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Summary

Therapeutic advances in cancer mean that it is now impractical to performed phase III random-
ized trials evaluating experimental treatments on the basis of overall survival. As a result, the
composite endpoint of progression-free survival has been routinely adopted in recent years as it
is viewed as enabling a more timely and cost-effective approach to assessing the clinical benefit
of novel interventions. This article considers design of cancer trials directed at the evaluation of
treatment effects on progression-free survival. In particular, we derive sample size criteria based
on an illness-death model that considers cancer progression and death jointly while accounting for
the fact that progression is assessed only intermittently. An alternative approach to design is also
considered in which the sample size is derived based on a misspecified Cox model, which uses
the documented time of progression as the progression time rather than dealing with the interval
censoring. Simulation studies show the validity of the proposed methods.
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1 INTRODUCTION

Cancer therapies are routinely evaluated in phase III clinical trials based on overall survival, progression-
free survival, and progression times. While interest lies primarily in prolonging survival, sample size
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requirements are often determined based on a Cox regression (Cox, 1972) analysis of the progression-
free survival time. There has been much discussion in the oncology literature in recent years on the
suitability of this endpoint and the interpretation of associated treatment effects (Fleming et al., 2009;
Booth and Eisenhauer, 2012; Saaed et al., 2010). Miksad et al. (2009) sought insight into the re-
lationship between treatment effects on progression-free survival and overall survival by viewing
progression-free survival time as a surrogate for overall survival. Ballman et al. (2007) examined the
validity of this assumption through assessing the association between treatment effects on these two
endpoints. While these are reasonable approaches when only summary data are available, provided
individual patient data are available an appealing alternative is to consider the associated times (pro-
gression and death) as arising from a three-state illness-death model (Broglio and Berry, 2009; Xu
et al., 2010) as depicted in Figure 1. This model is highly useful when modelling the incidence of
non-fatal events when mortality rates are appreciable and gives the most suitable framework for joint
modelling of non-terminal and terminal events.

While deaths are observed subject to right-censoring, the precise times at which the criteria for
progression are satisfied are never known since progression status is only determined at periodic
assessment times. A further complication is that even progression status is indeterminate for indi-
viduals who were progression-free at their last assessment before their death. Zeng et al. (2015)
study the asymptotic bias of the Kaplan-Meier estimator of the progression-free survival distribution
and the estimator of treatment effect from a Cox regression model when the time that progression
is detected is taken as the actual progression time; the power implications of such analyses are also
examined. Frydman and Szarek (2009) consider this problem and discuss non-parametric estimation
of the progression-free survival time distribution. Boruvka and Cook (2016) consider semiparametric
methods for the incorporation of treatment effects, which are most appealing when the assessment
times are highly irregular as in uncontrolled (e.g. registry-based) observational studies. When as-
sessment times are regularly scheduled and common across individuals, identifiability problems can
arise with general semiparametric models. We focus on parametric models for fitting the three-state
process in Figure 1.
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Figure 1: A three-state model for joint consideration of progression and death.

We derive sample size criteria for randomized controlled trials aiming to model treatment effects
on progression-free survival in the context of this three-state model in Figure 1. We adopt Markov in-
tensities with multiplicative effects of treatment. When the treatment effect for the transition intensity
to the progression state is the same as the treatment effect on the transition intensity from the initial
state to the death state, a Cox model for the progression-free survival time can in principle yield a
consistent estimate for this common effect. In this framework, we construct the likelihood for the set-
ting in which progression status is under an intermittent observation scheme while survival times are
subject to random right censoring over a period of interest following Jackson (2011). Sample size re-
quirements are then derived to ensure power requirements are met for detecting a minimal clinically
important effect. The required sample size is shown to vary according to the frequency of assess-



Leilei Zeng, Richard J. Cook and Ker-Ai Lee 3

ments thus allowing one to weigh the options of more frequent assessments against the recruitment
of additional patients.

The remainder of this paper is organized as follows. In Section 2 notation is defined, the three-
state model is reviewed, the nature of the data is described, and the likelihood is constructed. Section
3 reviews the standard approach to analyze the composite progression-free survival time and the
associated sample size formula and derives the formula based on the proposed model and likelihood.
A more ad hoc approach to sample size adjustment is also given based on Cox model typically used
in this setting, which is misspecified in this framework (Zeng et al., 2015). Section 4 discusses related
design criteria for analyses geared simply towards progression. Simulation studies validating the
derivations are reported in Section 5, and concluding remarks are made in Section 6.

2 MULTI-STATE MARKOV MODELS FOR DISEASE PROGRESSION AND DEATH

2.1 THE BASIC FORMULATION

Suppose individuals are in state 0 (alive and progression-free) at the time of randomization and may
enter either state 1 upon progression or state 2 upon death. The possibility of death after progression
is accommodated by allowing transition from state 1 to state 2. Let Tj` denote the potential j →
` transition time (i.e. time from leaving state j to entering state `), so T1 = T01 is the time to
progression, and T2 = I(T02 < T01)T02 +I(T01 ≤ T02)(T01 +T12) is the overall survival time that can
be heavily influenced by the intermediate event of cancer progression, where the function I(·) takes a
value of 1 if the condition is true. The progression-free survival time is T = min(T1, T2).

