
Concurrent Data Structures Using
Multiword Compare and Swap

by

William Sigouin

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© William Sigouin 2020

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Much of the work within this thesis is also outlined in a paper submitted to PODC
2020 for publication that is currently pending review, titled “Efficient Concurrent
Data Structures Made Easier,” on which I am the first author. My supervisor Trevor
Brown and our collaborator Dan Alistarh are the second and third authors on this
work, respectively.

I personally created all the algorithms and implementations for the framework
and data structures within this work, meeting with my above collaborators to discuss
ideas and work through specific issues.

iii

Abstract

To maximize the performance of concurrent data structures, researchers have
turned to highly complex fine-grained techniques. Resulting algorithms are often
extremely difficult to understand and prove correct, allowing for highly cited works
to contain correctness bugs that go undetected for long periods of time. This com-
plexity is perceived as a necessary sacrifice: simpler, more general techniques cannot
attain competitive performance with these fine-grained implementations. To chal-
lenge this perception, this work presents three data structures created using multi-
word compare-and-swap (KCAS), version numbering, and double-collect searches
that showcase the power of using a more coarse-grained approach. First, a novel
lock-free binary search tree (BST) is presented that is both fully-internal and bal-
anced, which is able to achieve competitive performance with the state-of-the-art
fine-grained concurrent BSTs while being significantly simpler. Next, the first con-
current implementation of an Euler-tour data-structure is outlined, solving fully-
dynamic graph connectivity. Finally, a KCAS variant of an (a,b)-tree implemen-
tation is presented, which shows significant performance improvements in certain
workloads when compared to the original.

iv

Acknowledgements

I would like to thank my supervisor Dr. Trevor Brown for his guidance in both
an academic and professional capacity. His eye for quality and vast knowledge have
helped create something that I am truly proud of. His door was always open when
I had questions or concerns, always taking the time to help me when I required it.

I would also like to thank our collaborator, Dr. Dan Alistarh, whose insights were
extremely helpful in navigating various hurdles that came up when conducting this
research.

I also wish to express my gratitude to my thesis committee readers, Dr. Peter A.
Buhr and Dr. Samer Al-Kiswany for their helpful comments.

Finally, I thank my family. My siblings have always been a constant source of
love and support, and for that I am eternally grateful. My parents have always
encouraged me for as long as I can remember, and the two of them have never failed
to be there when I needed them. I am who I am today in no small part because of
all they have done for me.

v

Table of Contents

List of Figures ix

1 Introduction 1

2 Model 5

3 Background 8

3.1 KCAS . 8

3.2 Related Work . 9

4 Motivation 11

4.1 The Difficulty of Proving Fine-Grained Data Structures Correct . . . 11

4.2 Drachler Tree Bug . 12

4.2.1 Counter Example . 12

4.2.2 Solution: Search Direction Swap 18

5 Simplifying the use of KCAS 21

5.1 Interface . 21

5.2 Implementation . 23

6 AVL Tree via KCAS 25

6.1 Overview . 25

vi

6.2 Algorithm Design . 27

6.2.1 Searching . 27

6.2.2 Insertion . 30

6.2.3 Deletion . 32

6.2.4 Rebalancing . 35

6.3 Correctness Proof . 42

6.4 Progress Proof . 48

6.5 Balance Proof . 48

6.6 Evaluation . 50

6.6.1 Throughput . 51

6.6.2 Key Depth and Cache Misses 52

7 Dynamic Connectivity via KCAS 57

7.1 Overview . 57

7.2 Algorithm Design . 58

7.2.1 Connection Queries . 58

7.2.2 Link . 60

7.2.3 Cut . 61

7.3 Correctness Proof . 63

7.4 Progress Proof . 65

8 (a,b)-tree via KCAS 67

8.1 Overview . 67

8.2 Algorithm Design . 68

8.3 Evaluation . 70

8.4 Possible Extensions . 70

vii

9 Conclusion 75

9.1 Summary . 75

9.2 Future Work . 75

9.2.1 Node-based KCAS . 75

9.2.2 Combining Data Structures 76

References 77

viii

List of Figures

1.1 Incorrect update on a concurrent BST 3

2.1 A linearizable execution of a concurrent counter 6

2.2 A non-linearizable execution of a concurrent counter 7

4.1 Valid state of Drachler tree . 13

4.2 Drachler tree after insertion of 175 into the tree, but before rebalancing 14

4.3 Drachler tree after partial insertion of 160 15

4.4 Drachler tree during thread p’s rebalancing, during the search of
thread s for 160 . 16

4.5 Drachler tree after thread s ’ invalid search for 160 17

4.6 Invalid, non-linearizable, execution of the Drachler tree 18

4.7 Drachler tree during thread s ’ search for 160, now recoverable with
new search . 19

4.8 Drachler tree during thread s ’ search for 85, before the rotation that
could cause an improper search . 20

4.9 Drachler tree after thread s ’ search for 85, now recoverable with the
new search . 20

6.1 Node Layout . 26

6.2 AVL insert . 31

6.3 AVL Two-Child Erase . 33

6.4 AVL One-Child Erase . 34

ix

6.5 AVL Leaf Erase . 34

6.6 AVL Possible Rotations, height field is abbreviated to h for brevity . 36

6.7 AVL Right Rotation . 36

6.8 AVL Left-Right Rotation . 38

6.9 Throughput comparison with additional BSTs. 51

6.10 AVL operation throughput comparison at varying thread counts, in
millions of operations per second, higher is better. Keyrange: 2 ∗ 106 52

6.11 AVL operation throughput comparison at varying thread counts, in
millions of operations per second, higher is better. Keyrange: 2 ∗ 107 53

6.12 AVL operation throughput comparison at varying thread counts, in
millions of operations per second, higher is better. Keyrange: 2 ∗ 108 54

6.13 AVL operation throughput comparison at varying thread counts, in
millions of operations per second, higher is better. Keyrange: 2 ∗ 109 55

6.14 AVL LLC misses per operation comparison, lower is better 56

7.1 Operation link(3, 6) on (simplified) Euler tour lists 59

7.2 Operation cut(3, 6) on (simplified) Euler tour lists 62

8.1 Simple insert case on the LLX/SCX implementation of the (a,b)-tree 68

8.2 Simplest insert case on the KCAS implementation of the (a,b)-tree . . 69

8.3 (a,b)-tree operation throughput comparison at varying thread counts,
in millions of operations per second, higher is better. Keyrange: 2 ∗ 106 71

8.4 (a,b)-tree operation throughput comparison at varying thread counts,
in millions of operations per second, higher is better. Keyrange: 2 ∗ 107 72

8.5 (a,b)-tree operation throughput comparison at varying thread counts,
in millions of operations per second, higher is better. Keyrange: 2 ∗ 108 73

8.6 (a,b)-tree operation throughput comparison at varying thread counts,
in millions of operations per second, higher is better. Keyrange: 2 ∗ 109 74

x

Chapter 1

Introduction

The field of concurrent data structure research is massive, and is centered around
building scalable concurrent variants of fundamental data structures. Fast imple-
mentations are now known for a wide array of data structures and fine-grained syn-
chronization, meaning data structures implemented using either fine-grained locking
or fine-grained lock-free algorithms, are arguably the best general solution in terms
of performance (see recent study by [4]). From these works, a vast range of highly
non-trivial techniques have been introduced and implemented.

Concurrent data structures designed in this way, however, are notoriously difficult
to analyze and prove correct. Work in this area often adds complexity in order to
maximize performance of a data structure, which can lead to extremely intricate
correctness arguments. When an approach requires both a complex implementation
and a complex proof, it leaves a high probability for error. As outlined in Chapter 4,
even published designs that proposed correctness arguments can still hide non-trivial
correctness issues.

These fine-grained techniques often rely on relatively weak primitives. The clas-
sic example is compare-and-set (CAS), which allows the programmer to atomically
compare the value at a certain location in memory against an expected value, and
to modify this location if they are equal. However, it is often the case that when im-
plementing non-trivial data-structures, the operational semantics require the atomic
modification of multiple memory locations. A myriad of approaches have been pro-
posed to mitigate this issue, ranging from “ad-hoc” techniques, such as marking,
e.g. [17, 25], to more complex software primitives on top of CAS, e.g. [18, 9], or
improved hardware support for concurrency, e.g. [20]. These techniques induce non-
trivial trade-offs in the design space between implementation and the complexity

1

of the correctness proof, on the one hand, and practical performance and progress
guarantees, on the other.

This work revisits the question of providing general, easy-to-use and practically-
efficient support for concurrent data structures. It is possible that the complexity
of the designs resulting from fine-grained methods could be stifling progress in the
area, by limiting the range of data structures that can be correctly and efficiently
implemented. This work seeks a middle ground between the high-performance via
high-complexity of fine-grained synchronization algorithms, and the simplicity, but
relatively lower performance, of coarser-grained designs. To this end, the core focus
of this work is to attempt to determine if it is possible to have designs that are
efficient, but also relatively easy to understand and prove correct.

As an instance of such middle ground, three data structures are presented in this
work that rely on multi-word compare-and-swap, (a.k.a k -word compare-and-swap,
KCAS), version numbering, and double-collect validation of searches. I believe this
combined approach can be used to efficiently implement a wide range of concurrent
data structures, while maintaining ease of implementation and proof simplicity, and
illustrate this claim via three examples. The first implementation presented is a
fully-internal, lock-free balanced binary search-tree (BST), which is able to closely
match the performance of the state-of-the-art fine-grained counterparts, while being
significantly simpler to describe and prove correct. Second, a concurrent implemen-
tation of an Euler-tour data-structure for solving fully-dynamic graph-connectivity
is outlined. To the best of my knowledge, this is the first concurrent implemen-
tation of this classic data structure, which would be extremely challenging—if not
impossible—to implement and prove correct using fine-grained synchronization. Fi-
nally, a modification of an existing implementation for an (a,b)-tree that uses this
approach is presented. This implementation is significantly simpler than the original,
while being able to achieve superior performance under certain workloads.

To illustrate the difficulty in creating concurrent data structures, consider a tra-
ditional sequential implementation of an internal binary search tree (BST), where
we wish to insert some new key k, if it is not already present. An insert operation
first searches for k. The last node visited by the search (if k is not found) is the in-
sertion point of the new node containing k. Therefore, the location where the search
terminates is the insertion location. The insertion adds a new node as a child of the
insertion-location node.

However, in a concurrent context, this approach is not sufficient. In Figure 1.1,
thread p is attempting to insert 20 and thread q is attempting to remove 15. First,
thread p traverses to the node containing the key 25. Before p can take any more

2

Figure 1.1: Incorrect update on a concurrent BST

steps, q atomically removes the key 15 by replacing the key with 20 (15’s successor)
and removes the old node containing 20. Thread p will then attempt to traverse
to the left child of 25, find none there, assume 20 is not within the tree, and insert
it at this location. This update is not valid, despite its atomicity at the node level ;
the key 20 now appears twice within the tree. In fact, even if the search portion of
operations are atomic, it is still insufficient. For example, consider Figure 1.1 again.
Even if thread p’s search is atomic, there is a time between the search for 20 and the
insert of 20. If, during this time, another thread inserts 20 and thread q then deletes
15 (replacing it with 20), p still does not observe this change and inserts 20 again.

Because to this complexity, many of the published implementations for balanced
concurrent BSTs [6, 13] achieve lock-free progress by using routing nodes. These
auxiliary nodes are external (or partially-external) to the BSTs and avoid difficult
update cases using extra keys that are not necessarily in the set represented by the
actual data structure. However, these additional nodes bloat the data structure and
increase its height. Using the simpler approach in this work (described in Chapter 6),
such difficult cases can be handled without auxiliary nodes. By including a version
number in every node in the data structure, and updating a node’s version number
atomically with each change to that node, atomic searches are simple to implement.
It is also shown that KCAS atomic updates, atomic searches, and version numbers
in combination allow for operations to be implemented in a way that is intuitive,
efficient, and easy to prove correct.

Despite this reduction in complexity, the data structures created using this frame-
work are far from trivial. Consider the example above, there exists a time after the
search part of the insertion before the update part during which the data structure
can change, possibly invalidating the result of the search used to inform the update.
This data structure specific problem can be difficult to solve. In Chapter 6, I il-
lustrate how KCAS and version numbers can be leveraged to simplify the design

3

process.

Finally, performance experiments show that this BST is competitive with the
state-of-the-art. The cache friendliness and low-cost of searches in these imple-
mentations allow us to attain similar, and often superior, performance to highly-
optimized fine-grained techniques. These results show that fine-grained techniques
are not necessary to achieve good performance, and that the techniques used in these
highly-complex implementations can often have a non-trivial performance cost.

C++ implementations of all data structures outlined within this work, along with
the test harness used for our experiments, are publicly available.1

1https://gitlab.com/uw-multicore-lab/setbench kcas

4

https://gitlab.com/uw-multicore-lab/setbench_kcas

Chapter 2

Model

Throughout this work, the classic asynchronous shared-memory model is assumed.
There is an unknown number of threads interacting with memory at any given time.
No assumptions are made about the relative speed or order of these threads. Threads
may halt at any location and at anytime, either by completion or failure. For sim-
plicity, no memory reclamation is performed, and therefore memory is unbounded.
However, in practice, all algorithms presented are compatible with a thread-safe
memory reclamation scheme, such as the epoch-based memory reclamation scheme
from [7].

All data structures presented are node-based. Nodes are located at a specific
addresses in memory, and are of fixed size. A data structure may contain nodes of
different size. The address range of a node is divided into several fixed-size fields,
each being located at a specific offset from the base address of the node, enabling
fields to be looked up given the address of the node and the offset of the field. These
fields can contain pointers to other nodes or other arbitrary values pertaining to the
specific data structure (such as keys).

A system configuration is the overall state of all threads and the shared memory
accessed by these threads on a system. Consider a system that is in some configu-
ration C. From C, a thread p may take some step si that changes its state and/or
shared memory. A step that changes a thread’s state or shared memory moves the
configuration of the system from C to a new configuration C ′. An execution is a
sequence of configurations of a system over time, and the steps that transitioned the
system from one configuration to the next (e.g. C0, s0, C1, s1, C2, . . . , si−1, Ci).

