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Abstract

Accurate modeling and simulation of data collected from a power plant system are impor-
tant factors in the strategic planning and maintenance of the unit. Several non-linearities
and multivariable couplings are associated with real-world plants. Therefore, it becomes
almost impossible to model the system using conventional mathematical equations. Statis-
tical models such as ARIMA, ARMA are potential solutions but their linear nature cannot
very well fit a system with non-linear, multivariate time series data. Recently, deep learn-
ing methods such as Artificial Neural Networks (ANNs) have been extensively applied for
time series forecasting. ANNs in contrast to stochastic models such as ARIMA can uncover
the non-linearities present underneath the data.

In this thesis, we analyze the real-time temperature data obtained from a nuclear power
plant, and discover the patterns and characteristics of the sensory data. Principal Compo-
nent Analysis (PCA) followed by Linear Discriminant Analysis (LDA) is used to extract
features from the time series data; k-means clustering is applied to label the data instances.
Finite state machine representation formulated from the clustered data is then used to
model the behaviour of nuclear power plants using system states and state transitions. De-
pendent and independent parameters of the system are defined based on co-relation among
themselves. Various forecasting models are then applied over multivariate time-stamped
data. We discuss thoroughly the implementation of a key architecture of neural networks,
Long Short-Term Neural Networks (LSTMs). LSTM can capture nonlinear relationships
in a dynamic system using its memory connections. This further aids them to counter
the problem of back-propagated error decay through memory blocks. Poly-regression is
applied to represent the working of the plant by defining an association between indepen-
dent and dependent parameters. This representation is then used to forecast dependent
variates based on the observed values of independent variates. Principle of sensitivity
analysis is used for optimisation of number of parameters used for predicting. It helps in
making a compromise between number of parameters used and level of accuracy achieved
in forecasting.

The objective of this thesis is to examine the feasibility of the above-mentioned fore-
casting techniques in the modeling of a complex time series of data, and predicting system
parameters such as Reactor Temperature and Linear Power based on past information. It
also carries out a comparative analysis of forecasts obtained in each approach.

Index Terms—Linear data, Non-Linear data, Non-Stationary time series, Multi-
variable couplings, Artificial Neural Networks (ANNs), ARIMA, ARMA, PCA, LDA,
k-means clustering, Finite state machine, Long Short-Term Neural Networks (LSTMs),
Poly-regression, Sensitivity Analysis.

iii



Acknowledgements

I would like to thank Dr. Kshirasagar Naik and Dr. Mahesh Pandey for being my
mentors and regularly guiding me during my research work. I would also like to appreciate
my colleagues and peers for their constant support and love.

iv



Dedication

This is dedicated to my beloved parents Rajinder Kumar Taneja and Sakina Taneja for
providing me this opportunity, love and support in my lifetime. To my siblings Mukul and
Shubhneet for giving me moral support and happiness. To my friends Haritima Manchanda,
Gaurav Sahu and Faraaz Mohammad for handling me and being on my side when needed.

v



Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Solution Strategy and Contributions . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6

2.1 Time-series Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Forecasting using parametric models . . . . . . . . . . . . . . . . . . . . . 7

2.3 Forecasting using non-parametric models . . . . . . . . . . . . . . . . . . 8

3 Concepts of Time Series Modelling 10

3.1 Background on Time Series Data . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Defining Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Components of a Time Series . . . . . . . . . . . . . . . . . . . . . 12

3.1.3 Examples of Time Series Data . . . . . . . . . . . . . . . . . . . . . 13

3.1.4 Guide to Time Series Analysis . . . . . . . . . . . . . . . . . . . . . 15

vi



3.1.5 Time Series: A Stochastic Process . . . . . . . . . . . . . . . . . . . 15

3.1.6 Concept of Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Time Series Forecasting Methods . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Artificial Neural Networks (ANNs) . . . . . . . . . . . . . . . . . . 23

3.2.4 Recurrent Neural Networks (RNNs) . . . . . . . . . . . . . . . . . . 25

3.3 Forecast Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Mean Forecast Error (MFE) . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Mean Absolute Error (MAE) . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Mean Squared Error (MSE) . . . . . . . . . . . . . . . . . . . . . . 31

3.3.4 Mean Percentage Error (MPE) . . . . . . . . . . . . . . . . . . . . 32

3.3.5 Mean Absolute Percentage Error (MAPE) . . . . . . . . . . . . . . 32

3.3.6 Sum of Squared Error (SSE) . . . . . . . . . . . . . . . . . . . . . . 33

3.3.7 Normalised Mean Squared Error (NMSE) . . . . . . . . . . . . . . . 33

3.3.8 Root Mean Squared Error (RMSE) . . . . . . . . . . . . . . . . . . 33

3.3.9 R Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.10 Adjusted R Squared Error . . . . . . . . . . . . . . . . . . . . . . . 34

4 Analysing RT dataset of power plant 35

4.1 Preprocessing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Feature Scaling Techniques . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 ADF test for Stationarity . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Analysing Data extracted from Unit A . . . . . . . . . . . . . . . . 38

4.2.3 Analysing Data extracted from Unit B . . . . . . . . . . . . . . . . 42

4.3 Forecasting Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Polynomial Regression Model . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Deep Learning Models (ANNs) . . . . . . . . . . . . . . . . . . . . 47

vii



5 Finite State Machine Representation of RT dataset 50

5.1 Importance of visual representation of RT dataset . . . . . . . . . . . . . . 50

5.2 Basic principles used for visual representation approach . . . . . . . . . . . 52

5.2.1 Pattern discovery using k-means clustering . . . . . . . . . . . . . . 52

5.2.2 Dimensionality reduction techniques . . . . . . . . . . . . . . . . . 53

5.2.3 Modelling problems using finite state machine . . . . . . . . . . . . 53

5.3 Pipelined Architecture of Methodology . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Clustering Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 State Machine Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Visualisation of time-series of RT . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Visualisation of time-series of Reactor Power . . . . . . . . . . . . . . . . . 63

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Experimentation and Results 67

6.1 Application of Forecasting Techniques in forecasting of Reactor Temperature
(RT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.1 Fitting and Forecasting on data from the same unit. . . . . . . . . . 68

6.1.2 Fitting model on data from one unit and Forecasting for data from
the other unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Analysing impact of sampling frequency of the data on the forecasts made. 79

6.3 Application of Forecasting Techniques in forecasting of Reactor Power . . . 80

6.3.1 Fitting and Forecasting on data from the same unit . . . . . . . . . 81

6.3.2 Fitting model on data from one unit and Forecasting for data from
the other unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Conclusion and Future Work 90

References 91

viii



List of Tables

4.1 ADF test for stationarity of RT data (Unit A) . . . . . . . . . . . . . . . . 40

4.2 ADF test for stationarity of Reactor Power data (Unit A) . . . . . . . . . . 41

4.3 ADF test for stationarity of RT data (Unit B) . . . . . . . . . . . . . . . . 43

4.4 ADF test for stationarity of Reactor Power data (Unit B) . . . . . . . . . . 43

5.1 Silhouette Analysis for k-means clustering of RT data . . . . . . . . . . . . 59

5.2 Computing State transitions for RT data for the first year . . . . . . . . . 62

5.3 Silhouette Analysis for k-means clustering of Power data . . . . . . . . . . 66

6.1 Performance Metrics for RT forecasting using poly-regression (Unit A) . . 69

6.2 Performance Metrics for RT forecasting using poly-regression (Unit B) . . 70

6.3 Hyperparameters selected for training. . . . . . . . . . . . . . . . . . . . . 71

6.4 Performance Metrics for RT forecasting using ANNs (Unit A) . . . . . . . 72

6.5 Performance Metrics for RT forecasting using ANNs (Unit B) . . . . . . . 74

6.6 Comparing Performance Metrics for RT forecasting (Unit A) . . . . . . . . 75

6.7 Comparing Performance Metrics for RT forecasting (Unit B) . . . . . . . . 75

6.8 Sensitivity Analysis using LSTM as base model over data from Unit A . . 76

6.9 Performance Metrics for Application Case 1 . . . . . . . . . . . . . . . . . 78

6.10 Performance Metrics for Application Case 2 . . . . . . . . . . . . . . . . . 78

6.11 Analysing effect of sampling frequency on RT forecasts made for data from
Unit B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

ix



6.12 Performance metrics for daily dataset from Unit B . . . . . . . . . . . . . . 80

6.13 Performance Metrics for Power forecasting using poly-regression (Unit A) . 81

6.14 Performance Metrics for Power forecasting using poly-regression (Unit B) . 82

6.15 Performance Metrics for Power forecasting using ANNs (Unit A) . . . . . . 84

6.16 Performance Metrics for Power forecasting using ANNs (Unit B) . . . . . . 86

6.17 Comparing Performance Metrics for Power forecasting (Unit A) . . . . . . 87

6.18 Comparing Performance Metrics for Power forecasting (Unit B) . . . . . . 88

6.19 Sensitivity Analysis for Power Forecasting using LSTM over data from Unit A 88

6.20 Performance Metrics for Application Case 1 . . . . . . . . . . . . . . . . . 88

6.21 Performance Metrics for Application Case 2 . . . . . . . . . . . . . . . . . 88

x



List of Figures

1.1 Block Diagram for working principle of a Nuclear Power Plant [16] . . . . . 2

1.2 Estimating RT from the values of its covariates . . . . . . . . . . . . . . . 3

1.3 Estimating Power from the values of its covariates . . . . . . . . . . . . . . 4

3.1 Categorisation of Time Series data. . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Components of Time Series data . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Annual flows of St. Lawrence river, New York for years 1860-1957[20]. . . 14

3.4 Monthly phosphorous concentrations for Speed river, Guelph,ON,Canada[20].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Example of Stationary and Non-Stationary time series [46]. . . . . . . . . 16

3.6 Transforming non-stationary data into stationary using differencing . . . . 17

3.7 Linear Regression example. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.8 Polynomial regression example showing a cubic polynomial regression fit to
a synthetic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.9 ANN architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.10 Unfolding in recurrent neural networks . . . . . . . . . . . . . . . . . . . . 26

3.11 LSTM architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.12 LSTM forget gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.13 LSTM input gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.14 LSTM context gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.15 LSTM output gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



4.1 Sensory Data of UNIT A for one year . . . . . . . . . . . . . . . . . . . . . 38

4.2 Sensory Data for RT sensor of UNIT A for one year . . . . . . . . . . . . . 39

4.3 Components of RT data after decomposition . . . . . . . . . . . . . . . . . 39

4.4 Sensory Data for Power sensor of UNIT A for one year . . . . . . . . . . . 40

4.5 Components of Reactor Power data after decomposition . . . . . . . . . . . 41

4.6 Sensory Data of UNIT B for one year . . . . . . . . . . . . . . . . . . . . . 42

4.7 Sensory Data for RT sensor of UNIT B for onr year . . . . . . . . . . . . . 44

4.8 Components of RT data of Unit B after decomposition . . . . . . . . . . . 44

4.9 Sensory Data for Power sensor of UNIT B for one year . . . . . . . . . . . 45

4.10 Components of Reactor Power data of Unit B after decomposition . . . . . 45

4.11 Pictorial representation of bias/variance trade-off. . . . . . . . . . . . . . . 46

4.12 Architecture of MLP model used for forecasting. . . . . . . . . . . . . . . . 48

4.13 Architecture of LSTM model used for forecasting. . . . . . . . . . . . . . . 49

5.1 Methodology pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Clustered Representation of RT data . . . . . . . . . . . . . . . . . . . . . 60

5.3 Finite State Machine Diagram of RT data in one year of operation: illustra-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Visualising RT Clusters on the basis of time of residence. . . . . . . . . . . 62

5.5 Visualising RT Clusters on the basis of mean temperature levels. . . . . . . 63

5.6 Finite state machine diagram for RT for nine years . . . . . . . . . . . . . 64

5.7 Clustered Representation of Power data . . . . . . . . . . . . . . . . . . . . 65

5.8 Finite state machine diagram for Power for nine years . . . . . . . . . . . 65

6.1 Fit of polynomial regression model over data from Unit A. . . . . . . . . . 68

6.2 Fit of polynomial regression model over data from Unit B. . . . . . . . . . 69

6.3 Forecasting RT using MLP over the data from Unit A . . . . . . . . . . . . 71

6.4 Forecasting RT using LSTM network over the data from Unit A . . . . . . 72

6.5 Forecasting RT using LSTM network over the data from Unit B . . . . . . 73

xii



6.6 Forecasting RT using MLP over the data from Unit B . . . . . . . . . . . . 73

6.7 Forecasting RT for Unit B based on data from Unit A . . . . . . . . . . . 77

6.8 Forecasting RT for Unit A based on data from Unit B . . . . . . . . . . . 78

6.9 Forecasting RT for daily dataset from Unit B . . . . . . . . . . . . . . . . 81

6.10 Polynomial Regression fit for Power data from Unit A . . . . . . . . . . . 82

6.11 Polynomial Regression fit for Power data from Unit B . . . . . . . . . . . 83

6.12 Forecasting Power using MLP over the data from Unit A . . . . . . . . . . 84

6.13 Forecasting Power using LSTM over the data from Unit A . . . . . . . . . 85

6.14 Forecasting Power using MLP over the data from Unit B . . . . . . . . . . 85

6.15 Forecasting Power using LSTM over the data from Unit B . . . . . . . . . 86

6.16 Forecasting Power for Unit B based on data from Unit A . . . . . . . . . . 89

6.17 Forecasting Power for Unit A based on data from Unit B . . . . . . . . . . 89

xiii



Chapter 1

Introduction

1.1 Motivation

Nuclear power plants utilize the nuclear fission energy of uranium isotope to heat up the
water in the boilers. The steam generated in boilers is used to run the steam turbines to
produce electric energy. The main parameters involved in this process are reactor tempera-
ture (RT), boiler pressure (BP), feed water temperature (FWT), and Steam Line Pressure
(SLP). Plant operators are responsible for ensuring safe operation of the plant while trying
to maximise the power generated. Therefore, operational and performance parameters of
the plant can be periodically monitored using the built in sensors. Each sensor is associ-
ated with a system parameter and can be used to collect operational measurements of that
parameter. The measurements collected from the sensors are stored as large time-series of
data. Accurate modelling and simulation of data collected from a power plant system are
important factors in the strategic planning and maintenance of the unit. RT measurement
is an important parameter for both safe and economical operation of the plant. Hence,
proper modelling and analysis of system parameters can help in safe and secure operation
of the plant. Various statistical models and machine learning techniques can be applied
to the data collected over time from the sensors to model the operation of the system.
Recorded data from the past can be used as a baseline to model the behavior of power
plant over the years. Proper visualisation of the past data can also help in extracting
interesting patterns over the operation of the plant. Machine learning algorithms can be
applied to get short-term forecasts of the system parameters, helping plant operators to
get an idea of the behavior of system parameters in future.
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Figure 1.1: Block Diagram for working principle of a Nuclear Power Plant [16]

1.2 Problem Statement

Several non-linearities and multivariable couplings are associated with real-world plants.
Therefore, it becomes almost impossible to model the system using conventional mathe-
matical equations. Statistical models such as ARMA, ARIMA are commonly used in the
domain of time-series modelling. However, their efficiency over linear and univariate data
make them a misfit for the current problem domain. Machine learning algorithms, espe-
cially Artificial Neural Networks (ANNs), can be applied to the non-linear, multivariate
data collected, for modelling the operation of the power plant. ANNs in contrast to statis-
tical models can uncover the non-linearities present underneath the data, and also model
both known and unknown relationships between the system parameters.

