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Abstract

A simple coverage plan called a Conformal Lawn Mower plan is demonstrated. This
plan enables a UAV to fully cover the route ahead of a moving ground vehicle. The plan
requires only limited knowledge of the ground vehicle’s future path. For a class of curvature-
constrained ground vehicle paths, the proposed plan requires a UAV velocity that is no
more than twice the velocity required to cover the optimal plan. Necessary and sufficient
UAV velocities, relative to the ground vehicle velocity, required to successfully cover any
path in the curvature restricted set are established. In simulation, the proposed plan is
validated, showing that the required velocity to provide coverage is strongly related to the
curvature of the ground vehicle’s path. The results also illustrate the relationship between
mapping requirements and the relative velocities of the UAV and ground vehicle. Next, I
investigate the challenges involved in providing timely mapping information to a moving
ground vehicle where the path of that vehicle is not known in advance. I establish necessary
and sufficient UAV velocities, relative to the ground vehicle velocity, required to successfully
cover any path the ground vehicle may follow. Finally, I consider a reduced problem for
sensor coverage ahead of a moving ground vehicle. Given the ground vehicle route, the UAV
planner calculates the regions that must be covered and the time by which each must be
covered. The UAV planning problem takes the form of an Orienteering Problem with Time
Windows (OPTW). The problem is cast the problem as a Mixed Integer Linear Program
(MILP) to find a UAV path that maximizes the area covered within the time constraints
dictated by the moving ground vehicle. To improve scalability of the proposed solution, I
prove that the optimization can be partitioned into a set of smaller problems, each of which
may be solved independently without loss of overall solution optimality. This divide and
conquer strategy allows faster solution times, and also provides higher-quality solutions
when given a fixed time budget for solving the MILP. We also demonstrate a method of
limited loss partitioning, which can perform a trade-off between improved solution time
and a bounded objective loss.
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Chapter 1

Introduction

Cooperative applications that combine a ground vehicle and an unmanned aerial vehicle
(UAV) are an extremely active area of research [75], with many open questions to be
resolved. The capabilities of ground and aerial vehicles are quite different, and collaborative
applications take advantage of the strengths of both.

Collaboration can lead to better path planning for the ground vehicle. UAVs are highly
mobile and can readily explore large areas of terrain and negotiate around or over most
obstacles. They are frequently used in applications such as search and rescue, where
their greater mobility and unobstructed viewpoint help to cover terrain and locate targets
quickly [33]. UAVs are also more likely to have a clear view of GPS satellites [13] for
navigation purposes. Ground vehicles, on the other hand, are confined to two dimensions
and must contend with every tree, hole, and creek they encounter. They can be further
slowed by the type of terrain they are crossing – mud and sand are much harder to traverse
than pavement. A UAV, with its greater speed, mobility and ability to fly above the
area [10], can stay ahead of the ground vehicle and provide real-time imagery for route
planning and mapping. With real-time information from the UAV, the ground vehicle can
better adapt its path as the situation demands.

In an urban environment, a larger heterogeneous team of autonomous vehicles (fixed
wing aircraft, a blimp, and ground vehicles) is used to provide an operator with situational
awareness over an wide area [13]. The height and maneuverability of the aerial vehicles
allows them to see over obstacles, have unobstructed access to GPS and provide localiza-
tion and mapping information to the ground vehicles. This approach has been extended
to surveillance and tracking [77] where, using a probabilistic algorithm, the team plans
observation paths that attempt to take into account occlusions in the environment and
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keep the target in view at all times.

The UAV’s mobility advantages also apply to mapping and exploration applications.
Taking advantage of its ability to fly high overhead, the UAV is able to generate a point
cloud representation of the environment around the ground vehicle [23] using the data it
collects. The point cloud is subsequently used to generate feasible routes through the local
terrain for the companion ground vehicle. Even though UAVs excel at travelling quickly
over terrain [47, 61], the information they collect generates a relatively low resolution
picture of features in the environment. Yet, despite the relatively low resolution and
accuracy, the ground vehicle can process this raw information to identify candidate areas
for inspection [29]. Such cooperative actions reduce the overall distance the ground vehicle
must travel by eliminating areas of the environment unlikely to be useful.

Collaborative operations can significantly increase the flight range of the UAV. One of
the biggest challenges for UAVs is their limited flight duration, with many having flight
times of thirty minutes or less. As a result, they require frequent stops for refuelling.
Further, the duration of flight can be affected by the weather conditions (shortened due to
extreme heat or cold), the requested flight speed, and by the complexity of the route flown
– a turn manoeuvre is more energy intensive than straight flight [25]. Ground vehicles
operate for much longer on a single load of fuel, have more carrying capacity, and can even
function as a mobile fuel depot [50], significantly extending the range of the UAV. The
same approach applies in agricultural applications such as [68], where the superior carrying
capacity of the ground vehicle can maximize the range of the UAV.

Collaborative applications improve inspection studies and make planning actions easier.
UAVs are commonly used to provide a ground vehicle with an additional perspective of
the environment. While navigating a minefield [12], a ground vehicle can launch a UAV
when more visual information is required, and the UAV’s sensors will feed data to the
ground vehicle for processing and inspection. Similarly, a UAV and ground vehicle team
can work together to explore and map in the aftermath of a disaster [4]. Finally, in
agriculture [42], the imagery from the UAV identifies potential weed locations over the
entire field, and the ground vehicle travels only to those locations to provide detailed
inspection and identification.

In this thesis, I consider the problem of providing current terrain information to a
ground vehicle moving through an uncertain environment, perhaps in the aftermath of
a natural disaster. In an environment where road or safety concerns are in flux, it is
important for the driver of the vehicle to know the current conditions of the terrain on the
route ahead. Maps produced even the day before may be rendered useless if a storm has
washed out a key bridge or blown trees onto the road, a forest fire burn line has shifted in

2



Figure 1.1: An illustration of the increasing coverage area ahead of the ground vehicle.

the night, or a building has collapsed after an earthquake.

In such situations, it is critical that the driver has access to the most current infor-
mation. A UAV, working with the ground vehicle, can fly a coverage plan some distance
ahead, transmitting the real-time state of the terrain along the ground vehicle’s planned
route. This coverage data from the UAV may be viewed as a live feed, or possibly in-
put into another system for 3D reconstruction to aid in vehicle route planning. Since the
ground vehicle is continuously moving forward, the coverage area is also continually up-
dating, requiring the UAV to maintain a leading edge position just ahead of the coverage
area (Figure 1.1). This leading edge is referred to as the deadline – a line perpendicular
to the ground vehicle’s path at the coverage distance. The coverage plan that the UAV
follows must ensure that any terrain behind the deadline has already been covered by the
UAV. This results in an observed corridor that straddles the ground vehicle’s route, with
two variables that determine the area to be mapped: the width of the coverage corridor,
and the distance ahead along the route. The corridor through the environment is centered
on the ground vehicle’s route as illustrated in Figure 1.1.

I explore the coverage planning problem for a moving ground vehicle in three scenarios:
a UAV covering a known ground vehicle path, a UAV required to anticipate and cover the
ground vehicle’s path, and a UAV selectively covering only targeted areas of the ground
vehicle’s path.

The known path method, discussed in Chapter 3, allows the UAV access to a limited
window of the ground vehicle’s upcoming path. Based on that knowledge, the UAV must
build and execute an appropriate coverage plan. Due to the short-term nature of the path
information, the UAV must continuously update its mapping plan as the ground vehicle
advances and supplies updated directions. For this purpose, we adapt the lawn mower
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plan to take advantage of the limited information, and then characterize the efficiency of
our approach by establishing lower and upper bounds on the UAV’s velocity.

The predictive problem, explored in Chapter 4, considers the case where, for security
or other reasons, the planned route is unavailable to the UAV. As a result, the UAV must
use alternative data to predict the ground vehicle’s future path. Initial predictions are
made based only the ground vehicle’s current state (position and velocity) as well as the
previous path.

I conclude my research with an implementation of a selective approach in Chapter 5.
Using the idea that covering the complete ground vehicle corridor is resource intensive, I
instead investigate a method of limiting the area that UAV must cover to only the terrain
which is expected to be obstructed from the ground vehicle’s view. The information about
the ground vehicle’s intended path, when combined with general knowledge of the terrain,
allows for the prioritization of areas for mapping. A coverage plan is then found by casting
a Mixed Integer Linear Program (MILP), developing in the process, a method of reducing
the problem size to achieve faster solution times. Even with the reduction in coverage area,
finding an optimal coverage plan is still difficult. I investigate using a divide-and-conquer
method to reduce the problem size by making exact optimality preserving cuts in the graph
and solving the sub-problems. Finally, I develop a limited loss version of the exact cuts,
allowing broader application.

1.1 Literature Review

My research touches on two primary applications in the literature: coverage path planning
and collaborative mapping.

1.1.1 Coverage Path Planning

Coverage Path Planning (CPP) is the process of constructing a route through an envi-
ronment that allows an autonomous robot to collect sensor data from all areas of that
environment. The robot is assumed to have some sort of sensor footprint that informs
the spacing of the path, with a planned route minimizing unnecessary sensor overlap (or
restricting it to within a certain range) – surface reconstruction applications may require a
high percentage overlap in order to ensure there are enough detectable features shared be-
tween images to reconstruct depth [62]. Once the size of the sensor footprint is determined,
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a path is constructed that minimizes some aspect of coverage. Typically applications min-
imize one or more of time, distance or overall energy consumption.

Decomposition The style of coverage planning used in this paper is based on exact
cellular decomposition – a process of dividing the environment into many small cells, and
then planning a path that visits all of the cells, thereby completely covering the area as
required. Early implementations of this method used trapezoidal decomposition [15] to
first divide the area into convex areas before planning coverage for each. This strategy,
however, could result in sub-optimal coverage paths, due to unnecessary divisions and
increased transition travel between the subdivided areas.

The term boustrophedon decomposition is introduced in [14], and describes a method
of covering an area with a back and forth, lawn mower style pattern. The method mini-
mizes overlap and transition movements between cells. Non-convex areas may be covered
completely if the orientation of the lines defining the robot path can be drawn continu-
ously without creating an orphan section or extending outside of the area. The problem
of finding a shortest length coverage plan is subsequently shown in [3] to have NP-hard
complexity.

Minimizing Turns Turns are the most expensive component of flight, as the UAV must
apply additional force to halt travel in one direction and start in another. The author of [37]
argues that, by minimizing the number of turns in a coverage path, a time optimal solution
can be generated. A method of decomposing concave polygons and finding the optimal
coverage sweep pattern is presented; however, the algorithm is described as exponential in
nature and therefore impractical for complex environments.

Building on [37], the authors of [48] prove that turns are more costly in terms of energy
requirements, time, and distance travelled, and that the way to minimize coverage costs
is to minimize the number of turns in the coverage pattern. In [25], the cost due to turns
is quantified in increased energy cost. Further improvements are made in [69] to find an
optimal coverage path that takes into account the approach and exit paths the UAV must
take when leaving and returning to the initial launch location.

Optimizing by Sweep Line Complex concave regions may be decomposed into smaller
convex or concave areas that are optimally coverable a single sweep direction [7]. Coverage
planning is then carried out using a Generalized Large Neighbourhood Search (GLNS) on
the individual sweep lines to find the minimized path. In Chapter 5, this method forms
the basis of placing the individual sweep lines for complete coverage.
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In [41], an optimal plan is found using a sweep method to cover multiple disjoint
areas, minimizing the overall coverage path. However, the areas of interest in this case
are limited to rectangular shapes. The authors of [72] present an alternative method for
planning coverage when the areas to be covered are disjoint. Instead of first determining
the sweep direction by finding the minimal altitude of each area, the authors instead
first calculate a coverage order by solving the Travelling Salesperson Problem (TSP) that
minimizes the distance required to visit the center of each area. Once the global order
has been established, the optimal coverage path is found by minimizing the cost of the
coverage path, assuming the UAV starts at the previous area and ends at the next.

1.1.2 Applications of Coverage Path Planning

Surveying and Inspection Surveying and Inspection tasks are some of the most straight-
forward applications of CPP – a path must be planned that allows the robot to visit every
part of the area of interest. In agriculture, for example, a farmer may use a UAV to in-
spect crops for insect damage, or plan the route for the combine to harvest [43]. Inspection
applications involve recording the outside of buildings, high and inaccessible towers (for
example, radio antennae) and bridges [60, 35, 51].

Surveillance In [74], an application of multiple UAV surveillance planning presents a
time-based coverage problem in a fixed frame of reference. The algorithm plans for visits
to disjoint areas using a fleet of UAVs. Each area is decomposed into individual cells, and
a plan for visiting each is created. There is no notion of using sweep lines or otherwise
minimizing the energy consumption required to cover each area. As it is a surveillance
problem, visits to areas of the map must be scheduled such that information on a particular
cell never becomes stale.

Persistent Monitoring Persistent monitoring is the application of CPP to surveillance
problems, allowing robot coverage of locations whose contents may change over time. De-
pending on the formulation, different areas of interest in the region may have an associated
timer or staleness factor that requires the agent (the UAV) to revisit. The simplest exam-
ple may be that of a robot vacuum cleaner that has to maintain a floor to a certain level of
dust. As dust is expected to build up over time, the vacuum must plan a path that visits
every location before the threshold where the dust becomes obvious [2, 64].
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The Art Gallery Problem The Art Gallery Problem and its closely related variant, the
Watchman’s Route Problem, both involve actively monitoring an area with a number of
guards (sensors). In the Art Gallery problem, the guards are stationary, and the planning
problem requires locating them such that all locations of the facility are in view at all times.
The Watchman’s Route problem allows the guards to move, and the challenge becomes one
of finding an optimal route such that all parts of the area are in view of at least one of the
guards from some location along the path [49]. Further variants add scheduling, meaning
locations must be visited within a certain window of time (e.g., every location must have
been seen within the last hour)[70].

1.2 Collaborative Mapping

In the mapping domain, several studies investigate using a collaborative team of UAVs and
ground vehicles to explore an unknown terrain [44, 12, 36]. However these studies generally
employ a UAV in a stationary eye in the sky position above the ground vehicle [36], creating
a high vantage point, but providing only a limited view of the area that lies ahead. Others
have investigated using the UAV’s faster velocity and easier navigation to map a region
quickly, allowing a ground vehicle to plan a safe route through difficult terrain while visiting
locations of interest [46, 12]; in these studies though, the region to be mapped is fixed,
and not restricted by the motion or capabilities of the ground vehicle. In another example,
machine learning techniques [16] are used to plan the ground vehicle’s route based on
information collected by the UAV. Still other mapping studies use UAVs to explore points
of interest while the ground vehicle acts simply as a mobile supply depot, providing support
and resources to keep the UAV flying [59, 50].

