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Abstract

The Kolmogorov Complexity of an object is incomputable. But built in its structure is
a way to specify description methods of an object that is computable in some sense. Such
a description method then can be exploited to quantify the bits of information needed
to generate the object from scratch. We show that Context-Free Grammars form such
a viable description method to specify an object and the size of the grammar can be
used to estimate the Kolmogorov Complexity. We use such estimation in approximating
the Information Distance between two musical strings. We also show that such distance
measure in music can be used to recognize the genre, composer and style and also for music
classification.
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Chapter 1

Introduction

“If there are alternative
explanations for a phenomenon,
then, all other things being
equal, we should select the
simplest one.”

Occam’s Razor Principle,
William of Ockham

(c.1285-1347)

The Kolmogorov Complexity is an absolute measure of information in an object. Such
measurement of information has the advantage that it refers to individual objects and not
to objects treated as members of a set of objects with a probability distribution given
on it (A.N. Kolmogorov). It is also desirable to have a similar absolute notion for the
information distance between two objects. Such a notion is universal in the sense that it
covers all other notions of computable informational distances [40]. Such a notion should
also be asymptotically machine-independent and can serve as an absolute measure of the
informational, or cognitive distance between two discrete objects x and y [5]. A univer-
sal information distance between two strings satisfying these requirements is the minimal
quantity of information required to translate between x and y. However, The universality
requirement necessarily makes our information distance not computable [40]. Instead we
focus on a weakened notion of Information Distance that is still in a broad sense com-
putable. Such notion also requires a feasible and computable estimate of the Kolmogorov
Complexity of objects. The focal point of this thesis, is such a method that approximates
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Kolmogorov Complexity: short Context Free Grammars (CFG).
The smallest Context Free Grammar of a string is an NP Hard problem [15] and many
algorithms exist to generate only approximations of the smallest CFG. They have been
categorized in to two types: online and offline or global [15]. Online and more commonly
known algorithms include LZ78 [68], Sequitor [50] etc. While they are specifically designed
to achieve higher compressions of strings, its not clear whether they can find internal
structures of the corresponding strings as they only examine a sequence in a left to right
incremental manner. So in this project we focus on the global CFG algorithms that take
strings as a whole and process them globally.

A short CFG of a string generated by the global algorithms of is also useful in identifying
important repeated and hierarchical patterns, a notion that is known in the Kolmogorov
realm as extracting out the regularities in an object. Besides, these global methods can also
be extended to find hierarchical structures in low-entropy objects and capture meaningful
information. These properties make offline Context Free Grammars ideal for analyzing
music, which is known to be hierarchical in structure [34].

In this project, we implement algorithms to generate short and global Context Free
Grammars of a string and use the grammar size to approximate the string’s Kolmogorov
Complexity K(x). We also demonstrate the use of K(x|y∗)+K(y|x∗)

K(x,y)
as a Normalized Distance

Metric to approximate pairwise Information Distance between two musical objects. We
finally show whether such measurement can be fruitful in recognizing style or structure in
music, a task that is known to be complicated and controversial.
In chapter 2, we lay out the theoretical foundation of our thesis. We introduce the Nor-
malized Information Distance (NID) we use for our project and examine its properties.
In chapter 3, we discuss the related work that has been done in this field and how our
project differs and improves on the existing ideas.
Finally in chapter 4, we apply the NID in the realm of symbolic music and experiment
whether such universal notion is useful for style recognition in music.
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Chapter 2

Theory

2.1 Preliminaries

2.1.1 Kolmogorov Complexity

Formally, the Kolmogorov Complexity of a binary string x is the length of the shortest
binary program x∗ to compute x on a universal computer such as a universal Turing
Machine [40]. Thus, K(x) = |x∗|. Note since K(x) is the ultimate, lower bound on the
length of the shortest description of x, it is not computable [40]. However, it is upper-
semicomputable:

Definition 1. A real valued function f : N → R is upper-semicomputable if there ex-
ists a rational valued recursive function g(x, y, t) such that g(x, y, t + 1) < g(x, y, t)
and limt→∞ g(x, y, t) = f(x, y) [67]. It is lower-semicomputable if −f(x, y) is upper-
semicomputable.

In other words, K(x) can be approximated from above. So, in the subsequent analysis,
we only require x∗ to be approximated but x to be computed in a lossless manner from its
description x∗.

2.1.2 K(x|y) vs. K(x|y∗) vs. K(x,y) vs. K(xy)

Definition 2. K(x|y) is the conditional Kolmogorov Complexity of x relative to y. It is
defined similarly as the length of the shortest program to compute x when y is provided
as an auxiliary input to the computation.

3



Definition 3. In contrast, K(x|y∗) is defined to be the length of the shortest program to
compute x when a shortest program of y, y∗, is provided as an auxiliary input. Conditional
complexity in the form of K(·|·∗) was first introduced by G.J. Chaitin in [13].

Definition 4. K(x, y) is defined as the length of the shortest Turing Machine that outputs
x and y in a way so that it’s possible to tell them apart. A very useful consequence of [28]
shows that:

K(x, y) = K(x) +K(y|x∗) = K(y) +K(x|y∗) (2.1)

Definition 5. Finally, K(xy) is the length of the shortest program to compute the con-
catenation of x and y without the output-reader having the ability to differentiate them
[15].

2.1.2.1 Semi-computability

It is easy to see that K(x|y), K(x, y) and K(xy) are upper-semicomputable as functions
of x and y [37, 40]. However, K(x|y∗) behaves differently.
K(x|y∗) is not upper-semicomputable as a function of x and y unless K(K(y)|y) = O(1)
[40], but y with K(K(y)|y)� O(1) exists [28]. For a more complete proof the readers are
referred to [40]. K(x|y∗), however, is upper-semicomputable with respect to x and y∗ [37].
It is this property that we shall use in this thesis.
In general, K(x|y∗) is an alternative but less natural definition of conditional information
than K(x|y), but it has many useful algorithmic properties that are presented in [40, 13, 14]
and as we shall also see moderately in the subsequent sections.

2.1.3 Mutual Information

The information about x contained in y is defined as [15]:

I(y : x) = K(x)−K(x|y∗) (2.2)

Intuitively K(x|y∗) captures the features of x that can not be described when the shortest
description of y, y∗, is provided. By subtracting this information from the ultimate de-
scription of x, K(x) we get the information about x contained in y. Notice from (2.1) that
up to an additive O(1) term the following holds:

K(x)−K(x|y∗) = K(y)−K(y|x∗)
I(y : x) = I(x : y)

Because of this symmetric nature: I(y : x) or equivalently I(x : y) is known as the mutual
algorithmic information [37].
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2.1.4 Algorithmic Information Distance

Ideally, the information distance between two strings x and y is the length of the shortest
binary program that computes x from y and vice versa [5]. Being shortest, this program
will take advantage of any overlap between the information needed to transform x into y
and the information for transforming y into x [40]. In [5], it was shown that the Algorithmic
Information Distance equals, upto an additive O(log max{K(x|y), K(y|x)}) term to the
maximum of conditional Kolmogorov Complexities of the two strings:

E(x, y) = max{K(x|y), K(y|x)} (2.3)

Although the shortest program p : K(x|y) = |p| that computes x from input y is not
the same as the shortest program q : K(y|x) = |q| that computes y from input x, in
some simple cases, these programs can be the same when complete overlap of information
K(x|y) = K(y|x) is achieved [5]. Generally, either K(y|x) > K(x|y) or K(x|y) > K(y|x)
can happen.

Without the loss of generality, let E(x, y) = K(y|x). But K(y|x) itself is unsuitable as
the optimal information distance because of non-trivial asymmetry between K(y|x) and
K(x|y) [40]. This can be remedied by defining E(x, y) as the following sum distance:

E(x, y) = K(x|y) +K(y|x) (2.4)

which holds up to O(log(K(x|y)+K(y|x))) additive error. The resulting metric will overes-
timate the information for x to y transformation in case there is some redundancy between
the information required to get from x to y and the information required to get from y
to x [5]. But when there is minimal overlap, such metric will constitute a more accurate
distance between x and y.

2.1.4.1 Derivation from Reversible Computation

The above definition of Algorithmic Information Distance in (2.4) was proposed by Zurek
in his 1989 Nature paper [69] as a method to capture the total amount of information
needed to translate between x and y both ways. Choosing K(x|y) when K(x|y) =
max{K(x|y), K(y|x)} gives us the amount of information needed for an one-way trans-
formation from y to x [39]. We are irreversibly losing information about going from x

5



to y unless of course we keep a history of the operations that take place in the trans-
formation. However, such history-keeping will increasingly fill up the computer memory
and eventually this information has to be irreversibly erased to free the memory [6]. This
situation can be avoided by supplying the machine with x and a program p that is used to
transform x into y and output a program q. When y and q are supplied to the machine, x
and p are produced as outputs. So, with |p|+ |q| extra bits of information we can achieve
x → y and y → x both way transformations. Notice: programs p and q are such that
K(y|x) = |p| and K(x|y) = |q| hold up to a logarithmic additive error. Hence the total
amount of information needed to transform x into y and then in a reversible manner y into
x is K(x|y) + K(y|x), which is where the definition of Algorithmic Information Distance
stems from in 2.4 [69].

2.1.5 Symmetry of Algorithmic Information

We further improve the definition of E(x, y) in (2.4) by taking note of the fact that: to
obtain a sharper analogue between the optimal information distance E(x, y) and K(x|y) +
K(y|x), a conditional term K(•|x) needs to be replaced by K(•|x∗). We necessarily require
the extra information in K(x) because of the possible high-complexity of K(K(x)|x) for
some strings [40]:

Recall from the previous section that the sum distance K(x|y)+K(y|x) between x and y is
the total amount of information needed to convert x to y and vice versa. Suppose, |x| = n
and we supply a Universal Turing Machine U with x and a shortest self-delimiting program
p : |p| = K(y|x) in a way such that p transforms x to y besides producing a shortest self-
delimiting program q. Program p being self delimited, U needs extra O(logK(x)) bits to
tell p and x apart. Because if x has some redundancies, it takes no more than O(K(x)) bits
to specify the randomness and O(log(K(x))) bits to delimit it. However, for some strings
x with length n, K(K(x)|x) is of high complexity: K(K(x)|x) ≥ log n − log log n + O(1)
[28]. Hence, U needs the extra information in K(x) apart from x. This need for extra
bits can be supplemented if we supply U with x∗, instead of x, such that |x∗| = K(x),
is self-delimited (by definition) and capable of generating x on U . The same argument
applies to q and y.

Thus rewriting (2.4) we arrive at the final approximation of Algorithmic Information Dis-
tance for this thesis [40]:

E(x, y) = K(x|y∗) +K(y|x∗) (2.5)
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2.1.5.1 Derivation from Mutual Information

(2.5) has an intuitive derivation from the idea of mutual algorithmic information. The
mutual information of two finite binary strings x and y is the amount of information that
is shared between them (section 2.1.3). K(x, y), on the other hand, can be thought of an
amalgamation of the shared information between x and y (since K(x, y) is the length of
the shortest program p from which a universal Turing machine can compute both x and y,
it should take care of the redundancy or shared information between them), incompressible
or random information in x and incompressible or random information in y. Hence, if we
subtract I(x : y) from K(x, y) we are left with the total amount of information by which
x and y differ from each other. Thus the algorithmic information distance is equal to this
amount by a constant additive term [37]:

E(x, y) = K(x, y)− I(x : y)

From 2.1 and 2.2 get:

E(x, y) = K(x) +K(y|x∗)−K(x) +K(x|y∗)
= K(x|y∗) +K(y|x∗)

2.1.6 Normalized Information Distance

E(x, y) is an absolute measure of distance. But to have a practical distance that expresses
similarity or dissimilarity, we are interested in a relative version of E(x, y). For example:
if two strings of 1, 000, 000 bits differ by 1000 bits of information distance, then we are
inclined to think that those two strings are relatively similar. But if two strings of 1000
bits differ by 1000 bits then we find them very different.
So we normalize E(x, y) in (2.5) to obtain a universal similarity metric.

Definition 6. The Normalized Information Distance(NID) between two binary sequences
x and y is defined as [40]:

NID(x, y) = d(x, y) =
K(x|y∗) +K(y|x∗)

K(x, y)
(2.6)

2.1.7 d(x, y) as a Distance Metric

Definition 7. Let S be a nonempty set of objects and R+ be the set of non-negative
real numbers. A Distance Metric is a function D : S × S → R+ satisfying the following
(in)equalities [18]:
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• D(x, y) = 0 iff x = y(the identity axiom)

• D(x, y) = D(y, x)(the symmetry axiom), and

• D(x, y) ≤ D(x, z) +D(z, y) (triangle inequality)

Definition 8. Given two sequences x and y, recall the function d(x, y) by:

d(x, y) =
K(x|y∗) +K(y|x∗)

K(x, y)

Lemma 1. d(x, y) satisfies the metric (in)equalities up to an additive precision O( 1
K

)
where K is the maximum of the Kolmogorov Complexities of the objects involved in the
(in)equality.

Claim 1. d(x, y) is symmetrical up to O(1) additive constant term.

Proof.

d(x, y) =
K(x|y∗) +K(y|x∗)

K(x, y)

=
K(y|x∗) +K(x|y∗)

K(y, x)

= d(y, x) +O(1)

following the fact that K(x, y) = K(y, x) up to an additive constant term [40].

Claim 2. d(x, y) satisfies the identity axiom up to precision O( 1
K

)

Proof. Note that, since x∗ is the shortest program that computes x, from x∗ we can compute
〈x,K(x)〉. Conversely, given 〈x,K(x)〉, we can enumerate all shortest programs for x and
the first program that halts with output x on an universal Turing machine U is denoted by
x∗. Hence, x∗ and 〈x,K(x)〉 contain the same information although they are not identical
objects. Below we can replace x∗ by 〈x,K(x)〉.

d(x, x) =
K(x|x∗) +K(x|x∗)

K(x, x)

=
2K(x|〈x,K(x)〉) +O(1)

K(x, x)
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[28] shows that up to an fixed additive constant O(1), independent of x, y the following
holds:

K(x, y) = K(x) +K(y|〈x,K(x)〉)

Setting y = x:

d(x, x) =
2K(x|〈x,K(x)〉) +O(1)

K(x) +K(x|〈x,K(x)〉) +O(1)

= O(
1

K(x)
)

To show that d(x, y) is a metric up to the required precision, it remains to prove the
triangle inequality.

Claim 3. d(x, y) satisfies the triangle inequality d(x, y) ≤ d(x, z)+d(z, y) up to an additive
error term of O( 1

K
).