A nuclear reactor of a power plant is operated below a limiting value of RT to ensure
the safety of the reactor. Therefore, forecasting values of RT for a short-term can help
plant operators to maintain the safety standards while operating the power plant. Machine
learning methods can be used to map the relationship between RT and its covariates, and
forecast values of RT for a short-term based on the past information available.
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1.3 Solution Strategy and Contributions

The behaviour of reactor can be modelled with RT as the dependent variable and SLP,
BP and FWT as independent variables. Given values of covariates over specific time frame
we can estimate RT for the period following that time frame. Hence, according to the
notation for time-series signal, we define input parameters RT, BP, FWT and SLP over a
window Wi, ,Wi ={t1, t2, . . . , tk} where ti is the ith time step ∀i∈ {1,2,. . . ,k} and k denotes
the varying window size. Based on the values of input parameters over window Wi, we
estimate reactor temperature (pRT) as output parameter over some window Wo, Wo =
{tk+1, tk+2, . . . , tn} as shown in Fig 1.2.

Forecasting Model

RT(Wi,k)
BP(Wi,k)

FWT(Wi,k)
SLP(Wi,k)

pRT(Wo,k+1)

Figure 1.2: Estimating RT from the values of its covariates

The main objectives that we are trying to accomplish in this thesis are:

• Objective A: To model power plant data as a finite state machine repre-
sentation.
Large time series data collected over extended periods of time is easily visualised and
modelled in a compact representation in the form of system states and state transi-
tions. The operation of power plant over the years is illustrated as communication
between system states through state transitions.

• Objective B: To forecast system parameters such as RT and Power for a
short-term based on the values of the covariates such as BP, FWT and
SLP.

1. Forecasting RT for a short period of time in future: Data recorded is used to
forecast the value of RT over different time windows. In order to get robust
predictions, data recorded by the sensors is processed to remove unnecessary
features and also the outliers which can define a bias in the prediction. Concept
of sensitivity analysis is undertaken to study the impact of each independent
variable over forecasting of RT.
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2. Study the nature of forecasts when sampling frequency of data is changed:
Recorded data is sampled every second, every minute, hourly, daily. For each
sampling frequency the predictions made using different forecasting methods are
analysed.

3. Forecasting Power for a short period of time in future: Similar to RT forecasting,
the linear power is predicted for future time frame based on prior values of itself
and its covariates (RT,BP,FWT,SLP)

Figure 1.3: Estimating Power from the values of its covariates

Objective A deals with the data collected over past and helps in better visualisation and
modelling of power plant’s operation through finite state machine representation. Whereas,
objective B deals with making short-term forecasts of system parameters such as RT and
Power in near future based on the prior values of their covariates.

Objective A will help the plant operators to get a better understanding of the data
collected over time (discovering patterns and behaviour in the data). On the other hand,
objective B will allow plant operators to get real time forecasts of major system parameters
for better monitoring and control of the plant’s operation.

1.4 Thesis Organisation

The remaining part of the thesis is compiled as follows. chapter 2 describes an in-depth
literature review of different time series forecasting models. It also discusses the relevant
work done in various applications involving time series analysis. A comprehensive back-
ground about time series modeling is presented in chapter 3. Various time series forecasting
strategies along with their application areas are explained in this chapter. Moreover, we
define several forecast performance measures that are used to evaluate the efficiency of each
forecasting model. RT data extracted from the power plant is brought into the picture in

4



chapter 4. Exploratory Data Analysis is carried out to observe the nature and behavior
of the data. Data is pre-processed before it is fed into any of the forecasting models to
make sure it satisfies the input structure. Detailed methodologies for each technique are
also mentioned in this chapter. An approach of combining machine learning principles
with finite state machine capabilities that facilitates feature exploration, visual analysis,
pattern discovery and effective modelling of the behavior of nuclear power plant data is
explained in detail in chapter 5. Finally, chapter 6 presents results obtained by applying
each forecasting method on the data-set. The performance of each technique is compared
in terms of prediction errors. Summary of the thesis, conclusion and future scope of this
research is discussed in chapter 7.

5



Chapter 2

Literature Review

2.1 Time-series Forecasting

Problem of Time-series forecasting can be viewed as: given any finite sequence of values
Z1, Z2, Z3, . . . , Zt, find the upcoming values Zt+1, Zt+2, . . . [21]. The ability to predict over a
time window or even one-time step ahead is of major importance in many knowledge areas
of planning and decision making[3]. Time series analysis of nuclear plants is no exception,
forecasted values of system parameters can help in the safe and economic operation of the
plant.

Generally, time series forecasting problems can be modelled through parametric and non-
parametric models[14].

• Parametric models: Models with a fixed structure based on some assumptions and
the condition that parameters can be computed with empirical data. An example
of a parametric model could be the ARIMA model. These models are simple and
easy to understand. The computation-time required to calculate a solution from
parametric models is quite less than that of non-parametric models. But, due to the
non-stationary nature of the data sometimes, parametric models may not be able to
describe the data well and result in greater prediction errors than non-parametric
models.

• Non-parametric models: Models with variable structure and parameters. Exam-
ples of non-parametric models could be kNN1, artificial neural networks and more.

1k-Nearest Neighbours algorithm.
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These models can nearly fit arbitrary functions with precision. However, these mod-
els fall in the non-convex optimization problem where finding a global minimum is a
very challenging task. These models are prone to overfit on data, which is a tough
problem to be solved.

2.2 Forecasting using parametric models

The primary objective of time-series analysis is to obtain deductions about relationships
and properties of data under study. Predicting future data points rely on construction of
appropriate models based on nature of stochastic processes. Hence, stochastic modeling is
a key component in forecasting of a time-stamped data. It requires proper understanding
of statistical equations used for describing the physical process in the form of mathematical
model. However, due to complex nature of physical processes, their is a notion of uncer-
tainty in the behavior of time series data. Therefore, we need strong models to overcome
this challenge of searching hidden patterns in data and to produce good forecasts[31].

In most cases, data points of time-series are related or dependent in a way such that one
can calculate certain coefficients which describes consecutive data points. Such time series
can be modelled with the help of an auto regression (AR) model. However, keeping aside
the serial dependence, data values can also be affected by some random residual which
cannot be modelled by auto regression process. Thus, we need a model that can handle
these residuals. Moving Average (MA) model helps in modelling the same. AR and MA
are special cases of parametric linear models of stochastic processes[43]. Autoregressive
integrated moving average (ARIMA) model developed by Box and Jenkins (1976),includes
autoregressive as well as moving average parameters.ARIMA modelling is a strong method
which has great flexibilty in terms of parameters. It has been successfully able to model
many physical process and generate satisfactory forecasts.A great number of applications
use the above mentioned stochastic models in linear time series analysis.

• S.L Hoa, M Xie[21] perform a comparative study of neural networks and ARIMA
model in time series forecasting of system failures for repairable systems. It was found
ARIMA model outperforms the feed-forward neural network in terms of prediction
errors.

• Jing Shi, Jinmei Guo[44] designed a hybrid forecasting technique for wind speed and
power prediction. They use ARIMA to model the linear component of the time series
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and non-linear forecasting models such as ANN, SVM to model the non-linear part.
Hence, they design ARIMA–ANN and ARIMA–SVM models to forecast the wind
speeds and power generation of the physical system.

2.3 Forecasting using non-parametric models

Modeling techniques such as auto regression (AR), ARMA are based on linear assump-
tions. However, it has been observed that real time series data follow non-linear behavior
which cannot be captured by linear regression, AR or ARMA models[9]. Thus, researchers
suggest adopting different mathematical representations of non-linearities existing in the
data. Artificial Neural Networks (ANNs) is one of the principal methodology to work with
non-linear data[39].

ANNs are high level models developed to mimic the characteristics of human nervous
system such as learning, decision making and abstraction. They are not just limited to
storing and recognising patterns based on experience, but they also have capacity to re-
train themselves with changing environmental configurations describing their efficient and
fault-tolerance nature.[7] Learning mathematical and statistical equations from prior ex-
perience is the chief characteristic of ANNs. ANNs are black box models as it is impossible
to know explicitly how they obtain their results. [5]. ANNs have the capability to model
all forms of time stamped data. Multi-layer neural networks with atleast one hidden layer
and enough neurons can represent any mathematical function.[25] ANNs are flexible in
their implementation allowing variable model complexity by altering the activation func-
tion. Also, ANN can easily be scaled to multivariate problems[32].There have been several
studies on application of traditional time series analysis models and ANNs.

• J. Smrekar, M.Assadi [45] developed an ANN model for predicting steam character-
istics of a coal-fired boiler using data from real power plant.It discusses about the
basics of artificial neural networks required for time series data modelling and ad-
vantages of these networks over physical models in modelling unknown and known
non-linearities. It also introduces concept of sensitivity analysis which optimises the
number of input parameters used for training of ANN.

• X.J. Liu , X.B. Kong [28] propose two neural network architectures to model critical
boiler system of 1000MW power plant. Basic Multi-layer Perceptron (MLP) is applied
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over the real-time data with back propagation algorithm. However, to overcome the
issue of local optima in back propagation, they identify neural fuzzy network models.
Fuzzy logic improves the performance of the model through gaining a local support.

• Cirstea, R. G., Micu study the forecasting of correlated time series [8]. They propose
a model which combines the logic of two different types of ANNs,recurrent neural
networks (RNNs) and convolution neural networks (CNNs). It also discusses about
how the training data should be selected in an aspect to include all the possible
variations of the whole data-set. Rather than training the network with fixed starting
point, one should randomly select a seed point and construct a training window from
that point, such that all the variations of the non stationary time series data can be
captured to produce better predictions.
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Chapter 3

Concepts of Time Series Modelling

In today’s fast-growing world where we encounter different forms and volumes of data,
associations in both public and private domains are fascinated to extract and process this
raw data to gather useful information. Information is the thing that organizations have
been seeking for quite a long time to perform a better investigation, settle on good choices,
and therefore become progressively focused on the end goal. The efficiency of such analysis
relies heavily upon how qualitatively and quantitatively the data is gathered. Timestamps
recorded along with the data tend to be the least complex way of analyzing the data. This
is a major reason why time series analysis is the basic methodology used in the realm of
business today. Time-series analysis can be implemented for two application areas:

• Develop an understanding of the underlying design and patterns that are a part of
the observed data.

• Fit an appropriate stochastic or time series model to actual time series and then use
it for applications such as forecasting and simulation.

Presently, time-series analysis is a crucial part of endless business exercises. Majorly, it
is applied in areas like Econometrics, Sales Forecasting, Budgetary Analysis, Stock Market
Predictive Analysis, Process and Quality Control, Inventory Management, Utility Studies,
Census Analysis, Quake Forecast, Electroencephalography, and to a great extent in any
field of Applied Science and Design which includes a time component. In this Chapter, we
discuss the meaning of time-series and comment on how time-series data is different from
sequential data. We also discuss various components and properties of time series data.
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3.1 Background on Time Series Data

3.1.1 Defining Time Series

A time series is a sequential set of data samples usually measured over successive time
periods (seconds, minutes, days, months). In most cases, the data points extracted are
chronological and taken over regular period. However, there exists some cases where the
measurements are made over irregular intervals.

Representation: Z = {z1, z2, . . . , zt} denotes a set of recorded time stamped signals
where each zi ∈ R and i ∈ {1, 2, . . . , t}, R represents set of real numbers. A time series
describing characteristics of a single feature is defined as univariate. However, if charac-
teristics of multiple features are to be considered then multivariate time series is studied.
Further, time series signals can be categorised as discrete and continuous. In continuous
time series, the measurements are made at every point of time over a continuous scale
whereas, in discrete time series measurements are made over specific discrete time inter-
vals. The intervals can be evenly as well as unevenly spaced. For instance, temperature
recordings, average monthly river flows, concentration of chemicals, stock market opening
and closing can be recorded on a continuous scale. On the other hand population of a
country, the yearly gross production of a product, the elevation of land surfaces, depth
of a lake over equally spaced intervals represent discrete time series. Usually, agencies
measure at discrete times because of its simple mathematical theory. Also, the fact that
one can convert unevenly spaced and continuous records to evenly spaced makes discrete
time series a stronger choice over continuous.

Figure 3.1: Categorisation of Time Series data.
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3.1.2 Components of a Time Series

A simple way to study the nature of time series is to break it down into its components
[12]. Classical decomposition is a technique that decomposes a time series into 4 elements
namely: Trend, Seasonality, Cycles, Residuals.

• Trend (Tr): An inclination of time series to grow, shrink or stagnate over a signifi-
cant stretch of time. It represents a long term movement of a process. One can see a
trend (upward or downward) in series related to mortality rates, population of a city,
recession et cetera. A great range of linear, quadratic, exponential functions can be
used to model a trend present in time series.

• Seasonality (Se): Fluctuations caused in the time series due to seasonal variations
related to geographical and climatic conditions. For instance, sales of air conditioners
increase in summers. Similarly, plants like cactus grow in deserted areas, so the
population density of cacti is expected to be more in dry areas. Such seasonalities
are of crucial importance for businessmen, retailers and farmers for making suitable
strategic plans.

• Cycles (Cy): Short or long term changes caused due to some circumstances repeat-
ing in succession. Variations that are not captured through seasonalities make a part
of this. Majorly, time series related to finance and economics tend to have a cyclic
component in them.

• Residuals (Re): Random and irregular fluctuations caused due to unknown factors.
The changes neither occur in pattern nor are regular. Such variations happen due to
some interventions, natural disasters, war et cetera.

Based on these components time series can be analysed using two models namely:
multiplicative and additive model.

• Additive: Z(t) = Tr(t) + Se(t) + Cy(t) +Re(t)

• Multiplicative: Z(t) = Tr(t)× Se(t)× Cy(t)×Re(t)

Z(t) represents the time signal at time t and Tr(t), Se(t), Cy(t), Re(t) represents its
respective components. Multiplicative model assumes that the four components are some-
times dependent and in that case they can affect one another. However, in the additive
model assumes that the components are independent and their is no affect of any on the
other.
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Figure 3.2: Components of Time Series data
Source: https://www.datavedas.com/introduction-to-time-series-data/

3.1.3 Examples of Time Series Data

Based on the application usage and method of gathering the data, time series can be
of various types. Nowadays, time series data is a basis for many business, engineering,
scientific work domains[48]. In order to analyse the data, we need to visualise it first.
Time series data is usually visualised as 2D plots where observations are plotted against
the respective time steps.

Fig 3.3 shows a plot of annual flows of St. Lawrence river at Ogdensberg, New York
for the years 1860-1957. The annual flows are calculated in units of m3/s from October
of current year till September of next year. Fig 3.3 displays the data for 97 observations
corresponding to 97 years.

Fig 3.4 represents the average phosphorous concentrations recorded for Speed river
basin, Guelph,ON,Canada by Ontario Ministry of Environment. The unit of measurement
for the concentration is mg/l. Fig It records the concentrations of 72 months from January
1972 to December 1977.

13

https://www.datavedas.com/introduction-to-time-series-data/


Figure 3.3: Annual flows of St. Lawrence river, New York for years 1860-1957[20].

