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Abstract

In 1972, Tutte posed the 3-Flow Conjecture: that all 4-edge-connected graphs have a
nowhere zero 3-flow. This was extended by Jaeger et al.1 to allow vertices to have a
prescribed, possibly non-zero difference (modulo 3) between the inflow and outflow. He con-
jectured that all 5-edge-connected graphs with a valid prescription function have a nowhere
zero 3-flow meeting that prescription. Kochol2 showed that replacing 4-edge-connected with
5-edge-connected would suffice to prove the 3-Flow Conjecture and Lovász et al.3 showed
that both conjectures hold if the edge connectivity condition is relaxed to 6-edge-connected.
Both problems are still open for 5-edge-connected graphs.

The 3-Flow Conjecture was known to hold for planar graphs, as it is the dual of Grötzsch’s
Colouring Theorem. Steinberg and Younger4 provided the first direct proof using flows for
planar graphs, as well as a proof for projective planar graphs. Richter et al.5 provided the
first direct proof using flows of Jaeger’s Strong 3-Flow Conjecture for planar graphs. We
extend their result to graphs embedded in the projective plane.

Lai6 showed that Jaeger’s Strong 3-Flow Conjecture cannot be extended to 4-edge-connected
graphs by constructing an infinite family of 4-edge-connected graphs that do not have a
nowhere zero 3-flow meeting their prescribed net flow. We prove that graphs with arbitrarily
many non-crossing 4-edge-cuts sufficiently far apart have a nowhere zero 3-flow, regardless
of their prescription function. This is a step toward answering the question of which
4-edge-connected graphs have this property.

1Jaeger, F., Linial, N., Payan, C., and Tarsi, M. (1992). Group connectivity of graphs - a nonhomogeneous
analogue of nowhere-zero flow properties. J. Combin. Theory Ser. B, 56(2):165-182.

2Kochol, M. (2001). An equivalent version of the 3-flow conjecture. J. Combin. Theory Ser. B,
83(2):258-261.

3Lovász, L. M., Thomassen, C., Wu, Y., and Zhang, C.-Q. (2013). Nowhere-zero 3-flows and modulo k
orientations. J. Combin. Theory Ser. B, 103(5):587-598.

4Steinberg, R. and Younger, D. H. (1989). Grötzsch’s theorem for the projective plane. Ars. Combin.,
28:15-31.

5Richter, R. B., Thomassen, C., and Younger, D. H. (2016). Group-colouring, group-connectivity,
claw-decompositions, and orientations in 5-edge-connected planar graphs. J. Comb., 7(2-3):219-232

6Lai, H. (2007). Mod (2p + 1)-orientations and K1;2p+1-decompositions. SIAM J. Discrete Math.,
21(4):844-850
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Chapter 1

Introduction

Tutte (cf. Bondy and Murty [3]) conjectured that every 4-edge-connected graph has a
nowhere zero 3-flow. This is known as the 3-Flow Conjecture, and while progress has been
made for many classes of graphs, it is still an open problem. For planar graphs the 3-Flow
Conjecture is equivalent to Grötzsch’s Theorem, and Steinberg and Younger [25] provided a
direct proof using flows. Steinberg and Younger [25] also proved that the 3-Flow Conjecture
holds for graphs embedded in the projective plane.

As an extension of Z3-flows, we can consider Z3-connectivity, where each vertex in the
graph is assigned a prescription in Z3, which defines the net flow through the vertex. The
prescriptions of the vertices in the graph must sum to zero in Z3. This led Jaeger et al. [13]
to pose the following conjecture.

Conjecture 3.0.5 (Jaeger’s Strong 3-Flow Conjecture). Every 5-edge-connected graph is
Z3-connected.

Lai and Li [19] proved that Jaeger’s Strong 3-Flow Conjecture holds for planar graphs using
the duality with graph colouring. Richter et al. [23] provided the first direct proof of this
result using flows. We prove Jaeger’s Strong 3-Flow Conjecture for two main classes of
graphs. Our first result is Theorem 4.5.1.

Theorem 4.5.1. Let G be a 5-edge-connected graph embedded in the projective plane. Then
G is Z3-connected.

This extends the result of Richter et al. [23] to apply to projective planar graphs. The proof
of Theorem 4.5.1 appears in Chapter 4, following preliminary results regarding planar graphs.
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Our second main result is to extend the result of Richter et al. [23] to allow non-crossing
4-edge-cuts provided they are sufficiently far apart; i.e. not incident with adjacent faces.
This is motivated by an example due to Lai [18] of an infinite family of 4-edge-connected
graphs that do not have a nowhere zero 3-flow for all valid prescription functions. This
raises the question of which 4-edge-connected graphs do have such a flow. Our result is a
step toward answering this question, as we provide a class of graphs allowing arbitrarily
many 4-edge-cuts that do have a nowhere zero 3-flow for all valid prescription functions.
The proof of this result appears in Chapter 5.

In Chapter 2 we summarise the relevant background material in graph theory required to
understand the results in this thesis. In Chapter 3 we discuss the background and history
of the 3-Flow Conjecture and Jaeger’s Strong 3-Flow Conjecture.
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Chapter 2

Background Material

2.1 Basic Graph Theory

A graph G is an ordered pair (V (G), E(G)) consisting of a vertex set V (G) and an edge
multiset E(G) of pairs of vertices in V (G). For any x, y ∈ V (G), x and y are adjacent if
{x, y} ∈ E(G); x and y are the endpoints of {x, y}. We often use xy to specify an edge
with endpoints x and y, or refer to the edge directly (for example, as e) if the endpoints are
less relevant. An edge e ∈ E(G) and a vertex v ∈ V (G) are incident if v is an endpoint of e.
Edges e and f are adjacent if they have an endpoint in common. Edges e, f ∈ E(G) are
parallel if they have the same endpoints. An edge {x, x} is called a loop. A graph is simple
if it has no loops or parallel edges. A directed graph D is an ordered pair (V (D), E(D))
consisting of a vertex set V (D) and a directed edge multiset E(D) of ordered pairs of
vertices (x, y) in V (D).

The degree of a vertex v ∈ V (G), denoted deg(v), is the number of times v appears as an
endpoint of an edge e ∈ E(G). Note that this means a loop contributes two to the degree
of a vertex. The neighbour set of v, denoted N(v), is given by

N(v) = {u ∈ V (G) : u and v are adjacent}.

Then deg(v) ≥ |N(v)|. If G is a directed graph, then the indegree of a vertex v ∈ V (G),
denoted indeg(v), is the number of directed edges in G of the form (u, v). The outdegree of
a vertex v ∈ V (G), denoted outdeg(v), is the number of directed edges in G of the form
(v, u). Note that loops contribute one to both the indegree and outdegree of a vertex.

3



Let G and H be graphs. Then H is a subgraph of G, denoted H ⊆ G, if V (H) ⊆ V (G)
and E(H) ⊆ E(G). Furthermore H is a proper subgraph of G, denoted H ⊂ G, if H ⊆ G,
and either V (H) 6= V (G) or E(H) 6= E(G). The subgraph G[X] of G induced by the vertex
set X ⊆ V (G) is the subgraph such that

V (G[X]) = X,

E(G[X]) = {{x, y} ∈ E(G) : x, y ∈ X}.
Let X, Y ⊆ V (G) where X ∩ Y = ∅. We use the notation [X : Y ] to denote the set of edges
in E(G) with one endpoint in X and one endpoint in Y .

A path P of length k is a sequence of distinct vertices {v0, v1, ..., vk} such that for all
i ∈ {0, 1, ..., k− 1}, vi and vi+1 are adjacent. A cycle of length k in G is a subgraph consist-
ing of a sequence of distinct vertices {v0, v1, ..., vk−1} such that for all i ∈ {0, 1, ..., k − 1},
vi and vi+1 are adjacent (where we work modulo k). The girth of G is the length of the
shortest cycle in G. Let C be a cycle consisting of vertices v0, v1, ..., vk−1. Then an edge e is
a chord of C if e is not an edge in the cycle, but both endpoints of e are in {v0, v1, ..., vk−1}.
A circulant graph is a graph consisting of a sequence of distinct vertices {v0, v1, ..., vk−1}
and a distance set J ⊆ {0, ..., bk

2
c} such that for all i ∈ {0, 1, ..., k − 1} and j ∈ J , vi and

vi+j are adjacent (where we work modulo k). Note that a cycle is a circulant graph with
distance set J = {1}.

Let P1 and P2 be paths in G with endpoints x and y. Then P1 and P2 are vertex-disjoint if
V (P1) ∩ V (P2) = {x, y}. Similarly, P1 and P2 are edge-disjoint if E(P1) ∩E(P2) = ∅. A set
P of paths in G is edge-disjoint (vertex-disjoint) if each pair of paths in P is edge-disjoint
(vertex-disjoint).

A walk W of length k in G is a sequence {v0e1v1e2...ekvk} of vertices and edges such that
for all i ∈ {1, 2, ..., k}, vi−1 and vi are the endpoints of ei. If all edges and vertices of W are
distinct, then W is a path. A circuit is a walk in which the first and last vertices are the same.

The complete graph Kn is the simple graph consisting of n vertices, where every pair of
vertices is adjacent. A bipartite graph G is a graph with two sets of vertices X and Y ,
where X ∩ Y = ∅, X ∪ Y = V (G), and every edge in G has one endpoint in X and one
endpoint in Y . Then G has the partition (X, Y ). The complete bipartite graph Kx,y is the
simple bipartite graph with partition (X, Y ) such that |X| = x, |Y | = y, and for all u ∈ X,
v ∈ Y , u and v are adjacent.
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2.2 Deletion, Contraction, and Subdivision

Let G be a graph. If we delete an edge e ∈ E(G), we obtain the graph G − e such that
V (G− e) = V (G), and E(G− e) = E(G)− e. If we delete a vertex v ∈ V (G), we obtain
the graph G− v such that V (G− v) = V (G)− v, and

E(G− v) = E(G)− {e ∈ E(G) : e is incident to v}.

Let X be a set of vertices and edges in G. Then we delete X to obtain the graph G−X,
by deleting all vertices and edges in X from G.

Consider an edge e = {x, y} ∈ E(G). We contract e to obtain the graph G/e such that

V (G/e) = (V (G) ∪ {z})− {x, y},

E(G/e) =E(G− {x, y}) ∪ {{z, u} : for each {v, u} ∈ [{x, y} : V (G− {x, y})]}
∪ {{z, z} : for each f ∈ E(G[{x, y}]), f 6= e}.

In other words, G/e is obtained by replacing x and y with a new vertex z, and replacing x
and y with z as endpoints of edges in E(G).

Let H be an induced subgraph of G. We contract H to obtain the graph G/H, where

V (G/H) = (V (G) ∪ {z})− V (H),

E(G/H) = E(G−H) ∪ {{z, u} : for each {v, u} ∈ [V (H) : V (G−H)]}.

If H is connected, this operation can also be viewed as a sequence of contractions of edges
in H, followed by the deletion of any subsequent loops at the vertex of contraction. We
will also use the notation G/X where X ⊆ V (G) to refer to G/G[X] in cases where the
vertex set is defined first.

Let {x, y} be an edge of a graph G. We subdivide {x, y} to obtain the graph G′ such that

V (G′) = V (G) ∪ {z},

and
E(G′) = (E(G) ∪ {{x, z}, {y, z}})− {x, y}.

5



In other words, a new vertex z and edges {x, z} and {y, z} replace the edge {x, y}. A graph
H is a subdivision of G if there is a sequence G0, G1,..., Gk of graphs such that G0 = G,
Gk = H, and for 1 ≤ i ≤ k, Gi is obtained from Gi−1 by subdividing an edge of Gi−1.

Let u, v, and w be vertices in a graph G where both u and v are adjacent to w. The graph
G′ obtained from G by lifting the edges {u,w} and {v, w} is defined by

V (G′) = V (G),

E(G′) = (E(G)− {{u,w}, {v, w}}) ∪ {{u, v}}.

2.3 Connectivity

A graph G is connected if for any pair of vertices x, y ∈ V (G), there is a path in G containing
x and y. Otherwise, G is disconnected. A component of G is a maximal connected subgraph
of G.

Let G be a connected graph. A cut in G is a set X ⊆ V (G) such that G−X is disconnected.
If a cut X consists of a single vertex x, then we refer to x as a cut vertex. The connectivity
of G is the size of a minimum cut. The graph G is k-connected if its connectivity is at
least k. A block of G is a maximal 2-connected subgraph of G.

An edge-cut in G, denoted δG(X) where X ⊂ V (G), is [X : V (G)−X]. Thus G− δG(X) is
disconnected. We also use the notation δ(H) where H ⊆ G to refer to δ(V (H)) in cases
where the subgraph is defined first. If δG(X) consists of a single edge e, then e is a bridge.
The edge-connectivity of G is the size of a minimum edge-cut. A graph is k-edge-connected
if its edge-connectivity is at least k. In cases where the graph in question is clear we will
drop the subscript and simply refer to an edge-cut as δ(X).

An edge-cut δ(A) is non-peripheral if |A|, |G−A| ≥ 2. This and related concepts will be used
frequently throughout this thesis, as we work with graphs containing small non-peripheral
edge-cuts.

We consider the effect of deletion and contraction on the edge-connectivity of a graph.
These effects will be particularly relevant in Chapters 4 and 5, as we delete and contract

6



edges or subgraphs and check that the resulting graph maintains the edge-connectivity
requirement of our result.

Lemma 2.3.1. Let G be a k-edge-connected graph. Let e ∈ E(G), v ∈ V (G), and H be a
proper, connected subgraph of G. Then

1. G− e is (k − 1)-edge-connected,

2. G− v is (k − d)-edge-connected where d = bdeg(v)
2
c,

3. G/e is k-edge-connected,

4. G/H is k-edge-connected, and

5. G−H is (k − d)-edge-connected where d = b |δ(H)|
2
c.

Proof.

1. Suppose for a contradiction that G− e contains an edge-cut δG−e(A) where we have
|δG−e(A)| ≤ k − 2. Let x and y be the endpoints of e. If x, y ∈ A, it follows that
δG(A) = δG−e(A), contradicting the k-edge-connectivity of G. The case x, y ∈ G− A
is equivalent. Suppose that x ∈ A and y ∈ G− A. Then δG(A) = δG−e(A) ∪ {e}, so
|δG(A)| ≤ k − 1, a contradiction. Hence G− e is (k − 1)-edge-connected.

2. Suppose for a contradiction that G− v contains an edge-cut δG−v(A) where we have
|δG−v(A)| ≤ k − d − 1. Each neighbour of v is in either A or G − ({v} ∪ A). By
the pigeonhole principle, either |[{v} : A]| or |[{v} : V (G − ({v} ∪ A))]| is at most

d = bdeg(v)
2
c. Suppose without loss of generality that |[{v} : A]| ≤ d. Then

δG(A) = δG−v(A) ∪ [{v} : A].

Therefore
|δG(A)| = |δG−v(A)|+ |[{v} : A]| ≤ k − 1,

a contradiction.

3. Suppose for a contradiction that G/e contains an edge-cut δG/e(A) where we have
|δG/e(A)| ≤ k − 1. Let x and y be the endpoints of e and let z be the vertex of
contraction in G/e. Without loss of generality, suppose that z ∈ G/e−A. Then in G,
x and y are in G− A. Hence δG(A) = δG/e(A), contradicting the k-edge-connectivity
of G.

7



4. Suppose for a contradiction that G/H contains an edge-cut δG/H(A) where we have
|δG/H(A)| ≤ k − 1. Let z be the vertex of contraction in G/H. Without loss of
generality, suppose that z ∈ (G/H) − A. Then in G, V (H) is in G − A. Hence
δG(A) = δG/H(A), contradicting the k-edge-connectivity of G.

5. This follows from (4) and (2).

In Chapters 4 and 5 we will consider the possibility of our graphs containing cut vertices.
The following lemma is used to show that we may consider the blocks of the graph, as they
maintain the edge-connectivity requirement.

Lemma 2.3.2. Let G be a k-edge-connected graph. Suppose that G contains a cut vertex v.
Let H and K be maximal subgraphs of G such that H ∩ K = ({v}, ∅) and H ∪ K = G.
Then H and K are k-edge-connected.

Proof. Suppose for a contradiction that H is not k-edge-connected. Then there exists an
edge-cut δH(A) where |δH(A)| ≤ k − 1. Suppose without loss of generality that v ∈ H − A.
Then δG(A) = δH(A), contradicting the k-edge-connectivity of G. Hence H is k-edge-
connected. The same is true of K.

2.4 Surfaces

While a graph is defined by its vertices and edges, there are multiple ways to represent the
same graph. A drawing of a graph G is a mapping from the vertices of the graph to distinct
points in a surface S, and from edges to curves connecting their two endpoints, that do not
intersect other vertices. A crossing in a drawing of a graph is an intersection between the
curves representing two edges. An embedding is a drawing without crossings.

If φ is an embedding of G in a surface S, then the faces of φ are the components of S \φ(G).
Throughout this thesis the graph G will always come with an embedding in a surface, so
we will refer to the faces of the embedding as the faces of G. We denote the set of faces of
G as F (G).

The length of a face f of a graph G is length of its boundary walk. We say that faces
f1, f2 ∈ F (G) are adjacent if their boundaries have an edge in common.
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A graph is planar if it can be embedded on the plane. The infinite face is referred to as the
outer face or the unbounded face. A vertex that is not on the boundary of the outer face is
called an internal vertex. The dual of G, denoted G∗, is given by

V (G∗) = F (G),

E(G∗) = {{F1, F2} : for each edge e ∈ E(G) incident with F1 and F2}.

Both the plane and graphs embedded on the plane have been studied extensively, yielding
many results that can be used to classify planar graphs. Two of the most well known results
are stated below.

Theorem 2.4.1 (Euler’s Formula). Let G be a connected graph embedded on the plane.
Let n = |V (G)|, m = |E(G)|, and f be the number of faces in the embedding of G. Then
n−m+ f = 2.

Theorem 2.4.2 (Kuratowski’s Theorem). A graph G is planar if and only if it has no
subgraph that is a subdivision of K3,3 or K5.

Due to the ease of characterising planar graphs, for many problems in graph theory, such
as flows and colouring, planar graphs are the first consideration. However, graphs can be
embedded on other surfaces, several of which we consider here, beginning with the sphere.
Consider the following proposition.

Proposition 2.4.3. A graph G can be embedded on the sphere if and only if G is planar.

Proof. Let G be a graph embedded in the plane. Consider the sphere being bisected by
the plane. Let x be one of the two points on the sphere that is furthest from the plane.
For each point y in the plane, let ` be the line in R3 that contains both x and y. Let z
be the point of intersection between the sphere and ` that is not x, and map y to z. It is
clear that this mapping from the plane to the sphere without x is a continuous surjection.
Suppose that two points y1 and y2 map to z. Then the unique line `′ in R3 containing both
x and z, contains both y1 and y2. Since x is not on the plane, ` intersects the plane in at
most one point. Since y1 and y2 are both on the plane, they must therefore be the same
point. Hence the mapping is bijective.

Note that to obtain a planar embedding of G, given an embedding on the sphere, we chose a
face f arbitrarily to be the outer face and reverse the given mapping. This means that given
a planar embedding of G, and any face f in the embedding, there is a planar embedding of
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G where f is the outer face.

We now consider how to construct other surfaces from the sphere. A handle can be added
to the sphere by cutting two circular holes in the surface of the sphere, and joining them
with a cylinder. A crosscap can be added to the sphere by cutting a circular hole, and
sewing each pair of opposite points together. Any connected, closed surface can be obtained
from the sphere by adding some combination of handles and crosscaps. Two of the most
commonly considered surfaces aside from the plane and sphere are the projective plane
and the torus, which are obtained from the sphere by adding a crosscap and a handle
respectively. If a graph can be embedded on the projective plane or torus, the graph is
projective planar or toroidal respectively.

A surface is orientable if it does not contain a crosscap. A curve on a surface is contractible
if it can be contracted to a point. A simple closed curve C on a surface S is contractible
if and only if S − C has two components, one of which is a disc. Thus in the plane, all
closed curves are contractible. In the projective plane a closed curve is non-contractible if
and only if every neighbourhood of it contains a Möbius band. If a graph is embedded in
the projective plane so that all its cycles are contractible, then the given embedding is planar.

In later results we will discuss cuts in the projective plane. Lemma 2.4.5 is a well known
result that will be necessary for reducing these cuts. We require the preliminary result in
Lemma 2.4.4. For more detail or for a generalisation to other surfaces see Appendix B of
Diestel [4].

Lemma 2.4.4. Let G be a graph embedded in the projective plane. Then G does not contain
two disjoint non-contractible cycles.

Proof. Suppose for a contradiction that G contains two disjoint non-contractible cycles
C1 and C2. Note that any neighbourhood of C1 contains a Möbius band. Cut the surface
along C1, deleting C1. Identify the equivalent (opposite) points on the crosscap, and fill
the hole with a disk. The resulting surface is planar. Since C2 is disjoint from C1, C2 is a
non-contractible cycle in the plane, a contradiction. Thus G does not contain two disjoint
non-contractible cycles.

Lemma 2.4.5. Let G be a connected graph embedded in the projective plane, and let δ(A)
be a minimal edge-cut in G. Then either G/A or G/(G− A) is planar.
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Proof. Suppose that both G[A] and G − A contain a non-contractible cycle. Then G
contains disjoint non-contractible cycles, contradicting Lemma 2.4.4. Thus at least one
of G[A] and G− A does not contain a non-contractible cycle. Without loss of generality,
suppose that G[A] does not contain a non-contractible cycle. Then the given embedding
of G[A] is a planar embedding. Let F be the face of G[A] that contains G− A. Then all
edges of δ(A) are also in F . Delete G−A and insert a single vertex incident with all edges
in δ(A). The resulting graph is planar by construction, and is G/A.

2.5 Vertex Colouring

Let S be a set of colours. A vertex colouring of a graph G is a function c : V (G) → S
such that for all e = {u, v} ∈ E(G), c(u) 6= c(v). A k-colouring is a vertex colouring
c : V (G) → {1, ..., k}. A graph G is k-colourable if it has a k-colouring. The chromatic
number of G is the minimum k for which G is k-colourable.

We briefly consider three of the most well known results in colouring, as they have dual
results in the area of flows.

The Four Colour Theorem is believed to have been posed as a conjecture by Francis Guthrie
in 1852, when he noticed that only four colours were needed to colour the different counties
in England so that no two adjacent counties had the same colour. He suggested that this
was true for all maps. This translates to a problem in graph theory by placing a vertex in
each region of the map, and adding an edge between two regions if they share a border
along a non-trivial segment.

Theorem 2.5.1 (Four Colour Theorem). Every loopless planar graph is 4-colourable.

Kempe [14] provided a claimed proof of the Four Colour Theorem that was widely believed
to be correct until Heawood [8] showed it to be incorrect. This proof attempt used the idea
of Kempe chains: maximal connected subgraphs containing vertices of only two colours.
While Kempe’s proof of the Four Colour Theorem was incorrect, the same techniques were
used by Heawood [8] to prove the simpler Five Colour Theorem. Appel and Haken [1]
provided a computer assisted proof of the Four Colour Theorem, over 100 years after it was
posed as a conjecture.

Theorem 2.5.2 (Five Colour Theorem). Every loopless planar graph is 5-colourable.
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Grötzsch’s Theorem is a similar result for 3-colouring graphs, and is the dual of the
Three Flow Conjecture. It was proven by Grötzsch [6]. A simpler proof was provided by
Thomassen [26], using list colouring.

Theorem 2.5.3 (Grötzsch’s Theorem). Every loopless planar graph not containing a cycle
of length 3 is 3-colourable.

Let Γ be an abelian group. Then G is Γ-colourable if for every function f assigning to
each edge an ordered pair consisting of a direction, and a value f(e) ∈ Γ, there exists
a function c : V (G) → Γ such that if D is the resulting directed graph, then for each
e = (u, v) ∈ E(D), c(u) − c(v) 6= f(e). If Γ = Zk and f(e) = 0 for all e ∈ E(G), then
Γ-colourability is the same as k-colourability. The group chromatic number of G is the small-
est positive interger k for which G is Γ-colourable for every abelian group Γ of order at least k.

Let S be a set of colours. A graph G is k-choosable if for every set

{Cv ⊆ S : v ∈ V (G), |Cv| = k},

G has a vertex colouring c such that for all v ∈ V (G), c(v) ∈ Cv.

2.6 Flows

A k-flow on a graph G is a function that assigns to each edge e ∈ E(G) an ordered pair
consisting of a direction, and a value f(e) ∈ {0, ..., k − 1}, such that if D is the resulting
directed graph, then, for each vertex v ∈ V (G),∑

e=(u,v)∈E(D)

f(e)−
∑

e=(v,w)∈E(D)

f(e) = 0.

It is easy to see that every graph G has a k-flow for every value of k: set f(e) = 0 for all
e ∈ E(G). Therefore it is typical to use the following more restrictive concept. A nowhere
zero k-flow on G is a k-flow on G such that no edge is assigned the value zero. To see that
this is indeed more restrictive, consider the following theorem (see Diestel [4] for a proof).

Theorem 2.6.1. A graph has a nowhere zero 2-flow if and only if all of its vertices have
even degree.
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The flow number of G, denoted ϕ(G), is the smallest positive integer k for which G has a
nowhere zero k-flow. The interest in flows came out of the study of graph colourings, via
Theorem 2.6.2 [28]. Here χ(G) is the chromatic number of G.

Theorem 2.6.2. Let G be a planar graph, and let G∗ be its dual. Then χ(G) = ϕ(G∗).

Thus, the following theorem is equivalent to the Four Colour Theorem.

Theorem 2.6.3. Let G be a bridgeless planar graph. Then G has a nowhere zero 4-flow.

It was shown by König [16] that this is not true for all graphs, as the Petersen graph is a
counterexample. Based on planar duality, Tutte proposed the following three conjectures as
extensions of the Five Colour Theorem [28], the Four Colour Theorem [29], and Grötzsch’s
Theorem (cf. [3]) respectively.

Conjecture 2.6.4 (5-Flow Conjecture). Let G be a bridgeless graph. Then G has a nowhere
zero 5-flow.

Conjecture 2.6.5 (4-Flow Conjecture). Let G be a bridgeless graph not containing the
Petersen graph as a minor. Then G has a nowhere zero 4-flow.

Conjecture 2.6.6 (3-Flow Conjecture). Let G be a 4-edge connected graph. Then G has a
nowhere zero 3-flow.

The 3-Flow Conjecture and an extension of it, Jaeger’s Strong 3-Flow Conjecture, form the
basis of this thesis. These conjectures will be discussed in more depth in Chapter 3.

2.7 Zk-Flows and Valid Orientations

In the previous section we considered flows that assign each edge a value between 0 and k.
However, we can also consider flows that assign each edge a value from a group, such as Zk.

Let G be a graph. A Zk-flow on G is a function that assigns to each edge e ∈ E(G) an
ordered pair consisting of a direction and a value f(e) ∈ Zk, such that if D is the resulting
directed graph, then for each vertex v ∈ V (G),∑

e=(u,v)∈E(D)

f(e)−
∑

e=(v,w)∈E(D)

f(e) = 0 (mod k).

In 1950, Tutte proved that the two concepts are equivalent [4].
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Theorem 2.7.1. A graph has a nowhere zero k-flow if and only if it has a nowhere zero
Zk-flow.

Thus for the remainder of this thesis we will use the term k-flow to refer to a Zk-flow. Note
that as we are working with 3-flows, it is not necessary to actually assign values to the edges.

We define an orientation of a graph G to be the directed graph D obtained by adding a
direction to each edge. With reference to finding a 3-flow on G, an orientation is valid if for
each vertex v ∈ V (G), ∑

e=(u,v)∈E(D)

1−
∑

e=(v,w)∈E(D)

1 = 0 (mod 3).

Lemma 2.7.2. A graph G has a valid orientation if and only if there exists a nowhere zero
3-flow on G.

Proof. First, suppose that G has a valid orientation. Let f(e) = 1 for all edges e ∈ E(G).
This yields a nowhere zero 3-flow on G. Now suppose that G has a nowhere zero 3-flow. For
each edge e ∈ E(G) where f(e) = −1, reverse the direction of e. The resulting orientation
is a valid orientation of G.

A vertex d in a graph G is a directed vertex if all its incident edges are directed. We call
this an orientation of d. We say that an orientation of G extends the orientation of d if the
direction of the edges at d is maintained. In cases involving a directed vertex we take the
term valid orientation to include that the orientation extends that of d.

14



Chapter 3

The 3-Flow Conjecture and Jaeger’s
Strong 3-Flow Conjecture

In this chapter we discuss several major conjectures regarding k-flows that motivate our work,
especially surrounding 3-flows. In particular, we state Jaeger’s Strong 3-Flow Conjecture,
which forms the basis of our work. In Sections 3.2, 3.3, 3.4, and 3.5 we discuss prior progress
toward these conjectures and summarise the techniques used, many of which we adapt
in the proofs throughout this thesis. Section 3.1 introduces the preliminary ideas that
are required to understand these techniques. We restate the 3-Flow Conjecture here for
completeness.

Conjecture 3.0.1 (3-Flow Conjecture). Let G be a 4-edge-connected graph. Then G has a
nowhere zero 3-flow.

Following Tutte’s 3-Flow Conjecture, Jaeger [12] posed the following weaker conjecture.

Conjecture 3.0.2 (Weak 3-Flow Conjecture). There is a natural number h such that every
h-edge-connected graph has a nowhere zero 3-flow.

He also defined the concept of a modular orientation. A graph G has a modulo k orientation
if its edges can be directed to yield a directed graph D so that for all v ∈ V (G),∑

e=(u,v)∈E(D)

1 =
∑

e=(v,w)∈E(D)

1 (mod k).

Jaeger [12] showed that orientations can be used to prove results about flows.
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Theorem 3.0.3 (Jaeger [12]). A graph G has a modulo 2k + 1 orientation if and only if it
has a circular

(
2 + 1

k

)
-flow.

(A circular k-flow where k ∈ R≥2 is a real-valued flow modulo k, where every edge has flow
value between 1 and k − 1. This concept is not used elsewhere in this thesis.) Note that
a modulo 3 orientation is equivalent to a 3-flow, which is what Theorem 3.0.3 says when
k = 1. However, this result enables other flows to be treated as orientations also. Based on
this equivalence, Jaeger [12] posed the following generalisation of the 3-Flow Conjecture.

Conjecture 3.0.4 (Circular Flow Conjecture). Every 4k-edge-connected graph admits a
modulo 2k + 1 orientation.

When k = 1 the Circular Flow Conjecture implies the 3-Flow Conjecture.

We define a prescription function for a graph G to be p : V (G)→ Γ, where Γ is an abelian
group. A prescription function is valid if∑

v∈V (G)

p(v) = 0.

Throughout this thesis, we will assume that for all prescription functions, Γ = Z3, unless
indicated otherwise.

A flow f on G satisfies the prescription function p if for all v ∈ V (G),

F (v) :=
∑

e=(u,v)∈E(D)

f(e)−
∑

e=(v,w)∈E(D)

f(e) = p(v).

A graph is Γ-connected if for every valid prescription function p on Γ, G has a flow satisfying p.

The idea of a prescription function led Jaeger et al. [13] to pose the following conjecture.

Conjecture 3.0.5 (Jaeger’s Strong 3-Flow Conjecture). Every 5-edge-connected graph is
Z3-connected.

We define a modulo 3 orientation to be a valid orientation (with respect to a prescription
function p), if for each vertex v ∈ V (G),

p(v) =
∑

e=(u,v)∈E(D)

1−
∑

e=(v,w)∈E(D)

1 (mod 3).
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In results where we are considering a 3-flow rather than Z3-connectivity, p(v) is implicitly
zero for every v ∈ V (G).

We orient a vertex v by adding a direction to each edge incident with v so that the
prescription at v is satisfied. If G has directed vertices, then we take the term valid
orientation to include that the orientation extends the existing partial orientation.

3.1 Preliminary Ideas

We now discuss some preliminary ideas that have been used to prove numerous results
regarding the 3-Flow Conjecture and Jaeger’s Strong 3-Flow Conjecture. They will also be
used throughout this thesis.

Let G be a graph (that may contain a directed vertex) and let pG be a valid prescription
function for G. We define the prescription function pG′ for a graph G′ obtained from G as
follows:

• If G′ is obtained from G by deleting a directed edge e = (u, v), then pG′(u) = pG(u)+1,
pG′(v) = pG(v)− 1, and pG′(w) = pG(w) for all w ∈ V (G)− {u, v}.

• If G′ is obtained from G by orienting an edge e = {u, v} from u to v, and deleting
e, then pG′(u) = pG(u) + 1, pG′(v) = pG(v) − 1, and pG′(w) = pG(w) for all w ∈
V (G)− {u, v}.

• If G′ is obtained from G by adding a directed edge from u to v, then pG′(u) = pG(u)−1,
pG′(v) = pG(v) + 1, and pG′(w) = pG(w) for all w ∈ V (G)− {u, v}.

• If G′ is obtained from G by contracting a set of vertices X ⊆ V (G) to a single vertex
v, then pG′(v) =

∑
x∈X pG(x), and pG′(w) = pG(w) for all w ∈ V (G)−X.