Linearizability is a correctness condition presented by Herlihy and Wing [21] for
concurrent data structures. A specific execution of some concurrent data structure is

5

called linearizable if it is “equivalent” to some legal sequential execution of that same
data structure. If linearization points during every operation in a concurrent execu-
tion can be chosen such that the return values of these operations are equivalent to
what they would be if the operations were executed atomically at those linearization
points, then it has an equivalent sequential execution. Consider a simple concurrent
counter with only one operation, inc(), which increments the value of the counter by
1 and returns the value of the counter before the increment occurs. In Figure 2.1
a linearizable execution of this counter is shown. Three threads p, q and r (on the
y-axis) execute several inc() operations represented by the boxes within the diagram.
The return value of these operations are shown within these boxes as well. A set
of possible linearization points for this execution are represented by arrows for each
operation. Note that, if we execute these operations atomically at these points in a
concurrent execution, the return value of these operations remain the same, hence
this execution is linearizable.

Figure 2.1: A linearizable execution of a concurrent counter

Consider another similar execution in Figure 2.2. This execution is not lineariz-
able because there exists no set of correct linearization points. The key issue here is
the gap between the only inc() of thread r and the second inc() of thread p. In order
for the inc() of r to return 3, the linearization points of three inc() operations must
precede its linearization point, which is not possible. However, a linearization point
for this inc() must be chosen during the operation, and only two inc() operations
occurred before the end of this one. Hence, this execution is not linearizable.

6

Figure 2.2: A non-linearizable execution of a concurrent counter

In general, a data structure is linearizable if every possible concurrent execution
on the data structure is linearizable. We prove that the data structures presented
within this work are all linearizable.

A data structure is said to be lock-free if for every possible valid configuration
of the data structure, some operation eventually completes, even if threads crash.
In essence, this means that some threads always make progress towards completing
operations; however, some threads can starve. It should be noted that implementing
a data structure without traditional locks is not sufficient (but is necessary) to achieve
lock-free progress. All data structures presented within this work are proved to be
lock-free.

7

Chapter 3

Background

3.1 KCAS

All data structure modifications in this work are performed via the KCAS operation.
KCAS is semantically very similar to compare-and-set (CAS), with the key difference
that it is able to change multiple addresses atomically. In its simplest form, KCAS
supports a single operation: KCAS(field1, oldValue1, newValue1, ... fieldk, oldValuek,
newValuek). KCAS does the following atomically: if field i contains oldValue i for all
i, the value stored at field i is changed to newValue i for all i and returns true. If not,
false is returned. The fields field1, . . . , fieldk are called changing fields.

The implementation of KCAS used in this work is based on the work of Har-
ris [18], and includes the optimizations described by Arbel-Raviv and Brown [3].
This implementation is created using multiple CAS operations in order to change
all k fields atomically. For synchronization and to achieve lock-free progress, this
implementation replaces program values with pointers to descriptors. These descrip-
tors contain information about ongoing KCAS operations, and threads that read
a field containing a KCAS descriptor help complete the KCAS represented by this
descriptor enabling lock-free progress.

I improved the interface of the KCAS implementation outlined here to make it
simpler to use and less error-prone. These improvements are outlined in Chapter 5.

8

3.2 Related Work

The question of identifying synchronization primitives with the “right” balance be-
tween expressivity and efficiency is almost as old as the field itself. Treiber [35]
gave one of the first illustrations of employing CAS to obtain a non-blocking data
structure, while seminal work by Herlihy [19] established this primitive is univer-
sal. Herlihy and Moss [20] proposed Hardware Transactional Memory (HTM) as
a form of flexible hardware support for non-blocking data structures. HTM allows
programmers to execute entire sections of code atomically. These sections of code,
or transactions, either commit, where they are executed atomically, or abort, where
they have no effect on the configuration of the system. HTM tracks all shared mem-
ory accesses by threads, aborting transactions if a conflict is detected. A restricted
form of their proposal is now supported by mass-produced processors, e.g. [11], al-
though it lacks exact progress guarantees and can still suffer from performance
artefacts [27]. In this work, HTM is used on the fast-path of the KCAS implemen-
tation, but is not relied upon for progress. Shavit and Touitou introduce Software
Transactional Memory [30], as a software-only alternative to HTM. Kumar et al.
introduce Hybrid Transactional Memory (HyTM) [24], which is a combination of
HTM and STM. Guerraoui and Trigonakis present Optik [16], which is an approach
that uses optimistic concurrency and versioned locks to implement several concurrent
data structures such as linked-lists, queues, BSTs, and hash-tables. This approach
is potentially generalizable to implement other concurrent data structures.

Anderson and Moir gave the first constant-time implementations of Load Link
(LL) and Store Conditional (SC) [2] from CAS. This work is extended by Brown et
al. [9], introducing LLX and SCX, which function on data records. Data records
contain multiple related fields which are loaded by LLX, and SCX only succeeds in
changing a single memory location if none of the fields loaded by LLX have changed
since they were loaded by LLX. LLX/SCX is less expressive than KCAS, as it only
allows for the change of a single field. Brown et al. [9] exhibited several search tree
data structure designs based on LLX/SCX, one of which is modified within this work
to use the KCAS-based approach presented in this work.

Tarjan and Vishkin [32] introduces the concept of Euler Tours for dynamic con-
nectivity. Tseng et al. [36] produced a fully-dynamic connectivity structure that is
batch-parallel : threads collaborate to carry out a batch of updates all at the same
time. This work takes the Euler tour structure outlined in [33] and constructs a
skip-list structurally similar to the one used in the implementation in Chapter 7.
This approach, however, is only useful for applications that allow for this batching

9

up updates. Within the implementation in this work, however, threads do not col-
laborate to complete operations (other than via KCAS helping) and have their own
independent operations.

There have been many concurrent BST implementations including Bronson’s
lock-based balanced partially external BST [6], an external non-blocking BST by
Ellen et al. [15], Howley et al.’s internal lock-free BST [22], Natarajan et al.’s [28]
external balanced BST, and Brown et al.’s [10] chromatic tree from LLX/SCX. None
of these achieve both balance and lock-freedom without the use of routing nodes.

Kelly et al. [23] use double-collect searches, originally presented by Afek et al.
[1], and KCAS to implement a Robin-Hood hash-table. This double-collect ensures
the probing portion of operations is not invalidated by concurrent operations, similar
to the searches in the data structures within this work.

10

Chapter 4

Motivation

4.1 The Difficulty of Proving Fine-Grained Data

Structures Correct

The creation and implementation of concurrent data structures is difficult, and is
often an error prone process. Correctness bugs exist even in peer reviewed works,
going undetected for long periods of time. In this chapter, an overview of previ-
ously discovered issues in other work is provided, and one new bug found during my
investigation.

Michael and Scott [26] discovered two race conditions within the lock-free concur-
rent queue by Valois [37], which lead to incorrect memory reclamation. These issues
could corrupt the data structure in two ways: by freeing the same nodes multiple
times, or freeing nodes that are still logically within the structure. The memory
reclamation scheme attempts to avoid ABA problems by relying on reference coun-
ters in data structure nodes, where threads increase the reference counter of a node
when they read a pointer to it, and decrement the counter when they no longer
require it. The thread that moves this reference counter to 0 after a node has been
removed reclaims the node. There exists a time, however, between when a pointer to
a node is read by a thread and that thread increments the reference counter of the
node. During this time another thread could move the reference counter of the node
to 0 and free it. The thread about to increment the reference counter is unaware of
this, and increments the reference counter of the node to 1, then potentially back
to 0, resulting in a double free. A similar issue can also result in nodes being freed
despite still being in the data structure.

11

Shafiei [29] found an execution that dereferences a null pointer within the lock-
free doubly-linked-list by Sundell and Tsigas [31] by running the Java PathFinder
(JPF) model checker on the implementation. The work demonstrates how the sheer
complexity of the algorithm makes it very difficult to reason about its correctness,
and that the proofs provided within the work are insufficient. The authors created
an updated version of this work where this issue is corrected.

Translating an algorithm into a usable implementation is also a difficult endeav-
our, and many artifacts provided with published papers contain non-trivial correct-
ness bugs. An investigation into concurrent BSTs by Arbel-Raviv et al. [4] shows
that several such implementations of concurrent data structures provided with pub-
lished work can fail basic checksum validation.

As part of this work, we discovered a new bug in the balanced BST by Drachsler
et al. [13]. This tree uses additional pointers in nodes to track the predecessor
and successor of a node, which are used to recover from searches that end up in
an incorrect location due to a concurrent rotation. An execution exists, however,
wherein searches fail to find keys that are present during the entire search operation.
I notified the authors of this work, who confirmed the bug via private communication
and plan to release errata on the topic at a later date. A full explanation of the
incorrect execution is in the following section.

4.2 Drachler Tree Bug

The tree within this work is structured like a normal BST, however nodes have
predecessor and successor pointers to nodes that contain those respective keys. These
predecessor and successor pointers essentially create a doubly linked list connecting
all nodes within the data structure. Searches first traverse the BST performing a
normal BST search, however if a key is not found during a search, this result will
be confirmed by traversing these predecessor and successor pointers. This section
outlines an incorrect execution of this data structure that I discovered.

4.2.1 Counter Example

Consider the tree structure in Figure 4.1:

12

Figure 4.1: Valid state of Drachler tree

This shows both the tree and logical ordering structure as shown in the original
Drachler work. The bottom values are keys, and s and t fields represent the succLock,
which protects the successor pointer of a node, and the predecessor pointer of the
node that is pointed to by its successor pointer, and treeLocks, which protects the
left and right child pointers of a node, respectively. The represents no thread holds
the lock. Assume a thread p inserts the value 175 to both the logical order and the
tree, but has not rebalanced the tree yet, i.e., just before line 9 of Algorithm 5 in
the original work, leaving the tree in the a state shown in Figure 4.2. Thread p now
goes to sleep.

13

Figure 4.2: Drachler tree after insertion of 175 into the tree, but before rebalancing

Note that the treeLock for the node 150 is still held by thread p, but the succLock
is released as that operation is completed. A rotation should occur on the node 125.
Before this rotation can occur, thread q performs an insertion of 160 up until line
15 of Algorithm 3 of the original work. This step can occur because the succLock
of 150 has been released by p (only the treeLock is held) and the treeLock of 175 is
the one that is acquired for this operation. The tree is now in the state shown in
Figure 4.3. Thread q now goes to sleep.

14

Figure 4.3: Drachler tree after partial insertion of 160

A third thread r does the contains operation in Algorithm 1 for the key 160 to
completion. r searches the tree as per Line 1 in Algorithm 1 below, then backtracks
to find 160. This operation ignores all locks and returns true. This result implies the
insertion of 160 must already have been linearized. However, in the original work,
the linearization point has not yet been reached, and is therefore incorrect (line 16
of insert in the original work, where pred.succ is updated) as the change is observed
here when it must be before this line (line 15 of insert is logical).

Algorithm 1 contains(k)

1: node = BSTsearch(k)
2: while node.key > k do node = node.pred
3: while node.key < k do node = node.succ
4: return (node.key == k and !(node.mark))

Next, a fourth thread, thread s, does the same operation as thread r (con-
tains(160)), however it goes to sleep after it traverses to node 125.

15

Figure 4.4: Drachler tree during thread p’s rebalancing, during the search of thread
s for 160

Thread p now wakes up and starts a rotation, this results in a call to function
rebalance(node, child) with the node containing 125 as the “node” argument, and the
node containing 150 as the “child” argument. Thread p already has the treeLock for
150, and can freely acquire the treeLocks for 125 and 100 (the other ones required
for this rotation). Note here that thread q only holds the treeLock for 175. No
threads hold succLocks at this point. p can proceed because it is not blocked by any
currently held locks.

16

Figure 4.5: Drachler tree after thread s ’ invalid search for 160

Thread s (Figure 4.5) now wakes up after this rotation, detects that it is at a
leaf node and completes its traversal of the tree. From there, it attempts to follow
the logical order to discover if it missed an update. Line 2 of Algorithm 1 does not
traverse the list as node.key > k is false, but line 3 traverses (as node.key < k) until
the node containing 175, sees that this key is not 160 and returns false. This result
is invalid, as the linearization point for the insert(160) of thread q must have passed
or else the result of the previous search for 160 must be incorrect.

Figure 4.6 shows the thread schedule of the executing threads and that the two
contains operations cannot be linearized.

17

Figure 4.6: Invalid, non-linearizable, execution of the Drachler tree

4.2.2 Solution: Search Direction Swap

Algorithm 2 reverses line 2 and 3 in the Algorithm 1 contain operation:

Algorithm 2 contains(k)

1: node = BSTsearch(k)
2: while node.key < k do node = node.succ
3: while node.key > k do node = node.pred
4: return (node.key == k and !(node.mark))

Figure 4.7 shows the example above, up to the last state but using Algorithm 2.

18

Figure 4.7: Drachler tree during thread s ’ search for 160, now recoverable with new
search

Thread s now finds the key 160, and the insert operation can be linearized.
Actually, regardless of the node found after this search, the contains operation finds
160. If a thread is left of the partially inserted node n, it will traverse succ pointers
until it passes n, then it will follow a single pred pointer to n. If a thread is to the
right of the partially inserted node, it will follow no succ pointers, but follow pred
pointers until it reaches n.

Figure 4.8 shows the reverse case, before a right rotation occurs and Figure 4.9
shows after the rotation occurs. Now, s is searching for 85, arrives at 95 but then
gets rotated down. If it searches right then left, it still finds 85. It is the same as
the previous example, regardless of what node contains terminates the BSTsearch, it
finds 85.

19

Figure 4.8: Drachler tree during thread s ’ search for 85, before the rotation that
could cause an improper search

Figure 4.9: Drachler tree after thread s ’ search for 85, now recoverable with the new
search

20

Chapter 5

Simplifying the use of KCAS

5.1 Interface

This section describes the C++ implementation of KCAS and compares it to those
presented in prior work.

Algorithm 3 shows the operation change that modifies two fields of a node, called
ptr, which is a node address or NULL, and val, which is an integer value. change
operates on some node n, and returns false if n→ptr is NULL; otherwise change
creates a new node with a val field equal to n→val + 1 and a ptr field that points
to n’s address. Additionally, n→ptr is changed to the address of this new node.

