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Abstract 

Spatial data is characterized by rich contextual information with multiple characteristics at each 

location. The interpretation of this multifaceted data is an integral part of current technological 

developments, data rich environments and data driven approaches for solving complex problems. 

While data availability, exploitation and complexity continue to grow, new technologies, tools 

and methods continue to evolve in order to meet these demands, including advancing analytical 

capabilities, as well as the explicit formalization of geographic knowledge. 

In spite of these developments Discrete Global Grid Systems (DGGS) were proposed as a new 

comprehensive approach for transforming scientific data of various sources, types and qualities 

into one integrated environment. The DGGS framework was developed as the global data model 

and standard for efficient storage, analysis and visualization of spatial information via a discrete 

hierarchy of equal area cells at various spatial resolutions. Each DGGS cell is the explicit 

representation of the Earth surface, which can store multiple data values and be conveniently 

recognized and identified within the hierarchy of the DGGS system. 

A detailed evaluation of some notable DGGS implementations in this research indicates great 

prospects and flexibility in performing essential data management operations, including spatial 

analysis and visualization. Yet they fall short in recognizing interactivity between system 

components and their visualization, nor providing advanced data friendly techniques. To address 

these limitations and promote further theoretical advancement of DGGS, this research suggests 

the use of Q-analysis theory as a way to utilize the potential of the hierarchical DGGS data 

model via the tools of simplicial complexes and algebraic topology. As a proof of concept and 

demonstration of Q-analysis feasibility, the method has been applied in a water quality and water 

health study, the interpretation of which has revealed much contextual information about the 

behaviour of the water network, the spread of pollution and chain affects. 

It is concluded that the use of Q-analysis indeed contributes to the further advancement and 

development of DGGS as a data rich framework for formalizing multilevel data systems and for 

the exploration of new data driven and data friendly approaches to close the gap between 

knowledge and data complexity.  
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Chapter 1 Introduction 

With the growing significance and impact of the data driven and data friendly approaches on the 

spatial analysis in Geographic Information Systems (GIS) (Comber & Wulder, 2019; Graham & 

Shelton, 2013; Miller & Goodchild, 2015), as well as social, scientific and economic dynamics 

influenced by the data rich culture and data accessibility (Johnson et al., 2018), it is important to 

address big data analysis and challenges associated with it. In a general sense, attempts have 

been made to describe big data traits not only in terms of the volume, velocity and variety 

characteristics (Kitchin & McArdle, 2016), but also digital availability and complex integrated 

environments (Barrett et al., 2018; Johnson et al., 2018), which has led to the evolution of new 

data platforms (Li et al., 2015), software tools (Sowkhya et al., 2018), sensors (Arza-García et 

al., 2019) and computing architectures (Helmi et al., 2018). These developments were put in to 

practice to meet additional demands for data optimization, adaptability, extensibility, scalability 

and flexibly (Barrett et al., 2018; Kitchin & McArdle, 2016), which are argued to have essential 

role for gaining better conceptual understanding of big data in the current data rich age. 

One such data storage infrastructure technologies Discrete Global Grid Systems (DGGS) were 

found to be a prominent and comprehensive approach suitable for integrating large data 

quantities of various sources, types and qualities, as well as providing analytical capability 

necessary for its interpretation (OGC, 2017). Implications of DGGS have been officially 

recognized by the Open Geospatial Consortium (OGC) and the corresponding OGC DGGS 

abstract specification, developed to outline the fundamental features and requirements necessary 

for the core DGGS data model. 

While the emergence of DGGS have provided the GIS community with great advantages in 

terms of data storage, access, interpretation and visualization, much of the operational and 

functional capability of these systems lack completeness, as well as integration with other 

methods, technologies and data standards (Bondaruk et al., 2019). In particular, multi-relational 

interaction complexity of data networks and exchange of information through the multilevel 

hierarchical DGGS data model requires more explicit articulation and theoretical developments 

to meet the requirements for complex data organization, management and analysis. Additional 

attention should also be given to the visualization component, since with the complex data 
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model, such as DGGS, it can be challenging to properly convey DGGS embedded multivariate 

data, while preserving interaction complexity and assisting interpretation. 

In the light of these developments the research has turned to the study of complexity and 

complex systems science (Johnson, 2014) with the attempt to address the challenges related to 

the DGGS analytical capability, data complexity and interpretation, as well as to promote further 

advancement of DGGS data model and improvement of its OGC abstract specification. One of 

the objectives of complex systems science is to provide methods and frameworks capable of 

generalizing information and interacting components from different study areas or domains, in 

order to observe system behaviour, its connectivity structure and discover new applications. In 

fact, it is possible to view DGGS data model as one of such complex systems, due to the same 

properties of multilevel and discrete dynamics, network connectivity and globality, which are 

compatible with the notion of complexity (Johnson, 2014, pp. 6–10). 

In the context of complex systems science, this research specifically emphasises advantages and 

application capability of Q-analysis theory (Atkin, 1972, 1974, 1980; Johnson, 2014), as a 

method suitable to address some of the challenges related to DGGS analytical capability, data 

complexity and interpretation, including its compatibility with the hierarchical DGGS data model 

and its effective visualization. Specifically, Q-analysis utilizes concepts of algebraic topology 

and relational algebra in order to retain as much contextual information as possible about 

interactivity between components, and explicitly model system behaviour. 

Although, Q-analysis originated from the branch of mathematics algebraic topology, some 

attempts for its use in the areas of spatial analysis and GIS (Jiang & Omer, 2007; Omer & 

Goldblatt, 2017; Roberts et al., 2001), as well as big data and complexity (Maletić & Zhao, 

2017) have been made in the past. These and similar studies have recognized the implications of 

Q-analysis and its fundamental concept of simplicial complexes to explore structural properties 

of geographic systems through chains of connected components, and modelling of hierarchical 

datasets. These implications also include graphical representation of simplicial complexes in 

order to enhance the overall analysis and its interpretation. In other words, Q-analysis’ 

theoretical method was found useful to facilitate the relational structure between various system 

components and provide additional insight into the system complexity, its behaviour and 

visualization. 
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1.1 Research Scope 

The goal of the research is to contribute to the long term theoretical advancement of DGGS and 

improvement of their analytical capabilities for the search of new and more explicit data driven 

and data friendly solutions, as well as understanding of complexity in the data rich DGGS 

environment and architecture. 

To achieve the goal, the study has identified the following research objectives: 

• Perform a detailed assessment of some of the notable DGGS implementations, their 

functional operability, performance and conformance with the OGC abstract 

specification; 

• Search for the new data driven methods and analytical techniques compatible with the 

hierarchical DGGS data model, as well as to determine the extent to which such methods 

are suitable to handle data complexity and interpretation; 

• Develop a corresponding methodology capable of formalizing spatial knowledge within 

DGGS framework and remain broad enough for use across various datasets, domains and 

applications; 

• Present a case study validating the effectiveness of the developed methodology and its 

significance for the theoretical advancement of DGGS and improvement of their 

analytical capabilities. 

This research strives to provide a scientific argument and a procedural framework which permits 

the use of Q-analysis and simplicial complexes within the hierarchical DGGS data model. 

 

1.2 Thesis Outline 

The outline of this thesis consists of six chapters: 

Chapter 1, the current chapter, introduces the problem statement, research scope and provides 

necessary background information which underlines the significance, scientific relevance and 

motivation of the undertaken research. 
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Chapter 2 elaborates on the main concepts introduced in Chapter 1 and provides in-depth 

background review of DGGS and Q-analysis, their historical developments, specific technical 

details and applications. 

Chapter 3 conveys information regarding key methodological developments and arguments 

necessary for the use of Q-analysis within hierarchical DGGS data model. The methodology 

provides the core implementation procedures for running the Q-analysis, including derivation of 

the necessary components, such as definition of cover sets, matrix construction, creation of 

simplicial complexes and their visualization. 

Chapter 4 is a case study chapter dedicated specifically to apply the proposed methodology from 

Chapter 3 in a real-world scenario, in order to demonstrate its analytical capability and its 

contribution to the development of DGGS. 

Chapter 5 communicates the main results related to the assessment of DGGS, theoretical 

advancement and interpretation of the output from the hierarchical Q-analysis performed on the 

case study from Chapter 4. 

Chapter 6 summarizes the main outcomes and makes final conclusions in accordance with the 

research goal and objectives. In addition, potential future work and next steps forward to 

improve the research are also discussed and concluded here. 

 

 

  



5 

 

Chapter 2 Literature Review 

The following chapter provides necessary background information for the research scope 

covered in this thesis. In particular, two main subjects: DGGS and Q-analysis are reviewed in 

detail here and organized accordingly. Section 2.1 provides introductory information on DGGS 

as a comprehensive approach to model the Earth. Section 2.2 outlines key criteria necessary for 

implementation of a fully functional DGGS. Section 2.3 describes some of the most notable 

DGGS implementations in the industry. Section 2.4 is a transition section which reflects on the 

need for new data handling techniques, such as Q-analysis, to be explored within a DGGS 

context, and draws some parallels for its use. Sections 2.5 and 2.6 describe key concepts and 

advantages of Q-analysis as a language of structure. Lastly, Section 2.7 lists important Q-

analysis applications which greatly contributed to the direction of this research. 

 

2.1 Introduction to DGGS 

DGGS are hierarchical tessellations of regular shaped polygons that form sets of equal area cells 

to partition and reference the Earth’s surface. Traditionally, geospatial information is referenced 

on a continuous space via the projected Cartesian or ellipsoidal coordinate systems, which 

sometimes leads to a discrepancy between sampled data and its location precision (OGC, 2017). 

DGGS, on the other hand, offer a discrete way for spatial referencing using cell units as its base 

rather than coordinates taken from underlying continuous space. By its definition DGGS is a 

hierarchical tessellation of nested cells fully covering the Earth’s surface, which means that each 

cell’s location is fixed and associated with a specific area. Such implementation appears to be 

superior since information associated with those cells is also explicitly associated with a 

geographic space with a fixed level of accuracy and attribute mapping at various spatial 

resolutions. 

DGGS provide a spatial structure on which data values of many types and formats, such as 

vector and raster, can be integrated, visualized and analysed in one uniform and homogeneous 

environment (Mahdavi-Amiri, Alderson, et al., 2015; Mahdavi-Amiri et al., 2016). Given the 

hierarchical nature and nesting properties of DGGS cells, multiple data sources can be 
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aggregated or distributed accordingly with arbitrary positional precision and accuracy, even 

though higher precision might not be necessary for practical purposes and can be limited by 

existing hardware and software specifications (e.g., memory management or float number 

handling). All these properties allow for consistent and unique representation of spatial data, as 

well as the development of external methods for spatial analysis that could operate on DGGS 

structure independently (Purss et al., 2016). 

The process of generating a DGGS involves several design parameters, which can be chosen 

according to one’s needs or application purposes. Five of such design choices have been outlined 

and properly articulated, which include a choice of a base regular polyhedron; a fixed orientation 

of the polyhedron relative to the Earth’s surface; a hierarchical partition method of the 

polyhedron; a method of transforming polyhedron’s faces onto the Earth’s surface; and a method 

for referencing and assigning data to grid cells (Sahr et al., 2003). The goal of the following 

subsections is to review some of these design parameters in more details and outline key 

components which are necessary to consider when dealing with a DGGS. 

 

2.1.1 Base Polyhedron 

Due to the Earth’s curvature and its roughly spherical shape, projecting its surface onto a planar 

space necessarily results in some distortion in shape, size, distance, or orientation (Olson, 2006; 

White et al., 1992, 1998). For a cell-based spatial referencing system of the Earth, equal-area cell 

coverage is a desirable property (i.e., one not achieved by geographic coordinates). In order to 

maintain as much as possible area and shape properties on a global scale, a spherical 

approximation of the Earth can be modelled as a Platonic solid (Song et al., 2002), which is then 

itself tessellated, and the tessellated cells projected back onto the spherical earth. Platonic solids 

are also known as regular polyhedra, which are the three-dimensional solid geometric spaces 

formed with one kind of a regular polygon with equal sides and interior angles (e.g., square or 

triangle). There are only five Platonic solids or regular polyhedra (Figure 2.1) (Wells, 2012; 

White et al., 1992). All DGGS that aim to develop equal-area cell structure on the Earth take this 

approach (Sahr et al., 2003) with one of the five Platonic solids as the geometric base of the grid 

system (Figure 2.1). 
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Figure 2.1. The five Platonic solids to be used as the initial tessellation of DGGS. The figure was 

generated via the Polyhedra Viewer (Nat, 2018). 

Out of the five available options, the icosahedron has the largest number of faces (20) and the 

smallest areal proportion for each face (1/20) (White et al., 1992), which results in the least 

overall distortion (White et al., 1998). Yet, none of the Platonic solids tessellate the sphere 

surface perfectly. The areas and interior angles of recursive partitions of regular shapes cannot be 

all equal, thus either or both equal area and shape properties cannot be preserved completely 

(White et al., 1992). In order to minimize such distortions it was proposed to use even smaller 

regular shaped faces and a semiregular polyhedron instead, such as truncated icosahedron with 

hexagon and pentagon faces at its base (Figure 2.2) (Snyder, 2006; White et al., 1992). 

 

Figure 2.2. A truncated icosahedron projected onto the Earth's surface using the dggridR library 

(Barnes, 2016). The solid is composed of 12 pentagon (red) and 20 hexagon (black) faces. 



8 

 

A truncated icosahedron is a better approximation of a sphere, which can be conceptualized by 

truncating an icosahedron solid at the 12 vertices with 1/3 the length of each of the edges 

radiating from the vertex to create pentagons. In other words, the centers of each pentagon are 

aligned with 12 icosahedron’s vertices. The rest of the solid partition is composed of 20 

hexagons remaining from original triangular faces of the icosahedron (White et al., 1992). The 

truncated icosahedron has 32 faces in total, 12 of them pentagons and 20 hexagons. This means 

that further partition of the truncated icosahedron requires handling of two regular shapes (i.e., 

hexagon and pentagon) which adds complication for construction of a DGGS and global 

sampling. Nevertheless, it is considered acceptable since the number of pentagons is always 

equal to the number of icosahedron vertices (12) and this remains constant at each level of grid 

resolution (Sahr et al., 2003). 

Additionally, studies have shown that the truncated icosahedron is the most effective in 

preserving equal area and shape properties compared to other regular polyhedra (Snyder, 2006; 

White et al., 1992), and does not violate defined OGC criteria (see Section 2.2). As a result, the 

truncated icosahedron has been widely integrated in order to design hexagon-based DGGS 

(Brodsky, 2018; Bush, 2017; Sahr, 2018). Nevertheless, other polyhedra choices for 

discretization of the sphere, such as octahedron (Górski et al., 2005) or hexahedron (Gibb, 2016; 

Veach, 2017), have also been used and are claimed to be effective based on their practical 

applications in astronomic data analysis (Górski et al., 2005), compliance with OGC (Gibb, 

2016) and analysis of Google’s collection of geographic data (Veach, 2017). 

 

2.1.2 Polyhedron Registration 

A fixed polyhedron registration relative to the Earth’s surface is the next step in designing 

DGGS. It includes permanent assignment of a polyhedron’s vertices in specific locations and 

orienting its connected edges in particular directions across the globe while preserving the equal 

area and shape properties as best as possible. As mentioned earlier, projecting polyhedron onto a 

sphere results in distortion. It is worth noting that distortion is also variable and tends to alternate 

with changes of the projection angle and distance. This indicates that distortion is also directly 

related to the choice of a polyhedron, since projection angle and distance is not the same for all 



9 

 

Platonic solids. In the literature, the resulting distortion of transforming a planar space onto a 

spherical space is also referred to as angular distortion (Mahdavi-Amiri, Samavati, et al., 2015; 

Snyder, 2006) or line distortion (Tong, Ben, Liu, et al., 2013). In a general sense, distortion 

increases further from a centroid of a polyhedral face and reaches its maximum at the vertices, 

since the angular distance is the largest in those places (Figure 2.3). As a result, the initial 

registration or placement of the polyhedral vertices is of great importance, since those areas will 

be impacted by the angular distortion the most. 

 

Figure 2.3. Illustration of the angular distortion as a result of projecting the truncated icosahedron 

onto the surface of the Earth. Each vertex point is the place of the maximum distortion. 

There are many possible ways to specify the registration of a base polyhedron, each having their 

advantages and disadvantages. In a nutshell, the base polyhedron’s registration can be specified 

by assigning latitude and longitude coordinates to one of its vertices and the azimuth angle to the 

next neighbouring vertex (Sahr et al., 2003). This approach works for all Platonic solids and can 

be used to derive locations of the remaining vertices. The method appears to be extremely 

flexible and has advantage of meeting specific needs for large variety of applications. In 



10 

 

particular, if the focus is on a specific geographic region or continent, as opposed to the whole 

globe, then places of maximum distortion could be repositioned away from paces of interest or 

regions important for the analysis. 

Some other orientation choices which have been successfully used in the past include a 

hexahedron based DGGS. It can be oriented in a way that centroids of the top and bottom faces 

are places at the North and South Poles respectively, and the remaining four faces are aligned 

along the equator (Gibb, 2016, p. 4). Similarly, an icosahedron can be also oriented by placing 

two of the vertices at the North and South Poles, to provide partial symmetry along the prime 

meridian by matching its orientation with the orientation of one of the projected edges. This 

orientation tends to be one of the most popular since icosahedron is oriented in a familiar way 

and partially matches the usual latitude and longitude grid (Sahr et al., 2003, p. 124). The 

icosahedron can be also oriented in a way to preserve symmetry around the equator, as well as by 

mirroring the well-known Fuller’s Dymaxion map projection (Leslie, 2001). By Fuller’s 

definition, all vertices of icosahedron are places in the water in order to minimize the distortion 

on land. In the past, Fuller’s Dymaxion orientation was known as the only one with such 

property (Sahr et al., 2003, p. 125). A recent study, however, developed a functional 

methodology which allows one to generate multiple orientations that maximize distances of all 

vertices away from landmasses, waterbodies or points of interest (e.g., Poles of Inaccessibility) 

(Barnes, 2019). The method is capable of generating several orientations for various polyhedra, 

which further grants some flexibility in minimizing effect of distortion in areas of interest. As 

illustrated in the study, multiple orientations that place all vertices in water are now possible for 

cuboctahedron, icosahedron, octahedron and tetrahedron (Barnes, 2019). If necessary, an 

icosahedron can be converted to the truncated icosahedron in order to minimize areal and shape 

distortion even further. 

In summary, in order to meet specific application needs a polyhedron orientation can be 

specified by manually assigning one of the vertices to specific latitude and longitude coordinates 

and choosing the azimuth angle to its neighbouring vertex (Sahr et al., 2003). Regardless of the 

registration choice, to maximize the effectiveness of a DGGS it is important to recognize its core 

use cases in early development stages and adjust accordingly. Therefore, it is advised to explore 

different options ahead of time in order to select or design a DGGS with the required properties. 
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2.1.3 Hierarchical Tessellation 

Hierarchical partitioning is one of the fundamental properties of DGGS, which is concerned with 

attribution of spatial data at various scales. In order to construct hierarchical partitions on the 

sphere, a polyhedron must have a recursive geometric tessellation using a base cell shape applied 

to its faces. These cells shapes are largely limited to the three main regular polygons that have 

been used in the past, such as squares, triangles and hexagons (OGC, 2017). Each of them have 

their own benefits and disadvantages, but the requirements for choosing the appropriate partition 

method depends very much on the application as well as considerations of adjacency and 

congruency properties (Peterson, 2017). To elaborate, adjacency concerns the connectivity 

properties and arrangement of cells in relation to their neighbours by sharing either an edge or a 

point. There can be uniform adjacency, when all neighbouring cells are attached similarly, or 

non-uniform adjacency, when cells do not have the same neighbourhood connectivity amongst 

each other. Similarly, congruency indicates the tessellation property amongst shapes, where 

congruent implies that a shape can be tessellated into self-similar shapes and fit perfectly within 

their own shape boundary without an overlap (e.g., square divides into four smaller squares), and 

non-congruent implies that shapes cannot do this (e.g., a hexagon does not divide evenly into any 

number of smaller hexagons). Additionally, the number of shapes that can subdivide a coarser 

resolution parent is known as the aperture level. For example, if a shape can be tessellated into 

four self-similar shapes, its aperture is four. Aperture is the key parameter choice in the 

definition of a DGGS, and was varied in the DGGS explored here. 

While square grids might be the most familiar and popular choice due to the wide variety of 

applications in satellite remote sensing as well as compatibility with current hardware and 

software (Peterson, 2017), their topology is not directly compatible with a truncated icosahedron 

– one of the best approximations of the sphere in preserving equal area and shape properties. At 

the same time, it was suggested to use a diamond shape as a square alternative and to partition 

the icosahedron with it instead, if necessary (White, 2000). The diamond shape might be 

considered as one of the popular tessellation choices, since they are recognized as the skewed 

transformation of squares and retain close geometric similarity with them. Diamonds partially 

inherent many algorithms that already exist for squares, such as addressing (White, 2000). On 

the contrary, diamonds cannot be directly transferrable from squares if neighbour distance is one 
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of the required computational components, since neighbourhood distance differs for both shapes 

(White, 2000). Both, squares and diamonds are congruent, but not uniform adjacent (Figure 2.4). 

(a) (b) 

 

 

Figure 2.4. Illustration of (a) square based and (b) diamond based grid properties generated with 

S2 (S2Geometry, n.d.) and dggridR (Barnes, 2016) software. Note the similarity in their topologies 

but distance differences between neighbours. 

Triangular shapes might also appear to be the most natural choice for the hierarchical partition of 

a polyhedron since three out of five Platonic solids have a triangular face at their bases, including 

the icosahedron. Similar to squares, a triangular tessellation is congruent and can be partitioned 

into self-similar shapes without overlap. A triangular tessellation is supported by a number of 

graphical rendering algorithms (Mahdavi-Amiri, Samavati, et al., 2015), as well as hierarchical 

computational models, such as quaternary triangular mesh (QTM), which is noted to be effective 

for spatial access and data visualization on a sphere (Dutton, 1999). Turning two adjacent 

triangles into a diamond shape makes it possible to implement fast and highly efficient 

addressing and neighbour finding algorithms for spatial databases and geometric operations. 

Such transformations also allow for integration of the square-based algorithms onto triangular 

grids, since diamonds are compatible with triangles as well as squares (Bai et al., 2005). As a 

standalone shape, however, triangles tend to be fairly complicated since they have the worst non-

uniform adjacency out of the three available shapes. In particular, a single triangle has 12 

neighbours with 3 of them having an edge connection and 9 containing a vertex connection. Out 
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of the 9 vertex connections 6 of them have angular attachment and 3 have straight attachment 

(Figure 2.5). Furthermore, each type of adjacency has a different distance from the central cell 

and a non-uniform orientation (e.g., triangles pointing upwards or downwards), which makes it 

difficult for implementation and handling of spatial operations, such as adjacency analysis, 

spatial query and data update (Bai et al., 2005). 

 

Figure 2.5. The adjacency and aperture properties of a triangular shape. The hierarchical 

partitions of these grids were generated via the OpenEAGGR software (Riskaware Ltd., 2019). 

Hexagons have also received much attention in the literature due to a number of advantages, and 

appear to becoming one the common partition choices for DGGS (Ben et al., 2018; Mahdavi-

Amiri et al., 2019; Sahr, 2008, 2013, 2019; Tong, Ben, Liu, et al., 2013; Tong, Ben, Wang, et al., 

2013). Hexagons have been used successfully in data sampling and modelling for both image 

processing in computer vision (Li, 2013; Middleton & Sivaswamy, 2005, p. 10) and ecological 

simulations (Birch et al., 2007). Hexagons are attached similarly to each other by sharing only 

one edge of the same length, giving them the uniform connectivity property. In total, there are 

six neighbors and all of them are equidistant – located at the same distance from the central cell 

(Middleton & Sivaswamy, 2005, p. 2). Because of this property, hexagon-shaped cells have six 

different directions which can be used to model spatial objects with curved boundaries more 

effectively. A hexagon’s six cell edges consistently model a finer resolution of angles to 

neighbouring cells, compared to squares or triangles. 
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In terms of shortcomings, hexagons are non-congruent and cannot be refined into self-similar 

shapes without overlap. In other words, fine resolution hexagons cannot be tessellated and fit 

perfectly within the lower resolution shape boundary. And since it is also impossible to complete 

the sphere with hexagons alone, non-hexagon faces (e.g., pentagons) must be introduced at each 

vertex of a polyhedron. This is why a truncated icosahedron is formed with 12 pentagon cells 

that replace original vertices of the icosahedron. This number remains constant regardless of 

resolution or hierarchical level of a DGGS (Sahr et al., 2003). To mitigate these limitations 

researchers came up with ways to partition a hexagon cell with 3, 4 and 7 additional partial 

hexagons or aperture levels (Figure 2.6). The goal of these partition methods is to provide 

different ways of dividing a cell into smaller hexagons and to have equal area tiles completely 

covering a sphere on multiple levels of resolution. The downside, however, is the necessity to 

consider both shapes (i.e., hexagon and pentagon) during algorithm implementations and data 

handling processes for hexagon-based DGGS. 

(a) (b) (c) 

 
 

 

Figure 2.6. Hierarchical partition of space with (a) aperture 3, (b) aperture 4 and (c) aperture 7 

hexagon levels. The hierarchy for aperture 3 and 4 were generated with the dggridR library 

(Barnes, 2016) and aperture 7 with the H3 library (Uber Technologies Inc., 2019). 
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2.2 OGC Abstract Specification 

Even though the DGGS concept itself was in development since the 1980s (Dutton, 1984), the 

official formalization of DGGS occurred in 2017 with the release of an OGC abstract 

specification. At that time DGGS were defined as a data model framework for handling different 

data types via hierarchical tessellation of the globe. The system design must follow a set of 

criteria in order to support rapid access, storage, conversion and visualization of spatial 

information including core algorithms for data analysis. The emphasis of such systems was put 

on the repeatable representation of measurements as opposed to repeatable results for navigation 

applications (OGC, 2017). It was decided to review and summarise the core criteria defined by 

OGC to outline necessary components for a functional DGGS (Table 2.1). 