Proof. To show that, d(x, y) satisfies the triangle inequality, we need to show that:

K(x|y∗) +K(y|x∗)
K(x, y)

≤ K(x|z∗) +K(z|x∗)
K(x, z)

+
K(z|y∗) +K(y|z∗)

K(z, y)

Notice that it is sufficient to show the following two inequalities [36]:

K(x|y∗)
K(x, y)

≤ K(x|z∗)
K(x, z)

+
K(z|y∗)
K(z, y)

K(y|x∗)
K(x, y)

≤ K(z|x∗)
K(x, z)

+
K(y|z∗)
K(z, y)

The two inequalities being symmetric, proving the first one will be sufficient.
For all x, y, z, the following Directed Triangle Inequality holds up to an additive constant
term [40]:

K(x|y∗) ≤ K(x, z|y∗) +O(1) ≤ K(z|y∗) +K(x|z∗) +O(1) and,

K(y|x∗) ≤ K(y, z|x∗) +O(1) ≤ K(z|x∗) +K(y|z∗)

Let,
∆1 = K(z|y∗) +K(x|z∗)−K(x|y∗)
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∆2 = K(z|x∗) +K(y|z∗)−K(y|x∗)
Then, using the symmetry of algorithmic information theory K(x, y) = K(y) +K(x|y∗) =
K(x) +K(y|x∗) from [40]:

K(x|y∗)
K(x, y)

≤ K(z|y∗) +K(x|z∗) + ∆1

K(x, y)

≤ K(z|y∗)
K(x, y)

+
K(x|z∗)
K(x, y)

≤ K(z|y∗)
K(y) +K(x|y∗)

+
K(x|z∗)

K(x) +K(y|x∗)

≤ K(z|y∗)
K(y) +K(z|y∗) +K(x|z∗)−∆1

+
K(x|z∗)

K(x) +K(z|x∗) +K(y|z∗)−∆2

≤ K(z|y∗)
K(z, y) +K(x|z∗)−∆1

+
K(x|z∗)

K(x, z) +K(y|z∗)−∆2

≤ K(z|y∗)
K(z, y) +K(x|z∗)

+
K(x|z∗)

K(x, z) +K(y|z∗)

≤ K(z|y∗)
K(z, y)

+
K(x|z∗)
K(x, z)

This proves the first inequality. The second inequality is proved symmetrically and both
are satisfied up to an additive error term O( 1

K
)

Clearly, d(x, y) takes values in the range [0, 1 + O( 1
K

)]. To show that d(x, y) is an
admissible metric, we now move to the next part.

2.1.8 Density Properties of d(x, y)

Definition 9. An admissible distance D(x, y) is a total, upper-semicomputable, non-
negative normalized (it should give a distance 0 when objects are maximally similar and
distance 1 when they are maximally dissimilar [40]) function on the pairs x, y of binary
strings that have all the metric properties and satisfies the following density conditions
[37]: For each x ∈ {0, 1}∗ and every constant e ∈ [0, 1]

|{y : D(x, y) ≤ e ≤ 1}| < 2eK(x)+1 (2.7)

We have already proved that d(x, y) satisfies the metric inequalities. But the function
d(x, y) itself being a ratio between two upper-semicomputable functions may itself not be

10



semi-computable [63]. So we only require that: d(x, y) can be approximated with limited
space and time and with reasonable accuracy, the approximating computation is feasible
and attainable and also applicable in practice. With that in mind we move on to showing
that d(x, y) fulfils the density conditions.

Lemma 2. The function d(x, y) satisfies the density condition in (2.7).

Proof. If d(x, y) ≤ e, then:

K(x|y∗) +K(y|x∗) ≤ 2 max{K(x|y∗), K(y|x∗)} ≤ eK(x, y)

max{K(x|y∗), K(y|x∗)} ≤ e
K(x, y)

2

max{K(x|y∗), K(y|x∗)} ≤ e
K(x) +K(y)

2

The last inequality follows from the sub-additive property of K. Now assume that, K(y) ≤
K(x). We get:

max{K(x|y∗), K(y|x∗)} ≤ K(x|y∗) ≤ e
K(x) +K(x)

2
≤ eK(x)

K(x|y∗) +K(y)−K(x) ≤ eK(x) +K(y)−K(x)

K(y|x∗) ≤ eK(x)

The last inequality follows from 2.1.
There are at most

∑eK(x)
i=0 2i < 2eK(x)+1 binary programs of length ≤ eK(x). Therefore for

fixed x there are < 2eK(x)+1 objects y satisfying K(y|x∗) ≤ eK(x). Notice that the proof
is symmetric when K(x) < K(y).

However, we are interested in a deeper density property of our chosen definition of
d(x, y): how many objects there are within a distance d of a given object x. Fewer objects
would mean that the distance metric is adhering to the Kraft Inequality [40] and the
underlying description method is assigning more unique encodings to the objects that it
describes. To make our calculation easier we consider the non-normalized version of d(x, y),
E(x, y) = d(x, y)K(x, y) = K(y|x∗) + K(x|y∗). Then if E(x, y) = d, it tells us how many
objects y there are within d irreversible bit operations of a given object x [5].

Definition 10. For a binary string x of length n, a non-negative number d, assume the
following definitions:

n(d, x) = |{y : y 6= x,E(x, y) = d}|
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N(d, x) =
d∑
i=1

n(i, x)

N(d, x) can be approximated by observing K(y|x∗). An important theorem from [40]
gives an expression for the maximal complexity of a string of length n can have: For each
n, max{K(x) : l(x) = n} = n + K(n) + O(1). It’s easy to see the maximum length
K(y|x∗) can have within a distance of d from x, is d − K(d|x∗), an analogous version of
the above theorem. It is necessary to subtract K(d|x∗) from d because, K(y|x∗) being
self-delimited, needs K(d|x∗) extra bits to delimit the program that produces y given x∗

or otherwise K(y|x∗) will have a larger length than d and go beyond the allowed distance.
The following lemma 3 finalizes this property. A similar proof for an alternate definition of
E(x, y): K(y|x) +K(x|y) +O(log(K(x|y) +K(y|x))) has been provided in [5]. We provide
a complete proof for our definition of E(x, y) in Appendix A.

Lemma 3. Let x be a binary string of length n. The number of binary strings y with
E(x, y) ≤ d satisfies up to a constant additive error:

logN(d, x) = d−K(d|x∗) (2.8)

Notice that, the above property does not necessarily impose any restriction on
the complexities of x and y and is a general statement on the number of y’s in the
balls of size d around x. Had we defined d(x, y) as max{K(x|y∗),K(y|x∗)}

max{K(x),K(y)} and E(x, y) as

max{K(x|y∗), K(y|x∗)} ≤ d, the proof for logN(d, x) = d − K(d|x∗) + O(1) would be
similar to the above. That is: the number of objects y in balls of size d for both definitions
will roughly be the same. However, if we impose a complexity restriction on the strings y
to be of the similar complexity as x, we see that the number of such strings y in balls of
size d is much less for E(x, y) = K(y|x∗) +K(x|y∗).

Since this project specifically focuses on low-entropy strings, we are interested in
counting the number of strings y in balls of d around x, where K(x) and K(y) are both
“small”. Since we use context-free grammars as our description method and the smallest
context free grammar has size (defined later) Ω(log n) [15], we try to count the number of
strings y in balls of size d around x when K(x) and K(y) both are ≈ log n.

Notice that, here too the maximum length that K(y|x∗) can witness with the given
constraints is limited. We fix K(y) to be ≈ log n. About K(x) bits of log n is shared
information with x, so K(y|x∗) is at least δ(n) = log n − K(x). Note that δ(n) can be
as small as O(1) (x and y have about K(x) bits of shared information). So there can be
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strings y of larger K(y|x∗) ≈ δ(n) + l which satisfy K(y) ≈ log n and E(x, y) ≤ d. The

following lemma 4 proves that l can be at most d−δ(n)
2

, while d ≥ log n−K(x), where the

factor of 1
2

originates from the fact that about d−δ(n)
2

bits of d have to be allocated for
K(x|y∗), as E(x, y) = K(y|x∗) +K(x|y∗) ≤ d.

Denote inequality to within an additive O(log) by
log
< and

log
>. Denote both

log
< and

log
> by

log
=.
Let:

n′(d, n, x) = |y : y 6= x,K(y)
log
= log n,E(x, y) = d|

Nlow(d, n, x) =
d∑
i=1

n(i, n, x)

Lemma 4. For each x of length n we have:

logNlow(d, n, x)
log
=

log n+ d−K(x)

2

while log n−K(x) ≤ d. For log n−K(x) > d we have logNlow(d, x, n)
log
= d

Proof. For this we use a similar proof technique from [5]. Let, K(x)
log
= log n− δ(n)

(
log
>): Let y∗ = x∗z, with |z| = δ(n), |y∗| = log n, K(x)

log
= |x∗| and K(y)

log
= |y∗|.

x∗ can be found by dove-tailing all computations on programs of length less than
log n and taking the first program that generates x.
We can retrieve z from y∗ by providing at most O(log log n) bits.
Since, |z| = δ(n), there are 2δ(n) different such y∗’s. For each such y∗ we have,

K(x|y∗) log
= O(1) since x can be retrieved from y∗ using x∗.

Now suppose, for a fixed i (value to be determined later) we replace the fixed first i
2

bits of y∗ by an arbitrary u ∈ {0, 1} i2 . Then the total number of such y∗ increases to

2δ(n)+ i
2 . These choices of i and y∗ must also satisfy E(x, y) ≤ d. Clearly:K(x|y∗)

log
<

i
2
, since we can retrieve x by providing at most i

2
bits, and K(y|x∗)

log
< δ(n) + i

2
.

Therefore:

K(x|y∗) +K(y|x∗) ≤ d
log
<

i

2
+ δ(n) +

i

2

⇒ The largest i can be
log
= d− δ(n) +O(1)
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⇒ K(y|x∗)
log
< δ(n) +

d− δ(n)

2

log
<

log n+ d−K(x)

2

This shows that the number Nlow(d, n, x) of y’s such that E(x, y) ≤ d satisfies:

logNlow(d, n, x)
log
>

log n+ d−K(x)

2

(
log
<): Assume on the contrary, for a fixed c (value to be determined later) there are at least

2
d+δ(n)

2
+c elements y of length n such that E(x, y) ≤ d holds. Then for some y:

K(y|x∗)
log
>
d+ δ(n)

2
+ c

By assumption:

K(x)
log
= log n− δ(n)

K(y)
log
= log n

We know that from the symmetry of algorithmic information property up to an
additive constant:

K(x) +K(y|x∗) = K(y) +K(x|y∗)

⇒ log n− δ(n) +
d+ δ(n)

2
+ c

log
< log n+K(x|y∗)

⇒ K(x|y∗)
log
>
d− δ(n)

2
+ c

However, then for a large enough c = O(log n), K(y|x∗) +K(x|y∗) ≤ d can no longer
hold. Hence we reach a contradiction. So,

logNlow(d, n, x)
log
<

log n+ d−K(x)

2

2.2 Approximating K(x) with a Context Free Gram-

mar of x

The Turing Machine model, used in the previous section, for representing the shortest
description of a string x is, in a practical sense, too powerful to be exploited effectively.
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Furthermore, it is incomputable. However, weakening the description model from Turing
machines to Context-Free Grammars reduces the complexity of the problem from the
realm of undecidability to mere intractability [16].

2.2.1 Preliminaries

2.2.1.1 Context Free Grammar

Definition 11. A Context Free Grammar is a 4-tuple {Σ,Γ, S,∆} in which Σ is a finite
alphabet containing all the terminals, Γ is a set containing all the non-terminals such that
Σ ∩ Γ = ∅. All the elements of Σ ∪ Γ are called symbols. S ∈ Γ is a non-terminal reserved
for representing the start symbol. ∆ is a set of rules of the form T → α, where T ∈ Γ is a
non-terminal and α ∈ (Σ∪Γ)∗ is a string of symbols and referred to as the definition of T
[15].
A Context Free Grammar G that generates exactly one finite-length string has the following
properties [16]:

• There exists exactly one rule in ∆ defining each non-terminal ∈ Γ.

• G is acyclic, that is there exists an ordering of the non-terminals in Γ such that each
non-terminal precedes all non-terminals in its definition.

Definition 12. The size of a grammar G, generating a single finite-length string x, is the
total number of symbols in all definitions :

|G(x)| =
∑

T→α∈∆

|α|

where |α| denotes the number of symbols in the string α.

Definition 13. The expansion of a string is obtained iteratively by replacing each non-
terminal by its definition until only terminals remain [15]. The expansion of a string α is
denoted by 〈α〉.
Definition 14. Let A be an algorithm that, for any input string x in Σ∗, generates a
grammar G(x,A). Then the approximation ratio of A is a function of a given string length

n, and is defined as a(n) = maxx∈Σn
|G(x,A)|
|G∗(x)| , where G∗(x) is the shortest grammar for x

[15].

Lemma 5. The smallest Context-Free Grammar for a string of length n has size Ω(log n)
[15].
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2.2.1.2 NP-Hardness

The smallest Context-Free Grammar generating a given string x is hard to approximate
within a small constant factor. In fact, the following theorem was proven in [15]:

Theorem. There is no polynomial-time algorithm for the smallest Context-Free Grammar
problem with approximation ratio less than 8569

8568
unless P = NP .

The above theorem can be proved by reducing the Smallest CFG to finding a Vertex
Cover in a graph. For that matter, finding an algorithm that produces CFG with an ap-
proximation ratio of o( logn

log logn
) would require a progress on an apparently difficult algebraic

problem in a well-studied area: the general addition chain problem [15, 16].

2.2.1.3 Global Context Free Grammars

We focus on a single special class of offline algorithms for generating context free grammars
for our analysis, and we refer to the generated grammars as Global CFGs. Every such Global
CFG is Irreducible with the following nice properties [30]:

• For α, β ∈ Σ ∪ Γ and α 6= β, the pair αβ appears only once on the right sides of the
grammar when they do not overlap.

• For T1, T2 ∈ Γ and T1 6= T2,〈T1〉 6= 〈T2〉

• For every T , such that T ∈ Γ\S, T appears at least twice in the definitions of the
non-terminals in the grammar.

Any algorithm that generates Global CFGs with this property set, has an upper bound
of O(( n

logn
)
2
3 ) on the approximation ratio [15] and captures the features of hierarchically

structured sequences (comprising of patterns, their repetitions and the bigger patterns that
consist of them) better than other online algorithms [15]: SEQUENTIAL [50], LZ78 [68].

2.2.2 Algorithms for Global Context Free Grammars

Broadly, all the Global CFG generating algorithms use the following procedure [15]:
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Algorithm 1 Algorithm for Global CFG
Input: string σ

1: G← ∅
2: G.insertRule(S → σ)
3: while σ contains a maximal string γ and replacing it strictly reduces the size of gram-

mar do
4: G.insertRule(T → γ)
5: Apply rule T ← γ to all the right sides of all other rules: replace each occurrence

of γ with T

A maximal string γ selected in line 3 has three properties:

• |γ| ≥ 2

• There are at least two non-terminals T1, T2 ∈ Γ such that T1, T2 have γ in their
definitions without overlap.

• Since γ is a maximal string, no string |β| > |γ| appears at least as many times as |γ|.

The entire process of finding a maximal string is repeated until replacing it with a non-
terminal strictly yields a smaller grammar. If the γ occurs Occ(γ) non-overlapping times in
the entire grammar, then replacing it with a non-terminal T , will reduce the grammar-size
by (|γ| − 1)× Occ(γ). Adding the rule T → γ will add |γ|+ 1 to the grammar size. This
means that the loop in line 3 in the above algorithm runs as long as (|γ|−1)(Occ(γ)−1)−2
is strictly positive.
Algorithms for global grammars only differ in the way they select the maximal string γ.
We apply the algorithms to a reference string σ = abcabcabcabcabb here.

