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Abstract

Soil-Structure Interaction (SSI) analysis is required in structural dynamic analysis under
seismic excitations in the current standards, and it significantly influences the Floor Re-
sponse Spectra (FRS), which are used in the safety assessment for the secondary systems in
nuclear power facilities. A direct spectra-to-spectra method is well developed to generate
FRS in fixed-base models efficiently and accurately. Thus it is necessary to address SSI effect
and integrate it into the free field motion as the seismic input for the fixed-base model.
For the fully or partly embedded nuclear power reactors, earthquake excitations come from
both bottom foundations and external structures. In this case, the foundations and external
structures behave like a foundation system with seismic input at multiple supporting points.

The objective of this study is to develop an approach to address SSI effect considering
the foundation flexibility and spatially varying ground motions. A substructure method
is analytically derived to convert the three dimensional free field motion, i.e., Foundation
Input Response Spectra (FIRS) given by site response analysis, into Foundation Level Input
Response Spectra (FLIRS). The latter can be used as the seismic input in the direct spectra-
to-spectra method to generate FRS considering SSI. Only FIRS, dynamic soil stiffness,
mass matrix, geometry of the structure, and basic modal information, including natural
frequencies and modal shapes, are needed. Both flexible and rigid foundations are con-
sidered under the excitation of spatially varying ground motions or uniform seismic input.
Furthermore, parametric study is performed to examine the influence of the foundation
flexibility on SSI analysis and the resultant FRS. It is observed that FLIRS and FRS are am-
plified significantly due to SSI effect. This amplification is more severe and the associated
frequency is smaller with a more flexible foundation.

A semi-analytical method is proposed to generate dynamic soil stiffness of rigid founda-
tions and flexible foundations. Given the soil properties, the Green’s influence function is
formulated analytically from wave propagation functions. And Boundary Element Method
(BEM) is employed to determine the dynamic stiffness of foundations with arbitrary shapes.
The resultant 6M x6M dynamic soil stiffness matrix is then used as the generalized soil

springs in the proposed substructure method.
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This study presents a fully probabilistic method for addressing the uncertainty resulting
from seismic input and soil properties in the generation of FRS. A large number of FLIRS
are developed by Monte Carlo simulations, which enables the uncertainty to be propagated
from site response analysis to SSI analysis consistently. Then a uniform hazard FLIRS is
obtained. Compared to the approach specified in current codes, the uniform hazard FRS
lowered the seismic demand significantly to provide a more economical solution for seismic
design. Meanwhile, it overcomes the underestimation of FRS by current method in some
frequency range. A realistic and continuous distribution is proposed for shear wave velocity
(Vs) to replace the current application. Sensitivity study is performed on the correlation
coefficient and the standard derivation of V. The results show that these two parameters
do not influence much in uncertainty analysis.

Based on the proposed method, SSI analysis is performed in a realistic model to develop
uniform hazard FLIRS for performance-based seismic design, and the direct spectra-to-

spectra method is extended to generate safe and economical FRS considering SSI.
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Introduction

Earthquakes are natural disaster influencing human life and properties significantly. An
earthquake can disrupt the structure directly by causing a structure failure or shaking the
ground supporting the structure, and damage the secondary system as shown in Figure
1.1. Nuclear power plants (NPPs) design pays more attention to earthquake excitation
than other types of structures because of the severe consequence. After the accident of
Fukushima Daiichi nuclear power plant in Japan caused by Tohoku Earthquake in 2011, the
seismic design of NPPs raised more awareness in North America. Currently, 15 percent of
the total electrical power comes from 19 NPPs in Canada, and 19 percent from 104 NPPs
in the USA. In order to guarantee their safety, the response of NPPs under earthquake
excitation need to be well researched to prevent their damage or failure.

Secondary systems, including electrical systems, mechanical systems, control systems,
etc, are structures, systems and components (SSCs) which are attached to or supported
by primary systems, such as buildings. During earthquakes, secondary systems are even
more vulnerable than primary systems in NPPs. The failure of secondary systems not only
causes economic loss, but also threats human lives (Bozorgnia and Bertero, 2004; Villaverde,
2009). The safety assessment of secondary systems in an earthquake relies on the seismic
excitations at its supporters which is determined by both the ground motions and the
dynamic characteristics of primary structures. Thus it is necessary to develop practical and

accurate excitations for the seismic design of secondary systems.