Table 2.1. The following table summarizes core criteria that must be preserved in a DGGS, as 

outlined by OGC abstract specification (OGC, 2017). 

Criteria OGC Requirement Criteria Statement 

1 Model 

This requirement outlines definition of DGGS conceptual 

data model which includes: 

• reference frame elements – structural items that 

provide a spatial reference system along with 

tessellation rules on which functional algorithms can 

operate internally (criteria 2-13); 

• functional algorithm elements – operations that allow 

location of cells, assignment and retrieval of data, run 

algebraic operations, and provide conversion methods 

for integration and use of DGGS externally (criteria 

14-18). 

2 Area 
The grid system must guarantee domain completeness that 

covers the entire globe. 

3 Overlap 
Initial tessellation must ensure position uniqueness without 

any overlapping or underlapping cells. 
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Table 2.1. Continued. 

Criteria OGC Requirement Criteria Statement 

4 
Tessellation 

sequence 

Each global grid tessellation must form a joined system of 

hierarchical tessellations with progressively finer spatial 

resolution. 

5 Area preservation 

At each successive tessellation, the grid must preserve same 

domain completeness (criterion 2) and position uniqueness 

(criterion 3). 

6 Shape 

The cell shapes must be of simple polygon, which have the 

following properties: 

• Edges must only meet at vertices; 

• Only 2 edges can meet at each vertex; 

• Have the same number of edges and vertices; 

• Must always enclose a region with measurable area. 

7 
Equal area 

precision 

At each level of grid refinement, equal area precision must be 

defined as the ratio of cell area uncertainty to cell area. The 

cell area uncertainty can vary across implementations, 

stability of equal area approximations, storage architecture or 

precision of reference frame parameters. 

8 Equal area 

At each level of grid refinement all cells must enclose equal 

areas within the specified level of precision (criterion 7). In 

the case of a grid system which consists of more than one cell 

geometry, each must retain equal area property separately and 

preserve a constant ratio between different shapes throughout 

the hierarchical structure. 

9 Initial tessellation 

At the base of each DGGS must be a polyhedron mapped on 

the Earth’s surface to produce the initial tessellation, with 

each cell type representing specific surface area of equal size. 
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Table 2.1. Continued. 

Criteria OGC Requirement Criteria Statement 

10 Refinement 

A DGGS must specify a method by which parent cells are 

tessellated into child cells. It is also recommended to indicate 

maximum number of refinements, maximum possible 

resolution, its limitation and precision used by the reference 

frame. 

11 Addressing 

A DGGS must use one or many spatial referencing methods 

to assign a unique spatial reference (i.e., index) to each 

DGGS cell. 

12 Spatial reference 
A DGGS must define a unique index to address each DGGS 

cell. 

13 Cell centroid 

The location of each DGGS cell must be defined by their 

centroids, which also allows for dual representation of a 

DGGS as cell grids and point lattices. 

14 Quantization 

A mechanism for assigning and retrieving of data to and from 

individual DGGS cells must be defined. Different methods 

for associating spatial data with DGGS cells may be used. 

15 Cell navigation 
Methods for hierarchical and neighborhood navigation across 

DGGS domain must be provided. 

16 Spatial analysis 
Methods for performing simple spatial analysis operations 

across DGGS domain must be provided. 

17 Query 

Methods for receiving, interpreting and processing data 

queries received from external client applications by internal 

DGGS quantization (criterion 14) and algebraic (criteria 15, 

16) operations must be provided. 

18 Broadcast 

Methods for translating data query results from internal 

DGGS operations in formats that are suitable to broadcast to 

external client applications must be provided. 
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2.3 DGGS Implementations 

There are several open source implementations of DGGS that can be used for practical 

applications of geospatial data analysis. In this section four open source implementations are 

reviewed in detail: R binding for dggridR (Barnes, 2016), JavaScript binding for H3 (Uber 

Technologies Inc., 2019) and Python bindings for OpenEAGGR (Riskaware Ltd., 2019) and S2 

(S2Geometry, n.d.). The criteria for selecting the aforementioned libraries included: affiliations 

to large tech companies or academic institutions, a strong and active development team, claims 

for delivered functionality or unique properties (e.g., aperture, adjacency, congruency), an open 

source license, well-documented software, a large user support base, and popularity. While these 

criteria were considered during the selection process, not all of them were met exhaustively by 

each library mentioned here. 

The dggridR library is an R wrapper for its DGGRID parent library, which is a Unix-based 

software package designed and developed by Kevin Sahr in C++ at Southern Oregon University 

(Sahr, 2018). The dggridR is an R package developed by Richard Barnes which allows 

construction of DGGRID grids within the statistical programming language R (Barnes, 2016). 

The software is fairly versatile since it is able to handle several grid systems. In particular, 

DGGS based on hexagons with 3, 4 and mixed 4-3 apertures, and triangles and diamonds with 

aperture 4 are supported (Sahr, 2018). This is the largest variation of shapes and apertures 

amongst the reviewed implementations. The library includes a large array of methods for 

working with vector geometry including native intersection operations between grid objects and 

shapefiles. However, it lacks methods for direct navigation across grid hierarchy and cell 

neighbours. On the other hand, the software is well-documented according to the global 

standards for packages in the R programming language. 

H3 is another geospatial solution to hierarchical partition and spatial indexing on the sphere. 

Developed by Uber, H3 has been actively used as one of the tools for Uber’s own operational 

needs, which includes dynamic optimization of ride prices and quantitative analysis of 

geographic data for decision making purposes, as well as visualization. Written natively in C, the 

H3 library has also a large selection of available bindings for other programming languages. 

These include but are not limited to C#, JavaScript, Python and R. It is worth noting that not all 
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bindings are at the same stage of development, and some are missing certain functionality. 

However, H3 undergoes a rapid development process and there is continuous enhancement of the 

project. The software has a number of built-in functions which permit conversion of points, lines 

and polygons into grids with unique spatial identifiers at various grid resolutions, as well as 

methods that permit moving across a grid system and identifying the neighbourhood of specific 

cells. One of the unique features of H3 is the integration of hexagon-based aperture 7 grid 

partitions, which allows for easier navigation through the hierarchy at the cost of the reduced 

precision of a cell and the area it covers (Brodsky, 2018). 

Open Equal Area Global GRid (OpenEAGGR) is another software library implementation that 

models the Earth’s surface as hierarchical layers of equal area tiles. One of the key differences 

noted for OpenEAGGR is that it claims to be OGC compliant (Riskaware Ltd., 2019), which 

means its development was completed with core OGC criteria in mind. OpenEAGGR was 

natively written in C++; however, other bindings for C, Java and Python, and integration with 

external applications (e.g., PostgreSQL and Elasticsearch) are also available to use. The grid 

partitioning method incorporates both aperture 3 hexagon and aperture 4 triangle hierarchical 

models with the ability to assign spatial data to individual cells (Bush, 2017; Riskaware Ltd., 

2019). Unfortunately, in the last couple of years the development of this project has declined, 

which has led to lack of technical support and difficulty for use in practical applications. 

OpenEAGGR provides a rich variety of spatial analysis functions for operations with vector 

geometry and shape comparison. 

S2 is yet another geospatial library that was developed and introduced by Google. S2 strives to 

model data onto a three-dimensional sphere using a hierarchical partition of squares with 

aperture 4 (S2Geometry, n.d.). S2 does not seem to be explicitly defined as DGGS, but happens 

to contain certain DGGS characteristics, such as discrete representation of space, spatial 

indexing, integration of basic vector type data, as well as the ability for spatial operations (e.g., 

intersection, union) and query (e.g., distance measurement, neighbor search) (Veach, 2017). In 

the past, the library seems to have been used by Google internally, such as in Google Maps web-

based services (Perone, 2015), as well as externally for data modelling by Foursquare (Titlow, 

2013), city studies by Sidewalk Labs (Kreiss, 2016) and even location-based game applications, 
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such as Pokémon GO (Zeroghan, 2019). The S2 library is written in C++, but also available to 

work with Go, Java and Python programming language bindings. 

Some other notable DGGS include HEALPix, an octahedron-based implementation initially 

designed to measure cosmic microwave background anisotropies (Górski et al., 2018), and 

PYXIS, a web-based platform that provides a user interactive environment to search, process and 

share data on a virtual globe (PYXIS innovation inc., 2017). However, in this review, these 

models and implementations were not explored for the various reasons mentioned at the 

beginning of this section including limited available documentation and difficulty accessing the 

source code. 

 

2.4 DGGS Analytics and Q-analysis 

The development of DGGS began in the 1980s as an analytical framework for working with 

global terrain data (Dutton, 1984). This framework evolved into a spatial reference system and 

has been integrated as a data structure for consistent storage, use and analysis of spatial 

information globally, as well as its corresponding auxiliary information (e.g., attribute data) 

(OGC, 2017; Purss et al., 2016). In a general sense, DGGS can be described as a data warehouse 

which combines various data sources and serves as a global analytical system to provide better 

insight and understanding of the complex science systems, as well as simplify data handling 

procedures. Considering the fact that spatial operability or existence of functional algorithms are 

the core criteria for DGGS abstract specification (Table 2.1), new and refined methods for the 

data driven models must be constantly explored in order to account for the increasing data 

volumes and demands for understanding systems complexity (Miller & Goodchild, 2015). 

On its own, the term complexity is not a self-explanatory concept, but it can be defined as a 

descriptive characteristic of systems with properties related to network connectivity, multiple 

subsystem dependencies, discrete dynamics, multilevel dynamics, globality and many other 

components not mentioned here (Johnson, 2014, p. 6). It appears that these descriptive 

characteristics are complementary to the definition of DGGS making it a subject of a complex 

systems science. Therefore, DGGS require formalization of more descriptive and rich methods 
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for data handling and insight across its domain when other conventional methods fall short in 

capturing system components, drivers and interactions explicitly (Johnson, 2014, pp. 7–9). 

One of such methods suggested and applied in this study is called Q-analysis – a technique used 

to improve interpretation capability of complex systems by exploring their structural 

characteristics and connectivity between components (Atkin, 1974). It is interesting to discover 

that the need for DGGS has been indirectly recognized at the early stages of Q-analysis 

development, when the requirements for discretization of space and hierarchical structure of 

systems were acknowledged (Atkin, 1974, p. 117). Additionally, others have identified that the 

geographic division of space requires a scientific approach for proper understanding of its 

underlying structure (Johnson & Wanmali, 1981, p. 262), and the need for Q-analysis 

methodology to be extended for a wider variety of datasets and complex networks (Maletić & 

Zhao, 2017, p. 2). These and other incentives have been explored and addressed throughout this 

study. 

 

2.5 Q-analysis Concepts 

The concept of Q-analysis was introduced back in 1970s by the English mathematician Ronald 

Atkin from the University of Essex (Atkin, 1972, 1974; Atkin et al., 1971), with intention to 

enhance the interpretation perspective of complex systems and provide methods to describe their 

structural characteristics, connectivity and relationship between their various components. In the 

literature, Q-analysis is also commonly known as Polyhedral Dynamics and considered as a 

language of structure originating from the branch of mathematics referred to as algebraic 

topology (Atkin & Casti, 1977; Casti, 1975a, 1975b; Casti et al., 1979). In fact, much of Atkin’s 

original thoughts on Q-analysis were based on the work of Dowker in relational algebra (Atkin, 

1972; Dowker, 1952). 

One of the reasons why the concept is described as “polyhedral” is explained by the fact that it 

can use a three-dimensional polyhedron to represent and visualize a multidimensional 

connectivity structure geometrically (Atkin, 1972, p. 152). While it is interesting to recognize 

that both DGGS and Q-analysis modelling take advantage of such geometric objects as 
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polyhedra, it is worth noting that they are not necessarily used in the same way nor directly 

related. 

The main objective of Q-analysis is to provide a different point of view into complex data and 

system structures to study the connectivity of individual components (Atkin & Casti, 1977, p. 2). 

It is achieved by using rather a rich relational approach to examine connectivity instead of the 

functional approach, which is argued to constrain relations and lead to the loss of information, 

pattern and structure (Gould, 1980, p. 177). 

 

2.5.1 Hierarchical Cover Sets 

At the core of the Q-analysis theory are the notions of sets and cover sets (Atkin, 1980; 

Beaumont & Gatrell, 1982; Gould, 1980; Gould & Johnson, 1980). In a mathematical sense a set 

is a collection of elements, which is defined by some rules designed to determine whether an 

element belongs to the set or not. Such rules, as Gould states, must be carefully considered and 

be well-defined, due to potential membership ambiguity or existence at various generalization 

levels (Gould, 1980, p. 173). To clarify these statements, consider a political map of the world. 

Theoretically, it can be defined by the sets of sets at various hierarchical arrangements to match 

the order of countries’ administrative divisions, such as sets of continents, countries, provinces, 

regions, counties, districts, municipalities, neighbourhoods, etc. Practically, however, such 

definitions can lead to the number of difficulties. For example, elements from different levels of 

aggregation cannot be members of the same set as they cover different spatial extents and might 

lead to the logical difficulties (Gould, 1980, p. 176). At the same time, a member of the 

municipalities set can belong to more than one district, which causes some ambiguity in 

membership definition. 

This leads to an important concept in Q-analysis – a cover set, such that a set element which 

belongs to a higher and more general level of hierarchy can cover elements from different sets at 

the lower level. This is a very important property of Q-analysis since it provides a way to define 

the relationship and connectivity between elements in an unconstrained manner. Covers are 

opposite from the traditional tree-based hierarchy – a partition set, which tends to have a strict 

definition of sets and does not account for more than one element membership at the next 
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broader hierarchical level (Figure 2.7) (Atkin, 1980, p. 387). Gould states that all partitions can 

be considered as covers, but not otherwise (Gould, 1980, p. 174). 

 

Figure 2.7. A comparison between the cover and partition approaches for defining relationship 

between elements across the hierarchy of sets on N, N+1 and N+2 levels. The figure also compares 

the richness of the connectivity structures of cover versus partition sets. 

2.5.2 Relational Thinking 

Another critical component of Q-analysis is the idea of relation, which can be formed between 

two arbitrary sets A and B as their Cartesian product at some fixed level of hierarchy N. The 

output is a new relation (  A x B), where each element is a pair (a, b) such that a  A and b  

B, and  is a relation which associates elements of A with elements of B based on some rule (e.g. 

intersection). Similarly, the relation (-1  B x A) can be represented as the inverse of . To 

illustrate the concept with example, let A = {a1, a2, a3} be a set of polygons and B = {b1, b2, b3, 

b4, b5} – a set of points, which are  related if the element of A contains the element of B. 

Correspondingly, they are -1 related if the element of B is in the element of A. The Cartesian 

product between these two sets can be further stored in an array of pairs, such that: 

A x B = {(a1, b1), (a1, b2), (a1, b3), (a1, b4), (a1, b5), 

   (a2, b1), (a2, b2), (a2, b3), (a2, b4), (a2, b5), 

   (a3, b1), (a3, b2), (a3, b3), (a3, b4), (a3, b5)} 
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The  relation, on the other hand, equals to the array of pairs which is a subset of the A x B 

product, where each element is a binary value indicating that the relation is true or equal to 1 

(Figure 2.8), such that: 

 = {(a1, b1), (a1, b2), (a1, b3),  

   (a2, b2), (a2, b3), (a2, b4), (a2, b5),  

   (a3, b2), (a3, b4), (a3, b5)}  A x B 

This array may be represented as the incidence matrix , and formally summarized via the 

following notation: 

[]𝑖,𝑗 = {
1, if (ai, bj)  

0, if (ai, bj)  
 

(a) 

 
(b) (c) 

 b1 b2 b3 b4 b5 

a1 1 1 1 0 0 

a2 0 1 1 1 1 

a3 0 1 0 1 1 
 

-1 a1 a2 a3 

b1 1 0 0 

b2 1 1 1 

b3 1 1 0 

b4 0 1 1 

b5 0 1 1 
 

Figure 2.8. The figure illustrates (a) sets A = {a1, a2, a3} (polygons) and B = {b1, b2, b3, b4, b5} 

(points), and their Cartesian product A x B reflected in the (b) incidence matrix  and (c) transpose 

incidence matrix -1. Value of 1 indicates that elements are related and 0 – they are not related. 
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At the same time, a conjugate relation (-1  B x A) can be generated by transposing the 

incidence matrix  which can be used to achieve a different view point of the data structure and 

provide additional analytical capabilities (Atkin, 1972, pp. 151–152, 1974, pp. 22–26; Atkin & 

Casti, 1977, pp. 3–5; Casti, 1975a, p. 3). The presented approach is the basis for the relational 

thinking, and considered superior and more adaptable to the variety of applications compared to 

the functional thinking (Gould, 1980, p. 176). 

One of the examples for the notion of functional thinking is the well-known linear regression 

analysis, which is mostly concerned with estimating some variable Y with explanatory variable 

X via its linear approximation. Considering Y and X are two sets at some hierarchical level N a 

special form of the relation can be established via some function , where each element in Y is 

related to only one element in X, such that Y = (X). In this sense, the relation is highly 

constrained since the function might not be capable to sufficiently account for the 

interconnectivity between all elements, which is often necessary to describe complex systems. 

As a result, valuable data structure information will be lost in the process. For this matter, a 

relation must account for more extensive connectivity definition between the elements of two 

sets, providing grounds for many-to-many mapping structure. Therefore, Gould stresses that it is 

critical to begin with defining data connectivity in a broader relational thinking to preserve as 

much original information as possible, since all functions are relations but not all relations are 

functions. In fact, it is relation that defines a structure (Gould, 1980, p. 179). To illustrate this 

concept the earlier example with polygons and points is appropriate to use here as well (Figure 

2.9 cf. Figure 2.8). 

Certainly, the whole concept of a relation which defines an incidence matrix is not limited to the 

binary representation only. In fact, it is appropriate to use other alternative data types, including 

real numbers or nominal data, which can be used to relate sets and form structure accordingly. In 

this case, the notion of slicing can be introduced in order to generate a binary matrix. In a 

nutshell, by choosing some slicing parameter , one can convert data into the familiar binary 

format (1 or 0) if a data value is greater than the  parameter, for example (Atkin, 1974, pp. 35–

38; Beaumont & Gatrell, 1982, pp. 20–23; Gould, 1980, pp. 180–181; Johnson, 1981a, p. 74). In 

this sense, Q-analysis is also rather flexible, as it is possible to define a separate set of  

parameters individually chosen for each element or element pair in the array. 
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Figure 2.9. This figure illustrates the relational and functional approaches for capturing 

connectivity between A and B sets. It is clear that all connectivity outlined by the functional 

approach is also reflected by the relational approach. The opposite, however, is not true since much 

information has been omitted for the functional approach. The functional approach illustrated here 

does not follow a specific function, its connectivity is chosen arbitrary within the problem’s domain 

limits (i.e., if B element is in A element). 

2.5.3 Geometric Representation 

In consideration of the core Q-analysis concepts it is appropriate to recognize that previously 

discussed relation can be also given a geometric form to explore its structure and connectivity 

patterns. For this reason, the use of simplicial complexes was found to be a suitable 

mathematical theory (Dowker, 1952), as it is capable of modelling complex network systems via 

multidimensional geometric objects – the polyhedra (Atkin, 1974, pp. 26–27). 

Considering the earlier defined relation (  A x B) along with its corresponding incidence 

matrix (Figure 2.8a, b), each polygon element of the set A can be represented as a common 

geometric feature (e.g., point, line and polygon) or a polyhedron known as simplex, while the 

elements of set B are the vertices of the simplicial complex. For example, elements a1 and a3 in 

set A are 2-dimensional simplices (i.e., polygon) defined by three vertices from the set B, 

whereas element a2 is a 3-dimensional simplex (i.e., tetrahedron) defined by four vertices (Figure 

2.10a cf. Figure 2.8a, b). Formally, these simplices can be symbolized as 2(a1) = <b1, b2, b3>, 
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3(a2) = <b2, b3, b4, b5> and 2(a3) = <b2, b4, b5> in the KA(B; ) simplicial complex. Note, the 

subscript of the simplex notation indicates its dimensionality, and it is always one unit less than 

the total count of vertices a particular simplex has. 

The representation of the (-1  B x A) relation carries the same principle but with the set B 

elements being simplices and set A elements being their vertices this time (Figure 2.10b cf. 

Figure 2.8a, c). In the literature, the transposed relation is commonly known as the conjugate 

relation which respectively forms the conjugate simplicial complex KB(A; -1) (Atkin & Casti, 

1977, p. 27). 

(a) (b) 

 

 

Figure 2.10. Geometric representation of (a) KA(B; ) and (b) KA(A; -1) simplicial complexes. Each 

simplex is marked with a  notation and represented by corresponding vertices which together 

form a geometric space when combined. 

One must also keep in mind that dimensionality of greater than three is impossible to visualize 

directly. Therefore, corresponding representation is limited to the three-dimensional space for 

visualizing the high dimensional connectivity between vertices. On the other hand, this outlines a 

significant advantage of Q-analysis and algebraic topology as an effective approach for 

expressing highly connected, interacting and multidimensional data to alleviate the constrains of 

the graphical representation (Atkin, 1972, p. 166; Gould, 1980, p. 180). 
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With this understanding it is now possible to have a closer look into the structural characteristics 

of both simplicial complexes to explore their connectivity features. For instance, given 2(a1) = 

<b1, b2, b3> and 3(a2) = <b2, b3, b4, b5> simplices it is clear that they are both connected via the 

< b2, b3> vertices (i.e., line). This implies that 2(a1) and 3(a2) are related to each other in terms 

of sharing common features, properties or characteristics, which can be transmitted to other 

connected simplices through the network of connected chains. Formally this is defined such that 

< b2, b3> is the face shared between 2(a1) and 3(a2), which also makes simplices q-connected 

or 1-near via the 1-dimensional simplex (i.e., line) (Atkin, 1972, p. 155, 1974, p. 29; Beaumont 

& Gatrell, 1982, p. 16). Surely, as the structure gets more complicated such connectivity can 

form a chain of connected faces representing communication pattern of joined simplices in 

various dimensions across a simplicial complex. In fact, it is this q-connectivity which gets 

explored by Q-analysis to find distinct connected components or groups of simplices in a 

simplicial complex (Casti, 1975b, pp. 7–8). 

The direct implications of such analysis are further revealed within the scope of this study; 

nonetheless, it is already possible to see how connectivity structure can be obtained and explored 

via a simplicial complex and the use of Q-analysis. To reiterate, a simplicial complex is a 

multidimensional geometric space composed of multidimensional simplices and vertices which 

define and connect these simplices together. When connected, the simplices form a structure 

which further gets explored by Q-analysis. 

 

2.6 Hierarchical Backcloth and Traffic 

The theoretical rationale of Q-analysis is further based on the concepts of backcloth and traffic. 

By taking into account the earlier defined KA(B; ) and KB(A; -1) simplicial complexes, it can 

be said that both of them are used to describe a multidimensional geometric space called a 

backcloth (Atkin, 1972, p. 165). This geometric structure of the backcloth provides grounds 

where some phenomena or activities can take place and has a general name – traffic (Atkin, 

1980, p. 384). Similarly to the backcloth, traffic is also defined by a vertex set and represented 

geometrically. The vertex set B, in this case, is replaced with a new vertex set C to characterize 

some activity (e.g., air pollution, car sales, life expectancy), such that new relations (  A x C) 



29 

 

and (-1  C x A) along with the corresponding KA(C; ) and KC(A; -1) simplicial complexes 

are formed (Johnson, 1983b, p. 470). 

Atkin has further identified that there is also a strong relationship between geometric 

composition of backcloth and traffic, such that backcloth can either permit or restrict traffic 

based on its dimensionality (Atkin, 1972, pp. 163–165, 1980, pp. 384–386). In practice, this is 

viewed as a mapping of traffic-based simplices, known as cosimplices, onto the vertices of the 

backcloth and vice versa (Atkin, 1972, pp. 154, 163; Beaumont & Gatrell, 1982, p. 24; Gould & 

Johnson, 1980, p. 184). Hence the notion that backcloth can either permit or restrict traffic since 

absence of backcloth connectivity (i.e., which is defined by vertices) will make it impossible for 

traffic simplices (i.e., cosimplices) to be attached to the backcloth (Figure 2.11). In other words, 

traffic requires certain backcloth connectivity structure in order to exist on such structure. In this 

sense Q-analysis presents a noteworthy property, the ability to analyse high dimensional data 

(i.e., traffic) in conjunction with nonetheless high dimensional space (i.e., backcloth). 

(a)  (b) 

 

→ 

 

(c)  (d) 

 b1 b2 b3 b4 b5 

a1 1 1 1 0 0 

a2 0 1 1 1 1 

a3 0 1 0 1 1 
 

  c1 c2 c3 c4 

a1 1 1 0 1 

a2 0 0 1 1 

a3 0 0 1 0 
 

Figure 2.11. Illustration of (d) arbitrary traffic related incidence matrix  mapped onto (c) the 

backcloth related incidence matrix , such that every element in set A have associated vertices that 

form (a) backcloth KA(B; ) and (b) traffic KA(C; ) simplicial complexes. 
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There are two possible ways to observe changes in the traffic geometry: by observing changes to 

the traffic structure while the backcloth remains constant, and by observing changes to the traffic 

as a result of some structural changes in the backcloth. In the literature they are also referred as 

Newtonian and Einsteinian views respectively (Gould, 1980, pp. 182–183). For example, in the 

earlier case, imagine the backcloth being formed as a result of a relation between residential 

areas (set A) and location of some government regulated electric meters (set B). The traffic 

structure, in this case, can be defined based on the measure of electricity consumption (set C) at 

each residential area. Supposedly if the backcloth structure remains unchanged then it is safe to 

assume that energy consumption is a subject to change depending on time of the day, week or 

even season. Thus, changes in traffic are caused by some external factors or forces, called t-

forces (Gould, 1980, p. 182). In the latter case, imagine that the backcloth structure has been 

modified, such that residential area a2 in the set A is no longer part of the backcloth. The 

geometry of the backcloth will be changed, which also result in the structural changes of traffic 

(Figure 2.12 cf. Figure 2.11). 