Algorithm 3 sequentialChange(n)

1: if n→ptr 6= NULL then return false
2: newNode = allocate(Node) . Allocate a new node, return the address
3: newNode→ptr = n
4: newNode→val = n→val + 1
5: n→ptr = newNode
6: return true

If this operation is part of a concurrent data structure created using a KCAS
implementation, such as in [18, 3], it would look something like Algorithm 4. Recall
this KCAS implementation temporarily replaces values stored at fields with pointers
to descriptors.1 Additional work is required to determine if a value stored at a
field is a program value or a descriptor, so all fields that can be modified via KCAS

1Certain operations also construct these descriptors, then pass them to an execute function

21

must be read and instantiated with special kcasRead and kcasInit functions. As
a small optimization, fields that contain pointers are handled slightly differently by
this implementation than fields that contain non-pointer values, and therefore require
separate kcasReadPtr and kcasInitPtr functions. Finally, all fields manipulated by
KCAS must be a single type defined by the KCAS implementation (such as in Algo-
rithm 4, which uses uintptr t), meaning the type of node fields is fixed, and fields
must be cast to and from this KCAS type and their logical type.

Algorithm 4 kcasChange(n)

1: while true do
2: ptrTemp = (Node)kcasReadPointer(&n→ptr)
3: if ptrTemp 6= NULL then return false
4: desc = kcasGetDescriptor()
5: newNode = allocate(Node)
6: kcasSetInitialPointer(&newNode→ptr, (uintptr t)n)
7: valTemp = (int)kcasReadValue(&n→val)
8: kcasSetInitialValue(&newNode→val, (uintptr t)valTemp + 1)
9: desc→add(&n→ptr, (uintptr t)ptrTemp, (uintptr t)newNode)

10: desc→add(&n→val, (uintptr t)valTemp, (uintptr t)valTemp)
11: if kcasExecute(desc) then return true

Following all these guidelines for using KCAS properly can be difficult, as small
mistakes such as using the wrong kcasRead results in subtle logical errors that are
difficult to find and debug. To make this process simpler, we introduce a new in-
terface as part of this work that removes much of the burden from the programmer.
Concurrent data structures created using this interface are closer to their sequen-
tial equivalent and explicitly prevent many misuses of KCAS, by translating such
mistakes into compilation errors.

Our interface uses C++ language features in order to avoid many of the issues
with traditional KCAS implementations. All modified fields used by KCAS must
use the generic type casword, which is a C++ templated2 type with a single tem-
plate parameter: the logical type of this field (such as an integer, or a boolean). By

which carries out the KCAS. This approach is an alternative to having a large kcas() call at the
end of an operation as outlined in the ADT (which is described in Section 3.1), making it easier to
handle branches that affect the fields included as part of a KCAS.

2A template type is a C++ polymorphic feature generalizing across types that supply a common
set of operations, e.g., type stack<T>, has operators top, push, and pop, independent of the
type stored in the stack. A template-type field in an object is a placeholder for type T, such as
object<int> and object<bool>, in which the placeholder type is object, respectively.

22

overloading the operators3 on this type, we can carry out kcasReads implicitly, al-
lowing the programmer to interact through casword as if it is the logical type. This
approach also enables several features that help avoid programmer mistakes. For
example, casword disables the assignment operator (=) so a value of a field cannot
be modified without performing a KCAS or calling an initialization function. The
interface is also modular in the sense that swapping the KCAS implementation re-
quires virtually no changes to the data structures that use it. An implementation
of the toy operation change using our new interface is shown above in Algorithm 5
(c.f. the old interface in Algorithm 4).

Algorithm 5 kcasNewChange(node)

1: while true do
2: ptrTemp = n→ptr . implicit kcasRead happens here
3: if ptrTemp 6= NULL then return false
4: kcas::start() . KCAS is now a C++ namespace
5: newNode = allocate(Node)
6: newNode→ptr.init(n) . init works on both pointers and values
7: valTemp = n→val
8: newNode→val.init(valTemp + 1)
9: kcas::add(&n→ptr, ptrTemp, newNode,

10: &n→val, valTemp, valTemp)
11: if kcas::execute() then return true . No descriptor handling, happens implicitly

5.2 Implementation

The data structures within this work use a two-path KCAS implementation that
uses HTM as a fast path and uses a lock-free implementation of KCAS [18, 3] as
a fallback path. For a fixed number of attempts, our KCAS implementation uses
HTM to carry out the KCAS and avoid the heavier cost of the CAS-based lock-free
implementation.

3Operator overloading is a C++ polymorphic feature that allows function names to be repeated
and selection is based on parameter type and number of parameters. For example, the member ac-
cess operator -> can be changed so additional work (such as invoking KCASRead) can be performed
before a value is returned.

23

Algorithm 6 kcas::execute()

1: desc = getDescriptor() . Gets the current thread’s descriptor
2: for tries = 0; tries < 5; tries++ do
3: if (status = xbegin()) == XBEGIN STARTED) then
4: for index = 0; index < desc→entries; index++ do
5: val = *desc→entries[index].addr
6: if val 6= desc→entries[index].oldval then
7: if isKCASDescriptor(val) then xabort(READ DESCRIPTOR)
8: xabort(BAD OLD VAL)

9: end for
10: for index = 0; index < desc→entries; index++ do
11: *desc→entries[index].addr = desc→entries[index].newval
12: end for
13: xend()
14: return true
15: else if XABORT EXPLICIT & status then
16: if XABORT CODE(status) == READ DESCRIPTOR then break
17: else if XABORT CODE(status) == BAD OLD VAL then return false

18: end for
19: return kcasLockFree(desc)

Algorithm 6 shows the HTM implementation. It first checks all the fields added to
the KCAS descriptor to ensure these fields hold the old values from the descriptor. If
any of these fields contain an incorrect old value, the transaction is explicitly aborted.
If the incorrect value is a KCAS descriptor, the slow path is taken. We cannot simply
return false, as we do not know the logical value of this field. If the value is not a
KCAS descriptor, then the KCAS returns false, as it contained a value other than
the one in the descriptor.

If all the fields contain old values in the descriptor, they are in the read set of the
transaction. Changes to any of these fields after these reads results in an abort, and
the transaction retries up to a fixed number of attempts. If the transaction succeeds
in writing all the new values to the fields with no conflicts, the transaction commits,
and true is returned.

A similar approach is followed in [34]. Several details of the KCAS algorithm
(such as the sorting of descriptors for progress) are omitted from Algorithm 6 for
simplicity.

24

Chapter 6

AVL Tree via KCAS

This section now introduces the framework used to implement the data structures
within this work, and illustrate it via a concurrent AVL tree using a hands-on ex-
ample. The data structure outlined in this chapter is the first (to the best of my
knowledge) lock-free implementation of a concurrent, balanced BST that is fully-
internal.

6.1 Overview

The tree implements a dictionary, which supports the following operations: inser-
tIfAbsent(key), erase(key) and contains(key). insertIfAbsent(key) returns true and
inserts key into the dictionary if it is not already present; otherwise, false is re-
turned. erase(key) returns true and removes key from the dictionary if it is present;
otherwise, false is returned. contains(key) returns true if key is in the dictionary;
otherwise, false is returned. As in a traditional BST, nodes have the following fields:
a key (key), a left child (left), a right child (right) and a value (val).

To facilitate correct synchronization, nodes are augmented with two additional
fields: the version number of the node (ver) and its least significant bit is used as a
mark to represent a deleted node, as shown in Algorithm 7. In other words, nodes
with odd version numbers are treated as marked, and hence logically removed from
the tree. The use of version numbers follows these rules:
Rule 1: Before reading any other field of a node, the version number must be read
and saved in thread-local memory.
Rule 2: Nodes that are changed by a KCAS operation must also have their version

25

numbers included in the KCAS. (The old value of the version number should be the
value saved in Rule 1. The new value increments the old value by two1.)

Algorithm 7 Node type definition

template<typename K, typename V>

struct Node {

casword<uint64_t> ver;

casword<K> key;

casword<Node<K, V> *> left;

casword<Node<K, V> *> right;

casword<Node<K, V> *> parent;

casword<int> height;

casword<V> val;

};

Figure 6.1: Node Layout

Atomically incrementing version numbers of a node alongside every update en-
forces a strict sequential ordering on updates to that node. Every update operation
must increment the version number, and at most one operation can increment the
version number from a specific value, making concurrent updates to the same node
impossible. (Perhaps surprisingly, even with this limitation, this approach can obtain
highly competitive implementations, as experiments show in Section 6.6.) Addition-
ally, any changes to a field that occur between when the node’s version number is
read, and when a KCAS is subsequently performed, causes the KCAS to fail, pre-
venting many incorrect (non-atomic) updates.

Note, however, that to implement a data structure update atomically using
KCAS, it may not be sufficient to include only the fields that are changed by the
update in the KCAS. For example, the search part of an insertion in a binary search
tree determines if an insertion should occur and where, but only a small number of
the nodes/fields read during the search are changed by the insertion. If only the fields
to be changed are included in the KCAS, then it is possible for a KCAS to succeed,
even if many nodes on the search path have changed—possibly even if the location
being changed by KCAS is no longer the correct location where this key should be
inserted.

To prevent these sorts of problems in an AVL tree, a set D of nodes is identified
such that, if a KCAS should no longer be performed, e.g., because it would insert in

1Unless this node is being marked as part of the operation, then the old value is incremented by
one.

26

the wrong place, then some node in D has changed since we read its contents. We
call these dependency nodes. We add the version numbers of these dependency nodes
to the KCAS (setting the old and new values to the same value—the version number
read to satisfy Rule 1). As a result, any change that should cause the update to
fail and possibly some other benign changes, as well, changes a dependency node,
causing the KCAS to fail.2 For an AVL tree, it turns out that D should consist of
the predecessor and successor of the key being inserted. (The intuition is that a node
containing a key between the predecessor and successor must change in order for the
location where the key belongs to change. Such a change requires a change to the
predecessor or successor. See Drachsler et al. [14] for details.)

Two more fields are required to rebalance the tree: height and parent (see Fig-
ure 6.1). Rebalancing steps are performed when the heights of a node’s children differ
by two or more. When a rotation is performed on a node n, it may be necessary to
rebalance its parent p, which is reachable via n’s parent field.

To avoid special cases, the tree always contains two sentinel nodes with keys
−∞ and +∞. Consequently, every node with key k ∈ (−∞,+∞) always has both
predecessor and successor nodes. The sentinel with key +∞, called the max-root, is
the root of the entire tree. The sentinel with key −∞, called the min-root, is the left
child of max-root. No field of max-root is ever changed. The min-root can have its
right child pointer and version number changed, but is never rebalanced. All keys in
(−∞,+∞) are always found in the right subtree of min-root.

The rest of this section gives an overview of the tree operations, and the following
sections offer a proofs for correctness, progress, and balance.

6.2 Algorithm Design

6.2.1 Searching

The search function (Algorithm 8) performs a traditional BST search until it reaches
a NULL node, or finds a node containing the key k it is searching for. Whenever
a node n is visited by search, a pointer to n and n’s current version number are
recorded in the path and vers local array variables, respectively. search returns a

2In many cases, I have found that including dependencies in the KCAS with a per-node gran-
ularity by including version numbers actually leads to a reduction in the number of fields needed
in a KCAS compared to including a tighter set of dependencies with a per-field granularity, which
can yield significant performance improvements.

27

tuple of five items: two nodes, two version numbers and a boolean in the following
format: 〈node, version, node, version, boolean〉.

If k is found, search returns pointers to the node containing k and the parent of
that node, the version numbers read in those nodes and true: 〈node, nodeVersion,
parent, parentVersion, true〉. If k is not found, then a function called validatePath
is invoked to validate the contents of path and vers (Algorithm 9). This is done to
ensure that concurrent modifications to the tree did not cause the search to miss
key k in the tree (explained further below). If validatePath returns true, validation
succeeds. In this case, search returns k ’s predecessor and successor nodes, which con-
tain the largest key smaller than k and the smallest key larger than k, respectively.
The version numbers read in those nodes and false: 〈predecessor, predecessorVersion,
successor, successorVersion, false〉 or 〈successor, successorVersion, predecessor, pre-
decessorVersion, false〉 — predecessor and successor are returned in the order they
are encountered during search. Otherwise, validatePath returns false, and validation
fails. In this case, the search is restarted.

validatePath ensures the search path followed by search is correct at some time
during the search. More specifically, validatePath rereads the version number of each
node in path, and returns true if: no version number has changed since reading and
storing it in vers, and no node in path is marked. Otherwise, false is returned. If a
search is performed with a subsequent successful validatePath, then a time has been
established when path was an atomic snapshot of the search path. (This approach
is essentially the classical double collect algorithm [1].)

28

Algorithm 8 search(k)

1: while true do . Retry loop
2: path[]; vers[];
3: path[0] = maxRoot
4: vers[0] = maxRoot→ver; . Note: uses KCASRead
5: n = root→left . Note: uses KCASRead
6: sz = 1 . Number of nodes in path
7: predIx = -1; succIx = 0; . Index of k’s pred/succ in path
8: while true do
9: if n == NULL then . Reached a leaf

10: if validatePath(path, vers, sz) then
11: a = min(predIx, succIx) . The shallower of pred/succ (ancestor)
12: return 〈path[a], vers[a], path[sz - 1], vers[sz - 1], false〉
13: else break . Failed validation
14: path[sz] = n
15: vers[sz] = n→ver . Note: uses KCASRead
16: currKey = n→key . Note: uses KCASRead
17: sz = sz + 1
18: if key > currKey then
19: predIx = sz - 1
20: n = n→right . Note: uses KCASRead
21: else if key < currKey then
22: succIx = sz - 1
23: n = n→left . Note: uses KCASRead
24: else return 〈path[sz - 1], vers[sz - 1], path[sz - 2], vers[sz - 2], true〉

Note that paths are only validated when k is not found, because if a node n with
the key k is found during a traversal, then there was a time during the operation
where the k was within the tree, regardless of whether n is marked. This observation
is true because no operation in this tree ever changes a marked node. (Recall that
a node is marked if and only if its version number is odd. Before performing a
KCAS, it is verified that the old values for all version numbers are even.) Hence,
the fields of unmarked nodes never contain the addresses of marked nodes because
they are unlinked and marked in the same atomic step. If a node is unlinked before
a search, then the search cannot reach it. Nodes that are unlinked during the search
are possibly reachable, but existed within the tree at some time during the search.
Hence, any node reached during a search existed in the tree at some time during the
search.

