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Complexity of Proper Prefix-Convex Regular Languages�

Janusz A. Brzozowskia, Corwin Sinnamona,∗

aDavid R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada N2L 3G1

Abstract

A language L over an alphabet Σ is prefix-convex if, for any words x, y, z ∈ Σ∗,
whenever x and xyz are in L, then so is xy. Prefix-convex languages include
right-ideal, prefix-closed, and prefix-free languages, which were studied else-
where. Here we concentrate on prefix-convex languages that do not belong to
any one of these classes; we call such languages proper. We exhibit most com-
plex proper prefix-convex languages, which meet the bounds for the size of the
syntactic semigroup, reversal, complexity of atoms, star, product, and boolean
operations.

Keywords: atom, most complex, prefix-convex, proper, quotient complexity,
regular language, state complexity, syntactic semigroup

1. Introduction

Prefix-Convex Languages We examine the complexity properties of a class
of regular languages that has never been studied before: the class of proper
prefix-convex languages [7]. Let Σ be a finite alphabet; if w = xy, for x, y ∈ Σ∗,
then x is a prefix of w. A language L ⊆ Σ∗ is prefix-convex [1, 17] if whenever
x and xyz are in L, then so is xy. Prefix-convex languages include three special
cases:

1. A language L ⊆ Σ is a right ideal if it is non-empty and satisfies L = LΣ∗.
Right ideals appear in pattern matching [11]: LΣ∗ is the set of all words
in some text (word in Σ∗) beginning with words in L.

2. A language is prefix-closed [6] if whenever w is in L, then so is every prefix
of w. The set of allowed sequences to any system is prefix-closed. Every
prefix-closed language other than Σ∗ is the complement of a right ideal [1].
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3. A language is prefix-free if w ∈ L implies that no prefix of w other than w
is in L. Prefix-free languages other than {ε}, where ε is the empty word,
are prefix codes and are of considerable importance in coding theory [2].

The complexities of these three special prefix-convex languages were studied
in [8]. We now turn to the “real” prefix-convex languages that do not belong to
any of the three special classes.
Complexities of Operations If L ⊆ Σ∗ is a language, the (left) quotient of
L by a word w ∈ Σ∗ is w−1L = {x | wx ∈ L}. A language is regular if and
only if it has a finite number of distinct quotients. So the number of quotients
of L, the quotient complexity [3] κ(L) of L, is a natural measure of complexity
for L. An equivalent concept is the state complexity [12, 16, 18, 19] of L, which
is the number of states in a complete minimal deterministic finite automaton
(DFA) over Σ recognizing L. We refer to quotient/state complexity simply as
complexity.

If Ln is a regular language of complexity n, and ◦ is a unary operation, the
complexity of ◦ is the maximal value of κ(L◦

n), expressed as a function of n,
as Ln ranges over all languages of complexity � n. If L′

m and Ln are regular
languages1 of complexities m and n respectively, and ◦ is a binary operation,
the complexity of ◦ is the maximal value of κ(L′

m ◦Ln), expressed as a function
of m and n, as L′

m and Ln range over all languages of complexities � m and
� n. The complexity of an operation is a lower bound on its time and space
complexities. The operations reversal, (Kleene) star, product (concatenation),
and binary boolean operations are considered “common”, and their complexities
are known; see [4, 12, 18, 19].
Witnesses To find the complexity of a unary operation we find an upper bound
on this complexity, and languages that meet this bound. We require a language
Ln for each n, that is, a sequence, (Lk, Lk+1, . . . ), called a stream of languages.
A stream begins at k, a small integer, because the bound may not hold for
small values of n. For a binary operation we need two streams. The same
stream cannot always be used for both operands, but for all common binary
operations the second stream can be a “dialect” of the first, that is it can “differ
only slightly” from the first [4]. Let Σ = {a1, . . . , ak} be an alphabet ordered as
shown; if L ⊆ Σ∗, we denote it by L(a1, . . . , ak). A dialect of L is obtained by
deleting letters of Σ in the words of L, or replacing them by letters of another
alphabet Σ′. More precisely, for an injective partial map π : Σ �→ Σ′, we get
a dialect of L by replacing each letter a ∈ Σ by π(a) in every word of L, or
deleting the word if π(a) is undefined. We write L(π(a1), . . . , π(ak)) to denote
the dialect of L(a1, . . . , ak) given by π, and we denote undefined values of π by
“−”. Undefined values for letters at the end of the alphabet are omitted; for
example, L(a, c,−,−) is written as L(a, c). Our definition of dialect is more
general than that of [5], where only the case Σ′ = Σ was allowed.

1We often use the variable names L′
m and Ln when two different languages are needed.

The primed variable does not have any special meaning.
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Finite Automata A deterministic finite automaton (DFA) is a quintuple D =
(Q,Σ, δ, q0, F ), where Q is a finite non-empty set of states, Σ is a finite non-
empty alphabet, δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial
state, and F ⊆ Q is the set of final states. We extend δ to a function δ : Q×Σ∗ →
Q as usual. A DFA D accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F . The set of all
words accepted by D is the language L(D) of D. If q ∈ Q, then the language
Lq(D) of q is the language accepted by the DFA (Q,Σ, δ, q, F ). A state is
empty or dead or a sink if its language is empty. Two states p and q of D are
equivalent if Lp(D) = Lq(D). A state q is reachable if there exists w ∈ Σ∗ such
that δ(q0, w) = q. A DFA is minimal if all of its states are reachable and no two
states are equivalent. A nondeterministic finite automaton (NFA) is a quintuple
D = (Q,Σ, δ, I, F ), where Q, Σ, and F are defined as in a DFA, δ : Q×Σ → 2Q

is the transition function, and I ⊆ Q is the set of initial states. An ε-NFA is an
NFA in which transitions under the empty word ε are also permitted.
Transformations We use Qn = {0, . . . , n−1} as the set of states of every DFA
with n states. A transformation of Qn is a mapping t : Qn → Qn. The image
of q ∈ Qn under t is qt. In any DFA, each letter a ∈ Σ induces a transformation
δa of the set Qn defined by qδa = δ(q, a); we denote this by a : δa. Often we use
the letter a to denote the transformation it induces; thus we write qa instead of
qδa. We extend the notation to sets: if P ⊆ Qn, then Pa = {pa | p ∈ P}. We
also write P

a−→ Pa to indicate that the image of P under a is Pa. If s, t are
transformations of Qn, their composition is (qs)t.

For k � 2, a transformation (permutation) t of a set P = {q0, q1, . . . , qk−1} ⊆
Qn is a k-cycle if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. As a
transformation of Qn, this k-cycle is denoted by (q0, q1, . . . , qk−1), and leaves
the states in Qn \ P unchanged. A 2-cycle (q0, q1) is called a transposition. A
transformation that sends all the states of P to q and acts as the identity on
the other states is denoted by (P → q), and (Qn → p) is called a constant
transformation. If P = {p} we write (p → q) for ({p} → q). The identity
transformation is denoted by �. Also, (ji q → q + 1) is a transformation that
sends q to q + 1 for i � q � j and is the identity for the remaining states;
(ji q → q − 1) is defined similarly.
Semigroups The syntactic congruence of L ⊆ Σ∗ is defined on Σ+: For x, y ∈
Σ+, x≈L y if and only if wxz ∈ L ⇔ wyz ∈ L for all w, z ∈ Σ∗. The quotient
set Σ+/≈L of equivalence classes of ≈L is the syntactic semigroup of L. Let
Dn = (Qn,Σ, δ, q0, F ) be a DFA, and let Ln = L(Dn). For each word w ∈ Σ∗,
the transition function induces a transformation δw of Qn by w: for all q ∈ Qn,
qδw = δ(q, w). The set TDn of all such transformations by non-empty words is
a semigroup under composition called the transition semigroup of Dn. If Dn is
a minimal DFA of Ln, then TDn is isomorphic to the syntactic semigroup TLn

of Ln, and we represent elements of TLn by transformations in TDn . The size of
the syntactic semigroup has been used as a measure of complexity for regular
languages [4, 10, 13, 15].
Atoms are defined by a left congruence, where two words x and y are equivalent
if ux ∈ L if and only if uy ∈ L for all u ∈ Σ∗. Thus x and y are equivalent if
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x ∈ u−1L if and only if y ∈ u−1L. An equivalence class of this relation is an
atom of L [9, 14].