Figure 3.4: Monthly phosphorous concentrations for Speed river, Guelph,ON,Canada[20].
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3.1.4 Guide to Time Series Analysis

In order to extract meaningful patterns and characteristics from the time series data and
perform forecasting, we need to define a probabilistic representation of the data first. An
appropriate definition of a model fulfills this representation.

The process of fitting a time series to an appropriate model is termed as time
series analysis [20].

After a suitable model is found, it can be used to estimate the forecasting parameters,
check for the quality of fit (good or bad). A model therefore provides a compact description
of the data. Following are the basic points that describe the importance of a good model:

• In determining the important properties of time series data.

• Finding correlation between different observations of time series.

• Studying how two time series interact with each other.

• Forecasting and simulation of the data.

The main objective of a time series model is similar to what predictive models tend
to achieve. Developing a model such that the predicted value of the target variable is as
close as possible to the actual value such that the error of prediction is minimum. The
lag values of the variables are used as predictor in time series models to incorporate the
chronological order present in time series data.

3.1.5 Time Series: A Stochastic Process

There always exists a degree of indeterminism when we deal with real life applications. It
becomes practically impossible to determine what happens in future without any uncer-
tainty. An observation of time series is represented as random variable xt at each point in
time that has its own marginal probability distribution and joint probability distribution
describes properties of multiple random variables.

Therefore, a time series Z = {z1, z2, . . . , zt} is assumed to follow probabilistic model.
Mathematical expression which represents the structure of this model is termed as stochas-
tic process[20]. Hence, the set of observations of a time series is nothing but a realisation
of stochastic process that generated it.

A stochastic process is usually treated as stationary for the sake of mathematical sim-
plicity. Next section discusses the concept of stationarity in time series.
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3.1.6 Concept of Stationarity

The stationarity of a stochastic process can be seen as a concept of symmetry in the
statistical properties of a time series i.e. the statistical properties of the series are not a
function of time. Assumption of a stochastic process being stationary not only simplifies
mathematical expressions but also sometimes reflects reality[20].

Figure 3.5: Example of Stationary and Non-Stationary time series [46].

Types of stationary processes:

• Strictly Stationary: A Process where the joint probability distribution of any
possible set of random variable is not dependent on time. However, in most real-life
uses of time series, strict stationarity is not needed.

• Weakly Stationary: A weakly stationary process of order ’n’ is a process whose
statistical moments till order ’n’ are dependent on time difference and not on the
time of occurrence of the dataset used for its calculation[10].
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Figure 3.6: Transforming non-stationary data into stationary using differencing
Source: https://datascienceplus.com/time-series-analysis-building-a-model-on-non-stationary-time-series/

A weakly stationary process with normal probability distribution is equivalent to a
strictly stationary process[10]. Various mathematical and graphical tests can be performed
to check for the stationarity of the data. Augmented Dickey-Fuller test is one of the most
common test to validate the stationarity of the dataset.

Unfortunately, the process under consideration is not always stationary, i.e. mean
and variance of the process varies with time. Such process are termed as non-stationary
processes. Usually, in the long term, the processes tend to exhibit the characteristics of
non-stationarity. A common solution to use mathematical models which are based on the
assumption of stationarity, differencing is applied over the non stationary data to convert
it into stationary. Sometimes, we also perform suitable transformations to remove the
component of non-stationarity and then fit appropriate stationary stochastic model over
the transformed data[20].

Fig 3.5 displays how stationary data is different from non-stationary data. As we can
see mean and variance (statistical properties) of the data remain unchanged almost all the
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times in stationary process. However, mean and variance of non-stationary process vary
all the times.

Fig 3.6 is related to global temperature deviations data-set measured from 1880-2009.
The actual data is non-stationary and is therefore transformed into stationary with the
help of differencing operation.

3.2 Time Series Forecasting Methods

In this section, we discuss some forecasting methods employed for time series data in detail.

3.2.1 Regression Models

Regression analysis, a concept derived in statistical modeling, is a set of statistical processes
for estimating relationships between a dependent variable and one or more independent
variables. It is widely used mainly used for: 1) prediction/forecasting with significant
overlap with machine learning based methods, and 2) inferring causal relationships between
the independent and dependent variables. In its most general form, a regression model is
expression as follows:

yi = f(xi, β) + ei (3.1)

Here, xi denotes the set of independent variables for the ith observation, β the set of
unknown parameters, ei is an additive error term in the observation, and yi denotes the set
of dependent variables expressed as a function of xi, β, and ei. The objective is to estimate
the function f(Xi, β) that fits the data most closely. We need to specify the form of the
function f before estimation and as we will see in the subsequent sections, the form of f
defines the type of regression. It is important to note that the success of the estimation
process greatly depends on the choice of form of f . Choosing an appropriate form of f is,
thus, vital to any regression analysis. It is also important to note that enough data must
be present for successful estimation. For instance, estimating f would be impossible if the
number of accessible data points is less than the number of variables to estimate. Other
underlying assumptions for regression analysis include:

• The sample is representative of the population in general.
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• There is no error during measurement of the independent variables.

• Expected value of deviations in the model is 0.

• The variance of error terms ei is constant across observations. Moreover, they are
uncorrelated with one another.

We now discuss the different types of regression models used for time series forecasting.

Linear Regression

In linear regression, we assume that f is linear. In other words, we assume the dependent
variable yi can be expressed as a linear combination of the parameters (and not necessarily
the independent variables). For instance, the formulation presented in equation 3.2 is a
valid example of linear regression even though the expression on the right hand side is
quadratic in x because it is still linear in the parameters β.

yi = β0 + β1xi + β2xi
2 + ei (3.2)

Having estimated the parameters, say, for the aforementioned formulation, we can use
then use the model to predict values of a dependent variable as follows:

ŷi = β̂0 + β̂1xi + β̂2xi
2 (3.3)

These predictions can be used to calculate population parameters. For instance, the
residual, ei = yi − ŷi, which tells us how far model’s prediction is from the true value of
the dependent variable yi.

The red line in Fig 3.7 is a linear regression model which tries to fit to a set of data
points (purple dots) such that the error between the real data point and its prediction
(which lies on the line) is minimum.

Polynomial Regression

In polynomial regression, f is modeled as an nth degree polynomial in x. In general, the
polynomial regression model can be expressed as:
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Figure 3.7: Linear Regression example.
Source: https://en.wikipedia.org/wiki/Linear_regression

yi = β0 + β1x+ β2x
2 + · · ·+ βnx

n + ε (3.4)

Polynomial regression is used to model non-linear trends in the data. However, from
estimation point-of-view, it is still a linear regression problem since it is linear in β.

Figure 3.8: Polynomial regression example showing a cubic polynomial regression fit to a
synthetic data.
Source: https://en.wikipedia.org/wiki/Polynomial_regression
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3.2.2 Stochastic Models

In probability theory, a stochastic process is defined as a collection of random variables
indexed by a mathematical set. This implies that every random variable in the stochastic
process uses a unique index to associate with an element in the given set. If the index set
is a subset of natural numbers, each index could be interpreted as a pointer to different
time steps. The set of values each random variable can take make up the state space and it
can be be, for example, the set of all integers. In general, a stochastic model for time series
data would reflect that observations close together in time will be more closely related than
observations further apart. We now discuss the different types of stochastic processes used
in time series analysis.

Autoregressive (AR) Model

Autoregressive model is a special type of parametric model meaning that it tries to infer
and exploit the underlying structure of data. An AR model, denoted by A(p), is of the
form:

Xt = c+

p∑
i=1

φiXt−i + εt (3.5)

Here, p denotes the order of the AR model, φ denotes the set of parameters, c is a
constant and εt is white noise. Additionally, some parameter constraints are required for
the model to remain wide-spread stationary, a weaker form of stationarity. For instance,
in an AR(1) model, any process with |φ1| ≥ 1 is not stationary.

Moving Average (MA) Model

Moving average (MA), another parametric approach for modeling time series data, ex-
presses the output variable as a linear function on the current and previous values of a
stochastic term. A moving average model is denoted by MA(q), which has the form:

Xt = µ+ εt +

q∑
i=1

θiεt−i (3.6)

Here, µ is the mean of the series, θ represents the set of parameters of the model, and ε
represents white noise. Similar to the AR model, q represents the order of the MA model.
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Autoregressive Moving Average (ARMA) Model

As the name suggests, this method combines the AR and the MA model. Such models
economically describe data with two polynomials, one from AR and the other from MA.
An ARMA model is denoted by ARMA(p, q). As mentioned earlier, it is constructed by
combining the AR and the MA models. This is evident from its form given by Eq. 3.7

Xt = c+ εt +

p∑
i=1

θiXt−i +

q∑
i=1

θiεt−i (3.7)

Here, p and q represent the number of terms in the AR and MA models, respectively.
It is also important to state that the error terms of an ARMA model, εt, are assumed to
independent and identically distributed random variables (i.i.d) sampled from a standard
normal distribution, εt ∼ N (0, σ2) where σ is the standard deviation. This assumption
holds significant value; therefore, a small change to this assumption would have large
impact on the model.

Autoregressive Integrated Moving Average (ARIMA) Model

In time series analysis, autoregressive integrated moving average (ARIMA) model is a
generalization of the ARMA model. While both the models are applied to a time series data
either to better understand it or predict future points, ARIMA models are also employed
in some special cases, where an initial differencing step can be applied one or more times
to eliminate non-stationarity in the data. The autoregressive part of ARIMA implies the
output variable is regressed on its past values. The moving average part indicates that
the error associated with the model is a linear relation. The integrated part of the model
indicates the value of the output variable are replaced with its difference with the previous
values. Such models, denoted by ARIMA(p, d, q) are expressed mathematically as:

(1−
p∑

i=1

φiL
i)(1− L)dXt = (1 +

q∑
i=1

θiL
i)εt (3.8)

Here, p is the number of terms in the AR part, d is the degree of difference, and q
denotes the order of MA part. Further, L represents the lag operator, also known as the
backshift operator, and is used to generate previous elements given current element in a
time series data.
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3.2.3 Artificial Neural Networks (ANNs)

In this section, we will review artificial neural networks (ANNs) along with their applica-
tion in time series analysis. ANNs have revolutionized a wide range of machine learning
tasks from domains such as natural language processing to computer vision by ability to
generalize/learn a given data distribution through examples. The foundation of ANNs
was introduced early by [35]; however, due to lack of computational resources, the area
remained under-explored. With recent development of computational technology and ex-
tended exposure to GPUs, the ANNs have emerged showcasing their true potential. It was
initially proposed to mimic a human brain. So, a major part of its design is inspired by
the structure of human brain cells. Fig. 3.9 shows different components of an ANN where
each node represents a neuron and an arrow represents a connection from the output of
one neuron to the other. We now discuss the two primary components of any ANN.

Neurons: Trying to mimic human brain cells, ANNs borrowed the concept of neurons
and how they processed an input and produced an output. More precisely, input signals to
a neuron are passed through an activation function for normalization and to add robustness
to the model. This means that a small change in input would result in a small variation
in the output. These neurons are responsible to maintain a state which when combined
together are expected to represent feature vectors for a given task.

Connection and Weights: Each arrow in the Fig. 3.9 shows a connection, responsible
for passing signals amongst connected neurons. Each connection is assigned a weight that
controls the importance of the particular connection. It is important to note that a neuron
can have multiple incoming and outgoing connections, each with a different weight.

When training an ANN for a specific task, we adopt a learning regime where we update
the weights of each neuron and calculate the error/loss. This error is distributed across
the neurons using an optimization algorithm such as backpropagation[42], which provides
feedback for adjusting the weights of the neurons and guides the model towards conver-
gence. We now discuss the different types of ANNs and how they are used in time series
analysis.

In Fig 3.9, we can observe the three different types of neurons:

1. red input neurons which accept the input data.

2. green output neurons that make the feature vector when combined together.

3. blue hidden neurons that model the transformation of signal from input and output
neurons.
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Figure 3.9: ANN architecture.
Source: https://en.wikipedia.org/wiki/Artificial_neural_network

The arrows represent a connection and each of them have a weight that controls the
contribution/importance of signal from a neuron.

Multi-Layer Perceptron (MLP)

A multilayer perceptron (MLP), also known as a feedforward network, is composed of
multiple layers of preceptrons, each coupled with an activation function. The two most
common choices of non-linear activation functions are sigmoids such as tanh and rectifier
linear unit (ReLU) [37].

The training procedure of an MLP involves updating connection weights after each
data sample is processed such that the overall error accumulated in one pass of all the data
samples, in other words, in one epoch, is minimized. The final output of an MLP can be
expressed as:

yt = α0 +
m∑
j=1

αjH(β0j +
n∑

i=1

wijxti) + εt,∀t, i ∈ {0, 1, . . . , n}, j ∈ {0, 1, . . . ,m} (3.9)

Here, xti are the n inputs and yt is the final output of the network. m and n represent
the number of input and hidden neurons, respectively. α0 and β0j are the bias terms, and
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αj and wij are the different connection weights. H denotes an activation function such
as tanh or a ReLU and εt denotes a random shock parameter. As we can see, an MLP
essentially performs a non-linear transformation from inputs (past observations of the time
series) and outputs (future value). A simplified form of MLP is presented in Eq.3.10

yt = f(yt−1, yt−2, . . . , ytn , θ) + εt (3.10)

Here, θ is the set of parameters and f is the transformation learned by the model by
adjusting the connection weights.

3.2.4 Recurrent Neural Networks (RNNs)

A Recurrent Neural Network (RNN) [42] is a special type of neural network designed for
efficiently processing sequential data. This makes them a suitable candidate for a task such
as time-series analysis. The “recurrent” part depicts the fact that these networks apply
the same set of operations on all the nodes to model the temporal relationship of data
samples.

“Unfolding” in RNNs: RNNs work by “unfolding” the computational graph and
using information of the past as feedback. Fig. 3.10 shows the unfolding mechanism in
an RNN. For an input x the network processes the information by incorporating it into
the state h that is passed forward in time. The loop v denotes lag of one time-step. The
right part of Fig 3.10 is an unfolded view of the network, where each node is associated
with one single time step. We can see how input at a given time step takes into account,
information from the previous time steps. It is also important to note that RNNs are
usually “deeper” than vanilla MLPs and due their feedback mechanism, are proven to
model the input-output relationship in a dataset very well.

Long Short Term Memory (LSTM) Cells

A Long Short Term Memory (LSTM) cell [22] is a special type of RNN that introduces
gates in the computational graph to enhance the context capturing power of the RNN.
Additionally, they also help mitigate the vanishing gradient problem in RNNs. Complete
architecture of an LSTM cell is shown in figure 3.11. As we can see, instead of a single
non-linear activation as in RNNs, it has three distinct transformations. Each such transfor-
mation layer is called a gate as they moderate the flow of signals from one end to another.
We now discuss the working of an LSTM cell in detail.
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Figure 3.10: Unfolding in recurrent neural networks
Source: https://en.wikipedia.org/wiki/Recurrent_neural_network

Figure 3.11: LSTM architecture
Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Figure 3.12: LSTM forget gate
Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 3.13: LSTM input gate
Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Working of an LSTM cell: An LSTM cell maintains two types of states, namely,
a hidden state (h) and a cell state (C). The hidden state is an overall representation
of the information processed so far. On the other hand, the cell state contains selective
information from the past as well. In other words, it contains the context of temporal
data. Understandably, not every piece of information in the history is important; hence,
it is important to have a mechanism that could tell us what information to retain and
what to “forget”. In an LSTM cell, this decision is made by a sigmoid layer and is called
the “forget gate”. Given input xt and last hidden state ht−1, it outputs a probability
value between 0 and 1 for each value in the previous cell state Ct−1. Intuitively, output
value of 0 would lead to “forgetting” and 1 would lead to “retaining” of the signal under
consideration. Mathematical formulation of the forget gate is given by:

ft = σ(Wf · [ht−1, xt] + bf ) (3.11)

Here, Wf is the weight matrix of the linear transformation layer in the forget gate, bf de-
notes its bias and σ is the sigmoid operation, where σ(x) = 1

1+e−x . The various components
could be seen in figure 3.12.

