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unpressurized equilibrium. During this time, the fluid inside the fracture can leak-off into the
reservoir or flow back to the surface through the well where it is collected for disposal and/or
reuse. Once the fracture has closed, the hydrocarbons within the reservoir are produced. The
treatment can last from tens of minutes to hours, depending on the treatment design [4].

Dilated zone
Propped zone

Fracture Propagation Proppant transport

Shear dilation

f3

f3

Figure 1.1: Fracture network stimulation: Propagation due to pad flow (top-left), proppant
transport through the fracture (top-right), and shear-dilation in surrounding natural fractures
(bottom-left). Figure modified from Dusseault [8]

In oil and gas production, permeability and conductivity, which are closely related properties of
a rock mass, are the principal factors that govern the effectiveness of the hydraulic fracturing
treatment. The permeability of a reservoir is a function of the degree of interconnection between
the fracture network, and conductivity is a measure of how easily a given fluid can flow through
the fracture network. These factors affect the amount of hydrocarbon fluids that can be pumped
out of a formation [9].
The primary objective of hydraulic fracturing in oil and gas production is to enhance well
production. For this reason, researchers discuss increasedwell performance in terms of stimulated
reservoir volume (SRV), drainage area, or effective permeability. SRV is the volume of failed rock,
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typically defined using microseismic analysis [10]; drainage area is the area of the formation in
contact with thewellbore [4], and; effective permeability is ameasure of the ability of the fractured
rock mass to transmit fluids. Increasing each of these quantities is achieved through the creation
of conductive pathways (fractures) that are self-propped or held open by proppant. The three
main mechanisms during hydraulic fracturing for oil and gas production which largely impact
the reservoir production are the shear dilation, fracture propagation, and proppant transport. The
design of a hydraulic fracturing treatment includes the selection of well location, fluid mixture
properties, proppant properties, fracture spacing, and pump schedule (volume, duration, and rate)
to optimize the generated reservoir production [4].
Due to the lack of visual observation of the fracturing outcomes, companies use the limited
data they have to hypothesize about the mechanisms taking place (diagnostic) and use basic
rock mechanics principles and analytical models to design the fracturing procedure (predictive).
Many basic questions remain unanswered, such as: what is the geometry of the fracture network?
how much permeability enhancement will this treatment provide? what are the stimulated
reservoir volume (SRV) and the effective propped volume (EPV)? Hydraulic fracturing is also
of public interest due to the awareness of its potential environmental risks. There is concern
about contamination of groundwater sources from the fracturing fluids, the large consumption of
valuable water resources, and the generation of seismic activity by altering the stress state near
active faults. More information is required to understand and mitigate the risks associated with
hydraulic fracturing while optimizing its effectiveness.
To more accurately answer questions about hydraulic fracturing and its impacts on the environ-
ment, there is a need for improvement in all aspects of the problem domain: experimental research,
data collection, and modeling. Hydraulic fracturing operations span kilometers of subsurface,
the scale of which cannot be reproduced in a laboratory. The sparsely distributed logging wells
in the treatment area also limit data collection due to the difficulty with reaching the source and
taking samples that are representative of the scale and heterogeneity of the material. The models
developed using the behavioral laws observed in experimental research and calibrated using data
collected on-site are used to predict the results of the hydraulic fracturing treatment. Due to the
complex mechanisms taking place, models require high computational effort and many simpli-
fications/approximations to obtain a solution. The uncertainty that exists throughout all aspects
of the problem domain is what makes hydraulic fracturing one of the most difficult engineering
challenges. The focus of this project is on enhancing the knowledge in numerical modeling of
hydraulic fracturing. Numerical models aid in the understanding, design, and optimization of
treatments.
There are few analytical models of hydraulic fracturing currently available. The two most
commonly used analytical models are based on the Khristianovic-Geertsma-de Klerk (KGD)
geometry [11] and the Perkins-Kern-Nordgren (PKN) geometry [12, 13]. These are quasi-three
dimensional constant-height models that depend on a stipulated fracture height. The PKN model
applies to long fractures of limited height, and the KGD model applies to short fractures where

3



one can assume plane strain constitutive behavior along horizontal sections. A three-dimensional
radial (or penny-shaped) model developed by Sneddon [14] is also available, which applies to
homogeneous reservoirs with a point source injection. Without limiting assumptions, the set of
governing equations that govern hydraulic fracturing are too complex to be solved analytically and
therefore approximations are used to obtain the solutions. Numerical models are better equipped
for solving the complex mechanisms simultaneously.

A large challenge in hydraulic fracture modeling is in coupling the various mechanisms in play to
develop a robust tool that captures the complexities of the treatment process. While it is common
to describe hydraulic fracturing as involving only three processes: the mechanical deformation
induced by the fluid pressure on the fracture surfaces, the flow of fluid within the fracture, and the
fracture propagation [15], in reality, modern operations are much more complex. There are many
other important mechanisms involved in hydraulic fracturing, such as fracture initiation, fluid
flow through the reservoir, interaction of hydraulic fractures with natural fractures and various
rock strata, dilational effects of shearing natural fractures, effects of shear and temperature on
fracturing fluid rheology, proppant transport through fractures, and fracture closure. Each of these
mechanisms has been studied to various degrees by the scientific community since the 1950s.
However, numerical modeling of each of these mechanisms has been developed primarily in
isolation and most models currently available cannot capture their combined complexity robustly.

There is no hydraulic fracturing model currently available that incorporates all of the aforemen-
tioned mechanisms that lead to enhanced production. Such a model would be an invaluable tool
for making operational decisions, such as optimization of the fracturing fluid properties and in-
jection rates to achieve greater well performance. Although the focus is on oil and gas production,
this model also has applications in massive slurried solid waste disposal, where the objective is
to ensure no flow-back of the slurried waste [16]. Ultimately, numerical models of hydraulic
fracturing are tools that provide a more fundamental understanding of hydraulic fracturing.

1.2 Shear dilation

Simulation of rock masses is complex due to the existence of discontinuities at many scales, from
fissures at the microscale, bedding planes and natural fractures at the centimeter to meter scale, to
faults at the reservoir scale. The behavior of a rock mass is determined by the interaction of these
discontinuities. At depth, the surfaces of natural fractures are often cohesively sealed [17]. When
naturally fractured rock is subjected to differential compressive stresses, the natural fractures are
reactivated and mixed-mode fracture behavior and frictional sliding follows. As fracture surfaces
slip relative to one another, asperities along the fracture surfaces can cause gaps in the normal
displacement that persist even after loads are removed [17]. This mechanism is called shear
dilation and is depicted in Figure 1.2.
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Figure 1.2: Shear dilation of a rough joint; mated fracture (left) and dilated fracture (right)

Shear dilation is an important mechanism in rock mechanics because it explains the counter-
intuitive notion that rock can increase in volume as it is being compressed. Furthermore, in the
context of hydraulic stimulation of reservoirs for oil and gas or geothermal applications, shear
dilation of natural fractures is a key mechanism for permeability enhancement. Understanding
and quantifying the conditions which cause an increase in permeability is necessary for the design
of efficient stimulation treatments [18].

Experimental studies of rock joint deformation and shear dilationwere first performed in the 1960s
and led to the establishment of first-order constitutive models [17, 19–21]. It was understood
early on that dilation is most prevalent at low confining effective stresses. As the confining
stresses increase, an increase in the resistance to the normal displacement of fracture surfaces
causes a decrease in dilatancy. Dilation is completely suppressed when the average normal stress
to the fracture surfaces is of the order of magnitude of the unconfined compressive strength of the
asperities and the shear strength of the fracture is dominated by the strength of the asperities [17].
Initial behavioral models, such as those by Goldstein et al. [20], Patton [21], and Newland
and Allely [22], included this as a part of the shear strength characteristics of the material as
opposed to a completely separate dilation model. Later, Barton et al. [19] used experimental
observations to define a parabolic empirical expression for the amount of dilation as a function
of surface roughness, weathering of the surface, shear displacement and normal stress, known as
the Barton-Bandis joint model. Another approach is to model the dilation as a linear function of
shear displacement [23], as used in this study. This model resembles a perfect plasticity model
in that the dilation does not begin until the peak shear strength is reached and it remains constant
after a critical shear displacement.

Naturally fractured rock masses have been simulated previously using various numerical ap-
proaches. Continuum models using the finite difference and finite element methods, which
introduce the effect of frictional dilation through an equivalent constitutive model of the material
have been used [24–26]. Discontinuum models simulate rock joints explicitly, and include the
effect of shear dilation as a constitutive model along each joint [18, 23, 27–29].

Discontinuum models can be further classified into models that rely on meshes that conform to
the discontinuities and models that enrich the approximation space so that the discontinuities can
be modeled independently of the mesh. A type of discontinuum model with conforming mesh is
the discrete element method (DEM), which has been used to model rock joints explicitly [30–32].
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Enriched methods based on the concept of a partition of unity have become popular tools for
simulating propagating fractures when the fracture path is not known a priori (e.g. Belytschko
and Black [33], Moës et al. [34], Sukumar et al. [35], Duarte et al. [36], Gravouil et al. [37], Zi et
al. [38], Areias and Belytschko [39], Gupta and Duarte [40, 41], and Remĳ [42]). A key feature
of enriched methods is that the discontinuity is represented independently of the mesh and so no
remeshing is required with propagation. A partition of unity is a set of functions in a domain such
that the sum of the functions at any point in the domain is equal to one. This concept forms the
basis of the extended finite element method (XFEM) and the generalized finite element method
(GFEM), which exploit the fact that any function can be reproduced by a product of the partition
of unity functions to add enriched shape functions to the polynomial approximation space. The
shape functions are customized to capture the discontinuities along fractures. An overview of the
XFEM/GFEM can be found in the works of Karihaloo and Xiao [43], Abdelaziz and Hamouine
[44], Mohammadi [45], Belytschko et al. [46], Rabczuk et al. [47], Fries and Belytschko [48], and
Khoei [49]. The XFEM and GFEM are identical methods but will be referred to as the XFEM in
the remainder of the paper.
A fracture can propagate in an opening mode due to tension (I), sliding mode due to in-plane
shear (II), and tearing mode due to out-of-plane shear (III). Hydraulic fracturing models within
the XFEM community have primarily focused on Mode I dominated fracture propagation. The
XFEM has been successfully applied to fatigue fracture [34, 50, 51], the dynamic propagation of
cohesive fractures [52, 53], and shear-band evolution [54–56]. However, the target applications
have not focused on shear yield under compressive loads, in which friction, contact, and shear
dilation are of importance.
Researchers have studied lateral and frictional contact by means of various techniques such as
Latin method [57], penalty method [58], augmented Lagrange multipliers [58–60] and others [61]
using theXFEM.Nevertheless, the effect of shear dilation has not yet been studied in thesemodels.

1.3 Proppant transport

In hydraulic fracturing treatments, proppant (granular material, typically sand) is injected into
the formation to keep the fracture network open after pumping ceases. Proppant usage worldwide
has increased drastically since 2009, with close to 92 billion pounds of proppant pumped in
2013 [62]. The final position of the slurry–the mixture of wellbore fluids and proppant–in the
fracture network following injection plays a large role in determining the final permeability of
the treated volume. A review of the geomechanics and numerical methods used in modeling
hydraulic fracturing is provided by Adachi et al. [15], Detournay [63], Hattori et al. [64], and
Lecampion et al. [65].
An extensive review of the fluidmechanics associatedwithmultiphase flow in hydraulic fracturing
has been given by Osiptsov [66]. Early researchers tackled the problem of modeling proppant
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transport using simplified models to find the position of proppant over time through a stationary
channel and focused on the mechanism of proppant settling towards the bottom of the channel [67,
68]. Mixture models, which solve for the conservation of mass of the slurry and the proppant to
advance the proppant concentration [15, 69–72], have also been used. These models assume that
the phases are fully mixed and treat the slurry as a fluid with a modified viscosity and density
based on the concentration of proppant. The fluid and proppant are assumed to be incompressible
and the fracture width is assumed to be small enough compared to the other fracture dimensions
that lubrication theory holds. The most basic form of the mixture model assumes that the slurry
components (fluid and proppant particles) travel at the same velocity. The difference in velocity
between the slurry and the proppant particles has been considered by some authors, but in most
models only slip along the height of the fracture due to convection and settlement is accounted
for. A notable exception is the model by Dontsov and Peirce [73], which provides a slip related
to the Darcy flow of fluid through the proppant pack once the proppant concentration reaches a
saturated level. Two-phase modeling of proppant transport has also been approached by Boronin
and Osiptsov [74], in which both the conservation of momentum and mass are solved for the fluid
and the proppant particles. This type of model provides a deeper understanding of the interaction
between the two phases but is computationally expensive.
A mixture model is considered in this thesis due to its efficiency and ease of implementation
with other reservoir models. Three governing equations are typically solved for in hydraulic
fracturing simulations: (I) conservation of momentum governing rock deformation, (II) conser-
vation of mass governing slurry flow, and (III) conservation of mass governing proppant flow.
The second equation inherently incorporates the conservation of mass of the carrier fluid. These
three equations are used to solve for the rock mass displacement, fluid pressure, and proppant
concentration, respectively. All equations are functions of the three independent variables and
are strongly coupled in terms of the physical processes involved.
The continuity equation that governs the proppant flow through the fracture is a nonlinear hyper-
bolic advection equation. The advection equation has been solved in hydraulic fracture models
using the finite volume method [70, 71, 75–77], the finite difference method [72, 78], and the
finite element method [69]. Most models are solved using an Eulerian frame of reference, but
a solution using a Lagrangian frame of reference is also possible [79]. The coupled mixture
models in the literature assume a constant slurry velocity during the proppant transport update,
which often leads to a linear advection equation. Finite volume schemes have been used to solve
nonlinear advection of proppant in a hydraulic fracture [71, 75], although the slurry velocity
is also held constant during the solution of the proppant transport equation in these models.
Finite volume schemes have also been used by various researchers to model nonlinear hyperbolic
equations in similar fields, such as the work by Varadarajan and Hammond [80] in modeling gas
migration and Lorentzen and Fjelde [81] in modeling multiphase hydrocarbon flow in pipelines.
Numerically, solving the nonlinear equation presents additional challenges due to the shock waves
created in the solution that must be considered in the approximation. Oscillations may be intro-
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duced into the solution if the characteristic speed at the cell edges is not properly approximated.
An entropy correction must be included in the formulation to handle rarefaction waves. Addition-
ally, proppant concentration constraints must be imposed on the solution so that the approximation
does not lead to results that are outside the physically possible limits since this is not handled
naturally by the governing equation. The complexities of solving the nonlinear heterogeneous
hyperbolic equation that governs proppant transport have not been properly addressed in the
literature.

1.4 Coupled problems

In its most basic form, a hydraulic fracturing model contains three processes: (1) deformation of
the solid rock mass, (2) flow of fluid through the fracture, and (3) fracture propagation [15]. The
majority of work on models that simulate hydraulic fracturing have focused on the three processes
mentioned above. A fourth process is required in hydraulic fracturing models, (4) the transport
of proppant through the fracture. These four physical processes directly affect each other in
a nonlinear way. There is higher fluid pressure in areas of a fracture with increased proppant
concentration. Consequently, the increased fluid pressure leads to larger fracture apertures. A
build-up of proppant may also prevent fluid from entering the fracture tip which limits fracture
propagation, a phenomenon commonly known as a tip screen-out [4, 82].
There has been limited research on the coupling of slurry transport with fracture propagation
(e.g. Zhou et al. [70], Shiozawa and McClure [71], Vahab and Khalili [72], Dontsov and Peirce
[75], Kong et al. [78], and Shi et al. [83]). Solving the nonlinear coupled system of equations
may be done monolithically or using a staggered scheme. In a monolithic scheme (also known
as a fully-coupled scheme), the equations that govern the rock deformation, fluid flow, and
proppant transport are all solved simultaneously. In a staggered scheme, the equations are solved
sequentially by making assumptions about the independent variables as each equation is solved
and iterating to ensure convergence of all equations [84]. A loosely-coupled scheme (also known
as a one-pass method) is a type of staggered scheme in which no iteration is performed after
sequentially solving the equations. It has been shown by Gordeliy and Peirce [85] and Parchei
Esfahani and Gracie [86] that some staggered schemes for hydro-mechanically coupled systems
may cause spurious oscillations and fail to converge; monolithic schemes are more robust and are
generally expected to have the highest convergence rate.
In current hydraulic fracturing models, proppant transport has only been loosely-coupled as an
update at the end of a time step (e.g. Adachi et al. [15], Zhou et al. [70], Shiozawa and McClure
[71], Dontsov and Peirce [75], Kong et al. [78], and Shi et al. [83]). A loosely-coupled model
consists of getting a converged solution for the first three processes (solid deformation, fluid flow,
and fracture propagation) in a time step, and then computing the proppant concentration at the end
without iteration to confirm convergence. The convergence and robustness of loosely-coupled
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schemes need to be addressed. A study of the stability and convergence of coupling schemes
with proppant transport is not yet available in the literature.

1.5 Motivations

The purpose of a hydraulic fracturing treatment is to enhance the production of oil and gas from a
reservoir. Production is impacted by (1) fracture growth which defines the extent of the connected
fracture network, (2) the proppant distribution within the fracture network which determines the
extent of the fractures which remain open after pumping is stopped, and (3) shear dilation of the
surrounding natural fractures which allows for opening of a broader reservoir volume. The goal
of this thesis is to simulate the mechanisms that lead to improved reservoir productivity due to
hydraulic fracturing treatments: fracture propagation, proppant transport, and shear dilation.

Several gaps in the literature have been identified that need to be addressed in the realization of
the main goal:

• failure of fractured rock masses in which Mode II fracture propagation, frictional con-
tact, and shear dilation are all simultaneously active has not yet been incorporated into a
numerical model within the framework of the XFEM;

• solution of the nonlinear and heterogeneous advection equation that governs proppant
transport and the shock waves in the solution that are inherent in this nonlinear problem
have not yet been addressed in the literature;

• finally, the coupling of proppant transport into hydraulic fracturing models has not been
previously studied. Models currently available in the literature have only loosely coupled
the proppant transport equation to the equations governing rock deformation and fluid flow.
Convergence and robustness of this loose coupling strategy are questionable and require
further study.

The nonlinear and non-smooth nature of the system of equations is expected to cause numerical
instability and convergence issues. Deformation of the solid rock mass is nonlinear due to
the cohesive tractions present at the tip of the fracture, and non-smooth due to the piecewise
nature of the tractions due to frictional contact and shear-dilation. The fluid flow through a
hydraulic fracture also exhibits a non-smooth behavior as the proppant concentration reaches a
saturation point and the flow transitions from Poiseuille flow through the fracture walls to Darcy
flow through packed proppant particles. The equation that governs proppant transport through a
hydraulic fracture is a nonlinear hyperbolic equation which creates shock waves in the solution
that must be appropriately accounted for. Unlike the works of previous hydraulic fracture models
in the literature which model only linear advection of proppant, the nonlinear form is required

9



to capture the build-up of proppant packs and subsequent flushing. Constraints must also be
imposed on the proppant concentration so that the approximation does not lead to results that
are outside the physically-possible limits. As the fracture propagates, the domain along which
the equations exist is modified, introducing an additional source of non-smoothness. Solution
methods to address this complex nonlinear and non-smooth behavior are addressed in this thesis.
Careful consideration of the coupling strategy is required to ensure that the model is robust
enough to model a variety of scenarios (such as a tip screen-out) without compromising accuracy.

1.6 Research objectives and methodologies

Given the aforementioned background, the overarching objectives of this thesis are presented in
this section, along with the methodologies used to accomplish each of the objectives.

1.6.1 Objective 1: Develop a numerical model for the simulation of the
mechanical deformation and shear dilation of naturally fractured
rock masses

The extended finite element method is used to model the deformation of a fractured reservoir.
Using thismethod, a fracture network ismodeled using junction enrichment functions at nodes that
neighbor fracture intersections. Themodel incorporates frictional contact and shear dilation along
the fracture network. A linear shear dilation model capped by a dilation limiting displacement
is applied on the fracture surfaces. To study the Mode II fracturing behavior in a quasi-static
context, a dynamic relaxation scheme with explicit time integration is used. The numerical model
is verified through the simulation of a shear test, and convergence is shown through the simulation
of a biaxial test on a fractured rock specimen. The completed objective is described in Chapter 2
of the thesis, which is based on the following article:

Rivas, E. et al., A two-dimensional extended finite element method model of discrete fracture net-
works, International Journal for Numerical Methods in Engineering, vol. 117, no. 13, pp. 1263–
1282, 2019

1.6.2 Objective 2: Develop a numerical model for the simulation of prop-
pant transport through planar fractures

The finite volume method is used to model the nonlinear heterogeneous hyperbolic equation that
governs proppant transport through a fracture. A mixture model of the slurry is used which
assumes that the fluid and proppant phases are fully mixed. The nonlinear advection of proppant
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is simulated in this work using the Godunov approximation with an entropy fix and a high-
resolution correction using slope limiters. The constitutive model incorporates the mechanism
of proppant bridging along narrow sections of a fracture. Additionally, a predictor-corrector
algorithm is implemented to impose constraints on the proppant concentration to ensure that
it does not exceed physically permissible limits. Using the aforementioned methodology, this
model is used to simulate a tip screen-out. The numerical model is verified through a comparison
with characteristic solutions. The completed objective is described in Chapter 3 of the thesis,
which is based on the following article:

Rivas, E. and Gracie, R., Numerical considerations for the simulation of proppant transport
through fractures, Journal of Petroleum Science and Engineering, 2019

1.6.3 Objective 3: Develop a numerical model for the simulation of prop-
pant transport through propagating non-planar fractures

A numerical model which couples rock deformation, fluid flow, and proppant transport is de-
veloped. The XFEM, FEM, and FVM are used to model rock deformation, fluid flow, and
proppant transport, respectively. Proppant bridging and the transition from Poiseuille flow of
slurry through the fracture to Darcy flow of fluid through a proppant pack are included in the
constitutive law of the slurry. An injection-rate controlled simulation is performed by imposing
global mass conservation on the system with an iterative scheme. A cohesive zone model in
conjunction with the maximum circumferential stress criterion is used to propagate fractures.
Propagation of a planar fracture is verified against analytical solutions for KGD fractures and
non-planar fracture propagation from a wellbore is also verified. A comparison of monolithic,
sequential, and loose coupling schemes is performed. The completed objective is described in
Chapter 4 of the thesis, which is based on the following article:

Rivas, E. and Gracie, R., A monolithic coupled hydraulic fracture model with proppant transport,
Manuscript submitted for publication, 2020
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Chapter 2

A two-dimensional extended finite element
method model of discrete fracture networks

2.1 Introduction

In this chapter, the framework and formulation for including the mechanism of shear dilation in
the extended finite element method (XFEM) are developed. While a fractured rock mass has
been modeled with the XFEM before [87–89], the focus in XFEMmodels of hydraulic fracturing
has mainly been on the simulation of a single fracture (or very few) under Mode I propagation.
The failure of fractured rock masses under compressive regimes in which Mode II fracture, shear
dilation, and frictional contact are all simultaneously active has not been investigated to date.
Here, an XFEM model including the physics of frictional contact, cohesive fracture, and, most
notably, shear dilation is presented. This chapter is focused onmodeling discontinuities stemming
from the natural fracture network; however, the methodology can be applied to other types of
discontinuities. In this model, fluid flow within the fracture network is ignored and the rock
mass is assumed to be impervious. As such, the model is not able to simulate the production
of hydrocarbons due to shear dilation. The scope is limited to modeling the shear dilation in
fractured rock masses.

The governing equations and XFEM approximation are discussed in Section 2.2. The constitutive
interface models are described in Section 2.3, and the XFEM discretization is described in section
2.4. Finally, at the end of this chapter, the XFEM model is verified using a shear test of a single
joint under various confining stresses, and the convergence of the model is demonstrated using
a biaxial test involving a Discrete Fracture Network (DFN). The XFEM model is then used to
evaluate the stability of an XFEM-DFN simulation of a naturally fractured rock mass slope.
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2.2 Governing equations

The governing equations of a naturally fractured medium are derived in this section. Consider
the motion of a two-dimensional body Ω. The domain of the body is illustrated in Figure 2.1,
with an external boundary denoted by Γ, which has a normal vector n̂. The boundary is divided
into mutually exclusive sets ΓD and ΓC , corresponding to the Dirichlet and Neumann boundaries,
respectively. The body also contains internal boundaries, which are considered natural fractures,
denoted by Γ2. These internal boundaries have normal and tangential base vectors n̂Γ2 (x) and
êΓ2 (x) defined along their lengths. Each fracture has two faces, denoted by Γ+2 and Γ−2 . The
normal and tangential base vectors are defined on the positive face of the fracture, pointing into
the domain. The displacement of a material point, x, at time C is denoted by u (x, C). This
formulation is derived under the assumption of small deformations, and as such, there is no
differentiation between material points in the deformed and undeformed configurations. The
deformation of the natural fractures is small, on the scale of millimeters, compared to the volume
of a rock mass which is on the scale of hundreds of square meters. The deformation of a smaller
rock specimen may also be studied using this assumption as long as the deformation remains
small compared to the size of the specimen, as is the case under externally-applied confining
stresses.

ΓD

ΓC

Ω
êΓ2

t̄2

t̄

Γ2

n̂

n̂Γ2

Figure 2.1: Domain of fractured rock mass

The motion of the domain is governed by conservation of momentum

∇ · 2 + b = d ¥u, ∀ x ∈ Ω, C ≥ 0 (2.1)

in which ¥u (x, C) denotes the second partial derivative of the displacement field (acceleration), d
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is the density of the medium, and 2 is the Cauchy stress tensor. The body is subjected to a body
force, b.

The initial conditions on the domain are represented as

u(x, 0) = u0(x), ∀ x ∈ Ω
¤u(x, 0) = ¤u0(x), ∀ x ∈ Ω

(2.2)

in which u0(x) and ¤u0(x) are the initial displacement and velocity fields, respectively.