2.2.2.1 Most-Frequent Algorithm

The Most-Frequent algorithm, at each step, chooses the maximal string γ that maximizes
Occ(γ) and has length at least two. It was proposed by Larsson and Moffat in [32] and
they called it the Re-Pair Algorithm.
Initially the grammar G(x) has only one rule S → abcabcabcabcabb. The maximal string
γ that has the highest occurrence is, in this case, ab and a new rule T → ab is introduced.
The grammar becomes:

S → TcTcTcTcTb

17



T → ab

Now γ is Tc. Then a new rule V → Tc is added, yielding the final grammar:

S → V V Tb

T → ab

V → Tc

2.2.2.2 Longest-First Algorithm

Kieffer and Yang [30] proposed the Longest-First algorithm which finds the Longest maxi-
mal string which occurs at least twice and selects the one that occurrs first in the string. In
our example: this algorithm will select abcabc as the maximal string and so the grammar
will look like:

S → TTabb

T → abcabc

2.2.2.3 Greedy Algorithm

Another variation is the Greedy algorithm (Apostolico and Lonardi [3]), which selects
maximal string γ that yields a grammar of the shortest size possible at each step by
maximizing the amount (|γ| − 1)× (Occ(γ)− 1)− 2. In the above example it will choose
T → abc generating a grammar:

S → TTTTaba

T → abc

Carrascosa et al. [12] reported that until now no other polynomial time algorithm has
been proven (theoretically nor empirically) to perform better than the Greedy algorithm.
The only algorithm that comes closer to the Greedy, as in generating the smallest size
grammar, is the Most Frequent algorithm [11]. Charikar et al. [15] reported the following
approximation ratios for the algorithms mentioned above:

18



Approximation Ratio
Algorithm Upper Bound Lower Bound

Most Frequent O(( n
logn

)
2
3 ) Ω(

√
log n)

Longest First O(( n
logn

)
2
3 ) Ω(log log n)

Greedy O(( n
logn

)
2
3 ) > 5 log 3

3 log 5

Table 2.1: Approximation Ratios of algorithms generating Global CFG

2.2.3 |G(x)| as K(x)

Now, we adapt CFGs to our compression-based approach, as a universal description
method. The description of a string x will be a context-free grammar which uniquely
generates x with an agreed-upon mechanism or decoder φ to construct x from this de-
scription. Then the unconditional prefix Kolmogorov Complexity of x with respect to φ is
defined as:

Kφ(x) = min{l(p) : φ(p, ε) = x, l(p) = |EncodedCFG(x)|}

where p is an encoded description of an approximation of the smallest contest-free grammar
of x. Note here that the value Kφ(x) is an upper bound on the true Kolmogorov complexity
K(x), restricting to descriptions in the form of short CFGs.
The conditional prefix Kolmogorov complexity is defined as:

Kφ(x|y∗) = min{l(p) : φ(p, y∗) = x, |y∗| = |EncodedCFG(y)|}

Here p denotes the encoded description of the CFG of string x after it has been compressed
as much as possible with y∗.

2.2.3.1 φ as a Decoder

In order not to hide too much information in the decoder, we want it to be a simple
function:
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Algorithm 2 φ-General Decoder

Input: p = EncodedCFG(x), y∗ = empty string,ε or EncodedCFG(y)
1: Dictionary ← []
2: S ← extract Start Rule(p)
3: while p 6= ∅ do
4: extract Rule(p, T ← α)
5: Dictionary.insert Key − V alue pair(T, α)

6: while y∗ 6= ∅ do
7: extract Rule(y∗, T ← α)
8: Dictionary.insert Key − V alue pair(T, α)

9: while S contains a non-terminal T do
10: α← find V alue(Dictionary, T )
11: Replace T with string α

return S

The definition of the Kolmogorov complexity of a string x relies on the existence of
a Universal Turing Machine U such that K(x) = min{l(p) : U(p) = x}. Since, we have
weakened the restriction on the description method from being Universal to being a Context
Free Grammar, it suffices that we have a function or decoder φ that reconstructs x given
the CFG description, p.
The decoder φ is an r-ary decoder φr, where r depends on the alphabet of the Context-free
grammar encoded in p. It is a partial (partial because φ only accepts input of a certain
form) recursive function which outputs x when given as input, a CFG description p and
an auxiliary or conditional input y∗.
The input p encodes a context-free grammar (in our case, the smallest of Most Frequent,
Greedy and Longest-First) that describes x in a certain way. To be precise, consider the
Greedy grammar G(x) = {Σ,Γ, S,∆} of the string x = abcabcabcabcabb:

S → TTTTaba

T → abc

Then p is imagined in the following way, where we use the symbols | as a separator between
rules and − as a separator between Non-Terminals and their definitions:

S − UUaba|U − TT |T − abc

Hence we approximate the K(x) (ignoring the separators) as:

K(x) ≈ Kφ(x) = log |Γ ∪ Σ| × (|Γ|+
∑

T→α∈∆

|α|) (2.9)
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When denoting p as an encoded Context Free Grammar of x, we do not specify which of
our three CFG generating algorithms (Most Frequent, Greedy or Longest-First) we use to
generate the grammar. The standard way of encoding this information would be: Suppose,
there are r methods f1, f2, . . . . . . , fr to generate Context Free Grammars of x. Then we
have to reserve log r bits of p to specify which method was used for the particular CFG
that we are encoding.
Our approximation of K(x|y∗) is constructed as follows: with y∗ encoding an efficient
Context Free Grammar of y, we try to compress x as much as possible with the rules in y∗,
after which we try to compute the grammar G(x′) of the compressed x′, over the alphabet
that now includes the non-terminals in y∗ that were used in x′. Hence, K(x|y∗) will be
approximated as:

K(x|y∗) ≈ Kφ(x|y∗) = log |Γ′ ∪ Σ′| × (|Γ′|+
∑

T→α∈∆′

|α|) (2.10)

Our modified Grammar generation process can be described with the following pseudocode:

Algorithm 3 Algorithm for Global Grammars

Input: string x, y∗ = ∅|CFGy

1: x← CompressWithGrammar(x,CFGy)
2: G← ∅
3: G.insertRule(S → x)
4: while x contains a maximal string γ do
5: Replace each occurrence of γ with T
6: G.insertRule(T → γ)

2.3 Constrained Best-Fit Model Selection

2.3.1 Two-Part Code

It is an elegant fact that the length of the shortest effective description of x can be expressed
in terms of the length a two-part code, the length K(T ) of the first part describing an
appropriate Turing machine T and the length K(x|T ) of the second part describing the
left-out irregularities or random aspects of x after T squeezes out the regularities of x [40]:

K(x) = min{K(T ) +K(x|T ) : T ∈ {T1, T2, . . . . . .}}+O(1) (2.11)
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The best model T encapsulates the amount of useful or compressible information in x,
while minimizing the total description length K(T ) + K(x|T ). However, it remains to
decide which T satisfies these requirements. Following the Occam’s Razor principle, we
opt for a T that is not too complex [65]. So, to analyze the process of finding such T , we
first put a complexity limit on it such that K(T ) ≤ α. Under these constraints, there are
three approaches, specifically three “structure” functions [64] that we can use to estimate
the right model T that best describes x. To make our analysis easier we work with low-
complexity Finite Set Model, S = {x1, x2, . . . . . . , xn} such that K(S) ≤ α. To create an
analogue between the Turing Machine model and the Finite Set model, we can assume that
T enumerates S and T (i) = xi where i ≤ |S| and xi ∈ S. When i > |S|, T (i) is undefined.

2.3.2 “Best-fit” Structure Function

2.3.2.1 Randomness Deficiency

The complexity of the finite set S denoted by K(S), is the length of the shortest binary
program S∗ from which the reference Universal Turing Machine U computes a listing of the
elements of S and then halts. The conditional complexity K(x|S) is defined as the length
of the shortest program that computes x from input S. For every finite set S containing x
we have [65]:

K(x|S) ≤ log |S|+O(1)

If the elements of S are lexicographically ordered and x ∈ S, then at most dlog |S|e bits
are required to specify x’s position in S. This is called the data-to-model code length
[65]. However, consider the ordering of S’s elements when x is the first element of S; then
K(x|S) is much less than dlog |S|e.
Definition 15. The amount by which K(x|S) falls short of dlog |S|e is called randomness
deficiency of x with respect to S [64]:

δ(x|S) = log |S| −K(x|S)

for x ∈ S and ∞ otherwise

The smaller δ(x|S) is, the more x can be considered as a typical member of S. This
means that the model that incurs minimum randomness deficiency with respect to a thresh-
old α is a “best-fitting” model for x in that model class of contemplated sets:

βx(α) = min
S
{δ(x|S) : x ∈ S,K(S) ≤ α} (2.12)

βx(α) can be viewed as a constrained best-fit estimator [64].
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2.3.3 Kolmogorov’s Original Structure Function

The original Kolmogorov structure function for x is defined as [64]:

hx(α) = min
S
{log |S| : x ∈ S,K(S) ≤ α} (2.13)

The model, S, witnessing hx(α) for a certain α, is called an optimal set for x and K(S) is
called a sufficient statistic for x [64], and we have:

K(x) +O(1) = K(S) + log |S|

K(x|S) = log |S|+O(1)

2.3.4 Minimum Description Length Structure Function

The length of the two-part code for x comprising of the model cost K(S) and the length
of the index of x in S is denoted by Λ(S) = K(S) + log |S| ≥ K(x) + O(1). The minimal
Λ(S) such that K(S) ≤ α is given by the Minimum Description Length (MDL) function
[66]:

λx(α) = min
S
{Λ(S) : x ∈ S,K(S) ≤ α} (2.14)

A principal result of [64] shows that: every set S that witnesses hx(α)(2.13) or λx(α)(2.14)
also witnesses βx(α)(2.12). This result is specially useful because the best-fit structure
function is neither upper nor lower semicomputable [64]. However, it is easy to see that
both hx(α) and λx(α) are upper-semicomputable [64]. So, monotonically approximating
hx(α) or λx(α) to some significant precision will implicitly approximate the best-fitting
model. We now use this idea to extend this notion of model selection to low-complexity
Context Free Grammar model, G instead of Finite Set.

2.3.5 Model Class of Context Free Grammar

In the model-class of CFG, the cost of two-part code for describing x consists of the model
cost K(G) and the conditional complexity K(x|G):

K(x) = min{K(G) +K(x|G) : G ∈ {G1, G2, . . . . . .}}

Here G is a 4-tuple {Σ,Γ, S,∆} Context Free Grammar. We require that it exhibits all
the properties of Global CFG and hence is irreducible (section 2.2.1.3). Thus we treat G
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as its own shortest description and K(G) does not exceed the size of the encoded binary
representation of G and is approximated similarly as (2.9):

K(G) ≈ log |Γ ∪ Σ| × (|Γ|+
∑

T→α∈∆

|α|)

K(x|G) denotes the length of the encoded description of an efficient CFG of x after it has
been compressed as much as possible by G and is approximated similarly as (2.10).
But as we want G to be a model that is an analogue of the Finite Set or Turing Machine
model, we want G to describe a set of strings rather than one string. So, G should be rich
enough while still subject to the constraint K(G) ≤ α. Such G can be constructed in the
following way.

2.3.5.1 Constructing G

Consider a set of finite binary strings {x1, x2, . . . . . . , xn} for which we want to construct
a CFG model G under the constraint K(G) ≤ α. Extending a result in [15] that proves
the existence of a CFG with size |Gx1| + |Gx2| + 2 that generates the string x1x2, we
see that there exists a CFG of size n +

∑n
i=1 |Gxi | where Gx1 = {Σ1,Γ1, S1,∆1}, Gx2 =

{Σ2,Γ2, S2,∆2}, . . . . . . , Gxn = {Σn,Γn, Sn,∆n} that produces the concatenation of the
strings in the set above. We could model G to be {∪ni=1Σi,∪ni=1Γi, S = S1S2 . . . Sn,∪ni=1∆i},
then G will have a size of

∑n
i=1 |Gxi |. In this setup, K(G) can be quite large according to

our approximation above and the provided α can be much less than K(G). Then G needs
to be much smaller while still capturing the essence of the strings.
For this, we allow G = {Σ,Γ, S,∆} to only contain those rules T → γ such that the
pattern γ is present in at least β% of the set of the strings. As well as adjusting ∆ to
meet this restriction, we also adjust Σ and Γ to only those terminals and non-terminals
that are present in the new rule set ∆. β is inversely related to α. For a fixed α, we can
find the optimal value of β by starting with G = {∪ni=1Σi,∪ni=1Γi, S = S1S2 . . . Sn,∪ni=1∆i},
iterating β’s value from t =1 to 100, trimming G as above and approximating Kt(G) and
taking the first t such that Kt+1(G) > α.

2.3.5.2 Constrained Model Selection for Context Free Grammars

Given a class of CFG models G1, G2, . . . . . . , Gn where K(Gi) ≤ α for i = 1, . . . . . . , n and a
string x, we now want to select a model G ∈ {G1, G2, . . . . . . , Gn} that is “best-fitting” for x.
As discussed before, we attempt to do this by trying to approximate Kolmogorov’s Original
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Structure Function, hx(α). We slightly modify the definition of hx(α) = minS{log |S| : x ∈
S,K(S) ≤ α} that is Finite Set model specific to fit our Context Free Grammar model.
We propose the following definition:

hx(α) = min
G
{K(x|G) : K(G) ≤ α} (2.15)

We model the code length within the new model by K(x|G), omitting the requirement
analogous to x ∈ S that was present in the original definition of the structure function,
which mandated the inclusion of the object x in the model S. We could essentially use the
notion of generalized CFG which produces a language of strings and include the requirement
x ∈ L(G) in our definition of hx(α) where L(G) denotes the set of strings that G produces.
It would also allow us to replace K(x|G) with log |L(G)|, in which case our formulation
of hx(α) = minG{log |L(G)| : x ∈ L(G), K(G) ≤ α} becomes a direct analogue of the
finite set model class. Such structure function may entail a better approximation of the
“best-fitting” model for x. However, generalized CFG is beyond the scope of this thesis as
we are interested in the conditional compression length K(x|G) of x by G when G acts as
a dictionary of important regularities present in a set of strings. We are also interested in
the case when x is not a part of the above set. In this settings, the model G that witnesses
the above hx(α) (2.15), best describes the regular or meaningful information in x with
K(G) ≤ α, and thus is the “best-fitting” model in our constrained model class.
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Chapter 3

Related Work

3.1 Algorithmic Information Distance

The theoretical foundation of using Kolmogorov Complexity in measuring Algorithmic In-
formation Distance between strings was predominately developed by Paul Vitányi, Ming
Li, Péter Gács and Charles H. Bennett et al. [35, 40, 5, 28]. To apply such distance mea-
sures on real-world sequences, they introduced Normalized Information Distances (NID)

d1(x, y) = max{K(x|y),K(y|x)}
max{K(x),K(y)} and d2(x, y) = K(x|y)+K(y|x)

K(x,y)
and used various (standard and

specialized) compressors to approximate K(x). As a result, the NIDs’ are also called
Normalized Compression Distance (NCD) [37, 40].