After filtering out ineffective information using the forget gate, the next step is to decide
the updated value of cell state. This is done is two stages: 1) the “input gate”, another
sigmoid layer, decides the values to be updated, then 2) a tanh layer creates the new
candidate cell state vector C̄t. Mathematical form of both the layers are given below:

it = σ(Wi · [ht−1, xt] + bi) (3.12)

C̄t = tanh(WC · [ht−1, xt] + bC) (3.13)
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Figure 3.14: LSTM context gate
Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Figure 3.15: LSTM output gate
Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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The updated values in cell state Ct are then generated from equation 3.14 and the illus-
tration is shown in figure 3.14

Ct = ft ∗ Ct−1 + it ∗ C̄t (3.14)

After updating the cell state, we finally decide the ouput of the network. This is again done
in two steps, where: 1) the previous hidden state ht−1 and input xt are passed through a
sigmoid layer, and 2) final hidden state is constructed by passing the updated cell state Ct

through a tanh layer and multiplying it with the output of the sigmoid layer. Equations
corresponding to the components of the output cell are shown in figure 3.15 are given
below:

ot = σ(Wo · [ht−1, xt] + bo) (3.15)

ht = tanh(Ct) (3.16)

Intuitively, when we squash the cell state through tanh and multiply it by the output of
the sigmoid layer, we filter the values and only output those that we decided to keep.

3.3 Forecast Evaluation Metrics

Now as we are familiar with the concept of time series modelling as well as various time
series forecasting models, the next step is to study the implementation of these models
over real or simulated time series data to make desired forecasts. Similar to other machine
learning disciplines, before applying any model to the dataset, some preprocessing of the
data is performed (if needed) like scaling, transformations et cetera and then the data is
split into 3 distinct sets namely: training data, validation data and test data.

Training set is the one which aids in building up the model. Then the model built
is validated against the data in validation set. Data in the test set is reserved to check
the performance of fitted model in forecasting the values of test set. Hence, to evaluate
this performance several forecast evaluation metrics are used. They help in judging the
accuracy of a particular model in forecasting and also in comparing performance of different
models over the test set.

As time series forecasting is an important discipline for many practical applications, the
selection of a particular model to fit the time series is a major challenge. Several evaluation
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metrics discussed in the next section makes this selection easy. The model with the best
performance metric score is selected over the others for fitting the data.

It can be confusing sometimes how to interpret the results of each metric and which
one to use for performance evaluation. Hence, in this section we discuss some commonly
used metrics along with their properties for a better understanding.

A common notation for variables used in mathematical definitions of all the metrics:

• yt: observed value.

• ŷt: forecasted value.

• et = (yt − ŷt): forecasted error.

• ȳ = 1
n

∑n
t=1 yt: mean for test set, n is the size of test set.

• σ2 = 1
n−1

∑n
t=1(yt − ȳ)2: variance for test set, n is the size of test set.

3.3.1 Mean Forecast Error (MFE)

Forecast error is calculated as difference between the observed value and the forecasted
value and is denoted by et. It can be calculated for each time step, providing a time
series of forecasted errors. A forecast error of zero represents perfect(error-free) forecast.
Therefore, Mean Forecast Error is defined as[18]:

MFE =
1

n

n∑
t=1

et (3.17)

Properties:

• MFE is termed as Forecast Bias. MFE value other than zero is either overcast(positive
error) or undercast(negative error). Hence MFE represents the direction of errors.

• As et can be either positive or negative, it may happen MFE evaluates to zero. But
this doesn’t mean that the predictions are perfect.

• In MFE the positive and negative errors compensate each other and hence it becomes
difficult to quantify the errors properly.

• A lower value of MFE(close to zero) is preferred for a good forecast(minimum bias).
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3.3.2 Mean Absolute Error (MAE)

It is calculated as the mean of absolute forecasted errors[18]. It is similar to MFE but here
the forecasted errors are forced to be greater than or equal to zero. Mathematically it is
defined as:

MAE =
1

n

n∑
t=1

abs(et) (3.18)

Properties:

• Also termed as Mean Absolute Deviation as it returns the absolute prediction error.

• In MAE positive and negative errors do not compensate as their is no concept of
negative errors in MAE.

• MAE value zero indicates perfect prediction.

• MAE doesn’t provide any direction of errors when compared to MFE.

• Like MFE, lower values of MAE are desired for good predictions.

3.3.3 Mean Squared Error (MSE)

MSE is calculated as an average of squared forecast errors[18]. The significance of squaring
the errors is to make the errors positive and also to penalise bad forecasts. The extreme
errors when squared result in high MSE values hence models with large errors are discarded.
MSE mathematically is described as:

MSE =
1

n

n∑
t=1

e2t (3.19)

Properties:

• Unlike MAE and MFE, MSE penalises the extreme errors.

• As opposite errors do not cancel each other in MSE, we get an overall idea of the
forecasted error.

• Unlike MFE, MSE does not provide the direction of the errors.

• A smaller value of MSE is preferred for a good forecasting model.
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3.3.4 Mean Percentage Error (MPE)

Mean Percentage Error unlike other error metrics is a measure of error calculated in terms
of percentage. It is defined as percentage of mean of forecasted errors. It is a good metric
unless the data has significant number of outliers. Mathematically we represent it as:

MPE =
1

n

n∑
t=1

(et/yt)× 100 (3.20)

Properties:

• It doesn’t penalise the extreme errors.

• MPE value of zero doesn’t signify perfect prediction as positive and negative errors
may compensate each other.

• It represents the direction of error.

• Lower MPE correspond to good forecasts.

3.3.5 Mean Absolute Percentage Error (MAPE)

It is defined as percentage of mean of absolute forecasted errors.

Mathematical representation:

MAPE =
1

n

n∑
t=1

abs(et/yt)× 100 (3.21)

Properties:

• It has same features as of MPE but, it doesn’t represent the direction of error.

• MPE value of zero signify perfect prediction as positive and negative errors do not
compensate each other.

• It doesn’t penalise the extreme errors.

• Lower MAPE correspond to good forecasts.
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3.3.6 Sum of Squared Error (SSE)

It is formulated as the sum of the squared deviations of each observed value from its group’s
mean. It also represents a measure of variation within a cluster. SSE turns to be zero if
all observations within a cluster are identical. Mathematically it can be written as:

SSE =
n∑

t=1

(yt − ȳ)2 (3.22)

Properties:

• It has identical properties as of MSE.

3.3.7 Normalised Mean Squared Error (NMSE)

Normalised Mean Squared Error as the name suggests, is a metric used to compare data or
the models with distinct scales. Different mathematicians use varying definitions of NMSE.
However, mostly adopted definition states NMSE is the MSE divided by the sample mean.
Hence, mathematically NMSE is:

NMSE =
1

ȳ · n
×

n∑
t=1

e2t (3.23)

Properties:

• It has identical properties as of MSE.

• It outputs scale-free results, therefore, it becomes a strong metric when the dataset
has features of varying scales.

3.3.8 Root Mean Squared Error (RMSE)

It is just square root of MSE. Hence, it can be written as:

RMSE =

√√√√ 1

n

n∑
t=1

e2t (3.24)

It has similar properties as of MSE. It is easier to interpret results of RMSE as compared
to MSE because RMSE and the observations have same units whereas MSE has square of
the units of the observations.
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3.3.9 R Squared Error

When it comes to fitting of regression model to a dataset, R2 error is the most common
performance metric used to evaluate the model. It represents what degree of variation in
the target variable(yt) can be explained by the covariates [41]. If R2 value is close to 1, it
signifies that covariates jointly can model the variance of the target model. A smaller R2

value means target variable is poorly predicted by the predictors(covariates).

Mathematical Representation:

R2 = (Var(yt) - σ2)/ Var(yt) (3.25)

Here σ2 represents the residual variance which was not modelled by the covariates. Hence
R2 is the difference between the variance of target variable captured and residual variance
divided by the variance of target variable.

However, we face a problem of bias in the standard R2 error. The magnitude of bias
depends on the sample size available and the number of covariates present. A smaller
sample size with moderate number of covariates leads to a high bias. Therefore, to address
this problem we modify our estimator for R2 metric in the form of Adjusted R Squared
Error.

3.3.10 Adjusted R Squared Error

Standard R2 uses biased estimators for Var(yt) and σ2. They are calculated by using n as
the divisor, where n is the sample size. However, if we use unbiased estimators for Var(yt)
and σ2 then we can solve the problem of bias with standard R2. Instead of using n as
divisor while estimating Var(yt), we use standard unbiased estimator of variance where the
divisor is n-1. Also for σ2, we use n-p-1 as the divisor, where p is the number of covariates.

Therefore, the expression for Adjusted R2 can be arranged and written in terms of
standard R2 as:

Adjusted R Squared Error = R2 − (1−R2)× p
n− p− 1

(3.26)

In the forecasts performed under chapter 6, we make use of RMSE as our primary evaluation
metric. R2 and Adjusted R2 scores are used when we fit poly-regression model to the
dataset.
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Chapter 4

Analysing RT dataset of power plant

In this chapter, we apply the knowledge of time series modelling and forecasting gained
from past chapters over the dataset of the power plant. The data is collected from the five
sensors installed in reactor unit A and reactor unit B of the power plant namely: sensor,
Boiler Pressure sensor, Steam Line Pressure sensor, Reactor Power sensor, Feed Water
Temperature sensor.

Therefore, every parameter in the system is associated with a sensor. The data is collected
over a span of almost one year, sampled every second. Raw data retrieved from the sensors
was prone to noise and outliers, so, to ensure the integrity of the dataset several filtering
techniques were employed to denoise the data. The clean data retrieved after denoising is
our primary area of study which is analysed in the following sections.

4.1 Preprocessing the Data

In addition to filtering techniques already applied over the raw data, we still need to
preprocess the data before we make any forecasts with it. Following basic data preparation
methods are used to make the data suitable for forecasting:

• Data Sampling: The data extracted is sampled every second for a time period
of nearly one year. Hence, the data has high size complexity. Moreover, sampling
frequency of one second brings unnecessary variance in the whole dataset. Therefore,
we smooth the data by sampling it for every minute instead of every second.The
mean value of every 60 observations is used to produce the reading for each minute.
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This also contributes towards reduced training time in deep learning models as the
number of samples to be trained decreases by 60 fold. Moreover, it ensures capturing
the maximum variation of training data in small batch sizes. The effect of sampling
frequencies over the forecasts is analysed in the next chapter.

• Data Scaling: The measurements from all the sensors are captured on different
scales for instance, is measured in ◦C ( ∈ R+, R+ is the set of positive real numbers)
and Linear Power is measured in % (ranging between 0 to 100). So, in order use
these parameters for the problem of multivariate forecasting, we need to normalise
them and bring all features to a same scale of measurement. This also ensures speed
up in model training process.

4.1.1 Feature Scaling Techniques

• Standardisation: In this technique, we replace each observation with its respec-
tive z-score. It is also referred as Z-score normalisation based on its methodology.
Following is the expression that is used to calculate z-score:

x
′
(zscore) =

x− x̄
σ

(4.1)

where x is the observation to be normalised, x̄ is the mean of the group to which x
belongs and σ is the standard deviation of the group. Observations of the feature
vector are scaled in a way such that the mean and variance of the feature vector
becomes zero and unity respectively after scaling.

• Min-Max Scaling: Min-Max scaling scales the observations between 0 and 1. Here
also, the mean of the feature vector after scaling becomes zero. The formula for
Min-Max scaling is expressed as:

x
′
=

xi −min(x)

max(x)−min(x)
(4.2)

where xi is an observation belonging to group x.

We use min-max scaling to bring the parameters to a scale of 0 to 1. As the readings
gathered from the sensors have a very little variation in successive time steps, Z-score nor-
malisation will not be able to scale them uniquely. Therefore, closely valued measurements
will end up getting scaled to common values. However, min-max scaling doesn’t face this
issue. So, it becomes suitable candidate algorithm for scaling over our dataset.
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4.2 Exploratory Data Analysis

In this section, we understand the nature of the data and therefore analyse the propeies of
the data. Time-series data is decomposed into several components to look for any trend or
seasonality present in it. Stationarity tests such as Augmented Dickey Fuller (ADF) test
are performed over the data to check whether time series is stationary or not.

4.2.1 ADF test for Stationarity

Augmented Dickey Fuller Test is a unit root test for stationarity of a time series data.
ADF test is an augmented version of Dickey fuller test which is used for more complex
time series data. The test has following hypothesis:

• Null Hypothesis Ho: There exists a unit root for the time series data.

• Alternate Hypothesis Ha: stationarity or trend-stationarity based on which ver-
sion of test is used.

The test outputs a test statistic value which is a negative number. The more negative the
number is, higher is the degree of rejection of null hypothesis[17]. ADF is implemented in
various software packages. Python uses statsmodels.tsa.stattools package to implement
ADF test.Following is the python code for implementation of ADF test:

1 from statsmodels.tsa.stattools impo adfuller

2 def stationarity_test(series):

3 output=adfuller(series)

4 print(’ADF Stastistic:’,output [0])

5 print(’p-value:’,output [1])

6 pvalue=output [1]

7 for key ,value in output [4]. items():

8 if output [0]> value:

9 print("The time series is non stationary")

10 break

11 else:

12 print("The time series is stationary")

13 break;

14 print(’Critical values:’)

15 for key ,value in output [4]. items():

16 print(key , value)
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The above mentioned code returns test statistic value along with critical values. If test
statistic value is greater than any of the critical values, we reject the null hypothesis and
state time series is not stationary. Similar thing is signified by the p-value also returned
by the code. If p value is greater than 0.05 (confidence interval) then we reject the null
hypothesis with enough evidence.

4.2.2 Analysing Data extracted from Unit A

The time series plot below describes the measurements of each parameter extracted from
their respective sensors over a period of almost one year. The features (parameters) of
the system are scaled between value of 0 and 1 as shown in Fig. 4.1. RT and Feed
Water Temperature are measure in ◦C, Main Steam Line Pressure and Boiler Pressure are
measured in kPa (Kilo Pascals), lastly, Reactor Power is measured in percentage. Sampling
frequency for the below mentioned plot is one observation every minute. On observing Fig.

Figure 4.1: Sensory Data of UNIT A for one year

4.1, we find certain parameters have similar variation patterns with respect to time. For
instance, there exists correlation between RT and Boiler Pressure and also between RT
and Main Stream Line Pressure. However, this correlation cannot be modelled by linear
methods. Next, we study the nature of parameters in whose forecasts we are interested in,
i.e. RT and Reactor Power.
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Figure 4.2: Sensory Data for RT sensor of UNIT A for one year

Figure 4.3: Components of RT data after decomposition

39



Augmented Dickey Fuller Test for Stationarity
ADF-
Statistic

p-value Critical
value at 1%

Critical value
at 5%

Critical value
at 10%

-2.126 0.234 -3.430 -2.862 -2.567

Table 4.1: ADF test for stationarity of RT data (Unit A)

Fig 4.2 displays the time series plot for RT data. On visualising the data, no particular
trend can be observed. We can check for any trends or seasonal components present in this
time series using seasonal decompose function of statsmodels.tsa.seasonal package
available in Python.