• If G′ is obtained from G by lifting the pair of edges e1 = {u, v} and e2 = {v, w}, then
pG′(w) = pG(w) for all w ∈ V (G).

Throughout the remainder of this thesis we will automatically adjust the prescription
function as defined here, without mention. Note that if the prescription function is zero,
then contraction and lifting are the only operations listed that maintain this property.
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Lemma 3.1.1. Let G be a graph with prescription function p, and let v ∈ V (G). If v has at
least two undirected incident edges that are not loops, then v can be oriented to satisfy p(v).

Proof. Arbitrarily orient all but two non-loop edges incident with v in G. Let G′ be the
graph obtained from G by deleting all directed edges incident with v. Direct both remaining
edges in or out to satisfy prescriptions of −1 and +1 respectively, and one in and one out
to satisfy a prescription of 0.

Lemma 3.1.2. If G has an orientation f , then either f is valid, or there exist u, v ∈ V (G)
such that F (u) 6= p(u) and F (v) 6= p(v).

Proof. We may assume that f is not valid. Suppose that F (v) 6= p(v) but F (u) = p(u) for
all vertices u 6= v. We have

p(v) = −
∑

u∈V (G)−{v}

p(u)

= −
∑

u∈V (G)−{v}

F (u)

= −

 ∑
e={a,b}∈E(G)

a,b 6=v

f(e)−
∑

e={a,b}∈E(G)
a,b 6=v

f(e) +
∑

e={v,b}∈E(G)

f(e)−
∑

e={a,v}∈E(G)

f(e)


= F (v),

a contradiction. Thus at least two vertices do not meet their prescription.

Therefore, it suffices to show that the prescription of all but one vertex is met, as this
implies a valid orientation.

3.2 Direct Results

We first note that if the 3-Flow Conjecture is true, then it is tight. Consider the following
well known result (see Diestel [4]). Note that a graph is cubic if every vertex has degree 3.

Lemma 3.2.1. A cubic graph has a nowhere-zero 3-flow if and only if it is bipartite.
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We note that, in particular, this means that K4 does not have a nowhere-zero 3-flow. Thus
is clear that not all 3-edge-connected graphs have a nowhere zero 3-flow.

Kochol [15] proved the following result.

Theorem 3.2.2. The following statements are pairwise equivalent.

1. Every 4-edge-connected graph has a nowhere zero 3-flow.

2. Every 5-edge-connected graph has a nowhere zero 3-flow.

3. Every 5-edge-connected graph with no non-peripheral 5-edge cut, and a directed vertex
d of degree 5 has a valid orientation.

4. Every 4-edge-connected graph with only vertices of degree 4 and 5, and a directed
vertex d has a valid orientation.

This means that in order to prove the 3-Flow Conjecture it suffices to prove that ev-
ery 5-edge-connected graph has a nowhere zero 3-flow. The proof focusses on the cases
(3) =⇒ (4) and (2) =⇒ (3), as (1) =⇒ (2) is trivial and (4) =⇒ (1) is a well known
result.

For the former, we may take a minimal counterexample to (4). If a non-peripheral 4 or
5-edge-cut δ(X) exists, then at least one of the graphs obtained by contracting X and
G−X can be shown to be a smaller counterexample. If an unoriented degree 4 vertex v
exists, two pairs of edges may be lifted from it, deleting the vertex while maintaining a
4-edge-connected graph. If d has degree 4, a parallel edge may simply be added to one of
its existing edges. Hence (3) implies (4).

For the latter, we may split d into three vertices joined in a path so that all have degree 3.
This can be done in such a way that a valid orientation of the path implies the directions
assigned to d originally. Kochol [15] replaced two disjoint edges of a copy of K4 with this
graph to form a graph H, and then replaced all edges of a copy of K4 with H to form a
graph G′ that is 5-edge-connected. He shows that the graph obtained by replacing an edge
of a graph that does not have a nowhere zero 3-flow with a graph that does not have a
nowhere zero 3-flow, also does not have a nowhere zero 3-flow. Since K4 does not have a
nowhere zero 3-flow, the result follows.
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In addition, Kochol [15] states the following conjecture, a slight weakening of Conjec-
ture 3.0.4.

Conjecture 3.2.3. Every (4k+1)-edge-connected graph admits a modulo 2k+1 orientation.

For k = 1, Theorem 3.2.2 shows that this is equivalent to the Circular Flow Conjecture.

The Weak 3-Flow Conjecture remained open until Thomassen [27] proved that h = 8
sufficed.

Theorem 3.2.4. Every 8-edge-connected graph is Z3-connected.

In order to prove this, Thomassen [27] introduced a directed vertex d and applied induction
to the number of edges in the graph. The purpose of introducing d is to allow one to
reduce certain cuts in the graph, by contracting one side of the cut, applying the induction
hypothesis, transferring this orientation to the original graph, contracting the other side of
the cut, and applying the induction hypothesis once more. An example of this method can
be seen in Section 3.3, and it is a technique that will be used throughout this thesis. If
no directed vertex is permitted, the second contraction does not produce a graph that the
induction hypothesis applies to.

Thomassen [27] also showed the following result toward the Circular Flow Conjecture.

Theorem 3.2.5. Let k be an odd integer. Every (2k2 + k)-edge-connected graph admits a
modulo k orientation.

Lovász et al. [21] extended this to the following result.

Theorem 3.2.6. Every 6k-edge-connected graph admits a modulo 2k + 1 orientation.

For k = 1 this is equivalent to the following result.

Theorem 3.2.7. If G is a 6-edge-connected graph, then G is Z3-connected.

Thus Lovász et al. [21] proved results analogous to the 3-Flow Conjecture and Jaeger’s
Strong 3-Flow Conjecture for 6-edge-connected graphs. Their proof uses similar techniques
to that of Thomassen [27], introducing a directed vertex of small degree in order to reduce
small edge-cuts.
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Recently, Han et al. [7] proved that for every k ≥ 3, there exists a 4k-edge-connected
graph without a modulo 2k + 1 orientation, and for every k ≥ 5, there exists a (4k + 1)-
edge-connected graph without a modulo 2k + 1 orientation. Hence Jaeger’s Circular Flow
Conjecture is false for k ≥ 3, and the simpler conjecture (Conjecture 3.2.3) of Kochol [15]
is false for k ≥ 5.

3.3 Flows in Graphs on a Surface

Since the 3-Flow Conjecture for planar graphs is equivalent to Grötzsch’s Theorem, it was
shown by Grötzsch [6] thirteen years before the conjecture was posed by Tutte (cf. [3]).
The first direct proof of the 3-Flow Conjecture for planar graphs was by Steinberg and
Younger [25], who also proved that the 3-Flow Conjecture is true for projective planar
graphs. Their result is summarised in Theorem 3.3.1.

Theorem 3.3.1. Let G be a 3-edge-connected graph that is

1. planar and has at most three 3-edge-cuts,

2. projective planar and has at most one 3-edge-cut, or

3. planar, has a distinguished oriented vertex d with degree 4 or 5 and at most one
3-edge-cut, and the minority edge at a degree 5 d does not lie in a 3-edge-cut.

Then G has a valid orientation.

The minority edge at a degree 5 d is defined to be the edge that has the opposite direction
from the remaining four. This is guaranteed to exist as the net flow at d is zero. The
third condition here is only added to allow an inductive proof; the first two imply the
3-Flow Conjecture in the plane and projective plane respectively. We will discuss the out-
line of their proof technique here, as it has many similarities with the ideas used in this thesis.

Steinberg and Younger [25] use induction on the number of edges in G. They consider a
series of configurations in G (subgraphs) that can be reduced to give a smaller graph that
meets the conditions of the theorem. Configurations such as loops, parallel edges, and cut
vertices are straightforward to reduce, as we will see in Chapter 4. The purpose behind
introducing an oriented vertex d, is to allow a small edge-cut to be reduced.
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Reducing Small Cuts. Let δ(A) be a minimal (with respect to the number of edges) non-
peripheral edge-cut in G of size at most 5. Suppose that G is planar, d ∈ A if applicable,
and G−A has at most one 3-edge-cut. Let G′ be the graph obtained from G by contracting
G− A to a vertex v. It is clear that G′ is planar. By Lemma 2.3.1, G′ has at most three
3-edge-cuts, and if d ∈ G′, it has at most one 3-edge-cut. Hence G′ has a valid orientation
by the induction hypothesis.

Transfer this orientation to G. Now let G′′ be the graph obtained from G by contracting
A to a vertex d′. It is clear that G′′ is planar. By definition, G′′ has at most one 3-edge-
cut aside from δ({d′}), and d′ is an oriented vertex. If d′ has degree 3, then ignore the
orientation of d; the graph G′′ has a valid orientation by the induction hypothesis, and if
necessary we may reverse the direction of every edge to match the orientation of G′. If d′ has
degree 4, or does not have a minority edge in a 3-edge-cut, then G′′ has a valid orientation
by the induction hypothesis. Transfer this orientation to G to obtain a valid orientation of G.

Hence we may assume that d′ has degree 5 and has a minority edge e in a 3-edge-cut. Then
by the minimality of δ(A), e is incident with a degree 3 vertex t. Assume that δ(A) is
chosen to minimise |A|. Let e1, e2, e3, e4, e5 be the edges in δ(A) in order, where e1 = e is
incident with t.

If d has degree 5, and three of e1, e2, e3, e4, e5 are incident with d, then δ(A) is not
minimal, a contradiction. We may lift a pair of consecutive edges in G′ at v (the vertex of
contraction) that does not include e1 and does include the minority edge incident with d, if
applicable. Let Ḡ′ be the resulting graph. This graph can be seen in Figure 3.1. Then Ḡ′

is 3-edge-connected by the minimality of A. Since t 6∈ G′, G′ has at most two 3-edge-cuts
(none if d exists), and thus Ḡ′ has at most three (one if d exists). If d has degree 5 in Ḡ′,
then it is not incident with v via its minority edge, and thus does not have a minority
edge in a 3-edge-cut. Hence Ḡ′ has a valid orientation by the induction hypothesis. This
transfers to G, to give an orientation of d′ in G′′ where e1 = e is not the minority edge.
Hence G′′ has a valid orientation by the induction hypothesis. Again, this leads to a valid
orientation of G.

Now assume that G is projective planar. Let G′ and G′′ be the graphs obtained from G
by contracting A and G− A respectively. By Lemma 2.4.5, at least one of G′ and G′′ is a
planar graph. Without loss of generality, assume that G′′ is planar. We may reduce a cut
in the same way as for a planar graph, beginning with an orientation of G′, which may be
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Figure 3.1: Lifting at v in G′ so the minority edge does not appear in a 3-edge-cut in G′′.

projective planar, followed by an orientation of G′′ which has a directed vertex d′, but is a
planar graph.

We will use similar techniques in Chapters 4 and 5 to reduce small edge-cuts.

After reducing all at most 5-edge-cuts in G, Steinberg and Younger [25] are able to reduce
vertices of degree at least 6 by lifting a pair of edges without creating an edge-cut of size at
most 3. They can do the same with a degree 4 vertex by lifting two pairs of edges.

The remaining two simple reductions they perform reduce i) a length 3 face containing
a degree 3 vertex, and ii) a 6-edge-cut containing a zigzag (a path of length three where
the edges are not all on the boundary of a common face, each adjacent pair of edges is
consecutive at their common vertex, and each internal vertex has degree 5 and is not d).
Finally, they are able to prove that the graph must contain a Grötzsch configuration [6].
This configuration can be seen in Figure 3.2, and consists of a vertex of degree 5 for which
at most one incident face has length greater than 3. This is proven directly using Euler’s
Formula. It can also be shown using a discharging argument, as we will see in Section 4.5.
Steinberg and Younger [25] provide a reduction for a Grötzsch configuration.

For planar graphs, Jaeger’s Conjecture is equivalent to the following theorem.

Theorem 3.3.2. Every planar graph with girth at least 5 has group chromatic number at
most 3.

Theorem 3.3.2 was proven by Lai and Li [19]. Their proof modified the list-colourability
proof of Grötzsch’s Theorem by Thomassen [26].
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Figure 3.2: A Grötzsch Configuration.

Richter et al. [23] provided a proof of Jaeger’s Conjecture for graphs in the plane using
flows, by first proving Theorem 3.3.3.

Theorem 3.3.3. Let G be a 3-edge-connected graph embedded in the plane with at most
two specified vertices d and t such that

• if d exists, then it has degree 3, 4, or 5, has its incident edges oriented and labelled
with elements in Z3 \ {0}, and is in the boundary of the unbounded face,

• if t exists, then it has degree 3 and is in the boundary of the unbounded face,

• there are at most two 3-cuts, which can only be δ({d}) and δ({t}),

• if d has degree 5, then t does not exist, and

• every vertex not in the boundary of the unbounded face has five edge-disjoint paths to
the boundary of the unbounded face.

If G has a valid prescription function, then G has a valid orientation.

The 3-Flow Conjecture and Jaeger’s Strong 3-Flow Conjecture for planar graphs are
corollaries of Theorem 3.3.3. The techniques used by Richter et al. [23] are similar to those
of Thomassen [27], Lovász et al. [21] and Steinberg and Younger [25]. In Chapter 4 we
prove several generalisations of Theorem 3.3.3 in the plane and the projective plane. Their
proofs form the basis of the techniques used throughout the results in this thesis.
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3.4 4-Edge-Connected Graphs

While Tutte’s 3-Flow Conjecture is for 4-edge-connected graphs, Jaeger et al. [13] conjec-
tured that 5-edge-connected graphs (as opposed to 4-edge-connected) have a modulo 3
orientation that meets their prescription. Lai [18] provided a construction of an infinite
family of 4-edge-connected simple planar graphs that demonstrates that Jaeger’s Strong
3-Flow Conjecture is not true for 4-edge-connected graphs.

This family of graphs was constructed in order to disprove a conjecture of Barat and
Thomassen [2]; that all 4-edge-connected, simple, planar graphs with |E(G)| = 0 (mod 3)
have a claw decomposition. A claw decomposition is a decomposition of a graph G into
subgraphs that are isomorphic to K1,3. The conjecture would have implied that any simple
planar graph with |E(G)| = 0 (mod 3) and prescription function p : V (G) → Z3 where
p(v) = deg(v) (mod 3) for all v ∈ V (G) has a valid orientation meeting p.

The construction of Lai [18] shows that this conjecture is false, and thus the edge-connectivity
condition of Jaeger’s Strong 3-Flow Conjecture cannot be relaxed to 4-edge-connected. This
family of graphs consists of 3k incident copies of a graph H, where k is a positive integer.
The construction can be seen in Figure 3.3.

We call the resulting graph G. Now |V (H)| = 9, so |V (G)| = 8(3k) = 24k. We define p(G)
where p(v) = 1 for all v ∈ V (G) (the prescription function that is implied by the conjecture
of Barat and Thomassen [2]). Then∑

v∈V (G)

p(v) = 24k ≡ 0 mod 3.

Hence p is a valid prescription function for G. The following argument that G has no valid
orientation is due to Bruce Richter (private communication).

Lemma 3.4.1. The graph G (as defined in Figure 3.3) with prescription function p does
not have a valid orientation.

Proof. Suppose for a contradiction that G has a valid orientation that meets the prescription
function p. Each vertex has degree 4 and has prescription 1. Hence at each vertex v, either
all edges are directed into v, or 3 edges are directed out from v and one is directed in. We
define T to be the set of vertices v in G with all edges directed into v, and t = |T |. Then
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Figure 3.3: Lai’s example.

G has 24k − t vertices v that have 3 edges directed out from v and one directed in. The
number of edges in G is 2(24k) = 48k. Therefore,

4t+ (24k − t) = 48k.

We conclude that t = 8k.

No two vertices in T are adjacent, else an edge points in to both its endpoints. Let Gi be the
subgraph Hi ∪ (Hi+1 − yi+1) of G. Then |V (Gi)| = 16. We show that Gi contains at most
5 vertices in T . Consider Hi − yi. If xi, a, b 6∈ T , then what remains is a cycle of length 5,
which may only have two vertices in T . If a ∈ T , then xi, b, c, e 6∈ T , and what remains is a
cycle of length 3, which may only have one vertex in T . Thus if xi 6∈ T , at most two vertices
of Hi are in T . We now suppose that xi ∈ T . Then a and b are not. What remains is a cycle
of length 5, which may only have two vertices in T . Since c, d, f lie in a cycle of length 3,
at least one of these two vertices must be e or g. Hence Hi−yi has at most three vertices in T .

Now consider Gi. If Hi − yi has at most two vertices in T , then since Hi+1 − yi+1 has at
most three vertices in T , it is clear that Gi has at most 5 vertices in T . If Hi − yi has three
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vertices in T , then at least one of e and g is in T , and so yi 6∈ T . Therefore Hi+1 − yi+1 has
at most two vertices in T , and so Gi has at most 5 vertices in T . Each vertex of G appears
in two of the subgraphs Gi, 1 ≤ i ≤ 3k. Thus

2t ≤ 5(3k) = 15k.

We have 16k = 2t ≤ 15k, a contradiction. Hence G does not have an orientation that
meets p.

This raises the question of which 4-edge-connected graphs have a modulo 3 orientation for
every valid prescription function. In Chapter 5 we make some progress toward answering
this question by proving a generalisation of Theorem 3.3.3 that allows arbitrarily many
internal degree 4 vertices with pairwise restrictions.

3.5 Other Results

Here we briefly discuss results regarding 3-flows and orientations in other subsets of graphs.

Independence Number

An independent set in a graph G is a set of vertices, no two of which are adjacent. The
independence number of G, denoted α(G), is the size of the largest independent set in G.
Li et al. [20] proved the following results regarding graphs with independence number at
most 4.

Theorem 3.5.1. Every 4-edge-connected graph G where |V (G)| ≥ 21 and α(G) ≤ 4 has a
nowhere zero 3-flow.

Theorem 3.5.2. Every 4-edge-connected graph G where α(G) ≤ 3 has a nowhere zero
3-flow.

These extend earlier results of Luo et al. [22] and Yang et al. [30] characterising bridgeless
graphs with independence number 2, and 3-edge-connected graphs with independence
number 2.
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Figure 3.4: The graph K2 ×K2.

Locally Connected Graphs

A graph G is locally k-edge-connected if for all v ∈ V (G), G[N(v)] is k-edge-connected. Lai
[17] proved the following result about locally 3-edge-connected graphs.

Theorem 3.5.3. Let G be a 2-edge-connected, locally 3-edge-connected graph with valid
prescription function p. Then G has a valid orientation.

Lai [17] also constructed an infinite family of graphs without a nowhere zero 3-flow that
are 2-edge-connected and locally 2-edge-connected, so this condition cannot be relaxed.

Products of Graphs

Let G and H be graphs. The cartesian product of G and H, denoted G×H is defined such
that

V (G×H) = V (G)× V (H),

E(G×H) = {{(g, h), (g′, h′)} : h = h′, {g, g′} ∈ E(G) or g = g′, {h, h′} ∈ E(H)}.

Recently it has become common to use the notation G�H instead of G×H to denote the
cartesian product. Figure 3.4 shows the graph K2 ×K2.

Imrich and Skrekovski [9] proved the following result regarding 3-flows on products of
graphs.

Theorem 3.5.4. Let G and H be graphs. Then G×H has a nowhere-zero 3-flow if both
G and H are bipartite.

This was generalised to the following results by Shu and Zhang [24] and Yao [31]. Note
that a tree is a connected graph with no cycles.
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Theorem 3.5.5. Let G and H be two connected non-trivial graphs where G does not have
more odd degree vertices than H. Then G×H has a nowhere-zero 3-flow unless H has a
bridge and every block of G is a circuit of odd length.

Theorem 3.5.6. Let G and H be connected simple graphs. Then G ×H has a nowhere
zero 3-flow unless G and H are trees and min{|V (G)|, |V (H)|} = 2.

Triangularly Connected Graphs

Let G be a graph. A triangle-path in G is a sequence of distinct cycles of length 3, T1, T2,...,
Tm such that

|E(Ti) ∩ E(Ti+1)| = 1 for all 1 ≤ i ≤ m− 1,

E(Ti) ∩ E(Tj) = ∅ if j > i+ 1.

Then G is triangularly connected if for any pair of edges e1, e2 ∈ E(G) that are not parallel,
G has a triangle-path T1, T2,...,Tm such that e1 ∈ E(T1) and e2 ∈ E(Tm). Fan et al.
[5] proved that the 3-Flow Conjecture and Jaeger’s Strong 3-Flow Conjecture hold for
triangularly connected graphs.

Theorem 3.5.7. Let G be a triangularly connected graph with |V (G)| ≥ 3. If G contains
at most three 3-cuts, then G is Z3-connected.
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Chapter 4

Projective Plane

In this chapter we prove Jaeger’s Strong 3-Flow Conjecture for graphs embedded in the
projective plane. The 3-Flow Conjecture for graphs embedded in the projective plane is an
immediate corollary. This result is similar in form to that of Richter et al. [23] and appears
in Section 4.4. In Sections 4.2 and 4.3 we prove two required preliminary results, the first
extending the planar result of Richter et al. [23] to allow two unoriented vertices of degree 3,
and the second extending the result under certain conditions to allow vertices of low degree
on two specified faces of the embedding, instead of only the outer face. In Section 4.1 we
first discuss some of the ideas that will be used throughout the proofs in this chapter.

4.1 Preliminaries

Specified Face(s)

First, we consider the idea of a specified face. Theorem 3.3.3 [23] allows vertices of degree 4
and potentially degree 3 on the boundary of the outer face. However, a graph embedded in
the projective plane does not have a defined outer face, so the result cannot be directly
extended to the projective plane. While the results in Sections 4.2 and 4.3 deal with planar
graphs, and thus could refer to the outer face, to simplify the use of these results in proving
Jaeger’s Strong 3-Flow Conjecture for projective planar graphs, we define specified faces for
all three results.
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Let G be a graph with specified faces FG and F ∗G. Note that these are not required to both
exist. Let G′ be a graph obtained from G by one or more operations. Unless otherwise
stated, the specified faces FG′ and F ∗G′ are defined as follows:

1. Suppose that G′ is obtained from G by deleting or contracting a connected
subgraph of G that has no edge in common with the boundary of FG or F∗G.
Then FG′ = FG and F ∗G′ = F ∗G.

2. Suppose that G′ is obtained from G by contracting a connected subgraph
of G that contains the boundaries of FG and F∗G. Then G′ has no specified
face. Both can be chosen arbitrarily; in general we will chose a specified face incident
with the vertex of contraction.

3. Suppose that G′ is obtained from G by deleting an edge e in the boundary
of FG. Let F be the other face incident with e. Then FG′ is the face formed by the
union of the boundaries of F and FG (without e), and F ∗G′ = F ∗G. Note that if F = F ∗G,
then G′ has only one specified face. The second can be chosen arbitrarily if necessary.

4. Suppose that G′ is obtained from G by deleting a vertex v in the boundary
of FG. Let F1, F2,...,Fk be the other faces incident with v. Then FG′ is the face
formed by the union of the boundaries of F1, F2,...,Fk, and FG (without the edges
incident with v), and F ∗G′ = F ∗G. Note that if F ∗G ∈ {F1, F2, ..., Fk}, then G′ has only
one specified face. The second can be chosen arbitrarily if necessary.

5. Suppose that G′ is obtained from G by contracting a connected subgraph
H of G whose intersection with FG is a path P of length at least one. Then
FG′ is the face formed by the boundary of FG without P , and F ∗G′ = F ∗G. If the
intersection of H with FG consists of more than one path, this contraction can simply
be completed in multiple steps.

6. Suppose that G′ is obtained from G by lifting a pair of adjacent edges
e1, e2, where e1 is in the boundary of FG, e2 is not, and e1 and e2 are
consecutive at their common vertex. Let F1 be the other face incident with e1.
Note that F1 is incident with e2. Let F2 be the other face incident with e2. Then
FG′ is the face formed by the union of the boundaries of FG and F2 (using the lifted
edge instead of e1 and e2), and F ∗G′ = F ∗G. Note that if F1 = F ∗G, then F ∗G′ will use
the lifted edge instead of e1 and e2, and if F2 = F ∗G, then G′ has only one specified
face. The second can be chosen arbitrarily if necessary.
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When performing these operations we will not explicitly state the new specified faces unless
necessary; for example, if we must define a second specified face.

We define an edge-cut δ(A) in G to be internal if either A or G− A does not intersect the
boundary of the specified face(s) of G.

Edge-Disjoint Paths to the Boundary

As in Richter et al. [23], throughout this chapter we are working with graphs for which all
vertices not on the boundary of the specified face(s) have at least 5 edge-disjoint paths to
the boundary of the specified face(s). We consider here how reductions to the graph affect
this condition.

Lemma 4.1.1. Let G be a graph with specified face FG such that all vertices not on the
boundary of FG have 5 edge-disjoint paths to the boundary of FG. Let G′ be a graph obtained
from G by

1. contracting a subgraph X of G that does not intersect the boundary of FG to a vertex x,

2. deleting a boundary edge e of FG,

3. deleting a boundary vertex x of FG,

4. lifting a pair of adjacent edges e1, e2, where e1 is in the boundary of FG, e2 is not,
and e1 and e2 are consecutive at their common vertex, or

5. contracting a subgraph X of G whose intersection with FG is a path P .

Then all vertices not on the boundary of FG′ have 5 edge-disjoint paths to the boundary
of FG′.

Proof. Suppose for a contradiction that G′ has a vertex v that is not on the boundary of
FG′ , and does not have 5 edge-disjoint paths to the boundary of FG′ .

1. Suppose that v 6= x. Then in G, v has 5 edge-disjoint paths P1, P2, P3, P4, and P5 to
the boundary of FG. We note that FG′ = FG. Suppose that Pi intersects X. Let P ′i
and P ′′i be the minimal subpaths of Pi such that v ∈ P ′i ; P ′′i intersects the boundary
of FG; and both P ′i and P ′′i have an endpoint in X. Then P ′ixP

′′
i is a path in G′′. Let
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P ∗i = P ′ixP
′′
i . If Pi does not intersect X, then let P ∗i = Pi. Then {P ∗1 , P ∗2 , P ∗3 , P ∗4 , P ∗5 }

is a set of 5 edge-disjoint paths from v to the boundary of FG′ , a contradiction.

Now suppose that v = x. Let x′ be a vertex in X. Then in G, x′ has 5 edge-disjoint
paths P1, P2, P3, P4, and P5 to the boundary of FG. We define P ′i to be the minimal
subpath of Pi such that P ′i has one endpoint at a vertex in X and one endpoint on
the boundary of FG. Then {P ′1, P ′2, P ′3, P ′4, P ′5} is a set of 5 edge-disjoint paths from v
to the boundary of FG′ , a contradiction.

2. In G, v has 5 edge-disjoint paths P1, P2, P3, P4, and P5 to the boundary of FG.
These paths exist in G′, and are edge-disjoint paths from v to the boundary of FG′ , a
contradiction.

3. In G, v has 5 edge-disjoint paths P1, P2, P3, P4, and P5 to the boundary of FG.
Suppose that Pi contains x. Then x is an endpoint of Pi. Let x′ be the vertex of Pi
adjacent to x. By definition, x′ is on the boundary of FG′ . Let P ′i be the subpath
of Pi with endpoints v and x′. If Pi does not contain x, then let P ′i = Pi. Then
{P ′1, P ′2, P ′3, P ′4, P ′5} is a set of 5 edge-disjoint paths from v to the boundary of FG′ , a
contradiction.

4. In G, v has 5 edge-disjoint paths P1, P2, P3, P4, and P5 to the boundary of FG.
Suppose that Pi contains e2. Let x and y be the endpoints of e2 where x is on the
boundary of FG. Let P ′i be the subpath of Pi with endpoints v and y. If Pi does not
contain e2, then let P ′i = Pi. Then {P ′1, P ′2, P ′3, P ′4, P ′5} is a set of 5 edge-disjoint paths
from v to the boundary of FG′ , a contradiction.

5. In G, v has 5 edge-disjoint paths P1, P2, P3, P4, and P5 to the boundary of FG. Suppose
that Pi intersects X. Let P ′i be the minimal subpath of Pi with endpoints v and a
vertex in X. If Pi does not intersect X, then let P ′i = Pi. Then {P ′1, P ′2, P ′3, P ′4, P ′5} is
a set of 5 edge-disjoint paths from v to the boundary of FG′ , a contradiction.

We therefore only discuss the preservation of this property in cases where Lemma 4.1.1
does not apply. In Section 4.3 we consider graphs with two specified faces, having a vertex
in common. Lemma 4.1.1 applies analogously to the union of these specified faces.

Minimal Cuts

Let G be a graph with a directed vertex d. An edge-cut δ(A) in G with d ∈ A is k-robust if
|A| ≥ 2 and |G− A| ≥ k. Note that when k = 2 this is the same as non-peripheral.
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Throughout this chapter we will perform local reductions on graphs. Many of these
reductions will involve considering 2-robust edge-cuts, either because G has a small edge-cut
that must be reduced, or because we must verify that the graph resulting from a reduction
does not have any small edge-cuts. In all cases, we first consider the smallest possible
edge-cuts. Thus, if we consider a 2-robust k-edge-cut δ(A) in a graph G, we may assume
that G has no 2-robust at most (k− 1)-edge-cut. Thus it may be assumed that either G[A]
is connected, or it consists of two isolated vertices whose degrees sum to |δ(A)|. The same
is true of G− A. Given the size of the cuts we consider, generally both G[A] and G− A
will be connected.

Non-Crossing 3-Edge-Cuts

Let δ(A) and δ(B) be distinct edge-cuts in G. We say that δ(A) and δ(B) cross if A ∩B,
A \B, B \ A, and A ∪B are all non-empty. Throughout this chapter we consider graphs
that are allowed to have non-crossing 2-robust 3-edge-cuts under certain restrictions. We
discuss here why we may assume that such cuts are non-crossing.

Lemma 4.1.2. Let G be a 3-edge-connected graph and let δ(A) and δ(B) be 3-edge-cuts
in G. Then δ(A) and δ(B) do not cross.

Proof. Suppose that δ(A) and δ(B) cross. Then A ∩ B, A \ B, B \ A, and A ∪B are all
non-empty. Since G is 3-edge-connected, δ(A ∩B), δ(A \B), δ(B \ A), and δ(A ∪B) all
have size at least 3. Consider the graph G′ obtained from G by contracting these four
sets of vertices to vertices a, b, c, and d respectively (and deleting any resulting loops).
Then deg(a), deg(b), deg(c), deg(d) ≥ 3. Since the edges of G′ are the edges of δ(A) ∪ δ(B),
|δ(A) ∪ δ(B)| ≥ 6. Since |δ(A) ∪ δ(B)| ≤ 6, we conclude that δ(A) and δ(B) do not share
any edges, and that deg(a), deg(b), deg(c), deg(d) = 3.

Let u, v, w, and x be the number of edges with endpoints at a and c, b and c, a and d, and
b and d, respectively. Then

v + w = |δ(A)| = 3,

u+ x = |δ(B)| = 3,

u+ w = |δ(A ∩B)| = 3,

v + x = |δ(A ∪B)| = 3,
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u+ v = |δ(A−B)| = 3,

w + x = |δ(B − A)| = 3.

Then we have
u = 3− w = v = 3− x = w = 3− u = x.

The only solution to this system of equations is u = v = w = x = 3
2
, which is not an integer

solution.

Face Boundaries in the Projective Plane

Let G be a graph embedded in the plane, and let FG be a specified face of G. If G does not
contain a cut vertex, then we may assume that FG is bounded by a cycle. If G is embedded
in the projective plane, this is not true. Suppose that v is a vertex that appears more than
once in the boundary walk of FG, and assume that v is not a cut vertex. Then there exists
a non-contractible curve that passes through only FG and v. Cut along this curve, and
draw the graph on the plane. The result is a planar graph with one specified face containing
two copies of v. See Figure 4.1 for an illustration. Contract the two copies of v to a single
vertex. Then G is a planar graph with two specified faces, each containing v. In Section
4.3 we prove a result for such graphs analogous to that of Richter et al. [23].

Chords in the Projective Plane

Let G be a graph embedded in the plane and let FG be a specified face of G. Suppose
that FG has a chord e with endpoints u and v. Then there exist subgraphs H and K of G

vFG

v

v

Figure 4.1: Redrawing G in the plane.
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such that H ∩K = {{u, v}, {e}} and H ∪K = G. This is a property that Richter et al.
[23] exploited when proving Jaeger’s Strong 3-Flow Conjecture for planar graphs, and a
property that we use throughout this chapter.

Now suppose that G is a graph embedded in the projective plane with a cycle C bounding a
closed disk. Let e be a chord of C. If C+e is contained in an open disk, then e is contractible.
Otherwise it is a non-contractible chord. This is relevant in the case where the specified face
FG is bounded by a cycle. If FG has a contractible chord, we may use techniques analogous
to those in the plane to reduce the graph. In the case of a non-contractible chord, the graph
is not split into subgraphs as it is in the plane, and we require different techniques. We see
here that the deletion of such a chord and its endpoints results in a planar graph.

Lemma 4.1.3. Let G be a graph embedded in the projective plane with a specified face FG
bounded by a cycle. Suppose that e is a non-contractible chord of FG with endpoints u and v.
Let G′ = G−{u, v}. Then G′ is planarly embedded in the projective plane with one specified
face; namely the one containing FG.