3.1.1 Roots in Bioinformatics

Li et al. [37, 36] created evolutionary phylogenetic tree of mammals by estimating the
NID d2(x, y) between each pair of mitochondrial DNA x and y, using GenCompress (a
specialized compression algorithm to compress DNA sequences) to heuristically approx-
imate K(x|y), K(x) and K(x, y). Chen et al. [17] also did a similar experiment with
GenCompress to compress rRNA sequences of several bacteria and virus species and used
an approximation of K(x)−K(x|y)

K(xy)
to measure the relatedness between each pair of sequences

x and y to create an evolutionary tree. Cilibrasi and Vitányi [18] used general-purpose
compressors like gzip, bzip2 to compress x and used the compressed size C(x) to approx-
imate K(x) and clustered mtDNA sequences using a quartet method [8]. Since its not
clear how to compute the conditional K(x|y) with a standard compressor, K(x|y) was
approximated with K(x|y) ≈ K(xy)−K(y).
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3.1.2 Application in other fields

Application of Normalized Compression Distance in other fields usually involves approxi-
mating K(x) with the length of the compressed x by standard compression software like
gzip, bzip2 and K(x|y) with K(xy) − K(y)). Cilibrasi et al. [19, 20] used the quartet
method to cluster different genres of music (rock, jazz and classical) and classical music
from different composers (such as Chopin, Bach, Beethoven). The authors reported sat-
isfactory hierarchical clustering success using NID and the quartet method when objects
belonged to different genres, that is objects were highly dissimilar. However, the method
seemed to underperform when objects belonged to the same genre but different composers.
For example: when clustering classical music belonging to Bach, Chopin and Debussy, it
failed to cluster Chopin’s music by putting them closer in the quartet tree. Moreover, the
experimental results in general, were decidedly worse when the sample size was large.
Cilibrasi, Vitányi, Li and others clustered Russian literature in different author groups
[18], 52 different linguistic versions of the Universal Declaration of Human Rights in var-
ious language clusters [18, 37]. Li and Sleep [38] classified 771 melodic contours (pitch
sequences without timing details) into 4 groups: Beethoven, Haydn, Chinese music and
Jazz using k Nearest Neighbour classifier with information distances calculated from both
d1(x, y) and d2(x, y). For their study they used LZ78 to compress the melodic contour files
and the compressed file’s size to approximate K(x). They showed d2(x, y) (a version of
sum distance that we use in this thesis) outperforms d1(x, y) with k = 1.
However, using standard compression software to approximate K(x) which are specifically
designed to compress rather than to extract meaningful information from the data, has its
immediate drawback: it assigns almost similar distance between two objects that are sub-
stantially dissimilar from a human perspective (for example compositions of Bach and the
Beatles) and two objects that are comparatively less dissimilar (for example compositions
of Bach and Chopin). It also does not normalize the NID very well, generating distance
values in the range [0.8, 1.5] [18]. Clustering methods like k-Nearest Neighbor and Quartet
Tree as used above, are sensitive to small differences in the distances, so they seem to work
reasonably well when the sample size is small. But the results start to quickly degrade as
we increase the sample size (more clustering errors [19]) or just increment k from 1 to a
number larger than 1 in the k nearest neighbour method [41].
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3.2 Approaches to Music Representation and Com-

pression

The existing approaches we are about to present, all deal with lossless compression/ de-
scriptions of symbolic music in one form or another. To our knowledge: elaborate research
on lossy compression of symbolic music and its use in similarity estimation is yet to be
conducted.

3.2.1 Lossless Data Compressors

Ens and Pasquier [25] converted music (in MIDI format) files into a sequence of integers
indicating pitch onset, offset and duration and compressed them with real-world lossless
compressors. They approximated K(x) with the compressed file’s size and computed a

distance matrix using dapprox(x, y) = K(xy)−min{K(x),K(y)}
max{K(x),K(y)} between each pair of objects x and

y. The matrix was then used with statistical significance testing to calculate the probability
of two separate corpora of music (in MIDI format) being “similar” or “different” in their
“style”. However, in our trial 1 of this system: we found that this is not a robust method
as it was predicting that two corpora are the same even when they were from different
composers or genre. It only succeeded in distinguishing two corpora if the file types are
vastly different: for example the system could differentiate plain text files from music
files. Takamoto et al. [62] represented a music score with a sequence of 88-dimensional bit
vector obtained every semiquaver. Each entry is either 1 or 0: 1 for key-on and 0 for key-off
events. The bit-vectors were then converted into strings of 0’s and 1’s, compressed with
real-world compressor to approximate K(x) and a compression based dissimilarity measure

K(xy)
K(x)+K(y)

was used with K-nearest neighbour to estimate the composer of each piece of
music. They showed that BZIP2 outperforms the other compressors but the overall result
is not satisfactory: only 41 out of 75 musical pieces were assigned to the correct composers.
Koopmans et al. [31] took a similar approach to music representation and compression as
in [25] and hierarchically clustered Domenico Scarlatti’s 555 piano sonatas.

3.2.2 Geometric Compressors

Meredith [46] represented music with a set of 2-dimensional points 〈t, p〉 where t is the
onset time in tatums and p is the morphetic pitch [48] of a note or a sequence of tied

1We obtained the programs the authors used in their experiments from [24, 26]

28



notes in a score. The compression works by selecting a pattern (a set of points) that is
maximally repeated, the vectors that translate it to the repeated positions, removing all
such occurrences from the dataset and repeating the process until no such maximal pattern
exists [44]:

Algorithm 4 Cosiatec Pseudocode
Input: string σ

1: Compressed← []
2: while a pattern p exist such that it is most recurring do
3: Ip = {(x, y) : p occurs at (x, y)}
4: Dictionary.insertEntry(p, Ip)
5: Remove all the occurrences of p

return Compressed

Visually the COSIATEC algorithm [44] on a Chopin’s composition (MIDI obtained
from https://www.classicalarchives.com) looks like the following2:

Figure 3.1: Visualization of COSIATEC on Chopin’s Op. 28 Prelude No.1

The similarly colored polygonal chains depict patterns that are repeated and translat-
able by a vector. Thus an encoded version E(x) of x, represented with multi-dimensional
data points, in this system would be a sequence of 〈pattern(P ), translating vector list(V )〉.
Meredith [45] approximated K(x) as follows [47]:

K(x) =
∑

〈P,V 〉∈E(x)

(|P |+ |V |) (3.1)

2The COSIATEC software can be obtained from [43]
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In [41] Louboutin and Meredith compared general-purpose compressors: LZ78, LZ77 and
BZIP2 with Meredith’s COSIATEC in their classification success rate of Dutch folk song
melodies3 into 26 tune families. For COSIATEC they used the two-dimensional geometric
representation of music and approximated K(x) as (3.1). For the general-purpose compres-
sors they represented the melodies with a sequence of (onset interval,pitch) and approx-
imated K(x) with the compressed file size. They used the NID and k nearest neighbour
method to classify a tune and showed that COSIATEC (84% classification success rate)
outperformed general-purpose compressors (12.5% classification success rate) in melody
classification.
They also reported a “weak, insignificant, negative correlation” between compression ratio
and classification success rate. But this is counter-intuitive as a higher compression ratio
should give a better approximation of K(x) and in turn dapprox(x, y) = K(xy)−min{K(x),K(y)}

max{K(x),K(y)}
and should theoretically allude to a better classification rate. We think such low-
classification success rate of normal world compressors can be attributed to the fact that
they do not satisfy the density property of the Normalized Information Distance as well as
specialized compressors like COSIATEC.
To show this we selected a reference object (Chopin’s Op.28 Prelude No.1) x and used
Google Magenta’s Long Short Term Memory based Recurrent Neural Network [29], which
had been trained on 17,000 western Classical music pieces, to generate monophonic
melodies that were similar in size as x (the size of the music is determined by the number
of sixteenth notes in the melody). These were then grouped into various corpora where
each corpus contained more objects than the last one, as we want to see how the density
property changes with increasing number of objects. We then converted the music into two
dimensional points to be used with COSIATEC and also into a sequence of MIDI pitches
using python’s MIDI library to be used with LZ78. We approximated K(x) for both com-
pressors (as done in [41]) and computed dapprox(x, y) with the approximations where x is
fixed (Chopin’s Op. 28 Prelude No. 1) and y is an object in a corpus. Then we calculated
the following for each corpus:

|{y : dapprox(x, y) ≤ e = 1, C(y) ≤ C(x)}|

In other words, how many objects y is within a normalized distance 1 from the reference
object x. We chose 1 as both the compressors when used with dapprox(x, y) outputs distance
values within the range [0.8, 1.5].

3The Dutch folk song melodies can be obtained from http://www.liederenbank.nl.
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Figure 3.2: Density Properties of General Purpose and Specialized Compressors

As can be seen from the above plots, when approximating K(x) with a general-purpose
compressor, the number of y’s that are e distance away from the reference x, is much higher
(in fact all of the objects in the corpus are within the e distance in the above example)
than when K(x) is approximated with a specialized compressor. This is why the k nearest
neighbour fails to identify the neighbours that are similar to x, as there are dissimilar
neighbours within the same range as well.

3.2.3 Grammar Based Compressors

Sidorov et al. [57] demonstrated the use of Context Free Grammars (CFG) in compress-
ing the melodic information of music that can be decomposed into multiple monophonic
voices. At each step in constructing the grammar, they chose patterns that has maximal
repeats (these patterns can be overlapping). Carrascosa et al. [11] showed that choosing
such maximally repeating but possibly overlapping patterns as the constituents of CFG
of genomic sequences and whole genomes can result in a smaller grammar than before
[10, 12]. The general idea of using CFG as a compressor or a description of an object x
and approximating K(x) with the CFG’s “size” was explored by Charikar et al. [15, 16].
The size of the CFG is defined as the total number of symbols of in the definitions of the
rule [33, 15, 16]. Recall that for the grammar G = {Σ,Γ, S,∆}, its size would be defined
as:

|G| =
∑

T→α∈∆

|α|
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But we think that this size alone is not a good approximation (under-estimation) of the
Kolmogorov Complexity of an object x. In this thesis we modify and extend this idea to
take account of the alphabet needed to specify the CFG to better approximate K(x). In
general, to our knowledge this thesis is the first extensive exploration of using Context Free
Grammars as a description method for Kolmogorov Complexity.
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Chapter 4

Experiments and Observations

4.1 Music As Low-Entropy Strings

Before proceeding, it is useful to discuss the definitions of “style” and “genre” in the context
of music. Although there are no universally accepted definitions, Franco Fabbri [27, 42]
has usefully defined genre as “a kind of music, as it is acknowledged by a community for
any reason or purpose or criteria, i.e., a set of musical events whose course is governed
by rules (of any kind) accepted by a community” and style as “a recurring arrangement of
features in musical events which is typical of an individual (composer, performer), a group
of musicians, a genre, a place, a period of time”.
Genre can thus be broader and more nebulous than style from a content-based perspective,
and may be more strongly characterized by cultural features [42].
In this project, we focus on music belonging to three such genres: classical, rock and jazz,
use context free grammars to approximate their Kolmogorov complexities, build distance
matrices from such complexity-based similarity measurement and observe whether such
measurement can capture style in music genre or composition. For a complete list of the
songs used in our experiments of these three genres the reader is referred to Appendix C.

4.1.1 Representing Symbolic Music as Strings

In this project we exclusively focus on representing music as a sequence of MIDI (Musical
Instrument Digital Interface) pitch numbers, as the MIDI formats are easily obtainable
descriptors of the symbolic music data. MIDI formats do not contain any vocal or lyrical
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information about the song. However, for the rock songs used in this project, we were able
to get the vocal melodic information from De Clercq and Temperley’s manual transcriptions
of these songs [23, 21]. In general, all the music pieces in our project were programmatically
transcribed by converting their MIDI files into a list of MIDI pitch numbers using the
following two methods. For the sources from which we obtained these MIDI files, the
reader is referred to Appendix C.

4.1.1.1 Manual Transcription of Vocal Melody of Rock Songs

Trevor De Clercq and David Temperley [23, 21] created a corpus of rock music based on
Rolling Stone magazine’s list of “500 Greatest Songs of All Time”(RS 500) [54]. This list is
somewhat skewed to having more songs of earlier decades, so DeClercq and Temperley [21]
took top 20 songs in the RS 500 list from the decades 1950s, 1960s, 1970s and 1990s and
19 songs from the 1980s to create a 99-song list. The list was then expanded to include the
next unique highest-ranked 101 songs from the RS 500 list creating the “RS 200” corpus
which has a total of 200 songs. In this paper we are interested in the authors’ melodic
transcription of each song in RS 200.
The melodic transcription of a song is a sequence of encoded vocal melodic notes repre-
senting the relationship between the note and the local key center (scale degree). Since
only the onset of the note is taken into consideration such transcription does not contain
any information about the length of the note being played. However, since scale degrees
vary from song to song, in order to have a consistent representation of vocal melody we
used De Clerq and Temperley’s program “process mel5.pl” [23] to convert the “melodic
transcription” to a list of MIDI pitches. Like the original transcription this list only tracks
the onset of pitches and dispenses with any information like how long the pitch is played.
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For example: the first few notes from “Hey Jude” by the Beatles looks like the following:

60
Hey

57
Jude

57
don′t

60
make

62
it

55
bad.

55
Take

57
a

58
sad

65
song

65
and

64
make

60
it

62
better.

4.1.1.2 Automatic Transcription

To convert MIDI files automatically into a sequence of MIDI pitches, we used a program
“mftext” (written by Tim Thompson and modified by Sleator and Temperley [61] and
then updated by the author of this thesis) that Sleator and Temperley used for representing
music to use with their MELISMA program. The program takes a MIDI file as an input and
outputs a “notelist”. Each entry of this list contains the note-on and note-off time along
with the MIDI pitch. If there are multiple channels in the MIDI file this program assembles
the notes in the channels chronologically. In other words, the program is somewhat capable
of turning a polyphonic music into a monophonic one. However, to our knowledge it does
not keep track of the key of the song. Since are we only interested in a sequence of MIDI
pitches, we only extracted the pitch information from this list. It is worth mentioning
that, Ens and Pasquier [25] have also used similar representation, although they did not
use Sleator and Temperley’s program but a Python MIDI library to accomplish a similar
task. They also included the MIDI onset, offset and time delta (duration of the pitch)
information in their representation [25].
To demonstrate this transcription, consider the same song as above, “Hey Jude” by the
Beatles. The first few notes of this song are:

84 81 69 65 60 41 48 60 69 65 53 60 69 65 41 81 48 84 69 60 65 86 53 79 64 60 36 43

Visually this would look like following:
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Figure 4.1: The first few bars of “Hey Jude”. This sheet music was created with Noteflight
[7] based on the “Hey Jude” midi that was used to create the above notelist.