29

Algorithm 9 validatePath(path, vers, sz)

1: for i in 0 ... sz - 1 do
2: if path[i]→ver 6= ver[i] or isMarked(ver[i]) then
3: return false

4: end for
5: return true

If the search did not find a node containing k, and the path is successfully val-
idated by validatePath, then there is a time during the search when k is not in the
tree. As discussed previously, a validated search path is the result of an atomic search
at some time during the operation (in fact, the moment just before the invocation
of validatePath is such a time). Since this atomic search does not find k, there is a
time during the search when k is not in the tree.

The contains operation (not shown) simply calls search and returns whether the
key is found or not.

6.2.2 Insertion

The insertIfAbsent(k, v) operation first identifies the location to insert the new key
k by performing a search. If search finds k (the last item in the tuple returned by
search is true), then there is a time where k exists within the tree, and false can
be returned (line 3). If search does not find k (the last item in the tuple returned
by search is false), the predecessor and successor nodes (along with their version
numbers read during search) are returned. These nodes a, which is the first of the
two nodes traversed in search, and p, which is the final node traversed in search,
are critical to the insertion of k. At the time the search is validated, the correct
location for the new node n containing k to be inserted is a child of p, so the KCAS
attempts to add n as a child of p. a is not directly involved in the KCAS, but it is a
dependency node for this operation (explained further below), so its version number
is added to the KCAS.

A depiction of the operation is shown in Figure 6.2. The left image shows the
state of the tree before the insertion occurs, and the right image shows the state
of the tree after the insertion. In this example p and a are the predecessor and
successor nodes of k, respectively (the opposite is also possible, but only changes the
child pointer of p that is changed). (Note that a always is an ancestor of p.) Node
fields are colored according to their role in the KCAS: orange is a changing field

30

Figure 6.2: AVL insert

before the KCAS is executed, green is a changing field after a KCAS was successful,
and blue is the version number of a dependency node.

Note that both p and a’s marks were already checked as part of validatePath,
and do not need to be checked again as part of this operation. If p or a are marked
between the time the validation occurred and the KCAS is executed, their version
number has changed, ensuring the KCAS fails.

Algorithm 10 insertIfAbsent(k, v)

1: while true do
2: 〈a, aVer, p, pVer, res〉 = search(k)
3: if res then return false;
4: kcas::start()
5: n = createNode(p, k, v)
6: if k > p→key then kcas::add(&p→right, NULL, n)
7: else if k < p→key then kcas::add(&p→left, NULL, n)
8: else continue
9: kcas::add(&a→ver, aVer, aVer,

10: &p→ver, pVer, pVer + 2)
11: if kcas::execute() then
12: rebalance(p)
13: return true

At the time the search is validated, the correct location n to be inserted is a
child of p. However, concurrent operations can change the tree such that this is no
longer correct. For example, another operation can insert a new key between a and
p’s keys, a and p can be removed, or a and p can be rebalanced. These operations,
however, always change either a or p (or both), changing their version numbers from

31

the values observed during search and guaranteeing the KCAS fails (See proof in
Section 6.3 of this chapter for more details).

6.2.3 Deletion

The erase operation (Algorithm 11) first searches for the key to be removed similar
to insertIfAbsent. If search does not find k, then false is returned. If search finds k,
the node n containing k is returned, along with the parent of n, p. Since a search
that finds k does not validate the path taken, erase ensures these nodes provided
by search are not marked.3 If an unmarked node with the key is found, the number
of children n is counted and used to determine the erase operation used. Note that
it is possible for the wrong operation to be chosen due to a concurrent update,
e.g., n may gain or lose children during or after this step but before the KCAS is
executed. However, since the version number of n was read as part of the search,
any change also increments the version number of n, meaning the KCAS to remove
it is guaranteed to fail, and the operation is retried.

Algorithm 11 erase(k)

1: while true do
2: 〈n, nVer, p, pVer, res〉 = search(k)
3: if not res then return false;
4: if isMarked(pVer) or isMarked(nVer) then continue
5: l = n→left
6: r = n→right
7: if l == NULL or r == NULL then res = eraseSimple(k, n, nVer, p, pVer)
8: else res = eraseTwoChild(n, nVer, p, pVer)
9: if res == SUCCESS then return true

The traditional two-child delete for a sequential BST is followed: the removed
node is replaced by another node that preserves the properties of the tree. To reduce
the number of changing fields, the key and value fields of the node to be removed are
replaced, rather than replacing the actual node itself. To remove a key k in a BST,
either the successor or predecessor of k can be promoted in its place, removing the
old node that used to contain the predecessor or successor.

3In other concurrent BSTs false can be returned when a marked node containing k is observed,
as this is sufficient to establish a time where k is not within the tree: the thread actually observed
k ’s concurrent removal. However, in this tree, keys can be promoted up the tree by two-child erase,
therefore the marking of a node containing k does not always mean that key k is erased. Hence,
the operation must be retried.

32

Figure 6.3: AVL Two-Child Erase

Algorithm 12 eraseTwoChild(n, nVer, p, pVer)

1: kcas::start()
2: 〈s, sVer, sp, spVer, ret〉 = getSuccessor(n)
3: if not ret or isMarked(sVer) or isMarked(spVer) then
4: return RETRY
5: sr = s→right
6: if sr 6= NULL then
7: srVer = sr→ver
8: if isMarked(srVer) then return RETRY
9: kcas::add(&sr→parent, s, sp,

10: &sr→ver, srVer, srVer + 2)

11: if sp→right == s then kcas::add(&sp→right, s, sr)
12: else if sp→left == s then kcas::add(&sp→left, s, sr)
13: else return RETRY
14: kcas::add(&n→val, n→val, s→val,
15: &n→key, key, s→key,
16: &s→ver, sVer, sVer + 1,
17: &sp→ver, spVer, spVer + 2)
18: if sp 6= n then . n and sp can be the same Node
19: kcas::add(&n→ver, nVer, nVer + 2)

20: if kcas::execute() then
21: rebalance(sp) ; return SUCCESS

22: return RETRY

It is arbitrary whether the predecessor or successor of k is chosen; this implemen-
tation promotes the successor. getSuccessor searches for the successor of n, which
is the left-most node in the right subtree of n. getSuccessor ’s return value is in the
same format as search, returning two nodes, two version numbers, and a boolean.
If the path to the successor found is successfully validated, getSuccessor returns the

33

successor node s, the parent of that node sp, the version numbers of those two nodes,
and true: 〈s, sV er, sp, spV er, true〉. If the path is not successfully validated, the
final item in the tuple is false, and the other values are ignored. Once a candidate
node s is located, the path from n to s must be validated to establish a time where
s is the successor node of n. Concurrent operations after this validation could insert
keys between k and s ’ key, meaning s ’ key is no longer a valid replacement for k in
n. However, if these operations change either n or s, the KCAS fails.

Figure 6.4: AVL One-Child Erase

To actually perform the removal of k, a KCAS is formed to change the key and
value of n to the key and value of s, and perform the marking and unlinking of s.
If s has one child, s is unlinked by changing the child field in sp that points to s so
it points to s ’ child. If s is a leaf, it is unlinked by changing the child field of sp to
NULL. The KCAS for this operation performs the removal of s and the promotion
of s ’ fields to n in one atomic step.4

Figure 6.5: AVL Leaf Erase

Leaf nodes and nodes with a single child are erased by eraseSimple (Algorithm
13), which is much simpler than eraseTwoChild. In fact, this operation is almost
identical to the removal of s in eraseTwoChild (Lines 11-17).

4Similar to the example presented in the introduction, other threads searching for s’ key could
be between n and s at the time of this operation, failing to find s’ key during their traversal, despite
it being present the entire time. However, path validation catches this issue: the version number
of n changes with the change of its key, causing the search to try again.

34

Algorithm 13 eraseSimple(key, n, nVer, p, pVer)

1: kcas::start()
2: if n→left 6= NULL then r = n→left
3: else if n→right 6= NULL then r = n→right
4: else r = NULL
5: if r 6= NULL then . n has one child
6: rVer = r→ver
7: if isMarked(rVer) then return RETRY
8: kcas::add(&r→parent, n, p,
9: &r→ver, rVer, rVer + 2)

10: if p→right == n then kcas::add(&p→right, n, r)
11: else if p→left == n then kcas::add(&p→left, n, r)
12: else return RETRY
13: kcas::add(&p→ver, pVer, pVer + 2,
14: &n→ver, nVer, nVer + 1)
15: if kcas::execute() then
16: rebalance(p)
17: return SUCCESS
18: return RETRY

6.2.4 Rebalancing

This tree is approximately balanced in order to improve performance. Whenever
insertIfAbsent or erase are successful, rebalance(n) (Algorithm 14) is invoked on the
node n that either gained or lost children as part of the update. The rotations of
a traditional sequential AVL tree are followed. A node is balanced if the logical
heights of its children differ by less than 2. The entire tree is balanced if this holds
for all nodes within the tree.

rebalance determines whether to perform a rotation on n, update its height, or
do nothing based on its apparent balance. n’s apparent balance is calculated by
checking the heights of its children (Line 12). If n requires rebalancing, i.e., the
apparent balance is ≥ +2 or is ≤ −2, a direction is determined: a positive apparent
balance indicates that n’s left subtree is larger and requires a rotation in the opposite
direction, and vice-versa. Depending on the balance of n’s children, a single rotation
may be insufficient to repair the imbalance of n. If this is the case, a double rotation
is used, which involves applying a single rotation to one of n’s children, and another
one to n.

35

Figure 6.6: AVL Possible Rotations, height field is abbreviated to h for brevity

Figure 6.7: AVL Right Rotation

To carry out this rebalancing, the tree has the following operations: fixHeight(node),
rotateLeft(node), rotateRight(node), rotateLeftRight(node), and rotateRightLeft(node).
fixHeight(node) updates the height field of a node that does not require rebalancing to
be equal to the largest height of its children + 1, propagating updated height informa-
tion up the tree. rotateLeft(node) and rotateRight(node) improve balance by shifting
nodes in a particular direction. rotateLeftRight(node) and rotateRightLeft(node) are
double rotations, as discussed above.

36

Algorithm 14 rebalance(n)

1: while n 6= minRoot do
2: nVer = n→ver
3: if isMarked(nVer) then return
4: p = n→parent
5: pVer = p→ver
6: if isMarked(pVer) then continue
7: l = n→left
8: if l 6= NULL then lVer = l→ver
9: r = n→right

10: if r 6= NULL then rVer = r→ver
11: if isMarked(lVer) or isMarked(rVer) then continue
12: lh = (l == NULL ? 0 : l→height); rh = (r == NULL ? 0 : r→height);
13: nBalance = lh - rh
14: if nBalance ≥ 2 then
15: ll = l→left
16: if ll 6= NULL then llVer = ll→ver
17: lr = l→right
18: if lr 6= NULL then lrVer = lr→ver;
19: if isMarked(llVer) or isMarked(lrVer) then continue
20: llh = (ll == NULL ? 0 : ll→height)
21: lrh = (lr == NULL ? 0 : lr→height)
22: lBalance = llh - lrh
23: if lBalance < 0 then
24: if rotateLeftRight(p, pVer, n, nVer, l, lVer, r, rVer, lr, lrVer) then
25: rebalance(n); rebalance(l); rebalance(lr);
26: n = p

27: else if rotateRight(p, pVer, n, nVer, l, lVer, r, rVer) then
28: rebalance(n); rebalance(l);
29: n = p

30: else if nBalance ≤ -2 then
31: {...} . Same as nBalance ≥ 2, l and r reversed
32: else
33: if (res = fixHeight(n, nVer)) == FAILURE then continue
34: else if res == SUCCESS then n = n→parent
35: else return
36: return

We note that the height field of a node is not always accurate, in that it is not
always a correct representation of a node’s logical height. However, Bougé et al.
[5] prove that applying these rotation rules to a tree until none apply results in a
strictly balanced AVL tree, even if some (or all) height fields of nodes are inaccurate.
Our tree is strictly balanced in a quiescent state, i.e., when there are no ongoing

37

operations.

The simpler case in which only a single rotation is required (Line 24) is carried
out by rotateRight (Algorithm 15, Figure 6.7) or rotateLeft (not shown, symmetric
to rotateRight). In this example, rotateRight, moves n’s left child, l, to n’s position.
Additionally, n replaces its left child pointer to l with l ’s right child, lr. New heights
for all nodes involved are calculated based on this rotation and updated as part of
the KCAS, except for p, which is checked for imbalance after this operation. Note
that in Figure 6.7, the version numbers of ll and r are blue as they are dependency
nodes not directly affected by the rotation. This dependency is because the heights
of these nodes are used to calculate the new heights for other nodes, and the changing
of these nodes can result in a rotation that does not improve the balance of the tree,
if they change.

Figure 6.8: AVL Left-Right Rotation

38

Algorithm 15 rotateRight(p, pVer, n, nVer, l, lVer, r, rVer)

1: kcas::start()
2: if p→right = n then kcas::add(&p→right, n, l)
3: else if p→left = n then kcas::add(&p→left, n, l)
4: else return false
5: lr = l→right
6: lrHeight = 0
7: if lr 6= NULL then
8: lrVer = lr→ver; lrHeight = lr→height;
9: if isMarked(lrVer) then return false

10: kcas::add(&lr→parent, l, n,
11: &lr→ver, lrVer, lrVer + 2)

12: ll = l→left
13: llHeight = 0
14: if ll 6= NULL then
15: llVer = ll→ver; llHeight = ll→height;
16: if isMarked(llVer) then return false
17: kcas::add(&ll→ver, llVer, llVer)

18: rHeight = 0
19: if r 6= NULL then
20: rVer = r→ver; rHeight = r→height;
21: kcas::add(&r→ver, rVer, rVer)

22: oldNHeight = n→height
23: oldLHeight = l→height
24: newNHeight = 1 + max(lrHeight, rHeight)
25: newLHeight = 1 + max(llHeight, newNHeight)
26: kcas::add(&l→parent, n, p,
27: &n→left, l, lr,
28: &l→right, lr, n,
29: &n→parent, p, l,
30: &n→height, oldNHeight, newNHeight,
31: &l→height, oldLHeight, newLHeight,
32: &p→ver, pVer, pVer + 2,
33: &n→ver, nVer, nVer + 2,
34: &l→ver, lVer, lVer + 2)
35: if kcas::execute() then return true
36: return false

When a double rotation is required rotateLeftRight or rotateRightLeft is called.
For simplicity, double rotations are combined into a single large KCAS. By combining
these updates the need for updating the version number (and other fields) of nodes
twice is removed.