Fig 4.3 shows the components of RT data. There is no general trend found in the data. Also,
no proper seasonality is captured in the decomposition. The RT time series is passed to
statonarity test() method defined above to check if it is indeed stationary or non-stationary
data.

Table 4.1 presents the results of ADF test over RT data. As, the ADF statistic value is
larger than all critical values and p-value is greater than 0.05, we reject the null hypothesis
which states time series has unit root. Therefore, RT data is non-stationary.

Figure 4.4: Sensory Data for Power sensor of UNIT A for one year
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Figure 4.5: Components of Reactor Power data after decomposition

Augmented Dickey Fuller Test for Stationarity
ADF-
Statistic

p-value Critical
value at 1%

Critical value
at 5%

Critical value
at 10%

0.370 0.980 -3.431 -2.861 -2.566

Table 4.2: ADF test for stationarity of Reactor Power data (Unit A)

Fig 4.4 shows the measurements of Reactor Power for one year. Simply by observing the
plot we can comment on the lack of any trend or seasonality in the data.

Components of decomposed Power time series is presented in Fig 4.5. Again, as in case of
RT data, neither generic structure nor any seasonal component is seen in the data. The
Reactor Power data series is also passed to statonarity test() method for stationarity check.

Results returned by statonarity test() method for Reactor Power data are displayed in
Table 4.2. p-value and ADF statistic value obtained from experimentation suggest non-
stationarity in the Power data.
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Figure 4.6: Sensory Data of UNIT B for one year

4.2.3 Analysing Data extracted from Unit B

The nature of data extracted from sensors of Unit B shown in Fig 4.6 is quite different
from the one observed for Unit A. Moreover, data is collected for a longer period of time as
compared to the other unit. We have data from 5 sensors for the complete year. However,
sampling frequency for this data is also one observation every minute.

The scaled measurements are plotted against time steps in the above plot. Again, we
observe same patterns of variations in RT and Boiler Pressure data. Simple linear models
are not sufficient to express the dynamics of complex systems such as power plants.

In the next chapter, we fit polynomial models to these datasets using polynomial regres-
sion analysis. The capability of poly-regressive models is also compared with ANNs in
representing non-linear properties of the data.

We now look at the plots of RT data and Power data of Unit B to understand their nature
and properties.

Fig 4.7 shows the plot of RT data of Unit B. No specific trend is observed on simply
visualising the graph. Even in Fig 4.8 we find no trend or seasonality in the data. On
running the ADF test over this data, we conclude that the process is stationary. In Table
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Augmented Dickey Fuller Test for Stationarity
ADF-
Statistic

p-value Critical
value at 1%

Critical value
at 5%

Critical value
at 10%

-4.395 0.0003 -3.431 -2.862 -2.566

Table 4.3: ADF test for stationarity of RT data (Unit B)

Augmented Dickey Fuller Test for Stationarity
ADF-
Statistic

p-value Critical
value at 1%

Critical value
at 5%

Critical value
at 10%

0.714 0.990 -3.431 -2.862 -2.566

Table 4.4: ADF test for stationarity of Reactor Power data (Unit B)

4.3, we see that p-value is less than 0.05 and the ADF statistic value is less than the critical
values. Therefore, it suggest stationarity in the data.

Data extracted from Reactor Power sensor of Unit B is plotted in Fig 4.9. The plot has
a non constant variance as a function of time, therefore, it seems to be non-stationary
process. Fig 4.10 displays the decomposed time series components of Power data. No
trend or seasonal components are observed in the plot.

After passing the data to stationary test(), we verify the non-stationarity in the data. p-
value and ADF statistic value in Table 4.4 contribute in rejecting the null hypothesis and
therefore, suggesting non-stationary data.

We are now familiar with the nature of our data and have preprocessed the data for the
forecasting models. Next section describes the methodologies of each forecasting method
adopted to make good predictions for these datasets. Detailed architectures of each method
is discussed along with its diagrammatic view. Then chapter 6, we analyse the performance
of all these methods in forecasting over the data. Also chapter 6, introduces the concept of
sensitivity analysis used in the domain of deep learning for optimisation of input parame-
ters.
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Figure 4.7: Sensory Data for RT sensor of UNIT B for onr year

Figure 4.8: Components of RT data of Unit B after decomposition
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Figure 4.9: Sensory Data for Power sensor of UNIT B for one year

Figure 4.10: Components of Reactor Power data of Unit B after decomposition
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4.3 Forecasting Methodologies

4.3.1 Polynomial Regression Model

Linear regression is incapable of modelling the complex dynamics of the nuclear power
plant. Also, parameters of our interest (RT, Reactor Power) cannot be expressed in a
linear combination of their covariates. Hence, we try to increase the complexity of our
linear regression model to fit the data well. We add powers to our current features to make
them polynomial and then use them as our new features. However, our model is still linear
in terms of coefficients of the feature vectors. It is just the features which are converted
into higher order terms.

We use PolynomialFeatures class present in scikit-learn package of Python to convert
our features in high order terms. But, during this conversion one should keep in mind the
concept of variance/bias. Polynomial order of 3 is used in our experimentation to model
the system parameters. Therefore, RT and Reactor Power are expressed in cubic terms of
their covariates.

Bias v/s Variance trade-off

• Bias: Error due to an elementary model used for fitting the data. A high bias
corresponds to inability of model to capture the patterns and characteristics of the
data. Thus, it leads to under-fitting.

• Variance: Error due to complicated model used for fitting the data. A high variance
leads to over-fitting of the model.

Figure 4.11: Pictorial representation of bias/variance trade-off.
Source: http://scott.fortmann-roe.com/docs/BiasVariance.html
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4.3.2 Deep Learning Models (ANNs)

In this thesis, we make use of three different architecture of ANNs to make forecasts for
parameters of nuclear power plant.

• Multi-Layer Perceptron (MLP)

• Long Short Term Memory (LSTM)

Before we use above mentioned techniques for any kind of forecasting, it is important to
convert time series forecasting into supervised learning problem. It involves transforming
multivariate sequence of data into pairs of input and output sequences. A lag of order n
introduced in the time series data helps in this transformation. shift() method of pandas
library present in Python is used to introduce this lag. As the sampling frequency of our
data is 1 time unit therefore, time lag of unity is used in experimentation.

Following is the implementation of python code needed to convert time series sequence into
supervised learning problem:

1 import pandas as pd

2 import numpy as np

3 def supervised_problem(series , inp=1, out=1, dropnan=True):

4 # number of parameters

5 if type(series) == list:

6 params =1

7 else:

8 params = np.shape(series)[1]

9 #converting series to dataframe

10 df = pd.DataFrame(series)

11 features , rows = [],[]

12 #shifting dataframe by one unit

13 for ii in range(inp , 0, -1):

14 features.append(df.shift(ii))

15 rows = rows+ [(’feature ’ + str(j+1) + ’(t-’ + str(ii) +’)’) for j

in range(params)]

16 for ii in range(0, out):

17 features.append(df.shift(-ii))

18 if ii == 0:

19 rows = rows +[(’feature ’ + str(j+1)) +’(t)’for j in range(

params)]

20 else:
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21 rows = rows +[(’feature ’ + str(j+1) + ’(t+’ + str(ii) +’)’)

for j in range(params)]

22 new_series = pd.concat(features , axis =1)

23 new_series.columns = rows

24 if dropnan:

25 new_series.dropna(inplace=True)

26 return new_series

Multi-Layer Perceptron (MLP) Model

We use 3 layered perceptron in modelling the power plant data. First two dense layers
have 50 neurons each and the last dense layer has a single neuron responsible for producing
forecast for the target variable. N corresponds to the number of input parameters. Value
of N is 4 in case of RT prediction and 5 in case of Power Prediction.

Figure 4.12: Architecture of MLP model used for forecasting.
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Long Sho Term Memory (LSTM) Model

The proposed model constitutes one hidden layer with 100 neurons and one dense layer with
one neuron contributing towards the prediction of desired parameter (reactor temperature
or linear power). Hence, 100 memory units in the spatial axis of the LSTM network are
modelled. A dropout layer is also added to the network in order to reduce the factor of
over-fitting in the model.

Figure below shows the architecture of LSTM model along with the size and shape of input
to different layers. N represents the number of input parameters to the network.

Figure 4.13: Architecture of LSTM model used for forecasting.
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Chapter 5

Finite State Machine Representation
of RT dataset

5.1 Importance of visual representation of RT dataset

Cyber–physical systems (CPS) involve proper monitoring and control of physical processes
through computational procedures. A feedback mechanism between the embedded com-
puter and physical process is used for modelling and design of such systems[11]. Therefore,
accurate modelling of CPS is a crucial factor for their economic operation and efficiency[15].

The operation of power plant can be remotely monitored with the help of sensors
installed which provide time-stamped measurements for internal and external parameters
of the plant. The measurements collected from the sensors are stored as large time-series
of data. Accurate modelling and simulation of a NPP data are important factors in the
strategic planning and maintenance of the plant. In problem domains dealing with small
data space, regular time series plots are sufficient, however when the data is recorded over
longer periods, implementing common tasks such as feature extraction, pattern discovery,
labeling of data, or getting a summary of a compressed or uncompressed time-series data
becomes more challenging[1]. Interactive visualisation of such long time series not only aids
in extracting meaningful information from the raw data but also helps in understanding
the behaviour of the system under study over time.

The idea proposed is to transform the time series domain into feature domain by com-
puting several statistical features of the data. Dimensionality reduction techniques are
then applied to extract features which carry the highest amount of information. It ensures
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escaping from the issue of ”curse of dimensionality” as well as facilitates better visualisa-
tion in lower dimensional space. Principal Component Analysis (PCA) is used to extract
features with highest variance ratios from the feature domain. Data corresponding to ex-
tracted features is grouped with the help of k-means clustering such that data instances
with common characteristics are clustered together. However, an issue associated with
PCA is that it lacks interpretability of the resulting clusters[33]. PCA assigns high weights
to the features with greater variabilities irrespective of whether they are meaningful for the
classification or not[38]. Linear Discriminant Analysis (LDA) is an alternate dimensionality
reduction technique which tries to extract a feature subspace that maximizes separation
between classes and deals directly with discrimination between classes [34]. Therefore,
LDA is applied over the clustered data to maximize the distance between the cluster cen-
troids. Data extracted corresponding to linear discriminants (LDs) is clustered again using
k-means clustering to normalise the original clusters. A notion of finite state machine is
introduced in which system states corresponding to the clusters obtained are defined. State
machine diagrams are designed for each year of the original data. Transitions between the
cluster labels of consecutive data instances are defined in terms of state transitions.

The proposed visual analytics approach assists plant operators to understand and vi-
sualize a large time-series data using scatter plots and state machine diagrams. While
handling long time series data it becomes complex to identify patterns or behaviour of
the time series signal considering several features of the data. However, applying feature
extraction and dimensionality reduction techniques such as PCA/LDA provides us with
the insight of the data considering principal features of the data. It increases the capabil-
ity to find the common patterns by extracting only key features which carry most of the
information present in the data. Looking for such patterns directly by observing the time
series plot is not trivial and requires great manual effort and expertise especially for large
datasets.State machines formulated with the help of clustered data help in visualising both
the local as well as global behaviour of plant data over the years. Locally, data for each
year is visualised and its state transitions overall illustrate the nature of that particular
year. However, on a global level, data for almost one decade is visualised and transitions
between different years represent how plant operation changes over the years.

Overall, the contributions made in this study are:

1. Outline a visual analytics approach that facilitates feature exploration, visual anal-
ysis, pattern discovery and effective modelling of the behavior of NPP data.

2. Use Finite State Machine representation to visualise and model the working principle
of NPP.
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3. Compare behaviour of NPP over the years with the help of state machine diagrams
and introduce concept of normal and abnormal plant operation.

4. Evaluate the consistency of this approach by applying it over different parameters of
the NPP.

In the following sections, this chapter discusses about the basic principles, detailed
methodology and pipelined architecture of the visual analytics approach. Finally, discus-
sions are made over the observations after applying this approach to the RT and Linear
Power data of NPP.

5.2 Basic principles used for visual representation ap-

proach

This section focuses on the basic principles that are necessary for proper visual repre-
sentation of complex time-series data. Ideology of these principles is divided into three
subsections:

1. pattern discovery using k-means clustering

2. dimensionality reduction techniques

3. modelling problems using finite state machine

An overview of each category along with some work related to it is discussed below.

5.2.1 Pattern discovery using k-means clustering

Pattern discovery is a discipline used to extract interesting patterns from the raw data.
It helps in properly distinguishing the data instances with common properties. In large
number of scenarios, time series data under study is unlabeled, hence, using unsupervised
learning methods such as k-means clustering help in identifying concrete clusters with
similar characteristics as well as detecting outliers whose traits deviate from the other data
samples.

Ali, Mohammed, et al. [1] demonstrate an approach that aids in identification of
patterns, clusters and outliers in large time series dataset. Deep convolutional auto-encoder
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(DCAE) along with k-means clustering is applied over multivariate time series data to
obtain the clusters and outliers (anamolies). A greedy version of k-means clustering is
introduced in [19] for pattern discovery of heathcare data. It emphasises on a greedy
approach which produces precursory centroids and utilises atmost k passes over the dataset
to calibrate these center points. Network Data Mining approach presented in [36] uses k-
means clustering to cluster the network data as normal and anomalous traffic for real-time
intrusion detection in the network.

5.2.2 Dimensionality reduction techniques

”The curse of dimensionality” refers to the issues which arise while working with data of
high dimensions[4]. Dimensionality reduction is a cure which enhances the capability of
extracting patterns in data[29].

C. Danyang, Y. Tian[6] discuss the importance of Principal Component Analysis (PCA)
as dimensionality reduction technique in clustering of time series data. It is shown that
applying PCA reduces the time complexity of clustering method. Linear Discriminant
Analysis (LDA) is a supervised dimensionality reduction technique which focuses on max-
imising the separation between the classes[34]. A study on combining the principal com-
ponents (PCs) from PCA and linear discriminants (LDs) from LDA is presented in [40].
Discriminating power of LDA is improved with combination of PCA as feature extraction
for supervised learning. Martin L., et al. [33] introduces cluster vector approach in which
PCA followed by LDA is used for clustering of a biological sample. PCA ensures dimen-
sionality reduction whereas LDA reveals clusters. PCA-k-means approach is investigated
in [49] for clustering of high dimensional and overlapping signals. The approach effectively
reduces the dimension and clusters the signals accurately. PCA is commonly used for pre-
processing the data before training neural networks to reduce its computational time and
complexity[30].

5.2.3 Modelling problems using finite state machine

A Finite State Machine (FSM) is a model of computation which is often used for simulation
of logic or to control the flow of execution of a system. FSMs are used to model problems
of several domains, including artificial intelligence, machine learning, natural language
processing etc.[26].