(a)  (b) 

 

→ 

 

(c)  (d) 

 b1 b2 b3 b4 b5 

a1 1 1 1 0 0 

a3 0 1 0 1 1 
 

  c1 c2 c3 c4 

a1 1 1 0 1 

a3 0 0 1 0 
 

Figure 2.12. Example of (b) changes in traffic structure as a result of (a) structural changes in the 

backcloth. The figure also reflects corresponding changes in the (c) backcloth  and (d) traffic  

incidence matrices. 
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A concluding consideration for performing a valid Q-analysis is the importance of establishing a 

proper hierarchical backcloth and traffic schemes, such that elements at one hierarchical level 

relate to the elements of another hierarchical level in the non-partition, cover-based manner. This 

requirement has a close connection with the notion of cover sets (see Section 2.5.1), except it is 

applied on both backcloth and traffic structures comprehensively. In other words, a hierarchical 

distinction must be made clear for both pieces of geometry, such that backcloth or traffic sets at 

higher level of generalization (e.g., N+1 or M+1) must cover those at the lower level (e.g., N or 

M). To identify and make such distinction is the critical part and subject to a successful Q-

analysis at various levels of hierarchy (Gould & Johnson, 1980, p. 181; Johnson, 1983a, p. 342). 

A significant contribution and advancement of these theoretical developments were made by 

Johnson and Gould with the extensive study on the structure of hierarchical backcloth and traffic 

(Johnson, 1983a, 1983b) and the work on structural and hierarchical complexity in the context of 

television programme and policy (Gould & Johnson, 1980; Johnson, 1978). Their theoretical and 

application-based work has outlined important concepts and rationale for defining a hierarchical 

relation between well-defined sets, as well as mapping of hierarchical traffic onto the 

hierarchical backcloth. 

 

2.7 Q-analysis Applications 

Historically Q-analysis has been applied in a large variety of applications, including such diverse 

areas as chess (Atkin, 1974, pp. 46–64), soccer (Gould & Gatrell, 1979), lake ecosystems (Casti 

et al., 1979), transportation (Johnson, 1981b, 1986), market systems (Johnson & Wanmali, 

1981), economic systems (Sonis & Hewings, 2000), entrepreneurial networks (Bliemel et al., 

2014), big data and complexity (Maletić & Zhao, 2017), and even shopping mall movement 

patterns (Omer & Goldblatt, 2017). Yet amongst the most notable applications which had a 

significant impact on the direction of this research were studies in urban analysis of a town 

(Atkin, 1974, pp. 105–140), television programme complexity (Gould & Johnson, 1980) and 

agriculture and communication (Gaspar & Gould, 1981). 

In his urban analysis work Atkin has recognized the limitation of a two-dimensional map to 

obtain and accurately describe physical properties and functioning of a town or community. For 
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this reason, the study suggested to cover the town area with the set of lozenges (i.e., areal units) 

of arbitrary size and shape in order to cover important features of the town (e.g., trading centers, 

residential property, amenities, etc.). At the same time, it was also stressed that these areas must 

be small enough to aggregate into the larger scale areas, if needed. The association between 

lozenges and town features created a basis for the urban community in the area and formed a 

backcloth. The connectivity analysis of the urban community structure demonstrated that Q-

analysis can be used as a decision making tool for urban planning and can promote development 

of a well-balanced and functioning community, including visual appearance and aesthetics of the 

town (Atkin, 1974, pp. 105–140). Similar research in this field have also identified the usefulness 

of Q-analysis to interpret complex data structures and gain better understanding of urban systems 

(Gatrell, 1981; Spooner & Batty, 1981). 

A study on television policy and complexity has clearly identified the difficulty of having the 

well-defined television programme structure at various generalization levels. The reason of 

defining such complex structure was meant to promote scientific and policy-making 

development in this research area. As a result, a clear distinction of program content and its 

categorical arrangement (e.g., education, entertainment, miscellaneous) was specified. The study 

recognized distinct hierarchical structures for both backcloth and traffic and addressed the use of 

cover sets accordingly. It also demonstrated practically how backcloth can be mapped with 

traffic by associating a backcloth simplex with a traffic simplex. Such mappings were defined as 

hierarchical, which means that a backcloth simplex at level N was possible to map with a traffic 

simplex at any hierarchical level, such as N+2 for example (Gould & Johnson, 1980). These and 

other developments of this study outlined a valuable theoretical background for examining other 

large-scale hierarchical structures and properly accounted for their descriptive components and 

features. 

Lastly, another great study in the field of agriculture and communication which used Q-analysis 

has significant interest and practical value in the context of this thesis. The study integrated the 

familiar concepts of cover sets and hierarchies of backcloth and traffic elements. In particular, 

the backcloth was formed as a relation between a set of farmers and their personal and property 

characteristics (e.g., literacy, presence of irrigation, access to information), which created 

necessary geometric structure to support traffic. Traffic, in this case, was formed as a relation 
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between farmers and their productions in various fields of agriculture (e.g., livestock, orchards, 

grains). Both backcloth and traffic were carefully defined in a hierarchy of sets, such that 

elements of “age, literacy, education” at level N, became “personal characteristics” at level N+1, 

for example. What was unique about this study is a consideration for the communication 

backcloth between farmers who were seeking for advice and those who were prepared to give 

advice, as well as comparison between backcloths formed of only younger and older farmers. 

The study revealed that geometric structures of younger and older farmers were noticeably 

different. In addition, the difference between type of agricultural occupation they practice and 

level of education they have was also observed. The study also combined both backcloth and 

traffic elements in a single geometric structure to explore some distinct characteristics of farming 

in the study area (Gaspar & Gould, 1981); however, some procedural aspects of merging two 

structures together remained unclear and require additional clarification. 

As a concluding remark, it should be recognized that Q-analysis theory and methodology does 

not stop here, but continues to evolve into more explicit and prominent theoretical methods to 

meet the needs for the complex data organization, management and analysis. This has led to 

advancement and theoretical formalism of hypernetworks, which are meant to provide 

interpretation tools for the multilevel backcloth-traffic systems, unambiguous definition of such 

multilevel systems and relational mapping, as well as comprehensive use of simplices, simplicial 

complexes and Q-analysis. A significant advancement in this area was performed by Johnson 

and his work on hypernetworks in complex systems (Johnson, 2014). At the same time, it is also 

important to mention that there are other aspects of Q-analysis theory which were not covered in 

this review as they falls outside of the study scope, these were such concepts as eccentricity or 

dynamics (i.e., space time analysis). 
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Chapter 3 Methodology 

The main goal of the following chapter is to outline a detailed methodology for using Q-analysis 

in a DGGS for the broad variety of applications. The chapter begins with exploring DGGS in a 

general context, its operational capability and industry standards in Section 3.1. Section 3.2 

formalizes the use of DGGS as one complex system, the implications of which can be further 

interpreted mathematically via corresponding Q-analysis. Section 3.3 explores importance of 

cover sets and their practical application in DGGS to form a connected structure. The chapter 

ends with Section 3.4 outlining the final steps necessary for the successful use of Q-analysis as 

well as its implementation in JavaScript. 

 

3.1 Exploring DGGS 

The ability to discretize geospatial data for analytical purposes and presenting the produced 

outcome via available DGGS implementations is an important part of effective communication 

of results. Due to the differences and variation in DGGS functional availability to perform such 

operations, a method for user-friendly handling of spatial data was explored. For the most part 

available DGGS implementations use their own data type structures for storing data. Often, these 

formats are not straightforward to work with for dynamically modifying and assigning multiple 

data values. This section focuses on exploring how the integration of spatial data for various 

types can be achieved using the GeoJSON data format for embedding, processing and visualizing 

of geographic data, due to its simplicity, versatility and universality (Butler et al., 2016). 

 

3.1.1 Embedded DGGS 

In particular, the general procedure of such an approach is theoretically scalable to any DGGS 

implementation as long as two essential functions are provided: methods for converting 

geographic data into grid cells and extracting coordinate information for each of their vertices. 

For example, methods for converting a coordinate location of a point into a hexagon grid cell to 

obtain the coordinates of its vertices must be provided. The acquired geometry can be used to 
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construct a GeoJSON polygon feature following its standard encoding format to populate its 

coordinate information. During this stage additional data can be embedded in the feature type or 

the current one can be modified. The ID value encoded in the feature can be directly read and 

interpreted by DGGS libraries in order to determine each cell’s resolution, search for its 

neighbours, navigate through the hierarchy or used in spatial analysis, as long as these two 

methods are supported (Figure 3.1). 
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{ 

"type": "FeatureCollection", 

"features": [{ 

 "geometry": { 

  "type": "Polygon", 

  "coordinates": [[ 

   [longitude1, latitude1], 

   [longitude2, latitude2], 

   [longitude3, latitude3], 

   [longitude4, latitude4], 

   [longitude5, latitude5], 

   [longitude6, latitude6], 

   [longitude1, latitude1] 

  ]] 

 }, 

 "type": "Feature", 

 "properties": { 

 "fill": "#298178", 

 "fill-opacity": 0.5 

 "ID": 1 

 "city": "valueA" 

 "population": "valueB" 

 "land_type": "valueC" 

 } 

}] 

} 

 

Figure 3.1. A sample GeoJSON encoding format of a hexagon feature type. Note the potential use of 

the “coordinates” field on lines 8-16, and “properties” field on lines 19-26 to include necessary 

information associated with the hexagon cell (e.g., city name, city population). 

To provide a concrete example, the study further considered implementation of an intersection 

algorithm using only the primary functionality for cell generation and geometry extraction. Two 

geometry types of line and polygon representing a street network and a water feature respectively 
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were indexed and integrated into a DGGS hierarchy. Using their generated cell IDs and land 

cover types, the intersection region between two spatial features was determined and assigned a 

different value to reflect the intersection property, while also preserving their original attribute 

values. In the meantime, all geographic features along with their attribute information were 

written to a GeoJSON file format as noted earlier. Once all data were stored in the GeoJSON file 

format, the intersection output can be easily visualized using a 3rd party desktop application 

(e.g., QGIS) or a web-based service (e.g., Leaflet), or even converted into other file formats, 

such as SHP, KML, WKT or CSV, if necessary. The presented approach is a clear illustration of 

how basic data integration, analysis and visualization functionality can be achieved if such 

methods are not directly provided by a DGGS. The presented methodology was implemented 

and applied for the duration of this study. 

 

3.1.2 Scalability 

Although the proposed methodology for data handling and display might be useful and 

convenient to apply for individual use cases or even small datasets, it is crucial to consider 

application with much larger datasets for particular DGGS implementations, aperture levels and 

shapes. With this in mind, individual aperture-shape pair combinations were considered for this 

analysis based on library implementation and pair availability. In particular, aperture 3 hexagon 

(A3H), aperture 4 hexagon (A4H), aperture 4 triangle (A4T) and aperture 4 diamond (A4D) pairs 

were examined for dggridR library. However, only A3H, A4T pairs were tested for 

OpenEAGGR, aperture 7 hexagon (A7H) for H3, and aperture 4 square (A4S) for S2, due to 

their specific approaches to DGGS implementation. It is important to mention that hexagon with 

mixed 4-3 aperture implementation was not considered for dggridR library, as it generates 

hierarchical sequence of grids which alternates between both apertures (Sahr, 2018). Thus, given 

a fixed resolution the same objective can be achieved by using the aperture 3 or 4 only. 

The performance of selected DGGS software packages was evaluated by varying dataset size and 

performing a commonly required task. Randomly generated points were used to simulate a 

baseline point spatial dataset at an arbitrary fixed scale. This process was then repeated five 

separate times and each sample was converted to its DGGS cell addresses. The first sample case 
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begins with 100 random features, and subsequent sample sizes were increased by a factor of 10 

ending with 1,000,000 sample points in total. To reiterate, the analysis begins by sampling 

random latitude-longitude locations across the globe in order to generate, extract, store and save 

cell geometry to a GeoJSON file. The whole process was timed in seconds and compared with 

the performance of the four DGGS implementations considered in this study. While it is 

acknowledged that performance might vary significantly for different libraries according to 

multiple factors, such as algorithm efficiency, input/output operations, development 

environment, language binding or even choice of the cell shape and solid polyhedron as a base of 

a DGGS, the goal of the test is to observe the behaviour and performance under increasing data 

volumes. One of the implications of exhaustive partitioning of space provided by DGGS is the 

fact that datasets can be extremely large, so scalability becomes a critical requirement for 

operational use. The results presented in Chapter 5 indicate whether a library is able to handle 

large datasets, display its overall performance, and, if possible, identify major differences and 

similarities amongst the libraries. 

 

3.1.3 OGC Compliance 

The final component of this section for embedding DGGS and finding linkages to GIS 

applications includes DGGS state of development evaluations and their OGC compliance. For 

this matter it was decided to review the released OGC abstract specification (OGC, 2017) in 

order to compare its defined criteria (Table 2.1) with four selected DGGS implementations: 

dggridR, H3, OpenEAGGR and S2. Each criterion was explored individually for all libraries in 

order to determine whether it had been met by a particular DGGS implementation. The analysis 

also reflects on the overall compatibility of OGC abstract specification and suggests possible 

ways for their further refinements and enhancements. 

 

3.2 Understanding Complexity 

The process of formalizing spatial information in a standardized data infrastructure (i.e., DGGS) 

requires procedures capable of integrating various data sources while preserving their complex 
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relational structures across the hierarchy of distributed systems. These data sources can consist of 

many descriptive components and interactions, the retention of which are important in data 

driven analyses (Miller & Goodchild, 2015). In fact, these interactions can further form a 

multidimensional relational structure (i.e., multilevel backcloth-traffic system), the complexity of 

which can be difficult to interpret without utilizing tools and methods of algebraic topology (i.e., 

Q-analysis) (Gould, 1980). The following methodology attempts to account for the structural 

complexity of such spatial information by integrating the concept of relation (see Section 2.5.2) 

into the definition of hierarchical connectivity within DGGS data infrastructure. For this matter, 

a relation between DGGS cells and spatial features must be formed to define how components 

are held together in a hierarchical DGGS data structure. 

 

3.2.1 Matrix Construction 

The process of encoding the information requires explicit definition of the well-defined finite 

sets and their association in a binary matrix form as a Cartesian product. In the DGGS context, 

the primary set must consist of DGGS cells as the elements representing some physical space or 

a study area, while the elements of an associated set must contain subject matter features and its 

descriptive characteristics (e.g., spatial or attribute data of the subject matter) related to the 

primary DGGS set. At this stage, the methodology is restricted to a single level of generalization, 

which means that hierarchical arrangement of sets is not considered, and all members are 

assumed to have a similar level of generalization (i.e., same coverage and descriptive domain). 

Thus, a binary relation is established in order to indicate the presence or absence of association 

between a pair of elements from the chosen sets. That is, if a DGGS cell is described by an 

element from the subject matter set the relation equals to 1, otherwise the relation is 0. In this 

case, DGGS cells are rows and subject matter or its descriptive characteristics are columns in a 

corresponding binary matrix. Columns, on the other hand, can be also classified into groups to 

represent various geographic features (e.g., points, lines, polygons or raster scenes) in an 

organized manner, if required (Table 3.1). 
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Table 3.1. Matrix construction of a binary relation between DGGS cells (rows) and feature 

elements (columns) to indicate association between each pair, where 0 or 1 specify absence or 

presence of the relation respectively. 

 Point Features Line Features Polygon Features Raster Scenes 

 X1 ⋯ Xn Y1 ⋯ Yn Z1 ⋯ Zn R1 ⋯ Rn 

C1 0/1  0/1 0/1  0/1 0/1  0/1 0/1  0/1 

C2 0/1  0/1 0/1  0/1 0/1  0/1 0/1  0/1 

C3 0/1  0/1 0/1  0/1 0/1  0/1 0/1  0/1 

⋮             

Cn 0/1  0/1 0/1  0/1 0/1  0/1 0/1  0/1 

While the binary relation is necessary for the further use of Q-analysis, the whole concept is not 

limited to the binary representation only. Other more practical and familiar data types of real or 

nominal values are encouraged to be used as well. These data types can be also converted into a 

binary relation matrix via the concept of slicing and corresponding slicing parameter  (i.e., 

condition statement) instead (see Section 2.5.2). The slicing parameter , in this case, can be 

defined as a condition upon which the relation is evaluated to true or false (i.e., 1 or 0). For 

example, a DGGS cell can be related to some raster scene via a raw pixel value, which in turn 

can be converted into a binary value according to defined condition, such as identifying pixels 

with Normalized Difference Vegetation Index (NDVI) greater than zero (i.e.,  > 0). Thus, a 

binary relation is generated according to whether expression is true or false (i.e., 1 or 0). The 

work with rater data type was not explored in this research; however, the presented methodology 

provides basis for its potential use in the future. 

At the same time, similar attention may be given to the inverse binary matrix, which is generated 

by transposing the initial binary matrix. In this sense, the rows become columns and columns 

become rows, such that each feature type or spatial attribute is defined by the set of DGGS cells 

(Table 3.2 cf. Table 3.1). Matrix transposition provides opportunity to observe connectivity 

structure from a data point of view, as opposed to the spatial point of view represented by the 

direct binary matrix (Atkin, 1972, pp. 157–158, 1974, pp. 32–33). 
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Table 3.2. A transposed binary relation, with initial rows and columns exchanged. The process 

preserves the original association parameters of each pair. 

 C1 C2 C3 ⋯ Cn 

X1 0/1 0/1 0/1  0/1 

⋮      

Xn 0/1 0/1 0/1  0/1 

Y1 0/1 0/1 0/1  0/1 

⋮      

Yn 0/1 0/1 0/1  0/1 

Z1 0/1 0/1 0/1  0/1 

⋮      

Zn 0/1 0/1 0/1  0/1 

R1 0/1 0/1 0/1  0/1 

⋮      

Rn 0/1 0/1 0/1  0/1 

In a general sense, the process extends the ability of capturing and retaining multidimensional 

complexity of DGGS infrastructure with spatial information embedded into one standardized 

relationship representation. The method also facilitates discrete way of reflecting relation 

structure of various features and their corresponding sets for further analysis and visualization. 

 

3.2.2 Geometric Visualization 

The binary relationship between sets can also take a geometric form, the visualization of which 

attempts to display the complexity of the given data. The procedure takes advantage of a 

simplicial complex, a mathematical concept which defines elements of one set (i.e., DGGS cells) 

as simplices, and the related sets as simplex vertices. These simplices are geometric objects 

which are described by the vertices connected together to reflect connectivity found in the 

corresponding binary matrix. That is, simplex vertices are connected if they are related to a 

single row element (i.e., DGGS cell). Number of the connected vertices defines simplex 

dimensionality, such that a vertex by itself is a 0-dimensional simplex 0 (i.e., point), two 

connected vertices – 1-dimensional simplex 1 (i.e., line), three connected vertices – 2-

dimesional simplex 2 (i.e., polygon), four connected vertices – 3-dimensional simplex 3 (i.e., 
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tetrahedron), and so on. Thus, dimensionality of a simplex is equal to the total number of vertices 

minus one (Figure 3.2). While challenges of visualizing such connectivity structure due to the 

limited human perception to the three-dimensional space remain, algebraically there are no such 

limits and connectivity is preserved regardless of the dimension. Certainly, such geometric 

realizations must also account for possible chain connectivity, in cases when vertices are shared 

amongst various simplices. In this case, the whole structure is represented as a polyhedron which 

combines simplices in a one multidimensional structure called a simplicial complex to display 

connectivity of the well-defined sets (Figure 3.2). 

 

Figure 3.2. Geometric visualization of a simplicial complex as a chain of simplices with various 

dimensions combined into one multidimensional structure. The vertex connectivity between 

simplices implies sharing of similar features or characteristics. 

At the same time, following the same procedure, the geometric realization can be applied to the 

transposed binary matrix as well. The corresponding geometric structure is called a conjugate 

simplicial complex, and provides additional point of view of the system complexity to gain better 

insight and understanding. Both simplicial complex and its conjugate make up a backcloth, a 

generic term which describes a relatively fixed multidimensional system structure. This structure 

is also able to carry traffic, which is a simplicial complex itself describing system characteristics. 

The existence of traffic is directly dependent on the geometric structure of the backcloth. 
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3.3 Q-analysis and DGGS 

The process of deriving well-defined sets as the matter of managing and formalizing spatial 

information requires additional considerations for their descriptive domains, since it is usual for 

data to have descriptive characteristics at various levels of generality or hierarchy. A clear 

distinction of these hierarchies is the essential part, and must be properly established prior the 

analysis in order to avoid logical paradoxes (Gould & Johnson, 1980). Such hierarchical 

arrangement of data is further described by the concept of cover sets (see Section 2.5.1). That is, 

sets at the higher level of generalization covers sets at the lower level. The following 

methodology attempts to build upon the notion of cover sets and extend its application to the 

DGGS framework. The process requires proper articulation and logical arrangements of sets 

while being complementary with the embedded hierarchy of DGGS and Q-analysis theory. This 

also includes formalization of the established hierarchical backcloth and traffic, as the product of 

cover sets (see Section 2.6). Both notions are subject to having distinct hierarchical structures, 

the connectivity of which gets further examined by Q-analysis. 

 

3.3.1 Defining Hierarchical Backcloth 

In the theory of Q-analysis a hierarchical backcloth is understood as a relation between well-

defined set elements at one hierarchical level to the set elements at another hierarchical level in 

the non-partition, cover-based way. Considering the abstract specification for DGGS (see 

Section 2.2), the idea of cover sets can be naturally established using the concepts of hierarchical 

tessellation and aperture of cells. That is, a clear relationship between sets of cells at various 

hierarchical levels can be defined via built-in methods to determine whether a cell is at the same, 

higher or lower hierarchical level when compared with other cells in DGGS hierarchy. 

In particular, a sequence of DGGS cells can be generated on some fixed level N, where N is the 

numeric representation of an arbitrary real-world scale. Thus, a hierarchy of DGGS cells can be 

constructed to model a physical space, for example N+0 being the street level, N+1 – 

neighbourhood level, N+2 – municipality level, N+3 – district level, and so on all the way up to 

the N+k level, where k is the world level scale equivalent to the initial tessellation of the DGGS 
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truncated icosahedron (see Section 2.1.1). Similarly, the hierarchy can go into a negative 

direction too, modelling finer resolution physical features, such as N-1, N-2 and N-3 levels being 

buildings, rooms and house specific objects respectively. For practical purposes it might not be 

necessary to integrate multiple hierarchical levels at once, but the essential levels must be 

established according to application needs or data availability. The relationship between such 

hierarchical levels of cells is complementary with the definition of cover sets, such that higher 

level cells cover the lower level cells. Besides, set membership and relation between individual 

cell elements can be determined according to the conventional rules for cell tessellation and 

aperture (see Section 2.1.3). 

At the same time, it is important to stress that aperture choice may have a significant impact on 

how cover sets are defined, since cells can be shared across hierarchy. For example, with a 

hexagon-based DGGS a single cell element can be covered by 3, 2 and 1 cell elements at the 

next hierarchical level, according to the definition of hexagon apertures 3, 4 and 7 respectively 

(Figure 2.6). A special mention should be made about aperture 7 hexagons, since their 

hierarchical structure might seem as partitions (Figure 2.7). That is, according to the definition of 

aperture 7, a hexagon at one level can be a member of only one hexagon at the next hierarchical 

level (Uber Technologies Inc., 2019). Nonetheless, it is still consistent with the definition of 

covers, since “all partitions are covers, but not all covers are partitions” (Gould, 1980, p. 174). 

The statement is also true for the congruent shapes, such as squares, diamonds and triangles, 

making all known DGGS kinds consistent with the concept of cover sets. 

Consequently, given the sequence of DGGS cells at various hierarchical levels a simplicial 

complex KC
N+k(F, N+k) can be generated for each corresponding level, where K indicates a 

complex; N+k – hierarchical level for k = 1, 2, 3,…n; C – a set of DGGS cells; F – a feature set 

or a subject matter related to some case study (e.g., points, lines, polygons and raster scenes);  – 

relation which defines association rules between C and F sets used for the binary matrix 

construction. Note that definition of the  relation is hierarchy dependent to the set C instead of 

set F, since DGGS cells vary in size and spatial extent across hierarchy, whereas set F remains 

constant. Therefore, associative rules must be defined for each hierarchical level to reflect 

corresponding changes of the spatial extent in DGGS cells. The formal definition of this 
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mathematical concept was described in earlier studies, thus similar hierarchical consistency was 

preserved here as well (Gould & Johnson, 1980, pp. 182–183; Johnson, 1983a, pp. 355–357). 

In summary, each simplicial complex consists of simplices (i.e., DGGS cells), which are 

described by their vertices of the associated subject matter feature set (i.e., the set F), realized 

geometrically, and covered by the simplices at the next hierarchical level according to the 

aperture definition. That is, a geometric structure of a simplex at hierarchical level N is covered 

by the simplex or simplices at the next N+1 level. Thus, the methodology delivers a general 

procedure on how a multidimensional hierarchical backcloth structure can be defined in a DGGS 

context with hierarchical tessellation and aperture concepts in mind, while considering Q-

analysis concept of the well-defined cover sets. 

 

3.3.2 Defining Hierarchical Traffic 

In Q-analysis theory the hierarchical backcloth structure can also carry associated descriptive 

characteristics – traffic, a term used to describe some phenomena or activity which is directly 

dependent on the geometric structure of the backcloth (see Section 2.6). Similarly to the 

backcloth, traffic is also capable of having distinct hierarchical schemes and geometric 

representation. In other words, it follows a standard definition of a simplicial complex and its 

conjugate, including the formalization of the well-defined cover sets and their relation, binary 

matrix construction and corresponding association across DGGS hierarchy. 

Considering the fact that backcloth and traffic have a strong contextual relationship, traffic 

definition must also account for the key DGGS concepts of hierarchical tessellation and aperture. 

Since, in a nutshell, traffic is a simplicial complex composed of simplices, which are defined by 

a relation between two sets (i.e., a binary matrix). One of these sets is inherited from the 

backcloth (e.g., DGGS cells set) in order to guarantee a common ground between backcloth and 

traffic, as well as to provide basis for the backcloth-traffic mapping (Figure 2.11, Figure 2.12). 