If n does not require rebalancing, the accuracy of the height to its children is

39

ensured via fixHeight. If n’s height needs to be updated, it is done via a simple KCAS,
and SUCCESS is returned, meaning that rebalancing up the tree must continue as
higher nodes must be made aware of this height change. If a time can be established
when the height of n is accurate, then fixHeight returns UNNECESSARY, indicating
that a balanced node has been reached and rebalancing can end. Rebalancing also
ends if n is marked, or n is the minRoot.

insertIfAbsent and erase only affect the balance of a single node and its direct
ancestors, which are reachable via the parent field of the node. However, rotations
move nodes off of this parent pointer path, potentially making it impossible for
threads to reach nodes need for rebalancing. Therefore, after a rotation is successful,
rebalance is called on every node that had its left or right fields change as part of
the rotation.

Algorithm 16 fixHeight(n, nVer)

1: kcas::start()
2: l = n→left
3: r = n→right
4: rVer = r→ver
5: if l 6= NULL then
6: lVer = l→ver
7: kcas::add(&l→ver, lVer, lVer)

8: if r 6= NULL then
9: rVer = r→ver

10: kcas::add(&l→ver, rVer, rVer)

11: oldHeight = n→height
12: newHeight = 1 + max(l→height, r→height)
13: if oldHeight == newHeight then . If the height is correct, no need to update
14: if n→ver == nVer and (l == NULL or l→ver == lVer) and (r == NULL or r→ver ==

rVer) then
15: return UNNECESSARY
16: else return FAILURE
17: kcas::add(&n→height, oldHeight, newHeight,
18: &n→ver, nVer, nVer + 2)
19: if kcas::execute() then return SUCCESS
20: return FAILURE

40

Algorithm 17 rotateLeftRight(p, pVer, n, nVer, l, lVer, r, rVer, lr, lrVer)

1: kcas::start()
2: if p→right = n then kcas::add(&p→right, n, lr)
3: else if p→left = n then kcas::add(&p→left, n, lr)
4: else return RETRY
5: lrl = lr→left ; lrlHeight = 0 ;
6: if lrl 6= NULL then
7: lrlVer = lrl→ver ; lrlHeight = lrl→height ;
8: if isMarked(lrlVer) then return RETRY
9: kcas::add(&lrl→parent, lr, l,

10: &lrl→ver, lrlVer, lrlVer + 2)

11: lrr = lr→right ; lrrHeight = 0 ;
12: if lrr 6= NULL then
13: lrrVer = lrr→ver ; lrrHeight = lrr→height ;
14: if isMarked(lrrVer) then return RETRY
15: kcas::add(&lrr→parent, lr, n,
16: &lrr→ver, lrrVer, lrrVer + 2)

17: rHeight = 0 ;
18: if r 6= NULL then
19: rVer = r→ver ; rHeight = r→height ;
20: kcas::add(&r→ver, rVer, rVer)

21: ll = l→left ; llHeight = 0 ;
22: if ll 6= NULL then
23: llVer = ll→ver ; llHeight = ll→height ;
24: if isMarked(llVer) then return RETRY
25: kcas::add(&ll→ver, llVer, llVer)

26: oldNHeight = n→height; oldLHeight = l→height; oldLRHeight = lr→height
27: newNHeight = 1 + max(lrrHeight, rHeight)
28: newLHeight = 1 + max(llHeight, lrlHeight)
29: newLRHeight = 1 + max(newNHeight, newLHeight)
30: kcas::add(&lr→parent, l, p,
31: &lr→left, lrl, l,
32: &l→parent, n, lr,
33: &lr→right, lrr, n,
34: &n→parent, p, lr,
35: &l→right, lr, lrl,
36: &n→left, l, lrr,
37: &n→height, oldNHeight, newNHeight,
38: &l→height, oldLHeight, newLHeight,
39: &lr→height, oldLRHeight, newLRHeight,
40: &lr→ver, lrVer, lrVer + 2,
41: &p→ver, pVer, pVer + 2,
42: &n→ver, nVer, nVer + 2,
43: &l→ver, lVer, lVer + 2)
44: if kcas::execute() then return SUCCESS
45: return RETRY

41

6.3 Correctness Proof

Definition 6.3.1. The search path to a key k is the path an atomic search(k)
traverses.

Definition 6.3.2. The pred node (resp., succ node) of a key k is the node con-
taining the largest key smaller than k (resp., smallest key larger than k).

Definition 6.3.3. A node is in the data structure if it is reachable from maxRoot.

Observation 6.3.4. In a BST that does not contain k, the search path to k contains
the pred and succ nodes of k. One of these nodes is the last node on the search path.

Observation 6.3.5. In an internal BST, a node containing key k is inserted as a
child of the pred or succ node of k.

See [13] and [14] for more details on Observation 6.3.4 and 6.3.5.

Lemma 6.3.6. No successful KCAS ever modifies the fields of marked nodes.

Proof. This follows from inspection of the code. Before reading any other field of
a node, the version number of this node is read. If this node is to be involved in
the KCAS, this version number is checked to ensure the node is not marked, and
the version number is included in the KCAS. If the node is marked, the operation
is retried. If the node is not marked when it is checked, but is marked between this
check and the KCAS, the KCAS fails, i.e., the marking of a node directly involves
the changing of its version number.

Lemma 6.3.7. Our implementation of a relaxed AVL tree satisfies the following
claims.

1. The node maxRoot always has minRoot as its left child, and NULL as its right
child. The node minRoot has NULL as its left child. (Remark: the right child
points to the rest of the tree.)

2. Consider any search, where r1...rl is the sequence of nodes visited by it so far.
For each ri in r1...rl, there is a time during the search when ri is in the data
structure.

3. Consider an invocation I of validatePath(path, vers, size) in an insertIfAb-
sent(k, v), erase(k), or contains(k). If I returns true, then path is the search
path to k just before I.

42

4. (a) The tree rooted at the right child of minRoot is always a relaxed AVL
tree.

(b) Any insertIfAbsent or erase operation that performs a successful KCAS
returns the same value if it is performed atomically at its linearization
point (the successful KCAS).

(c) Any insertIfAbsent or erase operation that terminates without perform-
ing a successful KCAS returns the same value if it is performed atomi-
cally at its linearization point.

Proof. Consider an arbitrary execution E. We prove these claims together by in-
duction on the sequence of steps s1, s2, ... in E, which can be shared memory reads,
atomic KCASRead operations, or atomic KCAS operations.

Base case: Before any KCAS is successful, the tree is in its initial state where
two nodes exist: minRoot and maxRoot. maxRoot has the key +∞, its left child is
minRoot, and its right child is NULL. minRoot has the key -∞, and both its children
are NULL.

Inductive step: suppose the claims all hold before step s. We prove they hold
after step s.

Claim 1. This configuration is the initial state of the tree, except the right child of
minRoot can no longer be NULL. No operation can modify this state. minRoot and
maxRoot contain keys that are never part of any operation: no operation searches
for, attempts to remove, or attempts to insert these keys. Additionally, these nodes
are never rebalanced: it is explicit in the code that rebalancing stops when it reaches
the minRoot, which also means maxRoot also is never rebalanced.

Claim 2. The only step that can affect this claim is a KCASRead in a search that
traverses to a new node, by reading a pointer from rl to some rl+1. This pointer is
then added it to path[], the sequence of nodes visited so far. So, s is a KCASRead
at line 20 or 23.

By the inductive hypothesis rl is in the data structure at some time before s
during the search. If rl still points to rl+1 at step s, then since rl is in the data
structure and points to rl+1, so is rl+1. Otherwise, rl is deleted before s during the
search, and right before this deletion rl pointed to rl+1 (Lemma 6.3.6). Therefore,
rl+1 is in the data structure at the time of this deletion, which is during the search.

43

Claim 3. Only successful KCAS operations can affect this claim, as reads do not
modify the structure of the tree. A search reads and stores the version numbers of
all nodes encountered during a search. If any of these nodes change between reading
as part of the search and validation as part of validatePath, validatePath returns
false. If validatePath returns true, it is guaranteed that no modification occurred to
any node along the path between when it is read and when it is validated as part
of validatePath. At time t, just before I, all nodes are read as part of the search
but not validated. Hence, if I returns true, all the nodes still had the same version
numbers read as part of the search at t and this path is an atomic snapshot of the
search path to k, just before the invocation of I, i.e., before any nodes were validated.

Claim 4a. Only successful KCAS operations that change the layout of the tree
can affect this claim. KCAS operations are performed by insertIfAbsent, eraseSim-
ple, eraseTwoChild, rotateLeft, rotateRight, rotateLeftRight, and rotateRightLeft. We
proceed by cases.

Case 1 : Suppose s is a successful KCAS at line 11 of insertIfAbsent. This KCAS
is only executed if a successful path validation occurred. Let t be the time just before
the successful invocation of validatePath started. Claim 3 means that this path is
the search path to k at time t. Let predt be the predecessor node of k a time t, and
succt be the successor node of k at time t. The node we modify to insert this new
node is the final node on the search path at time t, denoted by lastt. Note that,
from Observation 6.3.4 and 6.3.5, lastt is either predt or succt. The version numbers
of both predt and succt are added to the KCAS, so if they change after t, the KCAS
fails. We wish to prove that a successful KCAS inserts this new node as a child of
lasts, i.e., the last node on the search path to k at s. In other words, we wish to
prove that because the KCAS succeeds, lastt == lasts. Suppose that lastt 6= lasts to
obtain a contradiction. If the correct place to insert the new node changes from as
a child of lastt to as a child of some other node lasts, this must happen as a result
of an erase, insertIfAbsent or one of the rotations (searches do not change the data
structure). We show that any of these operations that make it so lasts is any node
other than lastt, then that results in a failed KCAS.

Subcase 1 : Suppose an insertIfAbsent operation inserts a key outside the range
of [predt→key, succt→key]. If this operation modifies any field of predt or succt, the
KCAS fails. If it does not, from Observation 6.3.4 and 6.3.5, predt and succt still
contain the predecessor and successor of k at s (predt = preds and succt = succs).
Therefore, k should still be inserted as a child of one of these nodes. At the time of
validation, one of these nodes is lastt, and the only one of the two to have a NULL

44

pointer in the appropriate child field for the insertion of k. For example, if predt

= lastt, then predt→right = NULL and succt→left 6= NULL. Conversely, if succt =
lastt, then succt→left = NULL and predt→right 6= NULL. This insertion does not
change these nodes, so lasts is still the one of the two nodes that k can be inserted
as a child of at t. In other words, lastt = lasts. If a key in the range [predt→key,
succt→key] is inserted, by Observation 6.3.5 this must be added as a child of either
predt or succt. This operation must modify predt or succt, incrementing their version
number, causing the KCAS to fail.

Subcase 2 : Suppose an erase operation removes a key outside the range of
[predt→key, succt→key]. This scenario follows the exact same argument for an in-
sertIfAbsent operation inserting a key outside this range, in Subcase 1 above. If an
erase removes a key within the range of [predt→key, succt→key], it must be either
predt→key or succt→key, as they are the only keys within this range at t (or some-
thing else was inserted, see Subcase 1). This removal would modify predt or succt,
causing the KCAS to fail.

Subcase 3 : Performing a rotation that does not modify either predt or succt does
not change where k should be inserted. No such rotation changes the predecessor or
successor nodes of k, so k should still be inserted as a child of either predt or succt at
s. As stated in Subcase 2, only one of predt and succt have a NULL pointer in the
proper child field to allow for the insertion of k at t, which is node lastt. A rotation
can cause this situation to be reversed, meaning if lastt = predt then lasts = succt
(or vice versa), but this modifies predt and succt, causing the KCAS to fail.

We prove this for each possible modification inductively, and conclude that be-
cause the KCAS is successful, lastt = lasts after any number of steps between t and s.

Case 2: Suppose s is a successful KCAS at line 20 of eraseTwoChild (we omit
the KCAS of eraseSimple as it is strictly easier). In erase, search locates a node
n that contains the key k at t, and the version number of n at t is added to the
KCAS. Let t’ be the time just before the invocation of validatePath in getSuccessor.
getSuccessor locates the successor of k at t’, succt′ , by traversing the tree from n and
validating the path taken. We want to prove that because the KCAS succeeds, n is
a two child node containing k and that we replace the key of s with the successor
node of k at s (succs) meaning succt′ = succs. If n or the successor of k changes, this
must happen as a result of an erase, insertIfAbsent or one of the rotations (searches
do not change the data structure). We show that any of these operations that makes
n’s key not equal to k, changes n’s number of children, or makes it so succs is any
node other than succt′ , causing the KCAS to fail.

45

Subcase 1 : Suppose an insertIfAbsent operation inserts a key outside the range
of [nt→key, succt′→key]. This action does not change the successor of k, meaning
succt′ = succs. If this operation modifies any field of n or succt′ , the KCAS fails,
and n still contains k and has two children. Suppose an insertIfAbsent operation
inserts a key inside the range of [nt→key, succt′→key]. From Observation 6.3.5, this
new key must be inserted as a child of either n or succt′ , which modifies either n or
succt′ , causing the KCAS to fail.

Subcase 2: Suppose an erase operation removes or modifies n, meaning k is either
removed or k is promoted to another node. This operation modifies n and causes the
KCAS to fail. Similarly, any erase that modifies succt′ also causes the KCAS to fail.
If an erase does not modify n or succt′ , then n still contains k and has two children.
If there are no new keys between k and succt′→key, then succt′ = succs. We know
that there are no such keys inserted (Subcase 1, above).

Subcase 3: Suppose a rotation modifies n or succt′ , this modification causes the
KCAS to fail. If the rotation does not modify n or succt′ , n still contains k and has
two children. Additionally, rotations do not add or remove keys, meaning succt′ =
succs.