In [44] a pair of UAVs are used to provide a stereo image of the path ahead of the
ground vehicle. Using the information the UAVs provide, the ground vehicle is able to
detect upcoming obstacles. In this case, the UAVs are limited to the immediate proximity
of the ground vehicle, using it as a reference point to maintain position and establish the
visual stereo base line for object recognition. A forward-facing camera on a UAV can also
be used to provide a ground vehicle with a better view of the surrounding terrain [36]. The
UAV maintains a position directly above the ground vehicle.

As an example of cooperative exploration with a unmanned ground vehicle (UGV) and
a team of UAVs [31], a UGV dynamically modifies the potential field representing the
environment based on obstacle location information from a team of UAVs flying directly
overhead. Without the input of the UAVs, the UGV can become trapped in a local
minimum. In a somewhat more extreme example, a UAV may even serve as the ground
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vehicle’s sensors [57], allowing the ground vehicle to avoid obstacles in the terrain that it
is unable to sense.

1.3 Contributions

In Chapter 3 I introduce the problem of providing continuous coverage of the path ahead
of a moving ground vehicle. Next, I present a plan capable of providing coverage with
only limited knowledge of the ground vehicle’s path. I further establish upper and lower
bounds on the length of this plan and, based on that distance, estimate the required UAV
velocities. Then, I prove that when the curvature of the ground vehicle path is limited,
the proposed plan provides a UAV path that requires no more than twice the velocity of
that required to cover the optimal path.

In Chapter 4 I investigate a worst case scenario, where the future path of the ground
vehicle is completely unknown to the UAV planner. I establish the necessary UAV speed for
complete terrain coverage, and illustrate one possible implementation that demonstrates a
sufficient speed. I show that both the necessary and sufficient speeds increase dramatically
when little or no information on the ground vehicle’s future path is available.

In Chapter 5 I present the problem of providing UAV coverage path planning to a
moving ground vehicle and solve it as an Orienteering Problem with Time Windows. A
Mixed Integer Linear Program is formulated to maximize the coverage area while minimiz-
ing UAV path length. Next, I prove this coverage problem, under certain conditions, can
be exactly partitioned without loss of optimality, resulting in shorter and more predictable
solution times. Finally, I present a method of limited loss partitioning with a bounded loss
in solution quality.
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Chapter 2

Background

2.1 Path Planning

In the broad space of path planning, the goal is to find an optimal path through the
environment to some destination, possibly collecting some reward along the way. The
measure of optimality depends on the problem being considered, but may include path
length, resources required, reward collected, etc.

2.1.1 Goal Oriented Path Planning

In graph based, goal oriented path planning, the task is focused on moving the agent from
a starting position to a final position with as direct a path as possible while avoiding
collisions in the environment. These algorithms can be grouped into two broad categories:
deterministic methods and stochastic methods. In both cases, the first step is to build
a graph that represents the planning space. Deterministic methods, such as a Visibility
Graph [38], use a heuristic to place and connect vertices. Stochastic methods, such as
Probablistic Road Maps (PRM) [26], use randomly sampled locations in the environment
to build a graph. PRMs build a graph of the entire environment by first randomly sampling
many locations as vertices, then adding a connecting edge between any two locations in
direct line of sight of each other.

Once the graph has been constructed, it may be searched by one of many possible algo-
rithms to find the shortest path through the environment. Two commonly used algorithms
are Dijkstra’s algorithm [20] which finds the shortest path to all vertices in a graph from
one source, and A* [32], which finds the shortest path between two vertices.
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Figure 2.1: The optical footprint of the UAV, projected on the ground

2.1.2 Coverage Path Planning

In coverage path planning, the objective is to find a path that allows the agent to capture
information from the entire environment. The agent may carry a sensor package that
enables it to capture a footprint in the environment (see Figure 2.1). Coverage path
planning is process of guiding the agent through the environment such that all points
in the environment fall within the agent’s footprint at some time. Consider an agent
moving through an environment E in R2. If the area of the agent’s sensing footprint can
be expressed as A(t) for some time t in [0, T ], then the environment can be considered
completely covered if

⋃
t∈[0,T ]

A(t) = E.

2.1.3 Path Planning on a Graph

Coverage Path Planning (CPP) can be expressed as a graph, with the vertices taking on the
coordinates in R2 of each of the locations the robot must visit, and the edges representing
the cost for the robot to travel between the individual vertices. Additional costs and
constraints may be added for the time required to visit a particular vertex, how much
an agent can carry, resource limits, and so on. Once put into graph form, the planning
problem can usually be solved using one of the following techniques.
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Travelling Salesperson Problems

The Travelling Salesperson Problem (TSP) [24] describes the plight of the salesperson look-
ing for the shortest route to visit all of her customers before returning home. Represented
as a graph, the customers and the salesperson’s home are the vertices and the edges rep-
resent the connections between vertices, typically with an associated travel cost. The goal
is to find the shortest simple path that visits all vertices and returns to the start without
repetition.

Vehicle Routing Problems

The Vehicle Routing Problem (VRP) is a generalization of the TSP [11], where the agent
now has a carrying capacity. First described in [18] as the Truck Dispatching Problem,
each agent (or truck) has a fixed maximum capacity. The task is to find the shortest set
of routes which allows the agent to visit each of the customers without repetition, only
returning to the depot when necessary. If the agent has a sufficient capacity to visit all of
the customers in one trip, then the problem is equivalent to the TSP. Like the TSP, there
are many variants: multiple agents, dynamic vehicle routing problems (DVRP) with new
customers that appear over time and must be serviced, and with time windows (DVRTW),
to name a few. The vehicle routing problem with time windows enforces an interval at
which the agent is allowed to visit the customer. If the agent arrives before the interval
starts, the agent is forced to wait.

Orienteering Problems

The Orienteering Problem is another variation of the TSP where the agent has limited
resources and is only able to visit a subset of the vertices in the graph. The planner must
decide the optimal vertices to visit, and the visiting order, to solve the problem. These
problems are generally viewed as being NP-hard [71].

2.2 Dubins Vehicle Model

The Dubins Vehicle Model [21] was developed to describe the possible forward motion
dynamics of a vehicle using a bicycle model: a front wheel (or pair of wheels) that provides
steering, and a following rear wheel(s) on a axle rigidly attached to the front wheel. The
Dubins model describes the forward motion of a typical car.
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The Dubins model characterizes the shortest path between two poses as a series of three
possible motions: a turn at the minimum turning radius, a straight section or possibly an
opposite turn, followed by another minimum radius turn. Using this description, there are
six possible motion patterns: Right-Straight-Right, Right-Straight-Left, Right-Left-Right,
Left-Straight-Right, Left-Straight-Left, and Left-Right-Left.

The Dubins model has also been used to represent the flight characteristics of fixed wing
aircraft [53], appropriate since fixed-wing aircraft typically have a fixed minimum radius
which is related to the aircraft’s forward velocity – assuming a constant velocity, then the
curves can be calculated. In Chapter 5, the Dubins model is also used to estimate an
appropriate cost for turns, accounting for the increased time, energy and distance involved
as the UAV slows and accelerates to execute each manoeuvre.

2.3 Computational Geometry

The research in Chapter 5 uses aspects of computational geometry to solve the reduced
coverage problem.

2.3.1 Convex Hulls

Convex hulls are used in this study to determine the necessary coverage area, given a
collection of discrete cells, each cell representing a small area of the environment. Repre-
senting each cell as point in R2, the enclosing convex hull is the polygon formed if a string
is wound tightly around the set, ensuring no concavities in the boundary.

2.3.2 Minimum Altitude

The minimum altitude of a polygon is the smallest distance between a pair of parallel
lines that contact a polygon on two sides. It is referred to as the rotating calipers method
(imagine the polygon is turned within the jaws of a pair of calipers and the minimum space
between the jaws measured) and is introduced in [63] and [58].

2.3.3 Visibility Polygon

A visibility polygon represents the line of sight viewable space from a single position in an
environment. The polygon is constructed by sweeping a ray from the view point in a circle
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and connecting where the ray intersects with obstacles.

2.4 Linear Programming

Linear programming is a method [6] of solving optimization problems expressed with a
goal function and constraints of the general form:

minimize: cTx

subject to: Ax ≤ b

xi ≥ 0

The goal function and the constraints must all be linear. If a solution to a Linear Pro-
gramming problem exists, that solution is exact and can be calculated in polynomial time.

2.4.1 Mixed Integer Linear Programming

The MILP is an extension of Linear Programming; that is, it is a method of minimizing (or
maximizing) a linear function subject to a set of constraints. However, in MILP problems,
some subset of the constraints is limited to integer values. MILP problems are known
to be NP-hard [54] and, as a result, solutions are difficult to find, generally requiring
exponentially increasing time and resources as the size of the problem grows. MILP and
TSP solutions were found using the Gurobi solver [30].

2.5 Simulation Libraries

All simulations are implemented in C++ using the following libraries and tools: OMPL [66],
View polygons [45], Boost [8], Minimum polygon heights [58], Concave polygons [1], Quick-
Hull [52], Polygon decomposition [56], and Dubins curves [73].
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Chapter 3

Covering a Known Path

3.1 Introduction

In this chapter, I consider a path planning problem where a moving ground vehicle has
provided a UAV with access to a limited window of the ground vehicle’s upcoming path.
The UAV must build and execute an appropriate coverage plan for the ground vehicle’s
travel corridor based on the provided information. Due to the short-term nature of the
path information, the UAV must continuously update its mapping plan as the ground
vehicle advances and supplies updated directions. I adapt the common lawn mower plan
to take advantage of the limited information, and then characterize the efficiency of my
approach by establishing lower and upper bounds on the UAV’s velocity.

3.2 Problem Statement

Consider a ground vehicle moving through an environment in R2 following a smooth path
P (t) at a constant velocity vgv for time t ∈ [0, tmax].

A distance dmap ahead of the ground vehicle defines the length of the coverage area.
The width of the coverage area w is specified by the operator as a path parameter. As
the ground vehicle moves along the path, this dmap × w coverage area moves ahead of it,
generating a mapping demand for the UAV. I generally expect the total length of the path
to be much greater than w.
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Figure 3.1: Ground Vehicle Path and the Coverage Corridor.
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The leading edge of this coverage area is called the deadline. If I define tmap as the

time required for the ground vehicle to traverse the map distance, dmap

vgv
, then given a unit

normal −→n to Ṗ (t+ tmap), define the deadline of the coverage area, D(t), as

D(t) =

{
x ∈ R2|x = P (t+ tmap) + α~n, α ∈

[
− w

2
,
w

2

]}
.

All ground vehicle paths, P (t), are members of the set

P =

[
P (t)

∣∣∣∣c(t) ≤ 2

w
, t ∈ [0, tmax]

]
,

where c(t) is the curvature of P (t) at time t. This curvature constraint ensures that, as
the vehicle progresses along the path P(t), the endpoints of the deadline D(t) always make
non-negative progress along the boundary of the coverage area.

From this the coverage area A(t) can be more formally defined to be the union of points
found by sweeping D(tdl) along P (tdl) for tdl ∈ [0, t+ tmap], expressed as

A(t) = ∪t+tmap

tdl=0 D(tdl).

A UAV is deployed to provide mapping imagery, using a monocular vision system
to capture terrain data. Similar to [76], I model the UAV motion using single integrator
dynamics and focus on the high level planning problem. The UAV’s camera has a fixed-size
square optical footprint with sides of length f , where f < w. If f ≥ w, then the solution is
to simply fly the UAV along the ground vehicle path at the same velocity, vuav = vgv. The
total area of the map covered by the UAV over the interval [0, t] is denoted M(t) ⊂ R2.

The UAV is unable to create an optimal mapping plan, as it only has a limited window
of the ground vehicle’s upcoming path.

Figure 3.1 shows an example path with the ground vehicle located at P (ti). The
coverage area starts at P (0), is centered on P (t), and continues to a point dmap units ahead
of the ground vehicle at P (t + tmap). The environment is assumed to be free of obstacles
that affect the UAV. There may be obstacles that limit the possible trajectories of the
ground vehicle; however, I assume that the UAV does not have access to this information.

For all points in x ∈ A(t), the expiry time texp(x) is defined as the time at which x
intersects with the deadline D(t′) for the first time t′ ≤ t. If a point is not in M(t) before
expiring, then it is considered a coverage failure. The expiry of a point x is

texp(x) = arg inf
t

{
x ∈ A(t)

}
.
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For example, in Figure 3.1, the point x1, seen on the line D(t1) has just expired. The point
x2 is still outside the coverage area.

At time t = 0, I assume the UAV is positioned at the beginning of its first pass on one
side of the path, ready to start mapping. The deadline is located at P (0), with the ground
vehicle not yet on the path. After a delay of ∆t = f

vgv
, enough time for the UAV to map

the first pass of the path, the ground vehicle and the deadline begin to move forward.

Given this background information, the problem may be formally stated.

Problem 3.2.1 (Complete Coverage). Consider a ground vehicle traveling through an
environment following a path, P (t) ∈ P, creating a coverage demand of A(t). A UAV
travels ahead of the ground vehicle producing a coverage area of M(t). Assume the UAV
has knowledge of an upcoming window of the ground vehicle’s path, P (t̄), t̄ ∈ [t, t + ∆t].
Determine a plan for the UAV that guarantees

A(t) ⊆M(tmax),∀t ∈ [0, tmax]. (3.1)

I seek to characterize this plan’s efficiency as follows.

Problem 3.2.2 (Proof Of Efficiency). Given the plan determined by (3.1), what is the
efficiency relative to the optimal coverage plan for the same path, P (t)?

3.3 The Conformal Lawn Mower Path

It is well established that a simple, non-overlapping lawn mower path is an optimal method
for covering a rectangular area [14]. I propose that for the ground vehicle path, P (t), I
can define a Conformal lawn mower path such that the lines defining the back and forth
motion of a regular lawn mower may no longer be parallel. Instead, the angle between any
two adjacent lines is allowed to range from parallel up to a maximum value defined by the
curvature of the path and the UAV’s optical footprint. Refer to Figure 3.2 where the UAV
coverage plan (red dashed line) is overlaid on the ground vehicle path.