Whereas the other set contains elements which describe phenomena or activity. With this in 

mind, same DGGS principles and aperture rules used in the construction of the hierarchical 

backcloth hold true for the hierarchical traffic as well. 
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The primary reason why DGGS cells are the set which is considered for the traffic mapping is 

based on the need to have a common spatial object (i.e., hexagons) as a global reference for both 

backcloth and traffic structures. Such practice is both practical and logical considering DGGS 

data infrastructure incentives, the ability to have spatial versus data viewpoints (see Section 

3.2.1), and demand to have multiple physical (i.e., backcloth) and descriptive (i.e., traffic) 

features embedded in a single DGGS cell with it being the only common ground. This, however, 

might be different from the conventional use of Q-analysis, where the subject matter (i.e., set F 

in this case) is used as a common ground between backcloth and traffic instead (Gould, 1980; 

Gould & Johnson, 1980; Johnson, 1983a, 1983b). 

Therefore, given the same sequence of DGGS cells at various hierarchical levels a different 

simplicial complex KC
N+k(DM+k, (N+k, M+k)), can be formed to reflect the traffic structure at each 

hierarchical level. Note that the subject matter feature set F is replaced with the descriptive set D, 

which, in contrast, is capable of having a distinct hierarchical scheme M+k independent from the 

backcloth hierarchical scheme N+k. This resembles a double hierarchy of the new relation (N+k, 

M+k), such that a cell element from the hierarchical set CN+k is (N+k, M+k) related to a descriptive 

element from the hierarchical set DM+k. Similarly to the backcloth the  relation must be 

redefined with changes to hierarchical levels in order to account for changes in spatial extent of 

DGGS cells, and now also for the contextual aggregation of the descriptive features. 

Thus, traffic is another simplicial complex made of simplices (i.e., DGGS cells) and described by 

vertices (i.e., set D) to form a new geometric structure which represents backcloth descriptive 

characteristics. Each traffic simplex is covered by the simplex at the next hierarchical level pair. 

That is, a geometric structure of a simplex at level pair (N, M) is covered by the simplex or 

simplices at level (N+1, M+1). 

 

3.3.3 Merging Backcloth and Traffic 

Thus far, the methodology has described the key components and steps necessary to successfully 

define cover sets and form backcloth and traffic structures complementary with DGGS abstract 

specification. The following section further explores the process of merging two structures 
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together to form a new connected structure, such that each vertex in the backcloth is mapped 

with descriptive traffic vertices. The process is based on the earlier work of Johnson and his 

suggestions for the use of category theory to establish natural mapping relationship between 

backcloth and traffic sets (Johnson, 1983b, pp. 484–486). 

The process requires the construction of a two-dimensional binary matrix using the general rules 

for matrix generation (see Section 3.2.1), given both backcloth and traffic related simplicial 

complexes KC
N+k(F, N+k) and KC

N+k(DM+k, (N+k, M+k)), as well as their corresponding binary 

matrices. That is, a new simplicial complex KC
N+k(F x DM+k, (N+k, M+k)) is formed for each 

hierarchical level, where F x DM+k is the Cartesian product between the subject matter F and its 

descriptive characteristics D, and new relation  as the mapping function of traffic vertices onto 

the backcloth. In a general sense, the connectivity structure of the entire relation is ((N+k, M+k)  

CN+k x (F x DM+k)), which requires backcloth elements (i.e., set F) for the traffic elements (i.e., 

set D) exist in each DGGS cell (Table 3.3). 

Table 3.3. Construction of a two-dimensional binary matrix for a backcloth-traffic mapping of the 

descriptive set D onto the subject matter set F. Each element of these sets represents a vertex used 

to describe corresponding DGGS cells in set C. 

 F1 x D1 ⋯ F1 x Dn F2 x D1 ⋯ F2 x Dn ⋯ Fn x D1 ⋯ Fn x Dn 

C1 0/1  0/1 0/1  0/1  0/1  0/1 

C2 0/1  0/1 0/1  0/1  0/1  0/1 

C3 0/1  0/1 0/1  0/1  0/1  0/1 

⋮           

Cn 0/1  0/1 0/1  0/1  0/1  0/1 

This process is equivalent to mapping a traffic-based simplex onto one backcloth vertex at a 

time. Such a definition of the connectivity structure clearly demonstrates the concept outlined 

earlier by Atkin, which states that backcloth can either permit or restrict traffic (Atkin, 1972, pp. 

163–165, 1980, pp. 384–386). The binary relation must be generated for each hierarchical level 

in order to account for the appropriate changes in backcloth and traffic aggregations accordingly. 

The mapping procedure is also flexible, which allows for additional physical features or groups 

(e.g., points, lines, polygons) be added to the relation, if necessary. In which case, the binary 
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table must reflect additional backcloth and traffic features accordingly as illustrated earlier 

(Table 3.1). 

It is appropriate now to revisit the earlier statement and methodological choice for making 

DGGS cells (i.e., set C) as the common ground set between backcloth and traffic. The presented 

binary mapping approach is capable of defining a direct relation as a Cartesian product between 

subject matter set F and set D, which is said to be a descriptive set of the subject matter. This is 

more meaningful than having a Cartesian product between traffic elements and DGGS cells 

directly. Additionally, set F does not have a direct hierarchical component associated with it, 

which simplifies the process of backcloth-traffic mapping and the corresponding hierarchical Q-

analysis. 

 

Figure 3.3. The figure describes a general workflow used to generate backcloth and traffic 

structures, as well as backcloth-traffic mapping for various hierarchical levels within the DGGS 

framework. 
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In summary, the entire process of formalizing spatial information in DGGS context at various 

hierarchical levels to form backcloth (i.e., subject matter of physical features) and traffic (i.e., 

descriptive features) structures, as well as the process of backcloth-traffic mapping, can be 

visualized in (Figure 3.3). With completion of the backcloth-traffic mapping process, the 

methodology further proceeds by defining a procedure for Q-analysis. 

 

3.4 Implementing Q-analysis Algorithm 

In a general sense, Q-analysis is mostly concerned with identifying so-called connected 

components or connected chains between sets elements to understand their structural properties 

and connectivity pattern (Atkin & Casti, 1977, p. 2). The technique is argued to provide the 

insight into the complex network systems made up of various interacting elements embedded in a 

matrix form or represented as a mathematical relation (Atkin, 1974, pp. 105–106). Therefore, the 

final part of the methodology is focused on implementing the Q-analysis algorithm in JavaScript 

according to the formal theoretical developments (Atkin, 1972, 1974, 1980; Beaumont & Gatrell, 

1982; Gould, 1980; Johnson, 1981a). The implemented procedure here is appropriate to apply for 

hierarchical backcloth and traffic, as well as backcloth-traffic mapping as long as study sets are 

well-defined and necessary shared-face matrices are generated. 

 

3.4.1 Producing Shared-Face Matrix 

Given the two well-defined sets it is necessary to determine their cardinality. That is, number of 

elements in each set must be established in the (R x C) form, where R stands for the total number 

of rows (i.e., DGGS cells), and C for the total number of columns (i.e., physical or descriptive 

characteristics). Accordingly, the incidence matrix  is formed which relates rows and columns 

via some  expression and evaluates to binary values of 1 or 0, with (i,j) indicating a specific (R, 

C) pair in , such that: 

 = 
 C 

R (i,j) 
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Similarly, a conjugate relation is represented as a transposition of , such that: 

T = 
-1 R 

C -1
(i,j) 

Next, the algorithm proceeds with connectivity analysis by generating shared-face matrices R of 

size (R x R) and C of size (C x C), such that: 

R = (*T) - R, where R is all-ones (R x R) matrix, and 

C = (T*) - C, where C is all-ones (C x C) matrix. 

Both R and C matrices are symmetric around diagonals, thus only their halves are necessary to 

retain, including the diagonal values. The diagonal values indicate q-dimensionality of each 

simplex, with q being the diagonal value and (q+1) being the total number of related elements or 

vertices which define a simplex. The non-diagonal values, on the other hand, indicate direct 

connectivity between simplices. That is, two simplices directly share (q+1) vertices, where q is 

the value from the R and C matrices. This type of connectivity is also known as q-nearness. 

Two simplices can also be q-connected, such that they do not have vertices in common, but are 

still considered to be connected via other simplices nonetheless. Q-nearness implies q-

connectivity, but not vice versa (Beaumont & Gatrell, 1982, p. 16). The final part of the 

algorithm is concerned with identifying a chain of connected simplices from the R and C 

shared-face matrices, such that all simplices are grouped into components and form connected 

chains according to their dimensionality and connectivity properties. For instance, given the 

arbitrary shared-face matrix (Table 3.4) it is possible to identify the following: 

• The highest q-dimension is q = 3, which means that the corresponding 3(C3) simplex is 

defined by four vertices (i.e., q + 1). Thus, there are four distinct q-levels starting from 

the highest dimension down to zero, such as q = 3, q = 2, q = 1 and q = 0. 

• At q = 3, a single component {C3} is formed, which consist of only one 3(C3) simplex. 

It is the only simplex with q-dimension being q = 3, and it shares (q + 1) vertices with 

itself. 

• At q = 2, there are two components {C2} and {C3}, but they are disconnected since they 

do not have (q + 1) vertices in common. In other words, they do not share a 2-
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dimensional face but 1-dimensional only (i.e., they share a line). The component {C3} is 

also included at this level, because its q-dimension (i.e., q = 3) is greater than q = 2. 

• At q = 1, there are two components {C1} and {C2, C3}. Here, it is possible to observe that 

both 2(C2) and 3(C3) simplices formed a connected component {C2, C3}, since at q = 1 

they share a 1-dimensional face indeed. Simplex 1(C1) also enters the structure at this 

level as a separate component, since it is not connected. 

• At q = 0, there is only a single connected component {C1, C2, C3}, which forms a 

connected structure. A chain of connected simplices is also established, such that 1(C1) 

is 0-connected to 3(C3) via simplex 2(C2). 

• The value of (-1) implies that corresponding simplices do not have any vertices in 

common, or they do not share a face. 

Table 3.4. The table represents a randomly generated shared-face matrix as a worked example for 

the connectivity structure analysis. 

 C1 C2 C3 

C1 1 0 -1 

C2  2 1 

C3   3 

The formal mathematical definition of q-connectivity is introduced by Atkin and restated here 

accordingly (Atkin, 1974, p. 178). In a general sense, two simplices (p) and (r) are said to be 

q-connected or joined by a chain of connection in some simplicial complex K, if there exist a 

sequence of simplices {(C1),…(Cn)}, such that: 

• (C1) share a face with (p) 

• (Cn) share a face with (r) 

• (Ci) and (Ci+1) share a face of some dimension i, for i = 1,…(n-1) 

Then, both simplices are joined by a chain of q-connectivity with q value being the minimum 

dimension in {(C1), (1), (2),…(n-1), (Cn)}. 
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3.4.2 Finding Connected Components 

Certainly, with increasing data quantity and subsequent network complexity, the connectivity 

structure becomes difficult to track manually. Thus, the Q-analysis procedure for finding 

connected components of a given shared-face matrix has been implemented in JavaScript to 

automate the process (Figure 3.5), including its helper function for sets connectivity (Figure 3.4) 

and the testing module (Figure 3.6 cf. Table 3.4). 
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/* 

Returns a connectivity dictionary of each row id in a shared-face matrix 

for a specific q-value 

@param  {Integer}                  qValue      A specific q-value 

@param  {Object}                   qSharedFace Two dimensional matrix object 

@param  {Array of Strings}         qRows       An array of row ids 

@return {String: Array of Strings} qGraph      The connectivity dictionary 

*/ 

function getQconnectivity(qValue, qSharedFace, qRows) { 

 qGraph = {}; 

  

 for(i=0; i<qSharedFace._size[0]; i++) { 

  let row = qSharedFace._data[i]; 

  let rowLen = row.length; 

  let rowID = qRows[i]; 

  qGraph[rowID] = []; //initialize row id 

   

  for(j=0; j<rowLen; j++) { 

   let val = row[j]; 

   if((val >= qValue) && (j >= i)) { 

    qGraph[rowID].push(qRows[j]); 

   } 

  } 

 } 

  

 //console.log(qGraph); //print output 

 return qGraph; //return connectivity dictionary 

} 

 

Figure 3.4. The figure provides a helper function used to find connectivity of individual elements in 

a shared-face matrix to assist calculation of connected components. 

 

 

 



52 

 

 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

 

/* 

Returns connected components array of a shared-face matrix for a specific q-value 

@param  {Integer}                    qValue      A specific q-value 

@param  {Object}                     qSharedFace Two dimensional matrix object 

@param  {Array of Strings}           qRows       An array of row ids 

@return {Array of Arrays of Strings} qComponents An array of connected components 

*/ 

function getQcomponents(qValue, qSharedFace, qRows) { 

 let qComponents = getQconnectivity(qValue, qSharedFace, qRows); //helper function 

 let currComp = []; 

  

 //search through the graph to form connected components 

 for(key in qComponents) { 

  currComp = qComponents[key]; //initialize component 

   

  //check if component values can be found in other keys 

  for(i=0; i < currComp.length; i++) { 

   let value = currComp[i]; 

    

   //check each key for the presence of the value 

   for(searchKey in qComponents) { 

    let searchArr = qComponents[searchKey]; 

     

    //merge arrays if same value is found in two different keys 

    if((searchArr.includes(value)) && (searchKey != key)) { 

     searchArr.forEach(item => { 

      if(!currComp.includes(item)) { 

       currComp.push(item) 

      } 

     }) 

     delete qComponents[searchKey]; //remove searched key 

    } 

   } 

  } 

  delete qComponents[key]; //remove old key 

   

  //replace key with a new formed component 

  if(currComp.length) { 

   qComponents[key] = math.sort(currComp, math.compareNatural); 

  } 

 } 

  

 //console.log(Object.values(qComponents)); //print output 

 return Object.values(qComponents); //return connected components 

} 

 

Figure 3.5. The following figure outlines the algorithm which calculates connected components 

given the q-value, shared-face matrix, and array of row names as input. 
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const math = require("mathjs"); 

 

//Input: 

let qValue3 = 3; 

let qValue2 = 2; 

let qValue1 = 1; 

let qValue0 = 0; 

let qSharedFace = math.matrix([[1,0,-1],[0,2,1],[-1,1,3]]); 

let qRows = ["C1","C2","C3"]; 

 

//Output: 

getQcomponents(qValue3, qSharedFace, qRows); //=> [["C3"]] 

getQcomponents(qValue2, qSharedFace, qRows); //=> [["C2"],["C3"]] 

getQcomponents(qValue1, qSharedFace, qRows); //=> [["C1"],["C2","C3"]] 

getQcomponents(qValue0, qSharedFace, qRows); //=> [["C1","C2","C3"]] 

 

Figure 3.6. This figure provides a code snippet of test cases and their outputs from the given 

shared-face matrix to find connected components for each q-value. 
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Chapter 4 Application 

This chapter describes application of the proposed methodology to a real-world problem for 

water quality and water health monitoring. The effort was made in order to acquire some insight 

into the structural connectivity of the water flow network. The network is composed of various 

study sites each monitoring the trends in water quality and its chemical composition. For this 

reason, the study explores the use of the structural language of Q-analysis and its potential 

integration with DGGS as an approach for handling large quantities and various types of spatial 

information, as well as modelling of geographic features. The analysis aims to examine various 

types of connectivity between water sites, as well as to recognize patterns of potential water 

contamination, its sources and spread directionality at various levels of the DGGS hierarchy. At 

the same time, it is important to stress that it is not suggested to use the results of this application 

for the purposes of water quality mitigation, treatment procedures or environmental enforcement 

practices in order to improve the water health. The goal of this study is to provide a mean for the 

practical application of Q-analysis within DGGS framework, its potential advantages and 

benefits to work in this area of expertise for well trained specialists. Ideally, the methodology is 

suitable with any spatial datasets or spatial features globally as long as they are properly 

articulated and presented within DGGS hierarchy. 

The chapter begins with description of data sources, study area and software used within the 

scope of this application in Section 4.1. Then, it continues with an introduction to the water 

health application and necessary preparations in Section 4.2. Section 4.3 in concerned with 

exploring backcloth connectivity structure, as well as performing and interpreting the Q-analysis 

output. Section 4.4 demonstrates the use of Q-analysis in a DGGS context by defining necessary 

hierarchical components and their relations. 

 

4.1 Preliminary Information 

The specific data sources that have been incorporated into the analysis, as well as the various 

auxiliary components, software and tools are described in the following subsections. 
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4.1.1 Data and Study Area 

The primary dataset used in the following analysis is the Cumulative Impacts Monitoring of 

Aquatic Ecosystem Health of Yellowknife Bay, Great Slave Lake provided by the Mackenzie 

DataStream platform and the Government of the Northwest Territories, Canada (Government of 

the Northwest Territories, 2019). This dataset was collected over the period of 2014-2016 in 

order to gain a better picture of the current environmental conditions in Yellowknife Bay and the 

ways for their control, including water quality, sediment and aquatic food chain. The project was 

successful in providing new insights for assessment of the Yellowknife Bay ecosystem. This 

analysis was generally performed for the year of 2014 because it was more complete and had a 

higher number of records compared with other years. 

Additionally, the CanVec series of the topographic data of Canada (Natural Resources Canada, 

2019) and Canadian Digital Elevation Model (CDEM) (Natural Resources Canada, 2015) were 

used in order to assist in determining the direction of the water flow. For such purpose, CanVec 

hydro features (e.g., rivers, water bodies) in the vector format at the scale of 1:50,000, as well as 

the CDEM with a horizontal accuracy of 10-50 metres and vertical accuracy of 1-10 metres, 

were processed in the Yellowknife Bay, Great Slave Lake area, NWT, Canada and integrated in 

the analysis. 

 

4.1.2 Software 

H3 is a geospatial software library used primarily for the hierarchical partitioning and spatial 

indexing of geographic features on the Earth’s surface. The library was developed by Uber 

Technologies, Inc., and released for public use under the open source license in 2018 (Brodsky, 

2018). One of the distinct features of H3 is integration of the hexagon-based grid partitions with 

aperture 7. In this research the software was mainly used for the purposes of vector data type 

conversions into the hexagonal grids at various spatial resolutions, such as points, lines and 

polygons. These spatial features were also indexed via the provided API functionality for 

conversion of geographic coordinates and generation of hexagon grids layers. The JavaScript 

version of H3 is the particular binding which was used in this work. The version of H3 package 

used is 3.0.1. 
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Sigma.js is a highly customizable open source graph library developed in JavaScript, which 

provides APIs for integration of network datasets in web applications (Jacomy et al., 2017). The 

library was primarily used to display connectivity structure of the water flow network. The 

version of Sigma.js used is 1.2.1. 

Node.js is the open source run time environment and platform used to execute JavaScript code 

(Node.js Foundation, 2019). JavaScript is the only programming language applied in this work, 

which was primarily used for working with H3 library for feature conversions, processing raw 

water quality data, passing the processed data to the graphing APIs of Sigma.js, as well as 

implementing and computing of Q-analysis methodology. The version of Node.js used is 8.11.3. 

The rest of visualization and map making process was completed via ArcMap (Esri Canada, 

2019) version 10.3.1 and QGIS (QGIS project, 2019) version 2.8.2 software, which were used 

concurrently. Both of these software packages are fairly popular and built to work with various 

forms of Geographic Information Systems (GIS) and data, thus include various tools that are 

assembled together in order to customize, edit, process and visualize spatial information. 

 

4.2 Defining a Problem 

To begin, it is necessary first to establish two well-defined sets, which will be formally used for 

generation of a binary relation matrix and further Q-analysis. Given the data for the cumulative 

monitoring of the aquatic ecosystem health (Government of the Northwest Territories, 2019), it 

is possible to define such well-defined sets. In particular, sets C (hexagon cells) – a set of 

hexagon-based locations represented by DGGS cells, and W (water sites) – a set of water sample 

sites that exist within the boundaries of DGGS cells, were defined (Figure 4.1 cf. Figure A.1); 

such that: 

C = {c01, c02, c03, c04, c05, c06, c07, c08, c09, c10, c11, c12, c13, c14, c15} 

W = {W1, W2b, W2s, W3b, W3s, W4, W6, W7, W8, W9, W10b, W10s, W11, W12, 

W13, W14_1, W14b, W14_2, W17b, W17s} 
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The initial resolution of H3 cells (H3 resolution 8) (Table B.1) was chosen in such a way that at 

least one site location exists per cell area, and for the cell areas to overlap with at least one 

waterbody in order to determine or approximate its water flow direction. One should also note 

how versatile it is to define cell units at different spatial resolutions, if required, and aggregate 

water sample sites to these spatial units accordingly. 

(a) (b) 

  

Figure 4.1. (a) Illustration of water sample sites (yellow labels) within DGGS hexagon cells (white 

labels). (b) Flow direction and elevation information as the primary parameters for determining 

connectivity structure between the spatial units. The resolution of H3 cells is 8. Data sources: 

(Government of the Northwest Territories, 2019; Natural Resources Canada, 2015, 2019). 
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Based on the nature of the problem, it is reasonable to assume that observations of the water 

monitoring sites have tendency to share similar water characteristics amongst related areas in the 

region as long as there is established connectivity between these spatial hexagon units. This 

connectivity is, in fact, a water network system. In other words, each hexagon unit is defined by 

the set of water sample sites which are directly connected to these hexagons through the water 

network system (Figure 4.1). Thus, using the direction of the water flow, as well as the digital 

elevation model of the particular geographic area, it is possible to derive the (  C x W) 

relation. The relation indicates that some hexagon cell Ca has a potential to show similar 

observation characteristics of some water site Wb under the following connectivity rules and 

assumptions: 

1) If some water site Wa is located within the boundary of its parent cell Ca then by 

definition (Ca, Wa) are related. 

2) A water site Wa is said to be related to some cell Cb if there is direct water flow 

connection from the Wa parent cell Ca to the Cb, such that no other cell areas are in the 

way of the water flow. 

3) A water site Wa is said to be related to the cell Cb if both cells Ca and Cb intersect a water 

body (e.g., lake), and elevation of Ca is higher than Cb. 

Visually, such connectivity can be represented on a map (Figure 4.1), which, for example, shows 

that spatial area (c02) is likely to retain similar water characteristics determined by both (W8) 

and (W7) water sites. However, area (c01) is only characterized by (W7) site, since elevation and 

flow direction does not permit (W8) to easily travel into (c01). Similarly, while water site (W6) 

is visually traceable through the water network to the area (c14), their connectivity cannot be 

established due to area (c12) being on the way. Thus, (W6) is directly related to the (c12) 

instead. 

In cases when spatial units are neighbours (e.g., without apparent water flow information 

between them), the connectivity and flow direction is then determined based on the elevation 

data and sharing of a water body. For example, water sites (W13) and (W14_2) will flow into 

(c10) due to them having the higher elevation (e.g., 213m versus 210m) and sharing of a water 

body (Figure 4.2), but not vice versa. 
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Figure 4.2. Assuming the water flow direction using the elevation data for the hexagon areas that 

share same body of water. 

Additional connectivity assumptions were made in the areas where hydrological flow 

information is incomplete. In particular, with reasonable support of auxiliary information that 

indicates flow direction, such as presence of the connected lake system or elevation change, the 

flow direction was estimated as shown (Figure 4.3). 

 

Figure 4.3. Example of the water flow assumption considering the existing directions of the water 

flow. 

While connectivity methodology illustrated here was derived using the real-world elevation and 

water flow information, it is still suggested that qualified water and hydrology specialists use 
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more reliable in-situ data, as well as additional information (e.g., water catchment areas, ground 

water flow) specifically collected for this kind of analyses. Nonetheless, considering the 

illustrative purpose of this application the current data will suffice well to demonstrate the 

usefulness of such methodology for similar GIS applications. 

 

4.3 Applied Q-analysis 

This section outlines the significance and richness of the Q-analysis concept, as the language 

invented to study multidimensional connectivity and structural characteristics of data. The 

concept is based on the explicit definition of cover sets, and relation between their elements (e.g., 

water flow). Such relations expressed in a binary form allow for unconstrained interaction 

between the sets allowing them to have more general basis on which an element can be 

considered related to another element, which is opposite to the functional thinking (see Section 

2.5.2). As stated by Gould, the idea of cover sets and its corresponding Q-analysis creates 

grounds where data can “speak for themselves” revealing its important pattern and structure 

(Gould, 1980, p. 174, 1981). The structure in this sense is often referred to as backcloth, the 

concept already familiar to the reader (see Section 3.3.1). Together, direct and conjugate 

simplicial complexes are what form the backcloth structure, which at the same time provides 

grounds for data to exist and be transmitted through the backcloth (Atkin, 1972, pp. 163–165; 

Gaspar & Gould, 1981, p. 190; Johnson & Wanmali, 1981, p. 273). The data in this sense is 

known as traffic (see Section 3.3.2). Traffic can be substituted by any observation set and 

directly attached to the geometric structure of the backcloth (Atkin, 1980, pp. 383–384). Both 

backcloth and traffic terms are explained in more details within the scope of this application. 

 

4.3.1 Exploring Q-connectivity 

The connectivity structure presented earlier can be captured by a binary matrix (Table 4.1), 

where  relation indicates that each hexagon area has specific water characteristics defined by 

the water sites of that area. The relation also outlines that observation outcomes from other sites 

may be carried over through the physical features of the land as well, such as elevation and water 
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flow network in this case. In other words, if some water site is related to a hexagon area based on 

the established connectivity rules, their relation is marked as 1 in the corresponding table cell, 

otherwise it is left as blank. Note that formally absence of a relation is marked by 0; however, in 

(Table 4.1) zeros are omitted for visual clarity. 

Table 4.1. A binary relation matrix which defines  relation between hexagon areas and their water 

sites, where set {c01,…c15} represent hexagon cells and set {W1,…W17s} represents water sites. 

The value of 1 in the table implies that both hexagon cell and water site are related, whereas blank 

cell indicates the absence of the relation. 

 

Each hexagon area can be further represented as a geometric object known as simplex. At the 

same time, simplex is represented by the list of vertices, where each vertex is a site location that 

has a potential to contribute to the water characteristics of a particular spatial unit (i.e., hexagon). 