One can conclude that an atom is a non-empty intersection of complemented
and uncomplemented quotients of L. That is, every atom of a language with
quotients K0,K1, . . . ,Kn−1 can be written as AS =

⋂
i∈S Ki∩

⋂
i∈S Ki for some

set S ⊆ Qn. The number of atoms and their complexities were suggested as
possible measures of complexity [4], because all the quotients of a language and
the quotients of its atoms are unions of atoms [9].
Most Complex Regular Stream The stream (Dn(a, b, c) | n � 3) of Defini-
tion 1 and Figure 1 will be used as a component in the class of proper prefix-
convex languages. This stream together with some dialects meets the complex-
ity bounds for reversal, star, product, and all binary boolean operations [7, 8].
Moreover, it has the maximal syntactic semigroup and most complex atoms,
making it a most complex regular stream.

Definition 1. For n � 3, let Dn = Dn(a, b, c) = (Qn,Σ, δn, 0, {n − 1}), where
Σ = {a, b, c}, and δn is defined by a : (0, . . . , n− 1), b : (0, 1), c : (1 → 0).

0 1 2 . . . n− 2 n− 1

c

a, b

b, c
a

b, c

a a

b, c

a

a

b, c

Figure 1: Minimal DFA of a most complex regular language.

Most complex streams are useful in systems dealing with regular languages
and finite automata. To know the maximal sizes of automata that can be
handled by a system it suffices to use the most complex stream to test all the
operations.

2. Proper Prefix-Convex Languages

We begin with some properties of prefix-convex languages that will be used
frequently in this section. The following lemma and propositions characterize
the classes of prefix-convex languages in terms of their minimal DFAs.

Lemma 1. Let L be a prefix-convex language over Σ. Either L is a right ideal
or L has an empty quotient.

Proof. Suppose that L is not a right ideal. If L = ∅, then ε−1L = L is an
empty quotient of L. If L �= ∅, we cannot have w−1L = Σ∗ for all w ∈ L,
because then L would be a right ideal. Hence there exists some w ∈ L such that
w−1L �= Σ∗. Pick any x ∈ Σ∗ \ w−1L; then w ∈ L, but wx �∈ L. There cannot
be a word y ∈ Σ∗ such that wxy ∈ L because then wx would be in L by prefix
convexity. Therefore, (wx)−1L is an empty quotient. �
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Proposition 2. Let Ln be a regular language of complexity n, and let Dn =
(Qn,Σ, δ, 0, F ) be a minimal DFA recognizing Ln. The following are equivalent:

1. Ln is prefix-convex.

2. For all p, q, r ∈ Qn, if p and r are final, q is reachable from p, and r is
reachable from q, then q is final.

3. Every state reachable in Dn from any final state is either final or empty.

Proof. (1 =⇒ 2) Assume 1 is true. Suppose there exist p, r ∈ F and q ∈ Qn

such that q is reachable from p and r is reachable from q. Let w, x, y ∈ Σ∗ be
such that 0

w−→ p, p x−→ q, and q
y−→ r. It follows that w and wxy are both in Ln,

and thus wx is in Ln by prefix convexity. Since δ(0, wx) = q, state q is final.
(2 =⇒ 3) Assume 2 is true. Take any p ∈ F , q ∈ Qn, and x ∈ Σ∗ such that
δ(p, x) = q. If a final state r is reachable from q, then q is final by 2. Otherwise,
q is the empty state.
(3 =⇒ 1) Assume 3 is true. Let w, x, and y be words in Σ∗ such that w ∈ Ln

and wxy ∈ Ln. There are states p, q, and r in Qn such that δ(0, w) = p ∈ F ,
δ(0, wx) = q, and δ(0, wxy) = r ∈ F . State q cannot be empty because the final
state r is reachable from q. Since q is reachable from final state p, it follows
from 3 that q is final. Thus, wx ∈ Ln. Therefore Ln is prefix-convex. �

Proposition 3. Let Ln be a non-empty prefix-convex language of complexity n,
and let Dn = (Qn,Σ, δ, 0, F ) be a minimal DFA recognizing Ln.

1. Ln is prefix-closed if and only if 0 ∈ F .

2. Ln is prefix-free if and only if Dn has a unique final state p and an empty
state p′ such that δ(p, a) = p′ for all a ∈ Σ.

3. Ln is a right ideal if and only if Dn has a unique final state p and δ(p, a) =
p for all a ∈ Σ.

Proof. 1. If Ln is prefix-closed and non-empty, then ε is a prefix of some
word in Ln. Thus ε ∈ Ln, and so 0 ∈ F . Conversely, suppose 0 ∈ F .
For any wx ∈ Ln, there are states q, r ∈ Qn such that 0

w−→ q
x−→ r, and

r is final. By Proposition 2, since 0, r ∈ F , q is reachable from 0, and r
is reachable from q, we have q ∈ F . Hence w ∈ Ln, and therefore Ln is
prefix-closed.

2. Suppose Ln is prefix-free. If q ∈ Qn and p ∈ F are distinct and q is
reachable from p, then q cannot be final as that would imply p �∈ F .
In particular, for any p ∈ F and a ∈ Σ, δ(p, a) �∈ F . By Proposition
2, δ(p, a) must be the empty state for all a ∈ Σ. Thus, the transitions
from all final states are identical, and hence all final states are equivalent.
By minimality, Dn has a unique final state p, an empty state p′, and
δ(p, a) = p′ for all a ∈ Σ.
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For the converse, suppose F = {p}, p′ ∈ Qn is an empty state, and
δ(p, a) = p′ for all a ∈ Σ. Then w ∈ Ln if and only if δ(0, w) = p. For all
w ∈ Ln and a ∈ Σ, we have δ(0, wa) = p′. Thus, whenever w ∈ Ln and
wx ∈ Ln, we have x = ε. Therefore, Ln is prefix-free.

3. Suppose Ln is a right ideal. For all w ∈ Ln we have Ln ⊇ wΣ∗, and hence
w−1Ln ⊇ Σ∗, meaning that w−1Ln = Σ∗. Hence, for any final state q ∈ F
and x ∈ Σ∗, δ(q, x) ∈ F . This implies that all final states are equivalent.
By minimality, there is a unique final state p. Since δ(p, a) ∈ F for all
a ∈ Σ, it follows that δ(p, a) = p for all a ∈ Σ. For the converse, suppose
F = {p} and δ(p, a) = p for all a ∈ Σ. Then w ∈ Ln if and only if
δ(0, w) = p. Hence, for all w ∈ Ln and x ∈ Σ∗, we have δ(0, wx) = p.
Thus, wΣ∗ ⊆ Ln for all w ∈ Ln, and so Ln = LnΣ

∗. Therefore, Ln is a
right ideal. �

A prefix-convex language L is proper if it is not a right ideal and it is neither
prefix-closed nor prefix-free. We say it is k-proper if it has k final states, 1 �
k � n− 2. Every minimal DFA for a k-proper language with complexity n has
the same general structure: there are n − 1 − k non-final, non-empty states, k
final states, and one empty state. Every letter fixes the empty state and, by
Proposition 2, no letter sends a final state to a non-final, non-empty state.

Next we define a stream of k-proper DFAs and languages, which we will
show to be most complex.