We begin the discussion by considering a homogeneous population and omit consideration of
covariates. The multistate models are defined by the transition intensities between the states S =
{0, 1, 2} at any time t

lim
∆t→0

P(Z(t+ ∆t) = ` | Z(t) = j,H(t))

∆t
= λj`(t|H(t)) , j < ` ∈ S , (1)

where Z(t) denotes the state occupancy of the stochastic process at time t, H(t) = {Z(u), 0 <
u < t} indicates the history of the process containing information on the timing and nature of any
transitions over (0, t). The Markov assumption is perhaps most commonly adopted in multistate
models where the transition intensities depend on the process history only through the current state
and time, λj`(t|H(t)) = λj`(t). For general Markov models, the transition probabilities pj`(s, t) =
P (Z(t) = ` | Z(s) = j) can be expressed as a complicated function of transition intensities by
solving the Kolmogorov forward differential equation

d
dt
P(s, t) = P(s, t)A(t) , t > s (2)

where P(s, t) = [pj`(s, t)] is the transition probability matrix, A(t) =
[
Aj`(t)

]
is the transition

intensity matrix with entries Aj`(t) = λj`(t) for j 6= ` ∈ S and Ajj(t) = −
∑

` 6=j λj`(t) (Cox
and Miller, 1965). If the process is strictly progressive, λj`(t) = 0 for j > ` and the transition
probabilities can be explicitly written as an integral of the transition intensities with respect to the
possible times of intermediate events.

Under the three-state illness-death model, the transition intensities λ01(t) and λ02(t) are the cause-
specific hazard rates for progression and death before progression, and λ12(t) is the intensity function
for moving from the “progressed” state to the “dead” state among those who progress prior to death.
For the composite progression-free survival endpoint, the survival function is thus

S(t) = P (Z(t) = 0 | Z(0) = 0) = exp

(
−
∫ t

0

λ01(s) + λ02(s) ds

)
,

and its hazard function is h(t) = λ01(t) + λ02(t), t > 0.
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2.2 LIKELIHOOD UNDER INTERMITTENT OBSERVATION OF PROGRESSION

Consider a clinical trial with a common administrative censoring time τ defining the planned period
of observation [0, τ ]. Individuals may withdraw from the study prematurely at a random censoring
time C < τ assumed to be independent of the disease process; we assume that the vital status is
known over the resulting period of observation. Let G(u) denote the distribution function for the
random censoring time. Progression status is only assessed at a maximum of K fixed times 0 = a0 <
a1 < · · · < aK ≤ τ . The assessment process for progression can of course be terminated by death or
withdrawal from the study. For a continuous-time multistate process, this leads to a mixed observation
scheme, that is the time of death is subject to right-censoring while the time of progression is subject
to interval censoring.

Figure 2 illustrates the different types of data that may arise from such an observation scheme.
Note that death can be observed with or without prior confirmation of progression. For an individual
whose disease progression has been detected at the previous assessment (as the top two cases in Figure
2), we know that time to progression is interval-censored and it occurred before death. However, if the
last assessment of an individual is negative (as the third and fourth cases in Figure 2, respectively),
it is unknown whether or not progression has occurred after that assessment and prior to death or
censoring; such an uncertainty, as reflected by the possible paths within the box in the figure, must
be taken into account for likelihood construction. The last two cases in Figure 2 are for those who
remained until the administrative end of the study and had their last assessment of progression at that
time.

| | | | | |

a0 ak−1 ak aM aM+1 aK

●

●

●

STATE 0

STATE 1

● STATE 2

Censoring

Figure 2: A three-state model with intermittent observations on individuals.

Let T † = min(T2, C) denote the minimum of the time to death and censoring, resulting in M =
max{k ; ak < T †, k = 0, . . . , K} as the random number of progression assessments for an individual.
Let 0 = z0 ≤ z1 ≤ · · · ≤ zM ≤ 1 denote the observed disease status at the assessment times
0 = a0 < a1 < · · · < aM , and δ = I(T † = T2) indicate that death is observed. If λj`(t) = λj`(θ)
depends on q functionally independent parameters θ = (θ1, . . . , θq) for each j, ` ∈ S, the likelihood
contribution from a single individual can be written as

L(θ) =
M−1∏
k=0

P
(
Z(ak+1) = zk+1 | Z(ak) = zk

) ∑
`∈{0,1}

P
(
Z(t†) = ` | Z(aM) = zM

)
λδ`2(t†)

=
M−1∏
k=0

pzk,zk+1
(ak, ak+1)

∑
`∈{0,1}

pzM ,`(aM , t
†)λδ`2(t†) ; (3)
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where the summation in the second term accounts for the fact that the progression status right before
death or censoring may not be known due to the intermittent observation. With a time-homogeneous
process, the transition probability pj`(ak, ak+1), j, ` ∈ S , relates to the constant intensity matrix
A(t) = A0 =

[
λj`
]

through the matrix exponential

P(s, t) = exp{(t− s)A0} , t > s .

The likelihood function for transition intensity parameter θ is simply a product of (3) over all indi-
viduals, and the estimates of θ can be obtained by maximizing such a function. These methods can
be extended to fit certain non-homogeneous Markov models as discussed in Kalbfleisch and Lawless
(1985). For example, one can assume that the time-dependent transition intensity matrix can be pa-
rameterized as A(t) = A0 · g(t; θ), a product of a fixed intensity matrix A0 and a known function
of time g(t; θ) up to a parameter θ. Alternatively, a piecewise constant model can be adopted such
that the transition matrix is constant between certain observation times but is allowed to change at
observation times, for example, A(t) = Ak if t ∈ [ak, ak+1), k = 0, . . . , K.