For example, simplex 5(c15) can be represented as the subset 5(c15) = <W10b, W10s, W12, 

W14_2, W17b, W17s> of all water site locations in the W set, where each site location is 

connected with each other. In this case, the 5(c15) simplex is related to 6 water site locations, 

which means its dimension is (q = 5), hence its 5 subscript symbolization. In other words, q-

dimension is always one unit less than the total number of vertices that describe some spatial 

area. Now, consider another simplex 1(c06), which has only two vertices 1(c06) = <W11, 

W12>. It happens that both 1(c06) and 5(c15) simplices have one vertex in common <W12>, 

which joins them together in a group forming a connected multidimensional space. Considering 
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each simplex in the binary relation (  C x W) it is possible to construct a complete simplicial 

complex KC(W; ). As geometric representation, the simplicial complex reflects the connectivity 

structure with each element Wi  W being a vertex (Figure 4.4). 

 

Figure 4.4. Geometric representation of KC(W; ) simplicial complex, with labelled 5(c15) and 

1(c06) simplices. The relative size of each vertex is proportional to their degrees (i.e., 

number of connected edges). 

It is also possible to observe from the table (Table 4.1) and also from the graph (Figure 4.4) that 

certain vertices are shared across multiple simplices (i.e., hexagon areas) and are of various 

dimensionalities forming one well defined and connected structure which links all areas together 

(i.e., the simplicial complex representation of the relation ). This connectivity is known as q-

connectivity, and used to explore direct and indirect connections between simplices. At the same 

time, it is also important to differentiate the fact that some simplices can be q-connected and do 
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not have any vertices in common. If two simplices share vertices directly, such property is called 

q-nearness. Thus, q-nearness implies q-connectivity, but not vice versa (Beaumont & Gatrell, 

1982, p. 16). The terms q-connectivity and q-nearness are two important concepts in Q-analysis 

used to determine and differentiate connectivity within the connected chains (see Section 3.4). 

For example, simplex 1(c03) is q-connected to 5(c15) through the hypervolume 7(c12) 

creating a chain of connected simplices. The statement can be confirmed by the physical water 

network (Figure 4.1 cf. Table 4.1), because 1(c03) flows first into 7(c12), and then 7(c12) 

continues to 5(c15). Thus: 

• 1(c03) is 1-near to 7(c12) via <W2b, W2s> 

• 7(c12) is 1-near to 5(c15) via <W17b, W17s> 

• 1(c03) is 1-connected to 5(c15) via <W17b, W17s> 

The properties of q-nearness and q-connectivity in KC(W; ) can be further explored via the 

shared-face matrix representation, which was adapted from Atkin (1974, p. 186) (Table 4.2). 

Table 4.2. Shared-face matrix of the KC(W; ) simplicial complex. 

 

Note that due to the table being symmetric around the diagonal line, only one half of it is shown 

for visual clarity; however, formally (i, j) pair of (row, column) value is equal to the (column, 
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row) value at (j, i), where (i, j)  C. For example, value at (c03, c12) is equal to the value at 

(c12, c03), yet the latter one is omitted as mentioned. The table illustrates relation between the 

simplices (hexagon areas) where corresponding numbers reflect q-connectivity (i.e., they share 

(q+1) water sites). The dash symbol (-) is equivalent to (-1), which means that two simplices are 

disconnected (i.e., they share zero water sites). Note that diagonal values indicate q-dimension of 

a simplex. Instantly, it is possible to observe that areas with high q-dimension (e.g., c12, c15, 

c14, c10) play a significant role in the water network system, as will be shown shortly. With this 

in mind it is now appropriate to perform the formal Q-analysis on the KC(W; ) simplicial 

complex to explore q-connectivity at different dimensional levels. 

 

4.3.2 Direct Q-analysis 

Q-analysis is mainly concerned with explaining the structural features of relationships between 

variables by identifying chains of connected simplices. In this study, these are hexagon areas that 

form a connected group at each q-dimension starting from the highest down to a 0-dimension. As 

mentioned previously, the dimension is calculated based on the number of vertices (here water 

sites) that define each hexagon, and is used to group simplices into connected components (Table 

4.3). Q-analysis ranks each simplex according to its q-dimension or q-value, and tracks at which 

q-level a simplex enters the structure as well as the point when it becomes connected with other 

simplices. Note, the measure of the q-dimension is cumulative, which means that once a simplex 

enters the structure it will remain in the structure. For example, 7(c12) enters the structure at q = 

7, since its dimension is 7; however, it is also present at q = 6, 5,…0, because its q-dimension is 

higher than all subsequent q-dimensions in the table (Table 4.3). 

The complementary geometric representation (Figure 4.5), on the other hand, captures the 

connectivity for all vertices within the direct simplicial complex KC(W; ). At first, the produced 

results might be confusing; however, it will soon be clear how much contextual information it is 

possible to retrieve from these findings. A detailed procedure for performing Q-analysis and 

finding connected components have been implemented in JavaScript (see Section 3.4.2) 

according to the formal definition of the Q-analysis theory (Atkin, 1972, 1974, 1980; Beaumont 
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& Gatrell, 1982; Gould, 1980; Johnson, 1981a). Therefore, reader is encouraged to refer to these 

original sources for additional information and theoretical background behind the concept. 

Table 4.3. Q-analysis output of the KC(W; ) simplicial complex. 

q-value Connected Components of KC(W; ) 

7 {c12} 

6 {c12} 

5 {c12}, {c15} 

4 {c12}, {c14}, {c15} 

3 {c10}, {c12}, {c14}, {c15} 

2 {c10}, {c12}, {c14}, {c15} 

1 {c02}, {c03, c10, c12, c14, c15}, {c06}, {c07} 

0 {c01, c02}, {c03, c04, c05, c06, c09, c10, c11, c12, c13, c14, c15}, {c07, c08} 

 

Figure 4.5. The figure represents connected components of the KC(W, ) simplicial complex. 
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Given the Q-analysis output of the KC(W; ) complex it is possible to observe that component 

{c12} consist of a single simplex and has the highest q-dimension in the complex, q = 7. This 

brings a lot of attention to this area, as it indicates that simplex 7(c12) is related and defined by 

the largest number of vertices (i.e., q + 1 = 8) or water sites. According to the physical context of 

the application, this means that this area is the most sensitive to the dynamic changes in water 

and one of the first areas that can potentially reflect water quality in the region, since water flow 

at this location can be traced from multiple water site locations. At q = 6, a similar trend is 

observed. It is shown that component {c12} still consist of a single 7(c12) simplex, and is the 

only one that can exist in this dimension (i.e., have (q + 1 = 7) or more vertices). The next 

5(c15) simplex enters the structure at q = 5, following by 4(c14) simplex at q = 4. At this point, 

it is possible to observe that all three of these simplices share two vertices <W17b, W17s> which 

form a simplicial complex; however, they all appear to be disconnected at q = 4, forming 3 

separate components. This make sense because in order for them to be connected into a single 

component they must share at least (q + 1 = 5) vertices at q = 4, while sharing only 2 vertices 

<W17b, W17s> in total. Nevertheless, a clear pattern is starting to emerge forming a 

connectivity structure of the water network, as well as the significance of individual areas and 

their water sites for the water monitoring purposes. At this point, it is important to clarify that, in 

this context, sharing of vertex or water site implies sharing of water quality parameters including 

pollution sources if these were to occur. 

Furthermore, at q = 1 it becomes apparent that component {c03, c10, c12, c14, c15} along with 

its corresponding simplices form a chain of connections, grouping them all into one connected 

structure (Figure 4.5). This means that all of them share at least (q + 1 = 2) vertices through a 

chain of connected simplices, such that: 

• 1(c03) is 1-near to 7(c12) via <W2b, W2s> 

• 3(c10) is 1-near to 7(c12) via <W14_1, W14b> 

• 7(c12) is 1-near to 4(c14) via <W17b, W17s> 

• 7(c12) is 1-near to 5(c15) via <W17b, W17s> 

• 1(c03) is 1-connected to 4(c14) via <W17b, W17s> 

• 1(c03) is 1-connected to 4(c15) via <W17b, W17s> 



67 

 

• 3(c10) is 1-connected to 5(c14) via <W17b, W17s> 

• 3(c10) is 1-connected to 5(c15) via <W17b, W17s> 

• 4(c14) is 1-near to 5(c15) via <W17b, W17s> 

At this time, it is possible to infer several statements regarding the observed connectivity 

structure at q = 1. Firstly, it is evident that areas (c03 and c10) are indirectly connected or q-

connected to (c14 and c15) areas through the existing water network. This can be potentially 

confirmed and identified by at least two water sites at each location, in the case of any changes in 

the water quality at (c03 and c10). The same can be anticipated for the areas which are connected 

directly or are q-near. Secondly, at q = 1 there are also three additional {c02}, {c06}, {c07} 

components that appear to be disconnected. This means that all of them have at least (q + 1 = 2) 

vertices, yet they are not shared with the rest of the structure. Lastly, q-nearness between c14 and 

c15 is not the same as the q-nearness of the other 1-near areas. Here, q-nearness shows that 

sources are shared by inheritance without direct water flow connectivity (i.e., the water flow is 

opposite between the sites), whereas in other cases the sources are shared by direct physical 

transmission of water through the network. In other words, c14 and c15 are related in terms of 

sharing similar water characteristics of W17b and W17s water sites inherited from area c12, 

while not having direct water flow connectivity. 

Topologically, this connectivity can be reflected via the inverted graph structure (Figure 4.6), 

also known as conjugate simplicial complex (see Section 2.5.3) the full advantage of which is 

revealed in the next section of the thesis. Note, the relation between c14 and c15 is shown as a 

dashed line, to differentiate that their connectivity does not imply connectivity by a direct water 

flow connection, but by inheritance of water characteristics from c12. Additionally, there is 

another similar connectivity between c10 and c15; however, is it not reflected until q = 0 level, 

since 3(c10) is 0-near with 5(c15) as shown in the shared-face matrix (Table 4.2). The analysis 

of this type is commonly referred to as local structure analysis, and mostly focused on 

identifying similar behaviours and connectivity structure within individual connected 

components (Atkin, 1972, p. 155; Beaumont & Gatrell, 1982, p. 17). 
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Figure 4.6. The figure shows connectivity at q = 1 for the {c03, c10, c12, c14, c15} connected 

component. The direction of a line here indicates the direction of the water flow, whereas dashed 

line implies connectivity between areas by inheriting similar water characteristics from c12. 

As q-dimension drops down to q = 0, it is now possible to identify that all remaining simplices 

have entered the structure and observe the occurrence of three natural chain clusters {c01, c02}, 

{c03, c04, c05, c06, c09, c10, c11, c12, c13, c14, c15} and {c07, c08}. Such finding suggests 

that communication between these disconnected components is impossible, since based on the 

established water flow connectivity these areas cannot have any vertices in common. By 

inference this also implies that these components cannot share pollution sources and have similar 

water characteristics if one of the components were to be polluted. At the same time, it is 

important to recognize that while disconnected components can share a common source of 

upstream pollutions, these, however, cannot propagate as local sources between them. In other 

words, same source of pollution can affect more than one disconnected component. 

 

4.3.3 Conjugate Q-analysis 

In order to get a better insight on the connectivity structure, consider also inverting the 

relationship of the original binary matrix (Table 4.1) and its corresponding KC(W; ) simplicial 

complex to the inverse -1 relation (Table 4.4). In this case, set C can be treated as the vertex set 

instead, and used to generate the previously mentioned conjugate simplicial complex KW(C; -1). 

The inverse relation can be easily acquired by transposing the original binary matrix, as in to 

read rows as columns and vice versa (Table 4.4). 
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Table 4.4. The transposed binary matrix used to generate the KW(C; -1) conjugate complex. The 

value of 1 indicates that water site characteristics affect the corresponding area. 

 

The above table reveals water sites that have a direct influence on hexagon areas. For example, 

W1 water site affects areas c07 and c08, whereas W9 affects only area c07. In the similar 

fashion, Q-analysis can be also applied onto the KW(C; -1) conjugate complex to identify chain 

of connected simplices of water sites. The significance of which is important, as it grants the 

opportunity to study the structure from different viewpoints. In particular, the KC(W; ) complex 

reveals a spatial point of view or cell-oriented perspective with the connectivity chains necessary 

for interaction between hexagon spaces, whereas complex KW(C; -1) offers a data point of view 

or site-oriented perspectives and analogous chains (Atkin, 1972, pp. 157–158, 1974, pp. 32–33). 

Accordingly, the shared-face matrix of the KW(C; -1) simplicial complex (Table 4.5), its Q-

analysis (Table 4.6) and geometric representation (Figure 4.7) can be generated in a similar 

manner to observe the -1 relation. The dimensionality of the shared-face matrix and Q-analysis 

represents the connectivity with other water sites in the area. 
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Table 4.5. Shared-face matrix of the KW(C; -1) simplicial complex. 

 

Table 4.6. Q-analysis output of the KW(C; -1) simplicial complex. 

q-value Connected Components of KW(C; -1) 

2 {W12}, {W14_2}, {W17b, W17s} 

1 
{W1}, {W2b, W2s}, {W4}, {W6}, {W7}, {W11}, {W12}, {W13}, 

{W14_1, W14b}, {W14_2}, {W17b, W17s} 

0 
{W1, W9}, {W7, W8}, {W2b, W2s, W3b, W3s, W4, W6, W10b, W10s, W11, 

W12, W13, W14_1, W14_2, W14b, W17b, W17s} 

The output of the shared-face matrix shows a lot of zeros (Table 4.5), which implies that these 

water sites share as much as one hexagon cell location between each corresponding site. The 

following can be confirmed in the Q-analysis table (Table 4.6). Q-analysis indicates that the 

highest dimension (i.e., q = 2) has three disconnected components {W12}, {W14_2} and 

{W17b, W17s}. Component {W17b, W17s} is the only one which has 2 connected water sites; 

however, this connection is not surprising since both W17b and W17s belong to a single hexagon 

location c12. Thus, they are already related spatially. 
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Figure 4.7. Geometric representation of the conjugate KW(C; -1) simplicial complex. The arrows 

indicate the direction of the water flow, whereas dashed lines imply connectivity by inheritance. 

One interesting feature that can be observed here is that each component at q = 2 seem to connect 

its destinations areas which are not directly connected (i.e., absence of the direct water flow). 

This can be further confirmed graphically by the corresponding connectivity (i.e., dashed line) 

(Figure 4.7). For example, site simplex 2(W12) originates in the c05 area vertex, which at the 

same time flows into vertices c06 and c15, making their direct simplices q-near. Note the inverse 

-1 relation between the hexagon areas and water sites in this case, such that: 

• 2(W12) (site in c05) is 0-near to 1(W11) (site in c06) via <c06> 

• 2(W12) (site in c05) is 0-near to 1(W10b) (site in c15) via <c15> 

• 2(W12) (site in c05) is 0-near to 1(W10s) (site in c15) via <c15> 
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Thus, causing 1(c06) = <W11, W12> and 5(c15) = <W10b, W10s, W12, W14_2, W17b, 

W17s> direct simplices connected via simplex <W12> (Figure 4.5), such that: 

• 1(c06) is 0-near to 5(c15) via <W12> 

Similarly, simplex 2(W14_2) originates in the c11 area and flows in two directions, such as c10 

and c15 vertices. This makes 3(c10) = <W13, W14_1, W14b, W14_2> and 5(c15) = <W10b, 

W10s, W12, W14_2, W17b, W17s> connected via simplex <W14_2> (Figure 4.5), such that: 

• 3(c10) is 0-near to 5(c15) via < W14_2> 

Finally, both simplices 2(W17b) and 2(W17s) originate in c12 and flow into c14 and c15. 

Thus, making 4(c14) = <W3b, W3s, W4, W17b, W17s> and 5(c15) = <W10b, W10s, W12, 

W14_2, W17b, W17s> connected via simplex <W17b, W17s> (Figure 4.5), such that: 

• 4(c14) is 1-near to 5(c15) via <W17b, W17s> 

This suggests that areas c05, c11 and c12 along with their corresponding water sites are the 

sources with the highest spread variability. In particular, they flow in two different directions, 

whereas other areas seem to flow in one direction only or have no further water flow within the 

study area boundaries. What is interesting here is that these parameters of the water network 

were not revealed through the direct  relation, but the inverse -1 relation. This underlines the 

importance and practical significance of Q-analysis from both spatial and data perspectives. 

At q = 1 the analysis identifies 11 separate components none of which are 1-connected apart 

from areas that contain more than one water site (e.g., c03, c10, and c12). The 1-connectivity, in 

this case, implies sharing of 2 same hexagon areas. This by itself communicates that different 

water sites affect different hexagon areas, which makes the water flow highly fragmented. 

Fragmentation, in this case, can be viewed as decentralized water network, where water flow 

mainly travels in one direction only. At the same time, components at q = 2, can be also viewed 

as decentralized water network; however, they are the most centralized in the KW(C; -1) 

complex, since the corresponding water sites have more destinations (i.e., two destinations each). 

Fragmentation in the water context can be viewed as a positive thing, since if one site were to be 

polluted it will spread in less number of different directions. Thus, preventing a significant 
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environmental impact, as well as giving more time for the government authorities to respond and 

mitigate the issue. Additionally, fragmentation is also considered as part of the global structure 

analysis and mostly used to give insights about the structure of the whole complex at each q-

level (Atkin, 1972, p. 155; Beaumont & Gatrell, 1982, p. 17). 

Lastly, at q = 0 it is possible to reconfirm the same results found also on the KC(W; ) complex, 

as Q-analysis on KW(C; -1) shows 3 separated components and makes 3 natural chain clusters. 

These components are equivalent to the components of the KC(W; ) complex, yet with hexagon 

cells acting as vertices due to the -1 relation for the data viewpoint perspective. 

 

4.4 Q-analysis and DGGS 

While the example of the water health system is appropriate to illustrate the concept of Q-

analysis, one must not forget that one of the biggest advantages of Q-analysis is its natural 

integration with DGGS. It has potential to work with various datasets and data types for the 

purposes of getting insight of the structural and connectivity properties. Thus, the reader should 

not constrain their thinking into one particular application presented here. The key contribution 

of this research is to build upon the earlier developed Q-analysis theory in order to pave the way 

for the enhanced analytical capabilities within the DGGS data architecture domain. The water 

quality and water health application here serves as an illustration of how it can be achieved in 

practice. The application also demonstrates how backcloth and traffic sets can be constructed 

with various dataset choices as long as these choices are justifiable contextually. 

It is fascinating to learn that back in 1970s Atkin has implicitly recognized the need for DGGS 

(Atkin, 1974, p. 117), as he attempted to cover a town area with a set of discrete areal spaces 

called lozenges (S. A. Roberts, personal communication, October 9, 2018). In his work Atkin has 

stressed that lozenges size must complement the size of geographic features. In particular, the 

lozenges must be big enough to cover a feature but also small enough to not interfere with other 

features, as well as they must be subject to aggregation. Thus, producing lozenge covers at 

different hierarchical levels was necessary to meet the requirements of the study. 
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Today, DGGS offers a natural solution to the Atkin’s issue, providing a mathematical structure 

where lozenges can be treated as DGGS cells (e.g., hexagons, squares, triangles) along with their 

aperture and hierarchical properties. The cells can be further associated with some descriptive 

spatial information to produce a meaningful interpretation of the phenomena via integrated Q-

analysis, which is capable of handling data at various levels of hierarchical aggregation (i.e., 

spatial resolution). Thus, it seems promising to experiment with the idea in a broader context and 

applications of various origin, as well as different DGGS types. 

 

4.4.1 Backcloth and Traffic 

To reiterate, a structure of the water quality and health application discussed in this chapter is 

defined by the two well-defined cover sets C (hexagon cells) and W (water sites) along with a 

series of binary relations between each element of these sets. Both sets define what is known a 

backcloth formed by the (  C x W) and (-1  W x C) relations. The backcloth connectivity 

structure has a direct influence on traffic, the existence of which is able to support or constrain 

the traffic. This idea was earlier proposed by Atkin, where he states that traffic requires certain 

backcloth connectivity in order for traffic to exist on it (Atkin, 1972, p. 163, 1980, p. 384). 

Traffic, in this context, was chosen to be observed concentrations of water quality parameters, 

such as aluminium, turbidity, strontium and barium, collected at each water station in the study 

region. The water parameters here were mainly chosen based on the Canadian guidelines criteria 

for drinking water quality (Health Canada, 2019), in order to single out ones that are either pose 

high risk for water contamination or exist in significant concentrations in water. The idea 

proposed by Atkin is well supported in this context as well, as the existence of water network 

and physical water features provide grounds for measuring and monitoring water quality in 

designated locations (i.e., water sites). These locations form a connectivity structure of the 

backcloth (i.e., vertices), which in fact determine whether traffic can be attached to their 

geometric structure. In other words, designated water site locations and existence of the physical 

water network, provide grounds for the water parameters traffic to be collected (i.e., traffic is 

supported), whereas absence of those physical features implies that such data will not exists (i.e., 

traffic is constrained). This is consistent with the Einsteinian view on backcloth and traffic 
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geometries (see Section 2.6), such that adding or removing physical water sites (i.e., backcloth 

changes) have a direct impact on how water quality data is collected (i.e., traffic changes). 

Similarly to the backcloth, traffic can also form a connected structure by being directly related to 

the earlier defined set C (hexagon cells), such that each hexagon areal simplex can carry some 

water parameters traffic. In this case, a new traffic set T can be defined, such that: 

T = {Al, Tur, Sr, Ba}, 

where Al = aluminum, Tur = turbidity, Sr = strontium and Ba = barium. Correspondingly, a new 

relation (  C x (W x T)) is formed as a mapping function of traffic vertices onto the backcloth 

vertices, along with its direct KC(W x T; ) and conjugate KWxT(C; -1) simplicial complexes. 

The theoretical background for such mapping of traffic onto the backcloth was suggested by 

Johnson (1983b, pp. 484–486) based on his research on the structural complexity of television 

policy (Gould & Johnson, 1980). Based on his work it is suggested to arrange the relation 

between hexagon cells, water sites and water parameters as a two-dimensional binary matrix, 

such that both water site and water parameter elements appear in the same hexagon cell (see 

Section 3.3.3). What might not be obvious at this point is how exactly each cover set relates to 

one another. To clarify this, and also reach a stage at which the backcloth-traffic mapping can be 

performed, there are several developments that are necessary to consider, one of which is the 

concept of slicing (see Sections 2.5.2, 3.2.1). 

Consider the raw traffic data (Table 4.7) acquired from each water station and related to the 

corresponding hexagon areas. The relation in this case is not in a binary format, but a decimal 

number indicating the concentration measure for a given water parameter and related hexagon 

cell. The data in this table was processed by taking the average value when multiple observations 

were recorded for a single water site. Similarly, if more than one water site falls within the 

border of a hexagon area, then their values were averaged likewise for each water parameter 

accordingly. Alternatively, it is also possible to have various approaches for the same data 

processing requirement. For example, one might consider filtering out samples that don’t have 

certain number of observations recorded or additional vertices added to the traffic structure. 

However, these were not considered in order to avoid unnecessary complication of the analysis 
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and focus primarily on the main objectives of this research. Nevertheless, possibilities for the 

further application extension are available. 

Table 4.7. This table provides processed cumulative impacts monitoring data for the aquatic 

ecosystem health in 2014, where each hexagon ID is associated with corresponding average 

concentrations of water parameters. All units are indicated in brackets, the N/A cells signify 

absence of data record for the given hexagon cell ID. Data source: (Government of the Northwest 

Territories, 2019). 

cell ID Aluminum (ug/L) Turbidity (NTU) Strontium (ug/L) Barium (ug/L) 

c01 16.450 2.450 71.525 19.700 

c02 20.300 2.800 74.950 21.200 

c03 3.500 N/A 64.450 17.400 

c04 56.475 10.150 74.850 21.775 

c05 20.000 2.050 104.250 31.400 

c06 13.825 1.550 106.750 32.925 

c07 15.975 2.100 80.825 23.050 

c08 6.400 N/A 2170.000 55.800 

c09 14.500 2.600 114.750 36.400 

c10 7.0125 N/A 128.375 41.325 

c11 N/A 0.850 N/A N/A 

c12 2.200 N/A 125.000 40.500 

c13 13.525 1.150 65.200 17.950 

c14 3.600 N/A 68.000 18.500 

c15 7.500 N/A 88.750 25.900 

The concept of slicing is mainly concerned with identifying some threshold parameter , such 

that if an observation value in the data matrix exceeds the threshold than the relation is assigned 

a value of 1, otherwise it is 0 or left out as blank. Given the water health data (Table 4.7), it is 

possible to obtain additional traffic relation (  C x T) as a binary matrix (Table 4.8), such that 

each element of (C,T) > , where: 

• Tur = 1 NTU (Nephelometric Turbidity Units) 

• Al = Sr = Ba = 60th percentile 

The process of defining the  parameter requires careful consideration as different slicing 

parameters will generate different structures accordingly. 
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Table 4.8. The binary matrix of the relation , which represents the connectivity between hexagon 

areas C and water parameters T, where set C = {c01,…c15} and set T = {Al, Tur, Sr, Ba}. The value 

of 1 indicates that the value in the corresponding cell is greater than the threshold parameter . 

 

In this application each  parameter was chosen based on the data spread, as well as the 

guidelines for the quality of Canadian drinking water (Health Canada, 2019). In particular, the 

turbidity parameter was chosen to be Tur = 1 NTU, because value of 1 NTU or less is 

recommended “to ensure effectiveness of disinfection and for good operation of the distribution 

system” (Health Canada, 2019). Therefore, all values above 1 are considered a threat to the 

health of the water distribution system in the area. Similarly, aluminum, strontium and barium 

parameters were also compared to the national standards for the drinking water; however, in this 

case no significant and immediate threats were identified. To clarify, the concentrations of 

aluminum, strontium and barium were within the maximum acceptable concentration limits as 

outlined by the national guidelines criteria (Health Canada, 2019). Nonetheless, an interesting 

data insight is still possible to observe by slicing in the values in the higher percentile, such as 

Al = Sr = Ba = 60th percentile. Ideally, in cases when datasets have larger sample sizes the 80-

90th percentile might be more appropriate to use. However, in this case 60th percentile was a 

reasonable solution since it permits to preserve diverse connectivity of the traffic structure. By 
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increasing the  parameter higher will single out only the extreme values of individual water 

impact parameters, and much connectivity structure will be lost. 