Notice that this representation is also not concerned about the length or duration of
the notes/ chords like the vocal-melodic transcription of rock songs mentioned previously,
as the longer notes are not repeated in the sequence.
Since the vocal-melodic information is only available for the rock songs, in our experiments,
unless otherwise specified, all the music are transcribed automatically to convert them into
a sequence of numbers (ranging from 0 to 127) delimited by a space, to ensure consistency.
Automatic transcription by nature captures more information (it, in a way, encodes infor-
mation about the order in which instruments are played and polyphony in a music piece)
than the monophonic transcription of the vocal melody in songs. Thus to differentiate
this from the previous vocal melodic transcription, we call the sequence generated by the
automatic transcription for a music string, its instrumental transcription. Note that, for
the genre of rock songs we use both the vocal melodic and instrumental transcriptions in
our experiments. For the other two genres we use only the instrumental transcriptions.
Since both the transcriptions are non-random sequences of integers representing a hi-
erarchical structure of the respective music, the process of generating Context Free
Grammars for them is the same. All the codes for this project are available at
https://github.com/Tiasa/StyleRecognitioninMusic.git
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4.2 Approximating the Smallest CFG

4.2.1 An Overview

As mentioned in Chapter 3 we use three global algorithms Greedy, Most Frequent and
Longest First to generate an approximation of the smallest CFG for a music string x.
However, for the smallest grammar, we return the grammar with the smallest approximated
Kolmogorov Complexity among the above three.

The three algorithms only differ in how they define the objective function. “Longest
First” corresponds to f(α,∆) = |α|. Choosing the “Most Frequent” repeats, corre-
sponds to f(α,∆) = occ∆(α) where occ∆(α) is the count of non-overlapping occurrences
of α in the right-hand sides of ∆. The objective function for “Greedy” algorithm is
f(α,∆) = (|α| − 1)× (occ∆(α)− 1)− 2, which is the effect on the total grammar size.
However, the implementations of these algorithms are not immediately intuitive and dif-
ferent approaches are available. Next we describe our approach to this problem.

4.2.2 Implementation of the Global Algorithms

Although there are multiple algorithms to find the constituents or repeating patterns in a
string, we use suffix tree structures for this purpose. Normal suffix trees are efficient for
storing one string and give insights about its structure. However, when searching for the
smallest grammar, one has to consider finding a recurring word α in all the strings on the
right sides of the rules in ∆. One way of achieving this is to build a generalized suffix tree
or Patricia tree that stores all the right-hand strings that are currently in the grammar.
For an in-depth description of how we build suffix and Patricia trees and use them for
pattern searching in strings see Appendix B.

Algorithm 5 Patricia Tree

function buildTree(g: Grammar)
concatenated← ∅
for each rule in g do

concatenated← concatenated+ rule.RHS + uniqueDelimeter(rule.LHS)

buildSuffixTree(concatenated)
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Notice that when searching for pattern occurrences, we need to know which rule has
this pattern on its right hand side, so that it can be replaced with a non-terminal. For
this, we encode the left hand side of the rule, in a unique way to be used as a delimiter for
the Patricia tree. So, the suffixes in the tree can report which rule the pattern belongs to.
We continue this pattern search and replacement scheme until the size of the resultant
grammar is strictly smaller than before. However, since after each replacement, the Patricia
tree needs to be updated substantially (for example: deletion of the replaced substring,
insertion of a new non-terminal) along with new pattern statistics: occurrences, length etc,
we build a tree at each step from the updated CFG. A more efficient method of achieving
this is discussed in Chapter 5.

Algorithm 6 CFGGlobalAlgorithm

1: function Compress(x, algorithm: “Greedy”,“Most Frequent” and “Longest First”)
2: Grammar : CFGx ← StartRule→ x
3: moreReductionPossible← True
4: NTnumber ← 1
5: while moreReductionPossible do
6: patriciaTree← buildPatriciaTree(CFGx)
7: pattern← patriciaTree.getPattern(algorithm)
8: totalReductionInGrammarSize ← pattern.length × pattern.frequency

−pattern.length − pattern.frequency
9: if totalReductionInGrammarSize ≤ 0 then

10: moreReductionPossible← False
11: else
12: CFGx.replace(pattern, TNTnumber)
13: CFGx.addRule(TNTnumber → pattern)
14: NTnumber ← NTnumber + 1

15: return CFGx

4.2.2.1 Counting Non-overlapping Occurrences

Notice that occurrences of a pattern reported by the suffix tree (see Appendix C) can
overlap. In the construction of a CFG, since these will be replaced by a non-terminal,
when occurrences overlap, its necessary to specify which non-overlapping occurrences have
to be replaced [12]. The problem of computing the non-overlapping occurrences of a pattern
in a string is known as the String Statistics Problem. One solution to this is to choose the
occurrences in the (sorted by their indices) in a greedy left to right way. That is, all
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occurrences overlapping with the first selected/left-most occurrence are not considered.
This ensures that a maximal number of occurrences will be replaced.
For this we augment the suffix tree by counting the occurrences at each internal node
(Appendix B), removing overlaps from them and then storing the information at each
node. It allows to find the non-overlapping occurrences of α in |α| time.

Algorithm 7 Removing Overlap

Input: prefixLength: the path-label to this node
. Note that node.occurrences are already sorted in ascending order of their indices.

node.nonOverlapOcc← []
leftMostOcc : Leftmost Occurrences Added
for Index i: node.occurrences do

if prevAdded+ prefixLength <= i then . If the current occurrence does not
collide with the previous one, add this occurrence

node.nonOverlapOcc.add(i)
leftMostOcc← i

4.2.2.2 Greedy Algorithm

The Greedy Algorithm tries to reduce the grammar size as much as possible by selecting
a pattern P such that (P.length − 1)(P.occurrences − 1) − 2 is maximized. To find such
pattern in the suffix tree, we traverse the entire tree, as it is not clear what a good stopping
criteria would be in such cases. Notice that, because of the nature of the suffix tree, as
we travel down from the root, the pattern length becomes larger and occurrences become
rarer. However, since the objective function has both the length and occurrences as its
parameter and the occurrences have to be non-overlapping, we chose to traverse the whole
tree, even though it might be expensive. Whether there exists a linear-time implementation
of the greedy algorithm is still an open question [12].
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Algorithm 8 Greedy Pattern Selection

1: function GreedyPattern(suffixTreeRootx )
2: bestPattern← ∅
3: bestCompressionSize← −∞
4: for each edge of suffixTreeRootx do
5: tempPattern← GreedyPattern(edge.endNode)
6: tempCompressionSize ← (tempPattern.length − 1 )

×(tempPattern.Occurences − 1 )− 2
7: if tempCompressionSize ≥ bestCompressionSize then
8: bestPattern← tempPattern
9: bestCompressionSize← tempCompressionSize

10: curNodePattern← suffixTreeRootx .prefix
11: curNodeCompressionSize ← (curNodePattern.length − 1 )

×(curNodePattern.Occurences − 1 )− 2
12: if curNodeCompressionSize ≥ bestCompressionSize then
13: bestPattern← curNodePattern
14: bestCompressionSize← tempCompressionSize

return bestPattern

4.2.2.3 Most Frequent Algorithm

Using the idea that smaller patterns are more frequent and as we traverse down from the
root patterns are guaranteed to get larger and less frequent, we stop the search as soon as
we find a pattern of length at least 2, in any path from the root. Notice that, if two most
repeated patterns are found, the longer pattern is selected:
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Algorithm 9 Maximally Repeated Pattern Selection

function MaxRepeatPattern(suffixTreeRootx )
if suffixTreeRootx .prefix.length < 2 then

for each edge of suffixTreeRootx do
bestPattern← ∅
tempPattern←MaxRepeatPattern(edge.endNode)
if tempPattern.Occurences > bestPattern.Occurences
and tempPattern.length ≥ 2 then
bestPattern← tempPattern

return bestPattern
else

return suffixTreeRootx .prefix

4.2.2.4 Longest First

We traverse the whole tree for the longest pattern occurring at least twice. If two longest
patterns are found, the one with higher frequency is chosen. Another way of achieving this
would be to initiate the pattern searching from the leaves. In this way the searching can
be stopped as soon as a pattern is found with non-overlapping occurrence count of at least
2. However we did not implement this because it does not significantly improve the overall
runtime, as it involves traversing the whole tree to reach the leaves in the first place.

Algorithm 10 Longest Pattern Selection

function LongestPattern(suffixTreeRootx )
bestPattern← ∅
for each edge of suffixTreeRootx do

tempPattern← LongestPattern(edge.endNode)
if tempPattern.length ≥ bestPattern.length

and tempPattern.Occurences ≥ 2 then
bestPattern← tempPattern

curNodePattern← suffixTreeRootx .prefix
if curNodePattern.length ≥ bestPattern.length then

bestPattern← curNodePattern
return bestPattern
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4.3 Approximating Conditional Kolmogorov Com-

plexity, K(x|y∗)

We approximate K(x|y∗) in the following steps:
First, we generate an approximation of the smallest CFG, Gy = {Σy,Γy, Sy,∆y} of y,
following the method described in the previous section.
After that, we create an ordering DΓy = {T1, T2, . . . , Tk} of the non-terminals Γy such that
each non-terminal Ti succeeds all the non-terminals in its definition. This is always possible
as Gy is acyclic [15] and there is exactly one rule T → α in ∆y for each T ∈ Γy.
Following the ordering DΓy = {T1, T2, . . . , Tk}, we look for the pattern αi in x such that
Ti → αi and all the non-overlapping occurrences can be replaced with Ti. Once the list is
exhausted, for every definition αi of Ti ∈ Γy, αi appears nowhere else in the compressed x.
We denote this processed x, as x|y∗.
Finally, we generate an approximation of the smallest CFG of x|y∗ following the method
described in the previous section.

4.3.1 Compressing x with y∗

Algorithm 11 Ordering of the Non-Terminals Γy
1: function buildOrdering(ordering, inputGrammar, LHS)
2: RHS ← inputGrammar.getRule(LHS)
3: for each symbol in RHS do
4: if symbol.isNonTerminal then
5: buildOrdering(ordering,inputGrammar,symbol)

6: ordering.add(LHS)
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Algorithm 12 Compressing x with DΓy

Input: x, Gy = {Σy,Γy, Sy,∆y}
1: DΓy ← []
2: buildOrdering(DΓy ,, Gy, Sy)
3: x|y∗ ← x
4: while DΓy .hasNext do
5: LHS ← DΓy .next
6: RHS ← Gy.getRule(LHS)
7: tree← buildSuffixTree(x|y∗)
8: pattern← tree.findOccurrences(RHS)
9: replace(x|y∗,pattern, LHS)

Notice that even for the same grammar there can be different valid orderings DΓy and
different conditional descriptions x|y∗. For example: consider the following grammar Gy

for y = abcdabcdabcdfdeghdeghdegh:

Sy → T1T1T1fT2T2T2

T1 → abcd

T2 → degh

There are two valid orderings for this grammar D1 = {T1, T2, Sy} and D2 = {T2, T1, Sy}. If
x = abcdegh and we try to compress x with y∗,we get two different conditional descriptions:
x|y∗ = T1egh when the ordering D1 is used and x|y∗ = abcT2 when D2 is used. This
might lead to different estimates of conditional Kolmogorov Complexities. Although in
our project we do not try to find the ordering that produces the smallest estimate of
conditional Kolmogorov Complexity for x, it is certainly worth investigating how different
orderings may lead to better approximations of Kolmogorov Complexity and thus better
similarity measures.

4.4 Approximating Combined Kolmogorov Complex-

ity, K(x, y)

Recall that K(x, y) denotes the length of the shortest program p from which a Universal
Turing Machine U computes x, y and a way to tell them apart. So, we approximated
K(x, y) with K(x#y) where x#y is a single string and # is a placeholder for a separator
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that does not occur anywhere else in x and y. This way when the Universal Turing Machine
U produces the string x#y, we can still tell the strings apart. In our case, K(x#y) is
approximated by the size of an efficient CFG that produces the string x#y.
We could make use of the sub-additive property of K(x, y) [40]: K(x, y) ≤ K(x) + K(y)
and Lemma 2 from [15] (it shows that there exists a grammar of size G(x) +G(y) + 2 that
generates the string xy) to approximate K(x, y) with K(x) +K(y). These approximations
of K(x, y): K(x#y) and K(x) + K(y) do not differ as much when the strings have high
entropy. The differences start to stack up when the strings are of low entropy with K(x) +
K(y) ≥ K(x#y).
To show this we make use of a Long-Short Term Memory Based Recurrent Neural Network1

proposed by Simon and Oore [59] to generate polyphonic musical sequences. The model is
trained on 1400 piano compositions from the Yamaha e-piano Competition dataset [1] and
generates sequence by predicting the next musical event (note on-off events) by learning the
probability distribution over the event space. The entropy or randomness of these sequences
can be controlled by a parameter called temperature that dictates to what extent patterns
should be repeated. Values less than 1.0 outputs sequences with more repetitions and
values greater than 1.0 creates a more random sequence. Examples generated with different
temperature values can be listened to on the authors’ Magenta blog [58]. For each of the
two temperature values 0.8 and 1.5 corresponding to low and high entropy respectively, we
varied the sequence size (the size of the sequence is determined by the number of sixteenth
notes in the melody) from 1400 to 2400 with interval 100 and generated two sequences, x
and y, for each size. Since the output files are in MIDI format, we converted them into
a sequence of MIDI pitches with “mftext” [61] and estimated K(x, y) for each x, y pair
of each size with the two approximations: K(x#y) and K(x) + K(y). For K(x#y), we
joined x and y with the number 100000 as a separator in between because since both x
and y are a sequence of MIDI pitches that range from 0 to 127, the number 100000 occurs
nowhere in them. For K(x) + K(y), we simply treated the strings separately, estimated
their Kolmogorov Complexities with the size of their encoded CFG and added them. We
found that when the music sequences are of high entropy (temperature 1.5), the difference
between the two approximations of K(x, y) is negligible. But the difference is prominent
when the sequences are of low entropy (temperature 0.8), with K(x) + K(y) being much
smaller than K(x#y):

1The code for the music generating Neural Network can be found at
https://github.com/tensorflow/magenta
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Figure 4.2: The figure on the left shows that there is little difference between the two ap-
proximations of K(x, y) when the sequences are of high-entropy and mostly incompressible.
The figure on the right shows that the difference between them increases when sequences
have low-entropy and are more compressible.