Definition 3.3.1 (Traversal). A Traversal is a line segment of length w normal to Ṗ . To
guarantee complete coverage, the distance between any two traversal lines has an upper
bound of f .

Definition 3.3.2 (Transit). A Transit is defined as the section of the UAV’s coverage
plan that connects the ends of two adjacent traversals. Transits are assumed to follow the
profile of the path edge (i.e., an arc when the path is curved).
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Figure 3.2: Conformal lawn mower plan with a limited window.

Definition 3.3.3 (Period). A Period for a Conformal lawn mower plan is a grouping of
the movements required to cover a section of the path and return to the same position, but
shifted forward along the path. A period consists of the following movements: traversal,
transit, traversal, transit.

The Conformal plan is a sequence of alternating traversals and transits that allow the
UAV to completely map A(t). The procedure for constructing a Conformal lawn mower
path is shown in Algorithm 1.

Algorithm 1 Conformal Lawn Mower Plan

1. Add an initial traversal at P (0) to the plan.

2. Find the first point on the path P (t) such that a traversal centred at P (t) has an
endpoint at distance f from the corresponding endpoint on the same side of the
previous traversal.

3. Add a transit to this traversal at P (t) and the traversal to the plan, where successive
transits alternate sides.

4. If the ground vehicle has stopped, add a final transit and traversal to the plan and
exit.

5. Otherwise, when there is new path information, repeat from step 2.

The UAV uses the provided path information to map the initially known A(t) following
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the Conformal plan. As the ground vehicle moves forward and additional path information
comes available, the UAV plan is extended, allowing the UAV to map the new territory.

Theorem 3.3.1 (Complete Coverage). The Conformal lawn mower plan in Algorithm 1
provides complete coverage of path P (t).

Proof. (By Construction.) From Algorithm 1, the ground vehicle path is sampled, placing a
new traversal where necessary to maintain the maximum separation. The algorithm starts
by placing a traversal at t = 0. The distance between the endpoints of the last traversal
added to the path, and a prospective one at the current location of P, is calculated at each
sampled location of P (t). When the distance of either endpoint from the previous traversal
is greater than f , the algorithm places a transit, locating it on the opposite side from the
previous one, then places the prospective traversal at the location of the previous sampled
location. By enforcing the distance between traversals to be less than or equal to f , the
algorithm ensures complete coverage. This process repeats until the end of the path has
been reached.

No two traversals are ever separated by more than f , so that two sequential passes of
the UAV, one on each traversal, captures all of the area of A(t) between those traversals
in M(t). Since all of P (t) is sampled by traversals, and A(t) is defined by P (t), then

A(t) ⊆M(t). (3.2)

Therefore, the Conformal lawn mower completely covers the swept area, A(t), defined by
the path, P (t).

3.4 Coverage Efficiency

I begin by proving the performance of the Conformal lawn mower plan. Using these
results, I present a solution to Problem 3.2.1. Finally, I demonstrate the suboptimality of
the Conformal plan, by presenting a hand crafted alternative.

3.4.1 Proof of Efficiency

The UAV has perfect knowledge of the ground vehicle’s intended path for a limited window
– the UAV is given the ground vehicle’s path for the range [ti, ti + ∆t]. The UAV must
create a coverage plan that ensures all of P (t), t ∈ [ti, ti + ∆t] is covered prior to expiry.
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Figure 3.3: An optimal coverage plan for a straight path.

I demonstrate a worst case scenario that minimizes the distance the ground vehicle
travels relative to the UAV. Based on this, I establish a sufficient relative velocity for the
UAV to successfully cover any ground vehicle path within the curvature constrained set P.

Theorem 3.4.1 (Efficiency). For any path P(t) in the set P, the Conformal lawn mower
plan has a length that is no more than two times the optimal coverage plan.

To prove this result I require two preliminary lemmas.

Lemma 3.4.2 (The Optimal Straight Path Ratio). For a straight path P (t) (Figure 3.3),
the ratio of the distance travelled by the UAV to that of the ground vehicle is w

f
.

Proof. (By Construction.) The ground vehicle travels down the centre of the path, moving
a distance of d. Therefore the total coverage demand is wd. The ratio of the ground vehicle
velocity to the UAV is determined by

d

vgv

≥ wd

fvuav

.

Since the velocity of both vehicles is fixed, I can eliminate the time component on both
sides and state this in terms of distance. Therefore, the ratio of the vehicle distances is

duav

dgv

≥ vuav

vgv

≥ w

f
. (3.3)
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Remark (Optimality of the lawn mower coverage plan). The lawn mower coverage plan,
illustrated in Figure 3.3, is an optimal plan for the straight path. Each traversal is w − f
in length and spaced f apart, meaning that for one complete period of two traversals and
two movements of f , the ratio of UAV distance to ground vehicle distances is

duav

dgv

≥ 2(w − f) + 2f

2f
=
w

f
.

•

The length of the UAV coverage plan for any arbitrary path cannot be any shorter than
the optimal coverage plan for the straight path.

Lemma 3.4.3 (Arbitrary Paths have the Same Length). An arbitrary corridor centred on
a path P in P of length d has an optimal coverage plan at least as long as the optimal
coverage plan for a straight path of the same length.

Proof. (By Construction.) I first prove an arbitrary corridor centred on P in P has the same
area as an equivalent straight corridor with the same centre-line length. The comparison
of optimal coverage path lengths flows directly from this fact.

Let S be an arbitrary corridor centred on P in P of length d and width w. The arbitrary
path can be decomposed into a set of n curve sections, {s1, s2, . . . , sn}, where each section
has a centre-line length ∆d such that

d =
n∑
i=1

∆d.

Each segment si can then be approximated by a segment s′i, which has length ∆d and
a constant curvature equal to the maximum curvature of si. The concatenation of these
segments s′1, . . . , s

′
n creates a curve Sn. Notice that by the smoothness of paths in P, we

have Sn → S as n→∞ and thus ∆d→ 0.

The total area of Sn is the sum of the areas of all n of its sections,

area(Sn) =
n∑
i=1

area(s′i).

21



For each section, s′i, the area is calculated in one of two ways. If the section si is
straight, its area is ∆dw. Otherwise, letting r be one over the curvature of the section, the
area of curved section s′i is

area(s′i) =
θ

2π

(
(π(r +

w

2
)2 − (π(r − w

2
)2

)
= θ (rw) . (3.4)

From the geometric equation for the length of an arc, θ = ∆d
r

. Substituting into (3.4) gives

area(s′i) =
∆d

r
rw = ∆dw.

Therefore the area of S is

area(S) = lim
∆d→0

n∑
i=1

∆dw = dw.

This is exactly the area of a straight path of length d and width w.

From Lemma 3.4.2, the UAV must travel at least w/f times as far as the ground vehicle
when covering a straight path. Since the arbitrary path has exactly the same area as the
straight path, it must generate exactly the same coverage demand. The UAV’s ability to
satisfy the coverage demand remains the same, governed by the size of its optical footprint,
f . Therefore, the optimal coverage plan for the arbitrary path in P must be at least as
long as the optimal coverage plan for the equivalent straight path.

Remark (The need for a curvature constraint). The analysis is restricted to paths in P
whose curvature is at most 2/w. If a path contains a curve with curvature greater than
2/w, the deadline endpoint on the inside of the curve moves in the opposite direction of
the ground vehicle motion, resulting in a reduced swept area A(t). In this scenario Lemma
3.4.2 no longer holds, and thus the analysis does not follow through. •

Based on Lemma 3.4.2 and Lemma 3.4.3, Theorem 3.4.1 can now be proven.

Proof of Theorem 3.4.1. Consider a straight ground vehicle path of width w with a UAV
providing mapping coverage using an optical footprint of size f . When a UAV path is
constructed as a series of alternating traversals and transits, that path is maximized if the
transits are all of length f , as illustrated in Figure 3.4. Since the maximum separation
between traversals is less than or equal to f , to find the worst case distance ratio between
the ground vehicle and the UAV, the ground vehicle distance is minimized.
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Figure 3.4: A path minimizing dgv with respect to duav.

Starting with parallel traversals, incrementally increase the angle between them. As
the angle is increased, the curvature of the path increases, and the length of the ground
vehicle path segment between the traversals decreases. Since each traversal must cross the
path at right angles, the path must be a series of alternating circular arcs, with a curvature
directly dictated by the angle between the traversals. The length of the ground vehicle’s
path segment between two traversals can be expressed as

dgv = rθ = r
f

w
2

+ r
, r ≥ w

2
. (3.5)

Note that the distance in (3.5) is minimized when r = w
2
.

The UAV travels the length of one traversal, followed by a transit to the next traversal.
Therefore, the distance that the UAV must travel is

duav = (w − f) + (
w − f

2
+ r)θ

= (w − f) + (
w − f

2
+ r)

f
w
2

+ r

≤ (w − f) + f = w, (3.6)

since the traversals are separated by not more than f . Therefore, the ratio of the UAV
distance (3.6) to the ground vehicle distance (3.5) can be calculated

duav

dgv

≤ w

r f
w
2

+r

≤ 2
w

f
, if r =

w

2
. (3.7)
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The upper bound on the ratio of the velocity the UAV requires, relative to the ground
vehicle velocity on an arbitrary path, is then given by

vuav

vgv

=
duav

dgv

≤ 2
w

f
. (3.8)

Applying Lemma 3.4.2 and Lemma 3.4.3 shows that the ratio of the length of the
coverage plan to the ground vehicle distance for any arbitrary path must be at least w

f
.

Therefore for any arbitrary path in P, following a Conformal lawn mower plan requires no
more than twice the velocity necessary for the optimal coverage plan on the same path.

Remark (Another optimal path). Note that a small modification to the worst case UAV
plan shown in Figure 3.4 results in the optimal plan. In particular, by traveling each
traversal in the opposite direction, the UAV travels in a ’W’ motion on traversals, and the
transit between each traversal is 0 instead of f . The resulting path has length w

f
dgv, which

is exactly the optimal solution. If UAV had global knowledge of the path, it could select
the appropriate direction to perform the traversals. However, given its limited knowledge
of the future path, this is not possible, and the resulting path can be a factor of two times
longer. This illustrates the impact of limited path information on the coverage efficiency.•

Remark (A near worst case path). A single curve of maximum curvature 2/w is in P and
provides a ratio of distances traveled that is nearly as large as for the path in Figure 3.4.
In particular, given the UAV and ground vehicle distances

dgv = 2r
f

r + w
2

, duav = 2r
f

r + w
2

+ 2(w − f),

it is straightforward to calculate their ratio as

duav

dgv

= 1 +
w − f
f

(
r + w

2

r

)
= 1 +

2(w − f)

f

≤ 2
w

f
. (3.9)

The ratio of (3.9) is at maximum when r = w
2

and therefore reduces to

duav

dgv

= 1 +
2(w − f)

f
= 2

w

f
− 1.

•
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3.4.2 The Correctness of the Conformal Lawn Mower Plan

With Theorem 3.3.1 and Theorem 3.4.1 I have shown both complete coverage of the path
P (t) and the sufficient velocity the UAV requires for any path in P. I can now state the
main result.

Theorem 3.4.4 (Correctness of Conformal Lawn Mower plan). Consider a ground vehicle,
travelling at velocity vgv, with initial condition at the start of path P (t), t = 0. The path
P (t) has a coverage width of w and a maximum curvature 2

w
. Then, a UAV with velocity

≥ 2w
f
vgv and following the Conformal lawn mower path solves problem 3.2.1.

Proof of Theorem 3.4.4. For complete coverage of P (t), the region A(t) swept out by
D(t), t ∈ [0, tmax], must be entirely within the mapped area M(t) before expiry. Based
on Theorem 3.3.1, M(t) contains all of A(t). It remains to prove that no elements of A(t)
expired before they were included within M(t).

From the initial conditions, the UAV starts ahead of the deadline with at least one
completed traversal already mapped before the ground vehicle starts moving. For all
remaining elements of A(t) to be mapped correctly, I only need to show that the UAV
maintains or extends its position ahead of the ground vehicle. If the UAV uses a velocity
that is at least 2w

f
, where w is the width of the path and f the UAV’s optical footprint,

then Theorem (3.4.1) asserts this is true.

Therefore, all of A(t) is successfully mapped, and Problem 3.2.1 is solved.

3.4.3 Suboptimality of the Conformal Lawn Mower Plan

In section 3.4, the Conformal lawn mower plan is shown to be within a factor of two of
the optimal plan. For some paths in P there may be more efficient coverage solution that
minimizes the ratio vuav

vgv
. With full path knowledge, a coverage plan may be proposed that

reduces the scanning overlap, and requires a lower sufficient velocity from the UAV as a
result. Consider a path P (t) with coverage width w = 400 and a maximum curvature of

1
200

. A hand crafted coverage plan for P (t) is presented in Figure 3.5a, with the equivalent
Conformal plan in Figure 3.5b. Simulation results of both plans are presented in Table 3.1.
From these results, the hand crafted path reduces the minimum required by 7 m/s. The
hand crafted plan, while not necessarily optimal, is clearly an improvement.

Note that finding the optimal path appears to be an NP-hard problem. According to [3],
the lawn mowing problems are NP-hard in general; however, whether this formulation of the
problem with the additional constraints is NP-hard is the subject of further investigation.
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(a) Hand crafted

(b) Conformal

Figure 3.5: Two Coverage plans over a path with width 400m, curvature 1
200

.
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Table 3.1: A comparison of Conformal vs. Hand crafted plans.

UAV Conformal Hand crafted
Velocity Distance %Coverage Distance %Coverage

20 8000 22 8000 65
21 8400 23 8400 89
22 8800 28 8800 100
23 9200 35 9027 100
24 9600 43 9038 100
25 10000 53 9040 100
26 10400 70 9036 100
27 10800 89 9042 100
28 11200 99 9044 100
29 11588 100 9038 100
30 11781 100 9039 100

3.5 Simulation Results

Simulations were run for two scenarios, varying the UAV velocity on different types of
ground vehicle paths (straight, decreasing curvature, and randomly generated), and using
a single velocity while progressively decreasing the curvature. For all simulations, the fixed
parameters are: vgv = 5 m/s, w = 400 m, f = 100 m. In Table 3.2 the results of several
simulations are shown. The control case, a straight path, reaches full coverage between 20
and 21 m/s, as expected if allowances are made for slight rounding errors in the simulation.
The simulations used a random ground vehicle path with minimum curvature of 1/200, as
well as curvatures ranging from 1/200 to 1/1000. The full simulation results are displayed
in Figure 3.6, while illustrations of some of the test paths can be seen in Figure 3.7.