It is important to mention that in this application the absence of the concentration records (i.e., 

N/A values) for Al, Tur, Sr and Ba in some hexagon cells (Table 4.7) were excluded from the 

analysis and treated as non-existent. Hence, those water parameter vertices cannot be found in 

the corresponding areal simplices. While such approach avoids additional changes to the raw 

water health data, it can be also appropriate to treat the unknown values as if they exceeded the  

parameters (i.e., as binary values of 1) following a precautionary principle. In other words, one 

can assume that all N/A records are greater than the threshold parameters in order to consider the 

worst-case scenario and follow up with the suitable preventative measures, if it turns out to be 

the case. 

At this time, everything is ready for both (  C x W) and (  C x T) relations to be grouped 

into the (  C x (W x T)) relation in order to generate the combined binary matrix with its 

traffic mapped onto the backcloth. The output gets classified by each traffic parameter into four 

separate groups. A reader, however, should not be misled into thinking that they are separated in 

any way, as they remain in one relation . In general, the process requires iteration through each 

element in  and  relations (Table 4.1, Table 4.8) to calculate the Cartesian product between 

sets W (water sites) and T (water parameters traffic). A pair, values of which are both equal to 1 

gets assigned a new binary value 1, otherwise it is 0 and left out as blank. For example, area c13 

has shown some problems with exceeding measurement of turbidity, given that this area only 

gets readings from the single water site W4, hence its equivalent row and column location of 

(c13, (W4 x Tur)) gets assigned a value of 1. The process further continues with the usual Q-

analysis procedure, which includes calculation of the shared-face matrices and connected 

components for both KC(W x T; ) and KWxT(C; -1) simplicial complexes, the outcomes of 

which are discussed in greater detail in the results chapter (see Section 5.3). 
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4.4.2 Hierarchical Q-analysis 

Up until this point, the analysis so far has been performed on a single fixed level of 

generalization, hierarchical level N for instance. As stated earlier (see Section 3.3), the 

significant advantage of Q-analysis methodology is its ability to distinguish cover sets at various 

levels of generality (Atkin, 1980, pp. 387–388; Gould & Johnson, 1980; Johnson, 1983a, 1983b, 

1986; Johnson & Wanmali, 1981). Such property is of particular interest for the purposes of the 

water health application, since as the analysis gets more comprehensive it is not long until one 

identifies and requires other various hierarchical arrangements of the earlier defined cover sets C, 

W and T, as well as their ,  and  relations. 

Given the hierarchical nature of DGGS the implications for the use of Q-analysis at various 

spatial resolutions is obvious, since one might require DGGS cells to be at higher or lower 

resolution depending on application needs. Even more so, the sets themselves must be allowed to 

exist at various hierarchical levels, where sets at hierarchical level N get covered by the sets at 

N+1 level. This means that relationship between sets at different hierarchical levels must be 

carefully specified, such that set elements at level N may be permitted to relate to various sets at 

level N+1. Such property is essential for the connectivity to be properly reflected in a binary 

relation structure, instead of forcing connectivity into unnatural partitions instead of cover sets 

(see Section 2.5.1, Figure 2.7) (Beaumont & Gatrell, 1982, p. 5; Gaspar & Gould, 1981, p. 190; 

Gould, 1980, p. 174; Gould & Johnson, 1980, p. 181). 

If the attention is turned back to the water health application, it is not difficult to apply the same 

principles here as well. Primarily, the goal is to cover the study area with a set of discrete spaces 

known here as hexagon cells in order to capture another set of water site locations within their 

boundaries by covering the areas of their direct allocation. Thus, having made the set C (hexagon 

cells) as the cover set at some hierarchical level N, where N is equivalent to the resolution of the 

hexagon cells, such as H3 resolution 8 (Table B.1). What can be informative now is to apply the 

same procedure at the higher level of generalization, in order to study the changes in the 

backcloth connectivity structure. This requires the hexagon cover set to increase its cell size 

boundary and the resolution to adapt to the lower H3 resolution 7 (Table B.1). The backcloth 

hierarchy, in this case, amends to the N+1 level accordingly (Figure 4.8 cf. Figure A.1). For this 

matter, the hexagon aperture property is of great use here, since each aperture 7 hexagon cell at 
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level N is a child of a parent cell at level N+1. At the same time, the aperture is not restricted 

here, other kinds can be used as well, such as aperture 3 or 4 (see Section 3.3). This is consistent 

with the concept that elements at level N may be related to more than one element at level N+1, 

since it covers instead of strictly partitioning hexagon elements. 

(a) (b) 

  
Figure 4.8. (a) The figure illustrates location of water sample sites (yellow labels) within DGGS 

hexagon cells at the broader generalization level N+1. (b) Flow direction and elevation information 

in the study area, as the primary parameters for determining connectivity structure between 

hexagons and water sites. The resolution of H3 cells is 7. Data sources: (Government of the 

Northwest Territories, 2019; Natural Resources Canada, 2015, 2019). 
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Similarly, traffic can be also hierarchically structured (see Section 3.3.2) (Gould & Johnson, 

1980; Johnson, 1983b), if the interest is to study water parameters traffic at different levels of 

abstraction or aggregation. In this sense, a set of water descriptive parameters T (water 

parameters traffic) is created on another hierarchical level M, where M indicates concentration of 

specific water elements, such as T = {Al, Tur, Sr, Ba}. At levels M+1 and M-1 these parameters 

can be arranged into broader or finer categories via the molecular composition of each element 

respectively. In this context, it is suitable for the traffic parameters to be aggregated into the 

broader M+1 level groups each indicating the type, severity and general treatment guidelines for 

the measured water parameters. For example, set T at hierarchical level M can be further 

classified into treatment related, microbiological and inorganic chemical parameter groups at the 

M+1 level (Health Canada, 2019). The idea of a cover set is also well supported in the water 

traffic hierarchy, since it is possible for a water parameter to be related to more than one element 

at the higher level. Uranium, for example, though not used in this application but at the higher 

generalization level it is both inorganic chemical and radiological parameter (Health Canada, 

2019). Given the rationale behind the backcloth and traffic hierarchies their sets at N, N+1, M 

and M+1 levels can be summarized in the following tables (Table 4.9, Table 4.10). 

Table 4.9. Hierarchical hexagon cells at N 

and N+1 levels, and their corresponding 

changes to the cover set at N+1. 

N N+1 

c01 c01 

c02 c02 

c03 c03 

c04 c04 

c05 c05 

c06 c06 

c07 c07 

c08 c08 

c09 

c09-11 c10 

c11 

c12 
c12-13 

c13 

c14 c14 

c15 c15 
 

Table 4.10. Hierarchical water parameter elements 

at M and M+1 levels, and their corresponding 

changes to the cover set at M+1. Data source: 

(Health Canada, 2019). 

M M+1 

Aluminum Treatment related parameters 

Turbidity Microbiological parameters 

Strontium 
Inorganic chemical parameters 

Barium 
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Note that while being completely independent it is possible to combine different backcloth and 

traffic hierarchies (Gould & Johnson, 1980, p. 183), as long as such connection is possible to 

interpret in some contextual sense via the earlier established (  C x (W x T)) relation. 

Accordingly, in the presented water application it is appropriate to combine backcloth and traffic 

hierarchies in four pairs, such as (N, M), (N, M+1), (N+1, M) and (N+1, M+1), since all of them 

are both contextually and algebraically valid. However, to avoid repetitive and similar outcome 

statements, only the (N, M) and (N+1, M+1) hierarchical pairs were interpreted in this study. 

The pair (N, M) has already been studied in great detail (see Section 4.3), now consider the pair 

(N+1, M+1) as it introduces significant changes in the hierarchical structure of the backcloth and 

traffic. One must remember, however, that changes in the hierarchical configuration of cover sets 

will cause changes to the resultant connectivity matrix and to the Q-analysis output. To recap, 

given the earlier defined sets C, W and T, it is now possible to derive their cover sets at N+1 and 

M+1 levels, such that: 

CN+1 = {c01, c02, c03, c04, c05, c06, c07, c08, c09-11, c12-13, c14, c15} 

W = {W1, W2b, W2s, W3b, W3s, W4, W6, W7, W8, W9, W10b, W10s, W11, W12, 

W13, W14_1, W14b, W14_2, W17b, W17s} 

TM+1 = {Treatment, Microbiological, Inorganic} 

Note, how elements of the set W do not have hierarchical superscript assigned and remained 

unchanged. This is because set W is the non-hierarchical subject matter set of physical features 

(i.e., set of vector points representing water site locations). The use of the non-hierarchical set 

also guarantees consistency for merging backcloth and traffic, as well as hierarchical analyses 

(i.e., studying same subject matter for various spatial (set C) and attribute (set T) aggregations) 

(see Section 3.3). Consequently, three corresponding relations along with their direct and 

conjugate simplicial complexes are derived as shown: 

N+1  CN+1 x W → KC
N+1(W, N+1) → KW(CN+1, -(N+1)) 

(N+1, M+1)  CN+1 x TM+1 → KC
N+1(TM+1, (N+1, M+1)) → KT

M+1(CN+1, -(N+1, M+1)) 

(N+1, M+1)  CN+1 x (W x TM+1) → KC
N+1(W x TM+1, (N+1, M+1)) → KWxT

M+1(CN+1, -(N+1, M+1)) 



83 

 

Conceptually, relationship  can be captured by the following diagram (Figure 4.9). As discussed 

previously, the diagram here also illustrates the ability for the particular application to exist at the 

lower N-1 hierarchical level. The implications of the N-1 level are not covered in this research; 

nevertheless, such options are available to explore if data permits. Very likely, that hierarchical 

arrangement might not be always appropriate for other descriptive datasets, as some data may 

not generalize into higher or lower hierarchical levels, but exist only at the fixed hierarchy. 

 

Figure 4.9. Graphical illustration of the hierarchical concept in the water health application, and 

formation of the corresponding  relation between the hierarchical sets. The image also 

demonstrates how backcloth and traffic can be integrated within DGGS. 

It is also interesting to observe the difference and comparison between the hierarchical relation 

structures for N, N+1, M and M+1 levels, reflected in the resulting binary connectivity matrices 

for the N, N+1, -N, -(N+1) (Table C.1, Table C.2, Table C.3, Table C.4), (N, M), (N+1, M+1), -(N, 

M), -(N+1, M+1) (Table D.1, Table D.2, Table D.3, Table D.4) and (N, M), (N+1, M+1), -(N, M), -(N+1, 

M+1) (Table E.1, Table E.2, Table E.3, Table E.4) relations. Their implications are further 

revealed through Q-analysis, and discussed in the results chapter (see Section 5.3). 
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Chapter 5 Results 

In the previous chapters of this research much attention was put in formalizing a practical basis 

for how Q-analysis can fit into the overall DGGS perspective, and some of the advantages for 

doing so. In this chapter, the focus is put on reporting DGGS assessment, theoretical 

developments and Q-analysis output interpretation. Specifically, in Section 5.1 the chapter 

summarizes main findings for the operational capability of DGGS. Section 5.2 outlines 

theoretical advancements which were necessary in order for Q-analysis to be conformant with 

DGGS architecture. Finally, Section 5.3 provides interpretation of practical application and 

output of applied Q-analysis. 

 

5.1 DGGS Assessment 

The assessment and evaluation of available DGGS implementations have shown that there is 

great potential in utilizing such systems for the large-scale production purposes with the 

provided essential functional capabilities for data handling. At the same time, the study suggests 

further exploration and development of operational DGGS in order to promote enhanced 

capabilities for data analysis and interpretation, as well as evolution of the OGC abstract 

specification. 

 

5.1.1 Functionality 

Given the developed methodology (see Section 3.1.1) the study shows that it is possible to use 

selected DGGS solutions in a real-world application, such as an intersection analysis for example 

(Figure 5.1), as long as core functionality to convert geographic features into the grid cells, and 

the ability to extract their geometries are provided. Close exploration of these software indicate 

that all four libraries provide a set of methods for indexing data across hierarchies, which rely 

strictly on the coordinate information of the raw data. Once indexed, a geographic feature (e.g., 

point, line or polygon) is no longer defined by its latitude-longitude coordinates, but by a cell 

index which is embedded in a DGGS hierarchy. 
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Figure 5.1. This figure demonstrates the intersection analysis as the complete procedure for 

integrating, processing and visualizing road network (in grey) and water (in blue) features in a 

DGGS framework. The results show the common intersection (in red) area for both features. This 

particular example was generated via the H3 library (Uber Technologies Inc., 2019). 

One important observation which is necessary to consider here during the indexing stage is the 

potential loss of information. Given the index or cell ID, a grid system is capable of determining 

its resolution and centroid location for future processing or visualization, but not its original 

coordinate information. This means if the initial cell resolution is chosen to be too coarse, the 

location of a feature (e.g., point) will be replaced by the location of its cell centroid reducing 

potentially valuable precision (Figure 5.2). However, this same limitation can be viewed as an 

opportunity to consistently capture the uncertainty of the spatial location of the original data. 
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Figure 5.2. This figure illustrates a point example before and after its conversion to a DGGS cell. It 

indicates how a point (in red) earlier identified by its own geographic coordinates is now identified 

by its converted cell: its ID within the hierarchy and geographic location of the centroid (in blue). 

This illustration was created via the dggridR library (Barnes, 2016). 

Theoretically, similar implementations can be extended to all DGGS libraries as long as the 

aforementioned functionality is provided. Certainly, the analytical capabilities of DGGS do not 

stop here and might in the future be enhanced in order to make use of the full potential of their 

hierarchical nature. Ideally, additional methods including distance, contiguity and spatial weights 

must be considered for other purposes, such as terrain analysis, travel cost methods or pattern 

distribution. This requires and leads to developing methods for handling more complex grid 

structures (Figure 5.3). In order to improve the efficiency of geometry representation and 

display, certain libraries have provided a way for compressing grid geometry into multivariable 

resolutions (Figure 5.3). 

Amongst the presented DGGS implementations considered here only H3 and S2 libraries 

currently offer such functionality. Additional rules for handling hierarchical structure are 

necessary for successful data integration and spatial analysis procedures. Fundamentally, 
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algorithms must take advantage of the parent-child relationship to define rules on how user-

integrated spatial data will be aggregated or distributed when these grids structures change 

dynamically. Thus, further investigation of this specific question is encouraged especially for 

non-congruent hexagon apertures of 3 and 4, as well as mixed apertures. More attention should 

be also paid to the aperture 7 hexagons data containment, and their overlapping and underlapping 

issues, due to the truncated hexagon precision at each consecutive hierarchy level (Brodsky, 

2018). At the same time, it is worth remembering that Uber’s own applications of aperture 7 

hexagons caused no substantial obstacles for dynamic monitoring of their rides and prices on a 

city level scale (Brodsky, 2018). 

(a) (b) 

  

Figure 5.3. This figure demonstrates functionality of converting a polygon feature into a 

compressed grid structure via (a) H3 hexagon-based (Uber Technologies Inc., 2019) and (b) S2 

square-based (S2Geometry, n.d.) hierarchies. These grid structures are of particular interest since 

they require additional methods for assigning and extracting data to and from them. 

Another important consideration for practical DGGS application is technical support and 

corresponding user and development documentations, as they play an important role in use of 

these systems. In this sense, perhaps it was the most challenging to work with the OpenEAGGR 

library as its outdated build packages, technical documentations, usage methods and limited user 

base support prevented the use of its functionality to full potential. In relation to the other 

libraries the provided technical support was found to be sufficient in order to complete the set 

objectives. This summarizes an important discussion point that long term support of an active 

development community behind the software should be considered prior to adoption in real-

world applications. 
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5.1.2 Performance 

In considering library performance under increasing data volumes for individual aperture-shape 

pair combinations, the study discovered unexpected results. As shown (Figure 5.4), the 

assessment was applied on each library, shape and aperture separately in order to determine the 

ability to work with datasets of different size. 

 

Figure 5.4. The graph indicates performance of individual DGGS aperture-shape pair 

combinations based on their availability and DGGS implementation considerations. The x-axis 

indicates the number of sample points. The y-axis represents the log10 function of time in seconds 

shifted 2 units up. The abbreviations in the legend represent the following: A – aperture, H – 

hexagon, T – triangle, D – diamond, S – square. For example, A3H stands for aperture 3 hexagon. 

Results indicate that dggridR library is able to process large datasets faster than other libraries. 

While it is recognized that the timing component might be influenced by multiple factors, what is 

interesting is that dggridR library seems to perform substantially slower with smaller size 

datasets compared with OpenEAGGR, H3, S2, and vice versa for the larger datasets. According 

to this particular test and use of larger datasets, the dggridR analysis showed that aperture 3 

hexagons were the most efficient amongst other dggridR groups (A4H, A4T, A4D) 
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outperforming even triangles. This particular finding is surprising to observe since triangles are 

generally thought to have faster performance compared to other shapes (e.g., hexagons, squares) 

(Peterson, 2017). On the contrary, triangles do tend to perform better than hexagons with 

OpenEAGGR, likely due to differences between the software implementations. 

Regarding the remaining OpenEAGGR, H3 and S2 libraries, their performance showed 

consistency: their relative performance remained the same with H3 library being consistently 

faster. However, direct comparison between them or any other libraries was not possible. 

Overall, the performance test shows that all the above implementations are suitable and 

operational for working with large datasets within a reasonable time frame. It is important to 

mention that due to the large range between the measured values, the results were scaled using 

log10(seconds) + 2 (Figure 5.4). 

 

5.1.3 OGC Compliance 

The final part of this section presents a comparative analysis of DGGS implementations against 

the OGC abstract specification, which requires a DGGS data model to follow the core 

requirements necessary for defining a reference system across a hierarchy as well as 

functionalities that allow cell management and integration with external applications (Table 5.1 

cf. Table 2.1). In summary, results show that it is not possible to confirm fulfilment of all OGC 

requirements. H3 library is the closest one to the completion of the abstract specification. 

However, since it is impossible to confirm criterion 7, a statement confirming the full 

compliance of the H3 library cannot be made. In fact, criterion 7 cannot be confirmed for any of 

the libraries since technical documentation is not provided to demonstrate its fulfilment. 

Regarding other unfulfilled criteria, dggridR does not seem to support hierarchical navigation 

across a hierarchy (criterion 15), nor present integration with external applications (criteria 17, 

18). Similarly, OpenEAGGR falls short in meeting the area preservation requirement (criteria 3 

and 5) (Figure 5.5), whereas S2 lacks the equal area property (criteria 8 and 9). 
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Table 5.1. This table outlines the final assessment of the chosen DGGS libraries and evaluates them 

according to the OGC abstract specification for the DGGS data model. The information in this 

table was partially supported by the following sources for dggridR (Barnes, 2016; Sahr, 2018), H3 

(Brodsky, 2018; Uber Technologies Inc., 2019), OpenEAGGR (Bush, 2017; Riskaware Ltd., 2019) 

and S2 (Kreiss, 2016; S2Geometry, n.d.; Veach, 2017; Zeroghan, 2019). To be read in conjunction 

with Table 2.1. 

Criteria dggridR H3 OpenEAGGR S2 

1 Partially satisfied, 

criteria 7, 15, 17, 18 

could not be 

asserted 

Partially satisfied, 

criterion 7 could not 

be asserted 

Partially satisfied, 

criteria 3, 5, 7 could 

not be asserted 

Partially satisfied, 

criteria 7, 8, 9 could 

not be asserted 

2 All able to cover the complete surface of the Earth 

3 Overlapping or 

underlapping cells 

were not observed 

Overlapping or 

underlapping cells 

were not observed 

Ideally this 

requirement is 

fulfilled, however 

practical application 

indicates the 

opposite 

Overlapping or 

underlapping cells 

were not observed 

4 All capable of generating grids at various resolutions 

5 Anomalies were not 

observed across 

hierarchy 

Anomalies were not 

observed across 

hierarchy 

The requirement is 

not met due to the 

case in criterion 3 

Anomalies were not 

observed across 

hierarchy 

6 Hexagon, triangle 

and diamond shapes 

are simple polygons 

Hexagon is a simple 

polygon 

Hexagon and 

triangle shapes are 

simple polygons 

Square is a simple 

polygon 

7 Unable to determine for all, excluded from the evaluation 

8 Claimed to generate 

grids of equal area. 

The ratio between 

pentagon and 

hexagon cells is 5/6 

Each subsequent 

cell has 1/7 of the 

area from its parent 

cell. Equal area 

property of 

pentagons is not 

explicitly stated 

Equal area cells are 

generated at each 

resolution level. 

Equal area property 

of pentagons is not 

explicitly stated 

Does not claim 

equal area property, 

however the 

average cell size is 

guaranteed to be 

within a factor of 

1.5 

9 Icosahedron Icosahedron Icosahedron Integrates 

hexahedron/cube 

polyhedron of 

unequal size 
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Table 5.1. Continued. 

Criteria dggridR H3 OpenEAGGR S2 

10 Hexagons with 

apertures 3, 4 and 

mixed apertures 4-

3; triangles with 

aperture 4; and 

diamonds with 

aperture 4 

Uses hexagons with 

aperture 7 grid 

partitioning 

Hexagons with 

aperture 3 and 

triangles with 

aperture 4 

Uses squares with 

aperture 4 grid 

partitioning 

11 Hierarchy based 

indexing method 

Hierarchy based 

indexing method 

Uses offset 

coordinate indexing 

for hexagons and 

hierarchical 

indexing for 

triangles 

Uses Hilbert space-

filling curve 

12 All use unique indexes for each of their cells 

13 Location of a cell is 

assigned to its 

centroid 

Location of a cell is 

assigned to its 

centroid 

Location of a cell is 

assigned to its 

centroid 

Cell center specifies 

its position and 

subdivision level 

14 All provide various quantization methods that allows for conversion, storage and 

retrieval of various spatial features within DGGS framework. 

15 Hierarchical and 

neighbourhood 

methods are missing 

Equipped with 

method for 

hierarchical and 

neighbourhood 

navigation 

Full support of 

hierarchical 

navigation, and only 

partial support of 

neighbourhood 

navigation 

Equipped with 

method for 

hierarchical and 

neighbourhood 

navigation 

16 Supports method for 

intersection 

between cells and 

shapefile 

Supports methods 

for basic spatial 

operations 

Supports large 

variety of spatial 

analysis methods 

Supports methods 

for basic spatial 

operations 

17 Examples of data 

queries are not 

known 

Integration with 

geojson2H3 library 

and kepler.gl 

application permits 

data query 

Integration with 

PostgreSQL, 

PostGIS and 

Elasticsearch 

software permit data 

query 

Integration with 

Sidewalk Labs and 

Pokémon Go meets 

this requirement 
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Table 5.1. Continued. 

Criteria dggridR H3 OpenEAGGR S2 

18 Examples of data 

broadcast are not 

known 

Integration with 

geojson2H3 library 

and kepler.gl 

application permits 

data broadcast 

Integration with 

PostgreSQL, 

PostGIS and 

Elasticsearch 

software permit data 

broadcast 

Integration with 

Sidewalk Labs and 

Pokémon Go meets 

this requirement 

 

 

Figure 5.5. This figure illustrates that hexagon generation via the OpenEAGGR library (Riskaware 

Ltd., 2019) is unable to meet the requirements for positional uniqueness and area preservation 

because of the overlapping hexagon cells. The same conclusion cannot be made regarding triangles 

as shown. 

As a discussion point, the study reflects on these criteria and suggests their further exploitation in 

order to encourage their refinement in future releases. In particular, criterion 1 is the requirement 

that includes two major subgroups: reference frame elements and functional algorithm elements. 

This makes it difficult to evaluate such an all-inclusive criterion independently, since its 

fulfilment also guarantees the fulfilment of the remaining criteria. Therefore, it is suggested to 

remove this criterion as an individual requirement and use it as a validation check for the entire 

DGGS in the end of the comparative process. The wording of criterion 7 was hard to follow, 
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perhaps it can be reworded to make it easier for developers to demonstrate they have met the 

criteria. Criterion 9 appears to be a product of criterion 3, since if the positional uniqueness is 

preserved for the initial tessellation of a based polyhedron (criterion 3), this would also satisfy 

the fulfilment for the initial tessellation and equal area property (criterion 9). Therefore, perhaps 

these criteria can be merged. Similarly, criteria 11 and 12 seem to enforce similar requirement 

regarding spatial indexing, unique identifier and cell addressing. It is also suggested to combine 

these two in future releases, since the use of an indexing method also implies the use of unique 

identifiers. Criteria 17 and 18 are also associated in the way that they are complimentary to each 

other, since the existence of methods to receive, interpret and process external data queries 

(criterion 17) requires methods to return the results back to external application (criterion 18) 

which made the initial query request. Thus, existence of one requires the existence of the other. It 

is advised to merge these requirements into one as a communication criterion. 

In general, it is suggested to improve the current OGC abstract specification by clarifying some 

ambiguity in its definition and adding more contextual information and methods on how to 

implement the criteria. This would allow for a more constructive approach to maintain the 

criteria by software developers and provide users the ability to cross validate them. Some of 

these issues are occurring due to the fact that despite aiming to create a clear standard, a more 

comprehensive and broad approach was chosen instead to accommodate the need for the 

linkages with other data standards and DGGS, given the early stage of development of DGGS 

conceptual model and its implementation standard (OGC, 2019). 

 

5.2 Q-analysis for DGGS Data Infrastructure 

The appearance of DGGS has led to the development of new scalable solutions for data 

integration, analysis and visualization, in order to provide enhanced analytical capability and 

understanding of the global data complexity. Therefore, the need for the development of 

additional operations is demanded, in order to provide methods capable interpreting data in a 

form compatible with the core DGGS infrastructure (OGC, 2017). Apart from this, recent studies 

have also recognized the necessity for new and improved data driven methodologies, in order to 
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overcome challenges associated with complex data systems and formalization of geographic 

knowledge in understandable and explicit manner (Miller & Goodchild, 2015). 