Definition 2. For n � 3, 1 � k � n − 2, let Dn,k(Σ) = (Qn,Σ, δn,k, 0, Fn,k)
where Σ = {a, b, c1, c2, d1, d2, e}, Fn,k = {n− 1− k, . . . , n− 2}, and δn,k is given
by the transformations

a :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1, . . . , n− 2− k)(n− 1− k, n− k), if n− 1− k is even and k � 2;
(0, . . . , n− 2− k)(n− 1− k, n− k), if n− 1− k is odd and k � 2;
(1, . . . , n− 2− k), if n− 1− k is even and k = 1;
(0, . . . , n− 2− k), if n− 1− k is odd and k = 1.

b :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(n− k, . . . , n− 2)(0, 1), if k is even and n− 1− k � 2;
(n− 1− k, . . . , n− 2)(0, 1), if k is odd and n− 1− k � 2;
(n− k, . . . , n− 2), if k is even and n− 1− k = 1;
(n− 1− k, . . . , n− 2), if k is odd and n− 1− k = 1.

c1 :

{
(1 → 0), if n− 1− k � 2;

�, if n− 1− k = 1.

c2 :

{
(n− k → n− 1− k), if k � 2;

�, if k = 1.

d1 : (n− 2− k → n− 1)(n−3−k
0 q → q + 1).

d2 : (
n−2
n−1−k q → q + 1).

e : (0 → n− 1− k).
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Also, let En,k = {0, . . . , n− 2− k}; it is useful to partition Qn into En,k, Fn,k,
and {n−1}. Letters a and b have complementary behaviours on En,k and Fn,k,
depending on the parities of n and k. Letters c1 and d1 act on En,k in exactly
the same way as c2 and d2 act on Fn,k. In addition, d1 and d2 send states
n− 2− k and n− 2, respectively, to state n− 1, and letter e connects the two
parts of the DFA. The structure of Dn(Σ) is shown in Figures 2 and 3 for certain
parities of n− 1−k and k. Let Ln,k(Σ) be the language recognized by Dn,k(Σ).

0 1 2 . . . n − 2 − k

n − 1

n − 1 − k n − k n − k + 1 . . . n − 2

a, b, d1
d1

e

b, c1

a

a, d1 a, d1 a, d1

a, d2

a, c2

b, d2 b, d2 b, d2 d2

b

Figure 2: DFA Dn,k(a, b, c1, c2, d1, d2, e) of Definition 2 when n− 1− k is odd, k is even, and
both are at least 2; missing transitions are self-loops.

0 1 2 . . . n − 2 − k

n − 1

n − 1 − k n − k n − k + 1 . . . n − 2

b, d1
d1

e

b, c1

a

a, d1 a, d1 a, d1

a, b, d2

a, c2

b, d2 b, d2 b, d2 d2

b

Figure 3: DFA Dn,k(a, b, c1, c2, d1, d2, e) of Definition 2 when n− 1− k is even, k is odd, and
both are at least 2; missing transitions are self-loops.

Theorem 4 (Proper Prefix-Convex Languages). For n � 3 and 1 � k �
n − 2, the DFA Dn,k(Σ) of Definition 2 is minimal and Ln,k(Σ) is a k-proper
language of complexity n. The bounds below are maximal for k-proper prefix-
convex languages. At least seven letters are required to meet these bounds.

1. The syntactic semigroup of Ln,k(Σ) has cardinality nn−1−k(k + 1)k; the
maximal value n(n− 1)n−2 is reached only when k = n− 2.

2. The non-empty, non-final quotients of Ln,k(a, b,−,−,−, d2, e) have com-
plexity n, the final quotients have complexity k + 1, and ∅ has complexity
1.
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3. The reverse of Ln,k(a, b,−,−,−, d2, e) has complexity 2n−1; moreover, the
language Ln,k(a, b,−,−,−, d2, e) has 2n−1 atoms for all k.

4. For each atom AS of Ln,k(Σ), write S = X1 ∪X2, where X1 ⊆ En,k and
X2 ⊆ Fn,k. Let X1 = En,k \ X1 and X2 = Fn,k \ X2. If X2 �= ∅, then
κ(AS) =

1 +

|X1|∑
x1=0

|X1|+|X2|−x1∑
x2=1

|X1|∑
y1=0

|X1|+|X2|−y1∑
y2=0

(n − 1 − k

x1

)( k

x2

)(n − 1 − k − x1

y1

)(k − x2

y2

)
.

If X1 �= ∅ and X2 = ∅, then κ(AS) =

1+

|X1|∑
x1=0

|X1|−x1∑
x2=0

|X1|∑
y1=0

k∑
y2=0

(n − 1 − k

x1

)( k

x2

)(n − 1 − k − x1

y1

)(k − x2

y2

)
−2

k
|X1|∑
y=0

(n − 1 − k

y

)
.

Otherwise, S = ∅ and κ(AS) = 2n−1.

5. The star of Ln,k(a, b,−,−, d1, d2, e) has complexity 2n−2 + 2n−2−k + 1.
The maximal value 2n−2 + 2n−3 + 1 is reached only when k = 1.

6. L′
m,j(a, b, c1,−, d1, d2, e)Ln,k(a, d2, c1,−, d1, b, e) has complexity m − 1 −

j + j2n−2 + 2n−1. The maximal value m2n−2 + 1 is reached only when
j = m− 2.

7. For m,n � 3, 1 � j � m − 2, and 1 � k � n − 2, define the languages
L′
m,j = L′

m,j(a, b, c1,−, d1, d2, e) and Ln,k = Ln,k(a, b, e,−, d2, d1, c1). For
any proper binary boolean function ◦, the complexity of L′

m,j ◦ Ln,k is
maximal. In particular,

(a) L′
m,j ∪ Ln,k and L′

m,j ⊕ Ln,k have complexity mn.

(b) L′
m,j \ Ln,k has complexity mn− (n− 1).

(c) L′
m,j ∩ Ln,k has complexity mn− (m+ n− 2).

Proof. The remainder of this paper is the proof of this theorem. The longer
parts of the proof are separated into individual propositions and lemmas.

DFA Dn,k(a, b,−,−,−, d2, e) is easily seen to be minimal. Language Ln,k(Σ)
is k-proper by Propositions 2 and 3.

1. See Lemma 5 and Proposition 6.

2. If the initial state of Dn,k(a, b,−,−,−, d2, e) is changed to q ∈ En,k, the
new DFA accepts a quotient of Ln,k and is still minimal; hence the com-
plexity of that quotient is n. If the initial state is changed to q ∈ Fn,k

then states in En,k are unreachable, but the DFA on {n−1−k, . . . , n−1}
is minimal; hence the complexity of that quotient is k+1. The remaining
quotient is empty, and hence has complexity 1. By Proposition 2, these
are maximal.
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3. See Proposition 7 for the reverse. It was shown in [9] that the number of
atoms is equal to the complexity of the reverse.

4. See Proposition 8.

5. See Proposition 9.

6. See Proposition 10.

7. By [3, Theorem 2], all boolean operations on regular languages have the
upper bound mn, which gives the bound for (a). The bounds for (b) and
(c) follow from [3, Theorem 5]. Proposition 11 proves that all these bounds
are tight for L′

m,j ◦ Ln,k. �

Lemma 5. Let n � 1 and 1 � k � n − 2. For any permutation t of Qn such
that En,kt = En,k, Fn,kt = Fn,k, and (n−1)t = n−1, there is a word w ∈ {a, b}∗
that induces t on Dn,k.

Proof. Only a and b induce permutations of Qn; every other letter induces a
properly injective map. Furthermore, a and b permute En,k and Fn,k separately,
and both fix n − 1. Hence every w ∈ {a, b}∗ induces a permutation on Qn

such that En,kw = En,k, Fn,kw = Fn,k, and (n − 1)w = n − 1. Each such
permutation naturally corresponds to an element of Sn−1−k × Sk, where Sm

denotes the symmetric group on m elements. To be consistent with the DFA,
assume Sn−1−k contains permutations of {0, . . . , n − 2 − k} and Sk contains
permutations of {n−1−k, . . . , n−2}. Let sa and sb denote the group elements
corresponding to the transformations induced by a and b respectively. We show
that sa and sb generate Sn−1−k × Sk.