We prove this for each possible modification inductively, and conclude that be-
cause the KCAS is successful, succt′ = succs after any number of steps between t’
and s.

Case 3: Suppose s is a successful KCAS of any rotation. We want to prove that
these rotations preserve the in-order traversal of all nodes modified by this rotation
and their subtrees. Note that all the above cases are difficult because we had to
prove that the result of a search at time t (or t’) still applied at time s. However,
there is no search portion of these rotations, and they are simply sequential AVL
tree rotations made atomic via KCAS. It is possible that fields could change after
they are read to determine which rotation to apply, but as part of the rotations every
node read is involved in the KCAS, so any changes result in a failed KCAS.

Claim 4b. In Claim 4a, we actually proved that all operations that execute a suc-
cessful KCAS are atomic at time s, which is the time when the KCAS is executed.

Claim 4c. insertIfAbsent only returns without performing a KCAS if search locates
a node that has the key k. From Claim 2, the key k that we are trying to insert is in
the data structure at some time t during the search. Time t is during insertIfAbsent,
so we linearize this operation at t, returning false.

46

erase only returns without performing a KCAS if search does not locate a node
that has the key k. By Claim 3, the key k that we are trying to remove is not in
the data structure at some time t during the search. Time t is during erase, so we
linearize this operation at t, returning false.

The linearization points for the operations are as follows:

• insertIfAbsent

– returning true: at the successful KCAS at line 11 of insertIfAbsent

– returning false: the time t during search where k is in the data structure,
from Claim 2

• erase

– returning true: at the successful KCAS of eraseSimple at line 15 or eraseT-
woChild at line 20, whichever is used

– returning false: the time t just before the invocation of validatePath in
search, from Claim 3

• contains

– returning true: the time t during search where k is in the data structure,
from Claim 2

– returning false: the time t just before the invocation of validatePath in
search, from Claim 3

Theorem 6.3.8. Our relaxed AVL tree implements a linearizable dictionary.

Proof. Lemma 6.3.7 proves all the tree operations are atomic and do not violate any
relaxed AVL-tree properties. Furthermore, rebalancing steps preserve the in-order
traversal of the tree and do not add or remove any keys from the data structure.
Therefore, searches are equivalent to an atomic search at some time t during search.
contains is simply linearized at this time t during search.

47

6.4 Progress Proof

We wish to prove that, if processes take steps infinitely often, then the tree operations
succeed infinitely often. In essence, this conjecture is shown by the lock free nature
of the KCAS implementation, the fact that operations are only forced to retry when
they observe a change, and the bounded number of rebalancing steps required to
resolve imbalance in the tree, as shown by [5].

Theorem 6.4.1. The relaxed AVL-Tree is lock free

Proof. Consider some configuration C after which some threads continue to take
steps, but no operations complete. Eventually, in this scenario, the tree stops chang-
ing, as the only operations that can change the tree are successful operations and
rebalancing steps. [5] shows that regardless of how imbalanced the tree is or how in-
accurate the height fields of nodes are, the number of rebalancing steps to completely
balance an arbitrary tree is bounded. Hence, at some point, rebalancing must end
and the state of the tree must stop changing.

In this static tree, search must succeed after a finite number of steps: no concur-
rent operations can invalidate the paths taken in a search, i.e., all paths taken to key
k are the correct search path to k. Hence, no contains operations are invoked after
C, as this is the only required part of this operation. Thus, eventually, only inser-
tIfAbsent and erase continue to make steps, continually looping in their retry loops.
However, the only way for these operations to be forced to retry is if the value read
at some address during the operation changes at the time of the KCAS, causing the
KCAS to fail. The KCAS of operations in this algorithm only fail if some value read
during the operation changes between the read of the operation and the execution
of the KCAS. This change, however, implies that other operations are succeeding.
In other words, in order for infinitely many KCAS operations to fail, infinitely many
KCAS operations must succeed.

6.5 Balance Proof

A node n has a violation if:

• n→left→height - n→right→height > 2; or

48

• n→left→height - n→right→height < -2; or

• n→height 6= 1 + max(n→left→height, n→right→height)

We wish to prove that, when all operations on the tree are completed, the tree
is a strict AVL-tree. We make no guarantees about the balance of the tree while
operations are ongoing. The rotations used within this tree are originally discussed
in [5], where it is proven that a generic AVL tree is balanced if applicable rotations or
fixHeight are applied to all nodes with violations until no violations exist. Therefore,
we need to prove that whenever a violation is created, the thread that created it
repairs this violation, or another thread repairs it for them.

Theorem 6.5.1. The tree is a strict AVL-tree when in a quiescent state.

Proof. Operations that can create violations are insertIfAbsent, erase, rotations, and
fixHeight.

insertIfAbsent, erase, rotations, and fixHeight can only create violations on the
single node directly above where the operation takes place. For insertIfAbsent it is
the parent of the new node n inserted. For erase it is the parent of the node removed,
where the node removed is either the actual node containing k or the successor node
of k that is removed in its place. Rotations and fixHeight either move a new node
into n’s place with a different height or update n’s height to a new value, both of
which can create a violation at whatever node is the parent of n before the operation
is executed. No other nodes generate violations due to any operation. After all these
operations, rebalance is called on the node that could potentially contain a violation
and it is fixed if it exists.

Rotations change the layout of the tree and nodes often lose ancestors (nodes
along their parent pointer path to the root) as part of these rotations. These nodes
could potentially have unresolved violations, but are no longer be reachable by the
threads doing operations lower in the tree that caused the violation. To resolve this
issue, any rotation that removes an ancestor from a set of nodes immediately calls
rebalance on that node fixing all the violations of that node and all its ancestors.
This action effectively takes responsibility for fixing the violations in that parent
pointer chain to the root starting at that node. Once a thread begins rebalancing,
it does not stop until it has fixed violations at every node it is responsible for, and
nodes it is no longer responsible for are to be rebalanced by another thread.

49

6.6 Evaluation

In this section we evaluate the performance of the AVL tree. The benchmark envi-
ronment is a Non-Uniform Memory Architecture (NUMA) system with four CPUs
(Intel Xeon Platinum 8160 3.7GHz). Each CPU has 24 cores with two hardware
threads per core (hyperthreading) for a total of 192 hardware threads. Cores on
the same CPU share a 33MB L3 cache. We reserve 2 hardware threads for system
processes, to avoid unnecessary context switching during experiments. Threads are
pinned to cores and only run on one physical CPU (NUMA node) at thread counts up
to 48, on two physical CPUs at thread counts up to 96, and so on. For all algorithms,
jemalloc 5.0.1-25 is used to allocate memory. Code is compiled with GCC 7.4.0-1,
with the highest optimization level (-O3) We used numactl --interleave=all to
distribute memory pages evenly across NUMA nodes. Memory is reclaimed for all
data structures using DEBRA, a fast epoch-based reclamation algorithm [7].

The data structures compared in the experiments are as follows:

• BRONSON [6] is a partially-external lock-based BST that uses optimistic
concurrency control (OCC) for searches.

• NATARAJAN [28] is a lock-free external BST created using CAS and bit
test and set (BTS).

• ELLEN [15] is a lock-free external non-blocking BST using CAS.

• DRACH [13] is a partially external lock-free BST (in which we found a cor-
rectness bug as part of this work).

• DAVID [12] is an external BST that uses ticket locks.

• BROWN [10] is a chromatic tree implemented using LLX/SCX.

• KCAS is the AVL tree presented within this work, using the KCAS imple-
mentation from [3].

• KCASHTM is the AVL tree presented within this work, using a hardware
transactional memory based KCAS.

50

Figure 6.9: Throughput comparison with additional BSTs.

6.6.1 Throughput

The AVL tree was compared against all the implementations outlined above, as shown
in Figure 6.9. For all workloads, BRONSON, NATARAJAN and the KCAS trees
from this work outperformed all other trees. For readability, only those experiments
are included in the rest of the results. (Other trees are consistently outperformed by
BRONSON or NATARAJAN.)

These four implementations were tested with a variety of update rates (0%, 10%
and 40%) and key-range sizes (2 ∗ 106, 2 ∗ 107, 2 ∗ 108, 2 ∗ 109). Updates are evenly
distributed between insertIfAbsent and erase. For example, in a 10% update work-
load, 5% of operations are insertIfAbsent and 5% of operations are erase, the rest are
contains. Figures 6.10 - 6.13 shows these experiments, showing how all algorithms
scale under these workloads with additional threads.

These experiments show, despite the higher cost of KCAS, that the KCAS imple-
mentation outperforms Natarajan in all workloads (except for the non-HTM KCAS

51

with keyrange size of 2 ∗ 106 and an update rate of 40%) and are competitive with
Bronson in all workloads, slightly surpassing Bronson in lower update-rate cases. The
KCAS implementation suffers when contention is high, specifically in high update-
rate cases with smaller key ranges.

Figure 6.10: AVL operation throughput comparison at varying thread counts, in
millions of operations per second, higher is better. Keyrange: 2 ∗ 106

6.6.2 Key Depth and Cache Misses

The expectation is that KCAS would be significantly slower than a fine-grained
technique, as it requires significantly more writes. However, due to the internal
nature of this tree, the average key depth tree is lower than other trees, meaning
searches require fewer reads to locate a specific key, and therefore less cache misses
are expected. The number of last level cache (LLC) misses per operation is shown
in Figure 6.14.

Managing paths in the KCAS implementations is not free, as threads must read
and save several fields as they traverse, something the other trees do not require.

52

Figure 6.11: AVL operation throughput comparison at varying thread counts, in
millions of operations per second, higher is better. Keyrange: 2 ∗ 107

However, whenever Bronson traverses a new node for a search, it involves a recursive
call so that searches can be partially recovered rather than requiring a full restart.
As a result, every traversal requires the creation of a stack frame to do the recursive
call, which comes at a significant cost. Conversely, the overall cost of validatePath,
is quite low: it is expected that the fields that are validated as part of validatePath
are already in L1 cache, as they are read to do the search. validatePath also returns
on the first node that has a changed version number. It is expected that a cache
miss would occur on this first node, but then the search would be retried. Note
that Bronson is also susceptible to an L2 prefetching issue caused by its validation
technique, which causes additional cache misses [4].

53

Figure 6.12: AVL operation throughput comparison at varying thread counts, in
millions of operations per second, higher is better. Keyrange: 2 ∗ 108

54

Figure 6.13: AVL operation throughput comparison at varying thread counts, in
millions of operations per second, higher is better. Keyrange: 2 ∗ 109

55

Figure 6.14: AVL LLC misses per operation comparison, lower is better

56

Chapter 7

Dynamic Connectivity via KCAS

The approach outlined in the previous chapter can be applied to a variety of node-
based data structures. As an example, this chapter gives an overview of the first lock-
free concurrent solution to the dynamic connectivity problem on undirected acyclic
graphs. To the best of our knowledge, this is the first concurrent implementations of
such a data structure.

7.1 Overview

The dynamic connectivity problem involves maintaining a graph containing a set of
fixed vertices and a dynamic set of edges. Solving dynamic connectivity requires im-
plementing three operations: connected(v, w), link(v, w) and cut(v, w). connected(v,
w) returns true if there exists a path from node v to w. Otherwise, it returns false.
If there is no path between v and w, link(v, w) creates an edge between them and
returns true. Otherwise, it returns false.1 Finally, if there is an edge between v and
w, cut(v, w) removes this edge and returns true. Otherwise, it returns false.

We follow the same general approach used to implement the AVL tree: all nodes
have version numbers, and follow Rule 1 and Rule 2, and the validatePath operation
is used to implement atomic searches.

1You cannot link two nodes if there already exists a path between them, as this creates a cycle
in the graph. This restriction is a common limitation of sequential data structures for dynamic
connectivity, which does not relate to our method.

57

7.2 Algorithm Design

In the sequential setting, Euler Tours [32] are typically used to implement dynamic
connectivity. An Euler Tour starts at an arbitrary node and visits each edge exactly
once (interpreting undirected edges as two directed edges for our purposes) recording
each visit to a node as they are traversed.

In the classical Euler tour data structure, the tour is stored in a BST. However,
this work stores the tour in a skip list rather than a BST, as in [36], which makes
it easier to split and merge while maintaining (probabilistic) balance, and having
each node of the skiplist represent an edge in an Euler tour rather than a node [33].
To clarify, there is a graph comprised of graph nodes, and a skiplist comprised of
list nodes, which represent edges in the graph, and each graph node has pointers
to the list nodes for each of its incident edges. That paper also adds an additional
self-edge for each node, which appears as a list node pointed to by the appropriate
graph node. It turns out that this self edge greatly simplifies the data-structure
operations in a concurrent setting. Figure 7.1 shows an example of how such tours
can be represented. We omit the upper levels of the skip-list to save space, and draw
the graph representation above the list. To avoid special cases, towers of sentinel
nodes are added to be beginning and the end of every tour list.

Just as we used version numbers to impose a sequential ordering on modifications
to a single BST node in our AVL tree, the version number of the leftmost sentinel
node at the bottom level of the list (the minimum sentinel) is used to impose a
sequential ordering on modifications to an individual Euler tour list, i.e., a single
version number protects the entire tour list. More precisely, all updates increment
the version number of the minimum sentinel, allowing only a single update on any list
at a time. This approach might seem like a concurrency bottleneck, but care is taken
to avoid the possibility of cycles being introduced by concurrent links. Additionally,
every graph node is initially in its own Euler tour tree, allowing plenty of concurrency.
We now sketch how the operations are implemented.

7.2.1 Connection Queries

The main purpose of this data structure is to answer connectivity queries: does a
path between nodes v and w exist or, equivalently, do v and w belong to the same
connected component or tour list? Consider the self-edges from v to v, and from w
to w. Let Lv and Lw be the list nodes that represent these self-edges. If a time can
be established when Lv and Lw are in the same tour list, then a path exists between

58

Figure 7.1: Operation link(3, 6) on (simplified) Euler tour lists

those two graph nodes at that time. Conversely, if a time can be established when
these list nodes are in different tour lists, then no path exists between the graph
nodes at that time.