The boundary is subjected to an external traction, t̄, along ΓC , a prescribed displacement, ū , along
ΓD, and a traction, t̄2, along the fracture interface, Γ2. The boundary conditions on the external
and internal boundaries are

u = ū, ∀ x ∈ ΓD
2 · n̂ = t̄, ∀ x ∈ ΓC

2 · n̂Γ2 = t̄2, ∀ x ∈ Γ2
(2.3)

The boundary conditions and constitutive laws governing the traction acting along the fracture,
t̄2, due to cohesion and frictional contact are described in detail in Section 2.3.

Multiplying the governing equation (2.1) by a test function, Xu(x) ∈ *0, and integrating over
the domain Ω, the weak form of equilibrium is derived to allow for an approximation that is a
function of a weaker continuity:

Find u(x, C) ∈ * such that∫
Ω

Xu>d ¥u3Ω +
∫
Ω

(∇BXu)>23Ω −
∫
Ω

Xu>b3Ω −
∮
ΓC

Xu>t̄3Γ −
∮
Γ2

JXuK>t̄23Γ = 0 ∀ Xu ∈ *0

(2.4)
in which the space of admissible solutions, *, and admissible test functions, *0, are defined on
the space of functions with square integrable derivatives, �1, as:

* = {u(x, C) | u(x, C) ∈ �1, u(x, 0) = u0(x), u = ū on ΓD, u discontinuous on Γ2}
*0 = {Xu(x) | Xu(x) ∈ �1, Xu = 0 on ΓD, Xu discontinuous on Γ2}

(2.5)

Voigt notation is assumed for all equations after this point. In this notation, the Cauchy stress is
2> =

[
f11 f22 f12

]
. A linear constitutive law of the form 2 = D9 is assumed, in which D is

the two-dimensional plane-strain elasticity matrix, and 9 = ∇Bu is the infinitesimal strain.
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2.3 Interface constitutive models

The traction acting along the fracture comprises frictional contact and cohesive forces. Contact
and cohesive forces act normal to the fracture surfaces, and frictional forces act tangential to the
fracture surfaces. While frictional contact has been implemented by various authors [57, 58, 60],
this work is the first to include dilation of the rock joint, which modifies the constitutive model
for contact. The total traction acting along the fracture is defined with respect to the components
normal and tangential to the fracture face, t̄2= and t̄2C , respectively, as

t̄2 =
(
C̄2>= + C̄2>ℎ

)
n̂Γ2 +

(
C̄ 5 A82

)
êΓ2

= t̄2= + t̄2C
(2.6)

The magnitude of the contact, cohesion, and friction forces are denoted by C̄2>=, C̄2>ℎ, and
C̄ 5 A82, respectively. The constitutive models for the tractions along the fracture are defined in
terms of the jump in the displacement field across the fracture. This jump is represented as
Ju(x)K = u(x+) − u(x−) on Γ2, in which u(x+) and u(x−) are the displacements on the positive
and negative side of the fracture boundary, respectively. The jump can be decomposed into the
normal and tangential jump in displacement, D= (x) and DC (x), respectively, such that

D= (x) = Ju(x)K · n̂Γ2 (x)
DC (x) = Ju(x)K · êΓ2 (x)

(2.7)

The normal vector, n̂Γ2 , is defined as the outward normal to the negative face, pointing in the
direction of the positive face of the fracture. Using this convention, a negative normal jump
signifies an overlap of the fracture faces, whereas a positive normal jump signifies a separation
of the fracture faces. In this study, forces at the fracture are applied under the assumption of
small deformations. This eliminates the need for a contact search algorithm and reduces the
computational cost of the simulation. For large deformation problems, this assumption is not
valid, and a contact search algorithm should be implemented [90].

2.3.1 Contact and cohesive forces

Contact and cohesive forces act normal to the fracture surfaces. Contact forces are applied to
prevent the non-physical overlap of fracture surfaces. Natural fractures are typically sealed due
to the effect of cementation over time under confining stresses. Cohesive forces that impede the
opening of fracture surfaces are applied to model the naturally sealed fractures.
Contact is applied along the fracture surface using the penalty method, and the governing equa-
tions, (2.1), must be satisfied under the constraints that the normal jump in displacement must be
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greater than the dilation along the fracture, D3= , and that the traction acting on the positive side of
the fracture must be equal and opposite to the traction acting on the negative side of the fracture.

D= (x) ≥ D3= , ∀ x ∈ Γ2
2+ · n̂+Γ2 = −2

− · n̂−Γ2 , ∀ x ∈ Γ2
(2.8)

These constraints are imposed by applying equal and opposite tractions on either side of the
fracture. The magnitude of the traction is obtained from the left side of the traction-separation
curve, as shown in Figure 2.2a. The traction-separation law is defined as

C̄2>= =

{
:= (D= − D3=), D= ≤ D3=
0, otherwise

(2.9)

The penalty method is equivalent to placing springs on either side of the fracture. Although an
overlap of the fracture surfaces is not physically possible, it is used numerically to compute the
magnitude of traction required to prevent the overlap. In this context, the contact stiffness, :=,
is physically equivalent to the elasticity of the springs. The main difficulty in using the penalty
method for contact as described in this section is the selection of this stiffness parameter [90,
91], which is problem-dependent. As the parameter goes to infinity, the solution converges to the
exact solution. However, the solution faces stability issues if this parameter is too high. Some
strategies to limit the penalty parameter include keeping the penalty parameter in the same range
as the stiffness terms of the surrounding domain and to estimate the contact stiffness based on the
stable time step [92].

A bilinear intrinsic cohesive model, similar to the one proposed by Geubelle and Baylor [93], is
used in this study. The magnitude of the traction is depicted on the right side of the traction-
separation curve in Figure 2.2a. The traction-separation law is defined as

C̄2>ℎ =


:1(D= − D3=), D3= < D= ≤ D<0G=

5D − :2(D= − D<0G= ), D<0G= < D= ≤ DB4?=

0 otherwise
(2.10)

This model is characterized by an elastic range, in which the traction increases until it reaches
a maximum value. The stiffness of the cohesive model during this elastic section is matched
with the contact stiffness of the fracture, :1 = :=. The maximum cohesive traction is set equal
to the yield strength of the material, 5D. Finally, there is a softening behavior until the fracture
is completely separated. The aperture at which the fracture is fully separated, DB4?= , is selected
based on the fracture energy of the material, such that the area under the traction-separation law
is equal to the Mode I fracture energy [93].

16



� �2 =
1
2
5D

(
D
B4?
= − D3=

)
(2.11)

The traction-separation curve used in this chapter is non-smooth at D<0G= and DB4?= . Another
source of non-smoothness is the amount of dilation in the fracture, D3= . As the dilation changes,
the x-intercept of the traction-separation curve moves and creates an entirely new traction-
separation law. While a smooth traction-separation curve is also possible and leads to well-
defined derivatives along the curve, it does not remove the non-smoothness that arises from the
dilation in the system.

5D

D=

D<0G= D
B4?
=

C̄2>= + C̄2>ℎ

:=

D3=

contact cohesion separation

(a) Constitutive law for contact and cohesive
tractions acting normal to the fracture interface

(b) Contact forces acting on fracture surface

Figure 2.2: Traction-separation curve and sketch of contact forces on rough fracture surface

2.3.2 Friction

Frictional forces are also modeled along the fracture when the faces are in contact. An elasto-
plastic formulation of Coulomb friction is used, as shown by the shear traction-separation curve
in Figure 2.3a. The relationship between frictional traction and shear displacement is defined
when the fracture is in contact (the first case in the equation below corresponds to Figure 2.3a),
and there is no friction when the fracture is in a separation state

|C̄ 5 A82 | =
{
|:CDC | ≤ g2A8C , D= ≤ D3=
0, otherwise

(2.12)

The frictional stiffness, :C , is also a problem-specific parameter. A predictor-corrector algorithm,
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similar to the implementation used in classical plasticity, is used to model the yielding of the
frictional traction along the fracture. The fracture is initially in a “stick” state, in which the shear
displacement is limited by a linearly proportional shear traction, similar to contact in the normal
direction. When the traction reaches the shear strength of the material, it moves into a “slip" state,
in which the fracture surface has yielded. A linear Coulomb failure criterion is used to define the
shear strength of the material as

g2A8C = 2 5 + |C̄2>= | tan(q) (2.13)

in which 2 5 is the shear strength due to cohesion and q is the angle of friction of the fractures.

C̄ 5 A82

:C

g2A8C

D
?40:
C

DC

stick slip

−D?40:C

−g2A8C

slip

(a) Constitutive model for frictional tractions
acting tangential to fracture surface

(b) Friction forces acting on fracture surface

Figure 2.3: Friction constitutive model and sketch of frictional forces acting on rough
fracture surface

2.3.3 Shear dilation

The dilation in the system is dependent on the relative tangential displacement and the normal
traction acting on the fracture. This mechanism has not yet been included in an XFEM model
reported in the literature and is responsible for a permeability increase in the fractured medium.
A linear constitutive law is used for dilation when the fracture is in contact (i.e., when D= ≤ D3=),
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defined as [94]

D3= =


( |DC | − D?40:C ) tan(i) D

?40:
C < |DC | < D2A8CC

(D2A8CC − D?40:C ) tan(i) |DC | > D2A8CC

0 otherwise
(2.14)

In this model, the fracture begins to dilate after it slips, and the amount of dilation increases
proportionally to the amount of slip with a dilation angle, i, as shown in Figure 2.4a. The
dilation growth is capped at a critical shear displacement, D2A8CC . In this study, the critical shear
displacement is defined as the peak shear displacement for a normal load equivalent to the
unconfined compressive strength of the material, fD.

D2A8CC =
fD tan(q) + 2 5

:C
(2.15)

Note that if the critical shear displacement is not greater than the peak shear displacement (i.e.
|C̄2>= | > fD), the dilation will be set to zero. An additional assumption is that the dilation along a
joint is irreversible after slip. Therefore, the dilation at a rock joint will remain constant after a
certain shear displacement is exceeded.

D
?40:
C

i

D2A8CC

D3=

|DC |

(a) Dilation constitutive model

D3=

(b) Average dilation along fracture surface

Figure 2.4: Linear dilation constitutive model and sketch of average dilation, D3= , along
rough fracture surface

2.4 XFEM discretization

The extended finite element method (XFEM) is used in this study to discretize natural fractures
separately from the solid rock mass. This method simplifies meshing of the solid rock matrix
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around arbitrary fracture geometries, reduces mesh dependency on the fracture network, and
eliminates the need for remeshing as fractures grow. The discontinuous displacement field is
approximated by adding additional degrees of freedom in the solid mesh at nodes surrounding
the fractures.
In this work, the fracture network is known a priori. In practice, where the fracture network is not
available, a fracture network must be simulated using available data so that the generated fractures
represent the real reservoir conditions. This may be based on knowledge of fracture density and
preferential fracture orientation from cores. Work on fracture network characterization has been
performed by various researchers [95, 96].

2.4.1 Explicit and implicit definition of fracture network

The solid domain is discretized into quadrilateral elements, and the fractures are defined using
linear segments that span between edges of the solid mesh elements, as depicted in Figure 2.5.
These fracture segments are each defined by separate normal, n̂Γ2 and tangential vectors, êΓ2 .

Node enriched by crack 1

Element containing crack 1
Element containing crack 2

Node enriched by crack 2

Element containing all three cracks

Node enriched by all three cracks

q1 > 0

q1 < 0
q2 < 0

q2 > 0

ê1

n̂3

ê3

n̂1
Node enriched by crack 3

n̂2

ê2

q3 < 0 q3 > 0

Element containing crack 3

Figure 2.5: Enriched nodes on XFEM mesh with multiple fractures

To facilitate the enrichment of intersecting fractures (as described in Section 2.4.4), fractures
must be separated into main fractures (which extend through an intersection), and secondary
fractures (which are cut along an intersection). This is done by looping through each fracture,
and successively separating it into two parts at the junction if it is cut by any of the preceding
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fractures processed in the loop. Each of these fractures is then stored in memory, along with its
normal and tangential vectors, fracture tip, and length. An example of a fracture network and its
separation into main and secondary fractures is depicted in Figure 2.6.

1

2
3

4

5

6

7

8

Figure 2.6: Global crack separation

Using the explicit definition of the fracture, an implicit description of the fracture network is
defined in the solid domain by two level-set functions for each fracture, q2 and k2. The level-set
functions define the signed distance between a location along the domain, x, and the tip of the
discontinuity, xC8?

Γ2
, in the direction normal and tangential to the fracture, respectively. These

level-set functions are evaluated at each of the solid mesh nodes to simplify the definition of the
enriched nodes and enrichment functions, as described in Section 2.4.3.

q2 (x) =
(
x − xC8?

Γ2

)
· n̂Γ2

k2 (x) =
(
x − xC8?

Γ2

)
· êΓ2

(2.16)

2.4.2 Approximation

The displacement field is approximated by a discontinuous function, defined by enriching the
shape functions at nodes that are adjacent to fractures in the domain. For each element, the
approximation of the displacement field is expressed as

uℎ (x, C) =
∑
�∈(=

#� (x)ũ� (C) +
∑
2∈(2

( ∑
�∈(=2

#� (x)Ψ2� (x)ã
2
� (C)

)
≡ ND (x)û(C) + N0 (x)â(C)

≡
[
ND (x) N0 (x)

] [
û(C)
â(C)

]
= N(x)d(C)

(2.17)
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in which (= is the set of all nodes in each element, (2 is the set of fractures in the domain, and
(=2 is the set of nodes that have a nodal support cut by fracture 2. An example showing the set
of nodes that are enriched for two fractures in a domain is shown in Figure 2.5. For each node,
�, the standard finite element shape functions are denoted by #� and the enrichment functions
for fracture 2 are denoted by Ψ2

�
(x). The vectors of nodal displacements on the standard degrees

of freedom and degrees of freedom enriched on node � by fracture 2 are denoted by ũ� (C), and
ã2
�
(C), respectively. This enrichment function is described in further detail in Section 2.4.4.

In matrix form, the shape functions corresponding to the standard degrees of freedom are denoted
by ND, and the enriched shape functions corresponding to the enriched degrees of freedom for
all fractures are compiled into a matrix and denoted by N0. Likewise, the nodal displacements
for the standard and enriched degrees of freedom are combined into column matrices û and â,
respectively. The formulation can be rewritten to simplify computations by creating a matrix
that contains both the standard and enriched shape functions, N(x), and a column matrix that
contains the displacements on both the standard and enriched degrees of freedom, d(C). The time
derivatives of the displacement field (velocity and acceleration) are approximated similarly.

Using the approximation, the jump in the displacement field can then be defined in terms of the
enriched degrees of freedom as

Juℎ (x)K = uℎ (x+) − uℎ (x−)

=
∑
2∈(2

( ∑
�∈(=2

N� (x)
(
Ψ2� (x

+) −Ψ2� (x
−)

)
ã2� (C)

)
≡

[
N0 (x+) − N0 (x−)

]
â(C)

(2.18)

The strain, or spatial derivative of the displacement field, is approximated by

9ℎ = ∇Buℎ (x, C) =
∑
�∈(=
∇B#� (x)ũ� (C) +

∑
2∈(2

( ∑
�∈(=2

∇B#� (x)Ψ2� (x)ã
2
� (C)

)
≡ BD (x)û(C) + B0 (x)â(C)

≡
[
BD (x) B0 (x)

] [
û(C)
â(C)

]
= B(x)d(C)

(2.19)

in which BD and B0 are the derivatives of the shape functions corresponding to the standard and
enriched degrees of freedom, respectively, and B is a matrix that contains the derivatives of the
shape functions for both the standard and enriched degrees of freedom.
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2.4.3 Identification of enriched nodes

Nodes of the solid mesh that have their nodal support cut by a fracture are enriched with extra
degrees of freedom for that fracture. The process of enriching nodes begins by searching through
each element to identify which elements contain a part of the fracture, and then adding enriched
degrees of freedom to all nodes in the element. Three criteria based on the level-set functions at
the element nodes are used to identify if a fracture is cut. The element is intersected by a fracture
if the minimum and maximum normal level sets have opposite sign, and if the minimum and
maximum tangential level sets are greater than the fracture length and less than zero, respectively.
The criteria are defined with respect to all nodes � in the element,

max(q2 (x�))min(q2 (x�)) ≤ 0 (2.20)
max(k2 (x�)) ≤ 0 (2.21)
min(k2 (x�)) ≥ −!2 (2.22)

in which !2 is the fracture length.

There are various cases around the fracture tip in which these criteria are not sufficient to properly
identify an element with a fracture in it. An example of this is given in Figure 2.7, in which the top-
right element meets the criteria for enriched element detection but does not contain the fracture.
For this reason, it is necessary to add a criterion for elements around the fracture tip. If the element
possibly contains a fracture tip (i.e. min(k2 (x�))max(k2 (x�)) ≤ 0 or min(k2 (x�)) ≤ −!2 and
max(k2 (x�)) ≥ −!2), then the explicit fracture mesh must be checked to ensure that the tip is in
fact located inside the element.

q1 < 0

q1 > 0

k1 > 0

k1 < 0

Figure 2.7: Erroneous detection of enriched element with criteria based on level-set func-
tions. The top-right element is detected as enriched but does not contain a fracture
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2.4.4 Enrichment function

To model discontinuities in the displacement field, a shifted Heaviside enrichment function is
used at each node, �, defined as

Ψ2� (x) = �2 (x) − �2 (x�) (2.23)

in which �2 (x) is the Heaviside step function that differentiates between the two sides of fracture
2,

�2 (x) = � (q2 (x)) =
{

0 if q2 (x) < 0
1 if q2 (x) ≥ 0

(2.24)

The Heaviside enrichment at each node is shifted by the Heaviside function evaluated at the
corresponding node to satisfy the Kronecker-X property.
For a single fracture or multiple, non-intersecting fractures in an element, the enrichment function
above is sufficient to capture the discontinuity. Another case that is encountered in this study is
the intersection of fractures within an element. Daux et al. [97] proposed that an element with
two intersecting fractures must have three sets of enriched nodes to satisfy rigid body motions
for each of the four independent blocks that are created by the junction. To accomplish this, each
element with an intersection is enriched by three fractures–the main fracture and two secondary
fractures. This formulation relies on the initial separation into main and secondary fractures
described in Section 2.4.1. For each secondary fracture, it is necessary to keep track of all the
main fractures that cut it. All nodes, �, which have a nodal support cut by a secondary fracture
are enriched with the following function,

Ψ2� (x) = �2 (x) − �2 (x�) (2.25)

The function �2 (x) is the junction enrichment function which is taken as a modification of that
proposed by Zi et al. [38] and Daux et al. [97]. For enrichment of a given fracture 2, this function
simplifies to the Heaviside enrichment function when evaluated on the same side of the main
fracture which intersects it.

�2 (x) =
{
�2 (x) for q2 (x)q< (x2) > 0 ,∀< ∈ (<2
0 otherwise

(2.26)

In this function, the subscript 2 refers to the secondary fracture and (<2 is the set of main fractures
that cut secondary fracture 2. The location x2 is an arbitrary point on the secondary fracture.
The junction function is applied on all enriched nodes for secondary fractures, and not only on
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the junction elements, as done in previous works. For enriched nodes that are not directly in the
junction element, the junction function will be the same as the Heaviside function.

Using these definitions of enrichment functions the approximation (Equation 2.17) can be rewrit-
ten as

uℎ (x, C) =
∑
�∈(=

#� (x)ũ� (C) +
∑
2∈(<

( ∑
�∈(=2

#� (x) [�2 (x) − �2 (x�)] ã2� (C)
)

+
∑
2∈(B

( ∑
�∈(=2

#� (x) [�2 (x) − �2 (x�)] ã2� (C)
) (2.27)

in which (< is the set of all main fractures in the domain, and (B is the set of all secondary
fractures in the domain, as described in Section 2.4.1. An example showing the enrichment
functions for intersecting fractures in an element is depicted in Figure 2.8. It can be seen that
the Heaviside function is used to enrich the main fracture, and junction enrichments are used to
enrich the secondary fractures. In the non-shaded areas of the figures, the enrichment functions
have a value of zero.

ê1

n̂3

ê3

n̂1

n̂2

ê2
ê1

n̂3

ê3

n̂1

n̂2

ê2

ê1

n̂3

ê3

n̂1

n̂2

ê2

�1 = 1

�2 = 1

�3 = 1

Figure 2.8: Enrichment functions for an element with intersecting fractures

2.4.5 Discretization

Following the standard procedure, the semi-discretized equations are obtained by inserting the
approximation (2.17) and a test function of a similar form into the weak form of the governing
equation (2.4). The weak form is
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
∫
Ω

dN)N3Ω
 ¥d︸               ︷︷               ︸

F:8=

+
∫
Ω

B) {2}3Ω︸           ︷︷           ︸
F8=C

=


∫
Ω

N)b3Ω +
∫
ΓC

N) t̄3Γ
︸                            ︷︷                            ︸

F4GC

+
∑
2

∫
Γ2

N) t̄23Γ

︸            ︷︷            ︸
F2

(2.28)

The semi-discrete system of equations is

M¥d + C ¤d +Kd = F4GC + F2 (2.29)

in which the contribution from kinetic forces is denoted by F:8= = M¥d. A viscous damping term,
F30<? = C ¤d, is included in the system of equations. A mass-proportional damping matrix is
assumed, such that C = 2M. The contribution from internal forces is denoted by F8=C = Kd.
The column matrix of external forces, F4GC , are due to the external tractions, t̄, and body forces,
b. The column matrix of forces along the fractures, F2, are due to tractions along the fracture
surfaces, t̄2. The semi-discrete equations are integrated in time using an explicit time integration
method, which is described in more detail in Section 2.5.
The evaluation of the stiffness and mass matrices requires integration over discontinuous element
domains and the various fracture surfaces. Domain integration over discontinuous elements is
performed by splitting the elements into sub-triangles in the normal XFEM way [34, 44, 50].

2.5 Solution method

The solution of the semi-discrete equation (2.29) is obtained in this study using a dynamic
relaxation scheme with explicit time integration. In this section, a description of the solution
method is provided.
Implicit methods with a Newton-Raphson iterative solver are commonly used to solve equilibrium
problems. For linear transient problems, this method has the distinct advantage of unconditional
stability. However, this stability is not proven for nonlinear systems, and convergence of the
method often fails in the vicinity of unstable states, such as when a fracture is on the border
of contact/separation states [98]. The interface constitutive models employed in this study are
non-smooth functions of the displacements: contact/separation, sharp kink before softening of
the cohesive forces, stick/slip behavior, and non-smoothness in the dilation behavior which in
turn affects the contact traction-separation law. As a result, implicit Newton strategies may lack
the robustness to solve this problem under all loading conditions. Additionally, the linearization
of the forces along the fractures are cumbersome to derive for the nonlinear relationships of these
forces to the displacements, and other history variables. For this reason, many discrete element
method codes implement an explicit time integration method, as is the case in this paper.
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A dynamic relaxation (DR) scheme is used, as described in more detail in this section. Using this
algorithm, Equation (2.29) is solved with certain mass (M) and damping (C) matrices so that the
solution converges to the following quasi-static equation

Kd = F4GC + F2 (2.30)

2.5.1 Dynamic relaxation scheme

The selection of density and damping parameters such that the dynamic problem converges to
a quasi-static solution is performed through a dynamic relaxation algorithm [99, 100]. This
algorithm adjusts the mass and damping of the system to achieve a static solution. The algorithm
is as follows,

1. Initialize d0, ¤d−1/2, F8=C , M, 2, and ΔC

2. ¥d= = M−1 (
F4GC + F2 − F8=C

)
3. ¤d=+1/2 =

(
2 − 2ΔC
2 + 2ΔC

)
¤d=−1/2 +

(
2ΔC

2 + 2ΔC

)
¥d=

4. d=+1 = d= + ΔC ¤d=+1/2

5. Calculate F8=C (d=+1), F2 (d=+1), M (2.32), and 2 (2.33)

6. Check convergence (2.36-2.37)

7. If not converged, repeat steps 2-6

The explicit scheme is conditionally stable. To meet the Courant-Friedrichs-Lewy (CFL) condi-
tion, the time step used in the system must stay below a critical value, defined as

ΔC ≤ 2
l<0G

(2.31)

in which l<0G is the highest frequency of the system. In the algorithm used, the time step is user-
defined and the highest frequency of the system is adjusted to meet the CFL condition. Although
a dynamic equation is solved explicitly, time steps do not represent physical time but rather a way
to progress through the quasi-static solution. An upper bound approximation using Gerschgorin’s
theorem gives the highest frequency of the system with respect to the mass and stiffness matrices.
Using the upper bound approximation for the maximum frequency and a prescribed time step
size, the system mass matrix is approximated as
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"88 =
ΔC2

4

∑
9

| ̄8 9 | (2.32)

in which K̄ is the stiffness matrix approximation described below. The mass matrix definition
from equation (2.28) is no longer used in the algorithm.

A damping term is added to the system of equations, equal to Cd. The mass-proportional
damping matrix is defined as �88 = 2"88. The damping parameter, 2, is defined with respect to
the minimum natural frequency of the system.