Proof. Let u, v1, v2, ..., vi, v, vj, ..., vk, u be the boundary of FG. There exist two faces F1

and F2 of G that are incident with e. The boundary of FG′ is the union of a set of faces
including FG, F1, and F2, without the edges incident with u and v. This boundary is
v1, v2, ..., viP1vk, ..., vjP2v1, where P1 is the path in F1 between vi and Vk not containing e,
and P2 is the path in F2 between vj and v1 not containing e.

Consider the projective plane as represented by a circle of radius 2, where opposite points
are identified. Draw the given embedding of G such that the boundary of FG lies on the
unit circle (where the origin is in the specified face), and e is contained in the line y = 0.
In G′, the graph does not intersect the line y = 0. Cut the projective plane along the line
y = 0 and identify the opposite points on the circle. The result is a planar embedding of G′

where FG′ is the outer face.

Loops, Parallel Edges, and Cut Vertices

In the proofs throughout this chapter, we wish to show that our graph (a minimum
counterexample) does not have loops, unoriented parallel edges, or cut vertices. As the
proofs of these results are equivalent in all cases, we write a general proof here. It relies on
the fact that the set of graphs is closed under loop deletion and edge contraction, which we
will show in each case.
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Lemma 4.1.4. Let G be a set of connected graphs that is closed under loop deletion and
edge contraction. If G ∈ G is a minimum counterexample (with respect to the number
of edges in G) to the statement ‘all graphs in G have a valid orientation for every valid
prescription function’, then G has:

1. no loop,

2. no unoriented parallel edges, and

3. no cut vertex.

Proof.

1. Suppose that G contains a loop `. Then G− ` ∈ G, so G− ` has a valid orientation
by the minimality of G. Orient ` in either direction to yield a valid orientation of G,
a contradiction. Thus G has no loops.

2. Suppose that G has unoriented parallel edges e and f . Then G/{e, f} = (G/e)−f ∈ G
and thus has a valid orientation by the minimality of G. Let u and v be the endpoints
of e and f . Orient e and f to satisfy p(u). Since v cannot be the only vertex whose
prescription is not met, this yields a valid orientation of G, a contradiction. Thus G
has no unoriented parallel edges.

3. Suppose that G has a cut vertex v. Then there exist subgraphs H and K of G
such that G = H ∪ K and H ∩ K = ({v}, ∅). Then H = G/K and K = G/H
and so H,K ∈ G. By the minimality of G, H has a valid orientation. Transfer this
orientation to G and adjust the prescription of v in K accordingly. Then by the
minimality of G, K has a valid orientation. This leads to a valid orientation of G, a
contradiction. Hence G has no cut vertex.

4.2 Increasing the Number of Degree 3 Vertices

Lemma 4.1.3 shows that we may reduce graphs in the projective plane that have a non-
contractible chord to planar graphs. However, this process will, in general, introduce new
degree 3 vertices. Therefore, in order to make use of this property, we first show that such
graphs have a valid orientation. This extends the result in Theorem 3.3.3 [23] to allow a
directed vertex d and two other vertices of degree 3. An analogous result with three degree
3 vertices and no directed vertex follows as an immediate corollary.
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Definition 4.2.1. A DTS graph is a graph G embedded in the plane, together with a valid
Z3-prescription function p : V (G)→ {−1, 0, 1}, such that:

1. G is 3-edge-connected,

2. G has a specified face FG, and at most three specified vertices d, t, and s,

3. if d exists, then it has degree 3, 4, or 5, is oriented, and is on the boundary of FG,

4. if t or s exists, then it has degree 3 and is on the boundary of FG,

5. d has degree at most 5− a where a is the number of unoriented degree 3 vertices in G,

6. G has at most three 3-edge-cuts, which can only be δ(d), δ(t), and δ(s), and

7. every vertex not in the boundary of FG has 5 edge-disjoint paths to the boundary
of FG.

We define all 3-edge-connected graphs on at most two vertices to be DTS graphs, regardless
of vertex degrees.

A 3DTS graph is a graph G with the above definition, where (6) is replaced by

6’. all vertices other than d, t, and s have degree at least 4, and if d, t, and s all exist,
then every 3-edge-cut in G separates one of d, t, and s from the other two.

We note that (7) implies that the 3-edge-cuts allowed by (6’) are not internal.

Our main result for this section is Theorem 4.2.2.

Theorem 4.2.2. Every DTS graph has a valid orientation.

Proof. Let G be a minimal counterexample with respect to the lexicographic ordering of the
pairs (|E(G)|, |E(G)| − deg(d)). If |E(G)| = 0, then G consists of only an isolated vertex,
and thus has a trivial valid orientation. If |E(G)| − deg(d) = 0 then G has an existing valid
orientation. Thus we may assume G has at least one unoriented edge.

We will prove the following series of properties of G.
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DTS1: The graph G does not contain a loop, unoriented parallel edges, or a cut vertex.

DTS2: The graph G does not contain

a) a 2-robust 4-edge-cut, δG(A), where d ∈ A and G− A contains at most one of s
and t,

b) a 2-robust 5-edge-cut, δG(A), where d ∈ A and G− A contains neither s nor t,
or

c) an internal 2-robust 6-edge-cut.

DTS3: If e = uv is a chord of FG incident with a vertex u of degree at most 4, then
deg(u) = 4, e separates d from both s and t, and u is incident with e and one other
edge in the side containing d, while on the side containing s and t, u is incident with
e and two other edges.

DTS4: Vertices d, s, and t exist in G.

DTS5: Vertices s and t are not adjacent.

Let u and v be the boundary vertices adjacent to t, and let w be the remaining vertex
adjacent to t. Let x and y be the boundary vertices adjacent to s, and let z be the remaining
vertex adjacent to s.

DTS6: Vertices u, v, x, and y have degree 4.

DTS7: Edges uw, vw, xz, and yz exist, and w and z have degree 5.

DTS8: The vertices d, s, t, u, v, x, and y form the boundary of FG, where either v = x or
u = z (up to renaming).

The proofs of these properties form the bulk of the proof of Theorem 4.2.2.

DTS1. The graph G does not contain a loop, unoriented parallel edges, or a cut vertex.

Proof. By Lemma 4.1.4 it suffices to show that the set of DTS graphs is closed under loop
deletion and edge contraction. We may assume that G has at least three vertices. Suppose
that G contains a loop e incident with a vertex v. If G− e contains a vertex of degree at
most 3 that does not have degree at most 3 in G, this vertex is v. Then |δG({v})| = 3,
a contradiction. If v = d, then since |δ({d})| ≥ 3, degG−e(d) ≥ 3. The edge connectivity
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requirements follow from Lemma 2.3.1.

Let e = {x, y} be an edge in G and consider G/e. Let v be the vertex of contraction. If G/e
contains a vertex of degree at most 3 that does not have degree at most 3 in G, this vertex
is v. Then |δG({x, y})| = 3. If |V (G)| = 3, then G/e consists of two vertices joined by 3
parallel edges, and thus is a DTS graph. Otherwise, |δG({x, y})| is 2-robust, a contradiction.
The edge connectivity requirements follow from Lemma 2.3.1.

Since G has no cut vertex, every face in G is bounded by a cycle. We now consider the
presence of small 2-robust edge-cuts in G. Recall that by definition, G has no 2-robust at
most 3-edge-cut. Property DTS2 categorises three cases that can always be reduced. This
is not a comprehensive list, but other small cuts arise arise in special circumstances and
will be reduced on a case by case basis.

DTS2. The graph G does not contain

a) a 2-robust 4-edge-cut, δG(A), where d ∈ A and G−A contains at most one of s and t,

b) a 2-robust 5-edge-cut, δG(A), where d ∈ A and G− A contains neither s nor t, or

c) an internal 2-robust 6-edge-cut.

Proof.

a) Suppose that G does contain a 2-robust 4-edge-cut, δG(A), with A chosen so that
d ∈ A and G−A contains at most one of s and t. Let G′ be the graph obtained from
G by contracting G−A to a single vertex. The resulting vertex v has degree 4. Since
every vertex not incident with FG has 5 edge-disjoint paths to the boundary of FG,
FG is incident with edges in δG(A). Therefore, v is incident with FG′ . If G′ contains
a cut δG′(B) of size at most 3, then such a cut also exists in G by Lemma 2.3.1, a
contradiction unless it is one of the specified vertices. Hence G′ is a DTS graph and
has a valid orientation by the minimality of G. Transfer this orientation to G.

Let G′′ be the graph obtained from G by contracting A to a single vertex d′. This
vertex has degree 4 and is oriented. Since d ∈ V (A), G′′ has only one oriented vertex,
which is d′. Since FG is incident with edges in δG(A), d′ is incident with FG′′ . If G′′

has a cut δG′′(B) of size at most 3, then such a cut also exists in G by Lemma 2.3.1,
a contradiction unless it is one of the specified vertices. Thus G′′ is a DTS graph
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and has a valid orientation by the minimality of G. Transfer this orientation to G to
obtain a valid orientation of G, a contradiction. Hence any 4-edge-cut in G separates
d from both s and t.

b) This case works in the same way as a). In G′′, there is a degree 5 oriented vertex, and
no degree 3 vertices. Therefore, any 5-edge-cut in G separates d from an unoriented
degree 3 vertex.

c) Contract G−A to a vertex v, calling the resulting graph G′. As in a), it is clear that
G′ is a DTS graph. Therefore, by the minimality of G, G′ has a valid orientation.
Transfer this orientation to G.

Contract A to a vertex d′, delete a boundary edge e incident with d′, and call the
resulting graph G′′. Since the boundary of FG is contained in A, the endpoint of e
in G − A has degree at least 5 in G, and therefore has degree at least 4 in G′′. If
G′′ contains an edge-cut δG′′(B), then either δG(B) or δG(G − B) is a cut in G of
size at most one greater. If G′′ contains a 2-robust edge cut δG′′(B) of size three or
less, then G contains an analogous internal edge-cut of size four or less. Such a cut
does not exist by definition. Thus G′′ contains no such at most 3-edge-cut, and is a
DTS graph. Therefore, by the minimality of G, G′′ has a valid orientation. Transfer
this orientation to G to obtain a valid orientation of G, a contradiction. Hence any
6-edge-cut in G contains edges in the boundary of FG.

In the absence of structures such as loops, parallel edges, cut vertices and small edge-cuts,
we reduce at low degree vertices in G. It is useful to consider the possible adjacencies
of such vertices. We say that a chord e = {u, v} of FG separates vertices x and y if the
components of FG − {u, v} are P1 and P2, where for some i ∈ {1, 2}, x ∈ Pi and y ∈ P3−i.

DTS3. If e = uv is a chord of FG incident with a vertex u of degree at most 4, then
deg(u) = 4, e separates d from both s and t, and u is incident with e and one other edge in
the side containing d, while on the side containing s and t, u is incident with e and two
other edges.

Proof. Suppose that a chord uv exists, where degG(u) ∈ {3, 4}. Let H and K be subgraphs
of G such that H ∩K = {{u, v}, {uv}}, H ∪K = G, and d, if it exists, is in H.

Suppose that δ(H) is not 2-robust. Then |V (K)| = 3, and K contains d, else G has
unoriented parallel edges, contradicting DTS1. By definition, either u or v is d. Since G

41



does not contain unoriented parallel edges degH(d) = 2, and |δ((H − {u, v}) ∪ {d})| = 3, a
contradiction. Hence we may assume that δ(H) is 2-robust.

Suppose that δ(K) is not 2-robust. Then |V (H)| = 3. If u or v is d, the same argument
applies. Thus we may assume that d is in V (H)− {u, v}. If there are parallel edges with
endpoints d and u, then δ({d, u}) is an at most 5-edge-cut. Orient u and contract the
parallel edges between d and u, calling the resulting graph G′. Note that the vertex of
contraction has the same degree as d. Hence it is clear that G′ is a DTS graph, and thus
has a valid orientation by the minimality of G. This leads to a valid orientation of G, a
contradiction.

Suppose that there are not parallel edges with endpoints d and u. Then there are parallel
edges with endpoints d and v. Since |δ({d, v})| ≥ 4, degK(v) ≥ 3. If deg(u) = 3, then
degK(v) ≥ 4, else |δ(H)| = 3, a contradiction. Orient u and add a directed edge from u
to v in K. Then K is a DTS graph, and has a valid orientation by the minimality of G.
This leads to a valid orientation of G, a contradiction. Thus deg(u) = 4. If K − V (H)
does not contain both s and t the same argument applies. Thus s, t ∈ K − V (H), and the
chord separates d from s and t. Since there are not parallel edges with endpoints u, and d,
degK(u) = 3. We may now assume that δ(K) is 2-robust.

By definition, δ(H) and δ(K) have size at least 4. Hence degG(v) ≥ 6, and so v is not d, s,
or t. In addition, v has degree at least 3 in both H and K.

Suppose that u 6= d. Then in H, contract uv. The graph H/uv is a DTS graph, and so
by the minimality of G, H/uv has a valid orientation. Transfer this orientation to G, and
orient u. In K, if u has degree 2, add an edge e directed from u to v (in the boundary
of FK). Suppose that v has degree 3 in K and K does not contain both s and t. Since
degG(u) ∈ {3, 4} it is clear that u, v are incident with FK , and thus K + e is a DTS graph.
By the minimality of G, K + e has a valid orientation. This leads to a valid orientation
of G, a contradiction. The remaining case is the one where v has degree 3 in K, and K
contains both s and t. Then e separates d from s and t, as required.

Thus u = d. Then in both H and K if deg(u) = 2, add a directed edge e from u to v
(in the boundary of FH and FK). If K contains both s and t, then deg(u) = 3, so in K,
deg(v) ≥ 4. It is clear that H + e and K + e are DTS graphs, so by the minimality of G,
they have valid orientations. Transfer the orientations of H + e and K + e to G to obtain a
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valid orientation of G, a contradiction. Thus no such chord exists.

Since we reduce at low degree vertices in G, we are especially interested in the specified
vertices d, s, and t. We must first establish the existence of these vertices. The following
two claims are needed in order to prove DTS4.

Claim 4.2.3. If d exists, then it is not adjacent to a vertex of degree at most 4 via parallel
edges.

Proof. Suppose that d is adjacent to t via parallel edges. Then |δ({d, t})| = deg(d)− 1 ≤ 3
(since t exists, deg(d) ≤ 4). Since |δ({d, t})| ≥ 3, equality holds. Thus deg(d) = 4 and s
does not exist. It follows that δ({d, t}) is a 2-robust 3-edge-cut, a contradiction. The same
is true of d and s.

Suppose that d is adjacent to a vertex v of degree 4 via parallel edges. If they are adjacent
via at least 3 parallel edges, then either deg(d) = 4 and δ({d, v}) is an at most 2-edge-cut,
or deg(d) = 5 and δ({d, v}) is an at most 3-edge-cut, a contradiction. If s and t exist, then
deg(d) = 3, and δ({d, v}) is a 2-robust at most 3-edge-cut, a contradiction. Otherwise,
orient v and contract {d, v}, calling the resulting graph G′. Then G′ has a directed vertex
of degree at most degG(d), and thus is a DTS graph. By the minimality of G, G′ has a
valid orientation. This leads to a valid orientation of G, a contradiction.

Claim 4.2.4. If d exists, then it is not adjacent to a vertex of degree at most 3.

Proof. Suppose that d is adjacent to t. Orient t and contract {d, t} calling the resulting
graph G′. Then G′ is a DTS graph and has a valid orientation by the minimality of G.
This leads to a valid orientation of G, a contradiction.

DTS4. Vertices d, s, and t exist in G.

Proof. Suppose that d does not exist. Let v be a vertex in the boundary of FG of minimum
degree. If deg(v) ≤ 5, orient v, calling the resulting graph G′. Then G′ is a DTS graph,
and has a valid orientation by the minimality of G. This is a valid orientation of G, a
contradiction. If deg(v) ≥ 6, orient and delete a boundary edge incident with v, calling
the resulting graph G′. If G′ has a 2-robust at most 3-edge-cut, then G has a 2-robust
at most 4-edge-cut, a contradiction. Thus G′ is a DTS graph and has a valid orientation
by the minimality ofG. This leads to a valid orientation ofG, a contradiction. Hence d exists.

43



Suppose that G has at most one unoriented vertex (t) of degree 3. If d has degree 4 or 5, let
v be a vertex adjacent to d on the boundary of FG that has degree at least 4 (such a vertex
exists by Claim 4.2.3). Let G′ be the graph obtained by deleting dv. If G′ has a 2-robust at
most 3-edge-cut, then G has a corresponding at most 4-edge-cut, a contradiction. Thus G′

is a DTS graph and has a valid orientation by the minimality of G. This leads to a valid
orientation of G, a contradiction.

Thus d has degree 3. By Claim 4.2.4, d is not adjacent to t. If d has at most one adjacent
vertex of degree 4, delete d, calling the resulting graph G′. If G′ has a 2-robust at most
3-edge-cut, then G has a corresponding at most 4-edge-cut, a contradiction. Thus G′ is a
DTS graph and has a valid orientation by the minimality of G.

Otherwise, d has two adjacent vertices of degree 4. Delete d and orient one neighbour
of d, calling the resulting graph G′. If G′ has a 2-robust at most 3-edge-cut, then G has
a corresponding at most 4-edge-cut, a contradiction. Thus G′ is a DTS graph and has
a valid orientation by the minimality of G. All cases lead to a valid orientation of G, a
contradiction. Hence s and t exist.

Since s and t exist, deg(d) = 3.

In the following reductions, the graphs produced may be 3DTS graphs. We show that such
graphs have a valid orientation.

Claim 4.2.5. If G′ is a 3DTS graph with |E(G′)| < |E(G)|, then G′ has a valid orientation.

Proof. Let G′ be a minimal counterexample with respect to |E(G′)|. Suppose that G′

has no 2-robust 3-edge-cut. Then G′ is a DTS graph and has a valid orientation by the
minimality of G, a contradiction. Thus we may assume that G′ has a 2-robust 3-edge-cut
δG′(A), where A is chosen so that d ∈ A. We may assume that t 6∈ A.

Let G1 be the graph obtained from G′ by contracting G− A. Then G1 is a 3DTS graph
and has a valid orientation by the minimality of G′. Transfer this orientation to G′. Let
G2 be the graph obtained from G′ by contracting A to a directed vertex d′. Then G2 is
a 3DTS graph and has a valid orientation by the minimality of G′. This leads to a valid
orientation of G′, a contradiction.

DTS5. Vertices s and t are not adjacent.
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Proof. Suppose for a contradiction that s and t are adjacent. Let u and v be the boundary
neighbours of s and t respectively. We prove the following claims:

a. Vertices s and t have a common internal neighbour w of degree 5, deg(u) = 4, and
deg(v) = 4.

b. Vertices u and w are adjacent.

Claim DTS5a. Vertices s and t have a common internal neighbour w of degree 5, deg(u) =
4, and deg(v) = 4.

Proof. Assume that either s and t do not have a common internal neighbour of degree 5,
or at least one of the vertices u and v has degree at least 5. Let G′ be the graph obtained
from G by orienting and deleting s and t. Then G′ has at most two vertices of degree 3:
two of u, v, and a possible common neighbour of s and t.

We now check that G′ has no 2-robust 2- or 3-edge-cuts. The cases are indicated in italics.
We follow a similar process in most future cases. Suppose that G′ contains a 2-robust at
most 2-edge-cut δG′(A) where u and v are in A. By definition this cut does not exist in
G, and so we may assume that δG(G′ − A) is an internal cut. We make this assumption
without mention in future cases. Then δG(A ∪ {s, t}) is a 2-robust at most 4-edge-cut that
does not separate d from s or t, a contradiction. Suppose that G′ contains a 2-robust at
most 2-edge-cut δG′(A) where u ∈ A and v 6∈ A. Then δG(A ∪ {s}) is a 2-robust at most
4-edge-cut that separates s from t, a contradiction.

Suppose that G′ contains a 2-robust 3-edge-cut δG′(A) where u and v are in A. Then
δG(A ∪ {s, t}) is a 2-robust at most 5-edge-cut that does not separate d from s or t, a
contradiction. Suppose that G′ contains a 2-robust 3-edge-cut δG′(A) where u ∈ A and
v 6∈ A. Then all such cuts separate u and v, so by Claim 4.2.5, if s and t do not have a
common neighbour of degree 5, then G′ has a valid orientation. Hence we may assume
that s and t have a common internal neighbour w of degree 5. Note that in G′, w has
degree 3. Suppose that d ∈ A. By Claim 4.2.5, w ∈ A, and u is the other vertex of degree
3 in G′. Then δG(G′ − A) is a 2-robust 4-edge-cut in G that does not separate d from s or
t, a contradiction. Figure 4.2 shows an analysis of these cuts.

We conclude that G′ is a DTS graph and has a valid orientation by the minimality of G.
This leads to a valid orientation of G, a contradiction.
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Figure 4.2: DTS5: Analysis of cuts (1).

Therefore s and t have a common internal neighbour w of degree 5, deg(u) = 4, and
deg(v) = 4. Let the edges incident with u be e1, e2, e3, es in order, where e1 is on the
boundary of FG and es = su. By DTS3, e3 is not a chord. The same is true at v.

Claim DTS5b. Vertices u and w are adjacent.

Proof. Suppose that u and w are not adjacent. Lift the pair of edges e1, e2, and orient and
delete u, s, and t, calling the resulting graph G′. This reduction can be seen in Figure 4.3.
Then G′ has at most two unoriented vertices of degree 3 (v and w).

Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A), where v and the lifted edge
are in A. Then δG(A ∪ {s, t, u}) is an internal 2-robust at most 5-edge-cut, a contradiction.
Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A), where v ∈ A and the lifted
edge is in G′ −A. Then w ∈ A, else δG(A) is a 2-robust 3-edge-cut. Similarly, the endpoint
of e3 is in A, else δG(A∪{s, t}) is a 2-robust 3-edge-cut. Now δG(A∪{u, s, t}) is a 4-edge-cut.
By DTS2, d ∈ G′−A. Contract A in G to form a graph Ḡ. Then Ḡ is a DTS graph and has
a valid orientation by the minimality of G. Transfer this orientation to G, contract G− A,
and delete tv and tw to form a graph Ḡ′ with an oriented degree 4 vertex. If Ḡ′ contains
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Figure 4.3: DTS5: Reduction when u and w are not adjacent.

an at most 3-edge-cut, then G contains an at most 5-edge-cut that does not separate d,
s, and t, a contradiction. Hence Ḡ′ is a DTS graph and has a valid orientation by the
minimality of G. This leads to a valid orientation of G, a contradiction. Therefore G′ is
3-edge-connected.

Suppose that G′ contains a 2-robust 3-edge-cut δG′(A), where v and the lifted edge are in A.
Then δG(A ∪ {s, t, u}) is an internal 2-robust at most 6-edge-cut, a contradiction. Suppose
that G′ contains a 2-robust 3-edge-cut δG′(A), where v ∈ A, and the lifted edge is in G′ −A.
If all such cuts have the property that d ∈ G′−A, then G′ is a 3DTS graph and has a valid
orientation by Claim 4.2.5. This leads to a valid orientation of G, a contradiction. Hence we
may assume that d ∈ A. The endpoint of e3 is in G′−A, else δG(A∪ {u, s, t}) is a 2-robust
5-edge-cut that does not separate d from s or t, a contradiction. Also, w ∈ G′ − A, else
δG(A∪ {s, t}) is a 2-robust 4-edge-cut that does not separate d from s or t, a contradiction.
Then all such 3-edge-cuts in G′ separate w from v and d, and so G′ has a valid orientation
by Claim 4.2.5. Therefore G′ has no such 2-robust at most 3-edge-cuts. Figure 4.4 shows
an analysis of these cuts.

Thus far we have omitted consideration of the case where the lifted edge is an edge in
the cut δ(A). Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A) where v ∈ A
and the lifted edge is an edge of δ(A). If the endpoint of e1 is in G′ − A, then δG(G′ − A)
is a 2-robust at most 3-edge-cut, a contradiction. If the endpoint of e1 is in A, then the
argument is analogous to (but simpler than) that for the case where v and the lifted edge
are on the same side of the cut. In future reductions we omit discussion of the cases where
the lifted edge is an edge of the cut.

Hence G′ is a DTS graph and has a valid orientation by the minimality of G. This leads to
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Figure 4.4: DTS5: Analysis of cuts (2).

a valid orientation of G, a contradiction.

By symmetry, v and w are adjacent. This provides sufficient structure to complete the
proof. Suppose that e2 and the analogous edge f2 incident with v are both chords. By
DTS3, e2 and f2 separate d from s and t. Thus e2 = f2. Then G has a 1-edge-cut: the
remaining edge incident with w, a contradiction. Hence e2 and f2 are not both chords.

By DTS2, u and v are not both adjacent to d. Without loss of generality, assume that u
is not adjacent to d. Suppose that e2 is a chord. Then by DTS3, e2 separates d from s
and t. Since e2 is not incident with v, it also separates d from v, so v is not adjacent to d.
Therefore at least one of u and v is not adjacent to d and is not incident with a chord.
Without loss of generality, we assume this vertex is u. Let z be the other endpoint of e1.

Orient and delete e1 and e2 to satisfy p(u) (which lifts ut and uw at u), and contract
{u, s, t, v, w} to a single vertex c of degree 3, calling the resulting graph G′. Then G′ has at
most two unoriented degree 3 vertices (c and z). This reduction is shown in Figure 4.5.
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Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A) where z and c are in A. Then
G contains a 2-robust internal at most 4-edge-cut, a contradiction.

Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A) where z ∈ G′ −A and c ∈ A.
Since δG(A) and δG(A ∪ {u}) are 4-edge-cuts, d 6∈ A. If v is adjacent to d or incident with
a chord, then G has an internal at most 3-edge-cut δG(A− c), a contradiction. Hence v is
not adjacent to d or incident with a chord. We consider applying the same reduction at v.
If an analogous 4-edge-cut δG(B) exists using edges incident with v, then these cuts cross.

We have {s, t, u, v, w} ⊆ A ∩ B in G (where we replace c with {s, t, u, v, w} in G), and
d ∈ G− (A ∪ B). By construction, A− B and B − A each contain at least two vertices:
the neighbours of u and v. Thus DTS2 implies that |δG(A−B)|, |δG(B − A)| ≥ 6. This is
not possible given that |δG(A)| = |δG(B)| = 4. Thus we may apply the same reduction at v
without producing a 2-edge-cut. Hence we may assume that no such cut exists, and G′ is
3-edge-connected.

Suppose that G′ contains a 2-robust 3-edge-cut δG′(A) where z ∈ G′ − A and c ∈ A. Then
G′ is a 3DTS graph and has a valid orientation by Claim 4.2.5. This leads to a valid
orientation of G, a contradiction. Hence no such cut exists.

We conclude that G′ is a DTS graph, and has a valid orientation by the minimality of G.
This leads to a valid orientation of G, a contradiction. Hence s and t are not adjacent.

Let u and v be the boundary vertices adjacent to t, and let w be the remaining vertex
adjacent to t. Let x and y be the boundary vertices adjacent to s, and let z be the remaining
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vertex adjacent to s. Note that w and z are internal and have degree at least 5, and that
none of u, v, w, x, y, and z are in the set {d, s, t}.

DTS6. Vertices u, v, x, and y have degree 4.

Proof. Suppose without loss of generality that v has degree at least 5. Let G′ be the graph
obtained from G by orienting and deleting t. Then s and u are the only possible unoriented
degree 3 vertices in G′. Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A).
Then δG(A) or δG(A ∪ {t}) is a 2-robust at most 3-edge-cut, a contradiction.

Suppose that G′ contains a 2-robust 3-edge-cut δG′(A). If u and v are both in A, then G
contains an internal 4-edge-cut, a contradiction. Let u ∈ A and v ∈ G′ − A. If all such
3-edge-cuts separate d from u, then by Claim 4.2.5 G′ has a valid orientation. This leads
to a valid orientation of G, a contradiction. Hence we may assume that d ∈ A. If all
such cuts separate s from u, then similarly, G′ has a valid orientation. This leads to a
valid orientation of G, a contradiction. Hence we may assume that s ∈ A. Then δG(A) or
δG(A∪ {t}) is a 4-edge-cut that does not separate s from d, a contradiction. Hence no such
cut exists. Thus G′ is a DTS graph and has a valid orientation by the minimality of G.
This leads to a valid orientation of G, a contradiction. Hence v has degree 4. The same
argument applies for u, x, and y.

DTS7. The edges uw, vw, xz, and yz exist, and w and z have degree 5.

Proof. Suppose without loss of generality that either u and w are not adjacent or that
deg(w) ≥ 6. Let e1, e2, e3, and et be the edges incident with u in order, where e1 is on the
boundary of FG and et = ut. By DTS3, e3 is not a chord. Let G′ be the graph obtained
from G by lifting the pair of edges e1, e2, and orienting and deleting u and t. Then v and s
are the only possible unoriented degree 3 vertices in G′.

Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A) where v and the lifted edge
are in A. Then δG(A) is a 2-robust internal at most 5-edge-cut, a contradiction.

Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A) where v ∈ A and the lifted
edge is in G′ − A. Since G does not contain a 2-robust at most 3-edge-cut, w and the
endpoint of e3 are in A. Since δG(A ∪ {u, t}) is a 2-robust 4-edge-cut, d ∈ G′ − A, and
s ∈ A. Figure 4.6 shows this graph. In G, contract A to form a graph Ĝ. Then Ĝ is a
DTS graph and has a valid orientation by the minimality of G. Transfer this orientation
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Figure 4.6: DTS7: Reduce the 5-edge-cut δ(A).

to G. Contract G− A and delete tv and tw to form a graph Ĝ′. Then Ĝ′ has an oriented
degree 3 vertex d′ and two vertices of degree 3 (s and v). If Ĝ′ contains a 2-robust at most
2-edge-cut, then G contains a 2-robust at most 3-edge-cut, a contradiction. If Ĝ′ contains a
2-robust 3-edge-cut, it necessarily separates d′ from s or v (else G has a 2-robust at most
5-edge-cut with d, s, and t on the same side), so Ĝ′ has a valid orientation by Claim 4.2.5.
Thus Ĝ′ is a DTS graph and has a valid orientation by the minimality of G. This leads to
a valid orientation of G, a contradiction. Hence G′ is 3-edge-connected.

Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A) where v ∈ A and the lifted
edge is in G′ − A. If all such 3-edge-cuts separate d from v, then by Claim 4.2.5 G′ has a
valid orientation. This leads to a valid orientation of G, a contradiction. Hence we may
assume that d ∈ A. If s ∈ A, then either δG(A∪{t}) or δG(A∪{u, t}) is a 2-robust at most
5-edge-cut that does not separate d from s or t, contradicting DTS2. Hence s ∈ G′ − A.
Therefore δG′(A) separates s from d and v. By Claim 4.2.5, G′ has a valid orientation. This
leads to a valid orientation of G, a contradiction. Thus G′ has no 2-robust at most 3-edge-cut.

Therefore G′ is a DTS graph and has a valid orientation by the minimality of G. This leads
to a valid orientation of G, a contradiction. We conclude that u and w are adjacent and
deg(w) = 5. The other cases are equivalent.

DTS8. The vertices d, s, t, u, v, x, and y form the boundary of FG, where either v = x or
u = z (up to renaming).

Proof. Suppose without loss of generality that u is not adjacent to s or to d. Suppose that
u is incident with a chord. If u and v are both incident with chords, then by DTS3 these
chords cross, a contradiction. Thus we may assume that v is not incident with a chord. If
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v is adjacent to d, then u is not incident with a chord, by DTS3, a contradiction. If v is
adjacent to s, then v = x. If u and y are both incident with chords, then by DTS3 these
chords cross, a contradiction. Thus we may assume that y is not incident with a chord. If
y is adjacent to d, then u is not incident with a chord, by DTS3. Then y is neither incident
with a chord nor adjacent to d. Hence there exists a vertex in the set {u, v, x, y} that is
adjacent to exactly one vertex in {s, t, d} and is not incident with a chord. Without loss
of generality, assume this vertex is u. Let e1, e2, e3, and et be the edges incident with
u in order, where e1 is on the boundary of FG and et = ut. Let q be the other endpoint of e1.

Let G′ be the graph obtained from G by orienting and deleting e1 and e2 to satisfy p(u),
and contracting {u, t, v, w} to a single vertex c of degree 4. Then G′ has at most two
vertices of degree 3 (s and q). Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A)
where c and q are in A. Then δG(G′ − A) is a 2-robust internal at most 4-edge-cut in G, a
contradiction.

Suppose that G′ contains a 2-robust at most 2-edge-cut where c ∈ A and q ∈ G′ − A. Then
s ∈ A and d ∈ G′−A, else G has a 2-robust at most 4-edge-cut that does not separate d from
s and t, a contradiction. Figure 4.7 shows this graph. In G, contract (A−{c})∪{v, w} to a
vertex, calling the resulting graph Ḡ. Then Ḡ is a DTS graph and has a valid orientation by
the minimality of G. Transfer this orientation to G, contract (G′ − A) ∪ {u, t} to a vertex,
and delete tv and tw, calling the resulting graph Ḡ′. Then Ḡ′ has a directed degree 3 vertex
d′ and two vertices of degree 3 (s and v). If Ḡ′ contains a 2-robust at most 2-edge-cut,
then G contains a 2-robust at most 4-edge-cut that does not separate d from s and t, a
contradiction. If Ḡ′ contains a 2-robust 3-edge-cut, it necessarily separates d′ from s or
v, so Ḡ′ has a valid orientation by Claim 4.2.5. Thus Ḡ′ is a DTS graph and has a valid
orientation by the minimality of G. This leads to a valid orientation of G, a contradiction.
Hence G′ is 3-edge-connected.