In all cases, the UAV and the ground vehicle start on the left side of the path, with the
dark grey areas indicating successful mapping. Areas that are light grey expired before
the UAV was able to cover them. As expected, all of the paths show increasing degrees
of success as the UAV velocity is increased. The results are summarized in Table 3.2,
showing the first velocity where full coverage was achieved. These tests also illustrate the
relation between the curvature of the path and the success rate. For a given velocity, as
the curvature of the path is increased, the success rate at mapping decreases, matching
expectations.
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Figure 3.6: Percent coverage as a function of UAV velocity and path type.

28



(a) 20 m/s (b) 22 m/s (c) 22 m/s (d) 26 m/s

(e) 21 m/s (f) 25 m/s (g) 25 m/s (h) 29 m/s

Figure 3.7: Increasing UAV velocity over various path configurations.

Simulations also looked at the effect on the UAV as the curvature of the path decreases,
using the path modeled in Figures 3.8a-3.8b. As the curvature of the path decreases
(i.e., the radius is increasing), the UAV becomes progressively more successful in mapping
the path for a given UAV velocity. This increasing rate of success can be directly attributed
to the reduction in overlap of the UAV sensor footprint while following the Conformal plan
as the ground vehicle path straightens out.

3.6 Conclusions

In this chapter, the problem of providing path planning coverage for a moving ground
vehicle was defined. Minimum performance requirements were developed for the UAV
to provide timely coverage of the path immediately ahead of ground vehicle as it travels
through the environment. The plan that was developed, a variation of the classic lawn
mower plan, ensures complete path coverage without prior knowledge of the entire plan. I
have shown that the Conformal lawn mower path can be no longer than twice the length
of the optimal plan, and therefore require no more than twice the UAV velocity, for any
path with maximum curvature constrained less than 2/w.
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Table 3.2: A comparison of velocity vs. path type, showing the minimum velocity for
complete coverage.

Path V (m/s) % Coverage

straight 21 99.96
r200 29 99.89
r400 25 99.91
r600 25 99.95
r800 23 99.96
r1000 23 99.94
random 25 99.63
spiral 29 99.92

(a) r200 m (b) r400 m

Figure 3.8: Coverage Results at 25 m/s – dark grey is successful coverage, light grey
expired. As the minimum path radius is increased, the UAV successfully covers a larger
fraction of the total area.
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One observation from this work is that high UAV velocities are needed to successfully
map a region, given a reasonable ground vehicle velocity. In the simulations, the velocity
of the ground vehicle was limited to 5 m/s (or about 20 km/h) over a corridor width of
400 m, and a UAV footprint of 100 m × 100 m. With those parameters, the minimum
required velocity for the UAV to be successful was 20 m/s, well in excess of the capability
of most rotor-based UAVs, particularly for sustained flight.

Now that the problem has been defined, what happens in the extreme case where the
ground vehicle shares no information about its planned route? This question is the focus
of the work on predictive mapping in the next chapter.
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Chapter 4

Predictive Mapping for a Moving
Vehicle

The path planning problem for predictive coverage is challenging, given that the UAV has
no knowledge of the ground vehicle’s intended path. The UAV must predict the future
path by calculating the reachable set of possible paths and endpoints that the ground
vehicle could potentially move to from its current location, limited by the required map
distance dmap. This chapter considers how the set of possible routes shifts over time as the
ground vehicle moves forward and takes new orientations in the environment. Based on the
ground vehicle’s reachable set, the lower and upper bounds on the possible territory that
must be mapped for the UAV to be successful are derived. Finally, based on the bounds,
both necessary and sufficient relative velocities for the UAV are calculated as a ratio of the
ground vehicle velocity.

4.1 Problem Statement

The problem setup is similar to that of Chapter 3, with one exception: the UAV is only
provided with the ground vehicle’s historical position data (physical location in the en-
vironment and orientation), and from that data must predict the ground vehicle’s future
path.

The problem may be summarized as follows.

Problem 4.1.1 (Necessary UAV Velocity). A ground vehicle travels through an environ-
ment in R2, following a path P (t), and creates a coverage demand of A(t). A UAV travels
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ahead of the ground vehicle producing a coverage area of M(t). Determine the necessary
UAV velocity that guarantees

A(t) ⊆M(t),∀t ∈ [0, tmax]. (4.1)

Sub Problem 4.1.2 (Sufficient UAV Velocity and Candidate Policy). Assume the UAV
only has access to the ground vehicle’s historical route data. Determine a coverage policy
that satisfies (4.1).

4.2 The Boundary of the Ground Vehicle’s Reachable

Set

The reachable set encompasses the end points of all the possible trajectories a ground
vehicle may follow, starting at the origin and travelling at a constant velocity for a defined
interval. For a Dubins vehicle, the outer boundary of the reachable set has a closed form
expression [17], assuming that the vehicle is initially located at (x, y, θ) = (0, 0, π

2
):

x(θ) = ρ(1− cos(θ))− sin(θ)(vgvt− ρθ), (4.2)

y(θ) = ρ sin(θ)− cos(θ)(vgvt− ρθ), (4.3)

where

• ρ is the minimum turning radius of the ground vehicle,

• θ is the final angle of the ground vehicle trajectory, 0 ≤ θ ≤ vgvt

ρ

• vgv is the velocity of the ground vehicle, and

• t is the interval over which the movement occurs.

These equations describe the boundary for x > 0. This boundary and its mirror in the
y-axis are the ground vehicle’s reachable set.

Given that the UAV does not have prior knowledge, any point in the reachable set could
be on the ground vehicle’s actual path. Therefore, in order to determine the set of possible
deadlines, the entire territory within the reachable set must be covered by the UAV. Let
tmap be the time the ground vehicle requires to travel the map distance, tmap = dmap

vgv
.
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Let R(t + tmap) be the set of all possible end points (at some (x, y, θ)) for a trajectory
of duration tmap. This R is the coverage reachable set, defined by the map distance, the
coverage width, and the ground vehicle’s movement parameters and expressed as

R(t+ tmap) ⊆ R2 × S1.

At each point in R(t+ tmap), there is a deadline perpendicular to the orientation θ. The
set of all possible deadlines is then

D(t) = {x∓l sin θ, y±l cos θ|(x, y, θ) ∈ R(t+ tmap),

l ∈ [−w
2
,
w

2
]}.

The full derivation of the boundary for deadlines tangent to the reachable set can be
found in Appendix A.1.

Calculating the exact outer boundary that contains all of the possible deadlines is
computationally difficult. Alternatively, lower and upper bounds can be estimated, such
that

D(t) ⊆ D(t) ⊂ D(t),

where D(t) and D(t) are the lower and upper bounds respectively.

4.2.1 Deadline Lower Bound

The deadline lower bound, D(t) is based on the boundary of the reachable set. Consider
the case where the deadline is located tangent to the boundary at ti. At the next time
step, ti+1, as the ground vehicle moves forward, the deadline likewise moves forward into
unmapped territory. Since the UAV doesn’t know the deadline’s actual position, it must
assume the deadline could be anywhere on the boundary. Consequently, the mapping
demand must be the entire leading edge of the boundary. The images in Figure 4.1 show
how the mapping demand generated by the ground vehicle’s reachable set (defined by vgv,
ρ, and tmap) is affected by translation and rotation over time intervals of 0.01s, 0.1s, 1s,
and 10s. Notice that the outer bound of the mapping demand expands outward along the
entire boundary with increasing time.
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(a) t = 0.01s (b) t = 0.1s

(c) t = 1s (d) t = 10s

Figure 4.1: Possible deadlines shifted by increasing values of tmov. The small (blue) circles
at the centre represent the minimum turning radius of the ground vehicle.
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Define the lower bound, D, as an arc of maximum radius that fits entirely within the
set of tangent deadlines. The minimum radius is calculated1 as

rD = rgv +

√√√√r2
gv +

(
L

2
+

√
L2 − 4r2

gv

2

)2

, (4.4)

where L is the distance from either end of the deadline to the ground vehicle, when the
deadline is located at top dead centre. L is calculated

L =

√
d2

map +
w

2

2

− π

2
rgv.

Since an area is only mapped once, and since the initial reachable set is already mapped,
only the new area on the leading edge needs to be considered (y > 0 if the ground vehicle
is at (0, 0, π

2
)).

With the lower bound defined, the necessary conditions for the UAV’s velocity relative
to the ground vehicle can be established.

Lemma 4.2.1 (Necessary Velocity). The UAV must cover territory as fast or faster than
the movement of the boundary of ground vehicle’s reachable set can generate new coverage
demand. The smallest amount of demand that the ground vehicle can generate is defined
by the length of the lower deadline bound, D, and therefore the necessary velocity of the
UAV relative to the ground vehicle must be at least

vuav =
πrD,est

f
vgv. (4.5)

Proof. (By Construction.) To establish the necessary conditions, the argument from Chap-
ter 3, Theorem 3.4.1 is used: the UAV must consume (map) new territory at the same rate
(or faster) than the ground vehicle can create it. Therefore, the ratio of the speeds of the
two vehicles can be established by comparing their rates of generation/consumption. The
length of the arc is

dgv boundary = πrD,est,

and the ground vehicle generates mapping demand at πrD(t)vgv. The UAV has an optical
footprint of f and consumes mapping demand at a rate of fvuav. Therefore, equating these
two functions and rearranging,

vuav =
dgv boundary

duav

vgv =
πrD,est

f
vgv (4.6)

1(See Appendix A.2 for a detailed derivation).

36



Note that for increasing values of vgv this ratio escalates quickly.

4.2.2 Deadlines Upper Bound

To calculate the upper bound of deadlines, D(t), start by considering the maximum pro-
jection of a deadline beyond the boundary of the ground vehicle’s reachable set.

Lemma 4.2.2 (Deadline Upper Bound). The set of all deadlines, D(t), is bounded by an
arc with a radius defined by the coverage distance dmap and the width of the deadline w.
The radius is defined

rD = dmap +
w

2
. (4.7)

Proof. (By Construction.) A ground vehicle moves through its reachable set, following a
trajectory ending at x. There are two cases: x is on the boundary of the reachable set,
or x is a point inside the boundary. If x is on the boundary, then the deadline associated
with x is tangent to the boundary. The perpendicular distance from the endpoints of this
deadline to the boundary is less than w

2
. If x is inside the boundary, no matter what

the ground vehicle’s final orientation, the maximum extent of one of the endpoints occurs
when the deadline is perpendicular to the boundary. If the extreme is assumed – that
somehow the ground vehicle path terminated at the boundary, with an orientation tangent
to the boundary – then the maximum extent of the deadline is a perpendicular distance
no more than w

2
from the boundary. However, it is not possible for a vehicle with an

orientation parallel to the boundary to be on the boundary – any such vehicle must be
inside the reachable set. Therefore, the furthest possible extension of any deadline past
the boundary is ≤ w

2
.

From the calculation of the boundary, the furthest straight line distance of the boundary
from the ground vehicle occurs when θ = 0. Therefore, the ground vehicle reachable set is
fully contained within an an arc of radius dmap. If the radius of this arc is extended by w

2
,

it is guaranteed to fully enclose D(t). Therefore, define

rD = dmap +
w

2
.
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(a) Deadline upper and lower bounds (b) Enlarged View

Figure 4.2: Sampling the Possible Deadlines. For reference, arcs representing the upper
and lower bounds are added in black.

4.2.3 Deadlines Illustration

To illustrate the upper and lower bounds, I sampled the deadlines of 5000 random paths
as shown in Figure 4.2. Each deadline has a left and right endpoint, drawn in red and blue
respectively. Some sample paths in green are included for reference.

4.3 Predictive Path Planning

In order to successfully cover the ground vehicle’s intended path, all of D(t) must be
covered before those points expire. Based on Lemma 4.2.2, the upper bound D(t) is used
to determine a sufficient velocity. Taking the UAV’s camera footprint as a practical interval,
the UAV must have completed at least one pass ahead of D(t), and therefore must follow
an arc of radius D(t) + 3f

2
.

The predictive plan maintains the UAV’s position by monitoring the current heading
and velocity of the ground vehicle. Any changes in trajectory are applied to the UAV’s path
such that the arc is rotated to stay in front of the ground vehicle’s projected path. The
resulting coverage policy is illustrated in Figure 4.3. Let ruav = (rD + 3f

2
)π be the radius

of the UAV’s path. The UAV’s velocity requirements can be divided into two components:
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Figure 4.3: Coverage using an Arc Path. The UAV traces an arc one footprint, f , away
from the set of possible deadlines, D.
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velocity required to cover the arc, and velocity required to maintain position. For the arc,
the UAV must complete a pass in the same time that the ground vehicle moves forward f
distance. The resulting minimum velocity of the UAV can be calculated as

vuav =
ruavπ + f

f
vgv. (4.8)

To account for rotation, the UAV must add additional velocity as the orientation of
the ground vehicle changes. This allows the UAV to maintain its position relative to
the ground vehicle. Assuming the ground vehicle rotates by θgv = vgvdt

ρ
, where ρ is the

minimum turning radius of the ground vehicle. Ignoring the complication of overlapping
map coverage2, then in the same interval, the UAV must cover the same angle. Assuming
the ground vehicle turns at constant rate, the angle of rotation of the ground vehicle is
θgv = vgvdt

ρ
. Similarly for the UAV, the angle of rotation is calculated θuav = vuavdt

ruav
. Setting

the angles equal, the UAV velocity must increase by ruav
ρ
vgv in order to maintain its position

as the ground vehicle turns.

Therefore, the full ratio of UAV velocity to that of the ground vehicle can be stated as

vuav = (
ruavπ + f

f
+
ruav

ρ
)vgv.

For a map distance of dmap = 500, w = 200, this translates to a velocity ratio of

vuav ≈ 60vgv.

At a ground vehicle velocity of 5 m/s, the UAV would have to travel ∼ 300m/s to map all
possible paths successfully.