2 = 2l<8= (2.33)

Using the Rayleigh quotient to estimate the minimum eigenvalue of the system, the minimum
natural frequency is estimated in each time step as

l<8= =

[
( ¤d=−1/2)>K̄= ¤d=−1/2

( ¤d=−1/2)>M ¤d=−1/2

] 1/2
(2.34)

in which an approximation of the term K̄= ¤d=−1/2 is given as:

K̄= ¤d=−1/2 =

(
F=
8=C
− F=2

)
−

(
F=−

1
2

8=C
− F=−

1
2

2

)
ΔC

(2.35)

Convergence of the algorithm is based on both displacement- and residual-based criteria, although
it is noted that the residual-based criterion often governs. The criteria are

| |d=+1 − d= | | ≤ nD | |d= | | (2.36)
| |r=+1 | | ≤ nA max( | |F=+14GC | |, | |F=+18=C | |, | |F=+12 | |) (2.37)

in which r=+1 = F=+1
:8=
+ F=+1

30<?
. The first condition is met when the percent change in the

displacement norm is below a small threshold value, nD. The second condition is met when the
residual norm, defined by the transient terms in the system and normalized by the dominating
steady-state forces, is below a small threshold value, nA . In the problems described in Section
2.6, the tolerances are defined as nD = 1 × 10−4, and nA = 1 × 10−5.
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2.6 Numerical results

This section shows the application of the model to a few problems with naturally fractured rock.
To verify the implementation of the constitutive model described in Section 2.3, a shear test is
simulated under various loading stresses. The convergence of the model with multiple fractures
is studied through a simulation of a biaxial test. Finally, application to a larger scale problem is
shown through simulation of loading on a naturally fractured slope. All of the examples use the
material properties presented in Table 2.1.

Table 2.1: Material properties for simulations of discrete fracture networks

Young’s modulus � 65 GPa
Poisson’s ratio a 0.2
Density d 2.7 g/cm3

Fracture energy � �2 1 J/m2

Tensile strength 5D 100 kPa
Cohesion weakening aperture D<0G= 0.0801 mm
Fracture separation aperture D

B4?
= 0.01 mm

Unconfined compressive strength fD 100 MPa
Critical slip D2A8CC 12.5 mm
Friction angle q 32 ◦

Cohesive shear strength 2 5 100 kPa
Dilation angle i 5 ◦

2.6.1 Shear test

A direct shear test on a 100 mm × 150 mm × 100 mm rock specimen is simulated. The specimen
contains a weak plane, i.e., natural joint, passing through the specimen in the middle of its longest
dimension as illustrated in Figure 2.9a. A two-dimensional uniform structured mesh of 2601
four-node quadrilateral elements with an average effective mesh size of 2.45 mm is employed to
analyze the 100 mm × 150 mm plane of study shown in Figure 2.9b under plane strain conditions.
A normal stiffness of := =10 GPa/mm and a shear stiffness of :C = 5 GPa/mm are assumed for
the contact behavior along the interface.

The shear test is repeated for four different values of normal stress ranging from 20 MPa to 100
MPa. Each test is carried out by imposing a total horizontal displacement of 60 mm, in equal 3
mm increments, to the upper half of the specimen while the specimen is under specified normal
stress, fH, applied on its top surface. The bottom edge of the specimen is assumed to be fixed
in both x- and y-directions. Upon the start of each test, the horizontal displacement from the
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Figure 2.9: Schematic of shear test specimen (left), and horizontal displacement contour
on deformed mesh (right)

previous test is reset to zero and the normal stress is increased to the designated normal stress
of the current test. Shear stress, shear deformation, and shear dilation are measured along the
joint during each stage of the test. This problem does not conform to the requirements for small
displacements and should be performed with contact node detection. However, this simulation is
performed under the assumption of small deformations for verification of the interface constitutive
model only.

Figure 2.10a illustrates the stress-deformation curves of the specimen under shear stresses gen-
erated by the imposed shear displacement under four different normal stresses. The figure is
generated by averaging the shear stress at each quadrature point along the fracture. It shows that
shear stress on the interface increases linearly to the value of the peak shear strength, g2A8C , of
the jointed rock specimen as shear displacement is applied with a constant rate. Upon reaching
the critical stress, the specimen shows no additional resistance against the shear displacement
and the stress-strain curve plateaus. Such a plateau is expected since the effect of asperities (or
surface roughness) along the interface is modeled by an average dilation angle which does not
take into account the stress drop due to the resolution of asperities on the shearing interface.
Figure 2.10a also shows that the magnitude of the normal stress directly affects the shear strength
of the specimen. In other words, the specimen shows a higher shear strength along the joint in
tests which are carried out under higher normal stresses.

In contrast with the shear strength curve, Figure 2.10b shows that the average dilation of the
specimen under direct shearing decreases as the normal stress on the interface increases from
20 MPa to 80 MPa. As seen in the figure, the shear displacement under which dilation initiates
(i.e., the point at which the interface starts to slip) and the amount of dilation itself are functions
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Figure 2.10: Shear stress (left) and shear dilation (right) along crack throughout shear test

of the normal stress, fH. In the fourth test in which the normal stress, fH = 100 MPa, is equal
to the unconfined compressive strength of the specimen, fD, the model shows no dilation on
the interface as shear displacement increases from zero to its maximum value. Physically, this
represents local shearing of asperities along the rough surface, instead of dilation along them.

The analytical Mohr-Coulomb failure surface and the failure point associated with each of the
four tests are depicted in Figure 2.11. The dashed line in the figure represents the analytical
Mohr-Coulomb failure surface for the values of friction angle and cohesion provided in Table
2.1, which verifies the values obtained from the numerical model using the interface constitutive
laws, (2.13) and (2.14) with the same parameters.
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Figure 2.11: Critical shear stress vs. normal stress for shear test specimen
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2.6.2 Biaxial test of a rock mass with a DFN

A biaxial test on a 100 mm × 100 mm × 100 mm specimen from a naturally fractured rock sample
is simulated. The specimen is assumed to contain two sets of dominant natural fractures as shown
in Figure 2.12a. The top and the right edges of the specimen are considered to be fixed in the
vertical and horizontal directions, respectively. An external load is applied on the left and bottom
edges of the specimen by imposing displacements in x- and y-directions. The plane of analysis
is assumed to be under a plane strain condition, and the normal and tangential stiffnesses along
fracture interfaces are set to := = 1.0 × 104 GPa/m and :C = 5.0 × 103 GPa/m respectively.

Applied displacements are chosen to correspond to an equivalent stress state with a ratio of
horizontal and vertical stresses,  = fG/fH. Initially, isotropic confining stresses are applied
on the specimen with  = 1. The shear stress on the specimen is monotonically increased by
decreasing  until failure occurs, reducing fG while maintaining fH constant. A sample mesh of
400 elements in its deformed shape is presented in Figure 2.12b.

D̄H

D̄G

100 mm

100 mm

50◦75◦

(a) Biaxial test schematic

-0.02

0.0001

-0.015
-0.01
-0.005

DG (mm)

(b) Horizontal displacement contour

Figure 2.12: Schematic of biaxial test on jointed rock specimen (left), and horizontal
displacement contour on structured mesh of 400 linear quadrilateral elements in deformed
state using the XFEM-DFN model (right)

Figure 2.13 presents the failure scenario along the fractures in the specimen as the stress ratio
changes from  > 0.28 to  = 0.1, in which sections of the fracture in blue represent parts of the
fracture that have yielded. The first evidence of failure is detected along the fracture set oriented
50◦ from horizontal at  = 0.28. Decreasing the stress ratio, the second set of fractures (oriented
75◦ from horizontal) begins to fail at  = 0.19.

Dilation along fractures is expected to follow a similar pattern as the shear displacement in
Figure 2.13 due to the proportionality of the dilation and shear displacements in the constitutive
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model. Figure 2.14 shows the amount of dilation along the fractures for various stages of loading.
The average dilation along fractures oriented 75◦ from horizontal is lower than the other set of
fractures, since the former undergoes smaller shear displacements after failure compared to the
latter. The simulation is performed in 20 load steps, with each load step taking between 100 and
2000 iterations to converge to a quasi-static solution. The load steps near the end of the simulation
take more iterations to reach equilibrium than the initial load steps since the shear stress acting on
the fracture surfaces increases the area of the fracture surfaces yielding and undergoing dilation.

(a)  < 0.28 (b)  = 0.28 (c)  = 0.235

(d)  = 0.19 (e)  = 0.145 (f)  = 0.1

Figure 2.13: Slip (represented in blue) along fractures at various loading stages of a rock
mass with a DFN

To study convergence of the numerical solution, seven different meshes of bilinear quadrilateral
elements are studied. A failure curve represented by the global differential stress versus the
vertical strain is shown in Figure 2.15 for the various meshes. It can be seen that as the average
effective mesh size is decreased, the softening branch of the stress-strain curve is captured with
higher precision. The curve is similar for all meshes during the initial loading before yielding
and varies depending on the mesh size after the yield point. The converged failure curve shows a
softening behavior. As  decreases, the average normal stress on the specimen is reduced, which
also decreases the differential stress (a measure of shear stress) after the specimen has yielded.
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Figure 2.14: Shear dilation along fractures at various loading stages of a rock mass with a
DFN
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The horizontal displacement contours at  = 0.1 for the seven meshes are shown in Figure 2.16.
These also show to be converging with smaller element sizes for each mesh.
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Figure 2.15: Differential stress vs vertical strain of the fractured rock specimen during
biaxial loading for various mesh sizes

2.6.3 Stability of a rock slope containing a DFN

A naturally fractured rock slope with two perpendicular dominant fracture sets is simulated in this
example to demonstrate the capability of the numerical model in simulating multiple interacting
contact surfaces on a large scale.

Figure 2.17a shows the geometry of the slope, which is loaded on its top edge and considered to
be confined in the horizontal direction on its left and right edges. The bottom edge of the slope is
also assumed to be fixed in both horizontal and vertical directions. The natural fracture network
is represented by a set of five parallel fractures with a 22 m spacing and an inclination angle of
50 degrees from the horizontal, along with a set of six fractures perpendicular to the first set with
the same spacing (total of 11 fractures) as depicted in Figure 2.17a.

Numerical analysis is performed using an unstructured mesh of 3784 bilinear quadrilateral ele-
ments with an average effective mesh size of 1 m. A normal stiffness of := = 10 GPa/m and a
tangential stiffness of :C = 1 GPa/m are set for the constitutive model of the fractures. The slope
is initially under gravitational loads from its weight. A monotonically increasing external load is
applied along a 5 m span on the top edge of the model in equal increments of ΔC̄H = 0.38 MPa
until the slope fails (failure occurs at C̄H = 14.4 MPa in this case). The deformed configuration
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Figure 2.16: Horizontal displacement contours for various mesh sizes during a biaxial test
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of the numerical mesh and the contours of vertical displacement in the model are shown at the
moment of failure in Figure 2.17b.

20 m

30 m

30 m 5 m15 m10 m 20 m

C̄H

(a) Rock slope schematic

0.6 -2 -4 -6
DH (mm)

(b) Vertical displacement contours

Figure 2.17: Schematic of loading on fractured rock slope (left) and vertical displacement
contours on deformed unstructured mesh of 3784 linear quadrilateral elements, magnified
1000x (right)

Figure 2.18 provides a comparison between components of stress at the initial stage when the
slope is only under gravitational forces and the moment of failure. Shear stress contours in Figure
2.18f show the development of high shear stress regions along two of the fractures in the model.

The slip along each fracture on the slope is provided in Figure 2.19a, in which it can be seen that
the maximum shear displacement occurs on the fractures directly beneath the applied loading.
Referring to Equation 2.14, the amount of dilation along each joint is expected to be directly
proportional to the amount of slip that occurs on the interface. Figure 2.19b verifies that the
maximum dilation is detected at the point of maximum slip along the critical fracture of the
slope. It is also interesting to note that there is a portion along this fracture that does not undergo
any dilation. This zone has a normal stress higher than the unconfined compressive strength of
the material which suppresses the dilation.
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Figure 2.18: Stress contours under gravitational loading (a, c, e) and just before failure (b,
d, f)
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Figure 2.19: Contours of slip (left) and dilation (right) along the fractures of the slope just
before failure
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Chapter 3

Numerical considerations for the
simulation of proppant transport through
fractures

3.1 Introduction

The purpose of this chapter is to present the numerical methodology for solving the nonlinear
hyperbolic partial differential equation that describes proppant transport through a hydraulic
fracture in one-dimension using the finite volume method. The model can capture the shock
waves generated due to the nonlinear flux function, and the effects of spatially-varying width and
pressure gradient along the fracture. It can also capture the mechanism of proppant bridging, or
the impediment of proppant flow when the fracture width is too narrow. The one-dimensional
model presented in this chapter is not able to capture all the relevant phenomena associated
with proppant transport, such as settling, proppant bed formation, dune transport, and viscous
fingering. The numerical methodology presented may be applied to a two-dimensional model to
capture other mechanisms of interest.
The governing equations for the proppant particle transport are derived in Section 3.2. Possible
flux functions are described in this section. In Section 3.3, the finite volume method is used to
discretize the governing equations and the approximation of the finite volume fluxes is presented.
This section includes the derivation of a critical time step for proppant transport, a discussion of
the source of shock waves in the nonlinear problem, the approximation of the characteristic speed
and flux at the cell edges, and the boundary conditions imposed on the solution. A new algorithm
for constraining the proppant concentration below the saturation limit is described in this section
as well. Various numerical results are then discussed in Section 3.4, including proppant transport
at the inlet, at a plug, through an elliptical fracture, and a plane-strain KGD fracture. The solution
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is verified by comparison with characteristic solutions. Solutions are presented using a variety of
effective viscosity expressions from the literature, and the efficacy of the new constraint algorithm
is studied.

3.2 Governing equations

The governing equation for proppant transport in a fracture is described in this section and placed
in the context of the slurry (fluid and proppant mixture) flow. A mixture model is used which
assumes that the fluid and proppant phases are fully mixed and that there is an equilibrium in
mass, momentum, and energy transfer [15]. Consider a two-dimensional fracture plane with a
reference coordinate system, G, running along the length of the fracture at the centerline from
the wellbore to the fracture tip, as depicted in Figure 3.1. The width of the fracture, F(G), is
described along the fracture length and the fracture height is assumed to extend a large distance
into the domain, such that plane strain conditions apply. Assuming symmetry, only half of the
fracture is modeled, with the point closest to the wellbore (or inlet) located at G0 and the tip of
the fracture at GC8?.

wellbore G

F(G)

G0 GC8 ?

injection point

Figure 3.1: Domain of interest for a proppant transport model along a horizontal plane of
a vertical fracture

3.2.1 Slurry equations

The equations for conservation of mass for the proppant and fluid phases, respectively, are given
in Equations (3.1) and (3.2) below. Summing these equations leads to the conservation of mass
for the slurry, given in Equation (3.3).
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proppant mass :
m

mC

(
qFd?

)
+
m&? (q, F, ?,G)

mG
= q8= 9&8= 9X(G − G0) (3.1)

fluid mass :
m

mC

(
(1 − q)Fd 5

)
+
m& 5 (q, F, ?,G)

mG
+&B8=: = (1 − q8= 9 )&8= 9X(G − G0) (3.2)

slurry mass :
m (Fd)
mC

+ m&(q, F, ?,G)
mG

+&B8=: = &8= 9X(G − G0) (3.3)

In these equations, q(G, C) is the average volumetric concentration of proppant particles across the
fracture width at time C. The density of the proppant particles and fluid, respectively, are given by
d? and d 5 , while the density of the slurry is d = qd? + (1 − q)d 5 . The mass fluxes of proppant
and fluid per unit fracture height are denoted by &? and & 5 , respectively. The total mass flux of
the slurry, & = &? + & 5 , is the sum of the proppant and fluid mass fluxes. A constitutive law
defines the relationship between the flux and pressure gradient of the slurry, m?/mG, described
in further detail below. The source term, &8= 9 , is the mass flux of slurry per unit area of fracture
injected at the wellbore, G0. The sink term, &B8=: , accounts for fluid leaving the fracture in the
form of leak-off into the formation.

Any two of the equations (3.1)-(3.3) can be solved to obtain the unknown variables: fluid pressure,
?, and proppant concentration, q. Mixture models used to simulate hydraulic fractures in the
literature typically solve the proppant (3.1) and slurry (3.3) conservation equations along with the
elasticity equation that describes rock deformation to obtain the fracture width. In these models,
the converged solution of the rock deformation and slurry flow is obtained first and then the
proppant conservation law is used to update the concentration for the next time step.

The missing equation is a constitutive law that relates the mass flux to the concentration and
pressure gradient. The most commonly used assumption is that of Poiseuille flow, with a
correction for the viscosity of the slurry that is dependent on the proppant concentration, `(q),
described in further detail in Section 3.2.3. Hammond [101] defines these constitutive laws
assuming both a homogeneous slurry and a close-packed core sheet. In this work, a homogeneous
slurry is assumed. Solving the conservation of momentum of the slurry mixture using lubrication
theory, the slurry velocity, E, as a function of the distance along the fracture width, H, is obtained,

E =
1

2`(q)
m?

mG

(
H2 − HF

)
(3.4)

The velocity of the proppant component of the slurry, E?, is defined by assuming a slip velocity
between the slurry and the proppant, EB;8? = E? − E. In the literature, this slip velocity has been
related to proppant settling but most models do not include the slip in the direction of the fracture
length. In the context of the one-dimensional model used for this work, the proppant is assumed
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to flow with the same velocity as the slurry (E? = E). The mass flux of the slurry, &, and the
proppant, &?, are defined respectively as

& =

∫ F

0
dE3H = −d F3

12`(q)
m?

mG
(3.5)

&? =

∫ F

0
qd?E?3H = −qd?

F3

12`(q)
m?

mG
(3.6)

Coupled hydraulic fracturing models in the literature typically hold the slurry velocity, E, constant
during the proppant update, neglecting its dependence on the proppant equation as shown in
Equation 3.4. Therefore, in these models, the mass flux of the slurry is linearized to&? = qFd?E.
The work in this thesis does not make this assumption, maintaining the nonlinear form of the
proppant flux.

3.2.2 Proppant equation

The focus of this chapter is solely on the solution of the continuity equation of the proppant. The
specific form of the equation, described in further detail in the following section, depends on
the assumptions made about the effective viscosity of the slurry. The mass form of conservation
equation (3.1) is rewritten in volumetric form for incompressible proppant as

m (qF)
mC

+ m@
mG

= q8= 9@8= 9X(G − G0) (3.7)

in which @ = &?/d? is the volumetric flux of the proppant per unit height of the fracture and
@8= 9 is the volumetric injection flux per unit area of the channel. This chapter aims to discuss
the solution of the nonlinear advection equation (3.7) for proppant flow in a fracture. Dividing
equation (3.6) by the proppant density, the volumetric flux of the proppant is given as

@(q, `(q), F, ?,G) = −q
F3

12`(q)
m?

mG
(3.8)

In this chapter, the fracture width, F(G, C), and the pressure gradient, m?(G, C)/mG, along the
fracture length are assumed to be known values taken from the solution of the rock deformation
and slurry flow equations, as would occur in a sequential solution to the hydraulic fracturing
model. The independent variable is the average proppant concentration, q. In the context of the
loosely-coupled models in the literature, this chapter is focused on the proppant update, excluding
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the solution of the solid and slurry equations. Since the effective viscosity, `(q), is a function of
the proppant concentration, substituting the constitutive law for the flux (3.8) into (3.7) leads to
a nonlinear advection equation.

3.2.3 Flux functions

Various expressions have been postulated for the effective viscosity of the slurry as a function of
the proppant concentration, `(q). The first viscosity expression was proposed by Einstein [102],
but is applicable only for dilute suspensions. Later expressions were proposed which represent
a range of slurries, from dilute to saturated suspensions. Several commonly used expressions,
with both theoretical and experimental origins, are provided in Table 3.1. These expressions
are written in terms of the viscosity of the carrier fluid, `0. Many other functions have been
proposed in the literature. A comparison of expressions for effective viscosity in the context of
dense suspensions is given by Stickel and Powell [103].

The fully saturated concentration, q<, is defined as themaximumpacking fraction of the proppant.
This is the upper limit of physically allowable proppant concentration in a fracture. Values
of saturated concentration in the literature range from 0.52 for loose-packed spheres [104] to
0.74 for hexagonal close-packing of mono-disperse spherical particles [105]. In this chapter, a
value of 0.64 is used, which is the value for random close-packing of mono-disperse spherical
particles [105].

The proppant flux associated with several of the expressions for effective viscosity from Table 3.1
for a range of normalized proppant concentration, q/q<, between 0 and 1 are shown in Figure 3.2.
The curves are defined using a saturated proppant concentration of 0.64, a carrier fluid viscosity
of 1 mPa·s, a fracture width of 1 mm, and a pressure gradient of -1 kPa/m. These effective
viscosities share the property that as the proppant concentration approaches zero, the effective
viscosity approaches the viscosity of the carrier fluid. This limit describes pure fluid flow and
the proppant flux also goes to zero at this limit.

At the limit where the proppant concentration reaches the saturation point, the proppant flux
should also go to zero since it is too packed to flow. From Figure 3.2 it can be seen that the
expressions used by Einstein [102] and Batchelor [106] for effective viscosity do not behave in
the expected manner as the proppant reaches the saturation point, because the expressions predict
a flux at high concentrations which do not account for packing of the proppant. These effective
viscosity relationships are thus excluded from further study here. The relationships postulated by
Eskin and Miller [107], Eilers [108], and Krieger and Dougherty [109] incorporate the expected
behaviors in the limit and will be further studied.
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Table 3.1: Expressions of effective viscosity as a function of proppant concentration, `(q)

Expression Source

`(q) = `0(1 + �q) � = 2.5 1 Einstein [102]

`(q) = `0
(
1 + �q + �1q

2 + ...
)

�1 = 7.6 2 Batchelor [106]

`(q) = `0
(
1 + �q + �1q

2 + �2 exp(�3q)
)

�1 = 10
Eskin and Miller [107]�2 = 0.0019

�3 = 20
�1 = 10.05

Thomas [110]�2 = 0.00273
�3 = 16.6

`(q) = `0

(
1 − q

q<

)−V V = 2.5q< 3 Krieger and Dougherty [109]
V = 2.5 Nicodemo et al. [111]
V = 2 Maron and Pierce [112]

V = 1.5 Barree and Conway [113]
V = 1.82 Krieger [114]
V = 1.89 Scott [115]

`(q) = `0

[
1 +

(
1.25q

1 − q/q<

)]2
Eilers [108]

1 Also been used with 1.5 ≤ � ≤ 5 [105]
2 Also been used with 7.35 ≤ �1 ≤ 14.1 [105]
3 Also been used with 1 ≤ V ≤ 3 [15]
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Figure 3.2: Proppant flux, @, over a range of normalized proppant concentrations, q/q<.
Curves are computed with a constant fracture aperture, F = 1mm, pressure gradient, m?/mG
= -1 kPa/m, proppant saturation concentration, q< = 0.64, and viscosity of the carrier fluid,
`0 = 1 mPa·s

3.2.4 Initial and boundary conditions

The conditions required to solve the proppant transport problem are described in this section. A
hyperbolic problem requires initial conditions, defining the proppant concentration in the fracture
at the start of the simulation by q0,

q(G, 0) = q0(G) (3.9)

At the fracture tip, proppant is prevented from exiting the fracture by applying a solid wall
boundary condition which restricts proppant flow,

@(GC8?, C) = 0 (3.10)

Based on physical limitations, the proppant concentration is constrained to non-negative values
less than or equal to the saturation concentration,

0 ≤ q ≤ q< (3.11)

Numerical methods don’t constrain the solution from exceeding the physically admissible limits,
so an additional algorithm is implemented in Section 3.3.6 to explicitly constrain the problem.
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Finally, proppant bridging, or arching, occurs when particles become confined between the
fracture faces at very small fracture widths. The threshold fracture width at which the particles
form a bridge is a function of the average proppant diameter [116]. In this work, the proppant is
restricted from flowing through a fracture width smaller than 3 proppant diameters in size. This
is expressed in the formulation as

@(G, C) = 0 if F < 3 · (20) (3.12)

in which 0 is the average proppant radius. Due to this constraint, the tip condition is redundant
and does not come into effect under typical hydraulic fracturing conditions.

3.3 Finite volume discretization

The finite volume method used to solve the governing equation is described in detail in this
section. The one-dimensional fracture is discretized into # evenly-spaced cells of length ΔG,
as depicted in Figure 3.3. A node is placed at the center of each cell, each associated with an
unknown nodal value of proppant concentration, q8, and known values of fracture width, F8, and
fluid pressure, ?8.

G

8 = 1 8 = 2 ... 8 = #

ΔG

Figure 3.3: Finite Volume mesh for discretization of proppant advection

The governing equation (3.7) is integrated over a single cell associated with node 8 over a time
step, ΔC, from time C= to C=+1,

C=+1∫
C=

G8+1/2∫
G8−1/2

m (qF)
3C

3G3C +
C=+1∫
C=

G8+1/2∫
G8−1/2

m@

mG
3G3C = 0 (3.13)

in which G8±1/2 denote the edges of cell 8. The source term due to injection is neglected in the
formulation and added later as a boundary condition. In the remainder of the text, the superscript
= denotes a variable evaluated at the current time C=, and the subscript 8 denotes the variable
evaluated at the position G8, i.e., the proppant concentration at position G8 along the fracture and
time C= is q=8 = q(G8, C=). The volumetric proppant flux at location G8 and time C= is denoted by
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@=
8
= @(q=

8
, `(q=

8
), F=

8
, ?=,G8 ). Using the fundamental theorem of calculus the differential terms are

eliminated from the integral equation,

G8+1/2∫
G8−1/2

[
(qF)=+1 − (qF)=

]
3G +

C=+1∫
C=

[
@8+1/2 − @8−1/2

]
3C = 0 (3.14)

Using the midpoint numerical integration rule for the first term and adopting explicit time
integration (forward Euler), the discrete equation is obtained,[

(qF)=+18 − (qF)=8
]
ΔG +

[
@=
8+1/2 − @

=
8−1/2

]
ΔC = 0 (3.15)

Rearranging, the standard form for the explicit finite volume formulation is obtained,

(qF)=+18 = (qF)=8 −
ΔC

ΔG

[
@=
8+1/2 − @

=
8−1/2

]
(3.16)

The finite volume method is conservative along the cell edges since any flux leaving or entering
a cell leads to a flux entering or leaving a neighbor cell. This means the total mass in the domain
is preserved and only changes due to fluxes at the boundaries. The difficulty in the finite volume
method is in approximating the proppant flux terms at the cell edges, @=

8±1/2.