3 DESIGN METHODS FOR THE ENDPOINT OF PROGRESSION-FREE SURVIVAL

3.1 THE CONVENTIONAL APPROACH TO DESIGN

Consider randomized controlled cancer trials designed to compare a standard (X = 0) and a new
experimental treatment (X = 1) with respect to a composite endpoint, progression-free survival.
Suppose the underlying disease process can be described by the three-state Markov model described
in Section 2, and the treatment is associated with the transition intensities in the multiplicative form
such that

λj`(t;X) = λj`(t) exp(βj`X) , j, ` ∈ S , (4)

where (β01, β02, β12) is the vector of regression coefficients. The hazard for progression-free survival
also has a multiplicative form

h(t;X) = h0(t) exp(βX) , (5)

if one of the following two conditions is satisfied: (i) β01 = β02 or (ii) λ01(t) = πλ02(t) where
π is a proportionality constant (Wu and Cook, 2012). In the first scenario, the treatment effect of
progression-free survival is the same on progression and death without progression, β = β01 = β02,
and the baseline hazard is simply the summation of the baseline cause-specific hazards of the two
components (i.e. h0(t) = λ01(t) + λ02(t)). In the second scenario of a common cause-specific
baseline hazard for progression and death without progression, the multiplicative treatment effect on
progression-free survival is β = log[π exp(β01) + exp(β02)]. Neither of these conditions are particu-
larly plausible, but they are implicitly made if one accepts the illness-death model as a description of
the disease process with multiplicative intensities.

This paper focuses on the design of cancer clinical trials based on progression-free survival. When
the proportionality assumption holds for this endpoint, the usual approach for testing the treatment
effect with null hypothesis H0:β = β0 is based on the Cox model (5) using the Wald test statistic

β̂ − β0

se(β̂)

H0∼ N(0, 1)

where β̂ and se(β̂) are the MLE and its standard error correspondingly. The resulting sample size
formula is

n =
(Zα1/2 + Zα2)

2

β2
A

asvarA(β̂) (6)
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for a two-sided Wald test of H0: β = 0 at a significance level of α1 and a power of 1 − α2 for
detecting an alternative treatment effect β = βA. In (6) asvarA(β̂) is the asymptotic variance of
the maximum likelihood estimate β̂ evaluated at the alternative value βA; see Demidenko (2007). A
central problem of this approach in this setting is that progression status is only intermittently assessed
so the composite progression-free survival time is strictly subject to a hybrid censoring scheme. That
is, progression times are interval-censored but the time of progression is taken as the assessment at
which progression was detected or treated as right-censored if it is not observed. Convention also
implicitly treats individuals as progression-free at the time of death if they have not been observed to
have satisfied the condition for progression. The sample size formula (6) based on the Cox models is
therefore not valid as it assumes a continuous follow up and the event times being exactly observed
or right censored.

We develop two approaches for addressing this issue for a more rigorous treatment of the progression-
free survival endpoint that accounts for the intermittent assessment on progression status. For the first,
a sample size formula is derived based on the multistate Markov model that incorporates the mixed
observation schemes for the component events of progression and death. The key step is an efficient
procedure for calculating the Fisher-information matrix that only relies on the first derivatives of the
log-likelihood function. We also recognize that Cox models are routinely used for the analysis of
progression-free survival and the intermittent assessment of progression is routinely ignored through
use of the surrogate progression time defined as the time of the first positive assessment. Zeng et al.
(2015) showed that such an approach results in biases in the estimates of treatment effect and a loss
of power for the associated test. For the second approach we propose a sample size adjustment based
on misspecified Cox models by deriving the limiting behaviour of the naive estimator as in Zeng et al.
(2015) and accommodating the bias and robust large sample variance in the calculations to ensure the
power is maintained at the nominal level despite the model misspecification.

3.2 DESIGN APPROACH BASED ON MARKOV MODELS

We consider a simple time homogeneous three-state Markov model allowing progression, death prior
to and post progression, and assume proportional treatment effects on each transition intensity as
well as common effects β = β01 = β02 so that the proportional hazard holds for the composite
progression-free survival endpoint. We apply this model to the design of clinical trials for comparing
the progression-free survival of two treatments when the progression status is only intermittently
assessed. The model assumptions considered here are deliberately simple to illustrate the approach
without introducing unnecessary complications and to provide an approach can be easily implemented
in practice. Extensions to deal with time non-homogeneous Markov models are of course possible.

Under the Markov model, obtaining the maximum likelihood estimates and the associated asymp-
totic covariances matrix would require the evaluation of both first and second derivatives of the log-
likelihood function given in Section 2.2, which can be quite cumbersome. Kalbfleisch and Lawless
(1985) proposed an efficient estimation procedure for panel data that only requires the first derivatives.
We can show that this is also the case with a mixed observation scheme with intermittent assessment
of progression status and deaths observed subject to right-censoring. Let λ = (λ01, λ02, λ12)′ de-
note the baseline transition intensities. At any given time t, let Y †(t) = I(t < T †) indicate that
an individual is alive and under observation, Yj(t) = I(Z(t) = j) indicate occupancy of state j,
and Y †j (t) = Y (t)Yj(t). The likelihood function for θ = (β, β12,λ

′)′ can be written for the time-
homogeneous illness-death model as

L(θ) =
K−1∏
k=0

1∏
j=0

L
Y †
j (ak)

jk , (7)

where Ljk denotes the likelihood contribution from the observation interval [ak, ak+1) of a subject
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who is alive and in state j at ak, which is of the form

Ljk =
1∏
`=0

pj`(ak, ak+1)Y
†
` (ak+1)

[
1∑
`=0

pj`(ak, t
†)(λ`2e

β`2X)δ

]1−Y †(ak+1)

.