Recognizing these requirements, this research makes one of its main contributions to the DGGS 

paradigm by proposing the use of Q-analysis set theory as a tool capable of preserving and 

concisely describing complex system interactions. The suggested integrated methodology 

attempts to provide theoretical argumentation as well as a case study for the concurrent use of Q-

analysis within future DGGS implementations and developments. In particular, much effort was 

dedicated into formalizing theoretical concepts of cover sets and resulted simplicial complexes 

with DGGS aperture and hierarchical properties. These developments extend the functional 

capability of DGGS for data management and interpretation with explicit and rich algebraic 

techniques proficient to analyse interactions within complex systems and datasets. In fact, the 

hierarchical properties of DGGS and subject matter features are considered as multilevel 

backcloth systems, whereas spatial data associated with DGGS cells as multilevel traffic. Thus, 

Q-analysis is made conformant with DGGS architecture for the study and analysis of the 

multilevel backcloth-traffic systems within the data rich environment. The practical execution of 

the proposed theoretical argumentation has shown that Q-analysis is in fact suitable and 

advantageous to the growth of DGGS, as well as fitting for the spatial analysis. 

Additionally, the study also outlines some of the attractive features of the Q-analysis 

methodology for exploring a system under continuous changes. A system in this case can be 

understood as a set of interactions or connectivity between its components or attributes, which 

are significant in understanding its behaviour. The study confirms the benefits of using simplicial 

complexes and their geometric representation as a way to define system behaviour. Their abstract 

visualization provides additional knowledge about system complexity and its interactions, not 

achievable by mere mapping of information assigned to DGGS cells on a physical space. Lastly, 

the study also puts emphasis on the value of Q-analysis for using relational approach, which is 

claimed to be data friendly and retains much of the original information via explicit definition of 

cover sets and their unconstrained interactions. 
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5.3 Interpreting Hierarchical Q-analysis 

A particular advantage of formalizing Q-analysis methodology within a DGGS data 

infrastructure is the ability to have a consistent configuration of space across complex network 

systems suitable for comparison at various hierarchical levels. In other words, a clear 

hierarchical arrangement of sets can be established and their corresponding structures compared 

conveniently, since DGGS cells at higher level of generalization cover those at the lower level of 

generalization. This property is considered important as it provides grounds for comparison and 

useful insight of a system under changes to its connectivity structure caused by the changes in 

spatial configuration and descriptive domains (i.e., spatial resolution). In this case, the Q-analysis 

output of the water quality and water health application is interpreted at different hierarchical 

levels, including comparison of the structural characteristics for backcloth, traffic and backcloth-

traffic mapping. It is interesting to learn how Q-analysis accurately reflects physical connectivity 

of the water system in the study area, and preserves much of its interaction and transmission 

capability when provided with well-defined sets and water flow connectivity. In addition, the 

analysis reveals the role and significance of individual areas in the multidimensional connectivity 

structure, including grounds for the spread of pollution and its possible likelihood. 

 

5.3.1 Backcloth Connectivity 

The major results of this section are outputs of the hierarchical Q-analysis for direct (Table 5.2) 

and conjugate backcloth complexes (Table 5.3), as well as their geometric realizations (Figure 

5.6) for both N and N+1 hierarchical levels. The analysis is mainly based on the backcloth 

connectivity structure between spatial units (i.e., hexagons) and physical features (i.e., water 

sites) defined for spatial aggregation levels N (Table C.1, Table C.3) and N+1 (Table C.2, Table 

C.4). 

Considering the output of the direct Q-analysis for the backcloth connectivity structure at level N 

the study has identified component {c12} to have the highest dimensionality at q = 7 (Table 5.2). 

This indicates that simplex 7(c12) and its corresponding area c12 is a key location in the 

complex which connects the largest number of water sites (i.e., 8) through the water network in 
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the study region. This finding is important since it means that water sites in this location (i.e., 

W17b and W17s) have a significant role in water quality monitoring, removal or malfunction of 

which can lead to the structure being disconnected and make the pollution tracing more difficult 

in the water system. Similarly, components {c15}, {c14} and {c10} enter the structure at q = 5, q 

= 4 and q = 3 respectively, and can be also considered as high dimensional since these locations 

with their corresponding water sites connect the entire network system into one multidimensional 

structure. In the context of water quality application these areas are of particular importance, 

since they can be used to monitor changes of water health, as they are the most connected within 

the water quality monitoring system. Thus, much water flow is passing through these areas. 

Specifically, it seems that simplices 7(c12), 5(c15), 4(c14) are connected via vertices <W17b, 

W17s>, whereas simplices 7(c12) and 3(c10) via vertices <W14_1, W14b> (Figure 5.6a). This 

implies that water quality measurements collected by these water sites (i.e., vertices) have a 

potential to propagate down the stream including cases when water happen to be contaminated. 

In particular, these areas form a connectivity chain, such that c10 flows into c12, and c12 flows 

into c15 and c14 for the hierarchical level N (Figure A.1). The connectivity chains become even 

more apparent at the lower q-dimensions, such as at q = 1 and q = 0 (Table 5.2). Here, Q-analysis 

identifies distinct connected components which include chain of simplices connected via water 

sites, capable of transmitting similar water quality information (i.e., traffic) through the water 

network. Primarily, the entire structure consists of three connected components {c01, c02}, {c07, 

c08} and {c03, c04, c05, c06, c09, c10, c11, c12, c13, c14, c15} which suggest that their 

corresponding areas are disconnected and do not share the same water site locations. Thus, it is 

safe to assume that these areas might be substantially different in terms of water quality 

characteristics, including cases of water pollution. 

Comparing the output of the direct Q-analysis for the backcloth connectivity at N+1 hierarchical 

level (Table 5.2), the study noticed that connectivity structure changed to be more connected. 

The hierarchy and changes in connectivity are explained by the increased areal coverage of each 

spatial unit (i.e., hexagon) while the scale of water sites remained unchanged (Figure A.1). It is 

clear that connectivity shifts towards simplices, such as 8(c15), 6(c12-13), 5(c06) and 4(c14) 

since they are identified as separate components at q = 8, q = 6, q = 5 and q = 4 respectively 

(Table 5.2). This is different compared to the Q-analysis output at level N, since at N+1 level 
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component {c15} was identified as the one with the highest dimension at q = 8 instead. This is 

due to the increased spatial aggregation of hexagons which allowed more isolated water sites to 

have access to different water streams. The maximum q-value (i.e., 8) has also increased 

accordingly signifying that more water sites have direct access to the 8(c15) simplex. For 

example, simplices 0(c09), 3(c10) and 0(c13) at level N can now have a direct water flow 

connectivity to simplex 8(c15), as composite of 4(c09-11) and 6(c12-13) simplices at N+1 

levels respectively (Figure 5.6b cf. Figure A.1). At the same time, simplex 0(c05) at level N+1 

has become connected to the simplex 8(c15) via the intermediate simplex 5(c06) instead, 

which was connected directly at level N. This suggests that water quality characteristics of 

simplex 8(c15) are described by a different set of water sites at level N+1. While recognizing 

that such aggregation from level N to N+1 might lead to suppression of important spatial 

information, the analysis of this sort can be also viewed as an uncertainty analysis which can be 

considered in the water health application to account for additional water flow connectivity. In 

this context, the analysis at different hierarchical levels is also a trade-off between information 

precision and accuracy. To elaborate, the output at level N appears to be more precise but lacks 

information accuracy. Whereas the analysis at level N+1 is less precise, due to aggregation of 

spatial information, but more accurate since it is possible to have more confidence in the 

collected data (i.e., more water sites describe one spatial unit). In general, the structure of the 

direct simplicial complex at N+1 level (Figure 5.6b) appears to be more connected and less 

fragmented which implies that more water sites (i.e., vertices) are being shared amongst the 

hexagons (i.e., simplices). For example, a first chain of connected simplices is started to appear 

much earlier in the structure, such as component {c06, c09-11} at q = 4 (Table 5.2) to indicate 

that each simplex share 5 water sites with one another. 

The conjugate Q-analysis at level N reveals additional insight into the water network system 

from the site-oriented point of view (Table 5.3), as opposed to the previously discussed cell-

oriented perspective of the direct Q-analysis at level N. Here, the analysis report relatively low q-

values, compared with the direct Q-analysis output. This is explained by the fact that most water 

sites can be traced from their initial location to next immediately connected area in the network. 

Considering that majority of sites flow into one direction only, the resulting connectivity 

structure turns out to be less connected. Nevertheless, much contextual information is still 
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possible to retrieve from these analyses. Mainly, the study identifies components {W12}, 

{W14_2} and {W17b, W17s} at q = 2 (Table 5.3), which show that their corresponding 

simplices can, in fact, flow in two different directions. This is clearly visible on the geometric 

representation of the complex (Figure 5.6c), as well as the study area map (Figure A.1). This 

implies that destination areas are related by sharing similar water characteristics, while not 

having direct water flow connectivity between each other. Such property can be very useful in 

cases when spread variability (i.e., number of connected edges) must be determined or predicted. 

In other words, area destinations are capable of inheriting similar water properties from their 

shared sources. In general, due to the large number of distinct connected components at q = 1 

(Table 5.3) the complex can be considered as fragmented, which means that water flows mostly 

in one direction only. For example, it flows towards the earlier identified high dimensional areas, 

such as c12, c15, c14 and c10 (Figure A.1). It is also worth noting that both direct (Table 5.2) 

and conjugate Q-analysis (Table 5.3) at level N show consistent results, since both identify three 

connected components at the lowest dimension q = 0. The direct Q-analysis identifies hexagon 

cells, whereas conjugate Q-analysis – water sites that are located within hexagon boundaries. 

As for the conjugate Q-analysis at N+1 level (Table 5.3), the procedure continues to confirm 

results determined from the direct Q-analysis, as well as to reveal new additional details. 

Similarly to the direct Q-analysis at N+1 level, the hierarchy of the conjugate Q-analysis at N+1 

level is also characterized by the increased areal coverage of the spatial units (i.e., hexagons) 

while the scale of water sites remained unchanged (Figure A.1). The connectivity of the water 

network shows that components {W11}, {W13, W14_1, W14_2, W14b} and {W4, W17b, 

W17s} at q = 2 and their corresponding simplices are able to flow in two different directions. 

The water flow connectivity here is well reflected by the geometric representation of the 

conjugate simplicial complex (Figure 5.6d). From the graph, it is also possible to identify 

vertices c12-13, c09-11 and c06 to have the highest spread variability, which is slightly different 

from the analysis at level N. In particular, at N+1 level it shows that simplex 2(W11) can now 

flow in two different directions, whereas simplex 1(W11) at level N in only one (Figure 5.6c cf. 

Figure 5.6d). This phenomenon is explained by the increased uncertainty of spatial units at N+1 

level. A particularly interesting behaviour was identified in the {W11, W13, W14_1, W14_2, 

W14b} connected component at q = 1. Here, the analysis detects a loop, or circular water flow 

connectivity between vertices c06 and c09-11. This same behaviour is also reflected in a direct 
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Q-analysis at level N+1 as {c06, c09-11} component at q = 4 (Table 5.2). In other words, c06 

flows into c09-11, and vice versa (Figure A.1). Such connectivity was not possible to identify at 

level N. Perhaps analysis on N+1 level infers additional properties of the physical water flow 

connectivity not visible or not identifiable at level N, due to the stricter and more constrained 

spatial configuration. Of course, such connectivity must be confirmed by the additional in-depth 

hydrological analysis of the water flow behaviour in the study region. At the lowest dimension q 

= 0, the results seem to be consistent at both N and N+1 levels, since three separate connected 

components composed of same simplices were also identified (Table 5.3). Results confirm the 

fact that no direct water flow is possible between the areas within identified connected 

components. Even after increasing the areal uncertainty, results show that these areas are indeed 

far away from each other, and thus less likely to share similar water quality characteristics. 

 

Table 5.2. Q-analysis output of KC
N(W, N) and KC

N+1(W, N+1) direct simplicial complexes. The 

curly brackets signify a connected component and its simplices. The N/A value indicates absence of 

the corresponding q-value in the complex. 

q-

value 
KC

N(W, N) KC
N+1(W, N+1) 

8 N/A {c15} 

7 {c12} {c15} 

6 {c12} {c12-13}, {c15} 

5 {c12}, {c15} {c06}, {c12-13}, {c15} 

4 {c12}, {c14}, {c15} {c06, c09-11}, {c12-13}, {c14}, {c15} 

3 {c10}, {c12}, {c14}, {c15} {c06, c09-11, c15}, {c12-13}, {c14} 

2 {c10}, {c12}, {c14}, {c15} {c06, c09-11, c12-13, c14, c15} 

1 
{c02}, {c06}, {c07}, 

{c03, c10, c12, c14, c15} 

{c02}, {c07}, 

{c03, c06, c09-11, c12-13, c14, c15} 

0 

{c01, c02}, {c07, c08}, 

{c03, c04, c05, c06, c09, c10, c11, c12, c13, 

c14, c15} 

{c01, c02}, {c07, c08}, 

{c03, c04, c05, c06, c09-11, c12-13, 

c14, c15} 
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(a) (b) 

  

(c) (d) 

  

Figure 5.6. Geometric representation of (a) KC
N(W, N) (b) KC

N+1(W, N+1) (c) KW(CN, -N) (d) 

KW(CN+1, -(N+1)) simplicial complexes. 
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Table 5.3. Q-analysis output of KW(CN, -N) and KW(CN+1, -(N+1)) conjugate simplicial complexes. 

The curly brackets signify a connected component and its simplices. 

q-

value 
KW(CN, -N) KW(CN+1, -(N+1)) 

2 

{W12}, 

{W14_2}, 

{W17b, W17s} 

{W11}, 

{W13, W14_1, W14_2, W14b}, 

{W4, W17b, W17s} 

1 

{W1}, {W2b, W2s}, {W4}, {W6}, {W7}, 

{W11}, {W12}, {W13}, 

{W14_1, W14b}, {W14_2}, {W17b, W17s} 

{W1}, {W2b, W2s}, {W6}, {W7}, 

{W11, W13, W14_1, W14_2, W14b}, 

{W12}, {W4, W17b, W17s} 

0 

{W1, W9}, {W7, W8}, 

{W2b, W2s, W3b, W3s, W4, W6, W10b, 

W10s, W11, W12, W13, W14_1, W14_2, 

W14b, W17b, W17s} 

{W1, W9}, {W7, W8}, 

{W2b, W2s, W3b, W3s, W4, W6, 

W10b, W10s, W11, W12, W13, 

W14_1, W14_2, W14b, W17b, W17s} 

 

5.3.2 Traffic Connectivity 

Traffic is also a fundamental concept in Q-analysis, which is a term that addresses various 

descriptive features (i.e., attribute information) related to the geometric structure of the 

backcloth. The results of this section are mainly focused on interpreting water quality parameters 

(i.e., traffic), their q-connectivity and hierarchical aggregation (Table D.1, Table D.2, Table D.3, 

Table D.4) within the scope of water health application and DGGS. 

By itself traffic interpretation might not be very informative as the relation between spatial units 

and water parameters mainly outline areas where  parameters exceed their limits. Nonetheless, 

it is still possible to get some insight of the collected data when its connectivity is investigated. 

This is clearly visible from the output of the direct Q-analysis for both (N, M) and (N+1, M+1) 

hierarchical levels (Table 5.4). Here, the areas with the highest number of exceeding  

parameters appear at high q-values, whereas the less polluted areas enter the structure 

subsequently. The q-value indicates (q + 1) parameters above their  thresholds. Note, the 

connected components in the direct Q-analysis (Table 5.4) do not imply water flow connectivity 

between their spatial units, but simply state that all corresponding simplices have equal or greater 

than (q + 1) parameters above their  limits. 
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More comprehensive interpretation can be achieved from the output of the conjugate Q-analysis 

(Table 5.5). Here, Q-analysis identifies the most widespread water parameters or characteristics 

which affect water quality in the study area. Primarily, the analysis has determined component 

{Tur} (i.e., turbidity) to be the most widespread at q = 7. In fact, q-value signifies that (q + 1) 

areas have exceeded the maximum allowable measure of turbidity in the study region. At the 

lower q-values (e.g., from q = 5 to q = 3), it also seems that two distinct connected chains {Al, 

Tur} and {Ba, Sr} have been formed at the hierarchical level (N, M). The fact that they tend to 

appear as separate components suggest that they are affecting a slightly different set of areas, 

which can also mean that they have originated from two different sources of pollution. 

Interestingly enough, at the conjugate hierarchical level (N+1, M+1) component {Ba, Sr} 

appears as {inorganic}, which indicates that both Ba (barium) and Sr (strontium) are inorganic 

chemicals. Thus, perhaps their q-connectivity says something about their similar chemical 

properties, which allows them to be combined at the next hierarchical level. By inference, this 

would also suggest that there is some similarity between Al (aluminum) and Tur (turbidity), 

despite the fact that Al is a treatment related parameter and Tur is a microbiological parameter at 

(N+1, M+1) level. Regardless, this statement can be true since by definition turbidity 

measurement can contain particles of both inorganic and organic elements (Health Canada, 

2019). Thus, it is very likely that spike in Tur measurement can lead to the spike in Al 

concentration. Either way, additional analysis of chemical and physical water properties would 

be necessary to perform in order to confirm these statements. 

Table 5.4. Q-analysis output of KC
N(TM, (N, M)) and KC

N+1(TM+1, (N+1, M+1)) direct simplicial 

complexes. The curly brackets signify a connected component and its simplices. The N/A value 

indicates absence of the corresponding q-value in the complex. 

q-

value 
KC

N(TM, (N, M)) KC
N+1(TM+1, (N+1, M+1)) 

3 {c05, c09} N/A 

2 {c05, c06, c09} {c05, c09-11} 

1 
{c01, c02, c04, c05, c06, c07, c08, c09, c10, 

c12} 

{c01, c02, c04, c05, c06, c07, c09-11, 

c12-13} 

0 
{c01, c02, c04, c05, c06, c07, c08, c09, c10, 

c12, c13} 

{c01, c02, c04, c05, c06, c07, c08, 

c09-11, c12-13} 
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Table 5.5. Q-analysis output of KT
M(CN, -(N, M)) and KT

M+1(CN+1, -(N+1, M+1)) conjugate simplicial 

complexes. The curly brackets signify a connected component and its simplices. 

q-value KT
M(CN, -(N, M)) KT

M+1(CN+1, -(N+1, M+1)) 

7 {Tur} {microbiological} 

6 {Tur} {microbiological} 

5 {Al, Tur}, {Ba, Sr} {microbiological, treatment} 

4 {Al, Tur}, {Ba, Sr} {microbiological, treatment}, {inorganic} 

3 {Al, Tur}, {Ba, Sr} {microbiological, treatment, inorganic} 

2 {Al, Ba, Sr, Tur} {microbiological, treatment, inorganic} 

1 {Al, Ba, Sr, Tur} {microbiological, treatment, inorganic} 

0 {Al, Ba, Sr, Tur} {microbiological, treatment, inorganic} 

 

5.3.3 Backcloth-Traffic Mapping 

As the final product of this project the study attempts to perform the mapping of the hierarchical 

traffic onto the hierarchical backcloth (Table E.1, Table E.2, Table E.3, Table E.4) in order to get 

a sense of water movement and changes of water quality characteristics (i.e., traffic) through the 

water network system (i.e., backcloth). The results are reported as the output of the direct (Table 

5.6) and conjugate (Table 5.7) Q-analysis for both (N, M) and (N+1, M+1) hierarchical levels, as 

well as geometric representation of the conjugate simplicial complexes (Figure 5.7). At the same 

time, parallels between both hierarchical levels are made for comparison and interpretation of the 

output. In a general sense the process of mapping reveals areas where individual water 

parameters exceed their defined  thresholds. 

Given the output of the direct Q-analysis at hierarchical level (N, M) the study shows that {c12} 

is the single highest dimensional component found at q = 12 (Table 5.6). This finding confirms 

the fact that area c12 is the key location in the study region, since the water in its approximate 

vicinity has the highest potential to be negatively impacted by various sources of pollution 

coming from the other upstream areas. In other words, 12(c12) is still the most connected 

simplex where q-value indicates (q + 1) number of water quality components (i.e., traffic) of 

potential hazard. Accordingly, simplices 7(c10) and 7(c15) also appear to be exposed to a 

negative environmental impact as they enter the structure after 12(c12) at q = 7. At levels q = 6, 

5 and 4, one interesting observation can be made. It seems that component {c06} is more 
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connected than {c14}, which is opposite in the regular backcloth structure at the hierarchical 

level N (Table 5.6 cf. Table 5.2). This says that simplex 4(c14) faces less environmental threat 

(i.e., less traffic reaches it) compared to the 6(c06) after considering water quality data (i.e., 

traffic), even though 4(c14) is more connected in the backcloth. In a general sense, it also seems 

that at high q-values components are quite disconnected. This means that simplices do not share 

many vertices and most traces of pollution do not make it to the next destination area (i.e., 

hexagon). Such behaviour is clearly visible in geometric realization of the combined conjugate 

simplicial complex at level (N, M) (Figure 5.7a), discussed shortly. On the other hand, it is 

possible to observe three similar distinct connected components starting from q = 3 down to q = 

0 (Table 5.6). What is interesting, however, is that areas c03 and c11 are completely excluded 

from the structure. This includes even the lowest q-level q = 0 where simplices can share as little 

as one vertex, which means that no pollution has been detected in these areas. While it might not 

be a direct interest of the application, the analysis provides empirical evidence that these areas 

have no observed pollution (i.e., no traffic variables have exceeded defined  parameters). 

Regarding the direct Q-analysis at the next hierarchical level (N+1, M+1) it seems that 

dimensionality of this structure has increased to q = 17, where component {c15} is identified 

(Table 5.6). This indicates that simplex 17(c15) can be polluted by the (q + 1) number of water 

parameters accumulated from different water sites. Due to changes in spatial resolution it is also 

possible to observe interesting changes in the traffic flow. In fact, it seems that both 16(c06) and 

13(c09-11) simplices have become a new connectivity hub where much water traffic can be 

concentrated. In fact, both of them form a connected component at q = 13, which means that they 

have a potential of sharing 14 vertices. In addition, at q = 9 the analysis identifies two 

components {c06, c09-11, c15} and {c12-13}, which says something about movement of traffic 

through the backcloth. Specifically, it seems that much water pollution (i.e., traffic) have a strong 

tendency to move via connected chain of simplices (i.e., hexagons) in the {c06, c09-11, c15} 

component, with {c12-13} not being included in it and becoming more of an independent source. 

This is different from the analysis at (N, M) level, implications of which determined that area 

c12 is the key connectivity point of the structure (Table 5.6). The fact that simplex 9(c12-13) 

enters the structure significantly later indicates that its connectivity has changed, which is true 

since area c10 can no longer access area c12 directly as it was before at (N, M) level (Figure 
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A.1). Overall, changes in spatial aggregation of hexagon units have strong impact on the flow 

directionality of water traffic by reducing the complexity of network connectivity. The process 

also demonstrates that other connectivity factors can be added to the structure, such as 

component {c06, c09-11, c15} to reveal additional spatial behaviour and variability at the cost of 

the generalized information (e.g., aggregating areas c09, c10 and c11). Thus, analysis at various 

hierarchical levels can be quite advantageous in cases when it is necessary to account for certain 

level of accuracy and mitigate data gaps of the desired precision. Besides, it can be also 

beneficial when more general and global system connectivity patterns are analysed in 

conjunction with generalized statistical information not available at high precision, such as 

census data. 

As for the conjugate Q-analysis for the hierarchical level (N, M) it is of particular importance, as 

it helps to tracks changes of water quality characteristics through different chains of connected 

water sites (i.e., simplices). Specifically, the analysis identifies water sites W12 as the source of 

Al, Ba, Sr, Tur, and sites W17b, W17s as the sources of Ba and Sr. These water sites are found at 

q = 2, which means they are capable of negatively affecting three areas including their places of 

origin (Table 5.7 cf. Figure 5.7a). At the same time, at q = 1 similar tendency is observed with 

each component being able to flow in at least one direction, including earlier mentioned W12, 

W17b and W17s sites. Note, each simplex within these connected components belong to single 

spatial area (i.e., hexagon). The interpretation of the output at q = 0 is the most important, as it 

depicts movement of the individual parameters within the complex. For example, it is clear that 

traces of Al and Tur detected by site W7 in c01, can be also detected by W8 in c02, suggesting 

that pollution has travelled from c01 into c02 (Figure 5.7a). In turn, it seems that Ba and Sr 

detected by W1 in c08 have not reached a directly connected area c07, since its water site W9 

shows exceeding concentrations of Al and Tur instead. This might indicate that c07 has either a 

separate source of pollution or the actual water flow connectivity between these areas is not 

strong enough to carry these pollutants over. Lastly, the largest component {W4_Tur, W6_Al, 

W6_Tur, W11_Ba, W11_Sr, W11_Tur, W12_Al, W12_Ba, W12_Sr, W12_Tur, W13_Al, 

W13_Ba, W13_Sr, W13_Tur, W14_1_Ba, W14_1_Sr, W14b_Ba, W14b_Sr, W17b_Ba, 

W17b_Sr, W17s_Ba, W17s_Sr} might be the hardest to interpret. However, with the use of the 

study area map (Figure A.1) and geometric representation of the conjugate simplicial complex 

(Figure 5.7a) it is possible to identify the upstream location of individual sites and traversal of 
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water parameters through the network system. In particular, from the graph it seems that sites 

W12 (in c05) and W13 (in c09) are the two initial upstream locations where exceeding 

concentrations of Al, Ba, Sr and Tur are detected. From W12 the water flows to W11 (in c06) 

carrying over Ba, Sr and Tur, and then continues to W17b and W17s (in c12) where only Ba and 

Sr have been detected above the allowable limits. Similarly, from W13 the water flows to W14b 

and W14_1 (in c10) where only Ba and Sr are transferred, and then continues to W17b and W17s 

(in c12) where Ba and Sr are detected also. Given these observations, it is possible to conclude 

that Ba and Sr have a stronger impact on water quality and health in the study region since these 

elements are capable of traveling further within the system, compared to Al and Tur. This is also 

confirmed by the fact that concentrations of Al or Tur did not make it from W4 (in c13) to W3b 

and W3s (in c14), from W12 (in c05) to W10b and W10s (in c15), and W6 (in c04) to W17b and 

W17s (in c12) (Figure 5.7a cf. Figure A.1). The study does not exclude other factors which could 

have contributed to these outcomes, such as travel distance, water treatment procedures or even 

hydrological processed (e.g., sedimentation).Considering that these factors were not the focus of 

the application it is not possible to determine a degree of their importance. At the same time, 

note that water sites W2b and W2s (in c03) and W14_2 (in c11) are not found in the conjugate 

structure (Table 5.7 cf. Figure A.1). This has been also identified in the direct backcloth structure 

mentioned earlier, due to the fact that these water sites and their hexagon areas have met the 

standards for the water quality measurements. On the other hand, water sites such as W3b and 

W3s (in c14) and W10b and W10s (in c15) are also not included in the structure, even though 

their hexagon areas (i.e., c14 and c15) appear as high dimensional simplices in the direct 

backcloth structure (Table 5.7 cf. Table 5.6). It means that in reality traces of water pollution 

were not detected by these water sites, even though they are supposed to be highly susceptible to 

the negative impact via the water network. 