The rest of this section describes the numericalmethodology used to approximate the proppant flux
at the cell edges. First, the characteristic speed of proppant is defined at the cell edges. Then, the
characteristic speed is used to derive an estimate of the critical time step for proppant transport
problems. The types of shock waves encountered in the solution of the nonlinear advection
problem are described to define the scenarios that must be addressed in the approximation of the
proppant fluxes, @=

8±1/2. Finally, the high-resolution proppant flux approximation (a combination
of the Godunov method and Lax-Wendroff method) at the cell edges is described.

3.3.1 Characteristic speed of proppant

The solution to the nonlinear advection equation is dependent on the characteristic speed of the
proppant, which is the speed, B, at which a constant proppant concentration profile travels through
the domain,

B =
m@

m (qF) =
m

m (qF)

(
−q F3

12`(q)
m?

mG

)
(3.17)

48



The derivative that describes the proppant characteristic speed is not trivial and is instead approx-
imated using the assumption of constant fracture aperture as B ≈ 1

F

@

q
. The proppant characteristic

speed for various functions of effective viscosity is plotted over the range of normalized proppant
concentrations in Figure 3.4 for a fracture width of 1 mm, a pressure gradient of -1 kPa/m, a
fluid viscosity of 1 mPa·s and a maximum proppant concentration of 0.64. These curves are all
characterized by being greater than zero for low proppant concentrations, signifying that proppant
travels in the direction of slurry flow. The characteristic speed crosses into the negative range
between 0.2q< and 0.5q<.
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Figure 3.4: Variation in the approximate characteristic speed, B, over a range of normalized
proppant concentrations, q/q<. Curves are plotted for a constant fracture width, F = 1
mm, pressure gradient, X?/XG = -1 kPa/m, and fluid viscosity, `0 = 1 mPa·s)

The proppant characteristic speed should not be confused with the direction of slurry flow. For a
nonlinear advection problem, the solution remains constant along the characteristic curve, which
has a slope defined by the characteristic speed. For typical fracture conditions with a negative
pressure gradient inside the fracture, the proppant flux is always positive (heading towards the
tip of the fracture), as shown in Figure 3.2. However, the characteristic speed is negative for
higher proppant concentrations, as shown in Figure 3.4. Although the slurry is moving towards
the tip of the fracture, a negative characteristic speed signifies that the net amount of proppant
carried forward is limited so that the concentration builds up in the direction opposite to the
flow. The curves in Figure 3.2 show that the characteristic speed of the nonlinear flux functions
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naturally captures the reversal of proppant build-up direction as the concentration increases. The
sudden change in direction of characteristic speed is the cause of shock waves in the solution for a
nonlinear advection problem. At the saturation proppant concentration, q<, a zero characteristic
speed signifies that the characteristic curve is not moving. The curve for the Krieger-Dougherty
equation with V = 1 does not exhibit this behavior and is therefore not applicable for slurries at
the saturation limit.

The concentration at which the characteristic speed changes sign is called the stagnation point
(or sonic point) [117], and it is shown in later sections that it is important to define the stagnation
point to locate the origin of a shockwave. The stagnation point, qB, for different effective viscosity
functions is provided in Table 3.2.

Table 3.2: Stagnation point for various effective viscosity functions, independent of width,
F, and pressure gradient, ?,G

Effective viscosity function Stagnation point, qB

Eilers
√

25q4
< + 160q3

< − 5q2
< − 8q<

10q< − 8
Krieger-Dougherty, V = 1 0.50q<

Krieger-Dougherty, V = 2 0.33q<

Krieger-Dougherty, V = 3 0.25q<

Due to the complexity of the proppant flux function, an explicit expression for the characteristic
speed (3.17) is difficult to obtain, so an approximation is used. At the cell centers, the characteristic
speed is approximated as

B8 =
1
F8

m@

mq

���
G8

(3.18)

Due to the piecewise constant approximation used in the FVM, there are jumps in proppant
concentration at the cell edges that create shocks in the numerical solution. The jump in propped
width across a cell edge is defined as Δ(qF)8+1/2 = (qF)8+1 − (qF)8. Similarly, the flux wave is
defined as the change in flux at the cell edge, Δ@8+1/2 = @8+1 − @8. The Rankine-Hugoniot jump
condition [117] approximates the speed at which the shock on the cell-edge travels as

B'8±1/2 =
Δ@8±1/2

Δ(qF)8±1/2
(3.19)

The approximation of the proppant flux at the cell edges depends on the value of the proppant
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characteristic speed at the cell edges, denoted by B8±1/2. The proppant characteristic speed is
approximated as the shock speed using the Rankine-Hugoniot jump condition if there is a jump
in the propped width. If there is no jump in the propped width, the characteristic speed is
approximated by the characteristic speed at the cell center, using an upwind method with the
shock speed to determine which cell to approximate from.

B8+1/2 =



B'8+1/2 , |Δ(qF)8+1/2 | > nB

B8, |Δ(qF)8+1/2 | ≤ nB and B'8+1/2 ≥ 0

B8+1, |Δ(qF)8+1/2 | ≤ nB and B'8+1/2 < 0

(3.20)

B8−1/2 =



B'8−1/2 , |Δ(qF)8−1/2 | > nB

B8−1, |Δ(qF)8−1/2 | ≤ nB and B'8−1/2 ≥ 0

B8, |Δ(qF)8−1/2 | ≤ nB and B'8−1/2 < 0

(3.21)

The variable nB is a small value used to determine whether the jump in qF is approaching zero
and taken as 10−8 for problems in this chapter.

3.3.2 Critical time step for proppant transport

The stable time step size for the explicit equation is limited according to the Courant-Friedrichs-
Lewy (CFL) stability condition,

ΔC ≤ ΔG

B=<0G
(3.22)

in which B=<0G is the maximum characteristic speed present throughout the domain at time C=. An
explicit expression for the characteristic speed is difficult to obtain for the nonlinear proppant flux
since the term being advected is (qF). Hence, using the assumption that the fracture width is
constant in the time step, it is approximated as

B=<0G = max
(
m@(q, F)
m (qF)

)
≈ max

(
1
F

m@(q, F)
mq

)
= max

(
−F2

12`(q)
m?

mG

(
1 − q

`(q)

))
, 0 ≤ q ≤ 1

(3.23)
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It is interesting to note that the maximum characteristic speed of the proppant occurs at zero
concentration for all the effective viscosity relationships shown in Figure 3.2. Therefore, the
critical time step is the same for any selected function of effective viscosity, so long as the
concentration is zero somewhere in the domain. A conservative estimate of the time step may
be calculated using the proppant flux at zero concentration irrespective of the effective viscosity
relationship chosen.

B=<0G ≈ max

(
−F=

8
2

12`0

m?=
8

mG

)
,∀8 ∈ [0, #] (3.24)

3.3.3 Shock waves in proppant transport problems

The sources of numerical complexity of nonlinear advection problems are the shocks that appear
in the solution. The solution becomes non-smooth, and the jumps in the proppant concentration
propagate throughout the domain. The jumps in proppant concentration must be properly taken
into account when approximating the flux at the cell edges. This section discusses the types
of shock waves that arise in the propagation of proppant, and the approximation of edge fluxes
is described in detail in Section 3.3.4. There are four types of shocks to account for when
approximating the proppant flux at cell edges:

1. the proppant concentration jumps from cell edge to cell edge because using the finite
volume method the approximate solution in each cell is taken as the average along the
cell (discontinuities propagate from the cell edges, due to the discontinuous nature of the
solution);

2. the proppant concentration builds up in one location and the build-up creates a shock that
travels through the fracture (discontinuities due to characteristic curves merging between
the cell centers creating a compression wave);

3. the proppant concentration disperses from an area of high concentration into parts of the
fracture with a low concentration (discontinuities due to characteristic curves diverging
between the cell centers creating a rarefaction wave); and

4. the width or pressure gradient changes along the fracture, causing the proppant concen-
tration to change suddenly (discontinuities due to the jump in characteristic speed at cell
edges).

The first type of shock that is created in the solution is a byproduct of the piecewise constant
approximation of q used in the finite volume method. The proppant concentration is only
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approximated at the center of each cell, representing the average concentration throughout the
cell. At each cell edge, there is a jump in the solution which creates a jump in the characteristic
speed, or the speed at which the proppant is transported through the fracture. Considering the
case where the concentrations in adjacent cells are either both above the stagnation point, qB, or
both below the stagnation point, the jump in the solution for proppant concentration can lead to
the creation of either left-traveling or right-traveling shock waves. The creation of these shock
waves is depicted in Figure 3.5, in which the jump in proppant concentration at cell edges and the
corresponding characteristic curves are shown for left- and right-traveling waves in Figures 3.5a
and 3.5b, respectively. The top half of each figure depicts the portion of the fracture width filled
with proppant (qF) for two adjacent finite volume cells, with the proppant concentration at the cell
center shown in red and the cell edge represented by a dotted line. The bottom half of the figures
shows the idealized characteristic curves for the proppant in each of the cells. The characteristic
curve represents the curve in time and space along which the solution is constant, with the slope
of the curve representing the proppant characteristic speed, B. In both scenarios shown in Figures
3.5a and 3.5b, the characteristic speed on either side of the cell edge is traveling in the same
direction. The resulting shock wave has a magnitude defined by the Rankine-Hugoniot jump
condition as given in Equations 3.20-3.21.

qF

C

G

G
G8+1/2

B8, B8+1 > 0

(qF)8, (qF)8+1 < qBF

(a) Right-traveling shock wave propagating
from the cell edge due to the discontinuous na-
ture of the solution

qF

C

G

G
G8+1/2

B8, B8+1 < 0

(qF)8, (qF)8+1 > qBF

(b) Left-traveling shock wave propagating from
the cell edge due to the discontinuous nature of
the solution

Figure 3.5: Visualization of characteristic curves during the formation of shock waves
propagating due to discontinuity in the solution at a cell edge

The second type of shock wave occurs when the proppant in each adjacent cell is traveling towards
the same edge and builds up. In hydraulic fracturing simulations, this type of shock wave occurs
during the formation and growth of a plug. The accumulation of proppant concentration creates
a shock wave that travels through the domain. This discontinuity stems from the merging of
characteristic curves within a cell, as depicted in Figure 3.6a, creating a compression wave. The
characteristic speed is positive in the left cell, and negative in the right cell, with the solution
in each adjacent cell lying on either side of the stagnation point. The resulting shock wave is
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naturally captured by approximating the characteristic speed using the Rankine-Hugoniot jump
condition.

The third type of shock wave is generated when a build-up of proppant disperses into areas of
low proppant concentration, as occurs when a proppant plug is flushed. In this scenario, the
characteristic curves diverge within a cell, as depicted in Figure 3.6b. A rarefaction wave is
created that spreads partially to the left and partially to the right of the cell edge. Similar to
the compression wave, the solution in each adjacent cell is on either side of the stagnation point
but located such that the proppant is traveling away from the cell edge instead of towards it.
The solution to the conservation law in this scenario is not necessarily unique [117]. Therefore,
another condition, called an admissibility condition or entropy condition, must be imposed to
ensure uniqueness. In terms of proppant transport, the physical interpretation of the entropy
condition is that the total proppant mass must be conserved within the domain. The magnitude of
the shock wave is equivalent to the concentration at the stagnation point, given in Table 3.2. To
ensure that the entropy condition is satisfied, the flux that is propagated in the rarefaction wave
is equal to the flux at the stagnation point, @B = @(qB). The implementation is modified for the
special case of a rarefaction wave and described in further detail in Section 3.3.4.

(qF)8 < qBF < (qF)8+1
qF

C

G

G
G8+1/2

B8 > 0 > B8+1
(a) Compression wave due to characteristic
curves merging between the cell centers

(qF)8 > qBF > (qF)8+1
qF

C

G

G
G8+1/2

B8 < 0 < B8+1
(b) Rarefactionwave due to characteristic curves
diverging between the cell centers

Figure 3.6: Visualization of characteristic curves during formation of compression and
rarefaction waves

Finally, the fourth type of shock wave encountered is due to a change in fracture width or pressure
gradient of the slurry along the fracture, as occurs due to hydraulic fracture propagation. Similar
to the proppant concentration, both the fracture width and pressure gradient are specified at cell
centers and are discontinuous at the cell edges, causing a jump in the characteristic speed at the
cell edge. The jump in characteristic speed related to this spatially-varying flux function results in
a stationary shock wave–an abrupt change in the solution that does not travel through the domain.
The magnitude of the jump in solution is difficult to approximate, but since the flux must be
conserved at the cell edge, writing the approximation in terms of the change in flux allows for the
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stationary shock wave to be accounted for. The implementation presented by Bale et al. [118] is
used and described in further detail in Section 3.3.4.

3.3.4 Approximation of proppant fluxes

The difficulty in the finite volume method is in approximating the flux terms at the cell edges,
@=
8±1/2. The flux is dependent on terms that are known only at the cell centers. The method

selected for the approximation must take into account that the flux function is nonlinear and
spatially varying, which introduces discontinuities in the solution that travel as shock waves
through the domain. In this section, a high-resolution method is described which accounts for the
shock waves described in the previous section. On their own, the Godunov method and the Lax-
Wendroff method add numerical inaccuracies to the solution [117]. The Godunov method adds
numerical diffusion (over-smoothing) and the Lax-Wendroff method adds numerical dispersion
(lag). The best features of the two methods are maintained by using a high-resolution method
that combines them using Total Variation Diminishing (TVD) slope limiters. These methods are
described in detail in the following sub-sections. Using an explicit formulation, all values are
computed at the current time, C=. For simplicity, all superscripts = are excluded in this section,
but it is implied that all values are calculated at the current time step.

Godunov method

The Godunov method approximates the flux at the cell edges, @8±1/2, by solving the Riemann
problem at each of these edges using the characteristics. This method provides a first-order
approximation which naturally accounts for discontinuities propagating left and right, and char-
acteristics merging between the cell centers (shock waves of type 1 and 2 mentioned in the
previous section). In the case of a linear flux function, @ = 2q with constant-valued 2, the
Godunov method is identical to the first-order upwinding method.

A rarefaction wave in which proppant spreads between the cell centers as depicted in Figure
3.6b is not captured naturally using the Godunov method. The Godunov method may lead to an
incorrect solution that does not satisfy the entropy condition [117], described in Section 3.3.3.
The entropy condition is a constraint imposed on the conservation law to ensure that the total
proppant mass is conserved within the domain. To ensure that the entropy condition is satisfied,
the flux that is propagated in the rarefaction wave is equal to the flux at the stagnation point,
@B = @(qB). The stagnation points are given in Table 3.2 for various expressions of viscosity. To
correctly capture the rarefaction wave, the Godunov method with an entropy fix approximates the
flux at the cell edges as,
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@�
8+1/2 =


@B, B8+1 > 0 and B8 < 0
@8, B8+1/2 ≥ 0
@8+1, B8+1/2 < 0

(3.25)

@�
8−1/2 =


@B, B8 > 0 and B8−1 < 0
@8−1, B8−1/2 ≥ 0
@8, B8−1/2 < 0

(3.26)

The formulation is based on the flux at cell centers, @8, for 8 = 1, 2, ..., # . If there is no rarefaction
wave, the selection of the flux is based on the direction of the characteristic speed at the cell
edges, B8±1/2, computed by Equations 3.20 and 3.21.

The rarefaction wave is characterized by a proppant concentration on either side of the stagnation
point. The flux functions of interest in proppant transport have two stagnation points, as shown
in Figure 3.4. One occurs for a normalized proppant concentration, q/q<, between 0.2 and 0.5
depending on the expression of effective viscosity used, and the other occurs for a normalized
proppant concentration q/q< = 1. The range of physically admissible normalized proppant
concentrations is between 0 and 1, so the stagnation point at a normalized proppant concentration
of 1 is typically not encountered in simulations. However, this formulation can capture both
stagnation points.

Lax-Wendroff method

The first-order Godunov method adds numerical diffusion to the solution, particularly near shock
waves where the gradient of the concentration profile is steep. For this reason, a high-resolution
method is required to avoid over-smoothing of the solution and maintain a sharp proppant front.
The Lax-Wendroff method provides a second-order approximation and contains anti-diffusive
terms in the formulation which cancel out the numerical diffusion created in the Godunov method
[117].

The Lax-Wendroff method is typically written in terms of the jump in the propped aperture at
the cell edge, Δ(qF). For spatially-varying flux functions, the jumps in proppant concentration
also arise because the fracture width and pressure gradient are discontinuous at cell edges. The
jump in concentration at the cell edge is therefore not a straightforward calculation based on the
values at the neighboring nodes. Using the fact that flux is conserved at the cell edge, Bale et
al. [118] wrote the Lax-Wendroff approximation in terms of the change in flux, Δ@, which is
equipped to handle spatially-varying fluxes and does not require an explicit calculation of the
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change in concentration, Δq, at the cell edge. The flux approximations at the cell edges using the
Lax-Wendroff method based on flux waves are

@8+1/2 = Δ@8+1/2� (−B8+1/2) +
1
2
sign(B8+1/2)

(
1 − ΔC

ΔG
|B8+1/2 |

)
Δ@8+1/2︸                                            ︷︷                                            ︸

@!,
8+1/2

(3.27)

@8−1/2 = −Δ@8−1/2� (B8−1/2) +
1
2
sign(B8−1/2)

(
1 − ΔC

ΔG
|B8−1/2 |

)
Δ@8−1/2︸                                             ︷︷                                             ︸

@!,
8−1/2

(3.28)

in which the flux wave is defined as the change in flux at the cell edge, Δ@8+1/2 = @8+1 − @8,
and � () is the Heaviside step function. The first term in the approximation is equivalent to the
Godunov method without the entropy fix, and the second term can be seen as a correction term
for the diffusion in the Godunov method. The correction term, @!,

8±1/2, is used in the following
section to define a high-resolution method.

High resolution method

The Lax-Wendroff method eliminates the numerical diffusion seen in the Godunov method but
adds some lag (numerical dispersion) to the solution. To take advantage of the properties of the
Godunov method when the solution is smooth, and the Lax-Wendroff method when there is a
sharp gradient in the solution, a flux limiter method is used. The flux approximation at the cell
edges is given by

@8+1/2 = @
�
8+1/2 + i(A8+1/2)@

!,
8+1/2

@8−1/2 = @
�
8−1/2 + i(A8−1/2)@!,8−1/2

(3.29)

in which the superscripts � and !, refer to the Godunov approximation (3.25-3.26) and the
correction term in the Lax-Wendroff approximation (3.27-3.28), respectively.
The function i(A) is called the limiter function, which is responsible for applying the second-order
corrections when there is a sharp gradient in the solution. The limiter function varies between 0
for a smooth concentration profile and 1 for a sharp jump in concentration, effectively working
to add more of the Lax-Wendroff correction near discontinuities. Various limiter functions have
been developed, with the key feature being that they are Total Variation Diminishing (TVD). The
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total variation of the solution is the sum of the jump in concentration at all cell edges throughout
the domain. Oscillations introduced by the numerical method would increase the total variation
of the solution over time. TVD limiter functions are chosen to avoid adding oscillations by
requiring that the method not increase the total variation of the solution. A review of possible
limiters can be found in LeVeque [117]. This work uses the monotized central-difference (MC)
limiter, defined as

i(A) = max(0,min((1 + A)/2, 2, 2A)) (3.30)

No significant difference is observed in the numerical results presented in Section 3.4 when
compared with simulations using the Min-Mod, Superbee, and Van Leer limiters. The variable A
in the limiter function is the slope ratio, which relates the upwind concentration gradient to the
gradient at the cell edge, is defined at the cell edges as

A8+1/2 =


(qF)8 − (qF)8−1
(qF)8+1 − (qF)8

, B8+1/2 ≥ 0

(qF)8+2 − (qF)8+1
(qF)8+1 − (qF)8

, B8+1/2 < 0
(3.31)

A8−1/2 =


(qF)8−1 − (qF)8−2
(qF)8 − (qF)8−1

, B8−1/2 ≥ 0

(qF)8+1 − (qF)8
(qF)8 − (qF)8−1

, B8−1/2 < 0
(3.32)

To define the upwind direction, the characteristic speed at the cell edge is approximated as
described in Section 3.3.1. The sign of the approximated characteristic speed is used to determine
the upwind direction for calculation of the slope ratio.

3.3.5 Boundary conditions

Flux boundary conditions are applied on both sides of the domain. At the wellbore (left edge of
the domain) is an inflow boundary, which is implemented by prescribing the injection flux on the
left edge of the first cell,

@1/2 = q8= 9@8= 9 (3.33)

At the fracture tip (right edge of the domain) is a solid wall boundary, which is prescribed by
setting the flux on the right edge of the last cell to zero,
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@#+1/2 = 0 (3.34)

3.3.6 Proppant concentration constraints

Since the approximation of fluxes is not perfect, it is possible to obtain non-physical concentration
values, outside the range q ∈ [0, q<]. To avoid this, the predictor-corrector algorithm described
below is implemented to prevent proppant from flowing into cells that have already reached the
maximum concentration, q<, and to prevent proppant from leaving cells that are at the minimum
proppant concentration, q = 0. The predictor step uses the flux approximation described in the
previous sub-sections to solve for the proppant concentration at the next time step. Then, the set
of cells that have a concentration outside the allowable range are identified and the fluxes going
in/out of those cells are adjusted so that the final concentration is exactly the limit value. Finally,
the concentration at the next time step is calculated using the adjusted fluxes. The algorithm is
outlined below. In the simulations shown in this chapter, the aperture at the next time step is
assumed to equal the aperture at the previous time step, F=+1

8
= F=

8
.

1. Predictor step: solve for concentration at the next time step ( q=+1
8,?

) using the approximated
fluxes (@=

8+1/2 and @
=
8−1/2),

q=+18,? = q=8
F=
8

F=+1
8

− ΔC

F=+1
8
ΔG

(
@=
8+1/2 − @

=
8−1/2

)
(3.35)

(a) Identify the set of cells with concentrations that are not within the allowable range.
The sets of cells which have a proppant concentration above the maximum (q = q<)
and below the minimum (q = 0) are denoted by (+ and (−, respectively).

(b) Correct the fluxes according to the current inflow/outflow:
For cells in set (+, the correction flux is defined as

@+2>AA42C = F
=+1
8

ΔG

ΔC

(
q=8

F=
8

F=+1
8

− q<

)
(3.36)

The corrected cell edge flux approximations, @2
8±1/2, are defined depending on the

predictor flux approximation, as defined in Figure 3.7.
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@8−1/2 > 0 @8+1/2 ≥ 0

@2
8−1/2 = @8+1/2 − @

+
2>AA42C

@2
8+1/2 = @8+1/2

i @8−1/2 ≤ 0

@2
8−1/2 = @8−1/2

@2
8+1/2 = @8−1/2 + @+2>AA42C

@8+1/2 < 0i @8−1/2 > 0

@2
8−1/2 =

@8−1/2
@8+1/2 − @8−1/2

@+2>AA42C

@2
8+1/2 =

@8+1/2
@8+1/2 − @8−1/2

@+2>AA42C

@8+1/2 < 0i

Figure 3.7: Corrected cell edge fluxes for cells in set (+

For cells in set (−, the correction flux is defined as

@−2>AA42C = q
=
8 F

=
8

ΔG

ΔC
(3.37)

The corrected cell edge flux approximations, @2
8±1/2, are defined depending on the

predictor flux approximation, as defined in Figure 3.8.

@8−1/2 ≥ 0 @8+1/2 > 0

@2
8−1/2 = @8−1/2

@2
8+1/2 = @8−1/2 + @−2>AA42C

i @8−1/2 < 0 @8+1/2 > 0

@2
8−1/2 =

@8−1/2
@8+1/2 − @8−1/2

@−2>AA42C

@2
8+1/2 =

@8+1/2
@8+1/2 − @8−1/2

@−2>AA42C

i@8+1/2 ≤ 0

@2
8−1/2 = @8+1/2 − @

−
2>AA42C

@2
8+1/2 = @8+1/2

@8−1/2 ≥ 0 i

Figure 3.8: Corrected cell edge fluxes for cells in set (−

(c) Update the fluxes for the neighboring cells accordingly to maintain conservation
property.

2. Corrector step: solve for concentration using the corrected fluxes

q=+18 = q=8
F=
8

F=+1
8

− ΔC

F=+1
8
ΔG

(
@2
8+1/2 − @

2
8−1/2

)
(3.38)

3. Set the approximation to the corrected fluxes, @=
8+1/2 = @

2
8+1/2, and repeat if any concentra-

tions are still outside the acceptable range (in simulations it was found that repetitions are
rarely required).

60



3.4 Numerical results

In this section, the implementation of the numerical methodology is verified for the case of a
rarefaction wave and a compression wave. Proppant transport through an elliptical fracture is
studied, and the limit injection rate is found for which a proppant plug occurs at the inlet. Finally,
proppant flow through a plane-strain KGD fracture is investigated in which proppant bridging is
observed, and the use of a concentration constraint is investigated. All results are compared using
various expressions for effective viscosity to understand how the solution varies with the selection
of expression. Parameters that are constant for all simulations in this section are specified in Table
3.3.

Table 3.3: Material properties for simulations of proppant transport through planar fractures

Parameter Variable Value Unit

Maximum proppant concentration q< 0.64
Carrier fluid viscosity `0 1.2 mPa·s
Average proppant radius 0 0.3 mm

3.4.1 Injection and growth of propped fractures

The first problem considered is proppant advection in a 100 m channel of constant width (2 mm)
and constant pressure gradient (-0.5 kPa/m) that is initially packed with proppant on the left half
(G < 0) with a concentration of 0.9q<. The initial conditions prescribed, shown in Figure 3.9a,
occur in hydraulic fractures at the fracture inlet where the injected proppant builds up quickly. The
proppant must spread to the surrounding fracture which does not yet contain any proppant. This
concentration profile also arises in the case of a propped fracture with a saturated concentration
at the tip. As such a fracture grows in length, the proppant flows into the new fracture segment
that is initially void of proppant.