One explanation for this could be that: when x and y individually have low Kol-
mogorov complexities but share little or no information with each other (differences in
alphabet size, structure of patterns etc.), their combination x#y becomes more complex.
Following is an example of such x and y (generated by the recurrent neural network with
temperature 0.8 and with unequal sizes), for which our approximation of K(x#y) is greater
than the approximation of K(x) + K(y). The individual short CFGs for x and y are:
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T1→ T7 T4 55 T5 55 T5 T3 60 62

60 T4 62 T3 T6 T5 55 T2 59

64 64 T10 T3 T3 T4 T2 T3

T10 67 67 T7 T6 T8 T7 57

57 T10 T4 55 62 55 62 T6

64 T7 T6 T6 T2 T4 T9 T3 T3 T5

T5 T7 T4 T4 T4 67 T3 T4 T6 T2

T4 57 T4 T9 T8 T8 T8 T2 60 T5

55 T2 60 T9 55 T8 65 65 65 T8

T4 62 T8 T2 60

T2→ T7 T7

T3→ T6 T7

T4→ 62 62

T5→ 60 55 60

T6→ 55 55

T7→ 60 60

T8→ T2 T2

T9→ T4 T4 T6

T10→ 57 57 T4

T1→ T8 T4 T4 T4 T4 T4 T2 T5 69

T9 72 71 71 T9 71 T7 T6 T6

T6 T6 T10 T10 62

T2→ 60 T5 67 T8

T3→ 64 T7

T4→ T2 T2 T2 T2 T2 T2

T5→ T10 T11 T11 67

T6→ T3 T3 T3 T3 T3

T7→ T10 T10 T10 T11 T10 64

T8→ 60 60 60 60 T5 67 T11 60

T9→ 69 69 69 69 69 71 71 72

T10→ 62 62

T11→ 64 64

From these CFGs, we approximate K(x) + K(y) to be about 830 bits. If we join
x and y with “100000” as a separator, the approximation of K(x#y) increases to about
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941 bits:

T1→ T13 T5 55 T10 55 T10 T6 60 62 60 T5 62 T6 T11 T10 55 T4 59 T16

T18 T6 T6 T5 T4 T6 T18 67 67 T13 T11 T15 T13 57 57 T18 T5 55 62 55

62 T11 64 T13 T11 T11 T4 T12 T11 T6 T6 T10 T10 T13 T12 67 T6 T5

T11 T4 T5 57 T12 T11 T15 T15 T15 T4 60 T10 55 T4 60 T5 T5

T11 55 T15 65 65 65 T15 T5 62 T15 T4 60 100000 T17

T7 T7 T7 T7 T7 T2 T8 69 T14 72 71 71 T14 71 T19 T9

T9 T9 T9 T5 T5 62

T2→ 60 T8 67 T17

T3→ 64 T19

T4→ T13 T13

T5→ 62 62

T6→ T11 T13

T7→ T2 T2 T2 T2 T2 T2

T8→ T5 T16 T16 67

T9→ T3 T3 T3 T3 T3

T10→ 60 55 60

T11→ 55 55

T12→ T5 T5 T5

T13→ 60 60

T14→ 69 69 69 69 69 71 71 72

T15→ T4 T4

T16→ 64 64

T17→ T4 T8 67 T16 60

T18→ 57 57 T5

T19→ T12 T16 T5 64

However, when x and y are similar to each other, our approximation of
K(x#y) stays below K(x) + K(y). Following is an example of x and y where
y = x (sharing the maximum amount of information) and K(x#y) ≈ K(x):
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T1→ T7 T4 55 T5 55 T5 T3 60

62 60 T4 62 T3 T6 T5

55 T2 59 64 64 T10 T3 T3 T4 T2 T3

T10 67 67 T7 T6 T8 T7 57 57

T10 T4 55 62 55 62 T6 64 T7 T6

T6 T2 T4 T9 T3 T3 T5 T5 T7 T4 T4

T4 67 T3 T4 T6 T2 T4 57 T4

T9 T8 T8 T8 T2 60 T5 55 T2 60 T9

55 T8 65 65 65 T8

T4 62 T8 T2 60

T2→ T7 T7

T3→ T6 T7

T4→ 62 62

T5→ 60 55 60

T6→ 55 55

T7→ 60 60

T8→ T2 T2

T9→ T4 T4 T6

T10→ 57 57 T4

T1→ T2 100000 T2

T2→ T8 T5 55 T6 55 T6 T4 60

62 60 T5 62 T4 T7 T6 55

T3 59 64 64 T11 T4 T4 T5 T3 T4 T11

67 67 T8 T7 T9 T8 57 57 T11 T5

55 62 55 62 T7 64 T8 T7 T7 T3

T5 T10 T4 T4 T6 T6 T8 T5 T5 T5 67

T4 T5 T7 T3 T5 57 T5 T10 T9

T9 T9 T3 60 T6 55 T3 60 T10 55 T9

65 65 65 T9 T5 62 T9 T3 60

T3→ T8 T8

T4→ T7 T8

T5→ 62 62

T6→ 60 55 60

T7→ 55 55

T8→ 60 60

T9→ T3 T3

T10→ T5 T5 T7

T11→ 57 57 T5

The individual short CFG for x on the left gives an approximated Kolmogorov complexity
of about 492 bits for x, while the CFG on the right gives an approximated Kolmogorov
complexity of about 527 bits for the concatenated x#x. Thus, K(x#x) ≈ K(x).

However, the size of the generated CFG of x#y (defined by the total number of
symbols in the definitions of the non-terminals) remains smaller than the cumulative size
of the individual CFGs of x and y. Following is a comparison of the sizes of the CFGs
involved in approximating K(x#y) and K(x) + K(y) for the same set of music strings
used for figure 4.2:
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Figure 4.3: The size of CFG of x100000y is smaller than the cumulative size of the indi-
vidual CFGs of x and y

Despite having a smaller CFG size, our approximation of K(x#y) is greater than that
of K(x) + K(y) as it takes more bits to encode the CFG for x#y (due to the larger
alphabet needed for describing and separating x and y in the description). However,
these very properties of K(x#y) are helpful for us to contain the value of the Normalized

Information Distance: K(x|y∗+K(y|x∗)
K(x#y)

within [0, 1]. When x and y are individually of low-

entropy without sharing much information between them, K(x|y∗+K(y|x∗)
K(x)+K(y)

runs the risk of

being greater than one, which does not happen when we use K(x#y). Besides, we have not
seen any improvement in clustering and classification of objects when switching between
these two definitions. So we approximate K(x, y) with K(x#y).

4.5 Runtime Analysis

We analyse the runtime of CFGGlobalAlgorithm presented in algorithm 6. Notice that
since the size of the grammar is strictly decreasing at each iteration, an upper bound on
the number of iterations is O(n).
At each iteration, we create a generalized suffix tree of the grammar using Ukkonen’s O(n)
algorithm and during the tree building process we count the non-overlapping occurrences
of each of its internal nodes. Since there are O(n) leaves in tree rooted at each internal
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node, it takes O(n) time to count the non-overlapping occurrences at each internal node
(refer to Appendix B). The number of internal nodes in a suffix tree is also O(n). So
creation of the generalized suffix tree and augmenting it with necessary string statistics
takes O(n2).
Searching time for “Greedy”, “Most Frequent” or “Longest” pattern and subsequent re-
placements of these patterns with a non-terminal is upper bounded by O(n), since these
operations only involve traversing the tree and iterating over the grammar. Hence, the
total runtime of the algorithm is bounded by O(n3) +O(n2) = O(n3).
The most expensive operation carried out in this algorithm is augmenting the suffix tree
with necessary non-overlapping occurrence information. This can be made faster by build-
ing a Minimal Augmented Suffix Tree(MAST) [4, 11] which permits computation of the
non-overlapping occurrences of a pattern α in O(|α|) time. The best known algorithm to
construct a MAST has a time complexity of O(n log n) [9]. This way the total runtime for
the CFGGlobalAlgorithm could be improved to O(n2 log n). We did not implement this
because the algorithm requires the effort to augmenting the suffix tree with extra infor-
mation at each internal node for faster retrieval of non-overlapping occurrences, which is
beyond the scope of this thesis.
We ourselves have been very pessimistic about the runtime of our algorithm being O(n3).
Although the upper bound of the outer loop at line 5 of CFGGlobalAlgorithm is O(n), in
practice it will never reach n, as at each step a new rule is added and its never the case
that there are n rules in the CFG for a string of length n: this would imply that there is
at least one non-terminal in the grammar that has only one symbol in its definition.
However, a tighter bound for the number of iterations is also not easy to prove: recall that
Global Grammars have an approximation ratio for the grammar size of O(( n

logn
)
2
3 ). So:

GlobalGrammarSize

SmallestGrammarSize
= O((

n

log n
)
2
3 )

GlobalGrammarSize = O((
n

log n
)
2
3 )× SmallestGrammarSize

The size of the grammar is initially n and when the loop terminates it becomes
GlobalGrammarSize. In the worst case, the grammar size reduces by atmost one at
each step. So the outer loop runs n − GlobalGrammarSize times. This term is maxi-
mum when GlobalGrammarSize in turn SmallestGrammarSize is smallest. The lower
bound of the size of the smallest grammar is Ω(log n) [15]. Suppose, for the worst case
analysis, SmallestGrammarSize = log n. Then the number of times the loop runs is
O(n− (n2 log n)

1
3 ), which does not improve significantly over the previous bound.
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4.6 Visualization and Emergent Properties of the

Generated Context Free Grammars

In this section, we present some examples of Context Free Grammars generated by our
algorithms.

4.6.1 Parse Tree of x (without compressing it with y∗)

The best approximation of the smallest CFG for the vocal melody of “Hey Jude” by The
Beatles is found by the “Greedy” algorithm and its as follows:

T1→ 60 T3 60 T3 T4 T4 T6 T3 T4 57 T10 70 T10 67 T12 T12 67 T7

55 T8 T6 65 60 T9 T3 55 57 59 60 64 65 68 69 71 72 77 T5 T5 T5

T2→ 53 57 60 67 T10 T10 T10 65 63 T9

T3→ 57 T11 55 55 57 58 65 65 64 60 T7 T11 62 62 67 65 64 65 T9 53

55 57 T9 60 58 57 52 53

T4→ 53 T12 T9 60 58 62 T12 65 58 T8

T5→ T2 T2 T2 T2 T2 T2

T6→ T11 63 63 64 T10 67 60 62

T7→ T9 58

T8→ 65 T7 60 T7 57 55 53

T9→ 62 60

T10→ 65 67

T11→ 57 60 62

T12→ 65 62

To better visualize the structure we present a partial parse tree of the grammar created
by Python’s Natural Language Processing Library [51]:
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Figure 4.4: Partial parse tree for “Hey Jude”. Lyrics are added with the help of De Clercq and Temperley’s
encodings of the lyrical information of the melodies [23, 21].
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4.6.2 Compression Ratio

To determine the compression ratio of a concise description of a symbolic music string x,
we consider:

number of bits in the description of x

number of bits in x

In our case, the numerator of the ratio is determined by the number of bits needed to
encode an efficient CFG of x such that the decoder φ can reconstruct x from the encoding.
In other words, we consider the approximation of K(x) by an efficient CFG.
Since each symbolic music string x originally is a sequence of integers from 0 to 127, we
determine the uncompressed length of the string by:

|x| = log(Σ)× n

where Σ is the number of unique symbols/ integers in the string and n is the number of
total symbols in x. Hence, our approximation of the compression ratio of x becomes:

Approximation of K(x)

|x|

We used the above approximation to determine the average compression ratio of the three
genres of music we use in our thesis. For each genre we randomly selected twelve pieces that
belong to them from the list presented in Appendix C. We calculated the compression ratio
using the above approximation for each of the twelve pieces in each genre and retrieved the
average compression ratio for each genre. We repeated the process five times to eliminate
sampling bias as much as possible and averaged the findings. For the genre of rock, along
with the vocal melodic transcriptions, we also calculated the average compression ratio of
the instrumental transcriptions:

Genre Average Compression Ratio
Rock (Vocal Melodic Transcription) 65.77%
Rock (Instrumental Transcription) 68.50%

Classical 74.23%
Jazz 93.64%

Table 4.1: Compression Ratio for the three Genres

As expected, rock songs are more compressible than the classical and jazz songs.
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4.6.3 Parse Tree of x (after compressing it with y∗)

Now we want to demonstrate how the system builds an efficient CFG of a string x after
compressing it with the CFG of y. The individual smallest grammars for the vocal melodies
of “Eleanor Rigby”(Object 1) and “I Want to Hold Your Hand”(Object 2) by “The Beatles”
are as following respectively:

T1→ T3 T3 57 T2 55 T2 T3 T3 55 T2

T2→ T4 T4 T7 64 T6 52 57 T7 67 64 T6

T3→ 64 66 67 69 67 66 64 T6

T4→ 57 59 55 52 T5 62 61 59 61 59 57 T6 57 T5 60 59 57

T5→ 55 57 59

T6→ 59 57 55

T7→ T5 55 52 52

T1→ 64 T2 T8 T2 T3 T3 60 59 T6 T8

T2→ T4 54 T4 66 T6 60 T5 T8 T6

T3→ 57 55 T7 55 55 55 57 T7 T9 T9 T9 T2

T4→ 64 62 60 59 59 T5 59 59 59 59 59

T5→ 62 60 59 57

T6→ 67 66 64 62

T7→ 57 60 64 T5 55

T8→ 59 57 55

T9→ 60 60 62

When Object 1 is compressed by Object 2 before computing the CFG of the compressed
version, we see that there are uses of the rules of the second object’s CFG in the first
object’s conditional compression:

T1→ T11 T11 57 T10 55 T10 T11 T11 55 T10

T10→ T12 59 57 T12 T8 T13 52 64 T8 52 57 55 T13 52 67 64 T8

T11→ 64 66 67 69 67 66 64 T8

T12→ T13 55 57 59 62 61 59 61 59 57 T8 57 55 57 59 60

T13→ 57 59 55 52
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Figure 4.5: Conditional Compression of “Eleanor Rigby” with “I Want to Hold Your Hand”

Similarly, in the conditional compression of Object 2 with Object 1 we see the uses of
rules from Object 1 ’s CFG:

T1→ 64 T8 T6 T8 T9 T9 60 59 T13 62 T6

T8→ T10 54 T10 66 T13 T11 T11 59 57 T6 T13 62

T9→ 57 55 T12 55 55 55 57 T12 60 60 T11 60 T11 60 62 T8

T10→ 64 T11 59 59 T11 59 57 59 59 59 59 59

T11→ 62 60

T12→ 57 60 64 T11 T6

T13→ 67 66 64

Figure 4.6: Conditional Compression of “I Want to Hold Your Hand” with “Eleanor Rigby”
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4.6.4 Inter and Intra-Corpora Normalized Distance for the
Three Genres

We consider twelve music pieces belonging to each genre to approximate the inter and
intra-corpora distance between them. The twelve pieces are randomly selected from the
list of music we use for each genre. We repeated the following processes five times and
averaged the results. We use instrumental transcriptions for the all the music pieces in
these experiments.
For intra-corpora distance in a genre, G, we approximated the normalized distance
d(x, y) = K(x|y∗)+K(y|x∗)

K(x,y)
for every (x, y) : y 6= x, x, y ∈ G. We averaged the distance

over the number of possible (x, y) pairs,n(n−1)
2

, where n is the number of objects in G.
Notice, we use the symmetric property of d(x, y), so d(x, y) is considered equal to d(y, x).

Genre Intra-corpora distance
Rock 0.85

Classical 0.82
Jazz 0.84

Table 4.2: Intra-corpora Distance of three Genres

For inter-corpora distance between two genres G1 and G2, we approximate d(x, y) for
every pair (x, y) : x ∈ G1, y ∈ G2. We average the distance over the number of calculations,
n×m where n and m are the number of music pieces in G1 and G2 respectively.

Genre Inter-corpora distance
Between rock and classical 0.93

Between jazz and rock 0.94
Between classical and jazz 0.90

Table 4.3: inter-corpora Distance of three Genres

As expected the inter-corpora distance is on average larger than the intra-corpora dis-
tance.