Finally, the conjugate Q-analysis for the hierarchical level (N+1, M+1) provides additional view 

of the network system complexity where generalization is the product not only of the spatial 

aggregation of hexagon cells, but also contextually for the water quality parameters. The 

implications of traffic generalization might not be appropriate in all cases; nevertheless, they are 

of great significance when the focus is to identify all elements that belong to a specific group. 

For instance, microbiological parameters (e.g., turbidity) have the highest priority when it comes 

to the treatment guidelines of the water quality (Health Canada, 2019). Thus, it can be of great 
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interest to focus on the whole group rather than individual parameters. As a result, the 

connectivity analysis (Table 5.7) and the corresponding graphical representation (Figure 5.7b) 

identify water sites W11 (in c06); W4, W17b, W17s (in c12-13); and W13, W14b, W14_1, 

W14_2 (in c09-11) at q = 2 instead. This implies that these sites flow in two different directions, 

whereas new sites at q = 1 only in one direction. At q = 0 the study provides more insight into 

the observed water flow circularity between areas c06 and c09-11. It is possible to contemplate 

that such circular movement of water can have a direct impact on how the water parameters 

spread across the network. This can be a potential reason why no contaminations were found in 

areas c14 and c15 at either of the hierarchical levels by the conjugate Q-analysis, since water 

elements may be primarily deposited to the neighboring areas only and not spread further down 

the stream. Certainly, this statement must be also confirmed with a detailed hydrological 

analysis. While such interpretation is substantially different from the conjugate analysis at the 

(N, M) level, it also provides a different interpretation scenario which may be helpful in 

identifying sources of pollution and choosing appropriate mitigation strategies. 

In summary, these interpretations communicate an important property of Q-analysis, such that 

direct analysis reveals a degree to which different areas are susceptible to the pollution, whereas 

conjugate analysis assists in monitoring actual changes in the water quality system and 

movement of individual elements. It is also clear that Q-analysis without traffic is merely an 

analysis of general system connectivity, whereas backcloth-traffic mapping leads to 

understanding of changes in water quality parameters (i.e., traffic) in the network system (i.e., 

backcloth). In other words, it is possible to observe the extent to which changes of traffic values 

in one area can promote changes in other areas via chain of connected simplices. In fact, this 

statement is also considered as one of the objectives for interpreting traffic on the backcloth 

(Johnson, 1990, p. 284). 
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Table 5.6. Q-analysis output of KC
N(W x TM, (N, M)) and KC

N+1(W x TM+1, (N+1, M+1)) direct simplicial 

complexes. The curly brackets signify a connected component and its simplices. The N/A value 

indicates absence of the corresponding q-value in the complex. 

q-

value 
KC

N(W x TM, (N, M)) KC
N+1(W x TM+1, (N+1, M+1)) 

17 N/A {c15} 

16 N/A {c06}, {c15} 

15 N/A {c06}, {c15} 

14 N/A {c06}, {c15} 

13 N/A {c06, c09-11}, {c15} 

12 {c12} {c06, c09-11}, {c15} 

11 {c12} {c06, c09-11, c15} 

10 {c12} {c06, c09-11, c15} 

9 {c12} {c06, c09-11, c15}, {c12-13} 

8 {c12} {c06, c09-11, c15}, {c12-13} 

7 {c10}, {c12}, {c15} {c06, c09-11, c15}, {c12-13} 

6 {c06}, {c10}, {c12}, {c15} {c06, c09-11, c15}, {c12-13} 

5 {c06}, {c10}, {c12}, {c15} {c06, c09-11, c12-13, c14, c15} 

4 {c06}, {c10}, {c12}, {c14}, {c15} {c06, c09-11, c12-13, c14, c15} 

3 
{c02}, {c07}, 

{c05, c06, c09, c10, c12, c14, c15} 

{c02}, 

{c06, c09-11, c12-13, c14, c15} 

2 
{c02}, {c07}, 

{c05, c06, c09, c10, c12, c14, c15} 

{c02}, {c07}, 

{c05, c06, c09-11, c12-13, c14, c15} 

1 
{c01, c02}, {c07, c08}, 

{c04, c05, c06, c09, c10, c12, c14, c15} 

{c01, c02}, {c07}, 

{c04, c05, c06, c09-11, c12-13, c14, c15} 

0 
{c01, c02}, {c07, c08}, 

{c04, c05, c06, c09, c10, c12, c13, c14, c15} 

{c01, c02}, {c07, c08}, 

{c04, c05, c06, c09-11, c12-13, c14, c15} 
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Table 5.7. Q-analysis output of KWxT
M(CN, -(N, M)) and KWxT

M+1(CN+1, -(N+1, M+1)) conjugate simplicial 

complexes. The curly brackets signify a connected component and its simplices. 

q-

value 
KWxT

M(CN, -(N, M)) KWxT
M+1(CN+1, -(N+1, M+1)) 

2 
{W12_Al, W12_Ba, W12_Sr, W12_Tur}, 

{W17b_Ba, W17b_Sr, W17s_Ba, W17s_Sr} 

{W11_I, W11_M}, 

{W4_I, W4_M, W17b_I, W17b_M, W17s_I, W17s_M}, 

{W13_I, W13_M, W13_T, 

W14_1_I, W14_1_M, W14_1_T, 

W14_2_I, W14_2_M, W14_2_T, 

W14b_I, W14b_M, W14b_T} 

1 

{W6_Al, W6_Tur}, 

{W7_Al, W7_Tur}, 

{W12_Al, W12_Ba, W12_Sr, W12_Tur}, 

{W13_Al, W13_Ba, W13_Sr, W13_Tur}, 

{W4_Tur}, 

{W11_Ba, W11_Sr, W11_Tur}, 

{W1_Ba, W1_Sr}, 

{W14_1_Ba, W14_1_Sr, W14b_Ba, W14b_Sr}, 

{W17b_Ba, W17b_Sr, W17s_Ba, W17s_Sr} 

{W6_M, W6_T}, 

{W7_M, W7_T}, 

{W12_I, W12_M, W12_T}, 

{W4_I, W4_M, W17b_I, W17b_M, W17s_I, W17s_M}, 

{W1_I}, 

{W11_I, W11_M, W13_I, W13_M, W13_T, 

W14_1_I, W14_1_M, W14_1_T, 

W14_2_I, W14_2_M, W14_2_T, 

W14b_I, W14b_M, W14b_T} 

0 

{W7_Al, W7_Tur, W8_Al, W8_Tur}, 

{W1_Ba, W1_Sr, W9_Al, W9_Tur}, 

{W4_Tur, 

W6_Al, W6_Tur, 

W11_Ba, W11_Sr, W11_Tur, 

W12_Al, W12_Ba, W12_Sr, W12_Tur, 

W13_Al, W13_Ba, W13_Sr, W13_Tur, 

W14_1_Ba, W14_1_Sr, 

W14b_Ba, W14b_Sr, 

W17b_Ba, W17b_Sr, 

W17s_Ba, W17s_Sr} 

{W7_M, W7_T, W8_M, W8_T}, 

{W1_I, W9_M, W9_T}, 

{W4_I, W4_M, 

W6_M, W6_T, 

W11_I, W11_M, 

W12_I, W12_M, W12_T, 

W13_I, W13_M, W13_T, 

W14_1_I, W14_1_M, W14_1_T, 

W14_2_I, W14_2_M, W14_2_T, 

W14b_I, W14b_M, W14b_T, 

W17b_I, W17b_M, 

W17s_I, W17s_M} 
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(a) 

 

(b) 

 

Figure 5.7. Geometric representation of (a) KWxT
M(CN, -(N, M)) and (b) KWxT

M+1(CN+1, -(N+1, M+1)) 

conjugate simplicial complexes. 
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Chapter 6 Conclusion 

As the final part of this thesis, this chapter summarizes main contributions made by this research 

and suggests some necessary steps for the successful growth and development of this research. In 

particular, in Section 6.1 the study reports major contributions to the field, which includes 

assessment of DGGS implementations, enhancement of the DGGS analytical capability and a 

case study of the water quality and health. Section 6.2 concludes with the future perspectives and 

thoughts on how this research can be improved further. 

 

6.1 Study Outcomes 

The emergence of DGGS opened up new horizons and opportunities for comprehensive 

geospatial analysis that is suitable for integration with multiple data sources and data types, and 

is consistent in both use and representation. The framework was designed with the purpose of 

providing a uniform grid based system capable of discretizing spatial information globally and 

performing its analytical interpretation through a hierarchy of equal area cells. Accordingly, each 

corresponding cell references a specific area on the surface of the Earth, as well as can contain 

multiple data values and be uniquely identified within the hierarchy system. 

A detailed assessment of available DGGS solutions and their evaluation for operational 

capability have shown to have great potential and versatility for the purposes of data handling 

and performing basic spatial operations, such as intersection analysis, neighbourhood search or 

data indexing, including possibilities for visualization. At the same time, the study recognizes 

that not all libraries are at the same level of development and much work is still required in order 

to reach a point when such systems are possible to use without the need to understand library-

specific implementation details or technical characteristics. In other words, the study concludes 

that much technical preparation is necessary in order to perform a required operation, not to 

mention advanced GIS analyses such as terrain generation, pattern recognition or network 

modelling. 

In addition to the operational basis, the study also developed a scalability analysis, designed 

specifically to benchmark the performance of selected DGGS applications under simulated 
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accumulation of data volumes. This assessment is of particular importance, as it provides a 

quantitative measure of library’s ability to cope with large-scale datasets for the real-world 

application and production purposes. The results show that all reviewed DGGS implementations 

are capable of handling large data volumes in a timely manner. Overall, the dggridR library was 

found to be the most efficient at processing large-scale datasets, while recognizing the variation 

in performance due to different factors. One particularly interesting observation made for the 

dggridR was to discover that the use of triangles seemed to be outperformed by other shapes, 

whereas triangles are known to be generally faster. The same, however, cannot be said about the 

OpenEAGGR library, since its triangles do seem to show better performance. 

For the concluding part of the DGGS assessment the study carries out a detailed comparative and 

compatibility review of the chosen DGGS implementations against current OGC abstract 

specification for DGGS (OGC, 2017). The review of the OGC abstract specification affirms that 

it is not possible to confirm successful fulfilment of all OGC criteria by any of the evaluated 

DGGS software. The H3 library appears to be the most complete lacking only criterion 7, which 

was also not possible to confirm for any of the other libraries considered here. The OpenEAGGR 

and S2, libraries are lacking criteria 3, 5, 7 and 7, 8, 9 respectively, as well as the dggridR library 

having four unfulfilled criteria 7, 15, 17 and 18. For the most part, the missing requirements are 

the consequences of lacking explicit documentation and continuing development of the current 

software. The analysis suggests making some improvements to the OGC abstract specification in 

order to clarify contextual ambiguity and provide more explicit guidelines for conformance. 

While the detailed assessment and evaluation of DGGS software show great potential and 

advantages for GIS data management and analysis, the lack of advance analytical capability 

motivated a further search for more explicit data friendly techniques complimentary with the 

data rich environment and holistic DGGS framework. In this regard, the study explored the use 

of Q-analysis, a technique known for its ability to facilitate interpretation perspective of complex 

data systems using concepts of algebraic topology and a relational approach to data analysis 

(Atkin, 1974). Much attention was dedicated to the exploration of this particular methodology in 

order to take the full advantage of the emerging distributed hierarchical data systems (i.e., 

DGGS). Primarily, the goal was to meet the demands for formalizing geographical knowledge 

and understanding of data complexity in the science of complex systems (Miller & Goodchild, 
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2015), when other conventional methods fall short in capturing interaction between system 

components explicitly (Johnson, 2014, p. 8). As stated by Johnson, the term complexity is 

multifaceted and can address various issues, including but not limited to the properties of 

globality, network connectivity, multilevel and discrete dynamics (Johnson, 2014, p. 6). 

According to these properties and their definitions, the study has drawn parallels between 

complexity and core DGGS principles, which encouraged further exploration of DGGS data 

structures under umbrella of complex systems science. In other words, Q-analysis was found to 

be a suitable technique for exploring structural characteristics and complexity of data rich DGGS 

environment, due to its use of algebraic topology and simplicial complexes to accurately model 

and observe system behaviour and interactions under continuous changes. 

As a matter of fact, the study contributes to the research in DGGS by extending the analytical 

capability of Q-analysis for the use within a hierarchical data system. Specifically, the developed 

methodology takes advantage of hierarchical cover sets and simplicial complexes to build a 

connectivity structure known as backcloth between well-defined sets of data, with one of them 

being a set composed of DGGS cells at some applicable hierarchical level. Furthermore, the 

formed backcloth can also carry associative information about the sets, and form additional 

connectivity structure called traffic. Hence, Q-analysis was made compatible with the 

complexity of DGGS data infrastructure via the multilevel backcloth-traffic systems. The 

research concludes that proposed methodology was found sufficient and suitable for exploring 

structural characteristics and insight of datasets at different hierarchical levels for both spatial 

and aspatial perspectives. 

As the proof of concept, the study considered the water health and water quality application for 

the purposes of exploring practical implications and complexity measures of the proposed data 

analysis methodology. In the process, it has been shown that Q-analysis is useful in addressing 

physical connectivity and interaction of the water network system, including the spatial 

significance of individual water sites. It has been also recognized that changes between 

hierarchical levels (i.e., spatial resolution of DGGS cells) have a significant impact on the 

connectivity structure of the water network, which in turn introduces new system behaviour and 

insight (e.g., circular water flow connectivity). While the advantages are apparent, it is also 

suggested to perform and compare the outcomes at the lower and more detailed hierarchical 
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levels in order to validate the results and assist with their interpretation. In the end, the study 

concludes that careful interpretation of the connectivity chains between connected components 

and simplices reveal much detail regarding system behaviour, including degree of pollution 

spread and its corresponding chain affects. 

Although the case study introduced here was limited primarily to the water health application 

and a specific dataset for the cumulative monitoring of the aquatic ecosystem (Government of 

the Northwest Territories, 2019), the developed technique is highly adaptable and likely to work 

with various data within the broad DGGS framework; as long as rules for deriving well-defined 

cover sets and contextual rationale are preserved. In fact, it is encouraged to integrate additional 

datasets in order to gain better understanding and systematic behaviour of the study subject. In 

summary, the implications of this research is to provide grounds for “letting the data speak for 

themselves” (Gould, 1981), and steer towards new and advance data driven solutions (Miller & 

Goodchild, 2015) in order to gain understanding of complexity (Johnson, 2014) in the data rich 

DGGS environment (OGC, 2017), as well as to promote further DGGS data infrastructure 

incentives and developments. 

 

6.2 Future Work 

Considering the outcomes provided by this research and the centrality of DGGS in the execution 

of this work, improvement to the OGC abstract specification for DGGS is an important and 

necessary place to start for the further advancement of this research. Being at its early stage of 

development, the OGC DGGS abstract specification must reach a point when it can be easily 

validated and enforced by end users. 

Regarding the use of Q-analysis methodology the study also suggest further exploration of the 

additional quantitative measures available within the available theoretic developments, such as 

the concept of eccentricity. From the Atkin’s point of view the measure of eccentricity shows 

how well an individual simplex is integrated within a simplicial complex (Atkin, 1974, pp. 33–

35), which can be a useful property to explore for better understanding of the system components 

and their roles. 
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Another consideration for advancing the current methodology is the use of a time component 

more explicitly within DGGS framework and the corresponding space-time analysis. Such 

analysis was articulated through the concept of dynamics and graded patterns of traffic on 

backcloth (Atkin, 1974, pp. 126–137), as well as q-transmission mechanisms (Johnson, 1982). 

Throughout this study DGGS with hexagon aperture 7 was mainly used for the application and 

modeling purposes. Nevertheless, as mentioned earlier within the study scope (see Section 

3.3.1), possibilities for using other apertures, such as 3 or 4, or cell shapes are also supported by 

the Q-analysis methodology. Thus, it is suggested to explore these opportunities in more detail 

and determine if there are any other advantages or disadvantages for using one particular 

aperture or shape over the others. 

Special consideration should also be given to mixed resolution structures (Figure 5.3), when 

DGGS cells do not have a fixed hierarchical level and their spatial resolution vary. Behaviour of 

these mixed structures within the Q-analysis framework is not completely understood, and they 

are of great interest and relevance to the future advancement of DGGS. Not to mention the fact 

that such mixed resolution structures are not provided by all DGGS implementations. 

On the application side of things, some improvements to the methodology can be made by 

integrating additional data sources and contextual information related to the water health 

analysis. Specifically, these could be water catchment areas or ground water flow data, which 

should raise confidence and put on the presented results on firmer scientific ground. Additional 

information, such as population, urbanization factor or land cover data, can be also included in 

the analysis in order to gain insight and understanding into surface water pollution. 

Lastly, this research has mostly focused on the regional scale analysis and a water health 

application, as a case study and a proof of concept for the integrated use of Q-analysis and 

DGGS. In the future, it is also suggested to perform an analysis on the global scale, to 

demonstrate its value for the truly global systems. In this sense, the future studies might consider 

exploring a more sophisticated global connectivity system where communication and data 

transmission between nodes or vertices is permitted in reverse directions too. This is different 

from the water heath application explored here, since water generally cannot flow in reverse (i.e., 

opposite direction). Thus, for example, a study could be conducted on the global air traffic 



116 

 

network system within the DGGS space framework, with all airport locations treated as the 

vertex set to form a backcloth. The spread of some sort of a disease or a virus (e.g., coronavirus) 

can be treated as traffic over this backcloth. In this regard, the spread of a disease can be 

monitored over the globe, which is a powerful and attractive capability. Given that other 

descriptive characteristics or information can be integrated in the process, the methodology can 

become of great value to determine the rationale behind the problem and assist in its mitigation. 
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Appendix A Study Area Map 

 

Figure A.1. The study area map of the Yellowknife Bay, Great Slave Lake, Canada, NWT. Data 

sources: (Government of the Northwest Territories, 2019; Natural Resources Canada, 2019).  
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Appendix B H3 Resolutions 

Table B.1. Complete list of resolutions provided by the H3 library including area, edge length and 

index count properties. Data source: (Uber Technologies Inc., 2019). 

H3 

Resolution 

Average Hexagon 

Area (km2) 

Average Hexagon 

Edge Length (km) 

Number of 

unique indexes 

0 4,250,546.8477000 1,107.712591000 122 

1 607,220.9782429 418.676005500 842 

2 86,745.8540347 158.244655800 5,882 

3 12,392.2648621 59.810857940 41,162 

4 1,770.3235517 22.606379400 288,122 

5 252.9033645 8.544408276 2,016,842 

6 36.1290521 3.229482772 14,117,882 

7 5.1612932 1.220629759 98,825,162 

8 0.7373276 0.461354684 691,776,122 

9 0.1053325 0.174375668 4,842,432,842 

10 0.0150475 0.065907807 33,897,029,882 

11 0.0021496 0.024910561 237,279,209,162 

12 0.0003071 0.009415526 1,660,954,464,122 

13 0.0000439 0.003559893 11,626,681,248,842 

14 0.0000063 0.001348575 81,386,768,741,882 

15 0.0000009 0.000509713 569,707,381,193,162 
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Appendix C Hierarchical Backcloth Connectivity 

Table C.1. A binary matrix of the direct N relation, where 1 indicates connectivity between a cell 

area (row) and a water site (column). 

 

 

Table C.2. A binary matrix of the direct N+1 relation, where 1 indicates connectivity between a cell 

area (row) and a water site (column). 
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Table C.3. A binary matrix of the conjugate -N relation, where 1 indicates connectivity between a 

water site (row) and a cell area (column). 

 

 

Table C.4. A binary matrix of the conjugate -(N+1) relation, where 1 indicates connectivity between 

a water site (row) and a cell area (column). 
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Appendix D Hierarchical Traffic Connectivity 

Table D.1. A binary matrix of the direct (N, M) 

relation, where 1 indicates exceeding of the 

threshold value in the corresponding cell areas. 

 

 

Table D.2. A binary matrix of the direct (N+1, 

M+1) relation, where 1 indicates exceeding of the 

threshold value in the corresponding cell areas. 

 

Table D.3. A binary matrix of the conjugate -(N, M) relation, where 1 indicates exceeding of the 

threshold value in the corresponding cell areas. 

 

 

Table D.4. A binary matrix of the conjugate -(N+1, M+1) relation, where 1 indicates exceeding of the 

threshold value in the corresponding cell areas. 
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Appendix E Backcloth-Traffic Mapping 

Table E.1. A binary matrix of the direct (N, M) relation, where 1 indicates exceeding concentrations 

of the water quality parameters in the corresponding water sites (columns) and cell areas (rows). 

 

Table E.1. Continued. 

 

Table E.2. A binary matrix of the direct (N+1, M+1) relation, where 1 indicates exceeding 

concentrations of the water quality parameters in the corresponding water sites (columns) and cell 

areas (rows). 
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Table E.2. Continued. 

 

Table E.3. A binary matrix of the conjugate -(N, M) relation, where 1 indicates exceeding 

concentrations of the water quality parameters in the corresponding water sites (rows) and cell 

areas (columns). 
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Table E.4. A binary matrix of the conjugate -(N+1, M+1) relation, where 1 indicates exceeding 

concentrations of the water quality parameters in the corresponding water sites (rows) and cell 

areas (columns). 
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Glossary 

Algebraic topology A branch of mathematics which uses relational algebra to study 

geometric structures and topological spaces. 

Aperture Refers to a tessellation process to indicate a cell ratio between 

different resolution levels within DGGS. 

Backcloth structure A geometric structure defined by at least two sets used to 

model the multidimensional relation between set elements, and 

to represent the structure where certain activity can take place. 

Backcloth-traffic system A multilevel structure which includes the mapping process of 

the traffic structure onto the backcloth structure. 

Complexity A concept under the complex system science to facilitate the 

study of systems and their components, in order to provide 

methods and frameworks for effective analysis and 

formalization of information. 

Conjugate relation A transposed direct relation of -1. The conjugate relation is 

represented as a transposed incidence matrix, and is used to 

form a conjugate simplicial complex. 

Connected component Array of connected simplices in a consecutive chain that can 

share common properties or characteristics. 

Cover set A collection of elements such that each element can be a 

member of multiple sets at the next more generalized 

hierarchical level, or be covered by it. 

Data driven analysis A type of analytical process which uses collection of various 

information sources as the primary basis for understanding and 

decision making. 

Direct relation Implies the relationship between two sets via some defined 

condition  to determine whether elements are related to each 

other. The direct relation is represented as an incidence matrix, 

and is used to form a direct simplicial complex. 
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Discrete Global Grid Systems 

(DGGS) 

A hierarchical system of regular polygons used as a model for 

data integration, analysis and visualization. 

Fragmentation A term describing number of connected components in a 

simplicial complex. Large number of individual components 

implies high fragmentation and vice versa. 

Geometric realization Graphic representation or visualization of a simplicial complex 

via a polyhedron solid. 

Incidence matrix Binary matrix representation of a relation between sets’ 

elements where row elements represent simplices and column 

elements represent vertices of simplices. The value of 1 

indicates that elements are related and 0 indicates that they are 

not related. 

OGC abstract specification A list of criteria to specify the core requirements for the 

development of a standardized DGGS framework in order to 

claim the conformance. 

Partition set A collection of elements such that each element can be a 

member of only one set at the next more generalized 

hierarchical level, to resemble a three-based hierarchy. 

Q-analysis A technique which utilizes concepts of algebraic topology to 

model system structure via simplicial complexes, to study 

system connectivity and interaction between its components. 

Q-analysis ranks each simplex according to its q-dimension, 

and compares its connectivity with other simplices. Q-analysis 

is also known as Polyhedral Dynamics. 

Q-connectivity Implies connectivity between simplices that do not have any 

vertices in common, but are connected through the chain of 

other simplices. 

Q-dimensionality A measure to indicate a total number of related elements or 

vertices that define a simplex. Q-dimensionality is always one 

unit less than the determined vertex total. Q-dimensionality is 

equivalent to the q-value and q-level notions. 
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Q-nearness Implies connectivity between simplices that directly share 

simplex vertices or a face. Q-nearness also implies q-

connectivity, but not vice versa. 

Regular polygon A polygon with equal sides and equal internal angles. 

Shared-face matrix A matrix-based representation of the q-near simplices in a set. 

Simplex A geometric object that represents a single element of a row set 

via array of elements in the column set in the incidence matrix. 

Simplex vertex A single element of a column set in the incidence matrix that is 

used to form a simplex. 

Simplicial complex A topological representation of connectivity between system 

components via collection of simplices and use of polyhedron 

to form and visualize a connected multidimensional structure. 

Slicing A process of converting information to a binary format via 

some benchmark parameter . 

Traffic structure A geometric structure defined by at least two sets used to 

model the multidimensional relation between set elements, and 

to represent the activity or behaviour that can be attached to the 

backcloth structure. 
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