It is well known that (0, . . . ,m−1), and (0, 1) generate the symmetric group
on {0, . . . ,m − 1} for any m ≥ 2. Note that (1, . . . ,m − 1) and (0, 1) are also
generators, since (0, 1)(1, . . . ,m− 1) = (0, . . . ,m− 1).

If n − 1 − k = 1 and k = 1, then Sn−1−k × Sk is the trivial group. If
n − 1 − k = 1 and k � 2, then sa = (�, (n − 1 − k, n − k)) and sb is either
(�, (n − 1 − k, . . . , n − 2)) or (�, (n − k, . . . , n − 2)), and either pair generates
the group. There is a similar argument when k = 1.

Assume now n − 1 − k � 2 and k � 2. If n − 1 − k is odd then sa =
((0, . . . , n − 2 − k), (n − 1 − k, n − k)), and hence sn−1−k

a = ((0, . . . , n − 2 −
k)n−1−k, (n− 1− k, n− k)n−1−k) = (�, (n− 1− k, n− k)). Similarly if n− 1− k
is even then sa = ((1, . . . , n − 2 − k), (n − 1 − k, n − k)), and hence sn−2−k

a =
(�, (n− 1− k, n− k)). Therefore (�, (n− 1− k, n− k)) is always generated by
sa. By symmetry, ((0, 1),�) is always generated by sb regardless of the parity
of k.

Since we can isolate the transposition component of sa, we can isolate the
other component as well: (�, (n− 1−k, n−k))sa is either ((0, . . . , n− 2−k),�)
or ((1, . . . , n − 2 − k),�). Paired with ((0, 1),�), either element is sufficient to
generate Sn−1−k × {�}. Similarly, sa and sb generate {�} × Sk. Therefore sa
and sb generate Sn−1−k × Sk. It follows that a and b generate all permutations
t of Qn such that En,kt = En,k, Fn,kt = Fn,k, and (n− 1)t = n− 1. �

9



Proposition 6 (Syntactic Semigroup). The syntactic semigroup of Ln,k(Σ)
has cardinality nn−1−k(k+1)k, which is maximal for a k-proper language. Fur-
thermore, seven letters are required to meet this bound. The maximum value
n(n− 1)n−2 is reached only when k = n− 2.

Proof. Let L be a k-proper language of complexity n and let D be a minimal
DFA recognizing L. By Lemma 1, D has an empty state. By Proposition 2, the
only states that can be reached from one of the k final states are either final
or empty. Thus, a transformation in the transition semigroup of D may map
each final state to one of k + 1 possible states, while each non-final, non-empty
state may be mapped to any of the n states. Since the empty state can only
be mapped to itself, we are left with nn−1−k(k + 1)k possible transformations
in the transition semigroup. Therefore the syntactic semigroup of any k-proper
language has size at most nn−1−k(k + 1)k.

Now consider the transition semigroup of Dn,k(Σ). Every transformation t
in the semigroup must satisfy Fn,kt ⊆ Fn,k ∪{n− 1} and (n− 1)t = n− 1, since
any other transformation would violate prefix-convexity. We show that the semi-
group contains every such transformation, and hence the syntactic semigroup
of Ln,k(Σ) is maximal.

First, consider the transformations t such that En,kt ⊆ En,k ∪ {n − 1} and
qt = q for all q ∈ Fn,k∪{n−1}. By Lemma 5, a and b generate every permutation
of En,k. When t is not a permutation, we can use c1 to combine any states p and
q: apply a permutation on En,k so that p → 0 and q → 1, and then apply c1 so
that 1 → 0. Repeat this method to combine any set of states, and further apply
permutations to induce the desired transformation while leaving the states of
Fn,k ∪ {n − 1} in place. The same idea applies with d1; apply permutations
and d1 to send any states of En,k to n − 1. Hence a, b, c1, and d1 generate
every transformation t such that En,kt ⊆ En,k ∪ {n − 1} and qt = q for all
q ∈ Fn,k ∪ {n− 1}.

We can make the same argument for transformations that act only on Fn,k

and fix every other state. Since c2 and d2 act on Fn,k exactly as c1 and d1 act
on En,k, the letters a, b, c2, and d2 generate every transformation t such that
Fn,kt ⊆ Fn,k∪{n−1} and qt = q for all q ∈ En,k∪{n−1}. It follows that a, b, c1,
c2, d1, and d2 generate every transformation t such that En,kt ⊆ En,k ∪{n−1},
Fn,kt ⊆ Fn,k ∪ {n− 1}, and (n− 1)t = n− 1.

Note the similarity between this DFA restricted to the states En,k ∪ {n− 1}
(or Fn,k ∪ {n − 1}) and the witness for right ideals introduced in [7]. The
argument for the size of the syntactic semigroup of right ideals is similar to this;
see [10].

Finally, consider an arbitrary transformation t such that Fn,kt ⊆ Fn,k ∪
{n − 1} and (n − 1)t = n − 1. Let jt be the number of states p ∈ En,k

such that pt ∈ Fn,k. We show by induction on jt that t is in the transition
semigroup of D. If jt = 0, then t is generated by Σ \ {e}. If jt � 1, there
exist p, q ∈ En,k such that pt ∈ Fn,k and q is not in the image of t. Consider
the transformations s1 and s2 defined by qs1 = pt and rs1 = r for r �= q, and
ps2 = q and rs2 = rt for r �= p. Then (rs2)s1 = rt for all r ∈ Qn. Notice that
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js2 = jt − 1, and hence Σ generates s2 by inductive assumption. One can verify
that s1 = (n − 1 − k, pt)(0, q)(0 → n − 1 − k)(0, q)(n − 1 − k, pt). From this
expression, we see that s1 is the composition of transpositions induced by words
in {a, b}∗ and the transformation (0 → n− 1− k) induced by e, and hence s1 is
generated by Σ. Thus, t is in the transition semigroup. By induction on jt, it
follows that the syntactic semigroup of Ln,k is maximal.

Now we show that seven letters are required to meet this bound. Two letters
(like a and b) are required to generate the permutations, since clearly one letter
is not sufficient. Every other letter will induce a properly injective map. A letter
(like c1) that induces a properly injective map on En,k and permutes Fn,k is
required. Similarly, a letter (like c2) that permutes En,k and induces a properly
injective map on Fn,k is required. A letter (like d1) that sends a state in En,k

to n − 1 and permutes Fn,k is required. Similarly, a letter (like d2) that sends
a state in Fn,k to n− 1 and permutes En,k is required. Finally, a letter (like e)
that connects En,k and Fn,k is required.

For a fixed n, we may want to know which k ∈ {1, . . . , n − 2} maximizes
sn(k) = nn−1−k(k + 1)k; this corresponds to the largest syntactic semigroup
of a proper prefix-convex language with n quotients. We show that sn(k) is
largest at k = n− 2. Consider the ratio sn(k+1)

sn(k)
= (k+2)k+1

n(k+1)k
. Notice this ratio is

increasing with k, and hence sn is a convex function on {1, . . . , n−2}. It follows
that the maximum value of sn must occur at one the endpoints, 1 and n− 2.

Now we show that sn(n − 2) � sn(1) for all n � 3. We can check this
explicitly for n = 3, 4, 5. When n � 6, sn(n − 2)/sn(1) = n

2

(
n−1
n

)n−2 �
3 (1/e) > 1; so the largest syntactic semigroup of Ln,k(Σ) occurs only at k =
n− 2 for all n � 3. �

Proposition 7 (Reverse). For any regular language of complexity n with an
empty quotient, the reversal has complexity at most 2n−1. Moreover, the reverse
of Ln,k(a, b,−,−,−, d2, e) has complexity 2n−1 for n � 3 and 1 � k � n− 2.