Solution of the nonlinear advection equation with the initial proppant concentration described
results in a rarefaction wave spreading from the jump in concentration–the characteristic speed
is negative to the left of the proppant front and positive to the right of the proppant front.
Therefore, the concentration diminishes for G < 0 and increases for G > 0. Although a constant
channel width and pressure gradient is not representative of conditions in a hydraulic fracture, the
problem is used for verification of the numerical method and ensures that the rarefaction wave can
be adequately captured by the entropy fix described in Section 3.3.4. This problem resembles the
so-called green-light problem in traffic flow simulations, which models the advection of vehicles
when a traffic light turns green [117]. The Krieger-Dougherty equation for effective viscosity of
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the fluid with V = 1 has the same form as the linear traffic flow equation and produces the same
shape of the rarefaction curve.

The channel is discretized with 500 cells. Outflow boundary conditions are applied on both
ends of the channel, allowing the proppant to leave the domain at these boundaries. There is no
injection of proppant into the domain, simply advection of the initial proppant concentration for
500 seconds. The problem is solved using various forms of the flux function, and the resulting
concentration profiles throughout the simulation time are shown in Figure 3.9. In all cases,
proppant concentration is reduced to the left of the initial discontinuity (G < 0), and increased to
the right (G > 0). The shape of the rarefaction wave over time is dependent on the characteristic
speed of the flux function. The proppant characteristic speed corresponding to the initial proppant
concentration profile is shown for each viscosity expression in Figure 3.10. The curve of the
characteristic speed matches the curve of the corresponding rarefaction wave in Figure 3.9. The
concentration at which the proppant front smooths out is the stagnation point, provided in Table
3.2. For the nonlinear characteristic speed curves that are double-valued, the equal-area rule
determines the location of the shock front theoretically [117]. The theoretical curves match the
resultant concentration profiles after rarefaction, verifying the shape of the solution. For the same
initial proppant concentration, the use of the Krieger-Dougherty equation with V = 1 leads to the
most proppant spreading, while V = 3 leads to the least spreading of the proppant. The other
viscosity functions lead to concentration profiles that lie between these two limits.

3.4.2 Plug formation and growth

The next problem considered is proppant advection in a 50 m channel of constant width (2 mm)
and constant pressure gradient (-0.5 kPa/m) that is initially packed with proppant on the right half
(G > 0) with a concentration of 0.9q<. The left half of the channel (G < 0) has a concentration of
0.3q<. The initial concentration profile prescribed in this problem (seen in Figure 3.11a) leads
to a compression wave that moves towards the left of the channel, representing proppant build-up
at a plug. This concentration profile may arise for a plug forming at the fracture tip, or proppant
bridging along the length of the channel where the fracture width is not large enough for the
proppant to flow through. This problem is used for verification of the numerical method, ensuring
that the compression wave can be adequately captured using the flux approximation described
in Section 3.2.3 and that concentration limits are not exceeded. This problem resembles the
so-called red-light problem in traffic flow simulations, which models the advection of vehicles
when a traffic light turns red [117].

The channel is discretized using 500 cells and the advection of the initial concentration profile
lasts 500 seconds. The proppant concentration throughout the simulation time is shown for
various expressions of effective viscosity in Figure 3.11. In all the cases shown, the proppant
concentration builds up to the left of the discontinuity (G < 0). The shape of the compression
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Figure 3.9: Proppant concentration spreading at the fracture inlet over time
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Figure 3.10: Theoretical characteristic speed patterns for rarefaction waves

wave is also dependent on the characteristic speed, depicted for the initial concentration profile in
Figure 3.12. The resulting concentration profiles match the theoretical curves obtained from the
characteristic speed patterns, after applying the equal-area rule for multi-valued solutions [117].
Similar to the first test case in Section 3.4.1, the use of the Krieger-Dougherty equation with
V = 1 leads to the fastest-moving shock wave and V = 3 is the slowest-moving shock wave.

3.4.3 Inject into an elliptical fracture with constant pressure gradient

The proppant flux is a function of the proppant concentration, fracture width, and fluid pressure
gradient. The verification cases performed in the previous sections had a constant fracture width
and pressure gradient, with nonlinearity coming only from the proppant concentration. The next
problem studies proppant advection through a 100 m long elliptical channel with a maximum
fracture width of 3 mm. A constant pressure gradient of -0.5 kPa/m is maintained throughout
the fracture length. Although a constant pressure gradient is not representative of conditions in
a hydraulic fracture, this condition is useful for studying the shocks in the solution that originate
due to nonlinearity in the fracture width.

The channel is discretized using 500 cells. The proppant width is calculated at the center of
each finite volume cell and adds another spatially-varying term in the flux function. A solid wall
boundary condition (3.34) is applied to the fracture tip on the right-hand side of the domain.

64



0 20-30
G

0

0.2

0.4

0.6

q

(a) C = 0 s

0 20-30
G

0

0.2

0.4

0.6

q

(b) C = 125 s

0 20-30
0

0.2

0.4

0.6

q

G

(c) C = 250 s

0 20-30
G

0

0.2

0.4

0.6

q

(d) C = 375 s

0 20-30
G

0

0.2

0.4

0.6

q

(e) C = 500 s

Eskin and Miller
Eilers
Krieger-Dougherty, V = 1
Krieger-Dougherty, V = 2
Krieger-Dougherty, V = 3

(f)

Figure 3.11: Proppant concentration backing up at a plug over time
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Figure 3.12: Theoretical characteristic speed patterns for compression waves

Proppant is injected at a constant volumetric concentration of 0.1 for 800 seconds, with an inlet
flux given in Table 3.4 for each viscosity expression studied.

Table 3.4: Injection rate used to maintain injection concentration of q8= 9 = 0.1 for various
expressions of effective viscosity

Viscosity Expression q8= 9 (C)@8= 9 (C) = 0.1
−F3

12`(0.1)
m?

mG

Eskin and Miller 68.730 mm2/s
Eilers 71.117 mm2/s

Krieger-Dougherty, V = 1 79.101 mm2/s
Krieger-Dougherty, V = 2 66.742 mm2/s
Krieger-Dougherty, V = 3 56.313 mm2/s

A blocking function is included in the flux formula, which prevents proppant from flowing
into a cell with a fracture width less than 3 proppant diameters in size, as defined in Equation
3.12. Figure 3.13 shows the proppant concentration profiles for various times using five different
expressions for effective viscosity. The injected proppant travels towards the tip of the fracture
as a rarefaction wave, with the narrowing fracture width creating a small build-up of proppant
ahead of the concentration jump (see Figure 3.13b). Once the proppant front reaches 80 m, the
small fracture width causes bridging and prevents proppant from flowing to the tip, as seen in
Figure 3.13c. The proppant builds up to the saturation concentration and another shock wave
emerges forcing the proppant to build up towards the inlet. In Figure 3.13d two shock fronts
are visible–one moving towards the right from the initial injection spreading and one moving
towards the left as the proppant plug grows from the screen-out point. Dontsov and Peirce [73]

66



propose a modified blocking function that provides a smoother transition for the on/off status of
the function. No difference was found in the solution when tested with the modified version,
which shows that the modification by Dontsov and Peirce [73] approximates the condition very
well. The approximation using the Krieger-Dougherty equation with V = 1 creates the fastest
proppant transport towards the tip and subsequent build-up, while the slowest advection occurs
using V = 3.

3.4.4 Injection into KGD fracture

Proppant advection through a hydraulic fracture is simulated by discretizing the fracture into 500
finite volume cells. The approximate solution for a finite, plane-strain fracture (KGD) derived
by Dontsov [119] was used to obtain the fracture width and pressure along the fracture length
after injecting pad fluid for 30 min at a rate of 0.01 m3/s into a 10 m high fracture. The
solution is obtained for a rock mass with Young’s modulus of 40 GPa, Poisson’s ratio of 0.25,
fracture toughness of 1 MPa

√
m , and Carter leak-off coefficient of 0.001 m/

√
min . The fracture

propagates to 213.1 meters in 30 min, with a width and pressure gradient profile as shown in
Figure 3.14. The pressure gradient is calculated using a forward difference from the pressure
profile. Due to the blocking function, the proppant is prevented from flowing through portions of
the fracture with an aperture narrower than 3 proppant diameters. Therefore the proppant does
not reach the fracture tip. The pressure gradient throughout the majority of the fracture length is
approximately -500 Pa/m, with a much higher pressure gradient at the inlet of -25,000 Pa/m, and
the fracture tip. An accurate pressure profile for a hydraulic fracture can only be obtained through
a fully coupled model since the proppant concentration will change the effective viscosity of the
fluid and increase the fluid pressure. This problem is used to demonstrate the types of shocks
that occur in the proppant transport solution due to the large changes in pressure gradient at the
fracture inlet.

Maintaining a constant width and pressure profile, proppant slurry is injected into the fracture
for 30 min at a rate of 40 mm2/s. The concentration profiles for various times throughout the
injection are shown in Figure 3.15 for several effective viscosity expressions. The advection is
affected by both the nonlinear fracture width and the nonlinear pressure gradient along the length
of the fracture. The steep change in pressure gradient at the inlet causes the proppant to build-up
around 50 m into the fracture as it spreads towards the fracture tip. Proppant bridging occurs
approximately 150 m into the fracture at which point the concentration reaches the saturation
point and builds up towards the inlet. The Krieger-Dougherty viscosity function with V = 1
results in the fastest proppant transport towards the fracture tip and also the fastest build-up at the
tip. In contrast, the function with V = 3 produces the most build-up of proppant near the inlet and
slowest build-up at the plug. These two viscosity functions represent the limits for all problems
studied in this chapter.

67



0 20 40 60 80 100
G

0

0.2

0.4

0.6

q

(a) C = 0 s

0 20 40 60 80 100
G

0

0.2

0.4

0.6

q

(b) C = 200 s

0 20 40 60 80 100
G

0

0.2

0.4

0.6

q

(c) C = 400 s

0 20 40 60 80 100
G

0

0.2

0.4

0.6

q

(d) C = 600 s

0 20 40 60 80 100
G

0

0.2

0.4

0.6

q

(e) C = 800 s

Eskin and Miller
Eilers
Krieger-Dougherty, V = 1
Krieger-Dougherty, V = 2
Krieger-Dougherty, V = 3

(f)

Figure 3.13: Proppant injection into an elliptical fracture with constant pressure gradient
over time
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Figure 3.14: Width and pressure along the length of a KGD fracture. Solutions are obtained
for a rock mass with Young’s modulus of 40 GPa, Poisson’s ratio of 0.25, fracture toughness
of 1 MPa

√
m , and Carter leak-off coefficient of 0.001 m/

√
min

Implementation of the concentration constraint described in Section 3.3.6 makes the solution
stable and remain within the physical bounds. It is most common to see the concentration exceed
the maximum either near the boundary or at a tip-screen out location. In unrefined meshes,
oscillations due to a poor approximation may cause the concentration to exceed the maximum
as well. In these situations, the concentration constraint prevents the problem from becoming
unbounded. The concentration profiles obtained without imposing the constraint are shown in
Figure 3.16 (dashed lines). In some cases, the solution oscillates above the limit, as in Figure
3.16a. In other cases, the solution becomes unbounded and the last cell increases in concentration
without allowing a build-up of proppant in neighboring cells, such as in Figures 3.16b and 3.16e.
These non-physical concentrations are avoided by imposing concentration constraints.
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Figure 3.15: Proppant injection into a KGD fracture over time
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Figure 3.16: Proppant concentration at C = 1800 s using various effective viscosity formulas
with (solid line) and without (dashed line) concentration constraints
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Chapter 4

A monolithic coupled hydraulic fracture
model with proppant transport

4.1 Introduction

The purpose of this chapter is to present the numerical methodology for solving the monolithic
coupled equations for hydraulic fracture propagation with the inclusion of proppant transport and
to compare various coupling approaches for hydraulic fracturing simulation. The contribution
of this work is to address the gap in the loosely-coupled methods by providing a method where
convergence is more rigorously defined. A model is presented which monolithically couples the
rock deformation, fluid flow, and proppant transport by simultaneously solving the equations that
govern these mechanisms until convergence.

The linear elastic deformation of the discontinuous rock mass is modeled using the extended
finite element method (XFEM), including contact and cohesion along the fracture boundaries.
The XFEM has been used by researchers to model fractures in both static and dynamic contexts
(e.g. Rivas et al. [1], Gupta and Duarte [41], Mohammadnejad and Khoei [120], and Gracie and
Parchei Esfahani [121]). Amixturemodel is used to represent the proppant-laden slurry. The flow
of fracturing fluid is simulated using the standard finite element method. It includes the transition
from Poiseuille flow to Darcy flow as the proppant becomes packed following the approach
proposed by Dontsov and Peirce [73]. The flow of fluid in the reservoir is not considered in this
paper, which is a reasonable assumption for reservoirs that have low permeability. Additionally,
the slurry is assumed to span the length of the fracture without explicitly accounting for fluid lag.
This is valid for deep reservoirs that are subject to high confining stresses [15].

Proppant transport through the hydraulic fracture is simulated using the finite volume method
with a second-order correction that minimizes numerical dispersion ahead of the proppant front.
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Proppant bridging, or obstruction of proppant flow in narrow fractures, is captured in this model.
The nonlinear hyperbolic equation that governs proppant transport is characterized by a solution
that contains shock waves, or sharp discontinuities, that must be taken into consideration to
obtain a correct approximation. The numerical solution of this nonlinear advection equation
in the context of hydraulic fracturing is discussed in detail by Rivas and Gracie [2] (Chapter
3). Proppant transport can be ignored in hydraulic fracture models that are only interested in
modeling the fracture growth with low leak-off of fracturing fluid into the reservoir. However,
proppant transport cannot be ignored for conditions with leak-off in which a tip screen-out may
affect the fracture growth. Furthermore, the proppant distribution is essential for simulating the
fracture aperture after shut-in.

An injection-rate controlled simulation is achieved by solving global mass conservation, as
previously performed by Adachi et al. [15], Khoei et al. [122], and Parchei Esfahani [123]. In this
chapter, a more robust algorithm is presented for improving convergence of the iterative scheme.

The equations that govern the deformation of the solid rock mass and slurry flow through the
fractured media are derived in Section 4.2. In Section 4.3, the numerical methods used to
approximate each of the governing equations are described. The solution strategies for solving
the coupled system of equations and propagating the hydraulic fracture are described in Section
4.4.

Section 4.5 presents numerical results aimed at verifying the code implementation and simulating
the slurry-driven propagation of both planar and non-planar fractures. Tip screen-out behavior is
investigated to study the interaction between the coupledmechanisms and the results are compared
with those of sequential and loose coupling algorithms. The study shows that the monolithic
scheme is optimal in terms of computational cost, robustness, and accuracy. The computational
cost of a monolithic scheme is comparable to that of a loose coupling scheme and more efficient
than a sequential scheme. A sequential coupling scheme maintains accuracy in early times of the
simulation but fails to converge after the onset of a tip screen-out. Additionally, it is demonstrated
that a loose coupling scheme fails to converge to the same solution as monolithic and sequential
schemes. A discussion of results is provided in Section 4.6.

4.2 Governing equations

The governing equations for an impermeable medium containing a slurry-driven fracture are
derived in this section. A two-dimensional fracture plane is modeled. Given an in-situ vertical
stress, fE, minimum horizontal stress, fℎ, and maximum horizontal stress, f� , the fracture plane
under consideration is aligned with the horizontal stresses, as depicted in Figure 4.1. The fracture
height is assumed to extend a large distance into the domain such that plane strain conditions apply.
The four mechanisms of interest in this hydraulic fracturing model are the rock deformation, fluid
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flow, proppant transport, and fracture propagation. The corresponding variables of interest are
the fracture aperture, F, the fluid pressure, ?, the volumetric concentration of proppant, q, and
the fracture length, !, respectively.

wellbore

GH

I

G

H

f�

fℎ

fE

f�

fℎ

Figure 4.1: Model domain: a two-dimensional domain along the horizontal plane of a
fractured rock mass is modeled. The normal of the fracture plane is aligned with the
vertical in-situ stress. Fracture propagation is driven by slurry flow (a mixture of fracturing
fluid and proppant)

4.2.1 Governing equations for the deformation of solid rock mass

The equations that govern the deformation of a fractured rock mass are presented in this section.
The rock mass is modeled on a two-dimensional domain, ΩB, as depicted in Figure 4.2, described
on the reference coordinate system x. The domain is enclosed by a boundary, ΓB, with outward
normal vector n̂. The boundary is comprised of mutually exclusive sets ΓD and ΓC , corresponding
to the Dirichlet and Neumann boundaries, respectively. The domain also contains an internal
boundary, Γ2, pertaining to a fracture surface. The fracture has two faces, denoted by Γ+2 and
Γ−2 , with outward normal base vectors n̂Γ+2 and n̂Γ−2 , respectively. The normal base vector used to
describe the internal boundary is n̂Γ2 = n̂Γ−2 , which faces into the domain on the positive fracture
face. The deformation of the rock mass, u(x), is governed by the equilibrium equation

∇ · 2(u) + b = 0, ∀ x ∈ ΩB (4.1)
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in which 2 is the Cauchy stress tensor, and b is the vector of applied body forces. A linear
constitutive law of the form 2 − 20 = D : 9 is assumed, in which 20 is the initial stress state,
D is the two-dimensional plane-strain elasticity matrix, and 9 = 1

2 (∇u + ∇u>) is the matrix
containing the infinitesimal strain. The quasi-static equation of equilibrium is solved assuming a
plane strain domain under small deformations. The quasi-steady stress field assumption is valid
for this coupled problem since the time scale in which the stress state undergoes changes is larger
than the time scale of the slurry flow.

n̂

ΩB

Γ2
C2n̂Γ2

?n̂Γ2

ΓD

t̄

ΓC
n̂Γ2

G

H

Γ−2

Γ+2
n̂Γ−2

n̂Γ+2

Figure 4.2: Solid rock mass domain

The governing equilibrium equation is a boundary-value problem that requires a Dirichlet bound-
ary condition to obtain a unique solution. The boundary is subject to external tractions, t̄, along
the external Neumann boundary, ΓC , prescribed displacements, ū, along the Dirichlet boundary,
ΓD, and tractions due to fluid pressure (?n̂Γ2 ), and contact/cohesive forces (C2n̂Γ2 ) along the frac-
ture interface, Γ2. The fluid pressure is obtained as a part of the solution to the governing equation
of the fluid flow, as described in Section 4.2.2, and the constitutive model which describes the
contact and cohesive forces are described in the following section. The boundary conditions on
the external and internal boundaries are

u(x) = ū, ∀ x ∈ ΓD (4.2)
2 · n̂ = t̄, ∀ x ∈ ΓC (4.3)

2 · n̂Γ2 = (C2 − ?)n̂Γ2 , ∀ x ∈ Γ2 (4.4)

The weak form of the equilibrium equation is derived by multiplying the governing equation (4.1)
by a test function, Xu(x), and integrating over the domain, ΩB [124]. The numerical method used
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to solve the weak form of the equilibrium equation is described in Section 4.3.2.

Interface constitutive model

The fracture is subject to contact and cohesive forces that act normal to the fracture surface.
Contact forces prevent the non-physical overlap of two fracture surfaces and cohesive forces
impede the fracture opening for small apertures. The constitutive model used is similar to the one
presented in Section 2.3.1. The magnitude of these forces is dependent on the fracture aperture,
F(x) = Ju(x)K · n̂Γ2 , which is defined with respect to the jump in displacement along the fracture
surface, JuK = u|Γ+2 − u|Γ−2 . The tractions are applied on either face of the fracture surface with
equal magnitude and opposite direction.

2+ · n̂Γ+2 = −2
− · n̂Γ−2 , ∀ x ∈ Γ2 (4.5)

The governing equation (4.1) is satisfied under the constraint that the relative displacement of the
fracture surfaces must be non-negative.

F(x) ≥ 0, ∀ x ∈ Γ2 (4.6)

Contact forces are applied using the penalty method to satisfy the above-mentioned constraint,
which is akin to placing springs between the two faces of the fracture to prevent them from
overlapping. The magnitude of the contact traction is linearly proportional to the magnitude of
overlap of the fracture faces, as represented by the left side of the traction-separation curve shown
in Figure 4.3. Contact constraints are important at the start of the simulation in which the fracture
faces are compressed by the in-situ stresses acting on the domain. Contact can be ignored for
simulations in which the fracture is filled with fluid and propagating under purely Mode I regime
such that the fracture is never in a closed state.

A cohesive-zone model is used to simulate fracture propagation in a ductile rock mass. Fracture
formation is conceptualized as the gradual separation of the fracture faces due to plastic defor-
mation at the tip of the fracture. A fracture process zone is assumed to exist near the tip of the
fracture which encompasses the region where plastic deformation takes place prior to complete
opening of the fracture. Within the fracture process zone, cohesive forces act on the fracture
surfaces resisting separation until enough energy is applied to fully open the fracture. Various
traction-separation laws have been proposed in the literature for applying cohesive tractions across
a fracture [125]. A bilinear intrinsic cohesive model, similar to the one proposed by Geubelle
and Baylor [93], is used in this study for cohesion normal to the fracture surface. The magni-
tude of traction, corresponding to the right side of the traction-separation curve in Figure 4.3, is
proportional to the fracture aperture. There is an initial increase in magnitude as the aperture
increases until the maximum cohesive traction is reached, equal to the material tensile strength,
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5D. For greater apertures, there is a softening behavior until the fracture completely separates.
The traction-separation law is defined as

C2 =



5D
F

FF
, F < FF

5D

(
1 − F − FF

F2 − FF

)
, FF ≤ F ≤ F2

0, F > F2

(4.7)

in which F2 = 2� �2/ 5D is the aperture at which the fracture surfaces fully separate, and FF is
the weakening aperture, taken between 0.005F2 and 0.1F2 in this work. The aperture at which
the fracture is fully separated is selected such that the area under the traction-separation curve is
equal to the Mode I fracture energy,

� �2 =

F2∫
0

C23F (4.8)

5D

F

FF F2

C2

contact cohesion separation

� � 2

Figure 4.3: Traction-separation law which relates the fracture aperture, F, to the magnitude
of cohesive and contact tractions acting along the fracture surface, C2
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4.2.2 Governing equations for the flow of proppant-laden slurry

Γ?

Γ@

F

Ω2

B

q = q<q < q<

@̄ 5

Figure 4.4: Slurry domain

The equations that govern the flow of a proppant-laden slurry through a fracture are presented
in this section. Consider a one-dimensional domain, Ω2, with boundary Γ 5 made up of the
mutually-exclusive sets Γ? and Γ@, corresponding to the Dirichlet and Neumann boundaries of
the domain, respectively. The domain is depicted in Figure 4.4. A mixture model is used which
assumes that the fluid and proppant phases are fully mixed. There are two variables of interest in
the slurry flow: the fluid pressure, ?, and the volumetric proppant concentration, q. The variables
are taken as average values along the width of the fracture and are varying along the fracture
length, B, and time, C. The fracture width, F(B), is obtained from the equilibrium equation (4.1).
The equations governing the flow of fluid and proppant are derived from the conservation of
mass for each of the phases after assuming that both phases are incompressible. The sum of
the conservation of mass of fluid and proppant gives the conservation of slurry mass. Mixture
models in the literature typically solve the slurry and proppant conservation equations to obtain
the fluid pressure and proppant concentration. In this work, the solution is obtained from the
fluid and proppant conservation equations.

fluid :
m [(1 − q)F]

mC
+
m@ 5

mB
+&;40: = 0 (4.9)

proppant :
m (qF)
mC

+
m@?

mB
= q8= 9&8= 9X(B − B0) (4.10)
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The volumetric fluid flux and proppant fluxes are denoted by @ 5 and @?, respectively. The
proppant boundary is subject to a prescribed volumetric proppant flux at the fracture inlet, B0,
that is equivalent to the product of the injection rate of the slurry, &8= 9 , and the concentration
of the injected slurry, q8= 9 . Constitutive laws define the relationships between the fluxes, fluid
pressure gradient, m?/mB, and proppant concentration. These constitutive laws are described
in further detail in the following section. Carter’s model is used to approximate the leak-off
flux, &;40: (B, C) = 22!/

√
C − C0(B) . This model assumes one-dimensional fluid loss to the rock

formation flowing perpendicular to the fracture face due to a constant fluid pressure inside the
fracture. The rate of leak-off at any given point along the fracture is proportional to the inverse
square root of time, which is measured as the time since the fracturing fluid reached that point,
denoted by C0(B). Leak-off is controlled by the Carter leak-off coefficient, 2! , which depends
upon the characteristics of the fracturing fluid used and the reservoir fluids and rock [126]. This
model is appropriate only for low-permeability formations, as is assumed in this chapter.

The conservation of fluid mass is a boundary value problem characterized by a diffusion equation.
Therefore, the fluid boundary is subject to a prescribed pressure, ?̄, on the Dirichlet boundary,
Γ?, and a prescribed volumetric flux, @̄ 5 , on the Neumann boundary, Γ@.

? = ?̄, ∀ B ∈ Γ? subject to:&8= 9 =
∫
Ω 5

¤F3Ω +
∫
Ω 5

&;40:3Ω (4.11)

@ 5 = @̄ 5 , ∀ B ∈ Γ@ (4.12)

In this work, the prescribed pressure is obtained by satisfying global mass conservation in each
time step, so that the total change in fracture volume in a time step is equal to the volumetric
injection rate at the inlet, &8= 9 . The procedure for prescribing injection-rate controlled fracture
propagation is described in more detail in Section 4.4.2.

The conservation of proppant mass is an initial value problem characterized by an advection
equation. It is solved based on an initial proppant concentration profile, which is assumed to be
null in the results presented in this chapter. Additionally, equation (4.10) must be solved under the
constraint that the proppant concentration must be non-negative and less than the fully saturated
proppant concentration, q<.

0 ≤ q ≤ q< (4.13)

Values of saturated concentration range from 0.52 for loose-packed spheres [104] to 0.74 for
hexagonal close-packing of mono-disperse spherical particles [105]. A value of 0.60 is used in
this work.