4.4 Simulation Results

Simulations were performed on several different paths. For each path, the simulation is
first run using a naive lawn mower path (see Figure 4.4), using a velocity of 300 m/s.
The remaining columns are the same paths, covered with increasing UAV velocities until
coverage is successful. The high velocity for the naive coverage simulations was selected

2This is assuming that the UAV is not taking advantage of the fact that it may have already mapped
this territory on an earlier pass.
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to demonstrate that there is no velocity at which the naive solution can be completely
successful when there is no path information available from the ground vehicle.

The simulation parameters are:

vgv = 5.66m/s, dmap = 500m, w = 300m, f = 100m

Note that with the exception of the straight path, the naive planner is unable to provide
complete coverage, despite the relatively high velocity used.

4.5 Conclusions

In this chapter, minimum performance requirements were developed for successful coverage
when only limited information with respect to the ground vehicle is available. With no
prior knowledge of the ground vehicle’s path, the UAV must cover a much larger area than
necessary, and subsequently requires a much higher UAV velocity to be successful.

Clearly the velocities required for successful coverage are extremely high relative to
typical UAV capabilities. One possible solution to this problem is to limit coverage to only
those areas that may be more important, as determined by evaluating obstacles, ground
conditions, and vehicle parameters. I consider this approach in Chapter 5.
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(a) Straight (b) Naive (c) 50 m/s (d) 250 m/s

(e) Slow Turns (f) Naive (g) 100 m/s (h) 300 m/s

(i) Spiral (j) Naive (k) 100 m/s (l) 300 m/s

(m) Random (n) Naive (o) 100 m/s (p) 300 m/s

Figure 4.4: Simulation of Predictive Planning. The first column illustrates the ground
vehicle path. The second column shows the results of using a naive approach of covering
only the expected corridor at any given time. The third and fourth columns illustrate
the coverage improvement as the UAV velocity is increased. Note the excessive coverage
required for complete success.
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Chapter 5

Selectively Covering the Ground
Vehicle Path

Chapters 3 and 4 studied the problem of providing online mapping of the terrain ahead
of moving vehicle, but found the mapping demands generated by the ground vehicle can
quickly grow beyond the capabilities of many UAVs. Outside of some limited circum-
stances, the problem is physically difficult, either restricting the ground vehicle to extremely
slow speeds, or tightly limiting the scope of the mapped area, or requiring a UAV capable
of high velocities for extended periods of time. As an alternative to the previous method
of covering the entire path, in this chapter I propose an alternative approach: selectively
mapping only those portions of the environment that are deemed necessary.

In applications such as search and rescue, disaster recovery, or transportation of goods
and personnel in hostile environments, a ground vehicle may have to traverse uncertain
and potentially dangerous terrain. The operators of the ground vehicle have a map, but it
may differ from the current conditions, and any obstructions such as buildings may conceal
those differences until it is too late to react. A tree may have fallen, a bridge collapsed,
or there might even be adversaries hidden behind a building. A UAV, with its greater
speed, mobility and flight capability [10], can stay ahead of the ground vehicle and provide
real-time imagery for route planning and mapping. With real-time information from the
UAV, the ground vehicle can better adapt its route as the situation demands.

In Chapter 3, I considered a precursor problem where the operators of a ground vehicle
defined a view corridor along and to either side of the upcoming route. The UAV provided
complete coverage of the corridor, maintaining a position ahead of the moving ground
vehicle. However, the UAV speeds required to stay ahead of the ground vehicle and cover
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Figure 5.1: The coverage corridor projected ahead of the ground vehicle with the observa-
tion area highlighted in light grey. The observation area moves forward with the ground
vehicle.

the corridor completely are very large. As a result, the ground vehicle must either be
restricted to very slow speeds, or the UAV can cover only a narrow corridor around the
planned route. Motivated by this drawback, in this chapter I consider the problem in which
the UAV is tasked with covering only the parts of the corridor that cannot be observed
directly from the ground vehicle due to occlusions.

As the ground vehicle moves through the terrain, any hidden regions, those occluded
parts of the corridor, must be visited in advance by the UAV. See Figure 5.1. Hidden regions
are approximated by finding areas that are never within the visibility polygon when viewed
from locations along the ground vehicle’s route [34, 27]. The planner must find a UAV
path that covers as much of the hidden areas as possible within the resource and time
constraints available: this is an Orienteering Problem with Time Windows (OPTW) [71].
Similar to the approaches of [65, 39], I cast a Mixed Integer Linear Program (MILP) to
find a solution. Given that OPTW problems are proven to be NP-hard [40], I expect this
formulation is likely to be NP-hard as well.

In this paper I focus on the problem of providing coverage for a fixed ground vehicle
route. I envision this being used as part of a receding horizon planner that replans the
coverage path when the ground vehicle’s route is updated due to newly acquired information
on hidden regions. However, I leave the development of a receding horizon planner for
future work.
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5.1 Related Work

In orienteering problems, an agent must collect some optimal subset of rewards given
constraints on limited resources. The problem may be one of exploration with a UAV [55],
path planning for optimal views [60], or even team oriented planning [67].

The Vehicle Routing Problem with Time Windows (VRPTW) is a related problem
where the agent has a capacity that limits the number of vertices that can be visited
before returning to the start, resulting in a route that takes the form of multiple loops [39].
However, the focus is on optimal scheduling and minimal travel distances, not maximizing
a potential reward.

The problem of vehicle routing with time constraints also appears in [5, 9]. In each
case, an efficient heuristic solution is developed after the time constraints are discretized
and the problem is reduced to a directed acyclic graph (DAG). In this case, reframing the
problem in as a DAG isn’t possible as the resulting graph would have cycles.

5.2 Problem Statement

Let E be a planar environment in R2. The environment contains a set of m polygonal
obstacles O1, . . . , Om that could be buildings, or other objects. Each obstacle is assumed
to be tall enough that it blocks the ground vehicle’s line of sight. The ground vehicle
follows a collision free route P (t) through E with velocity Vgv for t ∈ [0, T ] as shown in
Figure 5.1. The area of the environment immediately ahead of the ground vehicle and
centred on the route is defined as the observation area. The observation area has width w
and extends distance d in front of the ground vehicle. As the ground vehicle traverses P ,
the observation area moves forward as well.

The leading edge of the observation area is denoted as the deadline. As the ground
vehicle moves forward along P , the deadline remains a distance d ahead. If the time
required for the ground vehicle to traverse d is defined as ∆t = d

vgv
, then the deadline is at

P (td) where td = t+ ∆t.

Define the region of E that is swept by the deadline from time 0 to a time t ∈ [0, T ]
as the coverage corridor A(t). The close time tclose for any point in A(t) is defined as the
first time the deadline sweeps over that point. An open time is also defined for each point,
which captures the earliest time that an observation of the point is useful to the ground
vehicle. The open time is relative to the velocity of the ground vehicle and the close time:
topen = tclose − d/vgv.
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Figure 5.2: Illustration of the visibility region for the ground vehicle, used to calculate the
hidden regions.

Let V (t) be the set of points in E visible by the ground vehicle when located at the
point P (t) on the path, as illustrated in Figure 5.2. A point p ∈ A(T ) is said to be hidden
if it is has not been observed by the ground vehicle prior to the deadline passing it. Let
Rhidden denote the hidden region, which is the set of all hidden points in the coverage
corridor A(T ). More formally, consider a point p ∈ A(T ) and let td be the time when the
deadline passes p. Then, p is hidden if

p /∈ V (t) for all t ∈ [0, td −∆t].

The UAV flies over E with velocity Vuav. I assume that the UAV flies at sufficient height
that its environment is obstacle-free. Thus, it can travel over the obstacles O1, . . . , Om. I
also assume that the UAV model is such that there is a steering function available that
generates a path between any two points in E . The UAV has a downward focused camera
providing coverage information to the ground vehicle. The functional size of the sensor
footprint on the ground is f × f . Finally, I assume the velocity of the UAV is greater than
that of the ground vehicle.

With this background, the primary problem can be stated.

Problem 5.2.1 (Selective Coverage Path). Given a ground vehicle moving through the
environment along the route P , plan a path for a UAV to maximize the area of the points
within Rhidden that are covered within their time windows.

Solution Approach First the continuous environment A(T ) is converted into discrete
cells and the hidden regions Rhidden are computed. Next I utilize sweep lines to cover each
connected component of the hidden region. Then a graph with vertices representing sweep
lines and edges representing transitions is constructed. And finally, a MILP is cast to solve
for a path that maximizes the total coverage.
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I also develop a divide and conquer approach of partitioning the graph into subgraphs
while provably preserving the overall optimal solution. After which I describe a method of
lossy partitioning that allows for even smaller subgraphs, while providing a guarantee on the
maximum amount of lost coverage. The full UAV path is then constructed by concatenating
the paths found in each subgraph in temporal order, starting with the earliest.

5.3 Development of MILP Solution

I begin by describing the method for finding the hidden regions and placing the coverage
sweep lines. Then, given the set of coverage lines, I derive a graph representation and
subsequently solve for optimal coverage using a MILP.

5.3.1 Placing Coverage Lines

The environment E is first discretized into cells. The size of each cell is determined by the
accuracy desired and the computational time available. Each cell uses topen and tclose of its
centre. Next the hidden regions, Rhidden, are calculated by sampling the views along the
ground vehicle route P and converted into a cellular representation. A cell is considered
to be within a hidden region if its centre is within the boundary of the region. Finally,
the enclosing hulls are calculated for the cells in each hidden area. The result is a set of
polygonal approximations of the hidden regions and the cells they contain.

Parallel line segments, separated by f , are placed to provide complete coverage of
each polygon found for the hidden regions. To minimize resource consumption [19], the
segments are placed with an orientation that is perpendicular to the minimum altitude
line of each polygon [58, 7]. The resulting coverage lines, when followed by the UAV,
completely cover the polygon. A brief greedy optimization is then applied to reduce the
total coverage distance required. Any two adjacent convex polygons are merged if the
overall coverage path distance is reduced. This is performed by comparing the Travelling
Salesperson Problem (TSP) tour of the coverage lines in the individual polygons with a
TSP of a set of coverage lines that covers the convex hull that encloses them both. The
merging process continues until no new improvements are found.

The closing time for a sweep line is the latest time before which the UAV will be able to
successfully cover that line. Closing times must take into account both the earliest closing
time of all the cells that fall within the the UAV sensor footprint as the UAV transits the
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line, and the time required to transit the entire line. The closing time for the ith sweep
line is defined as

ci = min

{
tclose of cells within

f

2

}
− |length of sweepi|

vuav

.

The opening time for a sweep line is the earliest closing time minus the offset d/vgv,
written

oi = min

{
tclose of cells within

f

2

}
− d

vgv

.

If the UAV arrives at a sweep line prior to this interval, the UAV must wait, adding idle
time to the solution. Note that, by definition, the length of any sweep line is limited such
that oi < ci.

The reward Ri for sweep line i is the number of cells that are covered when the UAV
transits that line.

5.3.2 Graph Representation

The coverage problem is represented as a directional graph with time constraints, param-
eterized as G = (V,E, s, t) with time windows (o, c) and rewards R. There is a pair of
vertices in V for each of the two directions that a line may be traversed (See Figure 5.3).
There is also one vertex for each of the start and finish positions. The open and close
times for each vertex are o and c respectively, and when referring to a vertex v the times
are written as vopen and vclose.

The edges E of G are not fully connected. Given two vertices a and b, then edge {a, b}
is added to the graph if vertex a and vertex b do not represent the same sweep line, and
if aopen + sa + ta,b ≤ bclose, where sa is the service cost of a and ta,b is the transit cost for
edge {a, b}. The service cost sa is the time required to traverse the sweep line represented
by a. Since visiting a vertex necessitates a physical transition in space, the travel costs
between vertices are asymmetric. The last parameter, R, is the reward acquired for visiting
a vertex.

NP-hardness This formulation of the OPTW problem can be seen to be NP-hard as it
contains the Euclidean TSP as a special case when the time windows for each vertex are
[0,∞) and the segment lengths are zero.
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Figure 5.3: Every coverage line Li has two associated directional vertices in the graph
representation, v2i−1 and v2i. The UAV only visits one of these when moving from S to F .

5.3.3 Formulation of the Mixed Integer Linear Program

To solve the Selective Coverage Path Problem on a given graph G, or a subgraph of
the graph, I formulate a Mixed Integer Linear Program (MILP). Each pair of vertices

representing a sweep line in G is identified sequentially v2i−1, v2i for i ∈ {1, . . . , |V |
2
}. The

start and finish vertices are v0 and vN+1 where N = |V |. The variables of the MILP are
defined as follows:

• vi is set to 1 if vertex i is in the solution, 0 otherwise, i ∈ {0, . . . , N + 1}.

• xij is set to 1 if there is a path from vertex i to vertex j, and 0 otherwise.

• ui is the service start time at vertex i. The service start time for s0 is generally 0
but may be adjusted when solving lossy subgraphs.

• Ri is the reward collected from vertex i.

• si is the cost to visit vertex i, taken from graph parameter s.

• tij is the travel cost required for edge xij, from graph parameter t.

• Tmax is the time budget available. For the full problem, it is when the ground vehicle
arrives at the finish. For lossy subgraphs, the max{vclose} of G is used.

• Oi, Ci are the open (vopen) and close (vclose) times for vertex vi.

• M is a suitably large number. In the implementation, 2Tmax is used.
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The MILP has three objectives, which are solved in a hierarchical manner. Initially, I
optimize for the collected reward (5.1). This produces a plan that visits as many of the
coverage lines as possible within the time constraint imposed by the UAV’s capabilities.

max
N∑
i=1

Rivi (5.1)

Subject to: (5.2)

uN+1 ≤ Tmax (5.3)

N∑
i=1

x0i =
N∑
i=1

xi(N+1) = 1 (5.4)

N∑
i=0

xik =
N+1∑
i=1

xki = vk,∀k ∈ {1, . . . , N} (5.5)

v2k−1 + v2k ≤ 1 ∀k ∈ {1, . . . , N/2} (5.6)

ui + si + tij − uj ≤M(1− xij),
∀i ∈ {0, . . . , N}, j ∈ {1, . . . , N + 1} (5.7)

Oi ≤ ui ≤ Ci,∀k ∈ {1, . . . , N} (5.8)

The amount of time for travel is limited and the plan must return to the finish before
resources are exhausted (5.3). The solution must start at the initial vertex and end at
the final vertex (5.4). For each vertex, there can be at most one connection in and one
out (5.5). Only one of the vertices corresponding to a coverage line can be part of the
solution. I enforce a strict ordering of the visited vertices with (5.7) which also calculates
the service times and disallows subtours. Finally, visit times are confined to the specified
time windows (5.8). The values of xij and vi are binary variables, and the service times
are positive real:

xij, vi ∈ {0, 1}, ui ∈ R+,∀i ∈ {1, . . . , N}.