Proof. The first claim is left for the reader to verify. For the second claim, let
Dn,k = (Qn, {a, b, d2, e}, δn,k, 0, Fn,k) denote the DFA Dn,k(a, b,−,−,−, d2, e)
in Definition 2 and let Ln,k = L(Dn,k). Construct an NFA N recognizing
the reverse of Ln,k by reversing each transition, letting the initial state 0 be
the unique final state, and letting the final states in Fn,k be the initial states.
Applying the subset construction to N yields a DFA DR whose states are subsets
of Qn−1, with initial state Fn,k and final states {G ⊆ Qn−1 | 0 ∈ G}. We show
that DR is minimal, and hence the reverse of Ln,k has complexity 2n−1.

Recall from Lemma 5 that a and b generate all permutations of En,k and
Fn,k in Dn,k. Although the transitions are reversed in DR, they still generate all
such permutations. Let u1, u2 ∈ {a, b}∗ be such that u1 induces (0, . . . , n−2−k)
and u2 induces (n− 1− k, . . . , n− 2) in DR.

Consider a state U = {q1, . . . , qh, n− 1− k, . . . , n− 2} where 0 � q1 < q2 <
· · · < qh � n − 2 − k. If h = 0, then U is the initial state. When h � 1,
{q2 − q1, q3 − q1, . . . , qh − q1, n − 1 − k, . . . , n − 2}euq1

1 = U . By induction, all
such states are reachable.
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Now we show that any state U = {q1, . . . , qh, p1, . . . , pi} where 0 � q1 <
q2 < · · · < qh � n − 2 − k and n − 1 − k � p1 < p2 < · · · < pi � n − 2 is
reachable. If i = k, then U = {q1, . . . , qh, n − 1 − k, . . . , n − 2} is reachable by
the argument above. When 0 � i < k, choose p ∈ Fn,k \ U and see that U

is reached from U ∪ {p} by un−1−p
2 d2u

p−(n−2−k)
2 . By induction, every state is

reachable.
To prove distinguishability, consider distinct states U and V . Choose q ∈

U ⊕ V . If q ∈ En,k, then U and V are distinguished by un−1−k−q
1 . When

q ∈ Fn,k, they are distinguished by un−1−q
2 e. So DR is minimal. �

Proposition 8 (Atomic Complexity). For each atom AS of Ln,k(Σ), write
S = X1 ∪ X2, where X1 ⊆ En,k and X2 ⊆ Fn,k. Let X1 = En,k \ X1 and
X2 = Fn,k \X2. If X2 �= ∅, then κ(AS) =

1+

|X1|∑
x1=0

|X1|+|X2|−x1∑
x2=1

|X1|∑
y1=0

|X1|+|X2|−y1∑
y2=0

(
n− 1− k

x1

)(
k

x2

)(
n− 1− k − x1

y1

)(
k − x2

y2

)
.

If X1 �= ∅ and X2 = ∅, then κ(AS) =

1 +

|X1|∑
x1=0

|X1|−x1∑
x2=0

|X1|∑
y1=0

k∑
y2=0

(
n− 1− k

x1

)(
k

x2

)(
n− 1− k − x1

y1

)(
k − x2

y2

)

− 2k
|X1|∑
y=0

(
n− 1− k

y

)
.

Otherwise, S = ∅ and κ(AS) = 2n−1. The atomic complexity is maximal for
k-proper languages.

Proof. Let L be a k-proper language with quotients K0,K1, . . . ,Kn−1 where
K0, . . . ,Kn−2−k are non-final quotients, Kn−1−k, . . . ,Kn−2 are final quotients,
and Kn−1 = ∅. For S ⊆ Qn−1, we have AS =

⋂
i∈S Ki∩

⋂
i∈S Ki; note n−1 �∈ S

since AS must be non-empty.
The quotients are w−1AS =

⋂
i∈S w−1Ki ∩

⋂
i∈S w−1Ki. However w−1Ki

is always another quotient Kj . Thus w−1AS has the form JT,U =
⋂

i∈T Ki ∩⋂
i∈U Ki where T = {i | Ki = w−1Kj for some j ∈ S} and U = {i | Ki =

w−1Kj for some j ∈ S}. For brevity, we write S
w−→ T and S

w−→ U ; this nota-
tion is in agreement with the action of w on the states of Dn,k corresponding to
S and S.

Notice n − 1 ∈ U and if T ∩ U �= ∅ then JT,U is the empty quotient. Fur-
thermore, for any word w, JT,U

w−→ JTw,Uw. To establish the upper bound, we
just count the number of possible distinct JT,U for each value of S.

Write S = X1∪X2 where X1 ⊆ En,k and X2 ⊆ Fn,k, and let X1 = En,k \X1

and X2 = Fn,k \X2. By Proposition 2 any word w maps X1 to a subset of Qn

and X2 to a subset of Fn,k ∪ {n− 1}. Similarly, w maps X1 to a subset of Qn,
X2 to a subset of Fn,k ∪ {n− 1}, and n− 1 to itself.
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One can bound the number of non-empty quotients of AS by counting the
number of disjoint T,U ⊆ Qn that could be reached from S and S respectively
by some transformation in the transition semigroup. Specifically, we require
n− 1 ∈ U , |T | � |S|, |U | � |S|, |T ∩ En,k| � |X1|, and |U ∩ En,k| � |X1|. Thus
we have the initial estimate
|X1|∑
x1=0

|X1|+|X2|−x1∑
x2=0

|X1|∑
y1=0

|X1|+|X2|−y1∑
y2=0

(
n− 1− k

x1

)(
k

x2

)(
n− 1− k − x1

y1

)(
k − x2

y2

)
,

where x1 counts |T ∩ En,k|, x2 counts |T ∩ Fn,k|, y1 counts |U ∩ En,k|, and y2
counts |U ∩Fn,k|. With some refinements, this estimate leads to the three cases
in the statement.

Note if S �= ∅ then T �= ∅. Also, if X2 �= ∅, then any non-empty quotient
JT,U must have T ∩ Fn,k �= ∅ since X2 cannot be mapped to n − 1. In the
corresponding equation of the statement, this has the effect that x2 cannot be
0. We must add 1 to account for the empty state, achieved when T and U
intersect.

If X1 �= ∅ and X2 = ∅, then we cannot have x1 = x2 = 0 since that would
correspond to T = ∅; the subtracted term in the statement is the value of the
estimate when x1 = x2 = 0. As before, add 1 for the empty quotient.

Finally, if S = ∅, then T = ∅ and U ⊆ Qn with n − 1 ∈ U . There are 2n−1

possible values of U . Hence κ(AS) � 2n−1. There is no need to add 1 because T
and U cannot intersect; there is not necessarily an empty quotient. This yields
the three cases in the statement.

It remains to prove that Ln,k(Σ) of Definition 2 meets this upper bound.
Let the quotient Kq of Ln,k be the language accepted by state q in Dn,k. We
must show that every JT,U can be reached from AS by some word in Σ∗, and
that every non-empty JT,U is distinct from JT ′,U ′ whenever (T,U) �= (T ′, U ′).
By Proposition 6, the syntactic semigroup is as large as possible for k-proper
languages. Hence, whenever n− 1 ∈ U , |T | � |S|, |U | � |S|, |T ∩ En,k| � |X1|,
and |U ∩ En,k| � |X1|, there is a word w ∈ Σ∗ such that S

w−→ T and S
w−→ U .