56



4.7 2-Dimensional Scaling and Support Vector Clas-

sification

We now present some graphical representation of the above results: whether music pieces
from the same composer or genre have smaller intra-corpora distances than inter-corpora
distances from music pieces of another composer or genre. In other words whether an
efficient CFG along with a normalized distance metric d(x, y) can differentiate one composer
or genre from another by recognizing style in the music pieces. For that purpose, we
project the distances onto a 2-dimensional Euclidean space to visualize whether the objects
belonging to the same corpus are closer together than objects belonging to different corpora.
We consider N corpora, each of which contain music pieces that belong to one single
composer from any of the three genres. If the total number of objects belonging to the N
corpuses is n, we approximate the normalized distance d(x, y) between all the n×n number
of (x, y) pairs and create a n× n distance matrix. We then translate this information into
a configuration of n points mapped into an abstract 2-D Cartesian space, in the hope that
similar objects are positioned closer than dissimilar objects. We use a Java library for
Multi-dimensional Scaling [2] to achieve this 2-Dimensional scaling. An example would be
the following where we take the musical pieces of three composers: The Beatles, Bach and
Miles Davis:

Figure 4.7: The figure is a plane translation of a 27× 27 distance matrix to 27 geometric
positions on a 2-D Cartesian Plane. It’s apparent that musical pieces belonging to the
same composers, are closer to each other than those belonging to different composers.

The different categories that the n objects belong to are highlighted with different colors
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to visually separate them and understand the efficacy of our system. However, to ensure
that our eyes are not doing the clustering, we use Python’s Scikit Learn module [51] to
run the data through a Support Vector Machine (SVM) with Linear Kernel [56] with their
corresponding composers to linearly classify them. We can specify a positive regularization
parameter C that tells the SVM optimization how much misclassification of the training
samples should be avoided. Larger C values will let the SVM choose a smaller-margin
hyperplane if it does a better job of classifying all the training samples correctly. But it
runs a risk of over-fitting and the hyperplane can become complex. We thus use a small C
value of 1, so that the classifier can generalize better, even if it can misclassify more data
points. The linear classification of Figure 4.7 by the SVM is as following:

Figure 4.8: SVM with linear kernel classifies the data into three composer categories

4.7.1 Genre Specific Style Recognition

To determine whether our system can recognize style in music, we first experiment whether
it can differentiate between the three genres. For this purpose, we select two or three
composers specific to each genre and perform two dimensional scaling on the distance
matrix of instrumental transcriptions of the music pieces of the composers. Three such
experiments were performed and the SVM in each case could identify the different genres:
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Figure 4.9: 2-dimensional scaling and classification with linear kernel of rock and classical music.

59



Figure 4.10: 2-dimensional scaling and classification with linear kernel of rock and jazz music.
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Figure 4.11: 2-dimensional scaling and classification with linear kernel of rock, jazz and classical music.
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4.7.2 Composer (Same Genre) Specific Style Recognition

We now select composers from the same genre and experiment whether the system can
recognize different composers. Distances between music pieces within the same genre
has been shown to be less than those between music pieces of different genres in the
previous section. But composers belonging to the same genre exhibit different style in
their compositions and the system can correctly distinguish them. We experiment on
composers from the classical and the rock genre with the instrumental transcriptions of
the music pieces.
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Figure 4.12: 2-Dimensional Scaling and Linear Classification of Chopin, Bach and Haydn. To represent
Bach and Chopin in this experiment, we chose Bach’s Well-Tempered Claviers, Inventions and Chopin’s
Études respectively.
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Figure 4.13: 2-Dimensional Scaling and Linear Classification of The Beatles and The Rolling Stones
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4.7.3 Composition (Same Composer) Specific Style Recognition

Music pieces from the same composer can exhibit vastly different style in their composition.
For example: Chopin’s Études (composed for solo pianists and are of considerable difficulty
[49]) are quite different from his Preludes (short pieces of piano music [49, 22]). We perform
two experiments to see whether the system can identify Chopin’s Preludes from his Études
and his Nocturnes (inspired by the nature of the night [49, 22])
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Figure 4.14: 2-Dimensional Scaling and Linear Classification of Chopin’s Études and Preludes
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Figure 4.15: 2-Dimensional Scaling and Linear Classification of Chopin’s Nocturnes and Preludes
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4.8 Best-Fitting Composer Selection

4.8.1 Method

In this section we present a practical application of the Constrained Best-fit model selec-
tion discussed in section 2.3: composer identification for an unknown musical string x. For
this, we have models Gi for i = 1, 2, . . . , n each representing a certain composer i. Each
model Gi represents a CFG for the musical pieces composed by the composer i such that
K(Gi) ≤ α. Recall that a more suitable restriction parameter for CFG, β dictates the
minimum number of musical pieces that a maximal string γ has to be present in so that
T → γ can be included in Gi, and β and α can be calculated from each other. So in order
to maintain consistency and simplicity, instead of providing α we provide the parameter β
and we allow each model to represent a fixed number of m musical pieces {x1

i , x
2
i , . . . , x

m
i }.

With these restrictions in place, each model Gi, notwithstanding the genre and composer
specific variations, can only contain a certain number of non-terminals with definitions of
certain length that are functions of m and β. Thus for i, j = 1, 2, . . . , n, we can assume
K(Gi) = K(Gj) where i 6= j with small additive error. So to find the best-fitting model
we try to find the G that is best-able to describe x such that K(x|G) is the smallest and
thus witnesses Kolmogorov’s structure function hx(α) in equation (2.15).
To construct Gi we first consider a random ordering x1

i , x
2
i , . . . , x

m
i . We build Gi incremen-

tally in m steps and in a cascading manner: we construct an efficient CFG for x1
i , G

1
i . In

this first step, all the γ’s in the definitions of non-terminals T → γ in G1
i have presence in

one string x1
i . Then we compress xi2 with G1

i . We keep track of the non-terminals T → γ
in G1

i that were used to compress xi2 and we increase their occurrence in strings counter
by one. After that we compute an efficient CFG of the compressed string, xi2|G1

i , add the
non-terminal definitions of this CFG to G1

i with string occurrence counter 1 and get G2
i .

We repeat this process until xim is compressed with Gm−1
i and the non-terminal definitions

are added to Gm−1
i to get the final grammar Gm

i . Note that this final grammar has all the
rules of the efficient CFGs of the m strings. Hence, K(Gm

i ) is quite large. We thus select
the rules in Gm

i that occur in at least m× β
100

number of music pieces and add them to Gi

which is the final model of the m strings with restricted complexity. Note that, Gi created
this way, does not necessarily produce any string, as for large β, our algorithm seeks the
most common patterns that occur in more than one of the strings. Thus the string gen-
erating start rules which are unique to their corresponding sequences get omitted. Rather
Gi acts as a dictionary with entries that describe the important regularities of the strings
that it represents.
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Algorithm 13 Approximating Gi

Input: {xi1, xi2, . . . , xim}, β
1: Gi ← ∅
2: cumulativeCFG← smallestCFG(xi1)
3: cumulativeCFG.setRuleOccurrences(1) . In the beginning each rule belongs to only

one grammar
4: for j = 2 to m do
5: for each rule in cumulativeCFG do
6: tree← buildSuffixTree(xij)
7: if tree.containsPattern(rule.RHS) then
8: xij.replace(rule.RHS, rule.LHS)
9: cumulativeCFG.increaseOccurrencebyOne(rule)

10: grammarOfCompressed← smallestCFG(xij)
11: grammarOfCompressed.setRuleOccurrences(1)
12: cumulativeCFG.addRules(grammarOfCompressed)

13: for each rule in cumulativeCFG do
14: if rule.Occurrence ≥ β×m

100
then

15: Gi.insertRule(rule)
return Gi

For each such model Gi, the optimality measure of Gi for describing x, K(x|Gi) is
computed. The model that yields the smallest positive value is selected as the witness for
hx(α) and thus the best-fitting model, or in this case, the best-fitting composer for x.

Algorithm 14 Best Fitting Model/ Composer

Input: Models:{G1, G2, . . . , Gn}, x
1: RD ← []
2: for i = 1 to n do
3: x̄← compress(x,Gi)
4: K(x|Gi)← smallestCFG(x̄).KolmogorovComplexity
5: RD.insert(K(x|Gi))

return arg minGi{RD}
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4.8.2 Effectiveness of the Generated Model

To demonstrate the model generation and the subsequent compression of x with the gen-
erated model, we present here an example. We first generate a model grammar G with
β = 20% for twelve music pieces (vocal melodic transcriptions) by The Beatles, as given
below:

T9→ 62 60

T10→ 65 67

T12→ 65 62

T17→ 62 62

T22→ 64 66

T30→ 57 59 60

T32→ 61 59

T37→ 59 57 55

T45→ 57 59

T50→ 67 66 64

T53→ 57 57 57

T70→ 64 62

T79→ T70 60

As expected, the definitions of the non-terminals are short and there are limited number
of rules in ∆ for the model.
We now choose two music sequences (vocal melodic transcriptions) x and y, both of which
are composed of about 350 MIDI notes (for consistency and a fair comparison): x from the
composer The Beatles (“Let It Be”) and y from the composer Elton John (“Your Song”)
to show that K(x|G) � K(y|G). The conditional CFG of x with respect to G has use of
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rules from ∆ of G as shown below (truncated for easy observation):

T1→ 55 T91 T80 55 T90 T81 T89 . . . T79 T80 T81 . . . T79 62 T80 . . .

T80→ 64 64 65 64 T87

T81→ T79 T88 67 67 T79

T82→ T86 T70 T9 60

T83→ T79 T88 64 67 67 T79 62 T89 72

T84→ 55 55 57

T85→ 57 55 64

T86→ 55 55 60 T17 64

T87→ T70 T70 T9

T88→ 64 67 69

T89→ T85 T80

T90→ T84 60 T82 T80

T91→ 55 T84 52 T82

T92→ 64 64 T10 T87
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While on the other hand, the conditional CFG of y with respect to G does not exhibit use
of any rule from ∆ of G:

T1→ T82 T82 T96 T86 56 . . . T91 60 58 T82 T92 48 T93 T81 51

T80→ 48 T95 T93 T87 58 T89 T95 T82 T87 T91 T83 63 T91 60 58 55

T81→ 51 51

T82→ 55 53

T83→ 58 60

T84→ 51 53

T85→ 53 T95 T81

T86→ T82 53 58 53 55

T87→ 51 55

T88→ T81 T81

T89→ T83 58 T82 T84 T82 T95

T90→ T81 53 55

T91→ 60 T83 63 T83

T92→ T84 48

T93→ 54 53

T94→ T87 58 55

T95→ 51 48

T96→ 55 55

T97→ 55 56 T82

T98→ T83 T82 T92 T81

Thus for y, K(y|G) ≈ K(y). In this particular experiment, we get K(x|G) ≈ 552 bits
compared to K(y|G) ≈ 1118 bits, almost twice as K(x|G).

4.8.3 Composer Classification

To extend the above idea to “best-fitting” composer selection for an uncategorized string
x, we selected seven composers belonging to the three genres: Bach, Chopin, Haydn, The
Beatles, The Rolling Stones, Miles Davis and John Coltrane. m music pieces were randomly
selected from the music pieces of each composer where m = 8, 16, 20. We then randomly
selected 9 music pieces from the music pieces of the seven composers and computed the
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fraction of these pieces that were correctly classified by our best-fitting composer selection
model. We repeated this process 5 times and averaged the success rate for a fixed β and
m.

Number of Models β m Model Selection Success Rate
7 10 8 88%
7 10 16 100%
7 20 16 90%
7 20 20 93%
7 25 20 82%

Table 4.4: Best Fit Model Selection Success Rate

The system did reasonably well in detecting the correct composer for an unknown
musical piece x. As m or β increases, the system is more successful in model selection.
This happens because the corresponding model Gi becomes in a sense more informed and
is able to extract the meaningful information in x more accurately. And understandably,
as we restrict K(Gi) to be smaller and smaller, success rate decreases. However it is useful
to have the complexity restriction so that Gi does not overfit and have too many redundant
rules that correspond to the randomness of individual strings. To compensate for this, we
can have Gi represent more strings, that is we can increase m by keeping β fixed to increase
the model-selection success rate. However, a more in depth research needs to be done in
this respect to investigate how CFG based model selection can have better success rate.
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Chapter 5

Future Work

5.1 Improving the runtime of Context Free Grammar

Generation

In CFGGlobalAlgorithm presented in algorithm 6, at each step we were generating a Pa-
tricia tree just to search for patterns and their non-overlapping occurrences. This seems
expensive. One immediate solution is to use a Minimal Augmented Suffix Tree to keep
track of the non-overlapping occurrences as we build the tree. But instead of building the
tree at each step, we can build the tree once and replace patterns with the grammar’s new
non-terminals in the tree.
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Algorithm 15 CFGGlobalAlgorithmImproved

1: function Compress(x, algorithm: “Greedy”,“Most Frequent” and “Longest First”)
2: Grammar : CFGx ← StartRule→ x
3: moreReductionPossible← True
4: NTnumber ← 1
5: patriciaTree← buildPatriciaTree(CFGx)
6: while moreReductionPossible do
7: pattern← PatriciaTree.getPattern(algorithm)
8: totalReductionRnGrammarSize ← pattern.length × pattern.frequency −
pattern.length− pattern.frequency

9: if totalReductionRnGrammarSize ≤ 0 then
10: moreReductionPossible← False
11: else
12: CFGx.replace(pattern, TNTnumber)
13: CFGx.addRule(TNTnumber → pattern)
14: patriciaTree.replace(pattern, TNTnumber)
15: patriciaTree.maintain()
16: NTnumber ← NTnumber + 1

17: return CFGx

The above algorithm requires a lot of changes in the tree at each step, for example:
some suffixes would be obsolete, some subtrees would have to collapse because their par-
ents were replaced and new subtrees have to be added. To our knowledge, in-suffix-tree
pattern replacement have not been explored extensively, but this is definitely useful in fast
generation of context free grammars or other interactions between suffix trees and dynamic
compression.

5.2 Generalized Context Free Grammar and Genera-

tive Models

Instead of restricting grammars to produce exactly one string, we can think of Generalized
Context Free Grammar [60] in which a single non-terminal can have multiple production
rules and cyclic dependencies are allowed. Whether these grammars can be generated from
a set of string all belonging to the same category and thus can be represented as a model
that describes the category is certainly an exciting question. In the realm of music, this
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might be used to build generative models that imitate the style of a certain composer. Since
generalized CFGs are capable of generating multiple string, we could build such grammar
from the musical pieces of a certain composer. This grammar will then hopefully contain
all the important characteristic of the composer and can be used to generate musical pieces
that preserve those characteristics.
Edit grammars [16] are also interesting: they allow for edit operations like insert, delete
and replacement of a character to be performed on a rule. Such grammars can be used to
ask the question: if G1 is the grammar of x and we have another string y, how many edit
operations would it take on G1, so that the modified grammar produces string y. This
number of edit operation can be used directly to approximate K(y|x∗).