Mutli-fault prediction for industrial processes using finite state machines is studied
in [50]. It is observed that state machines in conjunction with relevance vector machine
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Figure 5.1: Methodology pipeline

(RVM) give better prediction accuracy. Problem of handwriting recognition is addressed
in [24] using finite state machines. Signatures for handwritten activities are computed
which are then used to build finite state machine recognisers. F1 score of 0.7 and above is
achieved for each activity by the recognisers.

5.3 Pipelined Architecture of Methodology

This section discusses the methodology adopted to implement visual analytics approach.
Fig. 5.1 shows the methodology pipeline which helps plant operators to understand, vi-
sualise, explore and model the NPP data. Pipeline is divided into two parts based on
the operation to be performed on the data. Fig. 5.1a represents the pipeline architecture
responsible for carrying out clustering of the data. Clustered representation of data helps
in better visualisation and outlier analysis. In order to explore patterns and model the
NPP data clustered representation is generalised as finite state machines. Transformation
of the same is illustrated in Fig.5.1b. The steps and operations associated with both the
pipelines are discussed below.

5.3.1 Clustering Pipeline

The aim of this pipeline is to extract meaningful information from the raw data obtained
from NPP. Data in the time domain is transformed into feature domain by computing
its statistical features. PCA followed by LDA is used to extract features with maximum
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variance and class information. Extracted features are then clustered together based on
common properties with the help of k-means clustering algorithm. Clusters obtained are
visualised over scatter plots for pattern discovery and identification of outliers. Algorithm
1 outlines the operations carried out to obtain clusters of the raw data.

Algorithm 1: Feature Extraction and Clustering of time series data

Input: y(t), ∂ , δ
Output: χ - Clustered data
Data: y(t) - Time series data from the power plant

1 i← 1 // loop iterator for PCA analysis

2 X ← clean split(y(t)) // clean & split the data

3 scaled data←MinMax Scaling(X)
// Compute statistical features ∀x ∈ X

4 features← extract features(scaled data)
5 while i ≤ ∂ do

// Apply PCA, extract i principal components

6 Y ← PCA(features, n components = i)
7 if explained variance ratio of components ≥ δ then
8 break

9 i← i+ 1

10 k ← value producing maximum silhouette score
11 k clusters← KMeans(Y, n clusters = k)
12 X ′ ← Append(features, k clusters)

// Apply LDA, extract i linear discriminants

13 Y ′ ← LDA(X ′, n components = i)
14 k nclusters← KMeans(Y ′, n clusters = k)
15 χ← Append(features, k nclusters)

Data Preprocessing

The data extracted from the sensors installed at the NPP is prone to noise, outliers,
missing data during shutdown periods. Therefore, data cleaning is performed prior to
any other processing. Missing data is imputed with suitable values, for instance, during
shutdown of NPP the Power measurements of the plant are set to zero. The measurements
from the sensors are captured on different scales for instance, RT is measured in ◦ C and
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Linear Power is measured in %. Therefore, Min-Max scaling is performed to bring all
parameters on same scale (into the range [0-1]) for easy analysis and understanding.

x
′
=

xi −min(x)

max(x)−min(x)
(5.1)

x denotes the NPP parameter, xi : value of x at ith time step, x
′
: scaled value of xi. After

data cleaning and scaling, large time series data is split into smaller chunks of months
and years to avoid complex processing. Data Preprocessing is performed in lines 2 and 3
of the Algorithm 1.

Feature Extraction

The preprocessed data obtained from the last step is used to compute the statistical
features of each chunk of the large time series data (line 4 in Algorithm 1). This converts
the data in time domain to feature domain. Fifteen basic analytical features are computed
from the data which are then fed to PCA algorithm for dimensionality reduction, thus
extracting only principal features with maximum variance. The main purpose of using
PCA is to reduce the dimensionality while retaining most of the information present in
the data[23]. In lines 5-8 of the Algorithm 1, PCA is applied to extract i number of features
which are capable of retaining atleast δ amount of the original information.

Unsupervised Learning

After obtaining the principal components which retain most of the data’s information, they
are grouped together based on their similar properties. k initial means are randomly
generated such that k clusters are formed after every observation is assigned to a cluster. An
observation is assigned to a cluster with nearest mean value (based on euclidean distance).
However, what value of k should be selected at the beginning of clustering algorithm is a
major challenge. Silhouette analysis is used to measure the separation between resulting
clusters. Silhouette coefficients are values ranging from [-1, 1] describing how distant
is an observation from neighbouring clusters. Positive values describe good clustering
whereas, negative values indicate improper clustering. Therefore, value of k with maximum
silhouette score is selected for the clustering algorithm. Lines 9 and 10 in Algorithm 1
perform clustering of principal components. Line 11, appends the clusters labels generated
with the preprocessed data obtained from the first step of this pipeline.
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Normalising Clusters

An issue associated with PCA is that it lacks interpretability of the resulting clusters[33].
PCA assigns high weights to the features with greater variabilities irrespective of whether
they are meaningful for the classification or not[38]. Linear Discriminant Analysis
(LDA) is an alternate dimensionality reduction technique which tries to extract a feature
subspace that maximizes separation between classes and deals directly with discrimination
between classes [34]. Therefore, LDA is applied over the data collected from last step to
normalise cluster labels such that separation between the clusters is maximised (Line 12
of Algorithm 1). Finally, k-means clustering is again applied over the linear discriminants
extracted from LDA to generate normalised cluster labels (Line 13) .

5.3.2 State Machine Pipeline

Clustered respresentation helps to visualise data instances grouped together into clusters
based on their similar nature. However, representing this graphically does not show any-
thing about the interaction between clusters, i.e. during the working of NPP over years,
how transitions occur from one cluster to another. Concept of finite state machines is
introduced to represent the cluster transitions and therefore, model the working of NPP.
Algorithm 2 illustrates the operations performed to build state machine diagrams from
clustered data.

Cluster Analysis

Data with normalised cluster labels (χ) is filtered on the basis of years and is then grouped
together according to the cluster labels. Certain attributes for each grouped cluster are
defined which uniquely identifies that cluster. Residence time of a cluster calculates
what proportion of the year’s data is assigned to it. Mean value of a cluster simply
evaluates the mean of all data instances belonging to the cluster. To map for the cluster
transitions, change in values (∆) of consecutive data pairs of an year is calculated along
with the change in cluster labels (E). Cluster analysis is done in lines 1-10 of Algorithm 2.

Finite State Machine

A system state is build corresponding to each cluster defining the state of NPP’s op-
eration. System states are then labelled with the attributes calculated for each cluster
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Algorithm 2: Finite State Machine Representation

Input: χ, year
Output: Z - Finite State Machine Representation

1 itr1← 1, itr2← 1 // while loop iterators

2 χ year ← data filter(χ, year)
3 G← groupby cluster(χ year)
4 num cluster ← len(G) // number of clusters

// Computing attributes for each cluster

5 while itr1 ≤ num cluster do
6 attribute1[itr1]← time residence(G[itr1])
7 attribute2[itr1]← mean(G[itr1])
8 itr1← itr1 + 1

// Record change in values over consecutive data pairs of the year

9 while itr2 < len(χ year) do
10 ∆[itr2]← χ year[itr2 + 1]− χ year[itr2]
11 E ← cluster label transitions between data pairs
12 itr2← itr2 + 1

/* Define a state for each cluster, assign attributes and define state

transitions */

13 n states← num cluster
14 V ← assign(n states, attribute1, attribute2)
15 Z ← state graph(V,E,∆) // ∆-transition value
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Table 5.1: Silhouette Analysis for k-means clustering of RT data

Silhouette scores for k values 2 -10
k-value Silhouette Score

2 0.5578
3 0.6052
4 0.6821
5 0.6628
6 0.4310
7 0.1096
8 -0.2231
9 -0.4004
10 -0.5120

(V). These attributes help in describing the behaviour of the states based on their values.
Now, state transitions are designed in accordance with the cluster transitions. ∆ change
values along with the transitioning cluster labels (E) between consecutive data instances
of an year are used to draw state transitions between the system states in a state machine
diagram (Lines 11-13 of Algorithm 2).

5.4 Visualisation of time-series of RT

The data corresponding to system parameters of NPP is measured daily for 9 years. In
this section, RT data is passed through methodology pipeline to get better visualisation,
explore any patterns in RT levels and model the working of NPP with finite state machine.

RT data is normalised (scaled), preprocessed for any missing values and is split into
months and years. Statistical features (mean, variance, skewness etc.) are calculated
for each month of every year. The resultant feature matrix has high number of dimensions,
therefore, it cannot be directly visualised graphically.

On the application of PCA over feature matrix it is found that only 3 principal compo-
nents are sufficient to represent the original matrix with 90% explained variance. Principal
components are passed to k-means clustering algorithm to get preliminary clusters. Sil-
houette analysis is performed for k values between 2-10. It is found that k = 4 gives the
best silhouette score as shown in Table 5.1, hence, the algorithm clusters the principal
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   Cluster 1        Cluster 2       Cluster 3      Cluster 4

Figure 5.2: Clustered Representation of RT data

components into 4 clusters. These cluster labels are appended with feature matrix and the
labelled feature matrix is passed to LDA algorithm so that linear discriminants (LDs)
extracted have ability to discriminate cluster labels. Three LDs are extracted from the
labelled feature matrix using LDA. On application of k-means clustering over LDs, four
concrete, distinct clusters are found as shown in Fig. 5.2. NPP over 9 years, tends to
operate at four RT levels in different states. Hence, clustered representation of RT data
facilitates visual analysis and pattern discovery that cannot be simply achieved by observ-
ing time-series plots. However, to model how NPP makes transitions from one RT level
(cluster) to other, finite state machines are build for every year. RT data is grouped on
the basis of cluster labels for each year and two primary attributes namely, mean tem-
perature and residence time are computed for all groups (clusters). Algorithm 2 is
implemented to build state machine diagrams for all the years.

Fig. 5.3 shows the finite state machine representation of RT data for the first year.
Four system states are defined corresponding to the cluster groups. Mean temperature
and residence time for each cluster are computed and assigned to the respective system
states. State transitions are drawn according to the cluster transitions that happened in
the first year. Table 5.2 computes state transition rules for the state machine diagram.
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Figure 5.3: Finite State Machine Diagram of RT data in one year of operation: illustration

Figure 5.3(a) represents the complete finite state machine with all system states and state
transitions, whereas, for better visualisation and to model high level behaviour of NPP a
simplified version of state machine is represented in Fig. 5.3(b). The strip representation
of state machine focuses only on the transitions that occur from one state to another and
ignores self transitions. On observing the mean temperature levels of system states in Fig.
5.3, it can be stated that NPP operates in four distinct states namely, high RT, medium
RT, low RT and shutdown (room temperature) over the year. State transitions illustrate
how each of these states communicate with each other and therefore, model the working
flow of the NPP.

Similarly, strip representations of state machines are defined for the other years and
behaviour of NPP is modelled over the years. Fig. 5.4 and Fig. 5.5 represent the strip
visualisations from 2007-2015 based on time of residence and mean temperature respec-
tively. Each state of the strip is labelled with an order pair (a,b) where a: residence time
of the state and b: mean temperature of the state. It is observed that in all years, the
representation and definition of four states remain consistent, thus, validating the cluster-
ing algorithm. High RT state always tend to have high mean temperature and shutdown
periods consistently show room temperature values across all the years. Similar patterns
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Table 5.2: Computing State transitions for RT data for the first year

State transitions
month-pair change of value (∆) Cluster label transition (E)

Jan-Feb -0.032 1-1
Feb-Mar 0.068 1-1
Mar-Apr -35.863 1-2
Apr-May -70.210 2-3
May-Jun 106.600 3-1
Jun-Jul -0.145 1-1
Jul-Aug 0.143 1-1
Aug-Sep -13.651 1-2
Sep-Oct -206.376 2-4
Oct-Nov 91.172 4-3
Nov-Dec 128.792 3-1

Figure 5.4: Visualising RT Clusters on the basis of time of residence.
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Figure 5.5: Visualising RT Clusters on the basis of mean temperature levels.

are observed for medium RT as well as low RT states in Fig. 5.4 and Fig. 5.5. Therefore,
the strip representation allows better visualisation over longer periods as well as extracts
meaningful patterns out of the data. On closer analysis of this representation, it is found
that there is a shutdown for one month (8.3% of year) every year from 2007-2009 and for
two months (16.7% of year) from 2010-2011. However, in 2012, NPP is shut down for five
months (41.7% of year);also, there is no shutdown period for years 2013 and 2015. Figure
5.6 shows the finite machine representation that models the behaviour of NPP across all
the years. State transitions are defined for both within year as well as across year tran-
sitions. Each state in Fig. 5.6 is represented as combination of character (temperature
level) and digits (year). In the normal operation, plant tends to operate at high RT levels
for the largest proportion of time and is in shutdown phase for the least duration of time.
Also, transition of RT level takes from high to medium, medium to low and finally from
low to shut down. Then, gradually RT levels are restored in a reverse order.

5.5 Visualisation of time-series of Reactor Power

The methodology adopted in this chapter is data-insensitive, i.e., the observations obtained
at the end of pipeline are independent of the type of data. So, if finite state machine
diagram truly represents the working behaviour of NPP, then it should be validated by the
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Figure 5.6: Finite state machine diagram for RT for nine years

state machine diagrams of other parameters of the dataset and not just RT data.

Therefore, we validate our methodology by employing it over another important pa-
rameter of NPP that is Reactor Power. Power data for nine years, is fed into methodology
pipeline where it goes through all stages of transformation from data preprocessing to fea-
ture extraction, feature extraction to clustering and finally, from clustered representation
to finite state machine representation. Figure 5.7 shows the clustered representation of
Power data. It is observed that similar to RT data, Power data is grouped into 4 distinct
clusters. These clusters correspond to four levels of power measurements namely, High,
medium, low and shutdown power. Clustered data when split on the basis of years is used
to design finite state machine diagram. Attributes such as Time of residence and mean
power are calculated for each cluster of every year. Similar to finite machine representation
of RT data, these attributes are used to label system states, and state transitions are de-
fined on the basis of cluster transitions. Figure 5.8 represents the finite state representation
of Power data. It can be seen that with minor variations in the within year transitions,
globally the nature of Power state transitions is similar to that of RT data. Hence, it is
validated that our methodology is consistent over different parameters of the power plant.
The behaviour of the overall plant is captured and not just only one of its parameter.
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Figure 5.7: Clustered Representation of Power data
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Figure 5.8: Finite state machine diagram for Power for nine years
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Table 5.3: Silhouette Analysis for k-means clustering of Power data

Silhouette scores for k values 2 -10
k-value Silhouette Score

2 0.6593
3 0.6956
4 0.7233
5 0.7010
6 0.5962
7 0.2219
8 -0.1187
9 -0.3524
10 -0.6397

5.6 Discussion

Feature extraction followed by k-means clustering effectively clusters the data into separate
groups each corresponding to unique state of the plant. This cannot be modelled simply
using time series statistical techniques. Moreover, the quality of the clustering can be
validated both qualitatively as well as quantitatively. State machines formulated with the
help of clustered data help in visualising both the local as well as global behaviour of
plant data over the years. Locally, data for each year is visualised and its state transitions
overall illustrate the nature of that particular year. However, on a global level, data for
almost whole decade is visualised and transitions between different years illustrate how
plant operation changes over the years.Whole pipelined architecture is data insensitive,
i.e. it can be applied to any parameter of the plant and the behaviour of that parameter
can be visualised independently. Most importantly, all the transformations in the model
pipeline are automatic with negligible manual input, therefore this methodology can be
turned into an online system where time-series data is fed to the pipeline and corresponding
visualisation of the parameters can be done on the go. Dashboards for the physical system
can be designed that provide with the visual representation of the system behaviour over
the time along with the feedback tool which raises a flag in case of any abnormal system
conditions.
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Chapter 6

Experimentation and Results

The experimentation performed is aligned with the objectives of our thesis. Further, for
each objective we have covered several application cases. Hence, this chapter is partitioned
into 3 sections corresponding to each objective.