This observation is simple to determine: starting from Lv and Lw, the tour list(s)
are traversed left towards the minimum sentinel. These traversals do the reverse of
a traditional skiplist search, traversing up and left in the list until a sentinel node
is reached. Once a sentinel node is reached, the node is traversed down towards
the bottom level of the list to locate the minimum sentinel. (We could simply have
traversed left, without going upwards, but then our traversal time could be linear in
the size of the tour list.) The paths taken by both traversals are then validated, and
if either validation fails the entire operation is retried. If the same minimum sentinel
is found by these validated searches then there is a time when these two graph nodes
existed in the same subgraph and therefore a path existed between them, so true is
returned. If they are different, a time exists where the graph nodes are in different
subgraphs and no path existed between them, so false is returned.

59

7.2.2 Link

To simplify the presentation, each tour list is presented as a doubly-linked
list (rather than skiplist), then is extended to explain how this changes
when skiplists are used. The goal of link(v,w) is to add a link from graph node
v to graph node w, absorbing the subgraph (equivalently, tour list) of w into the
subgraph of v. v and w can only be linked if they are not part of the same subgraph,
so this operation begins by performing the algorithm for connected(v,w). Let Mv

and Mw be the minimum sentinels located while performing this algorithm. If Mv

and Mw are the same, then link(v,w) can safely return false: a time is determined
where they were already in the same subgraph. If Mv and Mw are different, then the
operation can proceed. We include Mv and Mw in our (eventual) KCAS operation,
using it to increment both of their version numbers.

We explain the next steps with an example. Consider the case link(3, 6) presented
in Figure 7.1. The tour lists drawn at the top of that figure are logically split into
two sublists each: sublist L1 contains all nodes in the tour list to the left of and
including 3’s self-edge (excluding the minimum sentinel, called S1), and sublist L2
contains all nodes to the right of 3’s self-edge (excluding the maximum sentinel,
S2). Similarly, in the tour list for node 6, sublist L3 contains all nodes in the tour
list to the left of and including 6’s self-edge (excluding the minimum sentinel, called
S3), and sublist L4 contains all nodes to the right of 6’s self-edge (excluding the
maximum sentinel, S4). The labels L1, L2, L3 and L4 are suffixed with A and B
to denote the beginning and end of sublists (i.e., L1A is the leftmost node of L1,
and L1B is the rightmost node of L1). These nodes require updates as part of the
operation.

Since link adds a new edge, that edge is added to the tour lists (twice, as it should
be traversed in both directions). Two new list nodes are created (VW and WV),
one for each direction. The resulting tour list can be constructed by arranging the
sublists in the following order: [S1, L2, L1, VW, L4, L3, WV, S4],2 which requires the
operation to change the left or right pointers of the nodes on the ends of the sublists,
as well as those of sentinel nodes. This arrangement effectively rotates the individual
tours containing v and w such that they are rooted at v and w, respectively, and
then links them together. Note that the graph nodes for 3 and 6 are also updated
to add their new neighbour (6 and 3, resp.) to their adjacency lists.

All of these pointer changes are performed in a single KCAS. In other words, the

2It is possible for L2 and L4 to be empty, in which case, the same sequence sublist order works
if empty sublists are omitted.

60

KCAS needs to update the left and right fields of all the list nodes at the ends of
the sublists, add neighbours to the graph nodes, increment the version numbers of
all nodes involved (crucially, including the minimum sentinel), and mark any nodes
that are removed (S2 and S3, in this case). We use marking to avoid erroneous
modifications to deleted nodes. Before a KCAS is performed, it is first verified
that every node included in the KCAS is not marked. If a node marked, the entire
operation is restarted.

In a skiplist, this list restructuring is simply repeated at every level, in one large
KCAS. The relevant sublists are determined at each level by traversing starting from
the bottom list, and are rearranged in the same order as the bottom list. Crucially,
updates to a skiplist based tour list are still serialized on the same field: the version
number of the minimum sentinel.

To determine a sublist at level i + 1 from level i, the skip-list is traversed upwards
and inwards from the ends of the sublist at level i. For example, consider the top
left image in Figure 7.1, let the bottom level of the list represented here be level 1.
To determine the sublist L1 at level 2, the skip-list is traversed from L1A right until
a node is encountered that has a node above it at level 2. Similarly, to determine
the other end of the sublist, the skip-list is traversed from L1B left until a node is
encountered that has a node above it at level 2. The two nodes found at level 2
are the ends of the sublist L1 at level 2. If these two traversals ever encounter the
same node at some level i, this indicates there is no such sublist at level i + 1. By
performing this traversal for every sublist, at every level, all the nodes that need to
be modified can be found. This process is repeated until the maximum height of the
skiplist is reached, or the sublist does not exist at some level, i.e., if a sublist does
not exist at some level, it does not exist at any level above that as well.

7.2.3 Cut

The goal of our implementation of cut(v, w) is to remove the edge connecting v to
w if it exists, and split their tour list into two. Graph nodes contain adjacency lists,
so determining if two nodes are directly connected by an edge is easy. If they are
not neighbours, then the operation returns false. Otherwise, the version numbers of
these graph nodes should be added to our (eventually) KCAS. The minimum sentinel
is located as in the previous operations but only a single traversal starting at one of
v or w is required.

From the graph nodes in Figure 7.2, the list nodes representing the edges VW
and WV can be found. These list nodes are removed as part of the operation and

61

the list nodes between them form one of the new tour lists. The list is separated into
three sublists: L1, which contains all nodes to the right of the minimum sentinel and
to the left of the edge VW, L2, which contains all nodes to the right of VW and to
the left of WV, and L3, which contains all nodes to the right of WV and to the left
of the maximum sentinel (S2). Two new sentinel nodes are created for the new list,
S3 and S4. This operation simply removes L2 from the center of the list, creating
two lists as a result: [S1, L1, L3, S2] and [S3, L2, S4].3 The sublist L2 represents the
nodes no longer reachable from v after the removal of w, since the only way v could
reach these nodes is by first traversing w.

Figure 7.2: Operation cut(3, 6) on (simplified) Euler tour lists

To extend this to a skiplist it is very similar to link. These sublists are formed at
each level and linked together in the same order as the bottom list.

3One of L1 or L3 (but not both) could be empty, but the order presented here remains correct
if empty lists are omitted.

62

7.3 Correctness Proof

Note: recall that to avoid special cases, an additional self-edge is added for each
graph node. Once this is done, there is still a well defined Euler tour that follows
each edge once, but now these self-edges appear in the Euler tour. If an Euler tour
containing self-edges has all of its self-edges removed,an Euler tour of the original
graph remains.

As in the avl tree, list nodes are marked at the time they are deleted, so it
can be verified (purely syntactically) that before performing a KCAS that all nodes
it modifies are unmarked, and in doing so guarantee that no deleted node is ever
changed.

Definition 7.3.1. This fully-dynamic connectivity data structure consists of a set
of Euler tour skiplists and a set of graph nodes. Each graph node u participates in
a single Euler tour skiplist (or tour list for short), and contains pointers to all of the
(skip)list nodes that represent directed edges starting from u, including the self edge
u→ u. In each tour list, the bottom level list nodes represent the sequence of edges
visited in an Euler tour of the graph nodes that participate in the tour list.

Algorithm 18 isConnected(v, w)

1: while true do
2: pv = traversePathToMinSentinel(v) . A path pv followed to a minimum sentinel
3: pw = traversePathToMinSentinel(w) . A path pw followed to a minimum sentinel
4: if not validatePath(pv) then continue
5: if not validatePath(pw) then continue
6: if pv→minSent == pw→minSent then return true . paths arrived at the same sentinel
7: else return false . paths arrived at different minimum sentinels

Observation 7.3.2. Any list node that has the value NULL in both its down and
left field is the minimum sentinel of a tour list.

Lemma 7.3.3. Our implementation satisfies the following claims:

1. isConnected(v, w) returns the same value as if performed atomically at its
linearization point (just before the first validation) .

2. (a) The data structure is a fully-dynamic connectivity structure (see definition
7.3.1) .

63

(b) Any link or cut operation that performs a successful KCAS returns the
same value as if it were performed atomically at its linearization point
(the KCAS)

(c) Any link or cut operation that terminates without performing a successful
KCAS returns the same value as if it were performed atomically at its
linearization point

Proof. Consider an arbitrary execution E. We prove these claims together by in-
duction on the sequence of steps s1, s2, ... in E, which can be shared memory reads,
atomic KCASRead operations, or atomic KCAS operations.

Base case: There are a finite number i graph nodes, and each is in its own tour
list. These tour lists contain a single self-edge, and two sentinel towers on each side.

Inductive step: suppose the claims all hold before step s. We prove they hold
after step s.

Claim 1. The only operations that can affect this claim are KCAS operations from
link or cut. Reads do not change the data structure, hence they do not change the
paths followed by the traversals in isConnected.

Subcase 1 : Consider an invocation of isConnected(v, w) that returns true. In
the final loop of this invocation, the following occurs: the traversal from v to a
minimum sentinel that follows path pv occurs, then the traversal from w to the
same minimum sentinel follows path pw. Let the time this second traversal ends be
t0. From Observation 7.3.2, we can statically check that the node reached by these
traversals is a minimum sentinel. We then validate the path of the first traversal at
t1, and then validate the path of the second traversal at t2. Therefore, t0 < t1 < t2).
This operation does not return unless validatePath returns true for both paths. Since
we know that validatePath(pw) returns true, there is no modifications to any nodes in
pw between t0 and t2. Hence, there is also no modifications to any node in pw between
t0 and t1, and validatePath(pw) returns true if it executed at t1. Consider a link or
cut update that changes the configuration of the tour list during this operation.
If this link or cut does not involve the current tour list, it does not change the
minimum sentinel that is reached by either traversal. If these updates occur on the
current tour list, it must include the version number of the minimum sentinel in the
KCAS. If this update occurs during one of the traversals, then the traversal fails to
validate, and this operation is retried. Additionally, if the update occurs between
the traversals and one of the validations, the validation fails. Therefore, since both
of these traversals end at the same minimum sentinel, they are in the same tour list
just before t1, which is where we linearize this operation.

64

Subcase 2 : Consider an invocation of isConnected(v, w) that returns false. This
argument is the same as Subcase 1, since isConnected(v, w) still must validated both
paths, however the minimum sentinels are different.

Claim 2a. The only operations that affect this claim are the KCAS operations in
link and cut, as reads to not change the data structure.

Subcase 1 : Suppose s is a successful KCAS of link(v, w). Before this KCAS, two
traversals occurred and validated that form the self-egdes of the two graph nodes
v and w to two different minimum sentinels. As we proved in Claim 1, a time t
exists where v and w are in different tours, and hence there is no path between
them. From the inductive hypothesis, these two tour lists are well-formed before
this operation. Hence, it is correct to perform a link operation on these two nodes
at t. Since the version number of both minimum sentinels are part of this KCAS,
there are no changes to either tour list between t and s. This observation means that
no update modified any node in either tour list after the time they are validated.
Therefore, the link operation is still applicable at s.

Subcase 2 : Suppose s is a successful KCAS of cut(v, w). This case is easier than
Subcase 1, as only a single list is tracked for this operation.

Claim 2b. This claim is proven in Claim 2A, as we proved that both link and cut
are atomic at s, which is when the KCAS is executed.

Claim 2c. This claim is proven in Claim 1, as both use the result of isConnected to
determine if a KCAS should execute or not. If link calls isConnected and it returns
true, link returns false, as a time t established a path already existed between the two
nodes (right before the first validation of isConnected), we linearize this operation
at t. The argument is identical for cut, but reversed.

7.4 Progress Proof

Theorem 7.4.1. Our implementation of the fully-dynamic connectivity structure is
lock-free.

Proof. Consider some configuration C, where threads continue to take steps, but
after some time t no operations complete. All threads, therefore, must be stuck in
retry loops, failing validatePath or KCAS operations. Since validatePath and KCAS
operations only fail if a node is modified since its version number is last read, the
only way these infinite retry loops fail is if there are infinitely many modifications

65

to the data structure. However, if operations stop completing after time t, then
eventually the data structure must stop changing, since each operation performs at
most one successful KCAS, and the data structure is changed exclusively by successful
KCAS operations. This observation is a contradiction, the only way a thread fails
an operation is if another thread has made progress.

66

Chapter 8

(a,b)-tree via KCAS

The implementation of the AVL tree in Chapter 6 performed worse relative to the
competition when update rates were high (> 20%). There are data structures, how-
ever, where our approach can actually provide superior performance in high update-
rate workloads relative to the current state of the art. As an example of such a data
structure, we give a brief overview for an implementation of an (a,b)-tree using our
framework that actually improves update performance.

8.1 Overview

An (a,b)-tree is a leaf-oriented search tree, similar to leaf-oriented B-trees, with the
extra invariant that all leaves have between a and b keys and internal nodes have
between a and b child pointers. The exception is the root, which has between 1 and
b keys if it is a leaf or 2 and b child pointers if it is an internal node. This (a,b)-tree is
also relaxed similar to the AVL tree within this work: the operations and subsequent
rebalancing required are not done in a single atomic operation. Hence, during an
execution, the tree may become imbalanced, but at the end of the execution, where
there are no ongoing operations, the tree satisfies the normal B-tree balance invariant.

The original implementation of this tree [8] is implemented using a “tree update
template”, which relies on load-link-extended (LLX) and store-conditional-extended
(SCX). The “tree update template” makes heavy use of the read-copy-update (RCU)
paradigm in order to perform all updates. With KCAS, however, this is not necessary
for all operations and directly results in performance benefits for some operations.
LLX/SCX primitives are extended versions of the traditional load-link (LL) and

67

store-conditional (SC) primitives. LL returns the current value stored at a memory
location. After this, a SC attempts to store a new value at the same memory location
only if no changes have occurred to that memory location since the LL.1 LLX can be
called on multiple data records (such as a node) before an invocation of SCX. SCX
verifies multiple memory locations have not changed since the associated invocation
of LLX, and can mark any number of data records, but it can only change a single
memory location after the verification.

The focus of the rest of this chapter is to show how changing an implementation
of a data structure to use KCAS, and making some other small changes to conform to
our framework, can actually improve the performance of updates. Most operations
of the tree follow the same semantics as the LLX/SCX version, however do so via
KCAS. For brevity, how every operation is carried out is not outlined, but only
the changes required to the original implementation to use KCAS, and how some
operations changed in order to accommodate KCAS.