The msm package (Jackson, 2011) in R can be used to maximize this likelihood . The score function
for parameter θr is then

Sr(θ) =
∂ logL(θ)

∂θr
=

K−1∑
k=0

1∑
j=0

Y †j (ak)
∂`jk
∂θr

, (8)

where `jk = logLjk. Since
∑2

`=0 pj`(ak, ak+1) = 1 it can be shown that

E

[
∂`jk
∂θr

∣∣∣ Y †j (ak) = 1

]
= 0 (9)

for j = 0, 1 and k = 0, . . . , K − 1; see Appendix A. This result implies that only the first derivatives
are needed for the calculation of the Fisher information matrix I(θ) with (r, q) element

Irq = E
[
− ∂2 logL(θ)

∂θr∂θq

]
=

K−1∑
k=0

1∑
j=0

E
[
Y †j (ak)

∂`jk
∂θr

∂`jk
∂θq

]
. (10)

The expectation in (10) can be taken in a stepwise manner by conditioning first on random cen-
soring time C, and then on I(Z(ak) = j) and finally death time T2. The final step requires averaging
over the random censoring time C. We know that if C ∈ Ak = [ak, ak+1), there will be k possible
follow up assessments for progression 0 < a1 < · · · < ak < C as long as the individual survives
to ak, hence the integration over random censoring time C is taken as a summation of integrals over
these inter-assessment intervals. More specifically, we write

Irq =
K−1∑
m=0

∫ am+1

am

m∑
k=0

1∑
j=0

E

[
Yj(ak)

∂`jk
∂θr

∂`jk
∂θq

∣∣∣C = c

]
dG(c) +

K−1∑
k=0

1∑
j=0

E

[
Yj(ak)

∂`jk
∂θr

∂`jk
∂θq

]
G(τ) ,(11)

where G(t) = 1−G(t). The formulas for the conditional expectations are given in Appendix B.
With a sample of n independent individuals, the overall likelihood is a product of terms like (7)

from each individual and the resulting estimation asymptotically follow
√
n(θ̂− θ) ∼ N(0, I−1(θ)).

So
√
n(β̂ − β) ∼ N(0, [I−1(θ)]11). This can be used in the standard sample size formula given in

(6).

3.3 SAMPLE SIZE ADJUSTMENT BASED ON MISSPECIFIED COX MODELS

As pointed out earlier, Cox models are commonly adopted for progression-free analysis and the right-
endpoint imputation is routinely used to deal with intermittent assessment of progression. Specifi-
cally, the surrogate for the progression-free survival time T using right endpoint imputation is given
by S = min{akI(Z(ak) = 1), k = 1, . . . , K} · I(Z(aM) = 1) + T2 · I(Z(aM) = 0), which takes
the value of the assessment time if progression is detected, and the time of death otherwise. The
progression-free survival is considered right-censored at the last negative assessment if the final as-
sessment is negative and death has not been observed during the course of follow-up. The proportional
assumption, although true for progression-free survival time, no longer holds for the surrogate event
time S, and the working Cox model for the surrogate time S

hS(s;x) = hS0(s) exp(γX), s > 0,
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is thus a misspecified model with baseline hazard hS0(s) and treatment effect γ. The estimator γ̂ is
inconsistent, and its limiting value γ∗ is the solution to the expectation of the partial score equation

E(U(γ)) =

∫ ∞
0

E
[
Y †(s)XdN(s)

]
− r(1)(γ; s)

r(0)(γ; s)
E
[
Y †(s)dN(s)

]
= 0 , (12)

where Y †(s) = I[s < min(S,C)], dN(s) = I(S = s) is the event indicator, and r(`)(γ, s) =
E
[
Y †(s)X` exp(γX)

]
, ` = 0, 1. Following Lin and Wei (1989), its asymptotic variance takes the

form
asvar(

√
n(γ̂ − γ∗)) = [A−1(γ∗)][B(γ∗)][A−1(γ∗)]′ (13)

where

A(γ) =

∫ ∞
0

E

{
Y †(s)

[
r(1)(γ, s)

r(0)(γ, s)
−
(
r(1)(γ, s)

r(0)(γ, s)

)2
]
dN(s)

}
and

B(γ) =

∫ ∞
0

E

{
Y †(s)

[
X − r(1)(γ, s)

r(0)(γ, s)

]2

dN(s)

}
.

Note that all the indicator variables are defined based on the imputed event time S, and the expecta-
tions can be taken with respect to its distribution either analytically or numerically.

The sample size to ensure 100(1 − α2)% power for a two-sided test at the 100α1% significance
level under the misspecified Cox model is therefore

n =
(Zα1/2 + Zα2)

2

γA2
asvarγA(γ̂) , (14)

where γA is the limiting value γ∗ of the treatment effect estimator γ̂ under the alternative hypothesis.

4 DESIGN METHODS FOR TIME-TO-PROGRESSION ENDPOINT

Time-to-progression (TTP), defined as the time from randomization until objective tumour progres-
sion, also serves as an endpoint to support cancer drugs and biologics approval.