In the first section, we perform forecasting for the RT parameter of the power plant using
proposed methodology of previously mentioned forecasting techniques. RT if modelled
correctly can lead to safe and economic operation of the power plant. Hence, it plays an
important role for the authorities to precisely set RT in order to get optimal power from
the reactor plant. Polynomial Regression is used for empirical estimation of the complex
dynamics of a working power plant. RT as a dependent variable is expressed in the form
of other system parameters (independent variables) excluding Power. Hence we obtain an
empirical model where several mathematical expressions represent the relationship between
RT and its covariates (Boiler Pressure, Feed Water Temperature, Steam Line Pressure).
Deep learning models: MLP and LSTM help in understanding the nature of time-structured
data and hence producing reliable forecasts. Each forecasting method is fit on both datasets
(Unit A and B). In this section, we also discuss the concept and importance of sensitivity
analysis in modelling of physical systems.

Second section focuses on the impact of sampling frequency of the given datasets towards
the forecasts obtained. Here, we introduce a third dataset that we use in our study. This
data is comparatively longer than the other datasets. It contains the data recorded from
the sensors of Unit B for a duration of 9 years (2007-2015). Each observation in it is
recorded on a daily basis. Performance of the proposed model is checked for this dataset
and compared with the performance of the model on the other datasets.

Finally in the third section, we use the same forecasting techniques in forecasting of Power
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output for the power plant. The main aim of a nuclear power plant is to generate an
optimal amount of Power for a good balance between expenditure and revenue. Hence,
it is the main parameter most organisations are interested in. A good forecasting of the
Power can make the authorities confident enough in managing their investments.

6.1 Application of Forecasting Techniques in forecast-

ing of Reactor Temperature (RT)

Based on the experimentation performed, we divide this section into 2 subsections corre-
sponding to each application case.

6.1.1 Fitting and Forecasting on data from the same unit.

Polynomial Regression

Figure 6.1: Fit of polynomial regression model over data from Unit A.

Fig 6.1 shows the results obtained after fitting polynomial regression model of order 3
on data obtained from Unit A. The blue curve in the plot represents the recorded mea-
surements and red curve describes the forecasted measurements calculated by regression
model.
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Polynomial Regression of order 3
RMSE R2 score Adjusted R2 MAE Maximum

Error
Minimum
Error

0.103 0.839 0.838 0.077 0.470 8.850× 10−7

Table 6.1: Performance Metrics for RT forecasting using poly-regression (Unit A)

Table 6.1 summarises the performance of regression methodology in RT forecasting over
the data extracted from Unit A. We observe that polynomial regression of order 3 is able
to capture most of the variations in the RT data. Error in forecasts is of low order. Hence,
we can comment that it turns out to be a good fit on the actual dataset.

Empirically, the expression for the above fit is obtained as following:

RT = 1.12×103BP+3.10×103FW−1.13×103SL−3.01×10−1BP 2−6.14BP ·FW+3.22×
10−1BP ·SL+3.36FW 2+4.48FW ·SL+1.56×10−2SL2−3.00×10−5BP 3+1.43×10−3BP 2 ·
FW+1.04×10−4BP 2·SL−1.18×10−4BP ·FW 2−1.45×10−3BP ·FW ·SL−1.14×10−4BP ·
SL2−4.94×10−3FW 3−8.40×10−5FW 2 ·SL+2.09×10−4FW ·SL2+3.46×10−5SL3−1753

where BP, FW, SL represent Boiler Pressure, Feed Water Temperature and Steam Line
Pressure respectively.

Figure 6.2: Fit of polynomial regression model over data from Unit B.

Fig 6.2 displays the plot for the forecasted values of RT when polynomial regression of
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Polynomial Regression of order 3
RMSE R2 score Adjusted R2 MAE Maximum

Error
Minimum
Error

0.035 0.873 0.873 0.026 0.185 4.815× 10−8

Table 6.2: Performance Metrics for RT forecasting using poly-regression (Unit B)

order 3 is fit on the data extracted from Unit B. Even for Unit B this regression model
works well and results into a good fit. The quality of the fit can be validated by the
performance metrics presented in Table 6.2. RMSE values as well as the absolute minimum
and maximum errors turn out to be small whereas, R2 and Adjusted R2 scores of the fit
are high.

Empirically, the expression for regression fit over Unit B’s data is written as follows:

RT = −1.65× 103BP + 1.43× 102FW + 1.42× 103SL+ 7.40× 10−1BP 2 + 1.37× 101BP ·
FW − 1.26BP · SL − 2.29 × 101FW 2 − 1.21 × 10−1FW · SL + 5.41 × 10−1SL2 − 4.08 ×
10−5BP 3− 2.50× 10−3BP 2 ·FW + 4.80× 10−5BP 2 · SL− 3.80× 10−2BP ·FW 2 + 4.86×
10−3BP · FW · SL + 3.76 × 10−6BP · SL2 + 7.26 × 10−2FW 3 + 3.51 × 10−2FW 2 · SL −
2.43× 10−3FW · SL2 − 1.16× 10−5SL3 − 1088

where BP, FW, SL represent Boiler Pressure, Feed Water Temperature and Steam Line
Pressure respectively.

Forecasting with Artificial Neural Networks.

We make use of Simple feed-forward neural networks also named as Multi layer Perceptrons
(MLP) in the following experimentation. We also implement a more complex architecture
of ANNs called LSTM in this multivariate forecasting problem. For a good and reliable
forecast, the hyper parameters used for training of the neural net must be carefully selected.
Concepts like cross validation can be used to come up with the best set of hyper parameters
which contribute towards meaningful predictions. Neural networks are generally prone to
overfitting.As the network learns and adjusts weight, sometimes it not only retains the
knowledge about the structural patterns in the data but also the eccentricities and noise
specific to the training data. To remove over-fitting, we use the common practice of dropout
regularization. In dropout regularization,a random set of cell units are blocked and do not
communicate with other cells in that iteration. Removing connections reduces the number
of parameters to be estimated while training and the overall complexity of the network.
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Hyperparameter MLP LSTM
Number of neurons per layer 50 100
Number of hidden layers 2 1
Dropout rate - 0.5
Optimization technique ADAM ADAM
Loss estimator MSE MSE
Batch size 512 512
Number of epochs 50 50
Activation function ReLU (hidden layer) ,

sigmoid(dense layer)
tanh

Table 6.3: Hyperparameters selected for training.

Thus, dropout helps preventing over-fitting. Dropout is user defined parameter can be set
by using default values or cross-validation.

Hyper-parameters for our proposed models mentioned in Table 6.3 are also selected after
applying proper cross validation techniques. The stability of the selected model was checked
by training the model over different time windows of fixed size and forecasting target
variable for the time-window following the training window. This process was iterated 100
times and the mean forecast error calculated for all iterations was quite low.

Figure 6.3: Forecasting RT using MLP over the data from Unit A
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Performance metrics for deep learning methods
Network Used RMSE Maximum Error Minimum Error
MLP 0.054 0.527 5.828× 10−9

LSTM 0.029 0.134 4.627× 10−8

Table 6.4: Performance Metrics for RT forecasting using ANNs (Unit A)

In order to check the capability of ANN models, we first train the models (MLP and
LSTM) over the whole dataset and then forecast RT for the whole data for both Unit A
and Unit B. Fig 6.3 shows the forecasting results after applying MLP over data from unit
A and Fig 6.4 displays the forecasted RT values by LSTM network for the data from unit
A. On just visualising the plots we can comment that LSTM network forecasts better than
MLP. Forecasts obtained through LSTM network are able to capture all the patterns of
the actual data. All the peaks and valleys in the plot are well modelled by the LSTM when
compared to MLP.

Table 6.4 summarises the performance of both LSTM and MLP networks in RT forecasting.
We can see that RMSE as well as the absolute maximum error in case of LSTM forecasting
is lower than the forecasted errors of MLP network.

Figure 6.4: Forecasting RT using LSTM network over the data from Unit A

Similarly for the data from Unit B we obtain the forecasted results. Fig 6.5 and Fig 6.6
display the plots for forecasted RT values by LSTM network, MLP respectively. In this
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Figure 6.5: Forecasting RT using LSTM network over the data from Unit B

Figure 6.6: Forecasting RT using MLP over the data from Unit B
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Performance metrics for deep learning methods
Network Used RMSE Maximum Error Minimum Error
MLP 0.058 0.214 1.804× 10−8

LSTM 0.019 0.086 7.752× 10−10

Table 6.5: Performance Metrics for RT forecasting using ANNs (Unit B)

case too, we observe forecasts made by LSTM network are more robust than the forecasts
made by MLP. Table 6.5 describes the performance metrics obtained for this forecast.

As per now, LSTM has outperformed the other two forecasting methods, i.e MLP and
poly-regression when we train and forecast over the whole dataset. A reliable forecasting
method is a one that can make robust predictions for the unseen data based on the observed
data. If not, it may be a case that model was overfit on the training data and hence when
tested on unseen data the model performs poorly.

To check whether these methods can generalise well on the unseen data, we train them
over set of training windows (time periods) and forecast RT for the time period following
the training window. Table 6.6 shows the summary of results obtained for each of the fore-
casting method for Unit A and Table 6.7 compares the performance metrics of forecasting
methods for Unit B.

From the results obtained so far, we conclude that LSTM network works best over both
the datasets in forecasting of RT. Even forecasts for the unseen data are more reliable
and robust in case of LSTM networks. Polynomial regression is not able to generalise well
on the unseen data as evident from the results in Table 6.6 and Table 6.7. It is a good
technique for estimating the empirical model for the process. However, applications where
small variations in the data is of critical importance as in case of nuclear power plants,
polynomial regression is not the best methodology to apply. MLP on the other side, gives
decent forecasts for the RT. But in some cases the forecasts are highly deviated from the
actual values. Therefore, LSTM is found to be the strongest method for handling this
dataset and producing good forecasts.

Concept of Sensitivity Analysis

The impact of each input parameter used in the training process over the forecasted value
(output parameter) is analysed using the concept of sensitivity analysis. Each input pa-
rameter is omitted one at a time from the training process and the resulting quality of the
forecast is compared with the performance when all input parameters were used during
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Training for 3 months, Forecasting for 9 months
Network RMSE Max Error Min Error R2 Error Adjusted R2

MLP 0.055 0.092 1.416× 10−6 - -
LSTM 0.037 0.110 3.726× 10−8 - -
Poly-regression 0.437 0.866 2.044× 10−6 -4.0204 -4.0208

Training for 6 months, Forecasting for 6 months
Network RMSE Max Error Min Error R2 Error Adjusted R2

MLP 0.086 0.089 1.446× 10−8 - -
LSTM 0.055 0.076 2.752× 10−9 - -
Poly-regression 0.297 0.642 2.680× 10−7 -1.8881 -1.8885

Training for 8 months, Forecasting for 4 months
Network RMSE Max Error Min Error R2 Error Adjusted R2

MLP 0.046 00.107 0.022 - -
LSTM 0.040 0.086 3.962× 10−9 - -
Poly-regression 0.224 0.631 7.773× 10−6 -0.7784 -0.7789

Table 6.6: Comparing Performance Metrics for RT forecasting (Unit A)

Training for 3 months, Forecasting for 9 months
Network RMSE Max Error Min Error R2 Error Adjusted R2

MLP 0.108 0.589 1.702× 10−7 - -
LSTM 0.046 0.384 1.907× 10−7 - -
Poly-regression 0.521 0.906 1.207× 10−6 -18.068 -18.073

Training for 6 months, Forecasting for 6 months
Network RMSE Max Error Min Error R2 Error Adjusted R2

MLP 0.063 0.136 7.601× 10−7 - -
LSTM 0.055 0.088 5.470× 10−9 - -
Poly-regression 0.437 0.762 7.506× 10−6 -2.631 -2.823

Training for 8 months, Forecasting for 4 months
Network RMSE Max Error Min Error R2 Error Adjusted R2

MLP 0.040 0.081 9.945× 10−7 - -
LSTM 0.016 0.091 5.221× 10−7 - -
Poly-regression 0.329 0.737 0.0456 -2.169 -2.172

Table 6.7: Comparing Performance Metrics for RT forecasting (Unit B)
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Sensitivity Analysis over data from Unit A
Parameter Omitted RMSE Value
None 0.040
Boiler Pressure 0.068
Feed Water Temperature 0.038
Main Steam Line Pressure 0.071

Table 6.8: Sensitivity Analysis using LSTM as base model over data from Unit A

the training process. If an important parameter is omitted, the resulting forecasts will be
worse than the forecasts obtained when that parameter was included during the training.
However, if after removing a parameter the resulting forecasts are of equal or good quality,
it means we can remove that parameter from our system’s ecosystem as it just makes the
learning process complex.

In order to compare the impact of each input parameter fairly, following criteria must be
followed [45]:

• All the hyper parameters of the neural network must be kept same for every experi-
ment.

• Experiments must be carried over the same dataset.

• Proportion of data used for training, validation and testing must be kept consistent
in each experiment.

As it turns out that LSTM network works best over this dataset for RT forecasting, we
use it as a base model for sensitivity analysis. Data from Unit A is selected with 8 months
reserved for training and rest of the data for forecasting. Hyper parameters described in
Table 6.3 are kept same for each experiment.

Each parameter from the set of inputs is omitted one at a time and the RMSE values for
that experiment is calculated. Table 6.8 describes the results obtained for each experimen-
tation. We observe that on removing Feed Water Temperature data from the set of inputs,
LSTM network produces better results. Whereas, removing other parameters result in
increased RMSE values. Therefore, we conclude Boiler Pressure and Steam Line Pressure
are important parameters for the estimation of RT.
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6.1.2 Fitting model on data from one unit and Forecasting for
data from the other unit.

All the units measure the sensory data for the same set of parameters. The correlation
between the parameters remains same for all the units. Nuclear reactor being a physical
system has a working principle in which the parameters interact with each other in a
prescribed fashion. Therefore, data recorded for a unit may be different from the other
units but the correlation between the parameters remains the same for a physical process.
As seen in the previous section, LSTM network is able to capture almost all the dynamics
of the power plant ecosystem. Hence, it manages to learn the correlation between the
parameters. Now, if LSTM network is used to learn the data from one unit and forecast
the values of RT for the other unit then it can prove that our proposed model can truly
learn the dynamics of the power plant. In this section, we propose two application cases:

1. Training LSTM network on data from Unit A and forecasting RT for the data from
Unit B.

2. Training LSTM network on data from Unit B and forecasting RT for the data from
Unit A.

Application Case 1

Figure 6.7: Forecasting RT for Unit B based on data from Unit A
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Performance metrics - Forecasting RT for Unit B using the data from Unit A
Network Used RMSE Maximum Error Minimum Error
LSTM 0.025 0.040 4.601× 10−9

Table 6.9: Performance Metrics for Application Case 1

Figure 6.8: Forecasting RT for Unit A based on data from Unit B

Performance metrics - Forecasting RT for Unit A using the data from Unit B
Network Used RMSE Maximum Error Minimum Error
LSTM 0.028 0.093 2.412× 10−7

Table 6.10: Performance Metrics for Application Case 2
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Application Case 2

As observed in Fig 6.7 and Fig 6.8, LSTM network is able to forecast RT values for one
unit when trained on the data from the other unit. It works well for both application
cases. Moreover, errors reported in Table 6.9 and Table 6.10 are very low corresponding
to accurate forecasts in both cases.