Thus each quotient JT,U counted by the upper bound is reachable in AS .
Consider JT,U where T ∩ U = ∅ and n − 1 ∈ U . If T �= ∅ then there exists

w such that T
w−→ {n − 2} and U

w−→ {n − 1}; hence w ∈ JT,U since ε ∈ Kn−2.
If T = ∅ choose w such that U

w−→ {n − 1}; hence w ∈ JT,U . Thus JT,U is
non-empty.

Now take JT ′,U ′ where (T,U) �= (T ′, U ′), T ′ ∩ U ′ = ∅ and n − 1 ∈ U ′. We
must show that JT,U and JT ′,U ′ are distinct. If r ∈ T ′ \ T , then choose w
that maps r → n − 1 in Dn,k; JTw,Uw is non-empty, since Tw ∩ Uw = ∅, and
JT ′w,U ′w = ∅ since n − 1 ∈ T ′w. Similarly, if T = T ′ and r ∈ U ′ \ U , then
choose w that maps T ∪ {r} → {n − 2} and Qn \ (T ∪ {r}) → {n − 1}. Then
JTw,Uw = J{n−2},{n−1} is non-empty and JT ′w,U ′w = J{n−2},{n−2,n−1} = ∅.
Finally, if T = T ′ = ∅ and r ∈ U ′ \ U , then distinguish JT,U and JT ′,U ′ by a
word that sends r → n − 2 and Qn \ {r} → {n − 1}. Hence, JT,U and JT ′,U ′

are distinct. Therefore, the quotients of AS counted in the upper bound are
pairwise distinct and Ln,k has maximal atomic complexity. �
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Proposition 9 (Star). Let L be a regular language with n � 2 quotients, in-
cluding k � 1 final quotients and one empty quotient. Then κ(L∗) � 2n−2 +
2n−2−k + 1. This bound is tight for proper prefix-convex languages; in partic-
ular, the language (Ln,k(a, b,−,−, d1, d2, e))

∗ meets this bound for n � 3 and
1 � k � n− 2.

Proof. Since L has an empty quotient, let n − 1 be the empty state of its
minimal DFA D. To obtain an ε-NFA for L∗, we add a new initial state 0′

which is final and has the same transitions as 0. We then add an ε-transition
from every state in F to 0. Applying the subset construction to this ε-NFA
yields a DFA D′ = (Q′,Σ, δ′, {0′}, F ′) recognizing L∗, in which Q′ contains
non-empty subsets of Qn ∪ {0′}.

Many of the states of Q′ are unreachable or indistinguishable from other
states. Since there is no transition in the ε-NFA to 0′, the only reachable state
in Q′ containing 0′ is {0′}. As well, any reachable final state U �= {0′} must
contain 0 because of the ε-transitions. Finally, for any U ∈ Q′, we have U ∈ F ′

if and only if U ∪{n− 1} ∈ F ′, and since δ′(U ∪{n−1}, w) = δ′(U,w)∪{n−1}
for all w ∈ Σ∗, the states U and U ∪ {n− 1} are equivalent in D′.

Hence D′ is equivalent to a DFA with the states {{0′}} ∪ {U ⊆ Qn−1 |
U ∩F = ∅} ∪ {U ⊆ Qn−1 | 0 ∈ U and U ∩ F �= ∅}. This DFA has 1+ 2n−1−k +
(2n−2− 2n−2−k) = 2n−2+2n−2−k +1 states. Thus, κ(L∗) � 2n−2+2n−2−k +1.

This bound must apply when L is a prefix-convex language and n � 3: by
Lemma 1, L is either a right ideal or has an empty state. If L is a right ideal,
then κ(L∗) � n+ 1, which is at most 2n−2 + 2n−2−k + 1 for n � 3.

For the last claim, let Dn,k(a, b,−,−, d1, d2, e) of Definition 2 be denoted
by Dn,k = (Qn, {a, b, d1, d2, e}, δn,k, 0, Fn,k) and let Ln,k = L(Dn,k). We apply
the same construction and reduction as before to obtain a DFA D′

n,k recognizing
L∗
n,k with states Q′ = {{0′}}∪{U ⊆ En,k}∪{U ⊆ Qn−1 | 0 ∈ U and U ∩ Fn,k �= ∅}.

We show that the states of Q′ are reachable and pairwise distinguishable.
By Lemma 5, a and b generate all permutations of En,k and Fn,k in Dn,k.

Choose u1, u2 ∈ {a, b}∗ such that u1 induces (0, . . . , n − 2 − k) and u2 induces
(n− 1− k, . . . , n− 2) in Dn,k.

For reachability, we consider three cases. (1) State {0′} is reachable by ε.
(2) Let U ⊆ En,k. For any q ∈ En,k, we can reach U \ {q} by un−2−k−q

1 d1u
q
1;

hence if U is reachable, then every subset of U is reachable. Observe that
state En,k is reachable by eun−2−k

1 dk2 , and we can reach any subset of this
state. Therefore, all non-final states are reachable. (3) If U ∩ Fn,k �= ∅, then
U = {0, q1, q2, . . . , qh, r1, . . . , ri} where 0 < q1 < · · · < qh � n − 2 − k and
n − 1 − k � r1 < · · · < ri < n − 1 and i � 1. We prove that U is reachable
by induction on i. If i = 0, then U is reachable by (2). For any i � 1, we can
reach U from {0, q1, . . . , qh, r2 − (r1 − (n− 1− k)), . . . , ri − (r1 − (n− 1− k))}
by eu

r1−(n−1−k)
2 . Therefore, all states of this form are reachable.

Now we show that the states are pairwise distinguishable. (1) The initial
state {0′} is distinguishable from any other final state U since {0′}u1 is non-final
and Uu1 is final. (2) If U and V are distinct subsets of En,k, then there is some
q ∈ U ⊕ V . We distinguish U and V by un−1−k−q

1 e. (3) If U and V are distinct
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and final and neither one is {0′}, then there is some q ∈ U ⊕ V . If q ∈ En,k,
then Udk2 = U \Fn,k and V dk2 = V \Fn,k are distinct, non-final states as in (2).
Otherwise, q ∈ Fn,k and we distinguish U and V by un−1−q

2 dk−1
2 . �

Proposition 10 (Product). For m,n � 3, 1 � j � m − 2, and 1 � k �
n − 2, the product of L′

m,j(a, b, c1,−, d1, d2, e) and Ln,k(a, d2, c1,−, d1, b, e) has
complexity m− 1− j + j2n−2 + 2n−1.

Proof. Let D′
m,j and Dn,k be the DFAs of Definition 2 for L′

m,j(a, b, c1,−, d1, d2, e)
and Ln,k(a, d2, c1,−, d1, b, e) respectively. As before, take D′

m,j to have the
states Q′

m = {0′, 1′, . . . , (m − 1)′} and let E′
n,k = {0′, . . . , (m − 2 − j)′}. Us-

ing the standard construction of the ε-NFA N for the product, we delete the
empty state n − 1, change the final states of D′

m,j to non-final states, and add
ε-transitions from each final state of D′

m,j to the initial state of Dn,k.
The subset construction on N yields states of the form {p′} ∪ S, where

p′ ∈ Q′
m and S ⊆ Qn−1. However, some of these sets are not reachable in the

product: if p′ ∈ E′
m,j then we must have S = ∅, and if p′ ∈ F ′

m,j then 0 ∈ S
because of the ε-transitions in N .

Thus, we have the states {p′} for p′ ∈ E′
m,j , {p′, 0} ∪ S for p′ ∈ F ′

m,j and
S ⊆ Qn−1 \ {0}, and {(m− 1)′} ∪S for S ⊆ Qn−1. This totals to (m− 1− j) +
(j2n−2) + (2n−1) = m − 1 − j + j2n−2 + 2n−1 different states. We show that
they are reachable and pairwise distinguishable.