From the pure definition point of view, the treatment effect on progression has a more direct
and clearer interpretation than the one on the composite progression-free survival endpoint. This
is especially the case when the treatment effects on progression and death without progression are
not common so that proportional hazard is no longer true for the combined event of the two. From
analytical point of view, there are important issues with TTP analyses. Death is always a competing
risk, that is an event that either hinders the observation of the event of interest (i.e. progression) or
modifies the chance that this event occurs. The traditional survival methods, commonly used for the
analysis of TTP endpoint, do not consider death and the patients who die without progression are
typically right censored either at the time of death or at a visit time when progression is intermittently
assessed. Such an approach estimates the TTP in a hypothetical setting where patients could be at
risk of progression after death. More importantly, it induces biases due to informative censoring
(nonrandom pattern of loss from the study) when death and progression are related, which is often
the case. TTP is hence considered a less preferred regulatory endpoint compared to progression-
free survival (FDA, 2007, Fleming et al., 2009). Alternatively, competing risk methods have been
used for time to progression analysis, which involve modelling both the rates of progression and its
competing event death. The issue of this approach arises with an intermittent assessment scheme.
For individuals who die without prior detected progression, simply recording them as experienced the
competing event of death would obviously result in biased estimates unless one makes a hypothetical
and unrealistic assumption that progression is not the cause for death.
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The three-state illness-death models described in Section 2 serve as an appealing framework for
the design and analysis of TTP endpoint. It considers progression, death with and without progression
jointly, and it accounts for intermittent assessment of progression appropriately with flexible model
specifications. Under the multiplicative transition intensity models (4), the focus lies in β01 which
is the treatment effect on TTP. The asymptotic variance of the estimate β̂01 is simply the (β01, β01)
element of the inverse of the Fisher information I(θ), which again can be used in formula (6) to obtain
the sample size required for testing the treatment effect on time to progression. The way to obtain the
Fisher information I(θ) has been described in Section 3.2.

5 FINITE SAMPLE PERFORMANCE OF ASYMPTOTIC RESULTS

5.1 EMPIRICAL STUDIES

In this section, we show some examples of sample size calculations for cancer trials based on progression-
free survival with intermittent assessments for progression. We also evaluate the performance of the
proposed method based on multi-state models via simulation studies.

For simplicity, we assume the disease process to be time-homogeneous with constant baseline
intensities λ01, λ02 and λ12 and treatment effects β01 = β02 = β and β12. Consider the design of a
clinical trial where (1) patients are randomized to the treatment or control arm with equal probability;
(2) disease progression status is to be assessed at K evenly spaced assessment times, i.e. ak = kτ/K,
k = 0, . . . K; (3) survival status is monitored continuously during the administration follow-up period
(0, τ); and (4) patients may drop out of the study at a random time according to an exponential
distribution with rate ρ. The sample size for the trial is based on testing the treatment effect on
progression-free survival (which is parameterized in terms of coefficient β) using a two-sided Wald-
test with type I error rate of α1 = 0.05 and power of {80%, 90%}.

For illustration purposes, we set the values for the required input design parameters λ01, λ02, λ12

and ρ to satisfy the following constraints: (i) P (T > τ, C > τ | X = 0) = 2% (percentage PFS
right censored at the end of the study if untreated); (ii) P (T > C,C < τ | X = 0) = 38% (percent-
age PFS right censored before the end of study if untreated); (iii) P1 = P (T01 < T02 | X = 0) =
λ01/(λ01 + λ02) = {0.6, 0.8} (percentage progression among untreated); and (iv) λ12/λ02 = 1.5 (rel-
ative risk of death with versus without progression among untreated). Note that conditions (i) and (ii)
together imply a net right censoring rate of πN = 40% for progression-free survival time T among un-
treated. We set β01 = β02 = β = log 0.75 for a moderate treatment effect on progression-free survival,
and β12 = log 1 = 0 for null effect on death post progression. Without loss of generality, we assume
equal probability for treatment, set τ = 1 and use interval [0, 1] to indicate the administrative study
period. Given the treatment assignment, the times to progression and death are simulated based on
the three-state illness-death model with multiplicative intensities. More specifically, T01 and T02 were
simulated based on exponential distributions with rates λ01 exp(βX) and λ02 exp(βX), respectively,
and if T01 < T02, we simulate T12 according to an exponential distribution with rate λ12 exp(β12X).
We record the actual overall survival time as T2 = T02I(T02 < T01) + (T01 + T12)I(T02 > T01), and
the progression-free survival time as T = min{T01, T02}. We then consider progression being inter-
mittently assessed and set the assessment times to be ak = kτ/K + εk, k = 0, . . . , K, where minor
variations are allowed by adding a normal noise εk ∼ N(0, σe) with σe = τ/(20K). The random
right censoring time C is simulated by an exponential distribution with the rate ρ. The progression
status Z(a0), . . . , Z(aM) is then obtained at the assessments 0 = a0 < a1 < · · · aM < min{C, T2, τ}.
The surrogate progression-free survival time S is recorded in the conventional way in practice, that
is when Z(aM) = 1 then S = min{ak; I(Z(ak) = 1), k = 1, . . . ,M}, and when Z(aM) = 0 then
S = T2 if T2 < C, or censored at aM otherwise.