8.2 Algorithm Design

Beause LLX/SCX only change a single field at a time, the original implementation
relies heavily on a read-copy-update style for making changes to a data structure,
allocating new nodes even if the new nodes allocated are very similar to those being
replaced. One common operation is insertion. Consider an insertion of a new key-
value pair into a leaf that has space for it, i.e., no split or join operations are required
to insert this key. The original implementation carried out this insertion case as
depicted in Figure 8.1.

Figure 8.1: Simple insert case on the LLX/SCX implementation of the (a,b)-tree

Node n is the leaf node in which the new key-value pair (k,v) is to be inserted.

1This is similar to CAS, however CAS only ensures the memory location has the same value as
the one provided, while LL/SC will fail if any change occurs to that memory location, therefore
being resilient to ABA problems.

68

The key-value pairs in this diagram are split into two sets: α, which are the key-value
pairs with keys less than the new key k to be inserted, and γ, which are the key-value
pairs with keys greater than the new key k to be inserted. In essence, this operation
attempts to insert (k,v) between these two sets. LLX/SCX is insufficient to insert
the multi-word new pair in-place, as it can only change a single field in memory.
Hence n is replaced with a new node. In the current state of the tree n’s parent,
node p has a pointer to n. This pointer to n is changed to point to a new node, n,
that contains all the keys and values of n and the new pair (k,v) in the appropriate
location. Even in the case where the set γ is empty, LLX/SCX still cannot avoid
this allocation because the key and value are two separate fields.

In the updated implementation using KCAS, a slight change to how searches work
to avoid special cases is required. The keys of leaves are left unsorted2, meaning the
insertion discussed above can be carried out as depicted in Figure 8.2.

Figure 8.2: Simplest insert case on the KCAS implementation of the (a,b)-tree

Since keys are unsorted, the set β of keys is simply all the keys of n in no particular
order. To carry out this insertion, the new pair (k,v) is simply inserted into the node
n and n is not replaced, avoiding a new node allocation. On the surface, this seems
like a minimal change. However, as seen in the next section, avoiding this allocation
actually has substantial impact on performance.

To accommodate the unsorted nature of leaf nodes, a small change to the search-
ing algorithm is required. When a leaf node is encountered when searching for a key,
all keys in the node must be read and compared to the key searched for, until it is
found or no keys remain. We also make changes to this data structure in order to
follow our framework, augmenting every node with a version number and validating
searches as in the AVL tree. All updates increment this version number, and searches
are validated by re-reading version numbers of nodes encountered during a search.

The only operation changed drastically is the singular insert case and searches.
Other operations are changed to be carried out via KCAS, but are semantically the

2Due to the bounds on the size of nodes here (between a and b keys), and the fact that only
leaves are left unsorted, this does not change the time complexity of any operation.

69

same as the LLX/SCX version, except they also increase a version number. The
correctness arguments are very similar to the AVL tree (actually, they are strictly
simpler) and are therefore not restated here.

8.3 Evaluation

The KCAS and LLX/SCX implementations are compared to show the performance
differences under different workloads. A similar approach is followed to the experi-
ments from the AVL tree, however we change some of the update-rates in order to
highlight the benefits of using KCAS.

In Figures 8.3 - 8.6 a comparison between the two implementations is shown. It
can be seen clearly that the searches in the LLX/SCX implementations are somewhat
faster, which is most likely due to the extra cycles spent performing KCAS reads in
our implementation, and the small cost of path validations. However, as the update-
rate increases the performance of the LLX/SCX implementation fails to scale as well
as the KCAS implementation. The essential difference in the KCAS variant is that it
removes the need for the allocation of a new node for the insert case outlined above,
and the copying of all the values from the old node to the new one. The following
experiments show that while the additional overhead of KCAS relative to LLX/SCX
does affect of performance as expected, in high update-rate scenarios avoiding the
RCU-style updates has a much larger impact.

8.4 Possible Extensions

It should be noted that it is possible to avoid validating searches in this data structure
and use a similar argument to show searches are correct from the original implemen-
tation. However, omitting this validation greatly increases the complexity of the
required proof, making it similar to that of the original LLX/SCX implementation,
while only providing a small benefit to performance (<1% in all tested workloads).

Additional operations could be changed more drastically thanks to the increased
power of KCAS, allowing almost all updates to many fields of a node to be changes
rather than replacements. This approach would require algorithmic changes and an
increase in complexity relative to the original implementation, though could result
in performance benefits.

70

Figure 8.3: (a,b)-tree operation throughput comparison at varying thread counts, in
millions of operations per second, higher is better. Keyrange: 2 ∗ 106

71

Figure 8.4: (a,b)-tree operation throughput comparison at varying thread counts, in
millions of operations per second, higher is better. Keyrange: 2 ∗ 107

72

Figure 8.5: (a,b)-tree operation throughput comparison at varying thread counts, in
millions of operations per second, higher is better. Keyrange: 2 ∗ 108

73

Figure 8.6: (a,b)-tree operation throughput comparison at varying thread counts, in
millions of operations per second, higher is better. Keyrange: 2 ∗ 109

74

Chapter 9

Conclusion

9.1 Summary

This thesis introduces a KCAS-based framework for designing efficient concurrent
data structures, and showed how it can be applied to a variety of data structures,
two of which are the first of their kind. The AVL tree presented is competitive with
the state-of-the-art in concurrent BSTs, despite being significantly simpler and using
a higher-level primitive like KCAS. The first implementation of a concurrent fully-
dynamic connectivity data structure is also presented, notably achieving lock-free
progress. Finally, a KCAS variant of the (a,b)-tree implemented with LLX/SCX
presented in [4] is outlined, which is able to achieve higher update performance by
avoiding the use of RCU-style updates from the original implementation.

9.2 Future Work

9.2.1 Node-based KCAS

The use of KCAS and this approach can be integrated, further abstracting the use
of KCAS via a node-based KCAS implementation. In this implementation, the user
would interact with data structure nodes exclusively through the KCAS interface
(including allocation and reclamation). When preparing a KCAS operation, the user
would provide a set of nodes they wish to change, the changes to those nodes they
wish to apply, and the set of dependency nodes for the operation. The use of version

75

numbers can be abstracted away from the user, making the implementation of these
data structures significantly simpler, and potentially have performance benefits for
certain data structures.

9.2.2 Combining Data Structures

Combining data structures is an approach used to achieve specific time complexities
for certain workloads. For example, a hash-list (the combination of a hash-table
and a doubly-linked-list) provides expected constant-time removal and membership
tests, at the cost of more expensive insertions. Creating such data structures con-
currently can be difficult with fine-grained approaches, as both data structures must
be synchronized. Using KCAS, however, operations on both data structures can be
combined relatively simply, resulting in simple implementations of very specialized
data structures. For example, to carry out an insertion operation on a hash-list, it
would be as simple as constructing the KCAS for insertion for both the hash-table
and linked-list separately, then combining those KCAS operations into one single
larger KCAS.

76

References

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir
Shavit. Atomic snapshots of shared memory. J. ACM, 40(4):873–890, September
1993.

[2] James H. Anderson and Mark Moir. Universal constructions for multi-object
operations. In Proceedings of the Fourteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’95, page 184–193, New York, NY, USA,
1995. Association for Computing Machinery.

[3] Maya Arbel-Raviv and Trevor Brown. Reuse, don’t recycle: Transforming lock-
free algorithms that throw away descriptors. In Proceedings of the 31st ACM
Symposium on Distributed Computing, 2017.

[4] Maya Arbel-Raviv, Trevor Brown, and Adam Morrison. Getting to the root
of concurrent binary search tree performance. In 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18), pages 295–306, Boston, MA, July 2018.
USENIX Association.

[5] Luc Bougé, Joaquim Gabarró Vallés, Xavier Messeguer Peypoch, and Nicolas
Schabanel. Height-relaxed avl rebalancing: a unified, fine-grained approach to
concurrent dictionaries. 1998.

[6] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A prac-
tical concurrent binary search tree. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’10,
pages 257–268, New York, NY, USA, 2010. ACM.

[7] Trevor Brown. Reclaiming memory for lock-free data structures: There has to
be a better way. In Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing, PODC ’15, pages 261–270, New York, NY, USA, 2015.
ACM.

77

[8] Trevor Brown. Techniques for Constructing Efficient Lock-free Data Structures.
PhD thesis, University of Toronto, 2017.

[9] Trevor Brown, Faith Ellen, and Eric Ruppert. Pragmatic primitives for non-
blocking data structures. In ACM Symposium on Principles of Distributed Com-
puting, PODC ’13, Montreal, QC, Canada, July 22-24, 2013, pages 13–22, 2013.

[10] Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-
blocking trees. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’14, Orlando, FL, USA, February 15-19, 2014,
pages 329–342, 2014.

[11] Intel Corporation. Intel architecture instruction set extensions programming
reference, chapter 8, 2013.

[12] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized con-
currency: The secret to scaling concurrent search data structures. In Proceedings
of the Twentieth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’15, page 631–644, New York,
NY, USA, 2015. Association for Computing Machinery.

[13] Dana Drachsler, Martin Vechev, and Eran Yahav. Practical concurrent binary
search trees via logical ordering. In PPoPP ’14 Proceedings of the 19th ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages
343–356, 2014.

[14] Dana Drachsler-Cohen, Martin Vechev, and Eran Yahav. Practical concurrent
traversals in search trees. SIGPLAN Not., 53(1):207–218, February 2018.

[15] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-
blocking binary search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC ’10, pages 131–140,
New York, NY, USA, 2010. ACM.

[16] Rachid Guerraoui and Vasileios Trigonakis. Optimistic concurrency with op-
tik. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’16, pages 18:1–18:12, New York, NY,
USA, 2016. ACM.

[17] Tim L. Harris. A pragmatic implementation of non-blocking linked-lists. In
Proceedings of the International Conference on Distributed Computing (DISC),
pages 300–314, 2001.

78

[18] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word
compare-and-swap operation. In Proceedings of the 16th International Con-
ference on Distributed Computing, DISC ’02, page 265–279, Berlin, Heidelberg,
2002. Springer-Verlag.

[19] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, January 1991.

[20] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th Annual Inter-
national Symposium on Computer Architecture, ISCA ’93, pages 289–300, New
York, NY, USA, 1993. ACM.

[21] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492,
July 1990.

[22] Shane Howley and Jeremy Jones. A non-blocking internal binary search tree.
ACM Symposium on Parallelism in Algorithms & Architectures, 06 2012.

[23] Robert Kelly, Barak A. Pearlmutter, and Phil Maguire. Concurrent robin hood
hashing. In Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Fer-
reira, editors, 22nd International Conference on Principles of Distributed Sys-
tems (OPODIS), Hong Kong, China.

[24] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and An-
thony Nguyen. Hybrid transactional memory. 2006.

[25] Maged M Michael. High performance dynamic lock-free hash tables and list-
based sets. In Proceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures, pages 73–82. ACM, 2002.

[26] Maged M. Michael and Michael L. Scott. Correction of a memory management
method for lock-free data structures. Technical report.

[27] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael, and
Hisanobu Tomari. Quantitative comparison of hardware transactional mem-
ory for blue gene/q, zenterprise ec12, intel core, and POWER8. In Deborah T.
Marr and David H. Albonesi, editors, Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture, Portland, OR, USA, June 13-17,
2015, pages 144–157. ACM, 2015.

79

[28] Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search
trees. In ACM SIGPLAN Notices, volume 49, pages 317–328. ACM, 2014.

[29] Niloufar Shafiei. Non-Blocking Data Structures Handling Multiple Changes
Atomically. PhD thesis, York University, 7 2015.

[30] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings
of the Fourteenth Annual ACM Symposium on Principles of Distributed Com-
puting, PODC ’95, page 204–213, New York, NY, USA, 1995. Association for
Computing Machinery.

[31] H̊akan Sundell and Philippas Tsigas. Lock-free deques and doubly linked lists.
J. Parallel Distrib. Comput., 68(7):1008–1020, July 2008.

[32] R. E. Tarjan and U. Vishkin. Finding biconnected components and comput-
ing tree functions in logarithmic parallel time. In 25th Annual Symposium on
Foundations of Computer Science, pages 12–20, Oct 1984.

[33] Robert E. Tarjan. Dynamic trees as search trees via euler tours, applied to the
network simplex algorithm. Math. Programming, 78:169–177, 1997.

[34] Shahar Timnat, Maurice Herlihy, and Erez Petrank. A practical transactional
memory interface. In Jesper Larsson Träff, Sascha Hunold, and Francesco Ver-
saci, editors, Euro-Par 2015: Parallel Processing, pages 387–401, Berlin, Hei-
delberg, 2015. Springer Berlin Heidelberg.

[35] R. K. Treiber. Systems programming: Coping with parallelism. Technical Re-
port RJ 5118, IBM Almaden Research Center, 1986.

[36] Thomas Tseng, Laxman Dhulipala, and Guy Blelloch. Batch-parallel euler tour
trees. In 2019 Proceedings of the Twenty-First Workshop on Algorithm Engi-
neering and Experiments (ALENEX), pages 92–106, 2019.

[37] John D. Valois. Lock-Free Data Structures. PhD thesis, Rensselaer Polytechnic
Institute, 5 1995.

80

	List of Figures
	Introduction
	Model
	Background
	KCAS
	Related Work

	Motivation
	The Difficulty of Proving Fine-Grained Data Structures Correct
	Drachler Tree Bug
	Counter Example
	Solution: Search Direction Swap

	Simplifying the use of KCAS
	Interface
	Implementation

	AVL Tree via KCAS
	Overview
	Algorithm Design
	Searching
	Insertion
	Deletion
	Rebalancing

	Correctness Proof
	Progress Proof
	Balance Proof
	Evaluation
	Throughput
	Key Depth and Cache Misses

	Dynamic Connectivity via KCAS
	Overview
	Algorithm Design
	Connection Queries
	Link
	Cut

	Correctness Proof
	Progress Proof

	(a,b)-tree via KCAS
	Overview
	Algorithm Design
	Evaluation
	Possible Extensions

	Conclusion
	Summary
	Future Work
	Node-based KCAS
	Combining Data Structures

	References