6.2 Analysing impact of sampling frequency of the

data on the forecasts made.

Raw data extracted from the sensors was sampled before it was fed to any of the forecasting
method. Sampling was performed in order to reduce the effort in analysing such high
volume of data. It also helps in reducing the training times. But the question is to what
extent can we sample the data. Originally, data was recorded every second. We sampled
the data such that each observation is recorded every minute. But can we sample the data
hourly or even on a daily basis?

Here we try to answer this question by analysing the effect of sampling frequency of the
data on the RT forecasts made. We chose data from Unit B for this experimentation.
LSTM network is used as the base model as it outperforms other performing techniques.
The data is sampled hourly and on a daily basis and the LSTM network is trained on these
sampled datasets.

Table 6.11 outlines the performance of the RT forecasts made by the network. Forecasts
deviate from the actual values as the sampling frequency increases. When sampling fre-
quency is large, LSTM network tries to learn global variations within the data; minor
fluctuations occurring during the day might be overlooked. Therefore, only partial varia-
tions are captured by the network which is evident from the high error values in case of
large sampling frequencies. With smaller sampling frequency, network is able to capture
both the global and local variations better.

We can conclude that rate of sampling frequency is directly proportional to the range of
error. When the sampling frequency is large we encounter high forecast errors. To better
understand this analogy we implement LSTM over a daily dataset. This data is collected
from Unit B for a duration of 9 years (2007-2015) and is sampled on a daily basis.

Fig 6.9 illustrates the plot for forecasted RT values from 2007-2015. As observed the LSTM
is unable to reproduce the actual dataset. Data when sampled daily is not adequate for
the network to capture all the variations. The performance of the network is recorded in
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Performance metrics - Forecasting RT for different sampling frequencies
Sampling Frequency RMSE Maximum Error Minimum Error
Every minute 0.020 0.035 5.124× 10−6

Every hour 0.026 0.102 3.786× 10−6

Daily 0.289 0.681 2.0× 10−4

Table 6.11: Analysing effect of sampling frequency on RT forecasts made for data from
Unit B

Performance metrics - Forecasting RT for daily dataset
Network
Used

RMSE Maximum Error Minimum Error

LSTM 0.552 0.765 2.10× 10−4

Table 6.12: Performance metrics for daily dataset from Unit B

Table 6.12. Large RMSE and Maximum error values correspond to improper fit on the
dataset.

Data when sampled every minute gives the best result. Sampling in excess leads to loss of
local variations in the dataset and hence poor predictions.

6.3 Application of Forecasting Techniques in forecast-

ing of Reactor Power

So far we have talked about forecasting of RT and have observed that LSTM model is
the best model when it comes to forecasting of RT. Another crucial parameter in which
most organisations are interested in is Reactor Power. RT if modelled precisely can help
industries in generating optimal Power. Power output if known in advance can help the
authorities in managing their expenditure and hence generate high revenue. Hence, in this
section we aim at forecasting Reactor Power of the power plant.

Similar to RT forecasting, we implement deep learning models as well as polynomial re-
gression to forecast Power. We divide this section into 2 subsections corresponding to the
experimentation performed.
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Figure 6.9: Forecasting RT for daily dataset from Unit B

Polynomial Regression of order 3
RMSE R2 score Adjusted R2 MAE Maximum

Error
Minimum
Error

0.374 0.964 0.964 0.276 0.728 4.826× 10−7

Table 6.13: Performance Metrics for Power forecasting using poly-regression (Unit A)

6.3.1 Fitting and Forecasting on data from the same unit

Polynomial Regression

Fig 6.10 and Table 6.13 represents the results of fit of polynomial regression of order 3 on
power data extracted from unit A. High R2 and Adjusted R2 scores, low RMSE and MAE
values indicate a good fit of the regression model on the power data.

Empirically, the expression for the fit is described as follows:

Power = −1.45×101RT −1.27×104BP +3.83×103FW +1.24×104SL−1.53×102RT 2−
2.22× 101RT ·BP − 3.58RT ·FW + 5.54× 101RT ·SL+ 8.22BP 2 + 4.43× 101BP ·FW −
1.10× 101BP · SL+ 2.01× 102FW 2− 4.14× 101FW · SL+ 1.88SL2 + 1.357RT 3 + 3.56×
10−1RT 2 ·BP +5.56×10−1RT 2 ·FW −5.85×10−1RT 2 ·SL−3.26×10−2RT ·BP 2−4.04×
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Figure 6.10: Polynomial Regression fit for Power data from Unit A

Polynomial Regression of order 3
RMSE R2 score Adjusted R2 MAE Maximum

Error
Minimum
Error

0.194 0.786 0.786 0.157 0.557 4.512× 10−7

Table 6.14: Performance Metrics for Power forecasting using poly-regression (Unit B)

10−2RT ·BP ·FW + 3.07× 10−2RT ·BP ·SL− 7.69× 10−1RT ·FW 21.20× 10−1RT ·FW ·
SL+ 1.02× 10−2RT · SL2 − 1.62× 10−4BP 3 − 3.32× 10−3BP 2 · FW + 6.15× 10−4BP 2 ·
SL+ 4.08× 10−3BP · FW 2 − 1.61× 10−3BP · FW · SL− 1.96× 10−4BP · SL2 − 7.54×
10−2FW 3 + 2.88× 10−3FW 2 · SL+ 2.0× 10−3FW · SL2 − 3.08× 10−4SL3 + 788

Fig 6.11 and Table 6.14 shows the results for the fit of polynomial regression of order 3 on
power data extracted from unit B. In this case we get comparatively low R2 and Adjusted
R2 scores but also lower RMSE and MAE values.

Therefore, in case of Power forecasting too we observe polynomial regression of order 3 is
a good empirical model that describes the relationship between Power and its covariates.
The empirical expressions can help the authorities in setting the threshold values of each
parameter in accordance with the relationship amongst themselves. Optimal thresholds if
set can help in a safe and economic operation of the nuclear power plant.
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Figure 6.11: Polynomial Regression fit for Power data from Unit B

Empirically, the expression for the fit is described as follows:

Power = −6.93 × 10−1RT + 2.62 × 104BP − 2.39 × 101FW + 2.97 × 104SL + 2.30 ×
103RT 2− 5.76× 102RT ·BP + 4.07× 103RT ·FW + 1.36× 102RT ·SL+ 7.46BP 2 + 5.58×
102BP · FW − 1.53 × 101BP · SL − 3.10 × 103FW 2 − 5.59 × 102FW · SL + 7.87SL2 −
3.04RT 3 + 1.73RT 2 ·BP − 1.86× 101RT 2 · FW − 9.90× 10−1RT 2 · SL− 1.76× 10−2RT ·
BP 2−2.25RT ·BP ·FW + 5.53×10−2RT ·BP ·SL+ 1.49×101RT ·FW 2 + 2.35RT ·FW ·
SL− 3.20× 10−2RT · SL2 − 3.12× 10−4BP 3 − 8.33× 10−3BP 2 · FW + 5.64× 10−4BP 2 ·
SL+7.82×10−2BP ·FW 2 +1.31×10−2BP ·FW ·SL−6.70×10−4BP ·SL2−1.16FW 3 +
−1.00× 10−1FW 2 · SL− 6.70× 10−3FW · SL2 + 3.34× 10−4SL3 − 1366

Forecasting with Artificial Neural Networks.

We use the same set of hyper parameters as mentioned in Table 6.3 for forecasting of
Power data for Unit A and Unit B. MLP and LSTM networks are trained over the whole
dataset and Power is forecasted for the whole dataset from Unit A and Unit B. This help
in validating the fit of our proposed methodologies over the datasets.

Fig 6.12 and Fig 6.13 show the results of Power forecasting for Unit A’s data on application
of MLP and LSTM respectively. Table 6.15 highlights the performance metrics of each of
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Performance metrics for deep learning methods
Network Used RMSE Maximum Error Minimum Error
MLP 0.401 0.814 1.914× 10−6

LSTM 0.371 0.641 2.905× 10−7

Table 6.15: Performance Metrics for Power forecasting using ANNs (Unit A)

the forecasting technique. LSTM again in this case produces more robust and reliable
forecasts with low error values. Similarly, for data extracted from Unit B we run our
models over it and generate forecasts for Reactor Power. Fig 6.14, Fig 6.15 and Table 6.16
describe the results of the forecasts made.

Figure 6.12: Forecasting Power using MLP over the data from Unit A

Generalisation of each forecasting technique is checked by training and forecasting over
different time windows. Table 6.17 and Table 6.18 outlines the results for each combination
of training and forecasting windows selected over data from Unit A and Unit B respectively.
In the application of Power Forecasting too, LSTM emerges to be the strongest network
in forecasting over the given dataset.

Table 6.19 analyses the outcome of sensitivity analysis performed for the Power Forecast-
ing model. Interestingly, in this scenario also we find that only removing Feed Water
temperature from the training process produces better Power forecasts with lower error
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Figure 6.13: Forecasting Power using LSTM over the data from Unit A

Figure 6.14: Forecasting Power using MLP over the data from Unit B
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Figure 6.15: Forecasting Power using LSTM over the data from Unit B

Performance metrics for deep learning methods
Network Used RMSE Maximum Error Minimum Error
MLP 0.081 0.286 3.879× 10−9

LSTM 0.053 0.122 4.428× 10−7

Table 6.16: Performance Metrics for Power forecasting using ANNs (Unit B)
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Training for 3 months, Forecasting for 9 months
Network RMSE Max Error Min Error R2 Error Adjusted R2

MLP 0.059 0.079 2.465× 10−7 - -
LSTM 0.050 0.068 8.235× 10−7 - -
Poly-regression 0.631 0.786 1.033× 10−5 -4.551 -4.552

Training for 6 months, Forecasting for 6 months
Network RMSE Max Error Min Error R2 Error Adjusted R2

MLP 0.051 0.078 1.446× 10−5 - -
LSTM 0.047 0.059 6.896× 10−8 - -
Poly-regression 0.601 0.770 7.425× 10−6 2.3002 -2.3009

Training for 8 months, Forecasting for 4 months
Network RMSE Max Error Min Error R2 Error Adjusted R2

MLP 0.049 0.062 1.804× 10−5 - -
LSTM 0.029 0.048 5.274× 10−6 - -
Poly-regression 0.544 0.694 9.464× 10−5 -1.083 -1.085

Table 6.17: Comparing Performance Metrics for Power forecasting (Unit A)

values. Therefore, Boiler Pressure and Steam Line Pressure along with RT are important
parameters for accurate forecasting of the Reactor Power.

6.3.2 Fitting model on data from one unit and Forecasting for
data from the other unit.

In case of RT forecasting we found that LSTM network is capable of learning the data
from one unit and forecast RT for the data from the other unit. Now the question is does
it work for Power Forecasting too ? So in this section, we propose similar two application
cases:

1. Training LSTM network on Unit A and forecasting Power for Unit B.

2. Training LSTM network on Unit B and forecasting Power for Unit A.

As observed in Fig 6.16 and Fig 6.17, LSTM network is able to forecast Power values for
one unit when trained on the data from the other unit. It works well for both application
cases. Moreover, errors reported in Table 6.20 and Table 6.21 are very low corresponding
to accurate forecasts in both cases.
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Training for 3 months, Forecasting for 9 months
Network RMSE Max Error Min Error R2 Error Adjusted R2

MLP 0.091 0.214 1.054× 10−6 - -
LSTM 0.041 0.139 5.642× 10−8 - -
Poly-regression 0.285 0.888 3.241× 10−5 -39.106 -39.310

Training for 6 months, Forecasting for 6 months
Network RMSE Max Error Min Error R2 Error Adjusted R2

MLP 0.129 0.465 7.942× 10−6 - -
LSTM 0.038 0.123 5.028× 10−7 - -
Poly-regression 0.257 0.789 2.742× 10−4 -29.468 -29.020

Training for 8 months, Forecasting for 4 months
Network RMSE Max Error Min Error R2 Error Adjusted R2

MLP 0.075 0.216 5.272× 10−8 - -
LSTM 0.029 0.118 2.795× 10−8 - -
Poly-regression 0.243 0.765 2.156× 10−4 -7.149 -7.335

Table 6.18: Comparing Performance Metrics for Power forecasting (Unit B)

Sensitivity Analysis over data from Unit A
Parameter Omitted RMSE Value
None 0.029
Boiler Pressure 0.109
Feed Water Temperature 0.027
Main Steam Line Pressure 0.056

Table 6.19: Sensitivity Analysis for Power Forecasting using LSTM over data from Unit A

Performance metrics - Forecasting Power for Unit B using the data from Unit A
Network Used RMSE Maximum Error Minimum Error
LSTM 0.087 0.197 8.125× 10−7

Table 6.20: Performance Metrics for Application Case 1

Performance metrics - Forecasting Power for Unit A using the data from Unit B
Network Used RMSE Maximum Error Minimum Error
LSTM 0.032 0.090 1.269× 10−7

Table 6.21: Performance Metrics for Application Case 2
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Figure 6.16: Forecasting Power for Unit B based on data from Unit A

Figure 6.17: Forecasting Power for Unit A based on data from Unit B
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Chapter 7

Conclusion and Future Work

The main purpose of this thesis is to analyse the real and complex time series of data, such
as Reactor Temperature (RT) and Reactor Power using different forecasting techniques.
Stochastic models like ARMA, ARIMA are candidate solutions but they only work well
on univariate data. Polynomial regression is used to produce an empirical model of the
system. But when it comes to forecasting for unseen data it performs poorly. Deep learning
methods such as MLP and LSTM are applied on the dataset. Overall results show that
LSTM network can be used to analyze the dynamic characteristics of a nuclear power plant
with a small number of input parameters. Selection of input parameters is optimized by
using the concept of sensitivity analysis. By removing the Feed Water Temperature from
the set of input parameters better forecasts for both reactor temperature and reactor power
are obtained. The impact of sampling frequency of the RT data on the forecasts made is
studied. Originally, the RT data recorded is sampled every second. It is observed that
sampling frequency of one minute produces better forecasts. However, the forecasts made
start to deviate from the actual values as the sampling frequency of the data is further
increased. Therefore, the sampling interval of RT data can be increased to one minute
without losing much accuracy in the forecasts. For physical processes such as a nuclear
power plant it is very difficult to develop a physical model because of unknown non-linear
relationships present among the system parameters. Here, neural network models such as
LSTM prove to be handy since they can model both known and unknown relationships
between the system parameters.

In future, we would like to implement attention based models on this dataset as they tend
to be strong competitors of LSTM networks. Also, we can adopt the analogy of hybrid
neural networks where we combine several architectures to form a hybrid structure, for
instance passing the data through CNN network and then forecasting using LSTM cells.
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