The weak form of the fluid conservation of mass is derived by multiplying the governing equation
(4.9) by a test function, X?(B), and integrating over the domain,Ω2 [124]. The numerical method
used to solve the weak form of the conservation of fluid mass is described in Section 4.3.3.
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Constitutive model of slurry flow

A constitutive law that relates the volumetric fluxes of fluid and proppant to the fluid pressure
gradient and proppant concentration is described in this section. Assuming a homogeneous
proppant distribution along the width of the fracture, the volumetric flux of the slurry, fluid, and
proppant are respectively defined as

@ = F 5 Ē (4.14)
@ 5 = (1 − q)F 5 Ē 5 (4.15)
@? = qF 5 Ē? (4.16)

in which the average velocities of the slurry, fluid, and proppant along the fracture width are
denoted by Ē, Ē 5 , and Ē?, respectively. Heterogeneous proppant distribution along the fracture
width is discussed by Hammond [101]. Due to asperities on the fracture surface, a closed fracture
has a residual aperture, FA4B, within which the slurry may flow. The fracture aperture for slurry
flow is defined as

F 5 = max(F, FA4B) (4.17)

The average velocities of the two phases of the slurry mixture are defined with respect to twomain
flow velocities: the velocity of a Newtonian slurry between two parallel plates assuming laminar
flow (Ē2) and the velocity of the fracturing fluid through packed proppant particles (Ē3). The
two main flow velocities correspond to Poiseuille flow and Darcy flow. The slurry is treated as a
Newtonian fluid with an effective viscosity that is dependent on the proppant concentration. The
laminar flow velocity, Ē2, stems from the cubic law with a correction for the effective viscosity of
the slurry, `(q).

Ē2 =
−F2

5

12`(q)
m?

mB
(4.18)

The effective viscosity of the slurry increases with higher proppant concentration, reducing the
velocity to zero at a saturated proppant concentration. Various expressions for effective viscosity
are proposed in the literature [103]. The role that the effective viscosity plays on the nonlinear
advection of proppant through a fracture is discussed by Rivas and Gracie [2] (Chapter 3). The
expression proposed by Eilers [108] is used in this work, defined as

`(q) = `0

[
1 + 1.25q

1 − q/q<

]2
(4.19)

in which `0 is the viscosity of the fracturing fluid. The effective viscosity is equivalent to the pure
fluid viscosity at zero proppant concentration and goes to infinity as the proppant concentration
reaches the saturation point.
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TheDarcy flow velocity, Ē3 , is the velocity of the fracturing fluid through packed proppant that has
become immobilized. The Carman-Kozeny equation [127, 128] is used to relate the mean flow
velocity of the fluid to the proppant concentration, fluid pressure gradient, and average proppant
particle radius, 0. This equation assumes that fluid is moving through a packed proppant bed of
unconsolidated, spherical grains.

Ē3 = −
(20)2
180`0

(1 − q<)3

q2
<

m?

mB
(4.20)

In accordancewith the definition of themass-averaged slurry velocity (dĒ = qd? Ē?+(1−q)d 5 Ē 5 ),
the average slurry, fluid, and proppant velocities are defined as

Ē = Ē2 +
[
(1 − q)

d 5

d

]
q

q<
Ē3 (4.21)

Ē 5 =

[
1 − q

1 − q
d?

d 5
(�(F 5 ) − 1)

]
Ē2 +

q

q<
Ē3 (4.22)

Ē? = �(F 5 )Ē2 (4.23)

The densities of the slurry, fluid, and proppant are denoted by d, d 5 , and d?, respectively. The
first term in each of the velocity definitions (4.21-4.23) is related to the laminar slurry flow term,
Ē2. The laminar flow of proppant is hindered by a bridging function, �(F 5 ) = � (F 5 /20 > =380),
which prevents proppant from entering fracture apertures that are too narrow. The threshold
fracture width at which the particles form a bridge is specified as a number of proppant diameters,
=380 [116]. In this work, the proppant is restricted fromflowing through a fracture aperture smaller
than three proppant diameters in size. The laminar flow term in the fluid velocity definition is
corrected so that the definition of mass-averaged velocity holds.
The second term in the definition of slurry and fluid velocities (4.21-4.22) is related to the flow of
fluid through packed proppant, Ē3 . As the proppant concentration reaches the saturated amount,
the laminar flow term becomes negligible and the Darcy flow term dominates. The Darcy flow
term increases proportionally with increasing proppant concentration until reaching the saturated
amount. The proppant is unaffected by the Darcy velocity term since it does not flow at the
saturated concentration. The Darcy flow term in the slurry velocity is corrected to satisfy the
definition of mass-averaged velocity.
Assuming a homogeneous proppant distribution along the width of the fracture and using the
velocity definitions (4.22-4.23), the volumetric flux of the fluid and proppant are defined as,

@ 5 = −(1 − q): 5
m?

mB
(4.24)

@? = −q: ?
m?

mB
(4.25)
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in which the fluid and proppant conductivities are respectively defined as

: 5 =
F3
5

12`(q)

(
1 − q

1 − q
d?

d 5
(�(F 5 ) − 1)

)
+
F 5 0

2

45`0

(1 − q<)3

q2
<

q

q<
(4.26)

: ? =
F3
5

12`(q) �(F 5 ) (4.27)

The variation of the fluid and proppant fluxes with respect to proppant concentration and fracture
apertures are shown in Figures 4.5 and 4.6, respectively. For negligible proppant concentration
(q → 0), the slurry flow is solely laminar fluid flow. In the other limit, as the proppant
concentration becomes saturated (q → q<), the slurry flow is solely Darcy flow of the fluid
through the packed proppant bed. It is important to note that Equation 4.19 is singular for a
saturated proppant concentration (q = q<). To overcome the numerical challenges of a singular
expression, the viscosity is factored into the conductivity expressions (4.26-4.27) to obtain a final
expression that has a finite value in the entire range of permissible proppant concentrations.
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q/q<

0
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q/q<
F = 0.5mm
F = 1mm

F = 1.5mm

F = 2mm
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F = 1.5mm

F = 2mm1×10−5

Figure 4.5: Fluid flux for varying fracture apertures as a function of proppant concentration,
plotted using q< = 0.6, X?/XB = −100 kPa, `0 = 0.001 Pa·s, 0 = 0.6, d? = 2650 kg/m3,
and d 5 = 1000 kg/m3
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Figure 4.6: Proppant flux for varying fracture apertures as a function of proppant concen-
tration, plotted using q< = 0.6, X?/XB = −100 kPa, `0 = 0.001 Pa·s, 0 = 0.6, d? = 2650
kg/m3, and d 5 = 1000 kg/m3

4.3 Numerical methodology

In this section, the numerical methodology used to approximate the governing equations are de-
scribed. Three different methods are used to solve the three governing equations: the equilibrium
equation governing rock deformation (4.1) is approximated using the extended finite element
method (XFEM); the conservation of fluid mass (4.9) is approximated using the standard finite
element method (FEM); and the conservation of proppant mass (4.10) is approximated using the
finite volume method (FVM). The discretization of the three domains is first described, followed
by the approximation of rock deformation, fluid pressure, and proppant concentration.

4.3.1 Discretization

Quadrilateral elements are used to discretize the solid rock domain. A fracture is defined in the
domain using linear segments that span between the edges of the solid mesh elements, as depicted
in Figure 4.7. The standard FEM nodes for the approximation of the rock displacement field are
represented by white circles in the figure. Using the XFEM, the displacement field of the rock
mass is discontinuous along the fracture. An enrichment function is used on additional degrees
of freedom located at nodes surrounding the fracture to capture the discontinuity. Nodes that
contain enriched degrees of freedom are represented by dark-gray circles in the figure.
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The fluid domain is discretized into one-dimensional linear elements, which coincide with the
explicit description of the fracture. The nodes of each fluid element, depicted by blue squares in
Figure 4.7, are located on the edges of the solid elements. The proppant domain is discretized
into one-dimensional finite volume cells, such that the edges of each cell coincide with the edges
of a fluid element. The proppant concentration is approximated at a node located at the center of
each finite volume cell, depicted by a red triangle in Figure 4.7.

quadrilateral XFEM element with
standard nodes (white) and
enriched nodes (grey) for
discontinuous rock displacement
field
linear FEM element for fluid
pressure field

cell-centered FVM cell for proppant
concentration field

Figure 4.7: Discretized domains for the governing equations of rock deformation, fluid flow
and proppant transport

4.3.2 XFEM approximation of the rock deformation

The XFEM is used to approximate the deformation of the fractured rock mass. Additional infor-
mation on the XFEM can be found in papers by Moës et al. [34], Dolbow et al. [50], Lecampion
[87], Khoei et al. [122], and Rivas et al. [1]. The rock displacement field is approximated by
a discontinuous function, defined by enriching the shape functions of nodes that are adjacent
to fractures in the domain. For each element, the approximation of the rock displacement is
expressed as

uℎ (x) =
∑
�∈(=

#� (x)ũ� +
∑
�∈(2

#� (x)Ψ� (x)ã� ≡ N(x)d (4.28)

in which (= is the set of all nodes in each element and (2 is the set of nodes that have a nodal
support cut by the fracture. The vectors of nodal displacement on the standard and enriched
degrees of freedom of node � are denoted by ũ� and ã� , respectively. The standard finite element
shape functions for each node � are denoted by #� (x) and enrichment functions are denoted as
Ψ� (x).
In the matrix form of the approximation, N(x) is a matrix that contains the shape functions
corresponding to both the standard and enriched degrees of freedom in each element. Similarly,
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the column matrix, d, contains the displacements on both the standard and enriched degrees of
freedom. The strain is approximated by

9ℎ (x) = ∇Buℎ (x) ≡ B(x)d (4.29)

in whichB is the matrix containing the derivatives of the shape functions for both the standard and
enriched degrees of freedom. The use of quadrilateral elements results in a bilinear approximation
of the displacement along each element. To model discontinuities in the displacement field along
the fracture surface, a shifted Heaviside enrichment function is used at each enriched node, �,
defined as

Ψ� (x) = � (x) − � (x�) (4.30)

in which � (x) is the Heaviside step function that differentiates between the two sides of the
fracture,

� (x) =
{

0, (x − xC8?) · n̂Γ2 < 0
1, (x − xC8?) · n̂Γ2 ≥ 0

(4.31)

The function checks the distance between a point in the domain and the fracture tip, xC8?, in
the direction normal to the fracture surface and assigns a value to either side. The Heaviside
enrichment at each node is shifted by the Heaviside function evaluated at the corresponding node
to satisfy the Kronecker-X property. Using the enriched approximation, the fracture aperture is
defined as

F(x) = Ju(x)K · n̂Γ2 = n̂>Γ2JN(x)Kd (4.32)

The discretized system of equations is obtained by inserting the approximation (4.28) and a test
function of a similar form into the weak form of the equation governing rock deformation,

∫
ΩB

B>DB3Ω
 d

︸                ︷︷                ︸
F8=C

+

∫
Γ2

JNK>
(
C2n̂Γ2 − 20 · n̂Γ2

)
3Γ

︸                                    ︷︷                                    ︸
F2

−

∫
Γ2

JNK>n̂Γ2 ?3Γ
︸                 ︷︷                 ︸

F?

−

∫
ΩB

N>b3Ω +
∫
ΓC

N>t̄3Γ
︸                            ︷︷                            ︸

F4GC

= 0

(4.33)

The integral terms are written in terms of the column matrices representing the internal forces
F8=C , cohesive and contact forces F2, pressure forces F?, and external forces F4GC . The magnitude
of the contact and cohesive tractions, C2, are defined by the traction-separation law in Equation 4.7,
and the approximation of fluid pressure, ?, is described in Section 4.3.3. The fracture surfaces

85



are also subject to in-situ stresses, 20.

4.3.3 FEM approximation of the fluid flow

The standard FEM is used to approximate the equation governing fluid flow through a fracture.
In each fluid element, the approximation of the fluid pressure, ?ℎ, and pressure gradient, ?ℎ,B, are
expressed as

?ℎ (B, C) = N 5 (B)p(C) (4.34)
?ℎ,B (B, C) = B 5 (B)p(C) (4.35)

in whichN 5 andB 5 are the matrices containing the standard FEM shape functions and derivatives
of the shape functions for the degrees of freedom in each element, respectively. The columnmatrix
containing the nodal pressures is denoted by p(C). Linear elements are used for the pressure field,
which results in a linearly-varying pressure field along the fracture and constant pressure gradients
in each element.
The semi-discrete system of equations is obtained by inserting the approximation (4.34) and a test
function of a similar form into the weak form of the equation governing fluid flow and integrating
over all fluid elements. An implicit backward Euler scheme is used to integrate the storage term
over time to obtain the following discrete system of equations,

∫
Ω2

B>5 @
=
5 3B

︸           ︷︷           ︸
F3

− 1
ΔC=


∫
Ω2

N>5 Δ[(1 − q)F]3B
︸                         ︷︷                         ︸

FB

−

∫
Ω2

N>5 &
=
;40:3B

︸               ︷︷               ︸
F;

−
[(

N>5 @̄
=
5

) ���
Γ@

]
︸          ︷︷          ︸

F 5

= 0
(4.36)

in which ΔC= = C= − C=−1 is the time step and Δ[(1 − q)F] = (1 − q=)F= − (1 − q=−1)F=−1 is the
change in fluid storage in the aperture. The constitutive law of the fluid flux defined in Equation
4.24 relates the flux to the fluid pressure. The integral terms are written in terms of the column
matrices representing the diffusive fluxes, F3 , storage fluxes, FB, leak-off fluxes, F; , and source
fluxes, F 5 . The approximation of the fracture aperture, F, and proppant concentration, q, are
discussed in Sections 4.3.2 and 4.3.4, respectively.

4.3.4 FVM approximation of proppant transport

The FVM is used to approximate the conservation of proppant mass throughout the fracture.
Details of the numerical method used to solve the nonlinear and heterogeneous advection of
proppant through a fracture are elaborated upon in Rivas and Gracie [2] (Chapter 3). The fracture
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is first discretized into # finite volume cells, as depicted in Figure 4.8. The equation governing
the conservation of proppant mass (4.10) is integrated over the length of a finite volume cell, ΔB,
and a time step, ΔC=. The discrete equation is obtained by using the midpoint integration rule for
the spatial integral and an explicit forward Euler scheme for time integration,

q=8 F
=
8 = q

=−1
8 F=−1

8 − ΔC
=

ΔB

[
@=−1
?8+1/2 − @

=−1
?8−1/2

]
, ∀ 8 ∈ [0, #] (4.37)

This equation describes advection of the propped fracture width (qF). The approximation for the
proppant concentration at the center of cell 8 at time C= is denoted by q=

8
. A piecewise constant

approximation of proppant concentration is assumed in each cell. The discrete equation uses
the approximate fracture aperture, F=

8
, and fluid pressure, ?=

8
, at the center of the cell obtained

using Equations 4.32 and 4.34, respectively. The proppant fluxes at the cell edges at time C=−1

are denoted by @=−1
?8±1/2 . The difficulty in the finite volume method is the approximation of the cell

edge fluxes, which is described in 3.3.4.

8 = 1 ...8 = 2 8 = #

ΔB

Bq8= 9&8= 9

Figure 4.8: Finite volume cells along the fracture length

The matrix form of the discrete system of equations (4.37) is

W (d=) 5= −W
(
d=−1

)
5=−1︸                              ︷︷                              ︸

F?B

+ ΔC
=

ΔB
ΔF0

(
d=−1, p=−1, 5=−1

)
︸                             ︷︷                             ︸

F03E42C

= 0 (4.38)

in which W(d) is a diagonal matrix containing the fracture aperture at the center of each cell
along its diagonal and 5 is a column matrix containing the proppant concentration at each of the
finite volume cells. The column matrix ΔF0 contains the difference between the proppant flux at
the cell edges for each cell. The equation is written in terms of the column matrices representing
the proppant storage flux, F?B, and the advection flux of the propped width, F03E42C .

The explicit time integration method imposes a constraint on the time step according to the
Courant-Friedrichs-Lewy (CFL) stability condition, ΔC= ≤ ΔC=?A>?. The largest time step permis-
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sible is approximated using the maximum slurry viscosity as

ΔC=?A>? = min
8∈[0,#]

ΔB8

−
(
F=
8

)2

12`0

m?=
8

mB

(4.39)

The maximum time step size is proportional to the element size, and inversely proportional to the
fracture aperture and pressure gradient. It does not depend on the proppant concentration.

The model presented in this chapter uses an explicit time integration algorithm to solve the prop-
pant transport equations. Nevertheless, it is also possible to update the proppant concentrations
using the estimates of aperture and pressure from the current time step to approximate the fluxes
at the cell edges with the following equation,

q=8 F
=
8 = q

=−1
8 F=−1

8 − ΔC
=

ΔB

[
@=?8+1/2 − @

=
?8−1/2

]
, ∀ 8 ∈ [0, #] (4.40)

Since the flux approximation depends on the unknown proppant concentration at the current time
step, this is considered a quasi-implicit scheme. A comparison of results using the quasi-implicit
scheme and the explicit scheme is provided in Section 4.5.2.

Concentration constraints

A predictor-corrector algorithm is used to constrain the proppant concentration within the
physically-admissible range such that q ∈ [0, q<] as proposed by Rivas and Gracie [2] (Chapter
3). The concentration is obtained using Equation 4.37 in a predictor step with the flux approx-
imations described in 3.3.4. Then, the set of cells with predicted concentrations outside of the
physically-admissible range are identified and the flux approximation is corrected so that the
proppant concentration is exactly at the limit. The neighboring cell fluxes are also updated to
maintain the conservation property of the finite volume method.

4.3.5 Coupled system of equations

Combining the discrete equations for the solid (4.33), fluid (4.36), and proppant (4.38) domains
gives the coupled system of discrete equations in terms of the residuals for the solid deformation,
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R=
3
, fluid pressure, R=

?, and proppant concentration, R=
q
, at time C=.

R=
3 = F8=C (d=) + F2 (d=) − F? (p=) + F4GC = 0

R=
? = F3 (d=, p=, 5=) − 1

ΔC
FB (Δd,Δ5) − F; − F 5 = 0

R=
q = F?B

(
d=, 5=, d=−1, 5=−1

)
+ F03E42C

(
d=−1, p=−1, 5=−1

)
= 0

(4.41)

The strategy used to solve this system of equations is detailed in the following section.

4.4 Solution strategies

In this section, the solution strategies used in simulating the propagation of a hydraulic fracture
due to slurry injection are described. A flow chart of the numerical algorithm is provided in Figure
4.9. There are three main loops in the algorithm: a time loop (Section 4.4.4), an external loop
used to approximate the pressure at the Dirichlet boundary required to control the injection rate
(Section 4.4.2), and an internal loop used to solve the discrete system of equations (Section 4.4.1).
Once a converged solution is achieved for the desired injection rate, the fracture is propagated as
described in Section 4.4.3 before starting a new time step. Each part of the algorithm is detailed
in the following sections.
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Figure 4.9: Solution algorithm flowchart
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4.4.1 Coupled solution algorithm (inner loop)

Monolithic coupling

A robust fully-coupled scheme is developed for the first time in this work. A Newton-Raphson
iterative method is used to solve the coupled system of equations. For a given time, C=, the solution
is approximated iteratively, corresponding to the red-filled box in Figure 4.9. The discrete system
of equations (4.41) is linearized for a given iteration, <, using a first-order truncated Taylor
expansion about the solution in the form

R=
< + J=<Δ7=< = 0 (4.42)

in which R=
< =

[
R=
3

R=
? R=

q

]> is the column matrix of residuals evaluated from the solution at
time C=, and 7=< =

[
d=< p=< 5=<

]> is the column matrix of independent variables. The Jacobian
matrix, J=<, contains the first partial derivative of the residual components with respect to the
independent variables, defined as

J=< =



mR=
3

md=
mR=

3

mp=
mR=

3

m5=

mR=
?

md=
mR=

?

mp=
mR=

?

m5=

mR=
q

md=
mR=

q

mp=
mR=

q

m5=

<
=



K33 +K2 −K3? 0

K?3 −
1
ΔC

KB3 K?? K?q −
1
ΔC

KBq

Kq3 0 Kqq



=

<

(4.43)

The terms in the matrix are

K33 =
mF8=C

md=
=

∫
Ω

B>DB3Ω (4.44)

K2 =
mF2

md=
=
mF2

mC2

mC2

mF

mF

md=

=


∫
Γ2

JNK>n̂Γ2
mC2

mF
n̂>Γ2JNK3Γ

 (4.45)

K3? =
mF?

mp=
=

∫
Γ2

JNK>n̂Γ2N 5 3Γ (4.46)
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K?3 =
mF3

md=
=
mF3

m@ 5

m@ 5

m: 5

m: 5

mF

mF

md=

=


∫
Ω 5

B>5 (q
= − 1)

m: 5

mF
B 5 p=n̂>Γ2JNK3B

 (4.47)

KB3 =
mFB

md=
=
mFB

mF=
mF=

md=

=

∫
Ω 5

N>5 (1 − q
=)n̂>Γ2JNK3B (4.48)

K?? =
mF3

mp=
=
mF3

m@ 5

m@ 5

mp=

=


∫
Ω 5

B>5 (q
= − 1): 5B 5 3B

 (4.49)

K?q =
mF3

m5=
=
mF3

m@ 5

m@ 5

m5=

=

∫
Ω 5

B>5

(
: 5 − (1 − q=)

m: 5

mq

)
B 5 p=3B (4.50)

KBq =
mFB

m5=
= −

©­­«
∫
Ω 5

N>5 F3B
ª®®¬ (4.51)

Kq3 =
mF?B

md=
=
mW
md=

5=

 q3,8 = q8n̂>Γ2JN(x(B8))K (4.52)

Kqq =
mF?B

m5=
= W (d=) (4.53)
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The differential terms in the integrals are specified as,

mC2

mF
=



5D

0.1F2
, F < 0.1F2

− 5D
0.9F2

, 0.1F2 < F < F2

0, F > F2

(4.54)

m: 5

mF
=

{
F2

4`(q)

[
1 − q

1 − q
d?

d 5
(�(F) − 1)

]
+ 02

45`0

(1 − q<)3

q2
<

q

q<

}
(4.55)

m: 5

mq
=

{
−F3`′

12`(q)2

[
1 − q

1 − q
d?

d 5
(�(F) − 1)

]
+ F3

12`(q)
1

(1 − q)2
d?

d 5
(�(F) − 1)

+ F0
2

45`0

(1 − q<)3

q3
<

}
(4.56)

For each successive iteration, the independent variables are updated by

7=< = 7=<−1 + Δ7
=
<−1 (4.57)

The iterative scheme is continued until the vector norm of the residual is less than a specified
tolerance, nC>;,0, or when the residual norm has been reduced by a specified ratio from the norm
of the first iteration, nC>;,1.

‖R=
< ‖ ≤ nC>;,0 or ‖R=

< ‖ ≤ nC>;,1‖R=
1‖ (4.58)

In the numerical results shown in this chapter, the tolerances used are nC>;,0 = 10−8 and nC>;,1 =
10−10.

Sequential and loose coupling

A comparison of the proposed monolithic coupling with sequential and loose coupling schemes
is performed in Section 4.5.2. In the sequential scheme, the solid and fluid degrees of freedom
are first solved simultaneously using a Newton-Raphson iteration with fixed values of proppant
concentration from the previous time step or iteration. The Jacobian does not contain any terms
from the proppant advection equation,
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J=<B4@ =


K33 +K2 −K3?

K?3 −
1
ΔC

KB3 K??


=

<

(4.59)

The proppant degrees of freedom are then updated using an explicit finite volume method
(Equation 4.37) with the converged values of fracture aperture for the time step, F=

8
. The norm

of the residuals of the displacement and pressure, R=
3
and R=

?, respectively, are checked for
convergence using the criteria in Equation 4.58. If the equations fail to converge, the time step is
repeated using the latest proppant concentration estimates to compute the rock displacement and
fluid pressure until all residuals are converged.
A loosely-coupled solution algorithm is also compared in this section, similar to the ones used in
proppant transport models in the literature (e.g. Adachi et al. [15], Shiozawa and McClure [71],
Dontsov and Peirce [75], and Shi et al. [83]). The loosely-coupled scheme follows the same steps
as the sequential scheme, solving first for the displacement and pressure fields simultaneously and
then updating the proppant concentration using Equation 4.37. The algorithm then moves to the
next time step. The difference between the loosely-coupled algorithm and the sequential algorithm
is that the residual norms are not checked for convergence after the proppant concentrations are
updated.

4.4.2 Injection rate-controlled boundary: Global mass conservation (outer
loop)

For an injection rate-controlled hydraulic fracture in an impermeable medium, the flux is pre-
scribed at the fracture inlet and zero flux is required at the fracture tip. However, the boundary-
value problem that governs fluid flow requires a Dirichlet boundary condition, i.e., a prescribed
fluid pressure, to obtain a unique solution to the fluid flow equation [15, 122, 123]. An additional
constraint is required, called the solvability condition by Adachi et al. [15], to obtain a well-posed
problem. The solvability condition is imposed in the form of global mass conservation along the
fracture,

&8= 9 =

∫
Ω2

¤F3Ω +
∫
Ω2

&;40:3Ω (4.60)

The equation above is mass conservation of the slurry along the entire fracture, as opposed to the
fluid mass conservation equation used to govern fluid flow (4.9).
Although the solvability condition has been used in various models, Gupta and Duarte [41]
have recently proven that the coupled system for the hydro-mechanical problem provides a
unique solution without a prescribed fluid pressure along the boundary. It is suspected that
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the coupled system of equations presented in this chapter also leads to a unique solution when
solved monolithically, eliminating the need for a solvability condition and thereby reducing the
computation time. However, the solvability condition is still required when the problem is solved
sequentially. This work is solved by imposing the solvability condition for all coupling schemes
to obtain a more direct comparison.