State {p′} is reached by dp1 for all p′ ∈ E′
m,j . State {(m − 1 − j)′, 0} is

reached by e. For m − j � p � m − 1 we have {(m − 1 − j)′, 0} d
p−(m−1−j)
2−−−−−−−−→{

{p′, 0, 1} if n− 1− k � 2

{p′, 0} if n− 1− k = 1

c1−→ {p′, 0}.
Now consider states of the form {p′, 0} ∪ T where p′ ∈ F ′

m,j and T ⊆ Fn,k.
These states are reachable when T = ∅. Inductively assume the states are
reachable when |T | < i for some i � 1. Let Ti = {r1, r2, . . . , ri} where n−1−k �
r1 < r2 < · · · < ri � n−2, and let Ti−1 = {r2− (r1− (n−1−k)), . . . , ri− (r1−
(n− 1− k))}. Then {0} ∪ Ti−1

e−→ {n− 1− k} ∪ Ti−1
br1−(n−1−k)

−−−−−−−−→ Ti. Notice b
induces a permutation on D′

m,j , so for any p′ ∈ F ′
m,j there is a state q′ ∈ F ′

m,j

such that q′ ebr1−(n−1−k)

−−−−−−−−−→ p′. Thus, {p′, 0} ∪ Ti is reachable from {q′, 0} ∪ Ti−1.
Extend this to states of the form {p′, 0}∪S∪T , where p′ ∈ F ′

m,j , S ⊆ En,k \
{0}, and T ⊆ Fn,k. These states are reachable when S = ∅. Inductively assume
the states are reachable when |S| < h for some h � 1. Let Sh = {q1, q2, . . . , qh}
where 1 � q1 < q2 < · · · < qi � n− 2− k, and let Sh−1 = {q2 − q1, . . . , qh − q1}.
Then {p′, 0} ∪ Sh−1 ∪ T

d1−→ {p′, 0, 1} ∪ (Sh−1 + 1) ∪ T
(d1c1)

q1−1

−−−−−−−→ {p′, 0, q1} ∪
(Sh−1 + q1) ∪ T = {p′, 0} ∪ Sh ∪ T . In the last derivation, S + c denotes the set
{q + c : q ∈ S}.

State {(m−1)′, 0}∪S∪T is reachable from {(m−2)′, 0}∪S∪T by d�2, where
� > 0 is the order of d2 in Dn,k (i.e. d�2 induces the identity transformation on
Dn,k).
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Finally, state {(m− 1)′} ∪ S ∪ T is reachable from {(m− 1)′, 0} ∪ S ∪ T : by
Lemma 5, the permutation (0, 1, . . . , n − 2 − k) of Dn,k is generated by some

u1 ∈ {a, d2}∗, and {(m−1)′, 0}∪S∪T un−2−k
1−−−−−→ {(m−1)′, n−2−k}∪(S−1)∪T d1−→

{(m− 1)′} ∪ S ∪ T . Thus all states are reachable.
We now check distinguishability in cases. Using Lemma 5, take words

u1, u2 ∈ {a, d2}∗ such that u1 induces (0, 1, . . . , n − 2 − k) and u2 induces
(n− 1− k, n− k, . . . , n− 2) on Dn,k. Note u1 and u2 act on D′

m,j as well.

1. Let U = {(m− 1)′} and let V be any other state. Notice U is the empty
state. We show that V is non-empty.

(a) If q ∈ V ∩ Qn−1 then by the minimality of Dn,k there is a word w
such that qw ∈ Fn,k; hence V w is final.

(b) Otherwise V = {p′} for some p′ ∈ E′
m,j . There is a word w such that

p′w ∈ F ′
m,j ; hence 0 ∈ V w and this reduces to Case (a).

2. Let U = {p′} and V = {q′} where p′, q′ ∈ E′
m,j and p < q. Then

V dm−1−j−q
1 = {(m− 1)′} and Udm−1−j−q

1 is non-empty by Case 1.

3. Let U = {p′} and V = {q′, 0} ∪ S where p′ ∈ E′
m,j , q′ ∈ F ′

m,j , and
S ⊆ Qn−1 \ {0}. Then U and V are distinguished by e.

4. Let U = {p′} and V = {(m− 1)′} ∪ S where p′ ∈ E′
m,j and S ⊆ Qn−1. If

S = ∅ this reduces to Case 1. If S ∩ Fn,k �= ∅ then V is final. Otherwise
there is some r ∈ S, and V un−1−k−r

1 e is final. Notice Uun−1−k−r
1 e is

non-final because u1 ∈ {a, d2}∗.
5. Let U = {(m − 1)′} ∪ S and V = {(m − 1)′} ∪ T where S �= T ⊆ Qn−1;

pick r ∈ S ⊕ T . Without loss of generality, say r ∈ S \ T .

(a) If r = 0, then U
bk−→ U \ Fn,k

e−→ U \ ({0} ∪ Fn,k) ∪ {n − 1 − k} and

V
bk−→ V \ Fn,k

e−→ V \ Fn,k.
(b) If r ∈ En,k, then we reduce to Case (a) by applying un−1−k−r

1 .
(c) If r = n− 1− k, then Ubk−1 is final and V bk−1 is non-final.
(d) If r ∈ Fn,k, then we reduce to Case (c) by applying un−1−r

2 .

6. Let U = {p′, 0} ∪ S and V = {(m − 1)′} ∪ T where p′ ∈ F ′
m,j , and

S, T ⊆ Qn−1. Notice Udn−1−k
1 bk is non-empty since p′ is not mapped to

(m− 1)′, but V
dn−1−k
1−−−−−→ {(m− 1)′}∪T \En,k

bk−→ {(m− 1)′}; this reduces
to Case 1.

7. Let U = {p′, 0} ∪ S and V = {q′, 0} ∪ T where p′, q′ ∈ F ′
m,j , p < q, and

S, T ⊆ Qn−1. Reduce to Case 6 by applying dm−1−q
2 .

8. Let U = {p′, 0}∪S and V = {p′, 0}∪T where p′ ∈ F ′
m,j and S �= T ⊆ Qn−1.

Pick r ∈ S ⊕ T and assume without loss of generality that r ∈ S \ T .
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(a) If r � 2, then dm−1−p
2 fixes r and maps p′ to (m − 1)′; hence this

reduces to Case 5.

(b) If p = m− 2, then apply d2 to reduce to Case 5. Notice Sd2 and Td2
are distinct since d2 induces a permutation on Dn,k.

(c) If r = 1 and n− 1− k � 2, then applying d1 reduces to Case (a).

(d) If r = 1 and n−1−k = 2, then observe that a and b both fix 1 in Dn,k.
By Lemma 5, there is a word w ∈ {a, b}∗ such that p′w = (m− 2)′.
Since n − 1 − k = 2, a and b do not alter En,k. Hence 1 ∈ Sw and
1 �∈ Tw, so this reduces to Case (b). �

Proposition 11 (Boolean Operations). For m,n � 3, 1 � j � m − 2,
and 1 � k � n − 2, let L′

m,j = L′
m,j(a, b, c1,−, d1, d2, e) and let Ln,k =

Ln,k(a, b, e,−, d2, d1, c1) of Definition 2. For any proper binary boolean func-
tion ◦, the complexity of L′

m,j ◦ Ln,k is maximal. In particular,

1. κ(L′
m,j ∪ Ln,k) = κ(L′

m,j ⊕ Ln,k) = mn.

2. κ(L′
m,j \ Ln,k) = mn− (n− 1).

3. κ(L′
m,j ∩ Ln,k) = mn− (m+ n− 2).