The value of the maximum reward found by the first optimization is added as a con-
straint to the optimization problem:

N∑
i=1

Rivi ≥ Ropt (5.9)
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The optimization is then solved a second time, minimizing for the overall path length:

min
N+1∑
i=0

N+1∑
j=0

tijxij +
N∑
i=1

sivi. (5.10)

If time is available, a third round of optimization is used to minimize the total service time
uN+1. This final optimization removes any unnecessary idle time.

5.3.4 Multiple Finish Locations

In some instances, it may be better for the UAV to return early to the ground vehicle
instead of proceeding to the end of P (·). To enable early returns the ground vehicle’s route
P is discretized and, at each discrete point, the ground vehicle’s expected arrival time is
calculated. This creates a list of potential finish locations and associated closing times that
are added to the MILP. All of the finish locations have unconstrained open times.

For F possible finish locations introduce:

• penalty Pf , Pi < Pj,∀i, j ∈ {1, . . . , F}, i < j,

• variable zf ∈ 0, 1,∀f ∈ 1, . . . , F , and

• service time sf ∈ R,∀f ∈ 1, . . . , F .

The variables zf replace the previous variable for the finish location vN+1.

The objective of the first phase (maximizing reward) is modified (5.11) to include a
penalty, causing the MILP to prioritize an early return without impacting the overall
collected reward.

max
N∑
i=1

Rivi −
F∑
f=1

Pfzf . (5.11)

Additional constraints are added to ensure that only one of the finish locations is valid and
included in the solution (5.12) and that they close when the ground vehicle passes (5.13).

F∑
f=1

zf = 1,
N∑
i=1

xif =zf , ∀f ∈ {1, . . . , F} (5.12)

0 ≤ sf ≤ Tgvf
(5.13)
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5.4 Partitioning to Improve Scalability

The exponential solution times of the MILP means that for many problem instances, an
optimal solution is not found before the solver exhausts its time budget. However, in this
section I describe how the structure of the time windows can be exploited to partition G
into subgraphs that can be solved independently.

5.4.1 Exact Partitioning

At any time t ∈ [0, T ], the vertices V in G may be divided into two sets

Lt = {u ∈ V |uclose ≤ t}, Ut = V \Lt. (5.14)

By convention, the start vertex is in Lt and the finish vertex is in Ut. The sets Lt and Ut
can be said to partition V ,

Lt ∩ Ut = ∅, Lt ∪ Ut = V, Lt 6= ∅, Ut 6= ∅.

Lemma 5.4.1 (A Single Edge). Given a time t, let

Lt = {u ∈ V |uclose ≤ t}, Ut = V \Lt.

If for every u ∈ Lt, and v ∈ Ut, we have

vopen ≥ uclose + su + tu,v, (5.15)

then in any optimal solution S∗ there is exactly one edge between Lt and Ut, and it is
directed from Lt to Ut.

Proof. We will prove by contradiction. Assume the route P is cut at t and the inequalities
in (5.15) hold. The vertices of V are partitioned into Lt and Ut. Consider any optimal
solution S∗ – there are two possible cases:

No vertices in Ut appear in S∗ If the optimal solution includes no vertices in Ut,
then there are no edges from Lt to Ut. After visiting the last vertex u ∈ L, the UAV
returns. However, by definition Ut is non-empty, and by (5.15), any vertex v ∈ Ut can be
visited from the latest closing time of any vertex in Lt. Therefore Ut is either empty or the
proposed solution is not optimal, both of which are contradictions. Therefore, there must
be at least one vertex from Ut in S∗.
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There is at least one edge from Ut to Lt For there to be more than one edge in S∗

from Lt to Ut, there must be at least one edge from Ut to Lt. However, by (5.15), every
vertex in Lt must have closed before any vertex in Ut opens. This case is not possible and
there can be no edges from Ut to Lt. Therefore, there can be only one edge between Lt to
Ut in S∗, and it is directed from Lt to Ut.

From this Lemma I obtain a simple procedure for partition the graph into independent
subgraphs. This method is detailed in the following.

Divide and Conquer Method:

1. Sort the vertices of G in order of vclose.

2. For each unique close time t, partition G into disjoint subgraphs Lt and Ut.

(a) If the conditions of Lemma 5.4.1 are not satisfied, continue from Step 2 at the
next t.

(b) Otherwise, add a dummy finish vertex to Lt with a zero cost from any vertex
in Lt. Add a dummy start vertex to Ut with zero cost to any vertex in Ut.

(c) Store subgraph Lt as Gi, incrementing i.

(d) Continue from Step 2 with G← UL until all possible partitions are tested. Store
the remaining Ut subgraph as Gn.

3. Independently solve each stored subgraph, G1, G2, . . . Gn. Construct the solution S
by removing the dummy vertices of Gi, Gi+1 and connecting the last vertex in the
solution of Gi to the first vertex in the solution to Gi+1∀i = 1, . . . , n− 1.

Proposition 5.4.2 (Divide and Conquer Solution is Optimal). Any optimal solution of
the Divide and Conquer method in Section 5.4.1 is an optimal solution to the Selective
Coverage Path Problem 5.2.1.

Proof. If the conditions of Lemma 5.4.1 are satisfied, then the graph has the following
properties at t:

• The vertices of u ∈ Lt, v ∈ Ut are strictly ordered:

uopen < uclose < vopen < vclose. (5.16)

• On any path from Lt to Ut, the UAV always arrives at v ∈ Ut before or just as the
time window for v opens.
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• There are no edges from Ut to Lt.

Irrespective of the path selected in Lt, the UAV must always wait at the first vertex
in Ut in the solution of S∗. Further, from (5.16) it can be seen that there are no edges
(and therefore no paths) from Ut to Lt, no solution for Ut can affect the solution of Lt.
Therefore, the two sections of the path are independent and may be solved separately.

5.4.2 Limited Loss Partitioning

The conditions of Lemma 5.4.1 are restrictive and frequently do not allow many partitions.
This is particularly true when the environment contains a dense set of obstacles close to one
another, and the resulting vertices in the graph have overlapping time windows. However,
these are also regions in which partitioning would be most useful. Looking at the structure
of the open and close times, there are locations in the graph where, if some vertices are
“temporarily” removed, the conditions of (5.15) can be met. The temporarily removed
vertices may not be included in the final result and so I define their associated rewards as
the potential loss. Thus, I generate as many partitions as possible while bounding the sum
of the potential losses as a function of the total path reward RT . This observation leads
to a limited loss method of applying Lemma 5.4.1.

Limited Loss Divide and Conquer:

1. Sort the vertices of G in order of vclose.

2. For unique close times tj, j ∈ {1, . . . , n} in G, find the number ` of vertices v with
tj−1 < vclose ≤ tj, where t0 = 0. Apply Lemma 5.4.1 at tj.

(a) If (5.15) is satisfied, then store (`j = `, cj = 0) and continue from Step 2.

(b) Otherwise, temporarily remove the next vertex with close time > tj and mark
it. Re-test (5.15). If the partition is not exact, repeat for the next vertex
until (5.15) is satisfied or no further vertices remain.

(c) Evaluate the potential loss c as the sum of the rewards of the marked vertices
at tj. Store the vertex count and loss (`j = `, cj = c) and continue from Step 2.

3. Find the subset of cuts using (`j, cj) for j = 1, 2, . . . , n that minimizes the number of
vertices in a subgraph, with a potential loss less than predefined fraction ρ ∈ [0, 1)
of the total reward RT in G.
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4. Solve the subgraphs sequentially and in temporal order.

Remark (Temporal Order). The subgraphs must now be solved in increasing temporal
order as limited loss partitioning no longer results in independent subgraphs. The last
vertex and visit time from the solution of the prior subgraph act as the starting vertex and
time for the following subgraph, preserving the overall graph timing.

Remark (On Removed Vertices). The marked vertices are not actually removed when the
graph is partitioned in Step 3. Those vertices are included in the subgraph immediately
following the boundary where their potential loss was identified.

5.4.3 A Dynamic Programming for Min-Max Partitioning

To optimize the limited loss partition method, I select the partition of G that is the most
advantageous. Since the number of variables in the MILP grows by the square of the
number of vertices in the graph, the best choice is the partition that minimizes the size
of the largest subgraph while respecting the specified maximum loss. Selecting a subset of
cuts from a list is similar to the dynamic programming 0-1 knapsack problem [22].

We start with a graph G and a list of n possible cuts (`i, ci), each cut i having a length
`i and a potential loss ci. For any two cuts i, j ∈ {0, . . . , n}, i < j, I define the length
between cuts as the number of vertices from i to j, written

`i,j = `i+1 + · · ·+ `j.

Given a loss budget B = ρRT , we seek the list of cuts I = (i1, i2, . . . , ik), i1 < i2 < . . . < ik
where

∑
i∈I ci ≤ B, that minimizes the maximum length between cuts

max{`0,i1 , `i1,i2 , . . . , `ik,n}.

We define the subproblem

L(j, b) = {the min-max length of cuts

up to cut j, with budget b},

with the constraint that cut j must be included in the solution of the subproblem or the
length is defined as +∞. The smallest subproblems which start the recursion are

L(0, b) =

{
0 if 0 ≤ b ≤ B,

+∞ if b < 0.
(5.17)
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All other subproblems are solved with the recursion

L(j, b) = min
i∈{0,...,j−1}

max{L(i, b− ci), `i,j},

and the final answer given by

min
j∈{0,...,n}

max{L(j, b− cj), `j,n}.

From this it is apparent that L(1, b) is

L(1, b) = max{L(0, b− c1), `0,1}

=

{
`1 if c1 ≤ b

+∞ if c1 > b.

The set of cuts that form the boundaries of the optimal partition of G is extracted from
the solution to the subproblems.

Time Complexity One complication in the application of dynamic programming to this
problem is that all of the potential losses are real values, not integers. As a result, the
size of the table required to look up repeated values is unbounded. In order to provide
computational guarantees the potential losses are scaled to an integer value B′ and rounded
up such that c′i =

⌈
ci
B
B′
⌉
. For a graph with |V | vertices, scaling and rounding guarantees a

solution with at most |V | · B′ values and eliminates floating point errors. The value of B′

is selected to be large enough that the results remain accurate, while limiting the cost of
computation. After scaling, the final dynamic programming solution has time complexity
of O(|V |2 ·B′).

5.4.4 Proof of Limited Loss

Based on the discussion of Sections 5.4.2 and 5.4.3 I arrive at the following proposition. In
this proposition R(S) denotes the reward collected by a path S and RT denotes the sum
of all rewards in the graph:

RT =

|V |∑
i−1

Ri.
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Proposition 5.4.3 (Limited Loss Partitioning). Given a value ρ ∈ [0, 1), the Limited Loss
Divide and Conquer method of Section 5.4.2 produces a solution S with reward

R(S) ≥ R(S∗)− ρRT ,

where R(S∗) is the reward collected by the optimal solution.

Proof. Given a ρ ∈ [0, 1), the Limited Loss Divide and Conquer method produces a parti-
tion of G into k subgraphs G1, . . . Gk. Let G′1, . . . , G

′
k be the subgraphs after removing the

marked vertices (as described in 2b) of the algorithm) from G1, . . . Gk. These marked ver-
tices have a total reward of at most ρRT . The graphs G′1, . . . , G

′
k satisfy Proposition 5.4.2

and solution S ′ = {S ′1, . . . , S ′k} can be found, obtained by concatenating the optimal solu-
tions on each subgraph. Let R(S ′1), . . . , R(S ′k) be the rewards collected by the S ′ in each
of these subgraphs. The optimal solution S∗ on G must contain some vertices in each G′i,
call them S∗i , such that

R(S ′i) ≥ R(S∗i ).

That is, the optimal solution S∗ may contain exactly the same vertices as S ′i or fewer
vertices. Thus,

R(S ′) =
k∑
i=1

R(S ′i) ≥
k∑
i=1

R(S∗i ). (5.18)

The total reward for the optimal solution is

R(S∗) ≤
k∑
i=1

R(S∗i ) + ρRT (5.19)

Therefore, after combining (5.18) and (5.19), the reward from partitioning G′ is

R(S ′) ≥ R(S∗)− ρRT .

Since each solution S ′i for the subgraph G′i is a feasible solution in Gi (the graph Gi

with the marked vertices included), we immediately have that the optimal solution on
G1, . . . , Gk is at least that of the optimal solution obtained from G′1, . . . , G

′
k.

Remark (Conservativeness of Bound). As ρ becomes larger, the bound in Proposition 5.4.3
becomes very loose. To obtain the bound, I assume that S∗ collects the entire ρRT reward of
the removed vertices. In practice this will not be possible. In addition, when implementing
the Limited Loss Partition, because vertices are not actually removed, the solution S can
potentially collect rewards in addition to R(S).
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5.5 Simulations and Results

All simulations1 are implemented in C++ using the following libraries and tools: Visi-
bility polygons [45], Computational geometry functions from Boost [8], Minimum polygon
heights [58], Concave polygons [1], QuickHull [52], Polygon decomposition [56], and Dubins
curves [73]. The Dubins curve library is the steering function for the UAV path, adding a
radius of 1m to all turns. I solved the MILP using Gurobi [30], allowing up to ttotal = 1000s
on a Ubuntu 18.04 desktop PC with an Intel(R) i7-7700K CPU and 32GB RAM.

As shown in Figure 5.4, in each simulation the environment E is generated with 20
to 100 randomly placed obstacles. The start and finish positions are a constant 3000m
apart. The parameters for the ground and aerial vehicles are Vgv=1m/s, Vuav=5m/s,
w=200m, d=300m, and f=25m. The ground vehicle path is found using the OMPL [66]
implementation of RRT*, resulting in some slight variation between simulations. Figure 5.5
is taken from an active simulation and shows the planning results. A video (see footnote 1)
provides a demonstration of the simulation environment.