Suppose that G′ contains a 2-robust 3-edge-cut δG′(A), where c ∈ A and q ∈ G′ − A. If all
such cuts separate d from q, then G′ has a valid orientation by Claim 4.2.5. This leads
to a valid orientation of G, a contradiction. Thus we may assume that d ∈ G′ − A. If all
such cuts separate s from q, then G′ has a valid orientation by Claim 4.2.5. This leads
to a valid orientation of G, a contradiction. Thus we may assume that s ∈ G′ − A. In G,
δG(G′ −A) is not a 4-edge-cut, else it separates d and s from t, a contradiction. Hence it is
a 5-edge-cut. Figure 4.8 shows this graph.
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Figure 4.7: DTS8: Reduce the 5-edge-cut δ(A− {u, t})).
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Figure 4.8: DTS8: Reduce the 6-edge-cut δ(A− {u, t}).
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In G, contract (A− {r}) ∪ {v, w} to a vertex, calling the resulting graph Ḡ. Then Ḡ is a
DTS graph and has a valid orientation by the minimality of G. Transfer this orientation
to G, contract (G′ − A) ∪ {u, t} to a vertex, and delete tv and tw, calling the resulting
graph Ḡ′. Then Ḡ′ has a directed degree 4 vertex d′ and one vertex of degree 3 (v). If Ḡ′

contains a 2-robust at most 2-edge-cut, then G contains a 2-robust at most 4-edge-cut that
does not separate d from s and t, a contradiction. If Ḡ′ contains a 2-robust 3-edge-cut, it
necessarily separates d′ from v (else G contains an internal 2-robust at most 4-edge-cut),
so Ḡ′ has a valid orientation by Claim 4.2.5. Thus Ḡ′ is a DTS graph and has a valid
orientation by the minimality of G. This leads to a valid orientation of G, a contradiction.
Hence G′ has no 2-robust at most 3-edge-cuts.

Therefore G′ is a DTS graph and has a valid orientation by the minimality of G. This leads
to a valid orientation of G, a contradiction. The result follows.

This concludes the proof of the properties of DTS graphs. Without loss of generality, the
boundary of FG consists of the vertices u, t, v = x, s, y, d in order. This graph is shown in
Figure 4.9. Let A = {u, t, v, s, y, d, w, z}. Then δ(A) is an internal 7-edge-cut. If G − A
contains only one vertex, then the graph contains unoriented parallel edges, a contradiction.
Hence δ(A) is 2-robust. Contract G−A to a vertex, calling the resulting graph G′. Then G′

is a DTS graph and has a valid orientation by the minimality of G. Transfer this orientation
to G. Contract A to a single vertex d′ and delete the two edges incident with w, calling the
resulting graph G′′. Then d′ is a directed vertex of degree 5, and G′′ contains no degree 3
vertices, since in G the neighbours of w are distinct internal vertices of degree at least 5.
If G′′ contains a 2-robust at most 3-edge-cut, then G contains a 2-robust internal at most
5-edge-cut, a contradiction. Hence G′′ is a DTS graph and has a valid orientation by the
minimality of G. This leads to a valid orientation of G, a contradiction. Therefore no
minimum counterexample exists, and Theorem 4.2.2 follows.

We conclude this section with some simple consequences of Theorem 4.2.2. In proving
Jaeger’s Strong 3-Flow Conjecture for projective planar graphs, our reductions will result
in DTS graphs, and also graphs with three vertices of degree 3 and no directed vertex.
Theorem 4.2.2 implies that such graphs also have a valid orientation.

Definition 4.2.6. An RST graph is a graph G embedded in the plane, together with a valid
Z3-prescription function p : V (G)→ {−1, 0, 1}, such that:

1. G is 3-edge-connected,
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Figure 4.9: The boundary consists of only the vertices u, t, v = x, s, y, d.

2. G has a specified face FG, and at most three specified vertices r, s, and t,

3. if r, s, and t exist, then they have degree 3 and are in the boundary of FG,

4. G has at most three 3-edge-cuts, which can only be δ({r}), δ({s}), and δ({t}), and

5. every vertex not in the boundary of FG has 5 edge-disjoint paths to the boundary
of FG.

A 3RST graph is a graph G with the above definition, where (4) is replaced by

4’. all vertices aside from r, s, and t have degree at least 4, and if r, s, and t exist, then
every 3-edge-cut in G separates one of r, s, and t from the other two.

Corollary 4.2.7. Every RST graph has a valid orientation.

Proof. Orient r to satisfy p(r). The resulting graph is a DTS graph and has a valid
orientation by Theorem 4.2.2.

The result in Claim 4.2.5 will also be required in later proofs, along with an analogous
result for 3RST graphs.

Lemma 4.2.8. All 3DTS graphs have a valid orientation.
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Proof. Let G be a minimal counterexample with respect to |E(G)|. Suppose that G has no
2-robust 3-edge-cut. Then G is a DTS graph and has a valid orientation by Theorem 4.2.2,
a contradiction. Thus we may assume that G has a 2-robust 3-edge-cut δ(A), where A is
chosen so that d ∈ A. We may assume that t 6∈ A.

Let G1 be the graph obtained from G by contracting G − A. Then G1 is a 3DTS graph
and has a valid orientation by the minimality of G. Transfer this orientation to G. Let G2

be the graph obtained from G by contracting A to a directed vertex d′. Then G2 is a 3DTS
graph and has a valid orientation by the minimality of G. This leads to a valid orientation
of G, a contradiction.

Corollary 4.2.9. All 3RST graphs have a valid orientation.

Proof. Orient r to satisfy p(r). The resulting graph is a 3DTS graph and has a valid
orientation by Lemma 4.2.8.

4.3 Two Faces

As discussed in Section 4.1, if the boundary of the specified face of a graph embedded in the
projective plane is not bounded by a cycle, then the graph can be embedded in the plane
with two specified faces that have a common vertex. A proof of this appears in Section 4.4.
Theorem 4.3.2 is the variant of Theorem 3.3.3 that we require for this situation.

Definition 4.3.1. An FT graph is a graph G embedded in the plane, together with a valid
prescription function p : V (G)→ {−1, 0, 1}, such that:

1. G is 3-edge-connected,

2. G has two specified faces FG and F ∗G, and at most one specified vertex d or t,

3. there is at least one vertex in common between FG and F ∗G,

4. if d exists, then it has degree 3, 4, or 5, is oriented, and is in the boundary of both
FG and F ∗G,

5. if t exists, then it has degree 3 and is in the boundary of at least one of FG and F ∗G,

6. G has at most one 3-edge-cut, which can only be δ({d}) or δ({t}), and
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7. every vertex not in the boundary of FG or F ∗G has 5 edge-disjoint paths to the union
of the boundaries of FG and F ∗G.

We define all 3-edge-connected graphs on at most two vertices to be FT graphs, regardless
of vertex degrees.

We note that a DTS graph where at most one of d, t, and s exists is an FT graph.

Theorem 4.3.2. Every FT graph has a valid orientation.

Proof. Let G be a minimal counterexample with respect to the number of edges, followed by
the number of unoriented edges. If |E(G)| = 0, then G consists of only an isolated vertex,
and thus has a trivial valid orientation. If |E(G)| − deg(d) = 0 then G has an existing valid
orientation. Thus we may assume G has at least one unoriented edge.

We will prove the following series of properties of G.

FT1: The graph G does not contain a loop, unoriented parallel edges, or a cut vertex.

We define a Type 1 cut to be an edge-cut δ(A) that does not intersect the boundary of
FG or F ∗G. Since FG and F ∗G have a common vertex, it follows that they are either both
contained in A or both contained in G−A. Hence this is an internal cut. We define a Type
2 cut to be an edge-cut δ(A) that intersects the boundary of exactly one of FG and F ∗G.
Finally, we define a Type 3 cut to be an edge-cut δ(A) that intersects the boundary of both
FG and F ∗G.

FT2: The graph G does not contain

a) a 2-robust at most 5-edge-cut of Type 1 or 3,

b) a 2-robust 4-edge-cut,

c) a 2-robust 5-edge-cut of Type 2 where t is on the side containing the boundary
of both FG and F ∗G, or

d) a 2-robust 6-edge-cut of Type 1.

FT3: The graph G does not have a chord of the cycle bounding FG, that is incident with
a vertex of degree 3 or 4.

FT4: The vertex t exists.
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FT5: There is no edge in common between FG and F ∗G.

The proofs of these properties form the bulk of the proof of Theorem 4.3.2. We then
consider a vertex in common between FG and F ∗G of least degree, to complete the proof.

FT1. The graph G does not contain a loop, unoriented parallel edges, or a cut vertex.

Proof. This proof is identical to that of DTS1.

We consider edge-cuts in G. We define a Type 1 cut to be an edge-cut δ(A) that does not
intersect the boundary of FG or F ∗G. Since FG and F ∗G have a common vertex, it follows
that they are either both contained in A or both contained in G − A. Hence this is an
internal cut. We define a Type 2 cut to be an edge-cut δ(A) that intersects the boundary
of exactly one of FG and F ∗G. Finally, we define a Type 3 cut to be an edge-cut δ(A) that
intersects the boundary of both FG and F ∗G.

FT2. The graph G does not contain

a) a 2-robust at most 5-edge-cut of Type 1 or 3,

b) a 2-robust 4-edge-cut,

c) a 2-robust 5-edge-cut of Type 2 where t is on the side containing the boundary of both
FG and F ∗G, or

d) a 2-robust 6-edge-cut of Type 1.

Proof.

a) Suppose that G does contain a 2-robust at most 5-edge-cut δG(A) of Type 1 or 3.
Assume that d, t 6∈ G− A, and if the cut is of Type 1, the boundaries of FG and F ∗G
are in A. Let G′ be the graph obtained from G by contracting G − A to a single
vertex. The resulting vertex v has degree 4 or 5. If δG(A) is of Type 1, then v has
degree 5. If v has degree 4, then the cut is of Type 3, and v is on the boundary of
both specified faces in G′. If G′ contains a 2-robust cut δG′(B) of size at most 3, then
such a cut also exists in G, a contradiction unless it is one of the specified vertices.
Hence G′ is an FT graph and has a valid orientation by the minimality of G. Transfer
this orientation to G.
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Let G′′ be the graph obtained from G by contracting A to a single vertex v. This
vertex has degree 4 or 5 and is oriented. If δG(A) is of Type 3, then v is on the
boundary of both specified faces in G′′. If δG(A) is of Type 1, then we can choose both
specified faces to be incident with v. If G′′ has a 2-robust cut δG′′(B) of size at most
3, then such a cut also exists in G, a contradiction unless it is one of the specified
vertices. Thus G′′ is an FT graph and has a valid orientation by the minimality of G.
Transfer this orientation to G to obtain a valid orientation of G, a contradiction.

b) Suppose that G does contain a 2-robust 4-edge-cut δG(A). By a) δG(A) is of Type 2.
Let A be the side containing (part of) the boundaries of both FG and F ∗G. Then d ∈ A
if it exists. Let G′ be the graph obtained from G by contracting G− A to a single
vertex. The resulting vertex v has degree 4 and is on the boundary of a specified face.
If G′ contains a 2-robust cut δG′(B) of size at most 3, then such a cut also exists in
G, a contradiction unless it is one of the specified vertices. Hence G′ is an FT graph
and has a valid orientation by the minimality of G. Transfer this orientation to G.

Let G′′ be the graph obtained from G by contracting A to a single vertex v. This
vertex has degree 4 and is oriented. There is only one specified face, which may
contain t. If G′′ has a 2-robust cut δG′′(B) of size at most 3, then such a cut also
exists in G, a contradiction unless it is one of the specified vertices. Thus G′′ is a
DTS graph and has a valid orientation by Theorem 4.2.2. Transfer this orientation to
G to obtain a valid orientation of G, a contradiction.

c) This case works in the same way as b). In G′′ there is a degree 5 oriented vertex
and no degree 3 vertex. Thus G′′ is a DTS graph and has a valid orientation by
Theorem 4.2.2. Transfer this orientation to G to obtain a valid orientation of G, a
contradiction.

d) This case works in the same way as a). In G′′, there is a degree 6 oriented vertex,
and no degree 3 or 4 vertices. Hence we may delete one boundary edge incident with
v to obtain a graph G′′′ with a degree 5 oriented vertex and no degree 3 vertex. If
G′′′ contains a 2-robust cut of size at most 3, then G has a corresponding cut of size
4, contradicting a). Thus G′′′ is an FT graph and has a valid orientation by the
minimality of G. This leads to a valid orientation of G, a contradiction. Hence no
such cut exists.

We now consider the local properties of the graphs at vertices of low degree.
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FT3. The graph G does not have a chord of the cycle bounding FG that is incident with a
vertex u of degree 3 or 4.

Proof. Suppose that such a chord uv exists, where degG(u) ∈ {3, 4}. Let H and K be
subgraphs of G such that H ∩K = {{u, v}, {uv}}, H ∪K = G, and F ∗G is in H. Note that
this implies d ∈ H if it exists.

Suppose that δ(H) is not 2-robust. Then K contains d, else G has unoriented parallel edges,
and thus a valid orientation by FT1. By definition, either u or v is d. Suppose that v = d.
Since G has no unoriented degree 3 vertex, |δ(H−{u})| ≤ 3, a contradiction. Now consider
the case where u = d. Since G has no unoriented parallel edges, δ(H) is a 3-edge-cut and
G contains a degree 3 vertex, a contradiction. Hence we may assume that δ(H) is 2-robust.

Suppose that δ(K) is not 2-robust. Then |V (H)| = 3. If u or v is d, the above argument
applies. Thus we may assume that d is in V (H) − {u, v}. If there are parallel edges
with endpoints d and u, then δ({d, u}) is an at most 5-edge-cut. Orient u and contract
the parallel edges between d and u, calling the resulting graph G′. Note that the vertex
of contraction has the same degree as d. Thus it is clear that G′ is an FT graph, and
thus has a valid orientation by the minimality of G. This leads to a valid orientation of
G, a contradiction. Suppose that there are not parallel edges with endpoints d and u.
Then there are parallel edges with endpoints d and v. Since |δ({d, v})| ≥ 5, degK(v) ≥ 4.
Orient u. Then K is an FT graph, and has a valid orientation by the minimality of G. This
leads to a valid orientation of G, a contradiction. We may now assume that δ(K) is 2-robust.

By definition, δ(H) and δ(K) have size at least 4. Hence degG(v) ≥ 6, and so v is not d
or t. In addition, v has degree at least 3 in both H and K.

Suppose that u 6= d. Then in H, contract uv. The graph H/uv is an FT graph, and so
by the minimality of G, H/uv has a valid orientation. Transfer this orientation to G, and
orient u. In K, if u has degree 2, add an edge e directed from u to v. Then u is a directed
vertex of degree 3. Since F ∗G is in H, we can choose the second specified face to be incident
with u. Hence K + e is an FT graph. By the minimality of G, K ′ has a valid orientation.
This leads to a valid orientation of G, a contradiction.

Thus u = d. Then in both H and K add a directed edge from u to v. It is clear that H + e
and K + e are FT graphs, so by the minimality of G, they have valid orientations. Transfer
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the orientations of H + e and K + e to G to obtain a valid orientation of G, a contradiction.
Thus no such chord exists.

Similarly, no such chord of F ∗G exists.

Claim 4.3.3. The graph G contains d or t.

Proof. Suppose for a contradiction that neither d nor t exists in G. Let v be a vertex in
both FG and F ∗G. If deg(v) ≤ 5, orient v, calling the resulting graph G′. Then it is clear
that G′ is an FT graph, and has a valid orientation by the minimality of G. This is a valid
orientation of G, a contradiction.

We may assume deg(v) ≥ 6. Orient and delete a boundary edge incident with v, calling
the resulting graph G′. Then G′ has at most one vertex of degree 3. If G′ contains a
2-robust at most 3-edge-cut, then G contains a corresponding 2-robust at most 4-edge-cut,
a contradiction. Hence G′ is an FT graph and has a valid orientation by the minimality
of G. This leads to a valid orientation of G, a contradiction.

FT4. The vertex t exists.

Proof. Suppose that d exists. Then t does not. By definition, d is on the boundaries of
both FG and F ∗G. Suppose that d has degree 3. Let G′ be the graph obtained from G by
deleting d. Then G′ has at most three vertices of degree 3 and no oriented vertex. If G′

contains a 2-robust at most 3-edge-cut, then G contains a corresponding 2-robust at most
4-edge-cut, a contradiction. Hence G′ is an RST graph, and has a valid orientation by
Theorem 4.2.7. This leads to a valid orientation of G, a contradiction.

We may assume that d has degree 4 or 5. Suppose that an edge e incident with d is in the
boundary of FG and F ∗G. Let G′ be the graph obtained from G by deleting e. Then G′ has
at most one vertex of degree 3 and an oriented vertex of degree 3 or 4. If G′ contains a
2-robust at most 3-edge-cut, then G contains a corresponding 2-robust at most 4-edge-cut,
a contradiction. Hence G′ is a DTS graph, and has a valid orientation by Theorem 4.2.2.
This leads to a valid orientation of G, a contradiction.

We now assume that FG and F ∗G do not have an edge in common incident with d. Let e1,
e2, e3, e4, and (possibly) e5 be the edges incident with d in cyclic order, where e1 is on the
boundary of FG and e2 is on the boundary of F ∗G. Let G′ be the graph obtained from G
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by deleting e1 and e2. Then G′ contains at most two vertices of degree 3 and an oriented
vertex of degree 2 or 3. If G′ contains a 2-robust at most 3-edge-cut, then G contains a
corresponding either 2-robust at most 4-edge-cut, or 5-edge-cut of Type 3, a contradiction.
Let G′′ be the graph obtained from G′ by adding a directed edge from d to the other
endpoint of e3 if degG′(d) = 2. Then G′ is a DTS graph, and has a valid orientation by
Theorem 4.2.2. This leads to a valid orientation of G, a contradiction.

Claim 4.3.4. The vertex t is not in the boundary of both FG and F ∗G.

Proof. Suppose that t is in the boundary of both FG and F ∗G. Let G′ be the graph obtained
from G by orienting the edges incident with t to satisfy p(t). Then G′ is an FT graph
and has a valid orientation by the minimality of G. This is a valid orientation of G, a
contradiction.

FT5. There is no edge in common between FG and F ∗G.

Proof. Suppose for a contradiction that G has an edge e in the boundary of FG and F ∗G.
Then e is not incident with t by Claim 4.3.4. Let G′ be the graph obtained from G by
deleting e. Then G′ has at most three vertices of degree 3 and no oriented vertex. If G′

contains a 2-robust at most 3-edge-cut, then G contains a corresponding 2-robust at most
4-edge-cut, a contradiction. Hence G′ is an RST graph, and has a valid orientation by
Theorem 4.2.7. This leads to a valid orientation of G, a contradiction.

By definition, there exists a vertex in the boundaries of both FG and F ∗G. Among all such
vertices, let v have the least degree, say k. Let e1, e2, ..., ek be the edges incident with v in
cyclic order, where e1 and ek are on the boundary of FG. Let i be such that ei, ei+1 are on
the boundary of F ∗G. Note that i 6= 1 and i+ 1 6= k by FT5.

Claim 4.3.5. We have k ≥ 5.

Proof. The alternative is that k = 4. Since G does not contain unoriented parallel edges,
at most one of the edges e1, e2, e3, e4 is incident with t. Hence without loss of generality,
we may assume that e1 and e2 are not incident with t. Let G′ be the graph obtained from
G by lifting e3 and e4, and orienting and deleting e1 and e2. Then G′ contains at most
three vertices of degree 3. If G′ contains a 2-robust at most 3-edge-cut, then G contains a
corresponding 2-robust at most 4-edge-cut, or a 2-robust at most 5-edge-cut of Type 3, a
contradiction. Then G′ is an RST graph, and has a valid orientation by Theorem 4.2.7.
This leads to a valid orientation of G, a contradiction.
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Claim 4.3.6. We have i 6= 2.

Proof. Suppose that i = 2. Let G′ be the graph obtained from G by lifting e1 and e2.
Then G′ contains at most two vertices of degree 3: v and t. If G′ contains a 2-robust at
most 3-edge-cut, then G contains a corresponding 2-robust at most 5-edge-cut of Type 3, a
contradiction. Then G′ is an RST graph, and has a valid orientation by Theorem 4.2.7.
This leads to a valid orientation of G, a contradiction. Hence i > 2.

Similarly we may assume that i+ 1 < k − 1. It follows that k ≥ 6.

Let G′ be the graph obtained from G by lifting e1 and e2. Then degG′(v) ≥ 4, so G′ has
at most one degree 3 vertex: t. If G′ has a 2-robust at most 2-edge-cut, then G has a
corresponding 2-robust at most 4-edge-cut, a contradiction. If G′ is an FT graph and
has a valid orientation by the minimality of G, this leads to a valid orientation of G, a
contradiction. Hence we may assume that G′ is not an FT graph. Then G′ contains a
2-robust 3-edge-cut δG′(A). Now δG(A) is a 2-robust 5-edge-cut using e1 and e2. By FT2,
δG(A) is of Type 2 and separates t from v.

Let G′′ be the graph obtained from G by lifting ei and ei−1. Similarly, G′′ is an FT graph
and has a valid orientation by the minimality of G, unless G′′ has a 2-robust 5-edge-cut
δG′′(B) of Type 2 using ei and ei−1 that separates t from v.

But δG(A) intersects only the boundary of FG, so t is on the boundary of FG and not F ∗G.
Similarly δG(B) intersects only the boundary of F ∗G, so t is on the boundary of F ∗G and not
FG, a contradiction.

We conclude that no such counterexample exists. Therefore all FT graphs have a valid
orientation.

4.4 Projective Plane

Sections 4.2 and 4.3 provide the necessary planar results to show Jaeger’s Strong 3-Flow
Conjecture for graphs embedded in the projective plane. We prove this result here.

Definition 4.4.1. A PT graph is a graph G embedded in the projective plane, together
with a valid prescription function p : V (G)→ {−1, 0, 1}, such that:
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1. G is 3-edge-connected,

2. G has a specified face FG, and at most one specified vertex t,

3. if t exists, then it has degree 3 and is in the boundary of FG,

4. G has at most one 3-edge-cut, which can only by δ({t}), and

5. every vertex not in the boundary of FG has 5 edge-disjoint paths to the boundary
of FG.

We define all 3-edge-connected graphs on at most two vertices to be PT graphs, regardless
of vertex degrees.

A 3PT graph is a graph G with the above definition, where (4) is replaced by

4’. all vertices aside from t have degree at least 4, and if t exists, then every 3-edge-cut
δ(A) in G where A is contained in an open disk has t ∈ A.

Theorem 4.4.2. All PT graphs have a valid orientation.

Proof. Let G be a minimal counterexample with respect to the number of edges. If
|E(G)| = 0, then G consists of only an isolated vertex, and thus has a trivial valid orienta-
tion. Thus we may assume G has at least one edge.

We will prove the following series of properties of G.

PT1: The graph G does not contain a loop, unoriented parallel edges, or a cut vertex.

PT2: The face FG is bounded by a cycle.

PT3: There is no contractible chord of FG incident with a degree 3 or 4 vertex.

We define a Type 1 cut to be an edge-cut δ(A) that does not intersect the boundary of FG.
We define a Type 2 cut to be an edge-cut δ(A) that has exactly two edges in the boundary
of FG. We define all remaining edge-cuts (with at least 4 edges in the boundary of FG) to
be of Type 3.

PT4: 1. The graph G does not contain a 2-robust at most 4-edge-cut.
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2. If G contains a 2-robust at most 5-edge-cut δ(A), then it is either

(a) of Type 1, where A is contained in an open disk and the boundary of FG is
in A, or

(b) of Type 2, where A is contained in an open disk, t ∈ A, and t does not have
an incident edge in δ(A).

3. If G has a 2-robust Type 1 6-edge-cut δ(A) where A is contained in an open
disk, then the boundary of FG is in A.

PT5: The vertex t exists.

Let u and v be the boundary vertices adjacent to t, and let w be the remaining vertex
adjacent to t.

PT6: Vertices u and v have degree 4.

PT7: Vertex w has degree 5.

PT8: The edge tw is a chord.

PT9: Both u and v are adjacent to w.

The proofs of these properties form the bulk of the proof of Theorem 4.4.2.

PT1. The graph G does not contain a loop, parallel edges, or a cut vertex.

Proof. This proof is identical to that of DTS1.

PT2. The face FG is bounded by a cycle.

Proof. Suppose that FG is not bounded by a cycle. Then there exists a vertex v that
appears twice on the boundary walk of FG. By PT1, v is not a cut vertex. As shown in
Section 4.1, G is a planar graph with two specified faces, each containing v, and G has
at most one vertex of degree 3. Hence G is an FT graph and has a valid orientation by
Theorem 4.3.2, a contradiction.

We classify the 2-robust cuts in G into three types. Let δ(A) be an edge-cut in G. First, we
note that since FG is bounded by a cycle, any edge-cut contains an even number of edges
from the boundary of FG. We say that δ(A) is:
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1. Type 1, if it does not contain an edge in the boundary of FG,

2. Type 2, if it has precisely two edges in the boundary of FG, and

3. Type 3 otherwise.

Claim 4.4.3. The graph G has no 2-robust Type 1 cut δ(A) of size at most 6 where A is
contained in an open disk and the boundary of FG is in G− A.

Proof. Suppose such a cut δ(A) exists in G. Then by definition, δG(A) is at least a 5-edge-
cut. Let G′ be the graph obtained from G by contracting A to a vertex. It is clear that
G′ is a PT graph, and thus has a valid orientation by the minimality of G. Transfer this
orientation to G. Let G′′ be the graph obtained from G by contracting G− A to a vertex.
Then G′′ is a graph where all vertices have degree at least 5, with a directed vertex d′ of
degree 5 or 6. Now G[A] is planarly embedded by construction, where every vertex adjacent
to d′ is on the outer face. Therefore, G′′ can be embedded on the plane by inserting d′ into
the outer face of G[A]. Choose the specified face to be incident with d′.

If d′ has degree 5, then G′′ is a DTS graph and has a valid orientation by Theorem 4.2.2.
If d′ has degree 6, delete one boundary edge incident with d′ to form a graph Ḡ. If Ḡ
has a 2-robust at most 3-edge-cut, then G has a 2-robust at most 4-edge-cut of Type 1, a
contradiction. Thus Ḡ is a DTS graph and has a valid orientation by Theorem 4.2.2. This
yields a valid orientation of G, a contradiction. Hence no such cut exists.

Claim 4.4.4. The graph G has no 2-robust Type 2 cut of size 4.

Proof. Suppose such a cut δ(A) exists in G. Either A or G − A is contained in an open
disk. Without loss of generality, suppose that A is contained in an open disk. Let G′

be the graph obtained from G by contracting A to a vertex. It is clear that G′ is a PT
graph, and thus has a valid orientation by the minimality of G. Transfer this orientation
to G. Let G′′ be the graph obtained from G by contracting G − A to a vertex v. Now
G[A] is planarly embedded by construction, where every vertex adjacent to v is on the
outer face. Therefore, G′′ can be embedded on the plane by inserting v into the outer face
of G[A]. Choose the specified face to be incident with v and all vertices in A incident with FG.

Then G′′ is a planar graph with a specified face containing a directed vertex of degree 4.
Hence G′′ is a DTS graph and has a valid orientation by Theorem 4.2.2. This yields a valid
orientation of G, a contradiction. Hence no such cut exists.
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Claim 4.4.5. The graph G has no 2-robust Type 2 cut of size 5 where A is contained in
an open disk and t ∈ G− A.

Proof. Suppose such a cut exists in G. Let G′ be the graph obtained from G by contracting
A to a vertex. It is clear that G′ is a PT graph, and thus has a valid orientation by the
minimality of G. Transfer this orientation to G. Let G′′ be the graph obtained from G
by contracting G − A to a vertex. Then G′′ can be embedded as a planar graph with a
specified face containing a directed vertex of degree 5 but no degree 3 vertex. Hence G′′ is
a DTS graph and has a valid orientation by Theorem 4.2.2. This yields a valid orientation
of G, a contradiction. Hence no such cut exists.

In order to complete our analysis of Type 2 cuts, we must consider contractible chords.

PT3. There is no contractible chord of FG incident with a degree 3 or 4 vertex.

Proof. Suppose that such a chord e = uv exists where the degree of u is 3 or 4. Let H and
K be subgraphs of G such that H ∩K = {{u, v}, {e}}, H ∪K = G, and K is contained in
an open disk.

Both δ(H) and δ(K) are 2-robust, else G has unoriented parallel edges. Both cuts are of
Type 2. Therefore, |δ(H)|, |δ(K)| ≥ 5, and so deg(v) ≥ 8.

Contract K to a single vertex. It is clear that G/K is a PT graph and has a valid orientation
by the minimality of G. Transfer this orientation to G, and orient u. Add a directed edge e
from u to v in K (in the boundary of FK). Then K + e can be embedded as a planar graph
with a single specified face, a directed vertex of degree 3 or 4, and one other possible degree
3 vertex t. Hence K + e is a DTS graph and has a valid orientation by Theorem 4.2.2. This
leads to a valid orientation of G, a contradiction. Hence any chord in G incident with a
vertex of degree 3 or 4 is non-contractible.

Claim 4.4.6. The graph G has no 2-robust Type 2 cut of size 5 where A is contained in
an open disk, t ∈ A, and t is incident with a single edge in δ(A) which must be a boundary
edge of FG.

Proof. Suppose such a cut exists in G. Let G′ be the graph obtained from G by contracting
A to a vertex. Since G′ is a PT graph, it has a valid orientation by the minimality of G.
Transfer this orientation to G. Let G′′ be the graph obtained from G by contracting G−A
to a vertex. Then G′′ can be embedded as a planar graph with a specified face containing
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a directed vertex of degree 5 adjacent to t. Since A is contained in an open disk, t is not
incident with a chord by PT3. Let Ĝ be the graph obtained from G′′ by orienting and
deleting t. Then Ĝ has a directed vertex of degree 4 and at most one vertex of degree 3. If
Ĝ contains a 2-robust at most 3-edge-cut, then G contains an at most 4-edge-cut of Type 1
or 2, a contradiction. Hence Ĝ is a DTS graph and has a valid orientation by Theorem 4.2.2.
This yields a valid orientation of G, a contradiction. Hence no such cut exists.

Claim 4.4.7. The graph G has no 2-robust Type 3 cut of size at most 5.

Proof. Suppose that such a cut exists. Without loss of generality, suppose that t ∈ A. Let
G′ be the graph obtained from G by contracting A to a single vertex. Since G′ is a PT
graph, it has a valid orientation by the minimality of G. Transfer this orientation to G.
Let G′′ be the graph obtained from G by contracting G− A to a single directed vertex d
of degree 4 or 5. Then d appears twice in the boundary walk of FG′′ . As in the proof of
PT2, G′′ is a planar graph with two specified faces that both contain the vertex d. Since
t ∈ A, G′′ has no degree 3 vertex. Therefore G′′ is an FT graph and has a valid orientation
by Claim 4.3.2. This leads to a valid orientation of G, a contradiction. Hence no such cut
exists.

We summarise the reducible/irreducible cuts in G.

PT4.

1. The graph G does not contain a 2-robust at most 4-edge-cut.

2. If G contains a 2-robust at most 5-edge-cut δ(A), then it is either

(a) of Type 1, where A is contained in an open disk and the boundary of FG is in A,
or

(b) of Type 2, where A is contained in an open disk, t ∈ A, and t does not have an
incident edge in δ(A).

3. If G has a 2-robust Type 1 6-edge-cut δ(A) where A is contained in an open disk, then
the boundary of FG is in A.

Proof.

1. By definition, G has no 2-robust either at most 3-edge-cut, or Type 1 4-edge-cut.
Claims 4.4.4 and 4.4.7 show that G has no 2-robust 4-edge-cut of Type 2 or 3.

2. This is implied by Claims 4.4.3, 4.4.5, 4.4.6, and 4.4.7.
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Figure 4.10: The 2-robust at most 5-edge-cuts that can exist in G.

3. This is given by Claim 4.4.3.

Figure 4.10 shows the 2-robust at most 5-edge-cuts that exist in G. The dashed line is
used to represent the crosscap. Again, we wish to reduce at low degree vertices in G. We
establish the existence of t and consider its adjacent vertices.

PT5. The vertex t exists.

Proof. Suppose that t does not exist. We prove the following claims:

a. Every vertex on the boundary of FG has degree 4.

b. All vertices in G are on the boundary of FG.

Let v1, v2, ..., vk be the vertices on the boundary of FG in order.

c. The graph G is a circulant graph, where k is odd, and for all 1 ≤ i ≤ k, vi is adjacent
to vi−1, vi+1, vi+ k−1

2
and vi− k−1

2
, where all operations are performed modulo k.

These properties provide the necessary structure to obtain a contradiction.

Claim PT5a. Every vertex on the boundary of FG has degree 4.