We consider three different approaches for sample size calculation. First, we follow the conven-
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tional way by using standard Cox models assuming progression-free survival will be continuously
monitored and event times will be exactly observed, which gives required sample size of n∗ = 683
and 914 to detect the treatment effect of β = log 0.75 with a power of 80% and 90%, respectively. We
then simulate event times for the given sample sizes but consider intermittent assessments for pro-
gression and estimate the treatment effect on progression-free survival using three different analysis
approaches: a Cox model using the actual progression-free survival time (PFST ); a Cox model on the
surrogate progression-free survival time (PFSS); and a time-homogenous illness-death model based
on the actual mixed type observation scheme (MSM). Empirical percentage power (EP) for testing the
treatment effect on progression-free survival based on 1000 simulations are reported under the “De-
sign Based on PFST ” in Table 1. The Cox regression analysis of the actual event time yield estimates
with negligible empirical biases and power at the nominal level as expected, although it is a purely
hypothetical analysis and impossible to do under the intermittent assessment scheme in practice. The
naive Cox analysis using surrogate PFS times resulted in biased estimates of treatment effect and
lower power than one would wish for. The correct multistate analysis gave unbiased estimates with
slightly larger standard errors and lower empirical power than the nominal level, reflecting the loss
of information when event times are interval-censored. We then calculate sample sizes based on the
time-homogeneous illness-death model and account for the mixed types of observations. As reported
under “Design Based on MSM” in Table 1, the sample sizes (denoted by n) are much bigger than
those based on standard Cox model assuming exact event times to be observed (denoted by n∗). The
empirical power from fitting the correct multistate model on the observed data is very close to the
desired nominal level, which validates the proposed calculation. The naive analysis using Cox model
on surrogate event times results in a mild loss of power for the test of treatment effect, although one
should keep in mind that the estimate itself is biased. Last but not least, we use the approach of adjust-
ing the sample size based on misspecified Cox model. This gives the largest sample sizes compared
to the other 2 approaches, and the simulation results imply that it can correct for the desired power
for the test, but again the estimate remains biased.

5.2 APPLICATION TO THE DESIGN OF A METASTATIC BREAST CANCER TRIAL

Hortobagyi et al. (1996) report on a trial of women with stage IV breast cancer in which the pri-
mary objective was to evaluate the effect of a bisphosphonate called pamidronate on the incidence of
skeletal complications due to metastatic bone disease. A secondary outcome was progression of bone
disease, which was assessed using radiographic surveys scheduled at 3- to 6-month intervals over 30
months of follow-up. This observation scheme resulted in an interval-censored time of bone progres-
sion and right censored survival times. Mortality was appreciable in this population of patients with
metastatic cancer, so the composite endpoint of progression-free survival was adopted. The sample
involves 378 breast cancer patients with bone metastases. Ultimately, 133 patients were documented
to have progressed and among these, 108 died during the observation period. Among the remaining
245 patients, 181 died with an unknown progression status.

We consider data from this trial to estimate the parameters of an illness-death model where the
intermediate state represents bone progression and the absorbing state is entered upon death. The
resulting parameter estimates can then be used for the design of a future study. In fitting this model,
we assume a common treatment effect on the intensity for bone progression, as is implicit in the
composite endpoint analysis. Using the likelihood in (3) to appropriately deal with the dual censoring
scheme for progression and death, we fit a model with time-homogeneous intensities to the data from
Hortobagyi et al. (1996). The estimates obtained for the baseline intensities are λ̂01 = 2.19 × 10−3,
λ̂02 = 1.45 × 10−3 and λ̂12 = 2.33 × 10−3; the coefficient for the effect of pamidronate on the
composite endpoint of progression-free survival is β̂ = −0.261 (SE = 0.112, p-value=0.020) and the
corresponding effect of treatment on death following bone progression is β̂12 = 0.009 (SE = 0.177,
p-value =0.959). While there is evidence that pamidronate reduces the risk of the composite endpoint
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Table 1: Sample sizes and empirical power for testing treatment effect on progression-free survival
under intermittent assessment scheme based on different settings and approaches to analysis and
design.

Design Based on PFST a Design Based on MSMb Design Based on PFSSc

EP (%) EP (%) EP (%)

Power (%) K P d1 n∗ PFST PFSS MSM n PFSS MSM n PFSS

80 4 0.6 683 80.3 72.1 74.5 780 76.7 79.2 853 79.8
0.8 683 80.8 68.4 72.8 818 78.7 81.0 901 80.5

8 0.6 683 81.1 77.7 78.5 724 81.2 81.2 744 81.7
0.8 683 81.4 76.7 78.6 740 79.5 80.2 765 81.6

90 4 0.6 914 90.4 81.4 85.4 1044 87.4 89.6 1142 90.5
0.8 914 90.8 81.1 84.8 1095 87.6 89.9 1206 91.1

8 0.6 914 90.8 89.0 90.4 969 90.5 90.7 995 91.2
0.8 914 90.7 86.9 88.0 990 88.8 89.5 1024 90.7

aPFST : Cox model using the actual progression-free survival time T ;
bMSM: Time-homogeneous illness-death model with intermittent observation of progression and exact observation
on death with right censoring;
cPFSS : Cox model on the surrogate progression-free survival time S with right-point imputation; and
dP1 = P (T01 < T02 | X = 0) = λ01/(λ01 + λ02)

Table 2: Sample size requirement for a randomized trial for testing an effect on bone progression-free
survival

Power (%) Cens (%)a K n Power (%) Cens (%) K n

80 6 5 502 90 6 5 672
10 495 10 663

20 5 610 20 5 816
10 590 10 790

aCens is the net censoring rate (administrative and random) for the latent progression-free survival time.

of bone progression-free survival, we consider the hypothetical situation in which the goals was to
design a future randomized trial to test this effect.