5.3 Applications in other Low-entropy Strings

We only explored the effectiveness of Kolmogorov Complexity along with Context Free
Grammars in music. This exploration can be extended to other artistic realm like literary
works of authors, translations of documents in different languages etc. It would also be
interesting to see whether CFGs can find structure in properly aligned DNA strings.
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Chapter 6

Conclusion

In this project, we used the notion of Context Free Grammar as a description method of
strings, used the size of the CFG to approximate the Kolmogorov Complexity and tested
whether such combination can be effective in measuring similarity between strings.
In chapter 2, we established the theoretical foundation of Kolmogorov Complexity based
Distance Metric. We also discussed the properties of the smallest Context Free Grammars
and the existing algorithms to approximate it. In particular, we only focused on offline
global algorithms that are very intuitive and achieve better overall approximation ratio on
the grammar size.
In chapter 4, we give a detailed explanation of how we built our system and apply it in
music, as musical strings are understandably of low-entropy. We estimated pair-wise Kol-
mogorov Complexity based distance measure between musical strings of various composers
and genres and multi-dimensionally scaled the distance matrix that we got. To our sat-
isfaction, the model was able to distinguish between composers, styles and genres. We
then tried to use the model for composer classification. For this, we generated constrained
model grammar for a corpora of similar strings and tested whether strings belonging to the
same corpora compressed well with the model grammar. In this case as well, the model
was able to, with high success rate, detect correct composers for given music strings.
Although the system itself is difficult to build, we believe that because Context Free Gram-
mars are capable of finding hierarchical structures in an object, they can prove to be a
powerful description method for approximating its Kolmogorov Complexity.
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Appendix A

Auxiliary Proofs

Theorem. Let x be a binary strings of length n. The number of binary strings y with
E(x, y) ≤ d, N(d, x) satisfies up to a constant additive error term O(1):

logN(d, x) = d−K(d|x∗) (A.1)

Proof. First we prove a useful property of E(x, y). For each x:∑
y:y 6=x

2−E(x,y) ≤
∑
y:y 6=x

2−K(y|x∗)−K(x|y∗)

≤
∑
y:y 6=x

2−K(y|x∗)

≤ 1

The first inequality is due to the definition of E(x, y). The second inequality is simply
for the fact that −K(y|x∗) − K(x|y∗) ≤ −K(y|x∗). The last inequality follows from the
fact that: the sum

∑
y 2−K(y|x∗) is taken over the programs p for which the universal prefix

machine, computes y given x∗. This sum is the probability that U , given x∗, computes y
from a program p which is generated bit by bit uniformly at random. Hence the sum is at
most 1 [40].
Now we move on to proving equation (A.1).

logN(d, x) < d−K(d|x∗): For every binary string x, and a positive distance d, the prob-

ability of choosing a y such that E(x, y) ≤ d is N(d,x)
2d

. We want to consider all such
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y’s as d ranges from 1 to ∞:

∞∑
d=1

N(d, x)

2d
=
∞∑
d=1

∑d
i=1 n(i, x)

2d

=
∞∑
d=1

∑d
i=1

2in(i,x)
2i

2d

Now, n(i,x)
2i

is the probability of choosing a y 6= x such that E(x, y) = i so:

∞∑
d=1

N(d, x)

2d
=
∞∑
d=1

d∑
i=1

2−d+i
∑

y:y 6=x,E(x,y)=i

2−E(x,y)

Setting d− i = j:

∞∑
d=1

N(d, x)

2d
≤

∞∑
j=1

2−j
∑
y:y 6=x

2−E(x,y)

≤ 1

Denote f(d, x) = log( 2d

N(d,x)
).

Function f(d, x) is upper-semicomputable if N(d, x) is upper-semicomputable be-
cause 2d is computable. N(d, x) is upper-semicomputable if we are willing to provide
the information x∗ : |x∗| = K(x) and y∗ : |y∗| = K(y) (upper-semicomputability
of N(d, x) depends on E(x, y)’s upper-semicomputability and E(x, y) is only upper-
semicomputable if we provide these information). Then, N(d, x) and in turn f(d, x)
becomes upper-semicomputable. It also satisfies

∑∞
d=1 2−f(x,y) ≤ 1. Now, since,

K(d|x∗) is also an upper-semicomputable function and minorizes every other upper-

semicomputable function by definition [5], we have K(d|x∗) ≤ f(d, x) = log( 2d

N(d,x)
) =

d− logN(d, x)

logN(d, x) > d−K(d|x∗): Consider strings y of the form px where p is a self-delimiting
program [5]. For all such programs, K(x|y∗) = O(1). This is possible as we provide
the information y∗ : |y∗| = K(y)
Hence,

E(x, y) = K(x|y∗) +K(y|x∗)
= O(1) +K(px|x∗)
= K(p|x∗) +O(1) ≤ d
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Recapitulating a previous prefix property of K complexity:∑
p:p 6=x

2−(d) ≤
∑
p:p 6=x

2−K(p|x∗) ≤ 1

So there are atmost 2d or atleast 2d−K(d|x∗)) such strings p with K(p|x∗) ≤ d, yielding
logN(d, x) > d−K(d|x∗).
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Appendix B

Processing Strings

B.1 Suffix Tree

B.1.1 Definition

The suffix tree of a text x[1..n] is a compressed trie built on all suffixes of x [55]. It has
n leaves, each of which corresponds to a suffix of x. The total number of nodes in such a
compressed trie is also bounded by O(n). Each edge is labeled by a string, called edge-label.
The concatenation of labels on a path from the root to a node is called the path-label of
the node and it’s length is called the prefix-length. The path-label of each leaf coincides
with a suffix. The path-label for each non-leaf internal node depicts the prefix of all the
suffixes (leaves) of the sub-tree rooted at that node. For each internal node, the edges to
its children are sorted in the alphabetic order of the first characters of edge-labels. For
implementation purposes, this can be done by keeping a dictionary of character-edge pairs
at each node. Figure B.1 shows the suffix tree for a string “banana$”.
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Figure B.1: Demonstration of suffix tree of the string “banana”. The pattern “ana” is
found ending at a node which has two leaves in the subtree below it. So “ana” occurs
twice in the string “banana”.

B.1.2 Pattern Searching

Any pattern P [0 . . .m− 1] in the string x will be a prefix of some suffix (see Figure B.1).
Hence, to determine whether or not the pattern occurs in the string, we need to find the
end of the path from the root with the path-label P [0 . . .m − 1]. If no such path exists
(there is a mismatch between an edge-label and a substring of P ), then the pattern does
not occur.

B.1.2.1 Pattern Occurrences

To find the occurrences of an existing pattern P in the string, we must find the path as
above and then subtract length of the suffixes that have P as their prefixes from the total
string length x.length to find the individual occurrences of P in x:
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Algorithm 16 Finding Pattern Occurences

1: function FPO(Pattern:P [i . . .m− 1], Root of subtree: root)
2: edge← root.getEdge(P [i])
3: if edge = null then . There is no edge with the first character, so pattern doesn’t

exist
4: return null
5: if edge.label.length ≥ m− i then
6: if edge.label[0 . . .m− i] = P [i . . .m− 1] then . We found the pattern. Now

get the occurrences
7: return edge.endNode.occurrences
8: else
9: return null

10: else
11: if edge.label = P [i . . . i+ edge.label.length] then
12: return FPO(P [i+ edge.label.length+ 1 . . .m− 1], edge.endNode)
13: else
14: return null
15:

Algorithm 17 Node Class: Finding the Positions of occurrences

1: function setOccurences(prefixLength)
2: this.occurrences← []
3: if this.isLeaf then
4: this.occurrences.add(x.length-prefixLength)
5: else
6: for each edge: this do
7: edge.endNode.setOccurrences(edge.label.length+ prefixLength)
8: this.occurrences.sortedMerge(edge.endNode.occurrences)

We are keeping the list of occurrences sorted in ascending order of their indices, so that
identify the overlapping occurrences in this list in O(n) time.
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B.2 Generalized Suffix Tree or Patricia Tree

B.2.1 Pattern Searching and Counting Occurrences

Pattern searching in a generalized suffix tree is same as in a normal suffix tree. To find
out in which string αi a pattern occurs, we have to just look at the sentinel character $i
the suffix ends with and to find the occurrence index of the pattern, in the same way as
above, we have subtract the prefix length or path label of the leaf from the length of that
string αi.
If we need to count how many times a pattern occurs in all of the strings, the procedure is
same as a single-string suffix tree. The number of leaves in the sub-tree that is rooted at
the node which has the pattern as its prefix, will correspond to the number of occurrences
of the pattern.
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Appendix C

Full List of Music Pieces Used in the
Project

C.1 Rock Pieces

The complete list of the Rock songs used in this thesis can be found in the RS200 project
of DeClercq and Temperley [21]. However, since they only provide vocal melodic transcrip-
tion, for instrumental transcriptions of the music pieces from the composers: the Beatles,
the Rolling Stones and Nirvana, we obtained MIDI files from the following websites which
provide freely accessible contents:

1. http://beatlesnumber9.com

2. https://www.midiworld.com

C.2 Classical Pieces

Table C.1: Classical Pieces Used

Song Artist
Mazurka Op17No4 Chopin

Nocturnes Op62No1 Chopin
Mazurka Op33No4 Chopin
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Nocturnes Op37No1 Chopin
Nocturnes Op62No2 Chopin
Nocturnes Op9No2 Chopin
Nocturnes Op37No2 Chopin
Mazurka Op17No2 Chopin

Nocturnes Op27No2 Chopin
Mazurka Op33No2 Chopin

Nocturnes Op48No2 Chopin
Mazurka Op17No3 Chopin
Mazurka Op17No1 Chopin

Nocturnes Op27No1 Chopin
Mazurka Op6No4 Chopin

Nocturnes Op15No3 Chopin
Nocturnes Op15No2 Chopin
Nocturnes Op15No1 Chopin

Mazurka Op6No2 Chopin
Mazurka Op6No3 Chopin
Mazurka Op6No1 Chopin

Nocturnes Op55No2 Chopin
Mazurka Op30No2 Chopin

Nocturnes Op55No1 Chopin
Mazurka Op7No5 Chopin
Mazurka Op7No4 Chopin

Nocturnes Op32No2 Chopin
Mazurka Op7No1 Chopin
Mazurka Op7No3 Chopin

Nocturnes Op32No1 Chopin
Mazurka Op7No2 Chopin

Prelude No 1 Chopin
Prelude No 2 Chopin
Prelude No 6 Chopin
Prelude No 7 Chopin

4 Seasons Tchaikovsky
Serious Schumann

Pleading Schumann
Piano Sonata 14 Movement 2 Beethoven
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Etudes No 1 Chopin
Etudes No 2 Chopin
Etudes No 3 Chopin
Etudes No 4 Chopin
Etudes No 5 Chopin
Etudes No 6 Chopin
Etudes No 7 Chopin
Etudes No 8 Chopin
Etudes No 9 Chopin
Etudes No 10 Chopin
Etudes No 11 Chopin
Etudes No 12 Chopin

Invention No 1 Bach
Invention No 2 Bach
Invention No 3 Bach
Invention No 4 Bach
Invention No 5 Bach
Invention No 6 Bach
Invention No 7 Bach
Invention No 8 Bach

Violin Sonata 1 Movement 1 Bach
Violin Sonata 1 Movement 3 Bach
Violin Sonata 2 Movement 1 Bach
Violin Sonata 2 Movement 2 Bach
Violin Sonata 2 Movement 3 Bach
Violin Sonata 2 Movement 4 Bach
Violin Sonata 3 Movement 1 Bach
Violin Sonata 3 Movement 2 Bach
Violin Sonata 3 Movement 3 Bach
Violin Sonata 3 Movement 4 Bach

Well-Tempered Clavier 2 Fugue 1 Bach
Well-Tempered Clavier 2 Fugue 2 Bach

Well-Tempered Clavier 2 Prelude 1 Bach
Well-Tempered Clavier 2 Prelude 2 Bach
Well-Tempered Clavier 1 Prelude 2 Bach
Well-Tempered Clavier 1 Prelude 3 Bach
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PSHoboken8 Movement 2 Haydn
PSHoboken8 Movement 3 Haydn
PSHoboken8 Movement 4 Haydn

Prelude No 3 Chopin
Prelude No 4 Chopin
Prelude No 5 Chopin
Prelude No 9 Chopin

Well-Tempered Clavier 2 Prelude 3 Bach
Well-Tempered Clavier 2 Fugue 3 Bach
Well-Tempered Clavier 1 Fugue 1 Bach
Well-Tempered Clavier 1 Fugue 2 Bach

Piano Sonata 16 Movement 3 Mozart
Piano Sonata 12 Movement 2 Mozart

Prelude No 10 Chopin
Prelude No 11 Chopin
Prelude No 14 Chopin
Prelude No 18 Chopin
Prelude No 20 Chopin
Prelude No 22 Chopin
Prelude No 23 Chopin

Piano Sonata 21 Movement 2 Beethoven
Piano Sonata 26 Movement 2 Beethoven

PSHoboken7 Movement 1 Haydn
PSHoboken7 Movement 2 Haydn
PSHoboken7 Movement 3 Haydn
PSHoboken9 Movement 3 Haydn

Well-Tempered Clavier 1 Fugue 3 Bach
Piano Sonata 8 Movement 2 Mozart
Piano Sonata 14 Movement 1 Beethoven

Fur Elise Beethoven

The MIDI files of the music pieces in the classical genre were obtained from the following
websites which provide free access to their content:
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1. https://www.classicalarchives.com/midi/

2. https://www.midiworld.com

3. http://www.piano-midi.de

4. http://www.kunstderfuge.co

5. http://www.bachcentral.com

C.3 Jazz Pieces

Table C.2: Jazz Pieces Used

Song Artist
Giant Steps John Coltrane
Blue Train John Coltrane
Impression John Coltrane
Nature Boy John Coltrane
Soultrane John Coltrane

Bessies Blues John Coltrane
Blues By Five John Coltrane

Body And Soul John Coltrane
My Favorite Things John Coltrane

Nutty John Coltrane
Oleo John Coltrane

Agitation Miles Davis
So What Miles Davis

Blues by Five Miles Davis
Dolores Miles Davis

Tune Up Miles Davis
Airegin Miles Davis

Bitches Brew Miles Davis
ESP Miles Davis

Orbits Miles Davis
Vierd Blues Miles Davis

Anthropology Dizzy Gillespie
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Cognac Blues Dizzy Gillespie
Hot House Dizzy Gillespie

Groovin High Dizzy Gillespie
I Fall in Love Too Easily Chet Baker

Just Friends Chet Baker
Long Ago and Far Away Chet Baker

There Will Never Be Another You Chet Baker
Blues for Alice Charlie Parker

Donna Lee Charlie Parker
Embraceable You Charlie Parker

How Deep Is the Ocean Charlie Parker
Ornithology Charlie Parker

Out of Nowhere Charlie Parker
Yardbird Suite Charlie Parker

The MIDI files for the jazz genre were obtained from the Weimar Jazz Database [53]
which is a collection of jazz solo transcriptions produced by the Jazzomat Research Project
of University of Music Franz Liszt, Weimar [52].
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