Proof. Consider the case where the boundary of FG contains a vertex v of degree at least 5.
Orient and delete a boundary edge incident with v, and call the resulting graph G′. Then
G′ has at most one degree 3 vertex. Suppose that G′ contains a 2-robust at most 3-edge-cut.
Then G contains a 2-robust at most 4-edge-cut, a contradiction. Thus G′ is a PT graph.
By the minimality of G, G′ has a valid orientation. This yields a valid orientation of G, a
contradiction.
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Claim PT5b. All vertices in G are on the boundary of FG.

Proof. Suppose there exists a vertex v on the boundary of FG that has an adjacent vertex
u not on the boundary of FG. Then degG(u) ≥ 5. Let e1, e2, e3, e4 be the edges incident
with v in order, where e1 and e4 are on the boundary of FG, and e2 is incident with u. Lift
the pair of edges e3, e4, orient the remaining two edges incident with v to satisfy p(v), and
delete v, calling the resulting graph G′. Then G′ has at most one degree three vertex (the
other endpoint of e1). If G′ contains a 2-robust at most 3-edge-cut δG′(A), then G contains
a 2-robust at most 4-edge-cut, or a 2-robust 5-edge-cut that uses a boundary edge of FG
and thus is of Type 2 or Type 3, a contradiction (since t does not exist). Thus G′ is a
PT graph, and so by the minimality of G, G′ has a valid orientation. This yields a valid
orientation of G, a contradiction.

Thus all vertices lie on the boundary of FG and have degree 4. Let v1, v2, ..., vk be the
vertices on the boundary of FG in order.

Claim PT5c. The graph G is a circulant graph, where k is odd, and for all 1 ≤ i ≤ k, vi
is adjacent to vi−1, vi+1, vi+ k−1

2
and vi− k−1

2
, where all operations are performed modulo k.

Proof. Consider a vertex vj. It is clear from the construction that vj is adjacent to vj−1
and vj+1. Let va and vb be the remaining two vertices adjacent to vj. Suppose that va and
vb are not adjacent. Then δG({va+1, va+2, ..., vb−1}) is an at most 4-edge-cut of Type 2. If
it is not a 2-robust 4-edge-cut, then G contains parallel edges, a contradiction. Hence G
contains a 2-robust 4-edge-cut of Type 2, a contradiction. Thus we may assume that va
and vb are adjacent.

Without loss of generality, assume that j − b > j − a. Let

S = {va, va+1, va+2, ..., vj−1},

T = {vj+1, vj+2..., vb−1, vb}.
If there exists an edge not on the boundary of FG with both endpoints in S, then either G
contains parallel edges, or G contains a contractible chord incident with a degree 4 vertex, a
contradiction. The same is true of edges with both endpoints in T . Hence every edge not in
the boundary of FG and not incident with vj has one endpoint in S and the other endpoint
in T . Since every vertex has degree 4, |S| = |T |. If k is even, then the non-contractible
chords incident with a vertex are parallel edges. Hence k is odd and G is a circulant graph
where for all 1 ≤ i ≤ k, vi is adjacent to vi−1, vi+1, vi+ k−1

2
and vi− k−1

2
, where all operations

are performed modulo k.
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We now show that such graphs have a valid orientation. Suppose that there exists a vertex
v ∈ V (G) where p(v) = 0. Lift two pairs of edges at v, calling the resulting graph G′.
If G′ contains a 2-robust at most 3-edge-cut, then G contains a corresponding at most
5-edge-cut containing a boundary edge of FG, and is therefore of Type 2 or Type 3, a
contradiction. Hence G′ is a PT graph, and thus has a valid orientation by the minimality
of G. This yields a valid orientation of G, a contradiction. Hence we may assume that all
vertices have non-zero prescription. Since k is odd, there are two vertices with the same
prescription that are adjacent via a boundary edge of FG. Without loss of generality, la-
bel the graph so that these vertices are v1 and v2, and assume that their prescriptions are −1.

Orient all edges incident with v1 out from v1. Orient v2v k+3
2

into v2 to meet p(v2). Orient

the remaining two edges incident with the following vertices in order:

v k+3
2
, v k+1

2
,
(
vk, v k−1

2

)
,
(
vk−1, v k−3

2

)
, ...,

(
v k+7

2
, v3

)
.

There is only one unoriented edge at v2 (v2v k+5
2

), which by construction must have the

opposite direction to v2v3. Since v k+5
2

cannot be the only vertex whose prescription is not

met, this is a valid orientation for G, a contradiction.

Claim 4.4.8. Let G′ be a 3PT graph where |E(G′)| < |E(G)|. Then G′ has a valid
orientation.

Proof. Let G′ be a minimal counterexample. If G′ is a PT graph, then G′ has a valid
orientation by the minimality of G. Thus we may assume that G′ has a 2-robust 3-edge-cut
δG′(A) where t ∈ A. By definition, A is contained in an open disk.

Let G1 be the graph obtained from G′ by contracting A to a vertex. Then G1 is a 3PT
graph and has a valid orientation by the minimality of G′. Transfer this orientation to G′.
Let G2 be the graph obtained from G′ by contracting G′ − A to a vertex. Then G2 is a
3DTS graph and has a valid orientation by Lemma 4.2.8. This leads to a valid orientation
of G′, a contradiction.

Let u, v, and w be the vertices adjacent to t, where tu and tv are on the boundary
of FG. Since G has no parallel edges, these three vertices are distinct. Note that t is not
incident with a contractible chord, so either w is not in the boundary of FG, or tw is a
non-contractible chord.

Claim 4.4.9. At least two of u, v, and w have degree 4.
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Figure 4.11: PT6: Planar drawing of G.

Proof. Suppose not. Let G′ be the graph obtained from G by orienting and deleting t.
Then G′ contains at most one vertex of degree 3. Suppose that G′ contains a 2-robust at
most 3-edge-cut δG′(A). Then G contains a 2-robust at most 4-edge-cut, a contradiction.
Hence G′ is a PT graph. Thus by the minimality of G, G′ has a valid orientation. This
yields a valid orientation of G, a contradiction.

PT6. Vertices u and v have degree 4.

Proof. Without loss of generality, suppose that u has degree at least 5. We may assume, by
Claim 4.4.9, that v and w have degree 4. Then tw is a non-contractible chord of FG. Let
g1, g2, gt, g3 be the edges incident with w in order, where g1 and g3 are on the boundary of
FG, and gt = wt.

Suppose that g3 = wv. Then G can be redrawn with tw inside FG to yield an FT graph
with t and w on both specified faces. Figure 4.11 shows this drawing. By Theorem 4.3.2, G
has a valid orientation a contradiction.

We now assume that g3 6= wv. Lift the pair g1, g2, and orient the remaining edges incident
with w to satisfy p(w). Orient the remaining edges incident with t to satisfy p(t). Delete w
and t, and call the resulting graph G′. Then G′ can be embedded as a planar graph with a
single specified face. There are two possible degree three vertices in G′: v, and the vertex
incident with g3 (which by assumption are distinct). Suppose that G′ contains a 2-robust
at most 2-edge-cut δG′(A). Then G contains a 2-robust at most 4-edge-cut, a contradiction.
Figure 4.12 shows an analysis of the possible cuts.
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Figure 4.12: PT6: Analysis of cuts.

If G contains a 2-robust at most 3-edge-cut, then by Lemma 4.2.8, G′ has a valid orientation,
leading to a valid orientation of G, a contradiction. Thus G′ is a DTS graph. By Theorem
4.2.2, G′ has a valid orientation. This extends to a valid orientation of G, a contradiction.

Consider vertex w.

Claim 4.4.10. Vertex w does not have degree 4.

Proof. Suppose that deg(w) = 4. Note that tw is a non-contractible chord of FG. Let g1,
g2, gt, g3 be the edges incident with w in order, where g1 and g3 are on the boundary of FG,
and gt = wt. We may choose the labelling of u and v so that the uw-path in the boundary
of FG contains g1 but not t.

Suppose that g3 = wv. Then G can be redrawn with tw inside FG to yield an FT graph with
t and w on both specified faces. By Theorem 4.3.2, G has a valid orientation, a contradiction.

We may now assume that g3 6= wv. Lift the pair g1, g2, and orient the remaining edges
incident with w to satisfy p(w). Orient the remaining edges incident with t to satisfy p(t).
Delete w and t, and call the resulting graph G′. Then G′ is a planar graph. There are
three possible degree three vertices in G′: u, v, and the vertex incident with g3 (which by
assumption are distinct). If G′ contains a 2-robust at most 2-edge-cut, then G contains a
2-robust at most 4-edge-cut as in PT6, a contradiction.

If all 2-robust 3-edge-cuts in G′ separate two degree 3 vertices, then by Theorem 4.2.5, G′

has a valid orientation that leads to a valid orientation of G, a contradiction. Suppose that

73



u

v

w

t e3

e1

e2

Figure 4.13: Claim 4.4.10: 2-robust Type 2 5-edge-cut.

G′ contains a 2-robust 3-edge-cut δG′(A) that does not separate the degree 3 vertices. We
assume that δG(A) is not an at most 4-edge-cut. Then δG(A) is a 5-edge-cut using edges g1
and g2. This is a Type 2 cut, for which t is in the side not contained in an open disk, a
contradiction. Figure 4.13 shows this cut. Hence G′ is an RST graph. By Theorem 4.2.7,
G′ has a valid orientation. This extends to a valid orientation of G, a contradiction.

PT7. Vertex w has degree 5.

Proof. Suppose that deg(w) ≥ 6. Let e1, e2, e3, et be the edges incident with u in order,
where e1 is on the boundary of FG, and et = ut. We prove the following claims

a. Edge e3 is incident with two vertices of degree 4.

b. Edge tw is not a chord.

These provide the necessary structure to complete the proof.

Claim PT7a. Edge e3 is incident with two vertices of degree 4.

Proof. Suppose that e3 is not incident with two vertices of degree 4. Lift the pair e1, e2,
and orient the remaining edges incident with u. Orient the remaining edges incident with t,
and delete u and t, calling the resulting graph G′. Then G′ contains at most one vertex of
degree 3, which is v.

Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A). Then G contains a 2-robust
at most 4-edge-cut, a contradiction. Suppose that G′ contains a 2-robust 3-edge-cut δG′(A).
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Figure 4.14: PT7: 2-robust Type 1 4-edge-cut.

Then G contains a corresponding 2-robust cut δ(C) of size at most 5. There are two
options. First, δG(C) is of Type 2 and has t on the side that is contained in an open
disk. We assume that this side is C. By Claim 4.4.8, v 6∈ C. Hence tv ∈ δG(C). We
have u,w ∈ C, else a smaller cut exists. We conclude that e3 ∈ δG(C). Let B be the
maximal connected subgraph of C containing w but not t. Then δG(B) is an at most
4-edge-cut of Type 1, a contradiction. This cut can be seen in Figure 4.14. Second, δG(C)
is of Type 1 in G. Then δG(C) has v on the side contained in a disk in G′, and thus G′

has a valid orientation by Claim 4.4.8. This leads to a valid orientation of G, a contradiction.

Hence G′ is a PT graph, and thus has a valid orientation by the minimality of G. This
extends to a valid orientation of G, a contradiction.

Since e3 is incident with two vertices of degree 4, e3 is a non-contractible chord. Simi-
larly, v must have an analogous incident chord. Neither chord is incident with w, since w
has degree at least 6. Let x and y be the vertices adjacent to u and v respectively via a chord.

Claim PT7b. Edge tw is not a chord.

Proof. Suppose that tw is a chord. Let B be the set of vertices in the interior of the closed
disc bounded by wt, tu, ux, and the wx-subpath of FG − t. If B is empty, consider the
same set with respect to v and y. Now δG(B) contains at most 2 edges incident with x.
Hence it contains at least two edges incident with w, since δ(t) is the only 3-edge-cut in G.
Since G has no parallel edges, δG(B) is 2-robust. This cut can be seen in Figure 4.15. Let
C be the minimal 2-robust edge-cut where C ⊆ B and δG(C) contains at most three edges
not incident with w.
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Figure 4.15: PT7: Small Type 1 or 2 cut.
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Figure 4.16: PT7: Small Type 2 cut.

Contract C to a vertex, calling the resulting graph G′. Then G′ is a PT graph and has
a valid orientation by the minimality of G. Transfer this orientation to G and contract
G− C, calling the resulting graph G′. Delete edges incident with w to make the vertex of
contraction a degree 4 vertex. Since G has no parallel edges, at most one degree 3 vertex
results from this process. If G′′ has a 2-robust at most 3-edge-cut, then C was not minimal,
a contradiction.

Since tw is not a chord, G contains a non-peripheral cut of size at most 5, δG(A), using
at most two edges incident with each x and y, and the edge tw. This cut can be seen in
Figure 4.16. Then t ∈ G− A, and the graph obtained from contracting G− A to a single
vertex is planar. By Claim 4.4.5, G has a valid orientation.

Therefore, u and v have degree 4, and w has degree 5.

PT8. The edge tw is a chord.
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Proof. Suppose that tw is not a chord. Let e1, e2, e3, et be the edges incident with u in order,
where et = ut, and e1 is on the boundary of FG. We first prove the following property.

Claim PT8a. Either e3 is incident with two degree four vertices or e3 is incident with w.

Proof. Suppose that e3 is not incident with two degree four vertices, and is not incident
with w. Lift the pair e1, e2, orient the remaining edges incident with u to satisfy p(u),
and orient the remaining edges incident with t to satisfy p(t). Delete u and t, calling the
resulting graph G′. Then in G′, the only possible degree three vertex is v. The analysis
that G′ has no small cuts is equivalent to that in PT7. Hence G′ is a PT graph, and thus
has a valid orientation by the minimality of G. This extends to a valid orientation of G, a
contradiction.

Therefore either e3 is incident with two degree four vertices or e3 is incident with w. The
same must be true of the corresponding edge incident with v. There are three cases.

1. First, suppose that both u and v are adjacent to w. Suppose that e2 is not incident
with two degree four vertices. Then orient and delete e1 and e2 to satisfy p(u), and
contract the set of vertices {u, t, v, w} to a single degree four vertex, calling the
resulting graph G′. Then G′ has at most one degree three vertex, which is incident
with e1 in G. If G′ contains a 2-robust edge-cut of size at most 3, then G contains
a 2-robust edge-cut of size at most 5 that contains a boundary edge incident with
t, a contradiction. Hence G′ is a PT graph. By the minimality of G, G′ has a valid
orientation. Transfer this orientation to G. Orient the remaining two edges incident
with v to satisfy p(v), and the remaining two edges incident with t to satisfy p(t).
Since p(u) is satisfied by the orientations of e1 and e2, the direction of e3 is determined
to be the opposite (relative to u) of the direction of et. Since w cannot be the only
vertex whose prescription is not met, this is a valid orientation of G, a contradiction.

We now assume that e2 is incident with two degree four vertices. The same must
be true of the corresponding edge incident with v. Let these vertices be x and y
respectively. Suppose that x and y are not adjacent. Let C1 and C2 be the components
of G−{x, y, w}, where the labelling is chosen so that t ∈ C2. Consider the cut δG(C1).
If C1 contains a single vertex, then G has parallel edges, a contradiction. Hence
δG(C1) is 2-robust. Note that δG(C1) is a Type 2 cut and has size at most 6. This
cut is shown in Figure 4.17.
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Figure 4.17: PT8: Small Type 2 cut (1).

Contract C1 to a vertex, calling the resulting graph G′. It is clear that G′ is a
PT graph. Thus G′ has a valid orientation by the minimality of G. Transfer this
orientation to G and contract G− C1 calling the resulting graph G′′. Note that G′′

can be embedded in the plane with a directed vertex d′ of degree at most 6. Delete
the edges in the cut that are incident with x, calling the resulting graph Ḡ. Then
Ḡ is planar, has at most one vertex of degree 3, and has a directed vertex of degree
at most 4. If Ḡ has a 2-robust at most 3-edge-cut, then G has a 2-robust at most
5-edge-cut, which is of Type 1, or Type 2 with t in the side not in an open disk, a
contradiction. Hence Ḡ is a DTS graph and has a valid orientation by Theorem 4.2.2.
This leads to a valid orientation of G, a contradiction.

Hence we may assume that x and y are adjacent. Note that G− {t, u, v, w, x, y} has
two components: A with neighbours in G among x, y, and w, and B, with neighbours
in G among u, v, x, and y. If δG(A) is a 2-robust cut, then it has size at most 4 and
is of Type 1, a contradiction. If A contains a single vertex, then G has parallel edges
incident with w, a contradiction. Hence x and y are adjacent to w. This graph is
shown in Figure 4.18.

Let A = {t, u, v, w, x, y}. If δG(A) is a 2-robust cut, then it has size 4 and is of Type 3,
a contradiction. If |V (G−A)| = 1, then this vertex is repeated in the boundary walk
of FG, so the boundary of FG is not a cycle, a contradiction. Hence |V (G− A)| = 0.
Lift the pair of edges tv, vw and orient v, x, y, u, t in order (each having at least
two unoriented edges). This determines the direction of vw, and since w cannot be
the only vertex to not meet its prescription, the result is a valid orientation of G, a
contradiction.
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Figure 4.18: PT8: x and y adjacent to w

2. Now suppose that e3 and the corresponding edge incident with v each have two
endpoints of degree 4, x and y respectively. Then x and y are on the boundary of FG.
Then G contains a non-peripheral edge-cut δG(A) of size at most 5 (containing tw, one
or two edges incident with x, and one or two edges incident with y). If the labelling is
chosen so that t ∈ G− A, then the graph obtained by contracting G− A to a single
vertex is planar, so by Claim 4.4.5, G has a valid orientation.

3. Finally, suppose without loss of generality that e3 has two endpoints of degree 4, and
v is adjacent to w. Let x be the other endpoint of e3. Let f1 and f2 be the edges
incident with v that are not vt or vw, where f1 is on the boundary of FG. Assume
that f2 does not have two incident vertices of degree 4. Orient and delete f1 and f2
to satisfy p(v), and contract the set of vertices {v, t, w} to a single vertex of degree
4, calling the resulting graph G′. If G′ contains a 2-robust at most 3-edge-cut, then
G contains a 2-robust at most 5-edge-cut containing a boundary edge incident with
t, a contradiction. Then G′ is a PT graph, so by the minimality of G, G′ has a
valid orientation. Transfer this orientation to G. Orient the remaining two edges
incident with t to satisfy p(t). Since p(v) is satisfied by the orientations of f1 and f2,
the direction of vw is determined to be the opposite (relative to v) of the direction
of vt. Since w cannot be the only vertex whose prescription is not met, this is a valid
orientation of G, a contradiction.

We now assume that f2 has two incident vertices of degree 4. Then f2 is a chord. Let
y be the other endpoint of f2. Consider the cut δG(A) where x, y, t, v ∈ A, w ∈ G−A,
and G− A is connected and maximised. If G− A contains only one vertex, then G
has parallel edges, a contradiction. Hence δG(A) is 2-robust. Note that δG(A) is a
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Figure 4.19: PT8: Small Type 2 cut (2).

Type 2 cut and has size at most 6. This cut is shown in Figure 4.19.

Contract G − A to a vertex, calling the resulting graph G′. It is clear that G′ is a
PT graph. Thus G′ has a valid orientation by the minimality of G. Transfer this
orientation to G and contract A calling the resulting graph G′′. Note that G′′ is
planar and has a directed vertex d′ of degree at most 6. Delete two consecutive edges
incident with d′ where one is a boundary edge, calling the resulting graph Ḡ. Then
Ḡ is planar and has at most one vertex of degree 3. If Ḡ has a 2-robust at most
3-edge-cut, then G has a 2-robust at most 5-edge-cut, either of Type 1, or Type 2
where t is on the side not contained in an open disk, a contradiction. Hence Ḡ is
a DTS graph and has a valid orientation by Theorem 4.2.2. This leads to a valid
orientation of G, a contradiction.

We are left with the case where tw is a chord. Let the edges incident with u be e1, e2, e3, et
in order, where et = ut, and e1 is a boundary edge of FG. Suppose that e3 is not incident
with two degree four vertices, and is not incident with w. Lift the pair e1, e2, orient the
remaining edges incident with u to satisfy p(u), and orient the remaining edges incident
with t to satisfy p(t). Delete u and t, calling the resulting graph G′. Then in G′, the only
degree three vertex is v. The argument that G′ contains no small cuts is equivalent to
previous arguments. Hence G′ is a PT graph. By the minimality of G, G′ has a valid
orientation. This extends to a valid orientation of G, a contradiction.

Therefore e3 is incident with either two degree four vertices or with w. The same must be
true of the corresponding edge incident with v.
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Figure 4.20: Edge tw is a chord: Small Type 2 cuts.

PT9. Both u and v are adjacent to w.

Proof. Consider the case where e3 is incident with two degree four vertices. Then e3 is a
chord. Let y be the other endpoint of e3. Then y is adjacent to w on the boundary of FG,
else G has a 2-robust at most 5-edge-cut of Type 2, where t is not in the side contained
in a disk, a contradiction. This cut is shown in Figure 4.20. If the corresponding edge
incident with v is a chord, the same is true. Then G has a 2-robust at most 3-edge-cut, a
contradiction. This cut can also be seen in Figure 4.20. Thus we may assume that v and w
are adjacent.

Let f1, f2, fw, ft be the edges incident with v in order, where ft = vt, fw = vw, and f1 is
a boundary edge of FG. Now f2 is not incident with two vertices of degree 4, else G has
2-robust at most 4-edge-cut, or parallel edges. Also, f2 cannot be adjacent to w via parallel
edges. Orient and delete f1 and f2 to satisfy p(v), and contract the set of vertices {t, w, v}
to a single vertex of degree 4, calling the resulting graph G′. Now G′ has only one possible
degree three vertex, in G it is incident with f1. If G′ contains a 2-robust edge-cut of size at
most 3, then G contains a 2-robust edge-cut of size at most 5 containing a boundary edge
incident with t, a contradiction. Thus G′ is a PT graph, and has a valid orientation by
the minimality of G. Transfer this orientation to G. Orient the remaining edges incident
with t. Since f1 and f2 satisfy p(v), fw is known to have the opposite direction (relative to
v) from ft. Since w cannot be the only vertex whose prescription is not met, this is a valid
orientation of G.

The remaining case is that both u and v are adjacent to w. Let P1 = tu1u2...uiw be the
path on the boundary of FG from t to w that includes u, and let P2 = tv1v2...vjw be the
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path on the boundary of FG from t to w that includes v. Let S1 and S2 be the subsets of ver-
tices in P1 and P2 respectively that have an adjacent vertex of degree at least 5 that is not w.

If S1 6= ∅, then let k be such that uk ∈ S1 and min{k, i− k + 1.5} is minimised. If S2 6= ∅,
then let ` be such that v` ∈ S2 and min{`, j − ` + 1.5} is minimised. Without loss of
generality, suppose that min{k, i− k + 1.5} ≤ min{`, j − `+ 1.5}. Let e1, e2, e3, e4 be the
edges incident with uk in order, where if k > i+1

2
, e1 = uk−1uk and e4 = ukuk+1 (with

the convention that t = u0 and w = ui+1 if necessary), and otherwise, e4 = uk−1uk and
e1 = ukuk+1. At least one of e1 and e2 is incident with a degree 5 vertex, that is not w, by
definition.

If, for example, k = 3, then u1 = u is adjacent to w and vj, vj is adjacent to u2, u2 is
adjacent to vj−1 and vj−1 is adjacent to u3. Likewise v1 = v is adjacent to w and ui, ui
to v2, v2 to ui−1, and ui−1 to v3. More generally, the set X defined next, consists of those
vertices whose adjacencies are determined in this fashion.

If k > i+1
2

, let X = {um : m ≥ k or m ≤ i− k+ 1}∪ {vm : m ≥ j− i+ k or m ≤ i− k+ 1}.
Otherwise, let X = {um : m ≤ k or m > i − k + 1} ∪ {vm : m ≤ k or m > j − k + 1}.
Orient and delete e1 and e2 to satisfy p(uk), and contract the set of vertices X ∪ {t, w} to a
single vertex of degree 4. Call the resulting graph G′. By definition, G′ has at most one
degree three vertex. If G′ has a 2-robust at most 3-edge-cut, then G has a corresponding
2-robust at most 5-edge-cut that does not separate t from w, a contradiction. Hence G′ is a
PT graph. By the minimality of G, G′ has a valid orientation. Transfer this orientation to G.

Suppose that k > i+1
2

. Orient and delete the two edges incident with the following vertices
in order:

vj−i+k, ui−k+1, vj−i+k+1, ui−k, ..., vj, u1, t, w, v1, ui, v2, ui−1, ..., vi−k, uk+1.

There is only one unoriented edge at uk (ukvi−k+1), which by construction must have the
opposite direction (relative to uk) from ukuk+1. Since vi−k+1 cannot be the only vertex
whose prescription is not met, this is a valid orientation for G.

Suppose that k ≤ i+1
2

. Orient and delete the two edges incident with the following vertices
in order:

vk, ui−k+2, vk−1, ui−k+3, ..., ui, v1, t, w, w1, vj, u2, vj−1, ..., vj−k+3, uk−1.
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There is only one unoriented edge at uk (ukvj−k+2), which by construction must have the
opposite direction (relative to uk) from ukuk+1. Since vj−k+2 cannot be the only vertex
whose prescription is not met, this is a valid orientation for G.

Now suppose that S1, S2 = ∅. Then every vertex in G is on the boundary of FG, and aside
from t and w, all vertices have degree 4. Note that P1 and P2 have the same length, so
j = i, and the edges in the graph that are not on the boundary of FG are

{tw, u1w, v1w, ukvi−k+1 where 1 ≤ k ≤ i, u`vi−` where 2 ≤ ` ≤ i}

(See PT5).

Suppose p(t) 6= 0. Lift tu and tw, and orient and delete tv to satisfy p(t), calling the
resulting graph G′. Then v is the only possible degree three vertex in G′, and it is clear
that G′ is PT graph, and thus has a valid orientation by the minimality of G. This yields a
valid orientation of G. Hence we may assume that p(t) = 0.

Suppose p(u1) = 0. Lift two pairs of edges at u1. The resulting graph is a PT graph, and
thus has a valid orientation by the minimality of G. This yields a valid orientation of G.
Hence we may assume that p(u1) 6= 0.

Without loss of generality, suppose p(u1) = 1. Orient all three edges incident with t into t.
Orient u1w from u1 to w. Orient the remaining three edges incident with w to satisfy p(w).
Orient the remaining two edges incident with the following vertices in order:

v1, ui, v2, ui−1, ..., vi−1, u2.

There is only one unoriented edge at u1 (u1vi), which by construction must have the opposite
direction to u1u2. Since vi cannot be the only vertex whose prescription is not met, this is
a valid orientation for G.

4.5 Discussion

In this section we relate the theorems of this chapter to the 3-Flow Conjecture and Jaeger’s
Strong 3-Flow Conjecture, and consider possible extensions of these results. The following
result (Jaeger’s Strong 3-Flow Conjecture for projective planar graphs) is a direct corollary
of Theorem 4.4.2.
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Figure 4.21: A graph with a directed vertex of degree 5 (4), one (two) degree 3 vertex
(vertices), and no valid orientation.

Theorem 4.5.1. Let G be a 5-edge-connected graph embedded in the projective plane. Then
G is Z3-connected.

The case where the prescription function p is such that p(v) = 0 for all v ∈ V (G), is the
3-Flow Conjecture for projective planar graphs, shown by Steinberg and Younger [25]. We
note that the 3-Flow Conjecture and Jaeger’s Strong 3-Flow Conjecture for planar graphs
follow from Theorem 4.2.2.

Planar Graphs

Theorem 3.3.3 allows a directed vertex of degree 5, or a directed vertex of degree 4 and
a degree 3 vertex, but not both a directed vertex of degree 5 and a degree 3 vertex. The
reason for this is that any graph with a degree 5 directed vertex d adjacent via parallel edges
to a vertex t of degree 3 does not have a valid orientation for some prescription functions.
For example, if the edges incident with d and t are directed into t, and p(t) = −1, then G
has no valid orientation. Such a graph can be seen in Figure 4.21.

In Theorem 4.2.2 we allow a directed vertex of degree 3 with two other degree 3 vertices.
Again, a directed vertex of degree 4 with two degree 3 vertices is not possible. If d is a
degree 4 directed vertex adjacent via parallel edges to a vertex t of degree 3, then there
may not be an orientation of t that extends the existing orientation of d and meets p(t).
Now δ({d, t}) is a 3-edge-cut, but since the graph has a second degree 3 vertex, such a
3-edge-cut need not be 2-robust. This graph can also be seen in Figure 4.21.

When increasing the number of unoriented degree 3 vertices to three, we know of no graph
or family of graphs that would rule out a directed vertex of degree 3. While the example
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Figure 4.22: A graph with a directed vertex of degree 4 (3), three (four) degree 3 vertices,
and no valid orientation.

in Figure 4.21 does not extend to this case, we note that there is an infinite family of
graphs with three degree 3 vertices and an oriented degree 4 vertex that do not have a
valid prescription. Let G be a graph where the boundary of the outer face consists of a
directed degree 4 vertex d, and three degree 3 vertices r, s, and t. Let p(d) = p(t) = −1,
p(r) = p(s) = 0, and assume that all edges incident with d are directed out from d. Let
A = G−{d, r, s, t}. Then δ(A) is an internal 5-edge-cut. We assume that p(A) = −1. Then
p(G) = 0, so p is a valid prescription function. Since rd is directed into r, all edges incident
with r must be directed into r. Since rs is directed out of s, all edges incident with s must
be directed out of s. Then st and dt are directed into t. No direction of the remaining edge
incident with t meets p(t), so G does not have a valid orientation that meets p. This family
of graphs can be seen in Figure 4.22.

If we allow a directed vertex d of degree 3 and four vertices of degree 3, then we obtain
a similar family of graphs. Let the boundary of the outer face of G consist of d and the
four vertices of degree 3, producing an internal 5-edge-cut. Assume that all vertices have
prescription zero. Each of the five vertices on the boundary of the outer face has either
all edges pointing into the vertex, or all edges pointing out. It is clear that with an odd
length boundary, this is not possible. Hence G does not have a 3-flow (as opposed to sim-
ply a modulo 3 orientation meeting p). This family of graphs can also be seen in Figure 4.22.

Similarly, we consider extending Theorem 4.2.7 to allow further degree 3 vertices. It is clear
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that a family of graphs with five vertices of degree 3 vertices similar to that with four and
a directed degree 3 vertex can be constructed, that do not have nowhere zero 3-flows. We
conjecture that such graphs with four degree 3 vertices or three degree 3 vertices and a
directed degree 3 vertex have a valid orientation to meet a given valid prescription function.
If true, then this would be the best possible such result.

Conjecture 4.5.2. Let G be a graph embedded in the plane, together with a valid Z3-
prescription function p : V (G)→ {−1, 0, 1} such that:

1. G is 3-edge-connected,

2. G has a specified face FG, and at most four specified vertices d, r, s, and t,

3. if d exists, then it has degree 3, is in the boundary of FG, and may be oriented,

4. if r, s, or t exists, then it has degree 3 and is in the boundary of FG,

5. G has at most four 3-edge-cuts, which can only be δ({d}), δ({r}), δ({s}), and δ({t}),
and

6. every vertex not in the boundary of FG has 5 edge-disjoint paths to the boundary of
FG.

Then G has a valid orientation.

In Chapter 5 we consider a relaxation of the requirement that every vertex not in the
boundary of FG has 5 edge-disjoint paths to the boundary of FG.

Theorem 4.3.2 requires d, if it exists, to be in the boundaries of both FG and F ∗G. In the
following conjecture we remove this hypothesis, and the requirement that the two specified
faces have a vertex in common.

Conjecture 4.5.3. Let G be a graph embedded in the plane, together with a valid Z3-
prescription function p : V (G)→ {−1, 0, 1}, such that:

1. G is 3-edge-connected,

2. G has two specified faces FG and F ∗G, and at most one specified vertex d or t,

3. if d exists, then it has degree 3, 4, or 5, is oriented, and is in the boundary of FG or
F ∗G,
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4. if t exists, then it has degree 3 and is in the boundary of FG or F ∗G,

5. G has at most one 3-edge-cut, which can only be δ({d}) or δ({t}), and

6. every vertex not in the boundary of FG or F ∗G has 5 edge-disjoint paths to the union
of the boundaries of FG and F ∗G.

Then G has a valid orientation.

This statement does not hold if both d and t are allowed. Consider a graph G with two
specified faces FG and F ∗G such that every vertex is on the boundary of FG or F ∗G. Let t
be a degree 3 vertex on the boundary of F ∗G, and w a degree 5 vertex adjacent to t on the
boundary of FG. Let G have a cycle P = wv0v1...vnw where n = 6k for some k ∈ Z+, vi
has degree 4 for all 1 ≤ i ≤ n, v1, v2, ..., vn alternate between the boundaries of FG and F ∗G,
and V (G) = {t, w, v1, v2, ..., vn}. Let d = vn

2
. We set w = v−1 = vn+1 and t = v−2 = vn+2.

See Figure 4.23.

Suppose that p(d) = −1 and all edges incident with d are directed out from d. Let
p(vn

2
−1) = p(vn

2
−2) = p(vn

2
+1) = p(vn

2
+2) = +1. Let p(vj) = +1 for j < n

2
− 2 and

p(vj) = −1 for j > n
2

+ 2. Let p(t) = p(w) = 0. Then it is clear that p is a valid prescription
function for G.