Figure 1.1 Damaged primary structures and secondary system

In the seismic analysis, it is common to assume that the input ground motion at the
base is equal to the free-field ground motion without structure. For structures founded
on rigid rock, this assumption is justified since the high stiffness of the base can constrain
the structure motion to be close to the free-field one as the left structure in Figure 1.2.
For structures supported on soft soil or with large mass, however, the ground motion
is different from the free-field one due to the change in geometry and properties of the
wave propagation medium caused by the structure. In this case, the structure suffers both
translational and rotational ground motions as the right structure in Figure 1.2. This
effect is called Soil-Structure Interaction (SSI) defined as the interdependence between a
structure and its foundation soil (Villaverde, 2009). That is, the dependence of the dynamic

response of a structure on the dynamic response of its supporting foundation soil and



Figure 1.2 [llustration of soil-structure interaction

the dependence of the dynamic response of a soil deposit on the dynamic response of the
structure supported by it.

The SSI effect could be important for stiff and massive structures such as NPPs. SSI
analysis is mandatory for safety-related secondary systems in nuclear structures by ASCE
(2000). Based on SSI analysis, the resultant ground motion integrated with local site
effect and SSI effect will be obtained as a basis for the structural analysis and to analyze
secondary design. It can also be used in Seismic Probability Risk Assessment (SPRA) for
seismic safety evaluation of existing power stations, and seismic design of new-built plants.
Besides, the current research mainly focus on the SSI analysis with a rigid foundation.
For Small Modular Rectors (SMRs) fully or partly embedded in the site, the earthquake
excitation comes from both the bottom foundation and the external structure of SMRs. In
this case, the external structure and the foundation perform like a structure-foundation
system undergoing seismic input at multiple points. Therefore, it is necessary to develop
a reliable and efficient approach to provide the seismic input considering SSI effect with

flexible foundation systems for seismic design of secondary systems.



1.1 GENERATION OF FLOOR RESPONSE SPECTRA
1.1 Generation of Floor Response Spectra

In secondary systems, there are a large number of SSCs, and their stiffness and mass are
relatively smaller than the primary structure. It is computationally expensive to model
the primary structure and secondary system together, and some problems, such as ill-
conditioning of the stiffness matrix, may arise in the mathematical model of entire structure
systems. Since the interaction between secondary systems and their supporting structures
are negligible due to the relatively small mass of SSCs, a decoupled approach, floor response
spectrum approach, is usually used in seismic response analysis: secondary systems and
primary structures are analyzed separately (ASCE, 1978).

In floor response spectrum approach, the dynamic analysis is firstly performed for the
primary structure without considering the secondary system under seismic excitation. The
response of the supporting structure, such as floors and walls where secondary systems are
attached, as Floor Response Spectra (FRS). Then FRS is utilized as the seismic input for SSCs
analysis. In this decoupled approach, the change of SSCs only leads to reanalyze secondary
systems, and dose not influence the primary structure, which improves the efficiency of
engineering design.

Two methods are proposed to generate FRS: time history analyses and a direct spectra-

to-spectra method as shown in Figure 1.3 (ASCE, 2000).

U In the time history method, the spectrum-compatible time history with a target
Ground Response Spectra (GRS) is taken as the seismic input for the primary struc-
ture. Then the time histories at the desired location is obtained for the seismic design
of secondary systems. Since the real ground motion is unavailable, and the input time
history is artificial, there are significant variabilities in the generation of FRS by this
method (Chen and Soong, 1988; Singh, 1988; Villaverde, 1997). In order to provide re-
liable FRS, a large number of spectrum-compatible time histories are needed, which

means the variability of FRS is involved and it is time-consuming.

U For direct spectra-to-spectra method, GRS is considered as the seismic input directly.