Using the estimates obtained for λ01, λ02, λ12, β and β12, we perform sample size calculations
based on Section 3.2. We consider a study with administrative censoring planned at τ = 890 days (∼
30 months), which leads to a 6% administrative censoring rate for the real progression-free survival
time. We consider the possibility of loss to follow-up by introducing an exponential random censoring
time with rate ρ = 6.43 × 10−4, which yields a net right-censoring rate of 20% (πN = 0.20). We
consider K = 5 or 10 equally spaced assessments for bone progression, which over 30 months makes



Design of cancer trials based on progression-free survival with intermittent assessment 12

them every 3 months or every 6 months respectively. Table 2 reports the sample sizes required for the
corresponding randomized trial to ensure a power of 80% and 90% to detect the effect of pamidronate
on bone progression-free survival reflected by β = −0.261 when under a two-sided test at the 5%
significance level. The findings suggest that for a given power the net censoring rate for progression-
free survival is more influential on the sample size than the number of assessments.

6 DISCUSSION

Standard analyses of progression-free survival yield biased estimators of the cumulative distribution
function when the first documented time of progression is treated as the progression time. Kaplan-
Meier estimates often exhibit a clustering of progression times around the scheduled assessments,
reflecting the fact that the times are in part driven by the imaging schedule. While the bias is apparent
in these plots, naive Kaplan-Meier estimates are ubiquitous in articles reporting on cancer clinical
trials. Treating the progression time as interval-censored is more appropriate, which yields a com-
posite endpoint with one component (progression) subject to interval censoring and another (death)
to right censoring. The bias in the regression coefficient estimator of a semiparametric Cox model
is examined in Zeng et al. (2015), and Boruvka and Cook (2016) discuss semiparametric estimation
for this problem. The purpose of this article was to develop valid design criteria when analyses are
appropriately based on an illness-death model with the progression status assessed intermittently and
deaths are subject to right-censoring. We restricted attention to the setting of time-homogeneous
transition intensities. If there is evidence of trend in the event intensities over the planned period
of observation time non-homogeneous intensity functions can be adopted. At the design stage, the
methods for sample size calculation, which we presented in Section 3.2 can be adapted to deal with
non-homogeneous intensities by assuming either A(t) = A0 ·g(t; θ) where A0 is a constant matrix and
g(t; θ) is a known function of time up to a parameter θ, or piecewise-constant intensities for which
A(t) = Ak if t ∈ [ak, ak+1), k = 1, . . . , K − 1 where 0 = a0 < a1 < · · · aK = τ define the break-
points (assumed common here) over the planned period of observation. The likelihood function and
the Fisher information can be constructed as in (7) and (10), respectively, but the calculation of the
transition probabilities pj`(ak, ak+1) and their first derivatives are slightly more complicated. With
piecewise-constant intensities the closed-form expressions can still be obtained. While these more
flexible intensities are appealing at the analysis stage, when planning a study much more information
would be required to derive the sample size as the values for the piecewise-constant intensities would
have to be specified for each transition and each interval of constant risk. We focussed on the setting
with time homogenous intensities to avoid this at the planning stage but we note that at the analysis
stage models with piecewise-constant intensities can be easily fitted using the msm package (Jackson,
2011). Software for computing sample size are available from the corresponding author upon request.

In some settings progression may be associated with symptoms, which might lead to clinical as-
sessments at times other than the scheduled assessments; these are sometimes referred to as disease-
driven assessments (Pullenayegum and Lim, 2016). The consequences of introducing additional dis-
ease process-related assessments depends on the frameworks for inference and the particular targets
of inferences (Cook and Lawless, 2017). Zeng et al. (2015) found that the biases indeed for both the
Kaplan-Meier estimator of the progressive-free survival distribution and the regression parameter in
the Cox model were smaller when such visits were possible. This reduction in the bias arises because
the lag between the actual and the documented progression time is smaller on average as a result of
this.

The sample size derivations here illustrate that the power of a particular trial for detecting treat-
ment effects on progression-free survival times can be increased both by increasing the number of
participants and by increasing the frequency of the examination times for progression; the incremen-
tal gain in power from increasing the frequency of the assessments is comparatively low. In settings
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where patients are easy to identify and recruit, the former is typically adopted. Our derivations show
that power can be improved for a given sample size by increasing the frequency of examination for
progression. The costs of increasing the frequency of assessments may be appreciable, however, in
terms of both health service expenditures and inconvenience to patients and these trade-offs must
be weighted, when planning a study. While we have restricted attention to evenly spaced assess-
ment times, there may be merit to considering assessments scheduled more intensively around the
times that events tend to occur. Use of easily available markers to dynamically schedule radiographic
examinations in periods where biomarkers (e.g. circulating tumour cell counts) are suggestive of in-
creased tumour activity can also be explored. Inverse intensity based weights (Lin et al., 2014) would
be necessary to use to adjust for this observation scheme since the treatment effect would now be
examined conditional on biomarker values and the inspection process would become dependent on
the progression time.
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APPENDIX A: PROOF OF RESULTS IN SECTION 3.2

Recall T † = min(T2, C) and δ = I(T2 < C). In addition, we let Y †(t) = I(t < T †) indicate an
individual is alive and under observation, Yj(t) = I(Z(t) = j) indicate occupancy of state j, and
Y †j (t) = Y (t)Yj(t). For the three-state Markov model with the mixed types observation scheme of
this paper, the score for β (the treatment effect on progression-free survival) is the form

S1(θ) =
K−1∑
k=0

1∑
j=0

Y †j (ak)
∂`jk
∂β

,

where

∂`jk
∂β

=
1∑
`=0

Y †` (ak+1)
∂ log pj`(ak, ak+1)

∂β
+
[
1− Y †(ak+1)

] ∂

∂β
log

[
1∑
`=0

pj`(ak, t
†) λδ`2(t†)

]
.