Lemma 4.5.4. The graph G does not have a valid orientation that meets p.

Proof. We first show that for all 0 ≤ j ≤ k, v3(k−j)v3(k−j)−1 and v3(k−j)v3(k−j)−2 point out
of v3(k−j). We proceed by induction on j. The base case is determined by the directions of
the edges incident with d. Suppose that for some j where 0 ≤ j ≤ k − 1, v3(k−j)v3(k−j)−1
and v3(k−j)v3(k−j)−2 point out of v3(k−j). We consider v3(k−j−1). Since v3(k−j)v3(k−j)−1
and v3(k−j)v3(k−j)−2 point out from v3(k−j), the remaining edges at each of v3(k−j)−1 and
v3(k−j)−2 point all in or all out. Since these vertices are adjacent, v3(k−j)−3v3(k−j)−1 and
v3(k−j)−3v3(k−j)−2 point one in and one out of v3(k−j)−3. Hence the remaining two edges at
v3(k−j)−3: v3(k−j)−4v3(k−j)−4 and v3(k−j)−3v3(k−j)−5, must satisfy the prescription of v3(k−j)−3
and thus point out of v3(k−j)−3 = v3(k−j−1) as required.

Similarly for all 0 ≤ j ≤ k, v3(k+j)v3(k+j)+1 and v3(k+j)v3(k+j)+2 point into v3(k+j). Then v6kt
points out of t and v0t points into t. Hence no direction of tw meets p(t). Thus G has no
valid orientation that meets p.

Such a result may be possible if d is restricted to degree 3.
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Figure 4.23: A graph with two special faces, a directed vertex of degree 4, and no valid
orientation.

Projective Planar Graphs

Unlike in the plane, in the projective plane (Theorem 4.4.2) we do not allow a directed
vertex. In the plane this is necessary, in order to reduce small edge-cuts. In the projective
plane we utilise the property that one of the two graphs resulting from contracting the
sides of an edge-cut is a planar graph, and thus are able to apply planar results.

In fact, adding a directed vertex d of degree 4 to the result is not possible. Consider a
graph G with specified face FG such that every vertex is on the boundary of FG. Let t be a
degree 3 vertex on the boundary of FG, and w a degree 5 vertex on the boundary of FG,
adjacent to t via a non-contractible chord. Let k ∈ Z≥0. Let the two paths between t and
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Figure 4.24: A projective planar graph drawn in the plane with a directed vertex of degree
4 and no valid orientation.

w on the boundary of FG be P1 = tu1u2...unw and P2 = tv1v2...vnw where n = 3k + 5 and
all vertices in G aside from t and w have degree 4. We assume that for all 1 ≤ i ≤ n, ui is
adjacent to ui−1, ui+1, vn−i+1, and vn−i+2, where we set u0 = v0 = t and un+1 = vn+1 = w.
Finally, w and v1 are adjacent. We let d be vn−1. See Figure 4.24.

Suppose that p(d) = −1 and all edges incident with d are directed out from d. Let
p(vn) = p(vn−2) = p(u2) = p(u3) = +1. Let p(u1) = −1. Let p(t) = p(w) = 0. Finally, let
all other vertices have prescription +1. We have

p(G) = 4(+1) + 2(−1) + 2(0) + (2n+ 2− 8)(+1) = 2n− 4 = 6k + 6 ≡ 0 mod 3.

Then it is clear that p is a valid prescription function for G.
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Lemma 4.5.5. The graph G does not have a valid orientation that meets p.

Proof. The edges incident with d meet the prescription of vn, vn−2, u2, and u3, hence each
of these vertices has all remaining edges directed in or all remaining edges directed out.
Since vn and u2 are adjacent, one has all edges directed in and the other has all edges
directed out. Consider u1. The edges u1u2 and u1vn are directed one in and one out of u1.
Thus the remaining edges incident with u1: u1t and u1w, are directed into u1 to satisfy p(u1).

We show that for all 1 ≤ j ≤ n−2
3

, u3j+1u3j+2 and u3j+1un−3j are directed out of u3j+1,
and that for all 0 ≤ i ≤ n−2

3
, vn−(3i+1)vn−(3i+1)−1 and vn−(3i+1)u3i+3 are directed out of

vn−(3i+1). We consider the sequence d, u4, vn−4, u7, vn−7, ..., un−1, v1. The property is known
to hold for d. Let x be the first vertex in this sequence for which this property does not hold.

Suppose that x = u3j+1 for some 1 ≤ j ≤ n−2
3

. Then by definition, the property holds
for vn−(3j−2). Hence vn−(3j−2)vn−(3j−2)−1 and vn−(3j−2)u3j are directed out of vn−(3j−2). This
satisfies the prescription of vn−(3j−2)−1 and u3j, which are adjacent, and so the remaining
three edges at one of these vertices are directed in, and the remaining three edges at
the other are directed out. Both are adjacent to u3j+1, so the edges u3j+1vn−(3j−2)−1 and
u3j+1u3j are directed one in and one out of u3j+1. Hence the remaining two edges incident
with u3j+1 are directed out of u3j+1, as required.

Now suppose that x = vn−(3j+1) for some 1 ≤ j ≤ n−2
3

. Then by definition, the property
holds for u3j+1. Hence u3j+1u3j+2 and u3j+1vn−3j are directed out of u3j+1. This satisfies
the prescription of u3j+2 and vn−3j, which are adjacent, and so the remaining three edges
at one of these vertices are directed in, and the remaining three edges at the other are
directed out. Both are adjacent to vn−(3j+1), so the edges vn−(3j+1)u3j+2 and vn−(3j+1)vn−3j
are directed one in and one out of vn−(3j+1). Hence the remaining two edges incident with
vn−(3j+1) are directed out of vn−(3j+1), as required.

Therefore, u1t is directed out of t, and v1t is directed into t. Hence no direction of tw
meets p(t). Thus G has no valid orientation that meets p.

As in the case of a planar graph with two specified faces, such a result may be possible if
the degree of the directed vertex d is restricted to 3.
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Toroidal Graphs

Jaeger’s Strong 3-Flow Conjecture and the 3-Flow Conjecture remain open for surfaces
with genus larger than that of the projective plane. The natural question to ask is whether
this can be extended to the torus.

In the projective plane we were able to make use of two properties of graphs embedded
on the surface. The first is that of the graphs G′ and G′′ obtained from a graph G with
edge-cut δ(A) by contracting A and G− A respectively, at least one is planar. This not
true of edge-cuts in graphs embedded on the torus. Therefore, in order to reduce small
edge-cuts as we have throughout the results in this chapter, we require the toroidal graph
to have a directed vertex in addition to a degree 3 vertex.

The second property is that of Lemma 4.1.3; that the graph G′ obtained from G by deleting
a non-contractible chord (and its endpoints) is a planar graph with one specified face. We
were able to reduce graphs with non-contractible chords to planar graphs meeting the
conditions of Theorem 4.2.7. In the torus, such a reduction produces a planar graph with
two specified faces. Since this may produce up to two additional degree 3 vertices, we would
require a result for planar graphs, allowing two specified faces with three degree 3 vertices
and a directed vertex. Lemma 4.23 shows that this is false.

Thus the techniques used to prove Theorem 4.4.2 are not extendable to toroidal graphs.

We further note that the techniques used by Steinberg and Younger [25] to prove the 3-Flow
Conjecture for the projective plane do not extend to the torus. As discussed in Section 3.3,
Steinberg and Younger [25] make use of the existance of a Grötzsch configuration in the
plane and projective plane.

Such techniques do not extend to Jaeger’s Strong 3-Flow Conjecture, as they make use of the
assumption that all vertices have degree at most 5; with every vertex having prescription
zero it is possible to make several lifts at a vertex. When a degree 6 vertex does not
have prescription zero, such a lift cannot be made without creating a degree 4 vertex
with non-zero prescription, which is not allowed. Thus we may only guarantee the ex-
istence of a similar configuration where vertices may have degree 6 and non-zero prescription.

91



In the torus, the discharging argument used to prove the existence of the Grötzsch configu-
ration does not apply. To see this, consider a 5-regular simple graph G embedded in the
plane, projective plane, or torus.

Lemma 4.5.6. Either G contains a Grötzsch configuration or G is toroidal and every
vertex is incident with three faces of length three and two of length four.

Proof. Assign
chi(v) = deg(v)− 6 for all v ∈ V (G),

chi(f) = 2(|f | − 3) for all f ∈ F (G).

Let f be a face of G. If f has length at least four, send charge 1
2

from f to each incident
vertex. We call the final charges chf .

Now ∑
v∈V (G)

chf (v) +
∑

f∈F (G)

chf (f) =
∑

v∈V (G)

chi(v) +
∑

f∈F (G)

chi(f)

=
∑

v∈V (G)

(deg(v)− 6) + 2
∑

f∈F (G)

(|f | − 3)

= 6|E(G)| − 6|V (G)| − 6|F (G)|.

Suppose that G does not have a Grötzsch configuration. We consider the sum of the final
charges. Let f be a face of G. If |f | = 3 then chf (f) = chi(f) = 0. Suppose |f | > 3. Then
f sends charge 1

2
to each of its |f | incident vertices. We have

chf (f) = chi(f)− |f |
2

=
3|f |

2
− 6 ≥ 0.

Now let v ∈ V (G). Then chi(v) = deg(v) − 6 = −1. Since G does not have a Grötzsch
configuration, v has at least two incident faces that have length greater than three. Hence

chf (v) ≥ chi(v) + 1 = 0.

We conclude that

6|E(G)| − 6|V (G)| − 6|F (G)| =
∑

v∈V (G)

chf (v) +
∑

f∈F (G)

chf (f) ≥ 0.
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Since we required G to be planar, projective planar, or toroidal, this is possible only if G is
a toroidal graph. Hence∑

v∈V (G)

chf (v) +
∑

f∈F (G)

chf (f) = 6|E(G)| − 6|V (G)| − 6|F (G)| = 0.

Since every term on the left hand side is non-negative, it is necessary that chf(v) = 0 for
all v ∈ V (G) and chf (f) = 0 for all f ∈ F (G).

Consider a face f ∈ F (G). If |f | ≥ 5, then

chf (f) = chi(f)− |f |
2

=
3|f |

2
− 6 > 0.

Hence we may assume all faces in G have length 3 or 4. Let v ∈ V (G) and suppose that v is
not incident with three faces of length 4 and two of length 4. Since a Grötzsch configuration
does not exist, v is incident with at least three faces of length 4. Then

chf (v) ≥ chi(v) +
3

2
=

1

2
> 0,

a contradiction. Thus all faces in G have length 3 or 4 and every vertex is incident with
three faces of length 3 and two of length 4.

While Steinberg and Younger [25] reduce the Grötzsch configuration, it is not clear that a
similar reduction exists when a vertex is incident with three faces of length 3 and two of
length 4. The inclusion of a vertex of degree 3 or a directed vertex naturally complicates
this argument further.
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Chapter 5

Degree 4 Vertices

In Section 3.4 we discussed the family of graphs constructed by Lai [18] showing that the
edge-connectivity condition in Jaeger’s Strong 3-Flow Conjecture cannot be relaxed to
include all 4-edge-connected graphs. This raised the question of which 4-edge-connected
graphs do have a nowhere-zero 3-flow for all valid prescription functions. In this chapter we
modify Theorem 3.3.3 to allow graphs with arbitrarily many degree 4 vertices, if they do
not appear on adjacent faces. Recall that two faces are adjacent if they have a common
boundary edge. In this way we relax the requirement that all internal vertices must have 5
edge-disjoint paths to the boundary of the outer face. We define an internal edge-cut to be
one that does not intersect the boundary of the outer face.

Definition 5.0.1. An FDT Graph is a graph G embedded in the plane, together with a
valid prescription function p : V (G)→ {−1, 0, 1}, such that:

1. G is 3-edge-connected,

2. G has at most two specified vertices d and t,

3. if d exists, then it has degree 3, 4, or 5, is oriented, and is in the boundary of the
outer face,

4. if t exists, then it has degree 3 and is in the boundary of the outer face,

5. if d and t both exist, then d has degree at most 4,

6. G has at most two 3-edge-cuts, which can only be δ({d}), and δ({t}),
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7. internal degree 4 vertices in G are not on the boundary of adjacent faces,

8. if δ(A) is a 2-robust internal cut in G, then |δ(A)| ≥ 5.

A 3FDT graph is a graph G with the above definition, where (6) is replaced by

6’. all vertices aside from d and t have degree at least 4, and if d and t both exist, then
every 3-edge-cut in G separates d from t.

The main result for this chapter is Theorem 5.0.2. The proof appears in Section 5.2. In
Section 5.1 we discuss the ideas that will be used in the proof that differ from those used in
Chapter 4.

Theorem 5.0.2. All FDT graphs have a valid orientation.

5.1 Preliminaries

Outer Face

We first note that in this chapter, since we only consider graphs embedded in the plane, we
may simply choose the outer face to be the specified face. The discussion in Section 4.1 of
how the specified face of a new graph is found after a reduction applies to yield the outer
face in all cases.

Not on the Boundary of Adjacent Faces

In this chapter we drop the restriction that internal vertices have at least 5 edge-disjoint
paths to the boundary of the outer face. This is replaced by the following conditions:

7. Internal degree 4 vertices in G are not on the boundary of adjacent faces.

8. If δ(A) is a 2-robust internal cut in G, then |δ(A)| ≥ 5.

It is clear that (8) is simply a modification to allow degree 4 vertices, but no other internal
4-edge-cuts. It ensures that any set X of internal vertices where |X| ≥ 2 has at least 5
edge-disjoint paths to the boundary of the outer face.

Now (7) is the condition that restricts the degree 4 vertices that may exist. We first consider
here what this restriction says about the proximity of internal degree 4 vertices.
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Lemma 5.1.1. Let v be an internal vertex of degree k in an FDT graph G. Let fG(v)
denote the number of internal degree 4 vertices adjacent to v. If v has degree 4, then

f(v) = 0. Otherwise f(v) ≤
⌊
deg(v)

3

⌋
.

Proof. Adjacent vertices have a face in common, and thus it is clear that G does not have
adjacent internal degree 4 vertices. It follows that if deg(v) = 4, then f(v) = 0. Suppose
that deg(v) = k ≥ 5, and let v1, v2, ..., vk be the vertices adjacent to v in cyclic order. Let
Fi be the face of G that has vi, v, and vi+1 on its boundary (where we let vk+1 = v1). Then
for all 1 ≤ i ≤ k, vi is on the boundaries of Fi and Fi−1. Hence vi is on the same face as
vi−1 and vi+1 and on an adjacent face to vi−2 and vi+2. The result follows.

This implies that internal degree 4 vertices are not adjacent, and may only be distance
two apart if the vertex on the path between them has degree at least 6. The key fact that
will be used throughout this chapter is that a degree 5 vertex may only have one adjacent
internal degree 4 vertex.

The reductions in the proof of Theorem 5.0.2 are more complex than those in Chapter 4
and involve deleting more vertices. It therefore becomes necessary to consider whether a
deleted vertex may be adjacent to multiple degree 4 vertices. Since many of the internal
vertices we are concerned with are degree at most 5, by Lemma 5.1.1 the only way this
can occur is if some are on the boundary of the outer face. Suppose that G has an internal
vertex v of degree d1 adjacent to non-adjacent boundary vertices x and y of degree d2 and
d3 respectively. Define Av and Bv to be the vertex sets of the components of G− {v, x, y}.
Then

|δ(Av)|+ |δ(Bv)| ≤ (d1 − 2) + (d2 − 1) + (d3 − 1) = d1 + d2 + d3 − 4.

Once we consider the reduction of small cuts, such configurations with small d1, d2, and d3
will not exist.

We now consider how reductions to the graph affect the condition on the proximity of
internal degree 4 vertices.

Lemma 5.1.2. Let G be a graph where internal degree 4 vertices are not on adjacent faces.
Let G′ be a graph obtained from G by

1. deleting a boundary edge e of the outer face,

2. deleting a boundary vertex x of the outer face,
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3. lifting a pair of adjacent edges e1, e2, where e1 is in the boundary of the outer face, or

4. contracting a subgraph X where |δ(X)| ≥ 5 to a vertex x.

Then internal degree 4 vertices in G′ are not on adjacent faces.

Proof. Suppose for a contradiction that G′ has internal degree 4 vertices u and v that are
on adjacent faces F1 and F2 respectively. Note that it is possible that F1 = F2. Evidently
neither F1 nor F2 is the outer face of G′. Let FG be the outer face of G and FG′ be the
outer face of G′.

1. In G, u and v are internal degree 4 vertices. Let F ′ be the face incident with e in G
that is not FG. We have

F (G′) = (F (G)− {FG, F ′}) ∪ {FG′}.

Thus F1 and F2 are faces in G that are not FG, and are adjacent. Hence u and v are
internal degree 4 vertices of G on adjacent faces, a contradiction.

2. This case follows by sequentially deleting boundary edges incident with v until v is
an isolated vertex. It is clear that the deletion of an isolated vertex in FG does not
affect the existence or proximity of internal degree 4 vertices.

3. As in (1), it is clear that F1 and F2 are faces in G that are not FG, and u and v are
internal degree 4 vertices in G. Thus u and v are internal degree 4 vertices of G on
adjacent faces, a contradiction.

4. Let F be the set of internal faces of G[X]. Let F ∈ F (G)−F . If the boundary of F
does not intersect G[X], let F ′ = F . Otherwise, let F ′ be the face whose boundary is
obtained from the face boundary of F by contracting all paths in G[X]. It is clear
that this operation preserves adjacency of faces. Then

F (G′) = {F ′ : F ∈ F (G)−F}.

Let F ′1 and F ′2 be the adjacent faces containing u and v. Since |δ(X)| ≥ 5, x 6∈ {u, v}.
Thus u and v are internal vertices of degree 4 in G, on the boundaries of F1 and F2,
which are adjacent, a contradiction.

We therefore only discuss the preservation of this property in cases where Lemma 5.1.2
does not apply.
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5.2 Allowing Degree 4 Vertices

Here we prove Theorem 5.0.2.

Proof. Let G be a minimal counterexample with respect to the lexicographic ordering of
the pair (|E(G)|, |E(G)| − deg(d)). We will prove the following series of properties of G.

FDT1: The graph G has no cut vertex.

FDT2: The graph G has no loops or unoriented parallel edges.

FDT3: The graph G has no 2-robust 4-edge-cut.

FDT4: Every 2-robust 5-edge-cut in G separates d from t.

FDT5: The graph G has no chord of the outer face incident with a vertex of degree 3 or 4.

FDT6: Vertices d and t exist.

FDT7: Vertices d and t are not adjacent.

FDT8: Every 4-robust 6-edge-cut in G separates d from t.

Let u and v be the boundary vertices adjacent to t, and let w be the remaining vertex
adjacent to t.

FDT9: Vertices u and v have degree 4.

FDT10: Vertex w has degree 5.

Let e1, e2, e3, et be the edges incident with u in order, where et = ut and e1 is on the
boundary of the outer face. Let f1, f2, f3, ft be the edges incident with v in order, where
ft = vt and f1 is on the boundary of the outer face.

FDT11: One of the following holds:

1. the edge e3 is incident with an internal degree 4 vertex, and v and w are adjacent,
or

2. the edge f3 is incident with an internal degree 4 vertex, and u and w are adjacent.
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Without loss of generality, we assume that the edge e3 is incident with an internal degree 4
vertex, which we call x, and v and w are adjacent.

FDT12: Vertices x and w are adjacent.

FDT13: Vertices u and d are adjacent.

The proofs of these properties form the bulk of the proof of Theorem 4.2.2.

Unlike in Chapter 4, we may not apply Lemma 4.1.4, as loop deletion may affect the
property that internal degree 4 vertices are not on the boundary of adjacent faces.

FDT1. The graph G has no cut vertex.

Proof. Suppose that G contains a cut vertex v. Let H and K be subgraphs of G such that
H ∩K = {{v}, ∅} and H ∪K = G. Since G is 3-edge-connected, degH(v), degK(v) ≥ 3.
Suppose that degH(v) ≥ 5. Then H is an FDT graph, and has a valid orientation by the
minimality of G. Suppose that degH(v) = 4. Then δG(K) is a 4-edge-cut. If δG(K) is not
an internal cut, then H is an FDT graph, and has a valid orientation by the minimality
of G. If δG(K) is an internal cut, then |V (H)| = 2. If d ∈ V (H), then H has a valid
orientation. Otherwise, orient v to give a valid orientation of H.

Suppose that degH(v) = 3. Since G has no 3-edge-cuts except for δ(d) and δ(t), V (H) =
{v, w} where w ∈ {d, t}. If w = d, then H is an oriented graph. Suppose that w = t.
Orient t. Thus H has a valid orientation. Transfer this orientation to G and adjust the
prescription of v in K. An equivalent argument shows that K has a valid orientation. This
yields a valid orientation of G, a contradiction. Hence G has no cut vertices.

FDT2. The graph G has no loops or unoriented parallel edges.

Proof. First, suppose that G contains a loop e incident with a vertex v. Since v is not a
cut vertex, the deletion of e does not affect the property that internal degree 4 vertices are
not on adjacent faces. Orient (if necessary) and delete e, calling the resulting graph G′.
Suppose that G′ contains an edge-cut δG′(A). Then δG(A) is an edge-cut of the same
size. Hence G′ is 3-edge-connected. It also follows that δ(d) and δ(t) are the only possible
3-edge-cuts in G′. If v = d, then since δG(d) ≥ 3, degG′(d) ≥ 3. If v = t, then δG(v) = 1, a
contradiction. Otherwise, since δG(v) ≥ 4, degG′(v) ≥ 4. We conclude that G′ is an FDT
graph. Since G is a minimal counterexample, G′ has a valid orientation, which extends to a

99



valid orientation of G, a contradiction. Hence G does not contain any loops.

Now suppose that G contains unoriented parallel edges. Suppose that vertices u, v ∈ V (G)
are incident with a 2-cycle consisting of unoriented edges. Assume that the resulting cycle
of length 2 does not separate vertices of G. Let G′ be the graph obtained from G by
contracting G[{u, v}], and let w be the resulting vertex. Since the edges are unoriented,
neither u nor v is d. Suppose that degG′(w) ≤ 3. Then δG({u, v}) ≤ 3, a contradiction
unless |V (G)| = 3 (in this case, orient the degree 3 vertex, followed by u; v cannot be
the only vertex whose prescription is not met). Thus the only possible vertices of degree
three in G′ are d and t. If degG′(w) = 4, then w is on the boundary of the outer face,
else δG({u, v}) is an internal 4-edge-cut, a contradiction. Suppose that G′ contains an
edge-cut δG′(A). Then either δG(A) or δG(G′−A) is an edge-cut of the same size. Hence G′

is 3-edge-connected and has no internal 4-edge-cuts. If there exist internal degree 4 vertices
on adjacent face boundaries in G, then since no edge was deleted, this is also true in G, a
contradiction. Therefore, G′ is an FDT graph. Since G is a minimal counterexample, G′

has a valid orientation. Transfer this orientation to G, and orient u. Since v cannot be the
only vertex whose orientation is not met, this yields a valid orientation of G, a contradiction.

Now assume that the cycle formed by u, v, and the parallel edges separates vertices of G.
Let A be the set of vertices in a connected component of G−{u, v} that does not contain a
vertex in the boundary of FG. Let e1 and e2 be edges with endpoints u and v, such that the
cycle C = ({u, v}, {e1, e2}) separates A from G− (A ∪ C). Define GA to be the subgraph
of G consisting of C and its interior. Define GG−A to be the subgraph of G consisting
of C and its exterior. Let G′ be the graph obtained from G by contracting GG−A, and
let w be the resulting vertex. As above, G′ is an FDT graph and has a valid orientation
by the minimality of G. Transfer this orientation to G. Let G′′ be the graph obtained
from G by contracting GA, and let w′ be the resulting vertex (note that all directed edges
have been contracted, so d is the only possible directed vertex). Similarly, G′′ is an FDT
graph and has a valid orientation by the minimality of G. Transfer this orientation to G.
Orient u. Since v cannot be the only vertex whose orientation is not met, this yields a valid
orientation of G, a contradiction.

As in Chapter 4 we now consider some of the reducible small edge-cuts in G.

FDT3. The graph G has no 2-robust 4-edge-cut.

Proof. Suppose that G does contain a 2-robust 4-edge-cut, δ(A). Then δ(A) is not an
internal cut by definition. Assume that d 6∈ G− A. Let G′ be the graph obtained from G
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by contracting G− A to a single vertex. The resulting vertex v has degree 4 and is on the
boundary of the outer face. If G′ contains a 2-robust edge-cut δG′(B) of size at most 3,
then such a cut also exists in G, a contradiction unless it is one of the specified vertices.
Hence G′ is an FDT graph and has a valid orientation by the minimality of G. Transfer
this orientation to G.

Let G′′ be the graph obtained from G by contracting A to a single vertex v. This vertex
has degree 4, is oriented, and is in the boundary of the outer face. Since d 6∈ V (G′ − A),
G′′ has only one oriented vertex, namely v. If G′′ has a 2-robust edge-cut δG′(B) of size at
most 3, then such a cut also exists in G, a contradiction unless it is one of the specified
vertices. Thus G′′ is an FDT graph and has a valid orientation by the minimality of G.
Transfer this orientation to G to obtain a valid orientation of G, a contradiction. Hence G
has no 2-robust 4-edge-cut.

Claim 5.2.1. Let δ(A) be a 2-robust internal cut in G, where A contains the boundary of
the outer face. Then G/A is an FDT graph.

Proof. All cuts in G/A are cuts in G, hence G/A is 3-edge-connected and has no internal
2-robust 4-edge-cuts. The contraction does not introduce any new vertices of small degree.
Suppose that two internal degree 4-vertices in G/A are on adjacent faces. Then since
no edge was deleted, this is also the case in G, a contradiction. Hence G/A is an FDT
graph.

FDT4. Every 2-robust 5-edge-cut in G separates d from t.

Proof. Suppose that G does contain a 2-robust 5-edge-cut, δ(A), that does not separate
d from t. This works in the same way as the proof of FDT3. In G′′ there is an oriented
vertex of degree 5 on the boundary of the outer face, and no degree 3 vertex. Hence G′′

has a valid orientation by the minimality of G. This leads to a valid orientation of G, a
contradiction.

FDT5. The graph G has no chord of the outer face incident with a vertex of degree 3 or 4.

Proof. Suppose that such a chord uv exists, where degG(u) ∈ {3, 4}. Let H and K be
subgraphs of G such that H ∩K = {{u, v}, {uv}}, H ∪K = G, and d, if it exists, is in H.

Suppose that δ(H) is not 2-robust. Then K contains d, else G has unoriented parallel edges,
and thus a valid orientation by FDT2. By definition, either u or v is d. Let w be the third
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vertex in K. Since G has no unoriented parallel edges, |δ({d, w})| ≤ 4, a contradiction.
Hence we may assume that δ(H) is 2-robust.

Suppose that δ(K) is not 2-robust. Then |V (H)| = 3. If u or v is d, the above argument
applies. Thus we may assume that d is in V (H)− {u, v}. If there are parallel edges with
endpoints d and u, then δ({d, u}) is an at most 5-edge-cut. Orient u and contract the
parallel edges between d and u, calling the resulting graph G′. Note that the vertex of
contraction has the same degree as d. Thus it is clear that G′ is an FDT graph, and thus
has a valid orientation by the minimality of G. This leads to a valid orientation of G, a
contradiction. Suppose that there are not parallel edges with endpoints d and u. Then
there are parallel edges with endpoints d and v. Since |δ({d, v})| ≥ 4, degK(v) ≥ 3. Orient
u and add a directed edge from u to v in K. Then K is an FDT graph, and has a valid
orientation by the minimality of G. This leads to a valid orientation of G, a contradiction.
We may now assume that δ(K) is 2-robust.

By FDT3, δ(H) and δ(K) have size at least 5. Hence degG(v) ≥ 8, and so v is not d or t.
In addition, v has degree at least 4 in both H and K.

Suppose that u 6= d. Then in H, contract uv. Now H/uv is a DTS graph, and so by
the minimality of G, H/uv has a valid orientation. Transfer this orientation to G, and
orient u. Add an edge e directed from u to v (in the boundary of the outer face). Since
degG(u) ∈ {3, 4} it is clear that u, v are incident with the outer face, and thus K + e is an
FDT graph. By the minimality of G, K + e has a valid orientation. This leads to a valid
orientation of G, a contradiction.

Thus u = d. Then add a directed edge e from u to v, to obtain graphs H + e and K + e
respectively. It is clear that H + e and K + e are FDT graphs, so by the minimality of G,
they have valid orientations. Transfer the orientations of H + e and K + e to G to obtain a
valid orientation of G, a contradiction. Thus no such chord exists.

Again, we wish to reduce at low degree vertices in G. We begin by showing that d and t
exist.

FDT6. Vertices d and t exist.

Proof. Suppose that d does not exist. Let v be a vertex in the boundary of the outer face of
minimum degree. If deg(v) ≤ 5, orient v, calling the resulting graph G′. Then G′ is an FDT
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graph, and has a valid orientation by the minimality of G. This is a valid orientation of G,
a contradiction. If deg(v) ≥ 6, orient and delete a boundary edge incident with v, calling
the resulting graph G′. If G′ has a 2-robust at most 3-edge-cut, then G has a 2-robust at
most 4-edge-cut, a contradiction. Hence G′ is an FDT graph and has a valid orientation by
the minimality of G. This leads to a valid orientation of G, a contradiction. Thus we may
assume d exists.

Suppose that t does not exist. If d has degree 4 or 5, let v be a vertex adjacent to d on
the boundary of the outer face. Let G′ be the graph obtained by deleting dv. If G′ has a
2-robust at most 3-edge-cut, then G has a corresponding at most 4-edge-cut, a contradiction.
Thus G′ is an FDT graph and has a valid orientation by the minimality of G. This leads to
a valid orientation of G, a contradiction.

Therefore, d has degree 3. Suppose that d has an adjacent vertex of degree 5. Delete d.
The resulting graph has at most two degree 3 vertices. If there are two, orient one, calling
the resulting graph G′. If G′ has a 2-robust at most 3-edge-cut, then G has a corresponding
at most 4-edge-cut, a contradiction. Thus G′ is an FDT graph and has a valid orientation
by the minimality of G. This leads to a valid orientation of G, a contradiction.

Hence we may assume that d has three adjacent vertices of degree 4. Let these neighbours
be u, v, and w, where u and v are on the boundary of the outer face. Suppose that w
is not adjacent to u or v. If w has an adjacent vertex x of degree 4, then x is in the
boundary of the outer face by definition. Then |δ(Aw)|+ |δ(Bw)| ≤ 7. Either δ(A) or δ(B)
is a 2-robust at most 3-edge-cut, a contradiction. Hence the non-d neighbours of w have
degree at least 5. Delete d and orient and delete w, calling the resulting graph G′. Then u
and v are the only possible degree 3 vertices in G′. Orient one, calling the resulting graph G′′.

Suppose that G′′ has a 2-robust at most 3-edge-cut δG′′(A) where u ∈ A and v 6∈ A. Then
either δG(A) or δG(G − A) is a 2-robust at most 5-edge-cut, a contradiction. Suppose
that G′′ has a 2-robust at most 3-edge-cut δG′′(A) where u, v ∈ A. Then δG(A ∪ {d}) or
δG(A ∪ {d, w}) is an internal 2-robust at most 5-edge-cut, a contradiction. An analysis of
these cuts can be seen in Figure 5.1. Thus G′′ is an FDT graph and has a valid orientation
by the minimality of G. This leads to a valid orientation of G, a contradiction.

Therefore, w is adjacent to u or v. Without loss of generality suppose that w is adjacent
to u. Delete d, orient u and w, and contract uw to a single vertex x, calling the resulting

103



A

w

d

A

w

d

Figure 5.1: FDT6: Analysis of cuts.

graph G′. Then x is a directed vertex of degree 4 on the boundary of the outer face, and
v is the only possible vertex of degree 3. If G′ has a 2-robust at most 3-edge-cut, then G
has a corresponding at most 4-edge-cut, a contradiction. Thus G′ is an FDT graph and
has a valid orientation by the minimality of G. This leads to a valid orientation of G, a
contradiction.

FDT7. Vertices d and t are not adjacent.

Proof. Suppose that d is adjacent to t. Then d has degree 3 or 4. Orient t and contract dt
calling the resulting graph G′. The vertex of contraction has degree 4 or 5, and G′ has no
vertex of degree 3. Then G′ is an FDT graph and has a valid orientation by the minimality
of G. This leads to a valid orientation of G, a contradiction.

Claim 5.2.2. If G′ is a 3FDT graph with |E(G′)| < |E(G)|, then G′ has a valid orientation.

Proof. Let Ĝ be a minimal counterexample, and let δ(A) be a 2-robust 3-edge-cut in Ĝ
where t ∈ A and d ∈ G − A. Let Ĝ′ be the graph obtained from Ĝ by contracting A to
a vertex. Then Ĝ′ is a 3FDT graph and has a valid orientation by the minimality of Ĝ.
Transfer this orientation to Ĝ. Let Ĝ′′ be the graph obtained from Ĝ by contracting Ĝ−A
to a vertex. Then Ĝ′′ is a 3FDT graph and has a valid orientation by the minimality of Ĝ.
This leads to a valid orientation of Ĝ, a contradiction. Otherwise, Ĝ is an FDT graph and
has a valid orientation by the minimality of G, a contradiction.