In the results, I present data from four different solution methods: Optimal, ExactDnC,
DnC30 and DnC50. Optimal uses the unmodified graph G. ExactDnC allows partitions
according to Lemma 5.4.1. DnC30 and DnC50 allow lossy partitioning limited to 30 per
cent and 50 per cent of the total coverage reward RT , respectively. The results are grouped
and plotted as a function of the number of vertices in G, which are directly proportional
to the number of sweep lines in E . As the number of obstacles in the coverage corridor
increases, so too does the number of sweep lines, indicating a greater difficulty in providing
an optimal solution given a fixed time budget for the MILP solver.

Subdivision of Available Solution Time The MILP solver is given a fixed time
budget ttotal, to be divided between the subgraphs. Since the number of variables in the
MILP grows as the square of |V | (see Section 5.3.3), I allot time proportional to the square
of the number of subgraph vertices. Unused solution time is passed to the next subgraph.

5.5.1 Comparison with Complete Coverage

Figure 5.6 illustrates the advantage of covering only the hidden areas when compared to
covering the entire corridor using the Conformal lawn mower method [28]. In this figure,

1A video demonstration of the simulation environment is available: https://ece.uwaterloo.ca/

~sl2smith/papers/2020CASE-Coverage.m4v
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Figure 5.4: The simulation environment – the ground vehicle route runs from top left to
bottom right.
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Figure 5.5: An active simulation: the hidden regions and the UAV’s flight path can be
seen.
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the vertical axis is the total distance traveled by the UAV to perform coverage. The results
show that when the number of vertices is low, covering only the hidden areas results in
paths that are two to five times shorter. As the number of vertices increases, the benefit
of covering only the hidden areas diminishes.

5.5.2 Exact and Limited Loss Partitioning

Figure 5.7 compares the time required to find a solution to the MILP using the four
different solution methods as a function of the number of vertices in the full graph G.
After one hundred simulations, the results are collected and plotted by vertex counts. The
plots show the mean value and 95% confidence interval for a median of six trials for each
vertex value. Initially, all methods terminate prior to their time budget. However, as the
number of vertices increases, the time required to solve either of the Optimal or ExactDnC
cases quickly reaches the maximum limit. The lossy methods, DnC30 and DnC50, solve
within the allotted time for much larger problems. The effect on solution times is shown in
finer detail in Table 5.1, comparing the maximum number of variables in the partitioned
subgraphs and the solution times against the size of the initial graph. Figure 5.8 plots
the number of covered cells in simulation, when following the UAV path generated by
the planner. The simulations are consistently within 20% of the MILP reward shown in
Figure 5.9.

Figure 5.10 illustrates the quadratic growth in the number of program variables as the
number of vertices in the graph increases. Divide and conquer is clearly a viable strategy
as both of the lossy implementations are smaller by an order of magnitude. This graph
also provides evidence that shows that ExactDnC partitions are only possible when the
graph is small, limiting the usefulness of an ExactDnC only strategy.

5.5.3 Path Lengths

In this experiment I ran 1000 trials, increasing Vuav to 20 m/s and limiting the MILP to
ttotal = 120s. The results can be seen in Figure 5.11. Under these conditions, as the scale
of the problem increases, the Optimal and ExactDnC solutions are clearly not capable of
minimizing the length of the path in the available time.
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Figure 5.6: Comparing the relative distance flown by the UAV for complete coverage
(Conformal) and covering only the hidden regions.

Figure 5.7: MILP solution time. The solver is limited to 1000s.
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Figure 5.8: Simulated Coverage - the count of cells covered through simulation, validating
MILP reward.

Figure 5.9: The reward from MILP solver as measured by the number of cells covered.

63



Figure 5.10: Maximum Number of Variables in subgraphs.

Figure 5.11: UAV path distance with velocity constraints lifted. For the largest problems,
the Optimal and ExactDnC methods return paths that are as much as double the paths
of the lossy methods DnC30 and DnC50.
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Table 5.1: A comparison of graph vertex counts vs. maximum number of variables in the
partitioned subgraphs.

Vertices Optimal ExactDnC DnC30 DnC50
Vars Time Vars Time Vars Time Vars Time

0 72 0 52 0 28 0 28 0
20 370 167 355 168 187 0 118 0
40 1142 392 878 405 358 83 227 3
60 2116 745 1463 656 579 128 342 163

80 3887 1000 2964 936 811 397 474 193
100 6300 1000 5532 985 1121 915 712 653
120 8713 1000 7860 1000 1682 986 936 960
140 11977 1000 11977 1000 2108 992 1207 983

160 14819 1000 14819 1000 2721 994 1666 996
180 19254 1000 19254 1000 2256 1000 1353 988
200 21749 1000 21749 1000 3266 996 1709 992
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5.6 Conclusions and Future Work

I formulated a MILP that solves the Selective Coverage Path Problem and proved that the
coverage problem can be exactly partitioned while retaining the optimal solution under
certain conditions. I also developed a limited loss partitioning method which found an
optimal partition within a bounded loss in coverage reward. The lossy method allowed
the coverage problem to be subdivided in cases where the exact partition was not possible.
Lossy partitioning may also provide better solutions for scenarios where the solver fails to
complete before allotted time expires, although I have not fully explored this possibility. I
validated both the exact and lossy methods through simulation.

A demonstration of looseness of the lower bound established by Proposal 5.4.3 can be
seen in the simulation results. The lossy solutions achieve a solution quality that is very
close to the optimal, even when the bound allows up to 50% of coverage to be lost. For
smaller solutions, I speculate that there are sufficient resources to cover all areas. In larger
graphs, where the orienteering aspect of the problem becomes significant, the solver time
elapses before an optimal path is found. Partitioning the graph seems to localize the loss
and allow the solver to get closer to optimal solutions on the smaller subgraphs. Studying
this loss localization and other graph partitioning strategies remains the subject of further
study.
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Chapter 6

Conclusions and Future Directions

In this thesis, I have investigated three variations of coverage path planning for a moving
ground vehicle. Initially, I looked at finding the minimum performance requirements for
the UAV to provide current coverage of the path immediately ahead of a ground vehicle
travelling through the environment. The plan I developed, a variation of the classic lawn
mower plan, ensures complete path coverage without prior knowledge of the ground vehi-
cle’s entire route. I demonstrated that the Conformal lawn mower path can be no longer
than twice the length of the optimal plan, and therefore require no more than twice the
UAV velocity, for any path with maximum curvature constrained to less than half of its
width.

In environments where, due to security or other reasons, the path information is un-
available, I considered the predictive case and established necessary and sufficient velocities
for successful coverage. The lack of information about the ground vehicle’s future path
requires the UAV to cover territory that is ultimately extraneous to the ground vehicle’s
needs, and dramatically increases the UAV velocity requirements.

I concluded the investigation by considering a solution that decreases the total area to
be covered by the UAV. The selective method predicts hidden areas in the environment and
plans a cost efficient route to cover those areas only. I formulated a MILP that solves for
the maximum coverage with the shortest path. However, without intervention, as the size
of underlying graph grows, the solver times out, even on relatively small problems. I proved
that the coverage problem can be optimally subdivided and solved under certain conditions.
A relaxed version of the optimal cut which found the optimal subset of cuts within an
allowable loss was also developed. The relaxed approach allowed the coverage problem to
be subdivided further, trading off a bounded decreased coverage for shorter solution times.
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I further validated both the optimal and relaxed approaches through simulation.

Over the course of developing this thesis, I came across many additional opportunities
for exploration. These are the paths not taken.

6.1 Flight Planning

6.1.1 Robust Response to Path Errors

The coverage planning developed in this thesis is brittle, and prone to coverage errors –
missed cells that happen to be located on the edge of the optical footprint as the UAV
passes. In many cases, these are errors due to rounding and floating point representation.
Looking forward, these errors can only increase when operating in a more realistic scenario,
where the actual path of the UAV may deviate significantly from the requested plan due
to environmental effects such as wind. There are two possible mechanisms for handling
this error: offline planning ahead of time to minimize the impact, and online planning in
response to coverage failures, both of which I briefly sketch here.

Offline Planning to Prevent Errors

To account for errors, it is necessary to establish a maximum likely path deviation (either
through experiment or calculation) and based on the path variation, estimate the maximum
likely error, derr, for any given path. Then, using the error estimate, the effective optical
footprint can be established as

feff = f(1− derr

f
).

With this reduced footprint, and following the derivation of Chapter 3, and in particu-
lar (3.8), then the expected path length required increases by 1

ferr
. In cases where additional

errors need to be accounted for, the effective footprint may be further reduced.

Online Recovery After Error

Recovery of missed sections (due to unexpected wind, etc.) while simultaneously providing
coverage is likely to be extremely difficult, primarily due to time requirements. On one
level it seems a simple enough problem: evaluate the coverage results live, and if there is
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a missed section, insert a new trajectory into the UAV’s plan that allows the area to be
revisited. However, the UAV is already running just ahead of the deadline. Unless the
UAV is capable of significantly increased speeds for recovery intervals, it won’t be possible
to maintain both the leading coverage edge and go back to fill in missed sections before
they expire. Online, this problem may be better solved by coordinating multiple UAVs.

6.1.2 Constant vs. Direction of Flight Orientation

The type of UAV employed can affect the options available for flight planning. While a
fixed wing UAV can only be oriented in the direction of flight, a rotor-craft UAV is holo-
nomic and flies equally well in any direction and any orientation (maintaining a primarily
upright/constant Z position).

6.2 Collaboration Improvements

6.2.1 Multi-UAV Coordination

The problem of providing coverage to a moving vehicle appears to be highly episodic in
nature, particularly considering the differences in travel distance without refuelling between
a ground vehicle (just about any ground vehicle) and a UAV with its limited flight time.
Investigating how best to subdivide the coverage area and develop policies for multiple
UAVs working in collaboration is an interesting problem. From the data, it is apparent
that at a reduced velocity, the UAV is initially successful until the deadline or ground
vehicle catches up. Working in teams, the UAVs could coordinate their efforts to map the
path and create a complete solution.

6.2.2 Iterative Collaboration

Recognizing that there is a limit to the peak velocity and acceleration that may be employed
by a UAV leads to another possible avenue of research: developing a solution that allows
the UAV and the ground vehicle to negotiate the route together. The resulting path
should ensure full coverage for the ground vehicle, while remaining within the operational
capabilities of the UAV.
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6.2.3 Continuous MILP Optimization

If we view the coverage problem a relative to the ground vehicle instead of with respect
to the ground vehicle moving in the environment, then we can consider each coverage
task arriving at a certain time and moving towards the ground vehicle until it expires.
The role of the planner then becomes to incorporate each new coverage requirement as it
appears into the coverage graph, resolving the MILP after each insertion. Without further
consideration, my research shows that this could quickly run into trouble as the MILP
grows and solution times become unpredictable. One method to maintain a predictable
solution rate could be to opportunistically cut the graph when appropriate conditions arise.
If Lemma 5.4.1 is satisfied, then the graph is cut and the early portion solved without
consequence. Otherwise, the planner maintains an estimated solution time for the current
graph and a list of possible cut locations and associated costs. If the graph grows to the
point where the solution time becomes unpredictable, the next best cut with relaxation
is made. This method of implementing a receding horizon MILP may allow the solver
to maintain bounded ε−optimal solutions within predictable times allowing (or possibly
improving) online planning.

6.3 Analysis Improvements

6.3.1 Improving the Sufficient Bound

It is possible that an improved sufficient bound might be found by allowing the angle of
the sweep line to deviate from parallel to the deadline (perpendicular to the vehicle path)
as illustrated in Figure 6.1. The risk this entails is a longer possible period required to
completely sweep ahead of the deadline on any single sweep. As the angle increases, the
ends of the sweep line must move towards the boundary edge to ensure complete coverage.
Extending the sweep line ensures that there are no holes induced on the perimeter as
the sensor footprint rotates. The increasing angle also increases the overall length of the
sweep line because the UAV is now travelling along the hypotenuse of the triangle. While
these two effects combine to increase the length of the sweep, and therefore increasing the
necessary velocity of the UAV, the resulting increase may be less than that required by the
Conformal plan for the same path. There is another reason to be wary of allowing the angle
to deviate from parallel: a pathological case where a long slow curve builds up significant
deviation before making a hard turn in the other direction. The result is a possible sweep
line of indeterminate length. A mechanism is required to enforce a bound on the length

70



(a) θ = 0 (b) SmallAngle (c) θ = π
4

Figure 6.1: The sweep lines expand as the angle increases.

of the generated sweep line and correct the coverage plan as required. Another recovery
mechanism is required to handle cases where the induced angle causes missed areas of the
path as the sweep lines are not guaranteed to be integer divisible into the curvature of the
corridor.

An approach that provides those bounds might be as follows: consider bounding the
path with two parallel lines. The sweep line of the UAV is set as perpendicular to the
bounding parallel lines. Assuming the bounding parallel lines are separated by less than
D < 2w, then a bound for that path can be established as D

f
= 2w

f
, the same as the worst

case for the Conformal method. If the separation distance is greater than 2w
f

, then the
Conformal plan can be used to guarantee a sufficient path instead. Alternatively, the path
can be sectioned and each of the sections planned individually. In this manner, sufficient
velocity for the path is bounded by the width of the widest subsection. This approach
may be complicated by transitions between the subsections which are not guaranteed to
be smooth/cost-free.

6.3.2 Path Optimization

There may be further opportunities to minimize the overall flight distance by eliminat-
ing unnecessary coverage overlap from the calculated UAV plan. As illustrated in Fig-
ures 3.5a, 3.5b, reducing the overlap between scan lines can result in a shorter path. In the
plans developed for the selective coverage, there was also a fair amount of overlap as the
paths did not necessarily consider the impact of prior passes. These cases seem to indi-
cate that there may be significant room for improvement by implementing a sub-modular
reward function in the MILP [60].
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6.3.3 Proof of Time Complexity

The complexity of finding an optimal complete coverage plan for a moving ground vehicle
is unknown. Based on [3], it seems likely that any algorithm that performs this task will
be NP-hard, but this assertion remains unproven.