With a time-homogeneous model, the transition intensities take the form λ01(t) = λ01e
βX , λ02(t) =

λ02e
βX and λ12(t) = λ12e

β12X . The transition probabilities pj`(t) = 0 when j > ` and

p00(t) = exp
[
− t(λ01e

βX + λ02e
βX)
]

p11(t) = exp
[
− tλ12e

β12X
]

p01(t) = λ01eβX

λ01eβX+λ02eβX−λ12eβ12X

[
e−tλ12e

β12X − e−t(λ01eβX+λ02eβX)
]
.

Consider a simple example of observing Z(a0) = 0, Z(a1) = 1 and then death at t2, where a1 < t2 <
a2, we obtain the score function

S1(θ) =
∂ log p01(a1 − a0)

∂β
+

∂

∂β
log
[
p11(t2 − a1) λ12e

β12X
]

=
∂ log p01(a1 − a0)

∂β
.

To prove the result

E

[
∂`jk
∂θr

∣∣∣ Y †j (ak) = 1

]
= 0 , j 6= 2 ,

we assume the distribution of the censoring time C is independent of that of the disease process. For
C = c we consider the case when c > ak+1 and c ∈ [ak, ak+1] separately.

When c > ak+1:

Note that Y †(ak+1) = 0 implies ak < T2 < ak+1 < c, and the conditional distribution of T2 is

f(t | ak < T2 < ak+1 < c) =

∑1
`=0 pj`(ak, t) λ`2(t)

pj2(ak, ak+1)
.

Thus the conditional expectation becomes

E
[∂`jk
∂θr

∣∣∣ c > ak+1, Y
†
j (ak) = 1

]
=

1∑
`=0

∂

∂θr
pj`(ak, ak+1) +

∫ ak+1

ak

[ ∂
∂θr

log
1∑
`=0

pj`(ak, t) λ`2(t)
] 1∑
`=0

pj`(ak, t) λ`2(t) dt

=
2∑
`=0

∂pj`(ak, ak+1)

∂θr
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which equals to zero because
∑2

`=0 pj`(ak, ak+1) = 1, j 6= 2.

When c ∈ Ak = [ak, ak+1):

∂`jk
∂β

=
∂

∂β
log
[ 1∑
`=0

pj`(ak, t
†) λδ`2(t†)

]
.

Realize that when δ = 0 we have T † = c and P (δ = 0 | Y †j (ak) = 1) =
∑1

`=0 pj`(ak, c), whereas
when δ = 1, we have ak < T2 < c < ak+1 and T † = T2 with a conditional distribution

f(t | ak < T2 < c < ak+1) =

∑1
`=0 pj`(ak, t) λ`2(t)

P (T2 < c | Y †j (ak) = 1)
.

Thus, we can show that

E
[∂ `jk
∂θr

∣∣∣c ∈ Ak, Y †j (ak) = 1
]

=
1∑
`=0

pj`(ak, c)
[ ∂
∂θr

log
1∑
`=0

pj`(ak, c)
]

+

∫ c

ak

[ ∂
∂θr

log
1∑
`=0

pj`(ak, t) λ`2(t)
] 1∑

`=0

pj`(ak, t) λ`2(t) dt

=
∂

∂θr

2∑
`=0

pj`(ak, C)

which again equals to zero.

APPENDIX B: CALCULATION OF FISHER INFORMATION MATRIX I(θ)

We derive the form of the element (11) in the Fisher information matrix,

Irq =
K−1∑
m=0

∫ am+1

am

m∑
k=0

1∑
j=0

E

[
Yj(ak)

∂`jk
∂θr

∂`jk
∂θq

∣∣∣C = c

]
dG(c) +

K−1∑
k=0

1∑
j=0

E

[
Yj(ak)

∂`jk
∂θr

∂`jk
∂θq

]
G(τ)

=

K−1∑
m=0

∫ am+1

am

m∑
k=0

1∑
j=0

p0j(ak)E

[
∂`jk
∂θr

∂`jk
∂θq

∣∣∣C = c, Z(ak) = j

]
dG(c) +

K−1∑
k=0

1∑
j=0

p0j(ak)E

[
∂`jk
∂θr

∂`jk
∂θq

∣∣∣Z(ak) = j

]
G(τ)

where the expectation is taken by conditioning on the random censoring time C and averaging over
its distribution.

When the random censoring time C = c ∈ Am, for the k = 0, 1, . . . ,m− 1 observation intervals
we have

E
[∂`jk
∂θr

∂`k
∂θq

∣∣∣k < m, c ∈ Am, Z(ak) = j
]

=

1∑
`=0

∂
∂θr

pj`(ak, ak+1)
∂
∂θq

pj`(ak, ak+1)

pj`(ak, ak+1)
+

∫ ak+1

ak

(
∂
∂θr

∑1
`=0 pj`(ak, u) λ`2(u)

) (
∂
∂θq

∑1
`=0 pj`(ak, u) λ`2(u)

)
∑1
`=0 pj`(ak, u) λ`2(u)

du ,

and for the last observation interval (k = m), we have

E
[∂`jm
∂θr

∂`jm
∂θq

∣∣∣ c ∈ Am, Z(am) = j
]

=

∫ c

am

∂
∂θr

∑1
`=0 pj`(am, u) λ`2(u)

∂
∂θq

∑1
`=0 pj`(am, u) λ`2(u)∑1

`=0 pj`(am, u) λ`2(u)
du+

∂
∂θr

∑1
`=0 pj`(am, c)

∂
∂θq

∑1
`=0 pj`(am, c)∑1

`=0 pj`(am, c)
.