Due to the presence of internal degree 4 vertices in G, the reductions used in this proof
involve deleting more vertices than those in Chapter 4. As a result, it is necessary to
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consider 6-edge-cuts in G. We show here that 4-robust 6-edge-cuts that do not separate
d from t can be reduced. Since this proof is by minimal counterexample, it is useful to
consider the non-4-robust 6-edge-cuts that may exist.

Suppose A ⊆ V (G) is such that δ(G−A) is a 2-robust 6-edge-cut in G that is not 4-robust,
and assume that t 6∈ A (note that d 6∈ A by definition). Let |A| = n ≤ 3. Since every vertex
in A has degree at least 4, ∑

v∈A

deg(v) ≥ 4n.

Since G has no unoriented parallel edges,∑
v∈A

deg(v) ≤ 2

(
n

2

)
+ 6.

When n = 2, this implies that

8 ≤
∑
v∈A

deg(v) ≤ 8.

When n = 3, this implies that

12 ≤
∑
v∈A

deg(v) ≤ 12.

Hence every vertex in A has degree exactly 4, and the vertices of A are pairwise adjacent.
It follows that δ(A) is not an internal cut.

Suppose that n = 3. Then at least one vertex in A is an internal degree 4 vertex. By
definition, A contains at most one internal degree 4 vertex. Thus the remaining two vertices
in A are on the boundary of the outer face, and all three vertices have two incident edges
in δ(A). We call this a 6-edge-cut of Type 1.

Suppose that n = 2. Then both vertices in A have three incident edges in δ(A). If both are
on the boundary of the outer face, we call this a 6-edge-cut of Type 2. If one is an internal
degree 4 vertex, we call this a 6-edge-cut of Type 3. Figure 5.2 shows the three types of
non-4-robust 6-edge-cuts. We note that if a graph has a Type 1 cut, then it also has a
Type 2 cut, but the distinction is important when analysing a given cut.

FDT8. Every 4-robust 6-edge-cut in G separates d from t.
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(a) Type 1 (b) Type 2 (c) Type 3

Figure 5.2: The non-4-robust 6-edge-cuts that can exist in G.

Proof. Suppose for a contradiction that G has a 4-robust 6-edge-cut δ(A) such that d, t ∈ A.
Choose the cut to minimise |V (G−A)|. Let G′ be the graph obtained from G by contracting
G−A to a vertex. Then G′ is an FDT graph and has a valid orientation by the minimality
of G. Transfer this orientation to G and contract A to a vertex d′, calling the resulting
graph G′′. Then deg(d′) = 6 and G′′ has no vertex of degree 3. Let the vertices adjacent to
d′ be u, v, w, x, y, and z in order, where u and z are boundary vertices.

We prove the following claims:

a. We have deg(u) = deg(z) = 4.

b. We have u 6= v, y 6= z, u 6= z.

c. We have deg(v) = deg(y) = 4.

d. Vertices u and v are adjacent.

e. We have v 6= w.

Let m and n be the remaining vertices adjacent to u, where m is on the boundary of the
outer face. Let p and q be the remaining vertices adjacent to v.

f. We have deg(m) = 4, n = p, and deg(n = p) = 5.

g. Vertices m and n are adjacent.

These provide sufficient structure to complete the argument.

Claim FDT8a. We have deg(u) = deg(z) = 4.
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Proof. Suppose that deg(u) ≥ 5. Then delete d′u, calling the resulting graph G1. It is clear
that G1 is an FDT graph and has a valid orientation by the minimality of G. This leads to
a valid orientation of G, a contradiction. Hence deg(u) = 4. Similarly, deg(z) = 4.

Claim FDT8b. We have u 6= v, y 6= z, u 6= z.

Proof. Suppose that u = v. Then δ(A ∪ {u}) is a 6-edge-cut in G that does not separate d
from t. By assumption, δ(A∪{u}) is not 4-robust, and so |V (G−A)| = 4. Then δ(A∪{u})
is a 6-edge-cut of Type 1. There is a vertex in G − (A ∪ {u}) that is adjacent to u via
parallel edges, a contradiction. Thus we may assume that u 6= v. Similarly y 6= z.

Suppose that u = z. Then δ(A ∪ {u}) is a 6-edge-cut in G. The argument that this cut is
4-robust is analogous to the argument above. Hence u 6= z.

Delete d′u and d′v, calling the resulting graph G2

Claim FDT8c. We have deg(v) = deg(y) = 4.

Proof. Suppose that degG′′(v) ≥ 5. It is clear that G2 is an FDT graph and has a valid
orientation by the minimality of G. This leads to a valid orientation of G, a contradiction.
Hence deg(v) = 4. Similarly, deg(y) = 4.

We may now assume that G2 has two vertices of degree 3: u and v, and a directed vertex
of degree 4: d′. Note that v is an internal degree 4 vertex in G. Suppose that v has an
adjacent vertex c of degree 4 that is not u. Then by definition, c is on the boundary of
the outer face. We have |δG′′(Av)|+ |δG′′(Bv)| ≤ 10, so we may assume that |δG′′(Av)| ≤ 5.
Thus |δG(Av)| ≤ 5 also (where d′ is replaced by A if necessary). Now δG(Av) does not
separate d from t, so it must not be 2-robust. Hence |Av| = 1. Thus w, x, y, z ∈ Bv and
u ∈ Av, a contradiction since u has degree 4 and only three adjacent vertices, leading to
unoriented parallel edges. Thus we may assume that v has no degree 4 neighbour in G
except for possibly u.

Claim FDT8d. Vertices u and v are adjacent.

Proof. Suppose that u and v are not adjacent. Let G3 be the graph obtained from G2 by
deleting the edges incident with v. Then G3 has one possible degree 3 vertex: u.

Suppose that G3 contains a 2-robust at most 3-edge-cut δG3(B) where d′, u ∈ B. Note that
when referring to G, we will use B as shorthand for the set (B−d′)∪A for simplicity. Then
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Figure 5.3: FDT8: Analysis of cuts (1).

G contains an internal 2-robust at most 5-edge-cut δG(B ∪ {v}) or δG(B), a contradiction.
Suppose that G3 contains a 2-robust at most 2-edge-cut δG3(B) where d′ ∈ B and u 6∈ B. All
neighbours of v are in G′ −B, else δG(B ∪ {v}) is a 2-robust at most 5-edge-cut that does
not separate d from t. Then δG(B) is a 2-robust at most 4-edge-cut in G, a contradiction.
By Claim 5.2.2, G3 does not contain a 2-robust 3-edge-cut separating d′ from u. An analysis
of these cuts is shown in Figure 5.3. Hence G3 is an FDT graph and has a valid orientation
by the minimality of G. This leads to a valid orientation of G, a contradiction.

Claim FDT8e. We have v 6= w.

Proof. Suppose that v = w. Then δ(A ∪ {u, v}) is an at most 6-edge-cut in G. By
assumption, δ(A ∪ {u, v}) is not 4-robust, so |V (G− (A ∪ {u, v}))| ∈ {2, 3}. Since v is an
internal degree 4 vertex, G − (A ∪ {u, v}) does not contain an internal degree 4 vertex.
Thus δ(A ∪ {u, v}) is a 6-edge-cut of Type 2, and G has unoriented parallel edges incident
with u, a contradiction. Hence v 6= w.

Let m and n be the remaining vertices adjacent to u, where m is on the boundary
of the outer face. Let p and q be the remaining vertices adjacent to v. Note that
deg(n), deg(p), deg(q) ≥ 5.

Claim FDT8f. We have deg(m) = 4, n = p, and deg(n = p) = 5.

Proof. If deg(m) ≥ 5, n 6= p or deg(n = p) ≥ 6, then the graph G4 obtained from G2 by
orienting and deleting u and v has at most one vertex of degree 3. Suppose that G4 has a
2-robust at most 3-edge-cut δG4(B) where m, d′ ∈ B. We may assume that δG(B ∪ {u, v})
is not a 5-edge-cut. Thus δG(B ∪ {u}) is an internal 2-robust at most 6-edge-cut that does

108



not separate d from t. Recall that if δG(B ∪ {u}) is a 6-edge-cut it is necessarily 4-robust,
contradicting the minimality of A. Hence no such cut exists.

Suppose that G4 has a 2-robust at most 3-edge-cut δG4(B) where d′ ∈ B and m /∈ B. Then
n and p are in G′ −B, else δG(B ∪ {u, v}) is a 2-robust at most 5-edge-cut that does not
separate d from t. We have δG(B), a 4-robust at most 6-edge-cut, that does not separate
d from t, contradicting the minimality of G − A. Hence no such cut exists. Then G4 is
an FDT graph and has a valid orientation by the minimality of G. This leads to a valid
orientation of G, a contradiction.

We now have deg(m) = 4, n = p, and deg(n = p) = 5. Then G4 as defined above would
have two vertices of degree 3. Hence we consider different reductions. Let e1, e2, e3, eu
be the edges incident with m in order, where e1 is on the boundary of the outer face and
eu = {m,u}.

Claim FDT8g. Vertices m and n are adjacent.

Proof. Suppose that m and n are not adjacent. Let G5 be the graph obtained from G2 by
lifting e1 and e2, and orienting and deleting m, u, and v. Then n is the only possible degree
3 vertex in G5.

Suppose that G5 has a 2-robust at most 2-edge-cut δG5(B) where d′ and the lifted edge are
in B. Then δG(B∪{u, v,m}) is an internal 2-robust at most 6-edge-cut in G, a contradiction.
Suppose that G5 has a 2-robust at most 2-edge-cut δG5(B) where d′ ∈ B and the lifted edge
is not in B. Then p and q are in B, else δG(B) is a 4-robust at most 5-edge-cut that does
not separate d from t, contradicting the minimality of δ(A). We have δG(B ∪ {u, v}), a
2-robust at most 4-edge-cut, a contradiction.

Suppose that G5 contains a 2-robust 3-edge-cut δG5(B) where d′ ∈ B. By Claim 5.2.2,
we may assume that p ∈ B. If the lifted edge is also in B, then δG(B ∪ {u, v,m}) is an
internal 2-robust at most 4-edge-cut, a contradiction. Hence the lifted edge is in G5 −B.
Then δG(B ∪ {u, v}) is a 2-robust at most 5-edge-cut that does not separate d from t, a
contradiction. An analysis of these cuts is shown in Figure 5.4. Therefore, G5 is an FDT
graph and has a valid orientation by the minimality of G. This leads to a valid orientation
of G, a contradiction.
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Figure 5.4: FDT8: Analysis of cuts (2).

110



Therefore m and n are adjacent. This series of claims provides sufficient structure to
complete the proof.

Note that the only internal degree 4 neighbour of n is b. Suppose that n is adjacent to a
degree 4 vertex c that is not m or v. Then c is on the boundary of the outer face and is not
adjacent to m. We have

|δ(An)|+ |δ(Bn)| = 9,

so either δ(An) or δ(Bn) is an at most 4-edge-cut in G. It is easily verified that this at most
4-edge-cut is 2-robust, contradicting FDT3. Thus we may assume that m and v are the
only neighbours of n that have degree at most 4.

Let G6 be the graph obtained from G2 by lifting e1 and e2, and orienting and deleting m,
u, v, and n. Then q is the only possible degree 3 vertex in G6 (if n and q are adjacent).

Suppose that G6 has a 2-robust at most 2-edge-cut δG6(B) where d′ and the lifted edge
are in B. Then G has an internal 2-robust at most 5-edge-cut δG(B ∪ {u, v,m, n}), a
contradiction. Suppose that G6 has a 2-robust at most 2-edge-cut δG6(B) where d′ ∈ B
and the lifted edge is not in B. Then q and both neighbours of n are in B, else δG(B) is a
4-robust at most 6-edge-cut that does not separate d from t. Then G contains a 2-robust
at most 4-edge-cut δG(B ∪ {u, v,m, n}), a contradiction.

Suppose that G6 has a 2-robust 3-edge-cut δG6(B) where d′ ∈ B. Then by Claim 5.2.2, n
and q are adjacent and q ∈ B. Suppose the lifted edge is in B. Then δG(B ∪ {u, v,m, n})
is an internal 2-robust at most 4-edge-cut in G, a contradiction. Thus the lifted edge is not
in B. The remaining neighbour of n is in G′ − B, else δG(B ∪ {u, v,m, n}) is a 2-robust
at most 5-edge-cut that does not separate d from t. Then δG(B ∪ {u, v, n}) is a 3-robust
6-edge-cut. If it is not 4-robust, then it is of Type 1, and n has two adjacent internal degree
4 vertices, a contradiction. Therefore, G6 is an FDT graph and has a valid orientation by
the minimality of G. This leads to a valid orientation of G, a contradiction. Hence no such
6-edge-cut exists.

We now consider the vertices adjacent to t. Let u, v, and w be adjacent to t such that u
and v are on the boundary of the outer face. Many of the arguments used in the proof of
FDT8 will arise again in FDT11, where we consider a configuration with u and v adjacent
to w, and replace G2 in the proof of FDT8 with the the graph obtained by deleting the
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remaining edges incident with either u or v, and contracting {t, u, v, w}. We now consider
properties of u, v, and w, in order to establish such a structure.

Claim 5.2.3. At least two of u, v, and w have degree 4.

Proof. Suppose that two of the vertices u, v, and w have degree at least 5. Let G′ be
the graph obtained from G by orienting and deleting t. Then G′ has at most one vertex
of degree 3. Suppose that G′ contains a 2-robust at most 3-edge-cut. Then G contains
a 2-robust at most 4-edge-cut, a contradiction. Hence G′ is an FDT graph, and has
a valid orientation by the minimality of G. This leads to a valid orientation of G, a
contradiction.

Claim 5.2.4. If a degree 4 vertex v in G is incident with parallel edges, then v = d.

Proof. Suppose that such a vertex v exists where v 6= d. Then there exist oriented parallel
edges with endpoints v and d. Orient v and contract d and v to a single vertex d′, calling
the resulting graph G′. Then d′ is an oriented vertex on the boundary of the outer face of
G′, with the same degree as d. Hence G′ is an FDT graph and has a valid orientation by
the minimality of G. This leads to a valid orientation of G, a contradiction.

FDT9. Vertices u and v have degree 4.

Proof. Suppose that v has degree 5. Then u and w have degree 4. Let e1, e2, e3, et be the
edges incident with u in order, where e1 is on the boundary of the outer face. We first
prove the following claim:

Claim FDT9a. Vertices u and w are adjacent.

Proof. Suppose that u and w are not adjacent. Let G′ be the graph obtained from lift-
ing e1 and e2, and orienting and deleting u and t. The remaining endpoint of e3 is not a
degree 4 vertex, as it shares a face with w. Hence w is the only possible degree 3 vertex in G′.

Suppose that G′ has a 2-robust at most 3-edge-cut δG′(A) where v and the lifted edge are
in A. Then δG(G− A) is an internal 2-robust at most 5-edge-cut, a contradiction. Suppose
that G′ has a 2-robust at most 2-edge-cut δG′(A) where v ∈ A and the lifted edge is not
in A. Then w and the endpoint of e3 are in A, else δG(A) is a 2-robust at most 4-edge-cut.
Hence δG(G− A) is a 2-robust 4-edge-cut, a contradiction. Suppose that G′ has a 2-robust
3-edge-cut δG′(A) where v ∈ A and the lifted edge is not in A. Then w ∈ A, else δG(A) is
a 2-robust 4-edge-cut. By Claim 5.2.2, we may assume that d ∈ A. Then δG(A ∪ {t}) is
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Figure 5.5: FDT9: Analysis of cuts (1).

a 2-robust at most 5-edge-cut in G that does not separate d from t, a contradiction. An
analysis of these cuts can be seen in Figure 5.5.

We conclude that G′ is an FDT graph and has a valid orientation by the minimality of G.
This leads to a valid orientation of G, a contradiction.

Suppose that w is adjacent to a vertex x of degree 4 that is not u. Then x is on the
boundary of the outer face by definition. We have |δ(Aw)|+ |δ(Bw)| = 7. Then δ(Aw) or
δ(Bw) is a 3-edge-cut that is not δ(t) or δ(d), a contradiction. Hence we may assume that
w has no adjacent vertex of degree at most 4 except u and t. An analogous argument shows
that w is not adjacent to d. Let G′ be the graph obtained from G by lifting e1 and e2, and
orienting and deleting u, t, and w. Then v is the only possible vertex of degree 3 in G′ (if
it is adjacent to w).

Suppose that G′ has a 2-robust at most 3-edge-cut δG′(A), where v and the lifted edge are
in A. Then G has an internal 2-robust at most 5-edge-cut, a contradiction. Suppose
that G′ has a 2-robust at most 2-edge-cut δG′(A), where v ∈ A and the lifted edge is in
G′−A. Then G contains a 2-robust at most 4-edge-cut δG(A) or δG(G′−A), a contradiction.

Suppose that G′ has a 2-robust 3-edge-cut δG′(A), where v ∈ A and the lifted edge is in
G′ − A. If G′ has no degree 3 vertex, then it has a valid orientation by Claim 5.2.2. This
leads to a valid orientation of G, a contradiction. Hence we may assume that v is a degree
3 vertex. Then d ∈ A by Claim 5.2.2. It follows that δG(A ∪ {t, u, w}) is a 2-robust at
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Figure 5.6: FDT9: Analysis of cuts (2).

most 6-edge-cut in G that does not separate d from t. If it is a 6-edge-cut, then since w is
an internal degree 4 vertex, G− A− {t, u, w} does not have an internal degree 4 vertex,
so the 6-edge-cut is of Type 2. Then G has unoriented parallel edges incident with u, a
contradiction. Hence G′ has no such cut. An analysis of these cuts can be seen in Figure 5.6.

Therefore, G′ is an FDT graph and has a valid orientation by the minimality of G. This
leads to a valid orientation of G, the final contradiction.

Claim 5.2.5. Vertex w has degree at most 5.

Proof. Suppose that w has degree at least 6. Let e1, e2, e3, et be the edges incident with
u in order, where e1 is on the boundary of the outer face. If e3 has two incident degree 4
vertices, then FDT5 implies that the corresponding edge incident with v does not, else G
has two internal degree 4 vertices on adjacent faces, a contradiction. Hence without loss of
generality, we may assume that e3 has only one endpoint of degree 4. Let G′ be the graph
obtained from G by lifting e1 and e2, and orienting and deleting u and t. Since deg(w) ≥ 6,
v is the only degree 3 vertex in G′.

Suppose that G′ has a 2-robust at most 3-edge-cut δG′(A) where v and the lifted edge are
in A. Then δG(G− A) is an internal 2-robust at most 5-edge-cut, a contradiction. Suppose
that G′ has a 2-robust at most 2-edge-cut δG′(A) where v ∈ A and the lifted edge is not
in A. Then w and the endpoint of e3 are in A, else δG(A) is a 2-robust at most 4-edge-cut.
Hence δG(G− A) is a 2-robust 4-edge-cut a contradiction.
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Suppose that G′ has a 2-robust 3-edge-cut δG′(A) where v ∈ A and the lifted edge is not
in A. Then w ∈ A, else δG(A) is a 2-robust 4-edge-cut. By Claim 5.2.2, we may assume
that d ∈ A. Then δG(A ∪ {t}) is a 2-robust at most 5-edge-cut that does not separate
d from t, a contradiction. Hence G′ is an FDT graph and has a valid orientation by the
minimality of G. This leads to a valid orientation of G, a contradiction.

Claim 5.2.6. We have p(t) = 0, p(u) = ±1, and p(v) = ±1.

Proof. Suppose that p(t) 6= 0. Let G′ be the graph obtained from G by lifting tu and tw
and orienting and deleting t. Then v is the only degree 3 vertex in G′. If G′ has a 2-robust
at most 3-edge-cut, then G has a corresponding 2-robust at most 4-edge-cut, a contradiction.
Thus G′ is an FDT graph and has a valid orientation by the minimality of G. This leads to
a valid orientation of G, a contradiction. Hence p(t) = 0.

Suppose that p(u) = 0. Lift the pairs of edges e1, e2 and e3, et, calling the resulting graph G′.
Then t is the only vertex of degree 3 in G′. If G′ has a 2-robust at most 2-edge-cut, then G
has a corresponding 2-robust at most 4-edge-cut, a contradiction. Suppose that G′ has a
2-robust 3-edge-cut δG′(A), where t ∈ A. By Claim 5.2.2, d ∈ A. Then δG(A) is a 2-robust
at most 5-edge-cut that does not separate d from t, a contradiction. Therefore G′ is an FDT
graph and has a valid orientation by the minimality of G. This leads to a valid orientation
of G, a contradiction. Hence p(u) 6= 0. Similarly p(v) 6= 0.

Claim 5.2.7. If deg(w) = 4, then w is adjacent to at least one of u and v.

Proof. Suppose that w has degree 4 and assume that w is not adjacent to either u or v.
Suppose that w has a degree 4 neighbour x. Then x is in the boundary of the outer face by
definition. We have |δ(Aw)|+ |δ(Bw)| ≤ 7, so G has an at most 3-edge-cut that is not δ(d)
or δ(t), a contradiction. Hence we may assume that w has no neighbours of degree 4. An
analogous argument shows that w is not adjacent to d.

First, suppose that u and v have the same prescription. Let f1, f2, f3, ft be the edges
incident with v in order, where f1 is on the boundary of the outer face. Lift e1 and e2, and
f1 and f2, and orient and delete u, v, and t, calling the resulting graph G′. Then w is the
only possible vertex of degree 3 in G′.

Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A) where both lifted edges are
in A. Then G contains an internal 2-robust at most 5-edge-cut δG(G′ −A), a contradiction.
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Figure 5.7: Claim 5.2.7: Analysis of cuts (1).

Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A) where the lifted edge from
u is in A and the remaining lifted edge is in G′ − A. Then w ∈ A, else δG(A ∪ {u}) is
a 2-robust at most 4-edge-cut. We have δG(A ∪ {u, t}) a 2-robust at most 4-edge-cut, a
contradiction.

Suppose that G′ contains a 2-robust 3-edge-cut δG′(A), where both lifted edges are in A.
Then d ∈ A by definition. By Claim 5.2.2, w ∈ A. Then G contains an internal 2-robust
at most 4-edge-cut, a contradiction. Suppose that G′ contains a 2-robust 3-edge-cut δG′(A)
where the lifted edge from u is in A and the remaining lifted edge is in G′ − A. Without
loss of generality let w ∈ A. Then d ∈ A by Claim 5.2.2. But then G contains a 2-robust
at most 5-edge-cut δG(A ∪ {u, t}) that does not separate d from t, a contradiction. Hence
no such cut exists. An analysis of these cuts can be seen in Figure 5.7.

Then G′ is an FDT graph and has a valid orientation by the minimality of G. This leads
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to a valid orientation of G, a contradiction.

We now assume that u and v do not have the same prescription. Then there exists x ∈ {u, v}
such that p(x) 6= −p(w). Without loss of generality, assume that x = v.

Let g1, g2, g3, gt be the edges incident with w where g1 is on the same face as e3. Lift e1
and e2, and g1 and g2, and orient and delete u, w, and t, calling the resulting graph G′.
When orienting w, if w has the same prescription as u, the directions of edges are clear.
If w has prescription zero, then the remaining edges are directed to allow the p(t) to be
satisfied. Then v is the only possible vertex of degree 3 in G′.

Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A) where v and the lifted edge
from u are in A. If e3 does not have an endpoint in G′ − A, then G contains an internal
2-robust at most 5-edge-cut δG(A∪{u, t}) or δG(A∪{u, t, w}), a contradiction. Thus e3 has
an endpoint in G′ −A. All remaining vertices adjacent to w are in G′ −A, else δG(G′ −A)
is an internal 2-robust at most 6-edge-cut. Then δG(A ∪ {t, u}) is an internal 2-robust
5-edge-cut, a contradiction.

Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A) where v ∈ A and the lifted
edge from u is not in A. The neighbours of w via g2 and g3 are in A, else δG(A) is a 2-robust
at most 4-edge-cut in G. Then δG(A ∪ {t, w}) is a 2-robust at most 4-edge-cut in G, a
contradiction.

Suppose that G′ contains a 2-robust 3-edge-cut δG′(A) where v ∈ A and the lifted edge from
u is not in A. Then d ∈ A by Claim 5.2.2. The endpoints of g1 and g2 are in G′ − A,
else δG(A ∪ {t, w}) is a 2-robust at most 5-edge-cut that does not separate d from t. The
endpoint of g3 is in A, else δG(A) is a 2-robust at most 4-edge-cut. We have δG(A ∪ {t, w})
a 3-robust 6-edge-cut in G that does not separate d from t. This cut is of Type 1, which
implies that u is adjacent to w, a contradiction.

Therefore no such cut exists. An analysis of these cuts can be seen in Figure 5.8. Thus G′

is an FDT graph and has a valid orientation by the minimality of G. This leads to a valid
orientation of G, a contradiction. We conclude that w is adjacent to u or v.

Claim 5.2.8. If deg(w) = 4, then w is adjacent to both u and v.
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Figure 5.8: Claim 5.2.7: Analysis of cuts (2).

Proof. Suppose that w is adjacent to u but not v. Suppose that w has a degree 4 neighbour
x aside from u. Then x is in the boundary of the outer face by definition. We have
|δ(Aw)| + |δ(Bw)| ≤ 7, so G has an at most 3-edge-cut that is not δ(d) or δ(t), a contra-
diction. Hence we may assume that w has no neighbours of degree 4 aside from u. The
argument that w is not adjacent to d is analogous.

Let G′ be the graph obtained from G by lifting e1 and e2 and orienting and deleting u, t,
and w. Then v is the only possible vertex of degree 3 in G′. Suppose that G′ contains a
2-robust at most 3-edge-cut δG′(A) that does not separate the lifted edge from v. Then δG(A)
is an internal 2-robust at most 5-edge-cut, a contradiction.

Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A) where v ∈ A and the lifted
edge is not in A. The neighbours of w are in A, else δG(A) is a 2-robust at most 4-edge-cut,
a contradiction. We have δG(G′ − A) a 2-robust 4-edge-cut, a contradiction.

Suppose that G′ has a 2-robust 3-edge-cut δG′(A) where v ∈ A and the lifted edge is not in A.
Then d ∈ A by Claim 5.2.2. At least one neighbour of w is in A, else δG(A) is a 2-robust
4-edge-cut. Then δG(A ∪ {t, w, u}) is a 2-robust at most 6-edge-cut. If it is a 6-edge-cut,
then since w is an internal degree 4 vertex, the cut is of Type 2, and G contains unoriented
parallel edges, a contradiction. Therefore G′ is an FDT graph and has a valid orientation
by the minimality of G. This leads to a valid orientation of G, a contradiction.

Claim FDT10. Vertex w has degree 5.
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Proof. The only alternative is that deg(w) = 4. By Claim 5.2.8, w is adjacent to both u
and v. As in previous arguments, we may assume that the remaining neighbour y of w has
degree at least 5. Then y is not adjacent to both u and v, else δ({t, u, v, w, y}) is a 2-robust
4-edge-cut in G, a contradiction.

We prove the following claims:

a. Exactly one of the following holds:

1. u is adjacent to y and v is adjacent to d, or

2. v is adjacent to y and u is adjacent to d.

Without loss of generality, we assume that u is adjacent to y and v is adjacent to d.

b. We have deg(d) = 4.

Let x be the remaining endpoint (not u) of e1.

c. Vertices x and y are adjacent, and deg(x) = 4.

Claim FDT10a. Exactly one of the following holds:

1. u is adjacent to y and v is adjacent to d, or

2. v is adjacent to y and u is adjacent to d.

Proof. Suppose that v is adjacent to neither y nor d. Let G′ be the graph obtained from G
by lifting e1 and e2, and orienting and deleting u, t, w, and v. Then the boundary neighbour
z of v is the only possible vertex of degree 3 in G.

Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A) where z and the lifted edge
are in A. Then G contains an internal 2-robust at most 5-edge-cut δG(G′ − A). Suppose
that G′ contains a 2-robust at most 2-edge-cut δG′(A) where z ∈ A and the lifted edge is not
in A. Then G contains a 2-robust at most 4-edge-cut δG(A) or δG(G′−A), a contradiction.
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Suppose that G′ has a 2-robust 3-edge-cut δG′(A) where z ∈ A and the lifted edge is not in A.
By Claim 5.2.2, d ∈ A. Now δG(A) cannot be a 4-edge-cut, so the endpoint of f2 is in A.
Then δG(G′ − A) is a 2-robust at most 6-edge-cut. Since w is an internal degree 4 vertex,
if δG(G′ − A) is not 4-robust, then it is of Type 2, and G has unoriented parallel edges
incident with u, a contradiction. Hence G′ is an FDT graph and has a valid orientation by
the minimality of G. This leads to a valid orientation of G, a contradiction.

We now assume that v is adjacent to at least one of y and d. The same is true of u. If u and
v are both adjacent to d, then δG({t, u, v, w, d}) is an internal 2-robust at most 4-edge-cut,
a contradiction. We conclude that exactly one of u and v is adjacent to y and exactly one
of u and v is adjacent to d.

We now assume without loss of generality that u is adjacent to y and v is adjacent to d.

Claim FDT10b. We have deg(d) = 4.

Proof. If deg(d) = 3, then orient v, t, w, u, contract {d, u, t, v, w} and delete e1 and e2.
The resulting graph is an FDT graph and has a valid orientation by the minimality of G.
This leads to a valid orientation of G, a contradiction. Hence deg(d) = 4.

Suppose that y has an adjacent vertex z of degree 4 that is not w, u, or adjacent to u.
Then z is on the boundary by definition. We have |δ(Ay)|+ |δ(By)| = 9. Then either δ(Ay)
or δ(By) is an at most 4-edge-cut, which by FDT3 is not 2-robust. It is easy to verify that
G has unoriented parallel edges, a contradiction. Let x be the remaining endpoint of e1.

Claim FDT10c. Vertices x and y are adjacent, and deg(x) = 4.

Proof. Suppose that x and y are not adjacent or that deg(x) ≥ 5. Note that the directions
of two edges at w (wu and wy) may be determined (the pre-orientation of d may force
vw and tw to be in opposite directions relative to w). Let h1, h2, h3, yw, yu be the edges
incident with y in order. If the edge vd achieves p(v), lift h2 and h3, and orient and delete
y, u, t, v, and w, calling the resulting graph G′. Then x is the only possible degree 3 vertex
in G aside from d.

Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A) where d ∈ A and x ∈ A. Then
y has a neighbour in A, else δG(A ∪ {t, u, v, w}) is an internal 2-robust at most 6-edge-cut
that does not separate d from t. Similarly, δG(A ∪ {t, u, v, w, y}) is an internal 2-robust at

120



most 6-edge-cut, a contradiction.

Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A) where d ∈ A and x 6∈ A. The
endpoints of h1, h2, and h3 are in G′ − A, else δG(G′ − A) is a 2-robust at most 5-edge-cut
that does not separate d from t. Then δG(G′ − A) is a 2-robust at most 4-edge-cut, a
contradiction. If G′ contains a 3-robust 3-edge-cut separating d and x, then G′ has a valid
orientation by Claim 5.2.2. Hence G′ is an FDT graph and has a valid orientation by the
minimality of G. This leads to a valid orientation of G, a contradiction.

Hence the edge vd does not achieve p(v). Lift vw, vt, contract {t, u, w, y} to a single vertex
of degree 4, and orient and delete v, calling the resulting graph G′. Then G′ has no vertex of
degree 3 aside from d. If G′ has a 2-robust at most 2-edge-cut, then G has a corresponding
at most 4-edge-cut, a contradiction. By Claim 5.2.2, G′ does not have a 2-robust 3-edge-cut.
Hence G′ is an FDT graph and has a valid orientation by the minimality of G. This leads
to a valid orientation of G, a contradiction.

Therefore x and y are adjacent and deg(x) = 4. Let j1 and j2 be the remaining edges
incident with x. If the edge vd meets p(v), lift the pair of edges j1 and j2, and orient and
delete x, u, t, v, w, and y, calling the resulting graph G′. Otherwise, lift j1 and j2, orient
tv to satisfy p(v), and orient and delete t, x, u, w, v, and y, calling the resulting graph G′.
Then G′ has a degree 3 directed vertex and only one other possible degree 3 vertex: a
common neighbour of v and y.

Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A) where d ∈ A and the lifted
edge is in A. Then G contains an internal 2-robust at most 6-edge-cut δG(G′ − A), a
contradiction. Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A) where d ∈ A
and the lifted edge is not in A. The neighbour of f2 and the neighbour of h3 are in A, else
δG(A) is a 2-robust at most 4-edge-cut. Thus δG(G′ − A) is a 2-robust at most 5-edge-cut
in G that does not separate d from t, a contradiction.

Suppose that G′ contains a 2-robust 3-edge-cut δG′(A) where d ∈ A and the lifted edge is
not in A. Then by Claim 5.2.2, G′ has a degree 3 vertex, which must be in A. Then
δG(G′ −A) is a 2-robust at most 6-edge-cut in G that does not separate d from t. Suppose
that δG(G′ − A) is a 6-edge-cut that is not 4-robust. Then since w is an internal degree
4 vertex, G′ − A does not contain an internal degree 4 vertex, and thus is of Type 2. It
follows that G has unoriented parallel edges incident with x, a contradiction. Hence no such
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cut exists, and G′ is an FDT graph. Therefore G′ has a valid orientation by the minimality
of G. This leads to a valid orientation of G, a contradiction.