6.3.4 Measure of Path Complexity

One of the difficulties obscured by assuming a constant velocity is that, in emulation and
in the physical implementation, the UAV must slow down significantly, apply additional
acceleration, or add additional distance to the trajectory (as we attempt to emulate with
the Dubins trajectories) to change direction. Most likely some combination of all three
are applicable. Some analysis should be applied to the complexity of the path – what
percentage of the time is the UAV applying additional acceleration (either to decrease or
increase velocity) vs. flying at a steady state, and how does that affect the flight time for
a given path length.

6.4 Simulation and Implementation

6.4.1 Advanced Simulation and Validation

The simulations performed in this research focused on a single integrator model – one that
considers only the instantaneous velocity of the UAV in the calculation of the coverage
paths. This simplification does not fully encapsulate the costs required to execute a change
of direction with a flying vehicle. In order to change direction, the UAV must expend energy
to first slow down before accelerating again in the direction of the new line of travel.

In Chapter 3, I compared the Conformal coverage plan with a handcrafted alternative
and argue that the handcrafted path is significantly shorter. However, this scenario doesn’t
consider the cost of turns, nor does it look at the time required for the UAV to accelerate to
the specified velocity. In this particular example, the Conformal path actually has slightly
fewer turns, and longer straight paths. The additional length the Conformal path induces
may actually not be an issue if it means the UAV can sustain its desired velocity for a
longer period of time. In Chapter 5, Dubins curves were added to the route to provide the
ability to account for the increased cost of turns. However, the adjustment is somewhat
coarse with no direct relation between the cost making the turn and the velocity of the
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UAV. Further, as the velocity of the UAV increases, the required combination of increased
distance, time, and energy to change directions must also increase – a relationship that is
not considered as part of this analysis. Future work that considers the trade-off between
the UAV coverage velocities and the energy cost of changing direction in the course of flight
is required to better characterize the ability of the UAV to provide complete coverage.

6.4.2 Physical Implementation

Finally, there was insufficient time to employ these techniques in a real-world scenario.
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[55] Robert Pěnička, Jan Faigl, and Martin Saska. Physical Orienteering Problem for
Unmanned Aerial Vehicle Data Collection Planning in Environments with Obstacles.
IEEE Robotics and Automation Letters, 4(3):3005–3012, 2019.

[56] Mark Penner. Decomposition of Polygons using Bayazit’s Algorithm, 2019. https:

//github.com/idlebear/polyDecomp.

[57] John Peterson, Haseeb Chaudhry, Karim Abdelatty, John Bird, and Kevin Kochers-
berger. Online Aerial Terrain Mapping for Ground Robot Navigation. Sensors,
18(2):630, February 2018.

[58] Franco P Preparata and Michael I Shamos. Computational Geometry: an introduction.
Springer-Verlag, 1985.

[59] Shiwen Ren, Yang Chen, Ling Xiong, Zhihuan Chen, and Mengqing Chen. Path plan-
ning for the marsupial double-UAVs system in air-ground collaborative application.
In Chinese Control Conference (CCC), pages 5420–5425. IEEE, 2018.

[60] Mike Roberts, Debadeepta Dey, Anh Truong, Sudipta Sinha, Shital Shah, Ashish
Kapoor, Pat Hanrahan, and Neel Joshi. Submodular trajectory optimization for aerial
3d scanning. In Proceedings of the IEEE International Conference on Computer Vi-
sion, pages 5324–5333, 2017.
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Appendix A

Calculation of the Deadline
Boundaries

A.1 Calculation of the Boundary of Deadline Tan-

gents

Recall that the deadline is a line segment in R2 with endpoints (Dx,l, Dy,l), (Dx,r, Dy,r),
and normal to the path at P (t+ ∆t) . For any possible path terminating at the coverage
reachable set, the deadline is found by calculating the slope of the coverage reachable set
with respect to θ, then using the slope to determine the right and left deadline endpoints.
This line, tangent to the boundary for any given θ, can be found using the equations

Dx(θ) = x(θ)±
dx

dθ
(θ)w, (A.1)

Dy(θ) = y(θ)±
dy

dθ
(θ)w (A.2)

where x(θ), y(θ) are defined by (4.2), (4.2) (See Figure 4.2.1). The normalized slope of the
reachable set is parameterized by

dx(θ)

dθ
=

cos θ(vt− ρθ)
|vt− ρθ|

= cos θ, (A.3)

dy(θ)

dθ
=
− sin θ(vt− ρθ)
|vt− ρθ|

= − sin θ (A.4)
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since 0 ≤ θ ≤ v∗t
ρ

, and v, t, ρ ≥ 0. The full expression of the deadline is

Dx,r(θ) = ρ(1− cos θ)− sin θ(vt− ρθ) + w cos θ, (A.5)

Dy,r(θ) = ρ sin θ − cos θ(vt− ρθ)− w sin θ. (A.6)

Dx,l(θ) = ρ(1− cos θ)− sin θ(vt− ρθ)− w cos θ, (A.7)

Dy,l(θ) = ρ sin θ − cos θ(vt− ρθ) + w sin θ. (A.8)

The outer boundary expressed by these end points includes all of the possible positions
of the deadline tangent to the ground vehicle’s coverage reachable set, assuming the ground
vehicle’s path has a minimum radius turn for some angle θ, followed by a straight section
for dmap − ρθ. We calculate this minimal boundary numerically using the parameters:

• vgv is the speed of the ground vehicle,

• w is the corridor width, projected normal to the path at P (t),

• ∆t is the time interval required for the ground vehicle to traverse dmap,

• ρ is the minimum turning radius for the ground vehicle, and

• θ is in the range 0 ≤ θ ≤ vgv∆t

ρ
.

For the movement reachable set RSmov, we use tmov for the time interval, where we
assume tmov is small, approaching 0. Considering the half of the plane where x > 0, the
furthest extent of the shell is defined by the left end (Dx,l, Dy,l), as the deadline is swept
to the right around the coverage boundary. To find the effect of the ground vehicle’s
movement, we transform the equation for the left end point by the movement function
resulting in

Dlx,t(θ) = dlx(θ) cosφ− dly(θ) sinφ+ x(φ), (A.9)

Dly,t(θ) = dlx(θ) sinφ+ dly(θ) cosφ+ y(φ). (A.10)

An expression in two angles, θ and φ, where θ is the angle of the deadline set D(t), with
range 0 ≤ θ ≤ dmap/ρ, and φ is the angle of Sgv with range 0 ≤ φ ≤ v∆t/ρ. x(φ), y(φ)
are solutions to (4.2),(4.2), in the ground vehicle’s reachable set. The full expansion of the
equations is shown in (A.11), (A.12).

As the deadline D(t) is swept along, tangent to the reachable set, its end points extend
beyond the boundary of the reachable set. The boundary that describes the outermost of
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Dlx,t(φ, θ) = (ρ(1− cos θ)− sin θ(dmap − ρθ) + w cos θ) cosφ

− (ρ(1− cos θ)− sin θ(dmap − ρθ) + w cos θ) sinφ

+ ρ(1− cosφ)− sinφ(vt− ρφ) (A.11)

Dly,t(φ, θ) = (ρ sin θ − cos θ(dmap − ρθ) +−w sin θ) sinφ

+ (ρ sin θ − cos θ(dmap − ρθ) +−w sin θ) cosφ

+ ρ sinφ− cosφ(vt− ρφ). (A.12)

these points can be found using the angle of θ that maximizes the distance of the left end
point from the origin. To calculate θmax, we find the derivative of (A.6) with respect to θ,
set it to zero and solve.

Dy(θ) = ρ sin θ − cos θ(vt− ρθ)− w sin θ. (A.13)

Taking the derivative with respect to θ, assigning to zero, then solving gives

ρ cos θ + sin θ(vt− ρθ)− ρ cos θ − w cos θ = 0 (A.14)

sin θ(vt− ρθ)− w cos θ = 0 (A.15)

tan θ =
w

(vt− ρθ)
, (A.16)

which we can solve numerically for θmax.

A.2 Calculation of the Radius of Deadline Lower Bound

Let the radius of the D(t) be represented as rD. In 4.4 we claimed rD is calculated using:

rD = rgv +

√√√√r2
gv +

(
L

2
+

√
L2 − 4r2

gv

2

)2

,

where L is the distance from either end of the deadline to the ground vehicle, when the
deadline is located at top dead centre. L is calculated

L =

√
d2

map +
w

2

2

− π

2
rgv.
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Figure A.1: Calculation of the inside estimate

Conceptually, to find the minimum radius, consider a taut string that runs from the
ground vehicle to one end of the deadline, when the deadline is straight ahead of the vehicle,
and sitting on the boundary at dmap. Now, consider what happens as the deadline is swept
around the boundary, maintaining the tension on the string. As deadline is moved along
the boundary, the string wraps around the minimum turning radius circle, shortening as it
goes. Eventually, the end of the string crosses the x-axis, at some point less than dmap from
the centre. This point of crossing the x-axis defines the minimum radius of a semi-circle
that fits entirely within the deadline boundary.

Figure A.1 illustrates the calculation of the radius estimate. The length of the string
L can be divided into three sections. The first section, a, of length π

2
rgv wraps around

the first quadrant of the minimum turning circle. The second section, b, has length rgvθ
and extends from the start of the second quadrant of the minimum turning circle to the
tangent point where the string leaves the circle and heads towards the x-axis. Due to
similar angles, the section of contact of the minimum turning circle has the same angle
as the angle of the string when it finally contacts the x-axis. Finally, the third section, c,
extends from the tangent to the x-axis and has length of L− π

2
rgv− rgvθ. For convenience,

let l = L− π
2
rgv. Since the triangle defined by the third section, the radius and the x-axis
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is right-angled, then we know:

tan θ =
r

l − rgvθ

Using the small angle approximation1, we can approximate tan(θ) ≈ θ. We also know that
tan(θ) ≥ θ, for 0 < θ < π

2
. Therefore,

θ ≤ rgv

l − rgvθ

rgvθ
2 − lθ + rgv ≥ 0. (A.17)

This is a quadratic equation in θ – solving using the quadratic formula gives us the expres-
sion:

θ =
l±
√
l2 − 4r2

gv

2rgv

. (A.18)

We can discard the larger (plus) root since we know we’re looking for small theta – the
larger value of theta is invalid for our approximation and our expected use case (where
dmap � r ⇒ θ < π

2
). The smaller (minus) root approaches zero as dmap becomes larger

relative to the radius, exactly what we are expecting.

Since we have a right angled triangle, we also know the length of the hypotenuse can
be found using Pythagoras’s theorem. Therefore,

d =
√
r2

gv + (l − rgvθ)2.

Substituting our equation for θ from A.18,

d =

√√√√√r2
gv +

l − rgv

(
l −
√
l2 − 4r2

gv

2rgv

)2

=

√√√√r2
gv +

(
l

2
+

√
l2 − 4r2

gv

2

)2

.

The radius, rD, is calculated by adding the ground vehicle’s turning radius:

rD = rgv +

√√√√r2
gv +

(
l

2
+

√
l2 − 4r2

gv

2

)2

.

1See Appendix A.3 for justification.
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A.3 On the Use of the Small Angle Approximation

In the development of the lower bound on the deadline D we make use of the small angle
approximation. We prove that doing so is appropriate and always gives an underestimate
of the true value.

Lemma A.3.1 (Small Angle Approximation). In the circumstances involved in this thesis,
the use of the small angle approximation gives an estimate that is always equal to or less
than the actual value of rD.

Proof. (By Construction.) Consider the original equation rD:

rD = rgv +
√
r2

gv + (l − rgvθ)2. (A.19)

We have the following facts to consider:

• The (l − rgvθ) term of (A.19) increases in size as θ decreases.

• Geometrically, θ > 0 since a non-zero rgv precludes θ = 0 and negative angles are
infeasible.

• The function f(θ) (A.17) is quadratic and strictly increasing for θ <
l−
√
l2−4r2gv
2r

.

Therefore, our estimate of θ, θ =
l−
√
l2−4r2gv

2rgv
is the maximum value of θ. Therefore, rD is

inside the true boundary and our estimate can be used to represent the necessary UAV
velocity.
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Glossary

boustrophedon decomposition A method of subdividing an area to be covered such
that each cell may be covered by a back and forth pattern (modeled on the path
taken by an ox in plowing a field). 5

Coverage Path Planning (CPP) The process of constructing a plan over an area that,
when followed by a robot, results in all portions of that area being observed. 4, 10

coverage plan A line, or set of connected lines, laid out over a specified area. All parts
of the area fall within the range of a UAV’s sensors from at least one location in the
plan. 3

divide-and-conquer The process of dividing a problem into pieces, then solving the
simpler problem represented by the smaller pieces. The final solution is retrieved
from the solutions to the sub-problems. 4

Generalized Large Neighbourhood Search (GLNS) An algorithm for solving the (Gen-
eralized) Travelling Salesperson Problem. This variation allows vertices in the graph
G to be grouped, creating opportunities for both local and global optimizations and
constraints. 5

holonomic Holonomic robots are capable of unrestricted movement in any direction. An
airborne UAV is an example. 69

lawn mower A method of covering an area by following a pattern of adjacent strips, as
one might cut a lawn. 3

Mixed Integer Linear Program (MILP) A sub-field of Linear Programming where
the variables and constraints are a mixture of integer and real values. MILPs can
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become computationally intractable as the number of variables and constraints grows.
4

NP-hard (Non-deterministic Polynomial hard) – a measure of an algorithm’s complexity.
NP-hard problems are not known to be solvable in polynomial time, but are verifiable
in polynomial time. 5, 11

Orienteering Problem The set of problems that compute the optimal path through a
graph, visiting as many vertices as possible, subject to some resource constraint.
Constraints may include limitations on travel distance (limited fuel), or carrying
capacity (limited space), etc. 11

sensor footprint The area on the ground that falls within the sensor range of the robot.
In the case of a UAV using monocular vision system (a single downward facing
camera), the sensor footprint is the size of the image area for a given flight altitude.
4

Travelling Salesperson Problem (TSP) A computed shortest path tour of a graph G
that visits each vertex at most once and returns to the start. 6, 11

unmanned aerial vehicle (UAV) An Unmanned Aerial Vehicle - an airborne robot car-
rying various sensors that may be piloted remotely through teleoperation or have a
degree of autonomy. Sometimes referred to as a Drone. 1

unmanned ground vehicle (UGV) An Unmanned Ground Vehicle - a land-based robot,
either autonomous or remotely operated. 7
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