Proof. Let D′
m,j and Dn,k be the DFAs of Definition 2 for L′

m,j(a, b, c1,−, d1, d2, e)
and Ln,k(a, b, e,−, d2, d1, c1) respectively. As before, take D′

m,j to have the
states Q′

m = {0′, 1′, . . . , (m− 1)′}. There is a standard construction for L′
m,j ◦

Ln,k for any boolean set operation ◦ in terms of the direct product. The direct
product of D′

m,j and Dn,k has states Q′
m×Qn, initial state (0′, 0), and transition

function δ such that δ((p′, q), w) = (δ′m,j(p
′, w), δn,k(q, w)). If we set the final

states to be (F ′
m,j ×Qn) ◦ (Q′

m×Fn,k), it is a DFA recognizing L′
m,j ◦Ln,k. For

each ◦ ∈ {∪,⊕, \,∩}, we construct the DFA D◦ to recognize L′
m,j ◦ Ln,k. All

four DFAs have the same states and transitions as the direct product and will
only differ in the set of final states. The DFA D⊕ for symmetric difference is
shown in Figure 4.

We can usefully partition the states of the direct product. Let W = E′
m,j ×

En,k, X = E′
m,j×Fn,k, Y = F ′

m,j×En,k, Z = F ′
m,j×Fn,k, and S = W∪X∪Y ∪Z.

Let R = {(m− 1)′} ×Qn and C = Q′
m × {n− 1}.

We check that every state in the direct product is reachable. Since D∪, D⊕,
D\, and D∩ have the same structure as the direct product, this argument will
apply to them as well. By Lemma 5 there exist u1, u2 ∈ {a, b}∗ such that u1

induces (0′, . . . , (m − 2 − j)′) and u2 induces ((m − 1 − j)′, . . . , (m − 1)′) in
D′

m,j . Note that u1 and u2 permute En,k and Fn,k in Dn,k. Similarly, there
exist v1, v2 ∈ {a, b}∗ such that v1 induces (0, . . . , n − 2 − k) and v2 induces
(n− 1− k, . . . , n− 1) in Dn,k, and they permute E′

m,j and F ′
m,j in D′

m,j .

1. State (p′, q) ∈ W is reachable since (0′, 0)
dp
1−→ (p′, 0)

dq
2−→ (p′, q).
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Figure 4: DFA D⊕ for symmetric difference of proper languages with DFAs
D′

5,2(a, b, c1,−, d1, d2, e) and D5,2(a, b, e,−, d2, d1, c1) shown partially.

2. State (p′, 0) ∈ Y is reachable since (0′, 0) e−→ ((m−1−j)′, 0)
(d2e)

p−(m−1−j)

−−−−−−−−−−→
(p′, 0). An arbitrary (p′, q) ∈ Y is then reached by vq1 from some (r′, 0)

where r′ ∈ F ′
m,j is chosen so that r′

vq
1−→ p′ in D′

m,j .

3. State (p′, q) ∈ X is reachable by symmetry with Case 2.

4. State (p′, q) ∈ Z is reachable since (0′, 0) ec1−−→ ((m − 1 − j)′, n − 1 −
k)

d
p−(m−1−j)
2−−−−−−−−→ (p′, n− 1− k)

d
q−(n−1−k)
1−−−−−−−→ (p′, q).

5. State (p′, n− 1) ∈ C is reachable since (0′, 0)
dn−1−k
2−−−−−→ (0′, n− 1), and p′ is

reachable in D′
m,j .

6. State ((m− 1)′, q) ∈ R is reachable by symmetry with Case 5.

Hence all states are reachable.
As a tool for distinguishability, we show that the states of S are distinguish-

able with respect to R∪C; that is, for any pair of distinct states in S, we show
that there is a word that sends one state to R∪C and leaves the other state in
S. We check this fact in cases. Note that d2 fixes the states of X and d1 fixes
the states of Y .

1. States of W and X are distinguished by words in d∗2.

2. States of W and Y are distinguished by words in d∗1.
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3. States of X and Y are distinguished by words in d∗1.

4. States of X and Z are distinguished by words in d∗2.

5. States of Y and Z are distinguished by words in d∗1.

6. To distinguish states of W and Z, we reduce to Case 5 by a word in u∗
1e.

7. Any two states of W are distinguished by a word in d∗1 if they differ in the
first coordinate, or by a word in d∗2 if they differ in the second coordinate.

8. Any two states of Z are distinguished by a word in d∗2 if they differ in the
first coordinate, or by a word in d∗1 if they differ in the second coordinate.

9. To distinguish two states of X, reduce to Case 4 by a word in u∗
1e if they

differ in the first coordinate, or reduce to Case 8 by a word in u∗
1e if the

first coordinate is the same.

10. Any two states of Y are distinguishable by symmetry with Case 9.

Now we determine which states are pairwise distinguishable with respect to the
final states of D◦ for each ◦ ∈ {∪,⊕, \,∩}. Let w = (u1e)

m−1−j(v1c1)
n−1−k;

observe that w maps every state of S to a state of Z.
∪, ⊕: In D∪, (p′, q) is final if p′ ∈ F ′

m,j or q ∈ Fn,k. In D⊕, (p′, q) is final if
p′ ∈ F ′

m,j and q �∈ Fn,k or p′ �∈ F ′
m,j and q ∈ Fn,k. We show that all mn states

are pairwise distinguishable in both cases.
The states of R are pairwise distinguishable by the minimality of Dn,k. Sim-

ilarly, the states of C are pairwise distinguishable by the minimality of D′
m,j .

The states of R and C are distinguishable by wdk1 , since R \ {((m − 1)′, n −
1)} w−→ {(m − 1)′} × Fn,k

dk
1−→ {(m − 1)′, n − 1} and C \ {((m − 1)′, n − 1)} w−→

F ′
m,j × {n − 1} dk

1−→ F ′
m,j × {n − 1}. The states of C and S are distinguishable

since S
w−→ Z

dj
2−→ {(m − 1)′} × Fn,k ⊆ R, and we can distinguish states of R

and C. The states of R and S are similarly distinguishable. Finally, states of S
are pairwise distinguishable because they can be distinguished with respect to
R ∪ C, and we can distinguish states of S and R ∪ C.

\: In D\, (p′, q) is final if p′ ∈ F ′
m,j and q �∈ Fn,k. The states of R are

all empty, and the remaining states are pairwise distinguishable for a total of
mn− (n− 1) distinguishable states.

The states of C are pairwise distinguishable by the minimality of D′
m,j . The

states of C and S are distinguishable since S
w−→ Z

dj
2−→ {(m− 1)′} × Fn,k ⊆ R,

and every state in R is empty. Finally, states of S are pairwise distinguishable
because they can be distinguished with respect to R∪C, and we can distinguish
states of S and R ∪ C.

∩: In D∩ the final state set is Z. The states of R ∪C are all empty, leaving
mn − (m + n + 2) distinguishable states. The states of S are non-empty since
S

w−→ Z. We can distinguish the states of S with respect to R ∪ C; hence they
are pairwise distinguishable. �
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3. Conclusions

The bounds for prefix-convex languages (see also [8]) are summarized in
Table 1. The largest bounds are shown in boldface type, and they are reached
either in the class of right-ideal languages or the class of proper languages.
Recall that for regular languages we have the following results: semigroup nn,
reverse 2n, star 2n−1 + 2n−2, product m2n − 2n−1, boolean operations mn.

Table 1: Complexity of prefix-convex languages. For proper languages, the variables j and k
refer to the number of final quotients of the languages of complexity m and n, respectively.

Right-Ideal Prefix-Closed Prefix-Free Proper

SeGr nn−1 nn−1 nn−2 nn−1−k(k + 1)k

Rev 2n−1 2n−1 2n−2 + 1 2n−1

Star n + 1 2n−2 + 1 n 2n−2 + 2n−2−k + 1

Prod m + 2n−2 (m + 1)2n−2 m + n − 2 m − 1 − j + j2n−2 + 2n−1

∪ mn − (m + n − 2) mn mn − 2 mn

⊕ mn mn mn − 2 mn

\ mn − (m − 1) mn − (n − 1) mn − (m + 2n − 4) mn − (n − 1)

∩ mn mn − (m + n − 2) mn − 2(m + n − 3) mn − (m + n − 2)
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