FDT11. One of the following holds:

1. the edge e3 is incident with an internal degree 4 vertex, and v and w are adjacent, or

2. the edge f3 is incident with an internal degree 4 vertex, and u and w are adjacent.

Proof. Due to the complexity of this proof, we provide a detailed summary in sections at
the appropriate points. The overall idea of this proof is to:

1. establish that at least one of e3 and f3 is incident with w, and that the other is
incident with either w or an internal degree 4 vertex,

2. assume (for a contradiction) that both e3 and f3 are incident with w,

3. check that there exists z ∈ {u, v} with the property that no 6-edge-cut using certain
edges incident with z separates d from t, and

4. apply reductions similar to those in FDT8 to obtain a valid orientation.

We first prove the following claims:

a. The edges e3 and f3 are each incident with an internal degree 4 vertex, or with w.

b. At least one of the edges e3 and f3 is incident with w.

Claim FDT11a. The edges e3 and f3 are each incident with an internal degree 4 vertex,
or with w.

Proof. Suppose for a contradiction that e3 is not incident with w or with an internal degree
4 vertex. Let G′ be the graph obtained from G by lifting e1 and e2 and orienting and
deleting u and t. Then v is the only possible degree 3 vertex in G.

Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A) where v ∈ A and the lifted
edge is in A. Then G has an internal 2-robust at most 5-edge-cut δG(G′−A), a contradiction.
Suppose that G contains a 2-robust at most 3-edge-cut δG′(A) where v ∈ A and the lifted
edge is not in A. Then w ∈ A, else δG(A) is a 2-robust 4-edge-cut. We have the endpoint
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of e3 in A, else δG(A ∪ {t}) is a 2-robust 4-edge-cut. Then δG(A) and δG(A ∪ {t}) are both
2-robust 5-edge-cuts. One of them does not separate d from t, a contradiction. Therefore
G′ is an FDT graph and has a valid orientation by the minimality of G. This leads to a
valid orientation of G, a contradiction. The same is true of f3.

Claim FDT11b. At least one of the edges e3 and f3 is incident with w.

Proof. If both e3 and f3 are incident with internal degree 4 vertices, these vertices are on
adjacent faces, a contradiction.

Thus we may assume without loss of generality that v and w are adjacent. It remains to be
shown that e3 is incident with an internal degree 4 vertex. Suppose for a contradiction that
u and w are adjacent. We prove the following claims:

c. Neither u nor v is adjacent to d.

d. The edges e2 and f2 each have an endpoint that is an internal degree 4 vertex.

Claim FDT11c. Neither u nor v is adjacent to d.

Proof. Suppose that both u and v are adjacent to d. Then δ({t, u, v, w, d}) is an internal
6-edge-cut in G. It is 2-robust, else w has unoriented parallel edges. The argument that
this cut is 4-robust is analogous to previous such arguments.

Now assume that u is adjacent to d and v is not. If d has degree 3, orient u and t, delete
tv and tw, and contract {t, u, d} to a single vertex, calling the resulting graph G′. Then
G′ has a directed vertex of degree 3 and at most one degree 3 vertex, v. If G′ contains
a 2-robust at most 3-edge-cut, then G contains a 2-robust at most 4-edge-cut, a contradiction.

Thus we may assume that deg(d) = 4. If f2 has an internal endpoint of degree at least 5,
let G′ be the graph obtained from G by orienting and deleting f1 and f2 to satisfy p(v),
and contracting {t, u, v, w} to a vertex z of degree 4. Then G′ has at most one vertex of
degree 3. Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A), where z ∈ A. If
d ∈ A, then δG(A) is a 2-robust at most 5-edge-cut, not separating d from t, a contradiction.
Hence d 6∈ A. Then δG((G′ − A) ∪ {u, t}) is a 4-robust at most 6-edge-cut, a contradiction.
Hence G′ is an FDT graph and has a valid orientation by the minimality of G. This leads
to a valid orientation of G by orienting the two remaining edges incident with u, and t; then
vw’s orientation is determined by vt, and w cannot be the only vertex whose prescription
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is not met, a contradiction.

Hence f2 has an internal endpoint of degree 4. Thus w is not adjacent to an internal degree
4 vertex. Let G′ be the graph obtained from G by lifting f1 and f2, and orienting v, t, u,
and w, deleting v, t, and w, and contracting d and u to a single vertex. Then G′ has no
degree 3 vertex.

If G′ contains a 2-robust at most 2-edge-cut δG′(A) where d and the lifted edge are in A,
then G contains an internal 2-robust at most 5-edge-cut δG(A∪{t, u, v, w}), a contradiction.
Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A) where d ∈ A and the lifted
edge is not in A. Then w has a neighbour in A and a neighbour in G′ − A, else δG(A) or
δG(G′−A) is a 2-robust 4-edge-cut. Now δG(G′−A) is a 2-robust 5-edge-cut that does not
separate d from t, a contradiction. By Claim 5.2.2, G′ does not have a 2-robust 3-edge-cut.
Hence G′ is an FDT graph and has a valid orientation by the minimality of G. This leads
to a valid orientation of G, a contradiction.

Claim FDT11d. The edges e2 and f2 each have an endpoint that is an internal degree 4
vertex.

Proof. Suppose that e2 has an endpoint of degree at least 5. Let G′ be the graph obtained
from G by orienting and deleting e1 and e2 to satisfy p(u), and contracting {t, u, v, w} to
a vertex z of degree 4. Then G′ has at most one vertex of degree 3. Suppose that G′

contains a 2-robust at most 3-edge-cut δG′(A), where z ∈ A. If d ∈ A, then δG(A) is a
2-robust at most 5-edge-cut, not separating d from t, a contradiction. Hence d 6∈ A. Then
δG((G′−A)∪ {u, t}) is a 4-robust at most 6-edge-cut, a contradiction. Hence G′ is an FDT
graph and has a valid orientation by the minimality of G. This leads to a valid orientation
of G by orienting the two remaining edges incident with v, and t; then uw’s orientation
is determined by ut, and w cannot be the only vertex whose prescription is not met, a
contradiction. We conclude that e2 has an endpoint that is an internal degree 4 vertex.
The same is true of f2.

Let a and b be the endpoints of e1 and e2 respectively that are not u. Let c and d be the
corresponding endpoints of f1 and f2. Note that neither b nor d is adjacent to w, else
they are on adjacent faces. It also follows that w is not adjacent to an internal degree 4 vertex.

We wish to apply a similar reduction to that of Claim FDT11d, however, this results in two
vertices of degree 3. This situation is very similar to the proof of FDT8, however, the 5 and
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6-edge-cuts that arise in G may separate d from t. We now establish that this cannot occur
on both sides of t. Let e′2 be the edge incident with b on the boundary of a face including
both e1 and e2. Let f ′2 be the corresponding edge incident with the endpoint of f2.

Specifically, we show that G has 2-robust at most 6-edge-cuts δ(A) and δ(B) where
{t, u, v, w} ⊆ A ∩B, d ∈ G− (A ∪B), and

• A,B 6= {t, u, v, w},

• if δ(A) (or δ(B)) is a 5-edge-cut, then e1 and either e2 or e′2 (or f1 and either f2 or
f ′2) is in the cut, and

• if δ(A) (or δ(B)) is a 6-edge-cut, then e1 and e2 (or f1 and f2) are in the cut.

Let C = A ∩B − {t, u, v, w}. Suppose that both e1 and f1 are in δ(A). If e2 ∈ δ(A), then
δ(C) is an internal 2-robust at most 6-edge-cut in G, a contradiction. Thus |δ(A)| = 5
and e2 6∈ δ(A). Then δ(C) is an internal 2-robust at most 7-edge-cut in G. Since w is not
adjacent to an internal degree 4 vertex, the graph obtained from G by contracting G−C and
deleting the two edges incident with w is an FDT graph. Thus δ(C) is reducible in the same
way as a smaller internal edge-cut, a contradiction. We conclude that f1 is not in δ(A). Simi-
larly, e1 is not in δ(B). It follows that a ∈ B−A and the analogous neighbour of v is in A−B.

Suppose that |B−A| = 1. Then B − A = {a}. Suppose that e2 ∈ δ(A). Then
b ∈ G− (A ∪B). Hence all other neighbours of a are in G− (A ∪B). It follows that δ(C)
is a 2-robust at most 4-edge-cut in G, a contradiction. We may now assume that δ(A) is a
5-edge-cut and e′2 ∈ δ(A). If the other endpoint of e′2 is in G − (A ∪ B), then apply the
same argument. Hence e′2 is incident with a. Suppose that the remaining edges incident
with a are in δ(B). If f2 ∈ δ(B), then δ(C) is a 2-robust internal at most 6-edge-cut, a
contradiction. Otherwise, δ(C) is a 2-robust internal at most 7-edge-cut. Again, it can
be reduced following the same argument as for smaller internal edge-cuts. Thus a has an
adjacent vertex in A ∩ B. Since 3 edges incident with A are in δ(A), we conclude that
δ(G− (A ∪B)) is a 3-edge-cut, and therefore G− (A ∪B) = {d}.

Let G′ be the graph obtained from G by orienting and deleting the e1 and e2 to satisfy
p(u), orienting the remaining two edges incident with a and b, contracting {d, a, b} to a
vertex d′, and contracting {t, u, v, w} to a vertex z. Then G has an oriented vertex of
degree 5, and no vertex of degree 3. It is clear that G′ contains no 2-robust at most
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3-edge-cut, and thus G′ has a valid orientation by the minimality of G. This leads to a
valid orientation of G, a contradiction. We conclude that |B−A| ≥ 2. Similarly |A−B| ≥ 2.

Suppose that |A−B| ≥ 4. Then δ(A − B) is an at least 7-edge-cut, as it does not
separate d from t. Similarly, |δ(B − A)| ≥ 6. Then

|δ(A)|+ |δ(B)| ≥ |δ(A−B)|+ |δ(B − A)| ≥ 13,

a contradiction.

We conclude that 4 > |A−B|, |B−A| ≥ 2. Then δ(A−B) and δ(B −A) are at least
6-edge-cuts, as they do not separate d from t. Then

|δ(A)|+ |δ(B)| ≥ |δ(A−B)|+ |δ(B − A)| ≥ 12,

so δ(A−B) and δ(B − A) are exactly 6-edge-cuts, and [A ∩B : A ∪B] is empty.

If δ(A−B) is of Type 1 or 2, then G has unoriented parallel edges incident with u. Thus
δ(A−B) is of Type 3. The same is true of δ(B−A). If [A−B : B−A] is non-empty, then
the internal degree 4 vertices in A−B and B − A are on adjacent faces, a contradiction.
Hence [A − B : B − A] is empty. Neither internal degree 4 vertex is adjacent to w, else
they are on adjacent faces. Thus δ((A ∩B)− {t, u, v, w}) is an internal at most 6-edge-cut,
the final contradiction.

We may therefore assume without loss of generality that there is no 2-robust at most
6-edge-cut δ(C) in G where

• C 6= {t, u, v, w},

• C separates d from {t, u, v, w},

• if |δ(C)| = 5, then e1 ∈ δ(C) and e2 or e′2 is in δ(C), and

• if |δ(C)| = 6, then e1, e2 ∈ δ(C).

Having established that such 5 and 6-edge-cuts do not exist, we return to our main argument.
Let G2 be the graph obtained from G by orienting and deleting ua and ub to satisfy the
prescription of u, and contracting {t, u, v, w}. Then both a and b have degree 3 in G2. Let
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z be the vertex of contraction.

If b has a degree 4 neighbour x that is not a or u, then x is in the boundary of the outer
face, by definition. We have |Ab|+ |Bb| = 8. Suppose that a ∈ Ab. Then δ(Bb) is 2-robust
and must therefore be of size at least 5. Then Ab contains a single degree 3 vertex, which
must be d. But a ∈ Ab, a contradiction. Therefore, u and a are the only possible degree 4
neighbours of b.

We now prove the following claims:

e. Vertices a and b are adjacent.

Let m and n be the remaining vertices adjacent to a, where m is on the boundary of the
outer face. Let p and q be the remaining vertices adjacent to b.

f. We have m 6= d, deg(m) = 4, n = p, and deg(n = p) = 5.

g. Vertices m and n are adjacent.

These will provide us with sufficient structure to complete the proof.

Claim FDT11e. Vertices a and b are adjacent.

Proof. Suppose that a and b are not adjacent. Let G3 be the graph obtained from G2 by
deleting the edges incident with b. Then G3 has one possible degree 3 vertex: a.

Suppose that G3 contains a 2-robust at most 3-edge-cut δG3(A), where a, z ∈ A. Then δG(A)
or δG(A ∪ {b}) is a 2-robust internal at most 5-edge-cut, a contradiction. Suppose that
G3 contains a 2-robust at most 2-edge-cut δG3(A) where a ∈ A and z 6∈ A. At least two
neighbours of b are in A, else δG(A) is a 2-robust at most 4-edge-cut. Then δG(∪{b}) is a
2-robust at most 5-edge-cut that uses e1 and e2, a contradiction.

Suppose that G3 contains a 2-robust 3-edge-cut δG3(A) where a ∈ A and z 6∈ A. By Claim
5.2.2, d ∈ A. At least one neighbour of b is in A, else δG(A) is a 2-robust at most 4-edge-cut.
At least two neighbours of b are in A, else δG(A) is a 2-robust at most 5-edge-cut using e1
and e′2. Then δG(A ∪ {b}) is a 2-robust at most 6-edge-cut using e1 and e2, a contradiction.
Hence G3 is an FDT graph and has a valid orientation by the minimality of G. This leads
to a valid orientation of G, a contradiction.
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Let m and n be the remaining vertices adjacent to a, where m is on the boundary of the outer
face. Let p and q be the remaining vertices adjacent to b. Note that deg(n), deg(p), deg(q) ≥
5.

Claim FDT11f. We have m 6= d, deg(m) = 4, n = p, and deg(n = p) = 5.

Proof. If any of the following holds: deg(m) ≥ 5, m = d and deg(d) = 4, n 6= p, or
deg(n = p) ≥ 6, then the graph G4 obtained from G2 by orienting and deleting a and b has
at most one vertex of degree 3.

Suppose that G4 has a 2-robust at most 3-edge-cut δG4(A) where m, z ∈ A. Then δG(A∪{b})
is an internal 2-robust at most 6-edge-cut that does not separate d from t. The argument
that such a 6-edge-cut is 4-robust is similar to previous such arguments.

Suppose that G4 has a 2-robust at most 3-edge-cut δG4(A) where z ∈ A and m /∈ A. Then p
and q are in A, else δG(A) is a 2-robust at most 6-edge-cut using e1 and e2. Similarly n ∈ A,
else δG(A ∪ {b}) is a 2-robust at most 5-edge-cut using e1 and e′2. Then δG(A ∪ {a, b}) is a
2-robust 4-edge-cut, a contradiction. Hence no such cut exists. Then G4 is an FDT graph
and has a valid orientation by the minimality of G. This leads to a valid orientation of G,
a contradiction.

Now suppose that m = d and deg(d) = 3. Let G′ be the graph obtained from G2 by
orienting the remaining edges incident with a and b and contracting {d, a, b} to a vertex d′.
Then G′ has an oriented vertex of degree 5 and no degree 3 vertex. If G′ has a 2-robust
at most 3-edge-cut δG′(A), then δG(A) is a 2-robust 5-edge-cut in G using e1 and e2, a
contradiction.

Claim FDT11g. Vertices m and n are adjacent.

Proof. Suppose that m and n are not adjacent. Let j1 and j2 be the remaining edges
incident with m that do not share a face with m. Let G5 be the graph obtained from G2

by lifting j1 and j2, and orienting and deleting m, a, and b. Then n is the only possible
degree 3 vertex in G5.

Suppose that G5 has a 2-robust at most 2-edge-cut δG5(A) where z and the lifted edge are
in A. Then G has a 2-robust at most 6-edge-cut δG(A ∪ {a, b,m}). The analysis that
such a 6-edge-cut must be 4-robust is analogous to previous such arguments. Suppose
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that G5 has a 2-robust at most 2-edge-cut δG5(A) where z ∈ A and the lifted edge is not
in A. Then n = p and q are in A, else δG(A) is a 4-robust at most 6-edge-cut using e1
and e2, a contradiction. Then δG(A∪{a, b}) is a 2-robust at most 4-edge-cut, a contradiction.

Suppose that G5 has a 2-robust 3-edge-cut δG5(A) where z and the lifted edge are in A. Then
by Claim 5.2.2, n ∈ A. Then G has an internal 2-robust at most 4-edge-cut δG(A∪{a, b,m}),
a contradiction. Suppose that G5 has a 2-robust 3-edge-cut δG5(A) where z ∈ A and the
lifted edge is not in A. If n = p ∈ A, then by Claim 5.2.2, d ∈ A. Then δG(A ∪ {a, b})
is a 2-robust at most 5-edge-cut that does not separate d from t, a contradiction. We
may assume that n = p 6∈ A. Then by Claim 5.2.2, d 6∈ A. Then δG(A) is a 2-robust at
most 6-edge-cut using e1 and e2, a contradiction. Therefore, G5 is an FDT graph and
has a valid orientation by the minimality of G. This leads to a valid orientation of G, a
contradiction.

We now have sufficient information about the structure of the graph to complete the proof.
Note that the only internal degree 4 neighbour of n is b. Suppose that n has another
boundary neighbour x of degree 4. Then |An|+ |Bn| = 9. We may assume that |δ(An)| ≤ 4.
Hence An contains only a single vertex, which must be m. Then x = d is adjacent to m via
parallel edges, else G contains unoriented parallel edges. This is not possible. Hence we
may assume that all other neighbours of n have degree at least 5.

Let G6 be the graph obtained from G2 by lifting j1 and j2, and orienting and deleting m, a,
b, and n. Then q is the only possible degree 3 vertex in G6.

Suppose that G6 has a 2-robust at most 3-edge-cut δG6(A) where z and the lifted edge are
in A. Then G has an internal 2-robust at most 6-edge-cut, a contradiction. The argument
that such a 6-edge-cut is 4-robust is analogous to previous such arguments.

Suppose that G6 has a 2-robust at most 2-edge-cut δG6(A) where z ∈ A and the lifted edge is
not in A. Then q ∈ A and both neighbours of n are in A, else δG(A) is a 4-robust at most
6-edge-cut that uses e1 and e2. Hence δG(A ∪ {a, b,m, n}) is a 2-robust 4-edge-cut in G, a
contradiction.

Suppose that G6 has a 2-robust 3-edge-cut δG6(A) where z ∈ A and the lifted edge is not
in A. By Claim 5.2.2, q has degree 3 in G6. Suppose that q ∈ A. Then by Claim 5.2.2,
d ∈ A. Then δG(A ∪ {a, b,m, n}) is a 2-robust at most 6-edge-cut in G that does not
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separate d from t. Since b is an internal degree 4 vertex, G−A−{a, b,m, n} does not have
an internal degree 4 vertex, and is therefore of Type 2. Thus G has unoriented parallel
edges incident with m, a contradiction. Hence q 6∈ A. By Claim 5.2.2, d 6∈ A. Then δG(A)
is a 2-robust 5-edge-cut in G using e1 and e2, a contradiction.

Therefore, G6 is an FDT graph and has a valid orientation by the minimality of G. This
leads to a valid orientation of G, a contradiction.

Suppose that x is adjacent to a degree 4 vertex z aside from u. Then z is in the boundary
of the outer face by definition. We have |δ(Ax)|+ |δ(Bx)| = 8, so at least one of δ(Ax) and
δ(Bx) is an at most 4-edge-cut; suppose this cut is δ(Ax). By FDT3, δ(Aw) is not 2-robust.
Let y be the vertex in Aw. Then y and u are adjacent via parallel edges, a contradiction.
Thus x has no adjacent degree 4 vertex aside from u. An analogous argument shows that x
is not adjacent to d.

FDT12. Vertices x and w are adjacent.

Proof. Suppose that x and w are not adjacent. Let G′ be the graph obtained from G by
lifting e1 and e2, and orienting and deleting u, t, and x. Then v is the only possible degree 3
vertex in G′.

Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A) where v and the lifted edge
are in A. Then δG(A) or δG(A ∪ {u, t}) is an internal 2-robust at most 6-edge-cut, a
contradiction. Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A) where v ∈ A
and the lifted edge is not in A. Then w and at least one vertex adjacent to x are in A,
else δG(A) is a 2-robust at most 4-edge-cut. At least one more neighbour of x is in A, else
δG(A ∪ {t}) is a 2-robust at most 4-edge-cut. The remaining neighbour of x is in G′ − A,
else δG(A ∪ {t, u, x}) is a 2-robust at most 4-edge-cut. If d ∈ A, then δG(A ∪ {t, u, x}) is a
2-robust at most 5-edge-cut that does not separate d from t. Hence d 6∈ A. Then δG(A)
is a 2-robust 6-edge-cut that does not separate d from t. Since x is an internal degree 4
vertex, A does not contain an internal degree 4 vertex, and thus has Type 2. Then G has
unoriented parallel edges incident with t (we have v = w), a contradiction.

Suppose that G contains a 2-robust 3-edge-cut δG′(A), where v ∈ A and the lifted edge is
not in A. Then by Claim 5.2.2, d ∈ A. We have w ∈ A, else δG(A) is a 2-robust 4-edge-cut.
Similarly, x has three neighbours in A, else δG(A ∪ {t}) is a 4-robust at most 6-edge-cut
that does not separate d from t. Then δG(G′ − A) is a 2-robust 5-edge-cut that does not
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Figure 5.9: FTD13: Reduction when u and d are not adjacent.

separate d from t, a contradiction. Hence G′ is an FDT graph and has a valid orientation
by the minimality of G. This leads to a valid orientation of G, a contradiction.

Note that x is the only internal degree 4 vertex adjacent to w.

FTD13. Vertices u and d are adjacent.

Proof. Suppose that u and d are not adjacent. Let G′ be the graph obtained from G by
lifting f1 and f2, lifting j1 and j2, and orienting and deleting v, t, x, w, and u. Then G′

has only one possible degree 3 vertex: the endpoint z of e1. This reduction can be seen in
Figure 5.9.

Suppose that G′ contains a 2-robust at most 3-edge-cut δG′(A), where z and the lifted
edge (from f1 and f2) are both in A. The endpoints of j1 and j2 are in G′ − A, else
δG(G′ − A) is an internal 2-robust at most 5-edge-cut. Similarly, w has a neighbour in
G′−A, else δG(G′−A) is an internal 2-robust at most 6-edge-cut. Also, the endpoint of e2 is
in G′−A, else either δG(G′−A) or δG(A∪{t, u, v}) is an internal 2-robust at most 6-edge-cut.

Suppose that the remaining neighbour of w is in G′ − A. Then δG((G′ − A) ∪ {w, x})
is a 2-robust internal 7-edge-cut containing parallel edges incident with u. Contract
(G′ − A) ∪ {w, x} to a vertex in G calling the resulting graph G1. Then G1 is an FDT
graph and has a valid orientation by the minimality of G. Transfer this orientation to G.
Contract A ∪ {t, u, v} to a vertex in G, and deleting e2, e3, and tw, calling the resulting
graph G2. Then G2 is has a directed vertex of degree 4 and one degree 3 vertex: x. If G2 has
a 2-robust at most 3-edge-cut, then G has an internal 2-robust at most 6-edge-cut, a contra-
diction. Thus G2 is an FDT graph and has a valid orientation by the minimality of G. This
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leads to a valid orientation of G, a contradiction. Thus the remaining neighbour of w is in A.

Then δG(G′ − A) is a 2-robust 7-edge-cut in G. Contract G′ − A to a single vertex calling
the resulting graph G1. Then G1 is an FDT graph and has a valid orientation by the
minimality of G. Transfer this orientation to G, contract A∪ {t, u, v, w, x} to a vertex, and
delete the two edges incident with w, calling the resulting graph G2. Then G2 has no vertex
of degree 3, and a degree 5 oriented vertex. If G2 has a 2-robust at most 3-edge-cut, then
G has an internal 2-robust at most 5-edge-cut, a contradiction. Hence G2 is an FDT graph
and has a valid orientation by the minimality of G. This leads to a valid orientation of G,
a contradiction. Hence no such cut exists.

Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A), where z ∈ A and the lifted
edge (from f1 and f2) is not in A. Then the endpoints of e2, j1, and j2 are in A, else δG(A)
is a 2-robust at most 4-edge-cut. Similarly, w has a neighbour in A, else δG(A∪ {u, x}) is a
2-robust at most 4-edge-cut. The remaining neighbour of w is in G′ −A, else δG(G′ −A) is
a 2-robust at most 4-edge-cut. Now δG(A ∪ {u, x}) and δG(A ∪ {u, x, t, w}) are 2-robust
5-edge-cuts. At most one separates d from t, a contradiction.

Suppose that G′ contains a 2-robust 3-edge-cut δG′(A), where z ∈ A and the lifted edge (from
f1 and f2) is not in A. Then by Claim 5.2.2, d ∈ A. Both neighbours of w are in G′ − A,
else δG(G′ − A) is a 2-robust at most 6-edge-cut that does not separate d from t. The
argument that such a 6-edge-cut is 4-robust is analogous to previous such arguments. The
endpoints of j1 and j2 are in G′ − A, else δG(A ∪ {u, x, t}) is a 4-robust at most 6-edge-cut
that does not separate d from t. The same is true of e2 and δG(A ∪ {u, t}). Then δG(A) is
a 2-robust 4-edge-cut, a contradiction. An analysis of these cuts is shown in Figure 5.10.

Hence G′ is an FDT graph and has a valid orientation by the minimality of G. This leads
to a valid orientation of G, a contradiction.

We now have enough of the structure of G to complete the proof. Suppose that d has
degree 3. Then δ({d, u, t}) is a 4-robust 6-edge-cut, a contradiction. Hence we may assume
that d has degree 4.

Let G′ be the graph obtained from G by lifting f1 and f2, orienting v, t, and u, deleting vw,
tw, and ux, contracting {d, u, t, v}, and orienting and deleting w and x. Then a possible
common neighbour of x and w is the only degree 3 vertex in G′. This reduction can be
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seen in Figure 5.11.

Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A), where d and the lifted edge
are both in A. Then G contains an internal 2-robust at most 6-edge-cut δG(G′ − A), a
contradiction.

Suppose that G′ contains a 2-robust at most 2-edge-cut δG′(A), where d ∈ A and the lifted
edge is not in A. Then the vertices adjacent to w, and the endpoint of j2 are in G′−A, else
δG(G′−A) is a 2-robust at most 6-edge-cut that does not separate d from t. The argument
that such a 6-edge-cut is 4-robust is analogous to previous such arguments. The endpoint of
j1 is in A, else δG(A) is a 2-robust at most 4-edge-cut. Then δG(A ∪ {u, x, t}) is a 4-robust
6-edge-cut that does not separate d from t, a contradiction.
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Suppose that G′ contains a 2-robust 3-edge-cut δG′(A), where d and the lifted edge are both
in A. Then by Claim 5.2.2 the common neighbour of x and w exists and is in A. Then G
has an internal 2-robust at most 4-edge-cut δG(G′ − A), a contradiction.

Suppose that G′ contains a 2-robust 3-edge-cut δG′(A), where d ∈ A and the lifted edge is
not in A. Then by Claim 5.2.2 the common neighbour of x and w exists and is in A. Then
δG(G′−A) is a 2-robust at most 6-edge-cut. Again, such a 6-edge-cut is necessarily 4-robust.
Hence no such cut exists. Therefore G′ is an FDT graph and has a valid orientation by the
minimality of G. This leads to a valid orientation of G, a contradiction. Hence no such
graph exists.

5.3 Discussion

In this section we relate Theorem 5.0.2 to Jaeger’s Strong 3-Flow Conjecture and the
proof of Lai [18] that not all 4-edge-connected graphs have a nowhere zero 3-flow for all
prescription functions. We also consider possible extensions of the result in Theorem 5.0.2.

Theorem 5.0.2 extends Theorem 3.3.3 to allow internal degree 4 vertices if they do not
appear on adjacent faces. Corollary 5.3.1 is an immediate consequence.

Corollary 5.3.1. Let G be a 4-edge-connected graph embedded in the plane where the
internal 4-edge-cuts are non-crossing, and no two adjacent faces are incident with edges of
distinct internal 4-edge-cuts. Suppose that G may have a pre-oriented vertex d of degree 4
or 5 on the boundary of the outer face. Then G is Z3-connected.

Proof. Let G be a minimal counterexample with respect to the number of 2-robust 4-edge-
cuts. If no 4-edge-cut in G is 2-robust, then G is an FDT graph and has a valid orientation
by Theorem 5.0.2. Thus we may assume that G has a 2-robust 4-edge-cut δ(A). Assume
that d, if it exists, is in G− A. If d doesn’t exist, and δ(A) is an internal edge-cut, then
choose A so that A is internal.

Let G′ be the graph obtained from G by contracting A to a vertex v. Then v has degree 4.
If v is on the boundary of the outer face, then it is clear that in G′ the internal 4-edge-cuts
are non-crossing, and no two adjacent faces are incident with edges of distinct internal
4-edge-cuts. If v is an internal vertex, it is incident in G′ with each face that is incident
with an edge of δ(A) in G. Therefore, v is not on a face adjacent to a face containing an
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edge of any other internal 4-edge-cut in G. By the minimality of G, G′ has a valid orientation.

Transfer this orientation to G and let G′′ be the graph obtained from G by contracting
G−A to a vertex d′. Then G′′ has one pre-oriented vertex, d′, which is on the boundary of
the outer face and has degree 4. As for G′, it is clear that G′′ has all internal 4-edge-cuts
non-crossing, and no two adjacent faces incident with edges of distinct internal 4-edge-cuts.
Hence by the minimality of G, G′′ has a valid orientation. This leads to a valid orientation
of G, a contradiction.

While Lai [18] showed that Jaeger’s Strong 3-Flow Conjecture cannot be extended to allow
all 4-edge-connected graphs, Corollary 5.3.1 shows that there are graphs with arbitrarily
many 4-edge-cuts that have valid orientations. This is a step toward answering the question
we posed in Section 3.4; which 4-edge-connected graphs have a modulo 3 orientation for
any valid prescription function?

We briefly discuss two possible extensions to this result. The first is that, instead of
excluding internal degree 4 vertices from being on the boundary of adjacent faces, we
instead exclude them from being on the boundary of the same face. In this case, internal
degree 4 vertices would still not be allowed to be adjacent, but an internal degree 5 vertex
may have up to two internal degree 4 neighbours. The limitation that an internal degree 5
vertex could only have one internal degree 4 neighbour was one we made significant use of
in the proof of Theorem 5.0.2.

It may also be possible to extend this result to simply restrict the distance between
internal degree 4 vertices. The difficulty here is that contraction of internal edge-cuts (or
parallel edges) does not preserve the distance between internal degree 4 vertices, unless
the requirement is only that they are at least distance two apart. This restriction would
allow internal vertices of degree at least 5 to have all their neighbours be internal degree
4 vertices, and it is not clear how the reductions in the proof of Theorem 5.0.2 could be
modified to allow this. If we only permit internal degree 4 vertices at least distance 3 apart,
then new techniques will be required to account for the fact that we cannot easily reduce
small internal edge-cuts.
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bridge, 6

cartesian product, 28
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circulant, 4
circular k-flow, 16
claw decomposition, 25

complete bipartite graph, 4
complete graph, 4
component, 6
connected, 6
connectivity, 6
contract, 5
contractible

chord, 36
curve, 10

cross, 34
crosscap, 10
crossing, 8
cubic, 18
cut, 6
cut vertex, 6
cycle, 4

degree, 3
delete

edge, 5
subgraph, 5
vertex, 5

directed graph, 3
directed vertex, 14
disconnected, 6
drawing, 8
DTS graph, 38

edge-connectivity, 6
edge-cut, 6
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embedding, 8
endpoints, 3
extend (an orientation), 14

face, 8
FDT Graph, 94
flow number, 13
FT graph, 56

girth, 4
graph, 3
group chromatic number, 12

handle, 10

incident, 3
indegree, 3
independence number, 27
independent set, 27
induced subgraph, 4
internal edge-cut, 32, 94
internal vertex, 9

length, 8
lift, 6
locally k-edge-connected, 28
loop, 3

minority edge, 21
modulo k orientation, 15

neighbour set, 3
non-contractible, 36
non-peripheral, 6
nowhere zero k-flow, 12

orient, 17
orientable, 10
orientation, 14
outdegree, 3

outer face, 9

parallel, 3
partition, 4
path, 4
planar, 9
prescription function, 16
projective planar, 10
projective plane, 10
proper subgraph, 4
PT graph, 63

RST graph, 54

satisfies (a prescription function), 16
separates, 41
simple, 3
subdivide, 5
subdivision, 6
subgraph, 4

toroidal, 10
torus, 10
tree, 28
triangle-path, 29
triangularly connected, 29

unbounded face, 9

valid orientation, 14, 16, 17
valid prescription function, 16
vertex colouring, 11
vertex-disjoint, 4

walk, 4
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