In Khoei et al. [122] and Parchei Esfahani [123], global mass conservation is imposed in an
external loop to the solution to iteratively determine the wellbore pressure, ?F, that is equivalent
to prescribing a fluid injection rate, &8= 9 . The algorithm corresponds to the blue-filled box in
Figure 4.9. Within each iteration, : , of the outer loop, the system is solved for a given wellbore
pressure estimate, ?:F, and the resulting injection rate of the system, &̃: , is computed. The
wellbore pressure estimate is then improved with each iteration until the injection rate of the
system matches the desired injection rate, &8= 9 . In Khoei et al. [122], a fixed-point iterative
scheme is used to estimate the wellbore pressure at the fracture inlet. This method was found
to lack robustness. A more robust scheme was presented in Parchei Esfahani [123], in which an
iterative Newton-Raphson scheme is used to obtain the wellbore pressure corresponding to the
prescribed injection rate. With each iteration, : , the wellbore pressure is estimated as

?:F = ?
:−1
F + _:−1Δ&:−1 (4.61)

The slope of the nonlinear function, _ = m?F/m&̃, is an unknown part of the solution and must
be estimated. The error in the injection rate for iteration : is the difference between the estimated
injection rate and the prescribed injection rate, Δ&: = &̃: − &8= 9 . The injection rate for the
current estimate, ?:F, is calculated as

&̃: =
1
ΔC

∑
4

ΔF4ΔB4 +
∑
4

&4
;40:ΔB4 (4.62)

in which ΔF4 = F=4 − F=−1
4 is the change in fracture aperture at the center of each fluid element,

4, calculated using Equation 4.32, and ΔB4 is the length of the fluid element. The volumetric
leak-off flux at the center of each element is denoted by &4

;40:
, calculated as the average leak-off

flux at each of the quadrature points in the element. The iterative scheme is continued until the
normalized error in injection rate is less than a specified tolerance, nC>;,6;>10; .

Δ&:

&8= 9
< nC>;,6;>10; (4.63)

In the simulations included in this chapter, the global tolerance is specified as 10−3.

An accurate estimate of the slope, _, is crucial to convergence of the iterative scheme. Parchei
Esfahani [123] proposed that the slope be estimated using an analytical model. While convergence
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is improved for some problems, it is sometimes slow for others since it is difficult to select a
suitable asymptotic solution. The addition of proppant transport equations to the model has
necessitated a more robust algorithm. In Section 4.4.2, a new algorithm for estimating the slope
of the wellbore pressure-injection rate curve is described which improves convergence of the
global mass conservation by adaptively improving the estimate during the iterative loop.

The convergence of Newton’s method is improved if the initial guess is close to the solution.
Estimates of the wellbore pressure, ?:F, and slope, _: , are based on analytical solutions of
hydraulic fracture propagation derived from asymptotic tip conditions to increase the algorithm’s
efficiency. A summary of the analytical solutions is provided by [129]. For fractures in the
toughness-dominated regime, solutions to the wellbore pressure are given by [130], and for
those in the viscosity-dominated regime, solutions are given by [131]. The estimates described
are chosen to optimize the efficiency of the global mass conservation loop for planar fracture
propagation of fractures with tip conditions close to the asymptotic cases. However, the estimates
are not optimized for all fractures. In cases where the fracture is further from the asymptotic
tip conditions, for non-planar fractures, or for multiple fractures the global mass conservation
iterative scheme may still require many iterations and perhaps small time steps to converge.

New iterative method for injection control

A new algorithm for adaptively updating the slope estimate throughout the global mass con-
servation loop to speed up convergence is provided for the first time in this section. Previous
algorithms proposed by Khoei et al. [122] and Parchei Esfahani [123] are highly dependent on
the initial estimates of the wellbore pressure and slope and exhibit slow convergence or lack of
convergence if the initial estimates are inaccurate. The algorithm described in this section is
more robust, converging even when the previous algorithms fail due to the ability to adaptively
estimate the slope of the wellbore pressure/injection rate curve. It is also efficient, converging in
under 10 iterations for non-planar fractures.

In each time step, the initial slope estimate based on analytical solutions is used for the first
two iterations. All wellbore pressure estimates, ?:F, and corresponding injection rates, &̃: , are
stored after each iteration, as depicted by blue circles in Figure 4.10. These points are used to
obtain a better approximation of _: for all future iterations. A linear interpolation of the previous
solutions for the prescribed injection rate is used to estimate the slope. As shown in Figure 4.10,
only the points closest to the prescribed injection rate are needed for the estimate. Without the
adaptive estimate of the slope, the iterative method is entirely dependent on the accuracy of the
initial estimate of the slope. The initial estimate may be based on analytical solutions but these
are only available for limited cases.
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Figure 4.10: Stored data points for slope estimate

During the global mass conservation loop, it is possible that the domain is modified due to
opening and closing of the fracture, essentially creating a newminimization problem. If the slope
of the ?:F

(
&̃:

)
curve from the saved data points changes direction, it indicates that the domain

has changed significantly during the iterative process and a new minimization problem must be
solved. Only five data points are stored for any iteration, eliminating those furthest from the
prescribed injection rate, &8= 9 , as depicted in Figure 4.10. This number of data points is enough
to determine whether the slope of the curve has changed direction, although only the two points
closest to the desired solution are used in the linear interpolation. If the slope of the curve changes
direction, the wellbore pressure estimate is reduced to 20% of the lowest saved estimates in the
loop, and all the data points are eliminated from memory so that the wellbore pressure for the
new minimization problem can be found.

Constraints are applied to the change in wellbore pressure for each iteration to further increase
convergence of the iterative scheme. To avoid a negative wellbore pressure, the change in wellbore
pressure is limited by setting the pressure estimate to 50% of the lowest saved estimates.

if _:−1Δ&:−1 < −?:−1
F then ?:F = min

:= ∈ [1, :−1]

1
2
?:=F (4.64)

Furthermore, the change in wellbore pressure is limited by a specified factor, ?;8<, in each
iteration to avoid drastically changing the solution, which may cause convergence issues in the
inner solution loop.

if _:−1Δ&:−1 > ?;8<?
:−1
F then ?:F = ?

:−1
F (1 + ?;8<) (4.65)

The limiting factor is initially set to ?;8< = 2 for all simulations in this chapter. If the time step
fails to converge, the factor is reduced by 20% for the following attempt.
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4.4.3 Fracture propagation

A fracture is propagated through the rock domain with a cohesive-zone model [132, 133]. The
cohesive zone represents the fracture process zone that is characteristic of ductile and quasi-brittle
materials. It is modeled as a section of the fracture near the tip that is resisted from opening
by the cohesive tractions discussed in Section 4.2.1. As such, the numerical model contains
two fracture tips, one representing the tip of the fracture process zone (a fictitious crack-tip) and
another representing the tip of the fully-opened fracture (the real crack-tip), as depicted in Figure
4.11a. A fracture propagation criterion extends the fracture process zone; the physical fracture
propagation occurs as the fracture opens due to the fluid pressure.

The fracture process zone is propagated in the model when the maximum principal stress exceeds
the yield strength of the material. The fracture is propagated to the edge of the adjacent element
if the maximum principal stress at any of the quadrature points in the element ahead of the
fracture tip exceeds the material yield strength, as depicted in Figure 4.11b. The direction of
propagation is determined using the maximum circumferential stress criterion [134]. The hoop
stress is sampled at points 2.5 element lengths ahead of the fracture in a 140-degree arc around
the fracture tip. Ideally, the hoop stress is sampled as close to the crack tip as possible, but the
stress state at the tip has a lower accuracy than elsewhere due to the stress concentration. The
location of the sample points (2.5 elements ahead of the tip) is selected as a compromise between
sampling close to the fracture tip and loss in accuracy.

When fracture propagation is detected in the algorithm, the fracture propagates to the neighboring
element edge in the direction of the highest hoop stress. A commonproblemwith arbitrary fracture
propagation using the XFEM arises when a fracture intersects or gets very close to a node, leading
to an ill-conditioned stiffness matrix Sukumar et al. [35]. To overcome this issue, if the fracture
direction is headed near a node of the solid rock mesh, the fracture direction is shifted by 15
degrees. This correction does not lead to major deviation from the appropriate fracture path since
it is only across a single element length.

Fracture propagation is accompanied by an addition of elements into the fluid mesh and proppant
mesh. An element of the same length as the new fracture segment is added to the fluid mesh and
the boundary conditions at the tip are moved to the end of the new segment. Similarly, a finite
volume cell of the same length as the new fracture segment is added to the proppant mesh and
the boundary conditions at the outlet are shifted to the edge of the new cell. After propagation,
the time step is repeated using the new fracture length. This allows for the fracture to propagate
multiple elements in a single time step.
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tip determines direction

Figure 4.11: Cohesive zone model (left) and fracture propagation criterion (right)

4.4.4 Adaptive time steps

To optimize the computational time, an adaptive time-stepping algorithm is used in this model.
The largest change in the solution often occurs at the beginning of the hydraulic fracturing
simulation, while the fracture is initially opening, thus requiring small time steps to converge.
Once the fracture propagation begins the time step size may be increased. A reduction in the time
step is also required at the onset of proppant injection and when there is a saturation of proppant
concentration throughout the fracture. Since the exact time step size required is unknown to the
user and varies throughout the simulation, an adaptive algorithm for setting the time step is used
in this work.
Any time the maximum number of iterations is reached in the solution loop or the injection rate
loop, as shown in Figure 4.9, the time step is reduced by 50%. After each iteration of the time
loop, the step sizes are analyzed to determine whether a modification of the time step is required
for the rest of the simulation. If the five preceding time steps have been smaller than the base
time step size, the base time step for the next iterations is reduced. This reduction in time step
size permits the convergence of the system of equations in parts of the simulation which undergo
large changes in the solution, such as during the initial opening of the fracture or when proppant
bridging occurs. The adaptive scheme also increases the base time step size when the system
of equations is continuously converging to increase the efficiency of the algorithm. If the ten
preceding time steps have been equal to the base time step (no reductions required), then the base
time step is increased to twice the size of the current base time step. The maximum time step size
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Table 4.1: Material properties for simulations of proppant transport in propagating fractures

Rock mass

Young’s modulus, � 20 GPa
Poisson’s ratio, a 0.2
Density, dB 2800 kg/m3

Fracturing fluid

Density, d 5 1000 kg/m3

Residual aperture, FA4B 0.1 mm

Proppant

Density, d? 2650 kg/m3

Average radius, 0 0.1 mm

is limited by the time step requirements for explicit time integration of conservation of proppant
mass, ΔC=?A>?, as defined in Equation 4.39.

4.5 Numerical results

In this section, the implementation of the numerical methodology is first verified by analyzing the
proppant concentration, wellbore pressure, and wellbore aperture along a slurry-driven hydraulic
fracture with a pre-defined fracture path. A study of a tip screen-out in a planar fracture is
then performed for three coupling schemes: monolithic, sequential, and loose coupling. The
importance of a monolithic coupling scheme is highlighted in this section, where it is shown that
a sequential coupling scheme fails to converge after the onset of a tip screen-out, and a loose
coupling scheme has inaccuracies due to lack of convergence. Finally, proppant transport in
non-planar fracture propagation is studied and the solution of the monolithic model is compared
with that of loosely-coupled and sequential models. Verification of planar fracture propagation is
discussed in Appendix A, where fracture propagation in the toughness and viscosity-dominated
asymptotic tip conditions are compared with analytical KGD models. The material properties
that are common to all simulations in this section are provided in Table 4.1. These values are
representative of a water-based fracturing fluid mixed with a 40/70 mesh sand injected into a
shale reservoir.
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Figure 4.12: Schematic (left) and mesh (right) for a model of slurry flow through a pre-
defined fracture

4.5.1 Slurry flow through a pre-defined fracture

In the first problem, the coupled algorithm is verified by analyzing the slurry flow through a pre-
defined fracture. Neither the global mass conservation nor the fracture propagation algorithms
are active in this example, to focus on the solution of the discrete system of equations (the inner
solution loop in Figure 4.9).

A 20 m by 40 m domain is simulated, as depicted in Figure 4.12a, with a horizontal fracture
located 20 m from the bottom of the domain that runs along the entire length of the domain. The
rock mass is constrained from deforming vertically on the top and bottom edges, and horizontally
on the left and right edges. There are no in-situ stresses applied on the domain. The rock mass
has a tensile strength of 1 MPa and fracture energy of 10 J/m2.

A structured mesh is used to discretize the solid rock domain, as depicted in Figure 4.12b. The
mesh is uniformly distributed in the horizontal direction with 200 elements, and non-uniformly
distributed in the vertical direction with 27 elements that are more refined near the fracture. The
fluid domain is also discretized into 200 elements and the proppant domain is discretized into
200 cells.

A pad of clean fracturing fluid is injected for the first 8 seconds of the simulation into the left
edge of the fracture followed by a proppant-laden slurry for 32 seconds, for a total simulation
time of 40 seconds. The fracturing fluid has a viscosity of 0.001 Pa·s and is injected at a rate of
0.005 m2/s. The proppant concentration of the injected slurry is varied and results are provided
for q8= 9 = 0.1, 0.3, and 0.45. The fluid is allowed to exit the domain on the right-edge by setting
a zero-pressure boundary condition. The proppant is also able to exit the domain by prescribing
a ghost cell on the right edge with the same proppant concentration as the adjacent cell.
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The profiles of proppant concentration, fluid pressure, and fracture aperture along the length of
the fracture for various time steps are provided in Figure 4.13. Results for injected proppant
concentrations of 0.1, 0.3, and 0.45 are represented by red, blue, and green lines, respectively.
The proppant concentration at C = 7.5 s is initially zero for all cases, but over time the injected
proppant passes from the left edge to the right edge of the fracture until the entire fracture has
the same concentration at C = 30 s. The proppant is transported through the fracture with a sharp
proppant front. The lack of numerical diffusion in the model is made possible by the applied flux
limiters, as discussed in 3.3.4. Slurries of higher proppant concentration move slower through
the fracture, demonstrated in Figure 4.13g by the proppant front for the injected slurry of 0.45
proppant concentration lagging behind the other cases. A greater proppant concentration leads
to a higher effective slurry viscosity, and therefore a slower transport speed.

At C = 7.5 s, the fluid has filled the fracture, resulting in a pressure profile starting at 0.815
MPa at the inlet and reducing to zero at the outlet. As the proppant is injected, the effective
viscosity of the slurry is increased leading to an elevated fluid pressure inside the fracture. The
pressure increase follows the proppant front from the left edge to the right edge of the domain
over time. The final pressure profile at C = 30 s for the slurry-filled fracture is higher than that
of the pure fluid-filled fracture at C = 7.5 s. A higher proppant concentration results in a greater
pressure increase, demonstrated in Figure 4.13k, in which the fracture injected with a slurry of
0.45 proppant concentration has a higher pressure profile than those injected with slurries of
lower proppant concentration. Higher fluid pressures also result in larger fracture apertures as the
fluid causes the fracture to push open, shown in Figure 4.13l. In summary, an injected slurry with
higher proppant concentration moves slower through the fracture, but leads to a higher pressure
build-up and consequently a wider fracture than slurries of lower proppant concentration. The
response of the fluid pressure and fracture aperture to the proppant flow is as expected.

4.5.2 Comparison of coupling schemes during tip screen-out

In this section, slurry flow through a fracture and the onset of a tip screen-out are compared for
three different coupling schemes: monolithic, sequential, and loose coupling. The same mesh,
boundary conditions, and material properties as the previous example are used. Differing from
the previous example, leak-off of the fracturing fluid into the domain is included with a Carter
leak-off coefficient of 1 × 10−4 m/

√
s . Fracturing fluid is first injected into the domain for 4

seconds, followed by a slurry with proppant concentration of 0.1 m3/m3 for 6 seconds, for a total
simulated time of 10 seconds. The results of the monolithic model presented in this chapter are
compared with a sequentially-coupled scheme and a loosely-coupled scheme. The difference in
the three schemes lies in the algorithm for the solution loop, as described in Section 4.4.1.

The profiles of proppant concentration, fluid pressure, and fracture aperture along the length of the
fracture for various time steps are provided in Figure 4.14. Results for the monolithic, sequential,
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Figure 4.13: Proppant concentration, fluid pressure, and fracture aperture for a planar,
slurry-driven fracture over time. Results are plotted for various injected proppant concen-
trations: q8= 9 = 0.1 (red), q8= 9 = 0.3 (blue), and q8= 9 = 0.45 (green)
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and loose solution algorithms with explicit time integration are shown. Though the schemes yield
different solutions, each is converged and unchanging with refinement. A proppant-laden slurry
is injected starting at C = 4 s with a volumetric proppant concentration of 0.1 m3/m3 and travels
from the left- to right- edge of the domain over time. During the treatment, the proppant front
reaches a point along the fracture at which the aperture is too narrow for the particles to pass and
bridging occurs (at 6 mm or three proppant diameters). The proppant concentration builds up
until it reaches a saturation value of 0.6 m3/m3. After bridging occurs, the proppant is no longer
able to travel through the fracture and fluid flow is greatly reduced. A large pressure gradient
is formed at the location of proppant bridging and the physical fracture tip ceases to propagate.
This behavior is commonly known as a tip screen-out, which leads to the creation of wide, short
fractures. The location along the fracture at which proppant bridging occurs is dependent both on
the average proppant diameter and the choice in threshold aperture of the bridging function. The
selection of material parameters and injection parameters used in this example leads to the on-set
of proppant bridging within 10 seconds of the start of injection. Bridging occurs fairly quickly in
this example due to the combination of high injection rate and high leak-off coefficient, though
in practice the onset of a tip screen-out may occur within minutes or hours of proppant injection.
The results of the monolithic and sequential coupling algorithms are identical up to the point of
bridging, reflected by the curves for these two models lying right on top of one another in Figure
4.14. After bridging occurs the solution loop for the sequential scheme fails to converge. The
results of the loosely-coupled algorithm are the same as those of the monolithic and sequential
algorithms before proppant injection begins at 4 s. Once proppant injection begins the solutions
diverge and the accumulation of error in the loosely-coupled scheme is pronounced once proppant
bridging occurs. The loosely-coupled algorithm predicts the onset of tip screen-out earlier along
the fracture than the sequential and monolithic schemes (around 8.5 m compared to 10 m).
In Figure 4.15, the proppant concentration over time is shown for the loose coupling scheme
solved with both explicit and quasi-implicit time integration, henceforth denoted as loose-explicit
and loose-implicit, respectively. The results are shown for a time step size of 8ms after the start of
proppant injection. Spurious oscillations at the proppant front are observed for the loose-explicit
scheme, a behavior not exhibited in the loose-implicit algorithm for the same time step size.
The spurious oscillations are eliminated with refinement in time, thereby showing that a smaller
time step size is required for the loose-explicit scheme than the other coupling schemes. For this
problem, the monolithic, sequential, and loose-implicit algorithms show converged results for
time step sizes at their CFL limit of around 15 ms, whereas the loose-explicit scheme exhibits
oscillations in the results for time step sizes greater than 5 ms.
Despite the elimination of spurious oscillation behavior at the proppant front, the loose-implicit
scheme converges to the same results as the loose-explicit scheme. An increase in accuracy is
not obtained with a different time integration method for a loose coupling scheme. This result
may be attributed to the fact that the loose schemes do not ensure that the residuals are reduced
to zero within each time step.
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Figure 4.14: Proppant concentration, fluid pressure, and fracture aperture for a planar,
slurry-driven fracture undergoing a tip screen-out at various times. Results are plotted for
various coupling schemes: monolithic (black), sequential (dark blue), and loose (light blue)
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Figure 4.15: Proppant concentration along half of the fracture length over time for the loose
coupling scheme. Results are plotted for explicit time integration (blue) and implicit time
integration (black)

4.5.3 Non-planar fracture propagation

The propagation of a non-planar fracture is simulated in this section with two examples. In the
first example, the propagation of five fractures with varying initial direction is verified. In the
second example, a proppant-laden slurry is injected into a non-planar fracture and the results of
the monolithic model presented in this chapter are compared with those obtained with a loosely-
coupled model. The results of the sequential model are omitted since they are identical to the
monolithic model up to the onset of tip screen-out.

A wellbore of 12.7 cm diameter centered in a 20 m by 20 m domain is simulated, as depicted
in Figure 4.16a. The domain has minimum and maximum in-situ horizontal stresses of 10 MPa
and 30 MPa, respectively. Fluid is injected into the wellbore at a rate of 3.5×10−4 m2/s. The
outer boundary of the solid domain is restrained from moving in the normal direction. A traction
due to the pressure of the injected fluid is applied normal to the wellbore. The rock has a yield
strength of 1 MPa and fracture energy of 100 J/m2. The fracturing fluid has a viscosity of 1 Pa·s
and a Carter leak-off coefficient of 1×10−4 m/

√
s .

A mesh of 7,643 quadrilateral elements, depicted in Figure 4.16b, discretizes the solid rock
domain. A structured mesh is used near the wellbore which circles a 1 cm radius around the
wellbore and extends into the first quadrant a distance of 1.5 m from the center of the wellbore
in a 100◦ arc from the vertical direction. The average element length varies from 2 mm at the
wellbore, 4 cm at a distance of 1.5 m from the center of the wellbore, to 3 m at the outer boundary
of the domain.
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Figure 4.16: Schematic (left) and mesh (right) used to simulate slurry-driven non-planar
fracture propagation from a wellbore

Verification of non-planar fracture propagation

In this example, a hydraulic fracture driven by fracturing fluid without proppant is simulated for
verification. Pure fracturing fluid is injected into an initial fracture of 2 cm length located along
the wellbore at an angle, \, from the horizontal. The simulation is repeated for fractures of varying
initial orientations with \ = 0◦, 20◦, 40◦, 60◦, and 80◦. A similar study has been performed in
the framework of Linear Elastic Fracture Mechanics (LEFM) by Mogilevskaya et al. [135] and
Zhang et al. [136]. The fracturing fluid is injected into the wellbore for 5 seconds, resulting in
the fracture propagation depicted in Figure 4.17. In 5 seconds, the fractures propagate about 24
times the wellbore radius, 'F. The fractures are expected to rotate to propagate in the direction
of the maximum principal stress. The propagation direction near the wellbore is affected by the
local stresses due to the stress concentration caused by the wellbore and the fluid pressure acting
on the wellbore. Away from the wellbore, the simulated fractures propagate in the horizontal
direction, as expected.
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Figure 4.17: Fracture propagation resulting from an initial fracture of 2 cm length oriented
at varying angles, \, of 0◦, 20◦, 40◦, 60◦, and 80◦ from the horizontal

The wellbore aperture, F0, wellbore pressure, ?F, and fracture length, !, over the simulated time
are plotted in Figure 4.18. As expected, the fracture that is initially oriented perpendicular to the
minimum principal stress (\ = 0◦) has the largest wellbore aperture during the simulation. The
aperture at the wellbore is reduced the further the initial fracture alignment is from the horizontal
direction, as shown in Figure 4.18a. The breakdown pressure, shown in Figure 4.18b, decreases
as the initial fracture orientation moves closer to the horizontal axis because the in-situ stress
acting normal to the fracture surface is reduced. The fracture lengths are not strongly affected by
the orientation of the initial fracture segment, as shown in Figure 4.18c.

When oriented in the direction perpendicular to the minimum principal stress, the fracture
undergoes purely Mode I (tensile) propagation. As the fracture orientation deviates from the
horizontal direction there is an increase in shear stresses which causes mixed-mode propagation.
The result is a smaller aperture along the initial fracture segment due toMode II (in-plane shearing)
behavior. The mixed-mode propagation behavior of the XFEM model has been validated against
an experiment by Gee et al. [137], in which a PMMA specimen with an initial fracture emanating
from a circular hole is compressed to induce mixed-mode fracture propagation. The results from
this experiment show a dominant shearing behavior (Mode II) along the initial fracture segment
and tensile opening (Mode I) in the remainder of the propagated fracture.

Based on these results, proppant with a diameter of 2 mm is not able to enter any fracture with a
wellbore aperture smaller than 6 mm due to proppant bridging. Thus, it is only able to enter the
fractures oriented at \ = 0◦ and 20◦ in this example. In a field application, there are many natural
fractures oriented in all directions around a wellbore. The results from this study suggest that
proppant particles are more likely to enter fractures that are initially oriented perpendicular to
the minimum principal stress since their stimulated apertures are larger and less likely to obstruct
slurry flow at the inlet than fractures oriented in other directions.
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Figure 4.18: Wellbore aperture, wellbore pressure, and fracture length over time for frac-
tures initially oriented at 0◦, 20◦, 40◦, 60◦, and 80◦ from the horizontal

Slurry flow through non-planar fracture

In this example, a proppant-laden slurry is injected into a fracture oriented 20◦ from the horizontal
using the same mesh and material properties as the previous example. At this initial orientation,
there is enough tensile opening of the fracture at the wellbore to allow for proppant injection.
Pure fracturing fluid is injected for the first 1.75 seconds of the simulation, followed by a slurry
injected with a volumetric proppant concentration of 0.1 for a total simulated time of 7 seconds.
A constant injection rate of 3.5×10−4 m2/s is maintained throughout the simulation.

The proppant concentration, fracture aperture, and fluid pressure over the length of the fracture
are shown in Figure 4.19 for various times throughout the simulation. The proppant concentration
is zero until C = 1.75 s when the slurry injection begins. The fracture is injected at a concentration
of 0.1 from the inlet and travels through the fracture over time. Due to shearing of the initial
fracture segment, the first 2 cm of fracture has a smaller aperture than the rest of the fracture. As
time progresses, the fracture propagates and the aperture along the entire fracture increases. The
fluid pressure is highest at the inlet and tapers down at the fracture tip, which is characteristic of
viscosity-dominated fracture propagation.

When the proppant front reaches roughly 0.9 m into the fracture, proppant bridging occurs
since the fracture aperture is three proppant diameters (0.6 mm) wide at this point. The proppant
concentration builds up until it reaches the saturation concentration of 0.6m3/m3. A tip screen-out
occurs after the proppant concentration becomes saturated.
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Figure 4.19: Proppant concentration, fluid pressure, and fracture aperture for a non-planar
slurry-driven fracture over time

After the onset of the tip screen-out, the pressure profile along the fracture changes drastically (see
Figure 4.19b). A jump in the fluid pressure is formed at the proppant front. The pressure upstream
of the front increases since the fluid flow through the packed proppant is greatly impeded. The
pressure downstream of the front diminishes since the leak-off at the tip exceeds the fluid flowing
through the packed proppant. A de-watering of the fracture tip occurs after the screen-out,
manifested by an increase in pressure from the proppant front towards the fracture tip. This
shows that after the tip screen-out, the fracturing fluid flows from the fracture tip towards the
proppant front. This de-watering behavior may be due to the lack of interaction of the fracturing
fluid with the reservoir fluid assumed in this model.

Figure 4.19c also shows that the fracture aperture increases upstream of the proppant front after
the onset of bridging, creating a fat fracture that does not continue to propagate. Due to the
de-watering upstream of the proppant bridge, the fracture aperture also begins to close ahead of
the bridge in this model.

The maximum proppant concentration along the fracture and the location of the proppant front
over time are shown in Figures 4.20a and 4.20b for both the fully-coupled and loosely-coupled
models. The oscillations in Figure 4.20a between C = 4 s and C = 5 s in the fully-coupled
model show that as the proppant is building up there is a cyclical pattern of increasing proppant
concentration followed by a subsequent reduction. The proppant concentration builds-up and
causes the fracture aperture to increase enough for the proppant front to move forward and
subsequently flush through the bridging point. The proppant front reaches another section of
narrow aperture and builds up again until the fracture opens enough for it to flush through that
bridge and move forward again. Ultimately, the proppant front stops moving and tip screen-out
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Figure 4.20: Maximum proppant concentration (left) and proppant front location (right)
over time

occurs when the proppant concentration becomes saturated, as shown in Figure 4.20.

In the monolithic coupled model, the proppant front stops moving approximately 4.6 s after the
start of the simulation. The loosely-coupled model fails to converge to the same solution as the
monolithic model. The results obtained with the loosely-coupled scheme predict that proppant
bridging and subsequent tip-screen out occur approximately 0.5 s before the fully-coupled model.
A tenfold reduction in time step size was not able to meaningfully change the solution of the
loosely-coupled model. This suggests that the loosely coupled model accumulates error in time
that cannot be reduced through the use of smaller time steps. This result is expected given that
no iterative process is used to ensure that the solution is converged within each time step.

The wellbore aperture, wellbore pressure, and fracture length over time are plotted in Figure
4.21 for the fully-coupled model in blue, loosely-coupled model in black, and the model with no
proppant injection in gray. The results of all three models are the same for the first 1.75 s of the
simulation before the proppant injection begins. After proppant injection begins, the wellbore
aperture and pressure are higher and the fracture length is shorter for the models with proppant.
A steeper increase in wellbore pressure and wellbore aperture occurs after the tip screen-out
begins. The propagation of the fracture tip ceases since the fluid flow past the proppant pack is
impeded. The results of the loosely-coupled model confirm that it is not able to accurately capture
proppant transport, resulting in a predicted fracture with a wider aperture and shorter length. The
sequentially coupled scheme yields results comparable to those of the monolithically coupled
scheme, up to the point of tip screen out, after which the sequential scheme fails to converge
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Figure 4.21: Wellbore aperture, wellbore pressure, and fracture length over time for a
fracture initially oriented 20◦ from the horizontal. Results of the fully-coupled model
(blue), loosely-coupled model (black) and model with no proppant injection (gray) are
provided.

whereas the monolithic scheme does converge.

The simulation of slurry flow through the non-planar fracture requires approximately 7 hours of
CPU time. The main computational bottleneck is the small time step required to meet the CFL
stability condition. The time step size over the simulated time is plotted in Figure 4.22. At the
start of proppant injection at C = 1.75 s the time step size is greatly reduced to accommodate the
time step requirements of the CFL condition. The critical time step is a function of the fracture
aperture and pressure gradient, meaning that smaller time steps are required as the fracture gets
wider and the pressure gradient increases. This leads to longer CPU times, particularly after a tip
screen-out occurs. The loose coupling scheme requires a time step smaller than the one strictly
required by the CFL condition to converge. The adaptive time stepping described in Section 4.4.4
reduces the time step size until convergence is met. This explains why the time steps used in the
monolithic and loose coupling schemes differ.
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Figure 4.22: Time step size over simulation time

4.6 Discussion

The choice of an optimal solution scheme should consider a) computational efficiency; b) accu-
racy; and c) robustness. Computational efficiency is often cited as the motivation/justification for
loosely coupled over monolithic schemes; however, a close study of the costs of the algorithms
suggests that loosely coupled schemes have comparable computational costs to a monolithic
scheme. In contrast, sequential schemes are more computationally expensive. This can be illus-
trated by studying the number of times the Jacobian used in the calculation of the displacements
and fluid pressure is assembled and inverted, which is performed multiple times in each time step.
This is the most costly part of the algorithm and therefore a good proxy for the total computational
cost of the schemes. While the size of the Jacobian is slightly larger for the monolithic scheme,
it is similar enough to that of the other schemes to have a negligible effect for the comparison.
For the numerical example performed in Section 4.5.2, Figure 4.23 illustrates the number of
Jacobian calculations for each scheme. It is clear after the start of proppant injection (C > 4 s),
the monolithic scheme is just as efficient as the loosely coupled scheme and that the monolithic
scheme is much more efficient than the sequential scheme.
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The results in Section 4.5.2 call into question the accuracy of solutions obtained using the loosely
coupled schemes. It has been shown that the loosely coupled schemes (implicit or explicit) fail
to converge to the same solution as the sequential or monolithic schemes, even with time step
refinement. This seems a natural outcome of the one-pass update of the proppant concentration.
Therefore, while the loosely coupled schemes are modular and easier to incorporate into existing
codes, the justification for such approaches is questionable.

In terms of the robustness of the schemes, it has been demonstrated that the solution loop for the
sequential scheme fails to converge once proppant packing begins. The loosely coupled scheme
conveniently avoids this issue by the nature of its one-pass algorithm in which convergence is
not verified. It has often been reported in the literature in the context of examples showing
screen-outs that loosely coupled schemes can easily be made more accurate by the introduction
of iteration; however, the results presented here suggest that the iterations may not converge.

Thus, the optimal scheme in terms of computational cost, accuracy, and robustness is the mono-
lithic scheme. The sequential scheme can be used with confidence (but with increased cost), so
long as the solution loop converges. The loosely coupled schemes should generally be avoided
since they yield different solutions than would be obtained with sequential or monolithic schemes
and have a computational cost similar to the monolithic scheme. In this work, the XFEM is
used to solve for the deformation of the fractured rock mass, but the monolithic scheme is also
expected to be the optimal coupling strategy for models that use other numerical methods, such
as boundary element methods and standard finite element methods.
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Chapter 5

Conclusions

5.1 Concluding remarks

The production of a reservoir is optimized in a hydraulic fracturing treatment by fracture growth,
proppant distribution throughout the fracture, and shear dilation in the surrounding fracture
network. The three main objectives in this thesis support the simulation of the mechanisms which
enhance reservoir productivity. Methods to solve the complex nonlinear and non-smooth system
of equations that governs the hydraulic fracturing process were discussed.
The first objective was to develop a numerical model for the simulation of the mechanical
deformation and shear dilation of naturally fractured rockmasses using the extended finite element
method. A model was created to simulate the nonlinear behavior of a Discrete Fracture Network,
including contact, cohesion, friction and shear dilation. Coulomb friction was considered on
fracture surfaces that are in contact. Shear dilation was incorporated in the model using a
linear dilation model, capped by a dilation limiting displacement, which takes into account the
average effect of asperities along the interface. An explicit time-integration scheme, with scaled
damping and mass matrices through a Dynamic Relaxation algorithm, was employed to solve the
semi-discrete equations.
To demonstrate the validity of the contact-dilation constitutive models, multiple direct shear tests
were simulated. The results of the simulation show that the shear strength of the specimen is
directly proportional to the applied normal stress, and conversely, the average dilation along the
interface is inversely proportional to the normal stress applied to the specimen. Under direct
shearing, it was also observed that when the normal stress exceeds the unconfined compressional
strength of the rock specimen, asperities undergo local shearing and no dilation is seen along the
interface.
Simulations of a biaxial test of a DFN verify the proportionality of shear displacement and dilation
along fracture sets. The tests also show the convergence of the model with mesh refinement, even
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for multiple fractures. Finally, the stability of a DFN rock slope under its gravitational force and
a monotonically increasing external compressive load was investigated. Simulations demonstrate
the stability of the slope under gravitational forces and subsequent failure of the slope after a
critical increase in the external force. The slope becomes unstable through the sliding of a critical
fracture located beneath the external force.

The second objective was to develop a numerical model for the simulation of proppant transport
through planar fractures. The numerical methodology for solving the nonlinear hyperbolic partial
differential equation that describes proppant transport through a hydraulic fracture was presented
in this thesis. In many of the hydraulic fracturing models to date, the advection equation is
linearized by assuming a constant fluid velocity. The work presented focuses solely on the
solution of the proppant transport equation, without assuming a linear form for the proppant flux
function. Instead, a nonlinear advection problemwas solved in which a constant pressure gradient
was assumed rather than a constant flow velocity.

The finite volume method using the Godunov approximation with an entropy fix and a high-
resolution correction using slope limiters was used. This methodology is capable of capturing
the shock waves in the solution which arise from the spatially-varying fracture width and fluid
pressure gradient along the fracture (especially at the fracture tips and inlet), as well as the
rarefaction wave that emerges when a proppant build-up disperses into a fracture. A predictor-
corrector algorithm was proposed for constraining the concentration within physically allowable
limits. Additionally, proppant bridging was simulated by limiting the proppant flux for fracture
widths less than a threshold size. A critical time step was derived for proppant transport problems
which works for any effective viscosity function used to describe the slurry.

The numerical method was verified by evaluating the rarefaction wave that occurs as proppant
is injected at high concentrations into a fracture and the compression wave that occurs as when
a proppant plug is formed at a small fracture width. Proppant advection through an elliptical
fracture was investigated, in which proppant bridging was observed at the location where the
fracture width is too narrow for proppant to pass. Finally, proppant transport through a plane-
strain KGD fracture was investigated which shows that a narrow fracture width may cause a
plug along the fracture before proppant reaches the tip. Solutions were compared using various
functions for effective slurry viscosity and it was observed that the Krieger-Dougherty expression
with V = 1 results in the fastest moving proppant, while V = 3 results in the slowest moving
proppant. The other viscosity functions produce results that lie between those extremes.

The results obtained in this work further the understanding of the nonlinear advection of proppant
through a fracture. It is of particular importance in grasping the limitations of mixture models
where linear proppant advection is performed as a separate step after coupling the rock deforma-
tion and slurry flow. The model presented provides a numerical foundation for simulating the
complexities of nonlinear proppant transport.

The final objective of the thesis was to develop a numerical model for the simulation of proppant
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transport through propagating non-planar fractures. The first monolithic model for the simula-
tion of hydraulic fracturing incorporating the mechanisms of rock deformation, fluid flow, and
proppant transport was presented. The model was used to simulate a tip screen-out, in which
a high degree of physical coupling is present. Simulations were performed for both planar and
non-planar fracture propagation and the results of the monolithic scheme were compared with
sequential and loose coupling algorithms.
All hydraulic fracturing models in the current literature that consider proppant transport solve
for the rock deformation and slurry pressure first, followed by a loosely-coupled update of the
proppant concentration at the end of a time step. In this work, it was demonstrated that a
loosely-coupled model converges to different solutions than monolithic and sequential coupling
schemes, even with refinement in time step size. The computational cost of the monolithic
scheme was shown to be comparable to that of a loose coupling strategy and more efficient than
the sequential algorithm. Finally, the sequential scheme was shown to lack robustness at the
onset of a tip screen-out where the solution loop fails to converge. Through this comparison, it is
clear that the monolithic scheme is the optimal scheme in terms of computational cost, accuracy,
and robustness. In addition to this finding, a new algorithm was described for optimizing the
iterative scheme used in simulating injection rate controlled hydraulic fracturing via global mass
conservation.
Simulation of hydraulic fracturing is a challenging problem due to the complex coupled physics
involved. There is no fracture model currently available that rigorously incorporates all of the
mechanisms which lead to enhanced reservoir production due to a hydraulic fracturing treatment.
Hence, questions remain unanswered such as: what is the geometry of the fracture network? how
much permeability enhancement will a treatment provide? and what are the stimulated reservoir
volume and the effective propped volume? A numerical model that can simulate fracture growth,
proppant transport, and shear dilation would be a valuable tool for petroleum engineers in making
operational decisions. The work presented in this thesis supports the creation of such a model by
addressing the numerical challenges posed by the highly nonlinear coupled mechanisms that take
place in hydraulic fracturing treatments. The shear dilation model presented tackles the challenge
of non-smooth interface constitutive laws to lay the groundwork for quantifying the stimulated
reservoir volume. The proppant model presented addresses the nonlinear transport and forms a
foundation for understanding the effective propped volume of a treatment. Finally, the work done
to couple hydraulic fracturing models with proppant transport provides a way to simulate how
the proppant affects fracture growth during a tip screen-out.

5.2 Significant contributions

In the process of accomplishing the objectives of this thesis, research contributions that expand
the knowledge currently available in the literature were produced. The significant contributions
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are disseminated in peer-reviewed journals and summarized below.

The first objective of the thesis is to develop a numericalmodel for the simulation of themechanical
deformation and shear dilation of a naturally fractured rock mass. This work is disseminated in

Rivas, E. et al., A two-dimensional extended finite element method model of discrete fracture net-
works, International Journal for Numerical Methods in Engineering, vol. 117, no. 13, pp. 1263–
1282, 2019

Rivas, E. and Gracie, R., Shear Dilation Using the Extended Finite Element Method, en, in 24th
International Congress of Theoretical and Applied Mechanics, Montreal, Canada, 2016

Rivas, E. and Gracie, R., An Extended Finite Element Model for Studying Shear Dilation in a
Pressurized Medium, in 14th U.S. National Congress on Computational Mechanics, Montreal,
Canada, 2017

The key contributions of this work are summarized below:

• This work investigates the failure of fractured rock masses under compressive regimes in
which Mode II fracture, shear dilation, and frictional contact are all simultaneously active.

• The mechanics of shear dilation is simulated for the first time with the extended finite
element method (XFEM).

• The simulation of a discrete fracture network (DFN) in this study differs from the current
XFEM literature, which has primarily focused on the simulation of single fracture problems.

The second objective of the thesis is to develop a numerical model for the simulation of slurry
flow through a planar fracture. This work is disseminated in

Rivas, E. and Gracie, R., Numerical considerations for the simulation of proppant transport
through fractures, Journal of Petroleum Science and Engineering, 2019

The key contributions of this work are summarized below:

• Solution of the nonlinear heterogeneous hyperbolic advection equation that governs prop-
pant transport is studied in this work. This study differs from current hydraulic fracture
models in the literature, which have mainly focused on solving linearized forms of the
advection equation.

• A predictor-corrector algorithm for constraining proppant concentrations within the physi-
cally admissible range is presented for the first time in this work.

• A critical time step suitable for all proppant problems independently of the proppant
concentration is derived.
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The third objective of the thesis is to develop a numerical model for the simulation of slurry flow
through a propagating non-planar fracture. This work is disseminated in

Rivas, E. and Gracie, R., A monolithic coupled hydraulic fracture model with proppant transport,
Manuscript submitted for publication, 2020

The key contributions of this work are summarized below:

• A hydraulic fracture model in which proppant transport is monolithically coupled is pre-
sented for the first time to address the gap in loose coupling methods where convergence is
not soundly defined.

• The model presented is used to investigate the behavior of non-planar fracture propagation
during a tip screen-out. This phenomenon highlights how the rock deformation, fluid flow,
proppant transport, and fracture propagation directly affect each other and the need for a
rigorous coupling methodology.

• A monolithic coupling scheme is shown to be the optimal scheme in comparison to se-
quential and loose coupling schemes in terms of computational efficiency, robustness, and
accuracy.

• An injection-rate controlled simulation is implemented using an iterative loop to solve
global mass conservation. A robust algorithm for approximating the slope of the wellbore
pressure-injection rate curve is developed to increase the convergence rate of the iterative
scheme.

5.3 Directions for future study

Throughout the course of research for this thesis, many ideas for improvement and continuation
of the work were uncovered. Possible directions for future work to continue to enhance the field
of hydraulic fracturing simulation are summarized below:

Validation: Validation of numerical models remains one of the greatest challenges in hydraulic
fracturing simulations. Due to the complex interaction of mechanisms at various scales which are
difficult and/or deterrently expensive to replicate in the lab, the uncertainty in field data, and the
absence ofmeaningfulmeasurement tools to analyze field response, there are limited experimental
results with which to validate models. Nevertheless, validation is of great importance to ensure
the reliability of the model results. Some experimental data exist for laboratory-scale problems
without proppant transport which can be used to validate components of the model. Further
design and implementation of experimental testing, even at the laboratory scale, is recommended
to validate other components of the numerical model presented. Although there are many
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components of the model that require validation, of particular interest is proppant transport
through a variable-width aperture to study the interaction with proppant build-up and fracture
deformation.

Application: The numerical models proposed in this thesis can be used to simulate other
scenarios of interest in hydraulic fracturing. The model can be applied to the simulation of a full
Tip Screen-Out (TSO) design including flushing of proppant with pure fracturing fluid to clear the
proppant pack. Additionally, it can be used to simulate proppant transport in a fracture network to
study the pathways proppant is most likely to travel. However, computational tractability remains
a challenge since the numerical simulation of a full-scale hydraulic fracturing treatment could
take on the order of years to complete with the methodology proposed.

Fracture closure: Various interactions between rock deformation, fluid flow, and proppant
transport have been studied in this work. One that remains to be studied is the effect of proppant
on the fracture aperture after shut-in as the fracture closes. This interaction is expected to follow
a similar numerical form in the constitutive model of the fracture interface as shear dilation.
However, determination of the correct closure aperture is a topic for future work.

Unified coupling: The coupled model developed in this thesis incorporates rock deformation,
fluid flow, proppant transport, and fracture propagation. A numerical model that also incorporates
shear dilation and fracture closure in a fracture network is of interest as it enables a study
of permeability enhancement in a hydraulic fracturing treatment. The main challenge with
incorporated the physics of shear dilation into the coupled model is the computational difficulties
of obtaining a converged solution due to the non-smoothness of the dilation problem. If this
challenge can be overcome, the model can be used to perform a sensitivity analysis of the various
factors that affect the permeability to enhance the understanding of the principal factors driving
the efficacy of the treatment. The study would also require the definition of a measure of effective
permeability in the reservoir.

Extension to three dimensions: A two-dimensional model of hydraulic fracturing is a useful
tool for exploring the qualitative trends in reservoir behavior. However, the simplification to
two dimensions reduces the scope of applicable mechanisms, which affects the accuracy of the
simulation results. For instance, fracture growth along the height of the fracture and settling of
proppant due to gravity are not captured in a two-dimensional model. An extension of the model
to a three-dimensional form would allow for more realistic results.
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Appendix A

Verification of planar fracture propagation

In this section, the propagation of planar fractures is verified by comparing the numerical results
with analytical solutions. First, two examples of hydraulic fractures propagated with a pure
fracturing fluid (no proppant) are provided. The material properties and injection rates are
selected such that the fracture lies in two asymptotic tip conditions: toughness-dominated regime
and viscosity-dominated regime. In the third example, a proppant-laden slurry is injected into a
propagating planar fracture. The proppant concentration along the fracture length is compared to
the results by Shi et al. [83]. The importance of a conservative form of the proppant advection
equation id demonstrated in this example.

Half of the physical domain ismodeled in each of the examples provided by taking advantage of the
symmetry so that only half of the fracture is simulated. The material properties that are common
to all simulations in this section are provided in Table 4.1. These values are representative of
water-based fracturing fluid with a sand-based proppant injected into a shale reservoir. The
material properties selected for each of these examples are listed in Table A.1.

A 20 m by 40 m domain is simulated, with an initial horizontal fracture of 20 cm length located
at the centerline of the fracture, as shown in Figure A.1. The mesh used to discretize the solid

Table A.1: Material properties for planar fracture propagation simulations

Toughness-dominated Viscosity-dominated Slurry-driven
Section A.1 Section A.2 Section A.3

Yield Strength, 5D 5 MPa 3 MPa 1.25 MPa
Fracture Energy, � �2 1000 J/m2 0.5 J/m2 0.48 J/m2

Fluid Viscosity, ` 0.001 Pa·s 1 Pa·s 0.1 Pa·s
Carter Leak-off Coefficient, 2! 0 m/

√
s 0 m/

√
s 1 ×10−5 m/

√
s
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rock domain in all three examples is the same as the mesh used in Section 4.5.1. The initial
fracture is discretized by four fluid elements and four proppant elements. In all cases, an in-situ
compression stress of 10 MPa is applied in the horizontal direction and the fluid is injected at a
rate of 0.001 m2/s.

20 m

40 m 0.2 m

Figure A.1: Schematic of domain for model of planar fracture propagation

A.1 Toughness-dominated planar fracture propagation

Curves showing the wellbore aperture, F0, wellbore pressure, ?F, and fracture half-length, !,
over time for a fracture under toughness-dominated tip conditions are plotted in Figure A.2. The
results are compared to analytical solutions by Bunger et al. [130], which are plotted with a
dashed line. The numerical results match the analytical solutions well, as can be seen by visual
comparison of the plots in Figure A.2.

The wellbore aperture and fracture half-length increase over time in a nonlinear form, as expected.
The wellbore pressure decreases drastically at the beginning of the simulation and has a shallower
decreasing slope for the rest of the simulation. Two fracture half-lengths are plotted, one for
the fictitious tip at the end of the fracture process zone and one for the real-tip at the location
of fracture opening. The two tip locations are depicted in Figure 4.11a. A material with higher
tensile strength would exhibit a smaller cohesive zone, represented by a curve for the fictitious
tip that is closer to the curve for the real tip. The analytical solutions are based on Linear Elastic
Fracture Mechanics (LEFM), which does not consider a fracture process zone at the tip of the
fracture. The LEFM fracture tip lies somewhere between the real tip and fictitious tip plotted in
Figure A.2c, but the exact location is unknown.
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Figure A.2: Wellbore aperture, wellbore pressure, and fracture half-length over time for a
fracture propagating in the toughness-dominated regime. Numerical results are shown with
solid lines and analytical results with dashed lines

A.2 Viscosity-dominated planar fracture propagation

For a fracture under viscosity-dominated tip conditions, the curves showing the wellbore aperture,
wellbore pressure, and fracture half-length over time are plotted in Figure A.3. The analytical
solutions derived by Adachi and Detournay [131] are plotted with a dashed line on the figures for
comparison. The numerical results match the analytical results well. The differences between
the numerical and analytical solutions may be attributed to the finite fracture toughness since the
analytical solutions are derived under the assumption of zero toughness. The fracture energy in
the numerical results is 0.5 J/<2, which is equivalent to a fracture toughness of 0.1 MPa through
Irwin’s relationship under plane strain conditions, � �2 =  

2
��
(1 − a2)/� .

A.3 Slurry-driven planar fracture propagation

The simulation of a planar fracture driven by an injected proppant-laden slurry is discussed in
this section. The proppant concentration of the injected slurry increases from 0.1 to 0.4 over a
span of 30 seconds, as shown in Figure A.4, with the proppant injection beginning at C = 10 s.
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Figure A.3: Wellbore aperture, wellbore pressure, and fracture half-length over time for a
fracture propagating in the viscosity-dominated regime. Numerical results are shown with
solid lines and analytical results with dashed lines
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Figure A.4: Proppant concentration of injected slurry over time

A plot of the proppant concentration along the length of the fracture is provided in Figure A.5
for times C = 12.7, 23.8, and 39.5 seconds. The proppant concentration at the injection point
(B = 0) is equal to the injected proppant concentration shown in Figure A.4 for the given times.
The clearly defined proppant front moves towards the right of the domain over time. The curve
of the proppant concentration profile has a section that is linearly increasing (from the fracture
tip to inlet of the fracture), which is due to the linearly increasing injection concentration.

The numerical results are compared with the results given by Shi et al. [83], shown in Figure A.5
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Figure A.5: Proppant concentration along the fracture for C = 12.7 s, 23.8 s, and 39.5 s.
Numerical results in solid lines, and results from Shi et al. [83] in dashed lines

with a dashed line. In the work by Shi et al. [83], the proppant concentration is calculated at the
end of each time step as an update after the solution of the fracture width and fluid pressure have
converged. In their work, a non-conservative form of the advection equation is presented which
uses the slurry velocity from the converged solution in the time step, in the form q,C + Eq,B = 0.
The solution of a non-conservative advection equation does not converge to a weak solution of
the conservation law when there is a shock in the solution [117], such as the one represented by
the proppant front in this example. The approximations in the work by Shi et al. [83] lead to a
diffused concentration curve with a proppant front that is not well defined. The concentration
at the injection point is correctly computed in their model, but the jump in concentration at
the proppant front due to an initial injection concentration of 0.1 is not visible. The incorrect
approximation of the proppant front could lead, for example, to a premature tip screen-out in a
narrow fracture. This example shows the importance of using a conservative form of the proppant
advection equation in obtaining a converged solution.

The wellbore aperture, wellbore pressure, and half-length of the fracture are plotted in Figure
A.6. The results are compared to a fracture with the same material properties driven by a fluid
with no proppant, shown in the figure with a dashed line. The slurry-driven fracture is shorter
and wider than the fluid-driven fracture. The proppant concentration leads to a slurry with higher
effective viscosity and consequently higher fluid pressure. The differences in the two models are
more pronounced at later times in the simulation, as the proppant has spread through the fracture.
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fracture propagation driven by a proppant-laden slurry (solid) and by pure fracturing fluid
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