FRS is obtained analytically based on the input GRS and the modal information of the



1.1 GENERATION OF FLOOR RESPONSE SPECTRA

P T TE MN EE EN EE NN EE NN R NN R RN SR NN EE SN R NN R RN N NN BN SN N BN N RN N SN N S R S Em A e e R e n
I 2 q 1 H 1
1 Time History Method X Direct I
1 11 -to- 1
L DOF evet SDOF Oscillator X Spectra-to-Spectra !
j YDOF system ] (1) b Method .
L 01— - 5 |
.. 1
i H (1) ! i :
1 1 ; 1
u ¢ 5 Analytical Approaches

: () *_J — — i (1) i : :
P I I
1 ! ” Response of Floor : 1 1
: - . A 4 : SDOF Oscillator :
: o )o@ uyl
1 _»1 : h T I
: : : o |
1 1 u, 1
[ I 1 —="1
1 ! 1 * 1
1 1 1 1 1
1 I 1 1 1
I : Floor Response Spectrum I O u!
1 1 —_— 1
1 1 | 1
I 1 [ 1
I 1 I O u
' » ! T
1

: : : N-DOF system :
1 I 1 1
I GRS-Compatible ! I 1
| Hime History | ' '
R Z_ j Ground Response Spectrum e 3

Figure 1.3 Time history method and direct method to generate FRS

primary structure, e.g., natural frequencies, mode shapes, and modal participation

factors. Therefore, the variability is avoided and the efficiency is high.

In the traditional direct spectra-to-spectra method, FRS can not be determined accurately
under the tuning cases, i.e., the frequency and damping ratio of a single degree-of-freedom
(SDOF) oscillator is equal to those of a SDOF supporting structure, which accounts for the
uncertainty of FRS resulting from ground motions (Li, 2015). In order to generate proba-
bilistic FRS, t-Response Spectrum (tRS) is proposed to illustrate how tuning cases influence
the uncertainty of FRS by Li (2015). The tRS represents equipment-structure resonance or
tuning corresponding to a specified GRS. Based on numerical simulations with a wide va-
riety of selected two dimensional ground motions at different sites, it is demonstrated that

tRS is almost independent on site conditions in the horizontal direction, while the influence



1.1 GENERATION OF FLOOR RESPONSE SPECTRA

of site conditions can not be neglected in the vertical direction. Therefore, a statistical
relationship between tRS and GRS is established in horizontal direction for all sites, and
vertical relationships are obtained at hard sites and soft sites, respectively. The resultant tRS
are effective for any GRS in the valid coverage, including design spectra in USNRC R.G. 1.60
and NUREG/CR-0098, UHS in Western North America (WNA). Besides, amplification
ratio method is developed to calculate tRS under seismic input with high frequency spectral
accelerations, e.g., UHS in Central and Eastern North America (CENA). With the proposed
method to generate tRS, exact FRS considering uncertainty from GRS can be obtained by
the direct spectra-to-spectra method.

A new direct spectra-to-spectra method for generating FRS in three-dimensional struc-
tures is developed by Jiang et al. (2015). In this method, seismic response of a SDOF
oscillator supported by a SDOF primary structure is derived at first, and tRS is employed

for the tuning case. Based on Random Vibration Theory (RVT), a new modal combination
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Figure 1.4 Direct method for generating FRS



1.2 SOIL-STRUCTURE INTERACTION

method for generating FRS, i.e., FRS-CQG, is then proposed to represent the correlation of
responses between SSCs and the associated primary structure with closely-spaced modes,
by which a SDOF oscillator supported by a multiple DOF primary structure is considered.
As a result, FRS can be obtained from input GRS and the modal information of primary
structures which is calculated by a typical modal analysis. The general procedure of this di-
rect spectra-to-spectra method is illustrated in Figure 1.4. In this direct spectra-to-spectra
method, accurate FRS in the perfect-tuning and near-tuning cases can be generated for
conventional Newmark-type GRS and UHS with high frequency spectral accelerations by
tRS. Through FRS-CQC combination, FRS in complex three-dimensional structures under
tri-directional seismic input can be developed with closely-spaced modes.

In this direct method, the mathematical model of structures is a fixed model which can
not deal with SSI effect. Hence, SSI analysis should be conducted to integrate the SSI effect
into GRS, which extends the direct spectra-to-spectra method to generate FRS considering

SSI.

1.2 Soil-Structure Interaction

Modern SSI analysis can be traced to 1970s (Veletsos and Wei, 1971; Luco and Westmann,
1972) starting from an equivalent single-degree-of freedom system method (Kausel, 1984).
Currently, SSI analysis are usually performed by two kinds of methods: complete method

and substructure method.

1.2.1 Complete Method

In the complete method, a part of the surrounding soil deposit called near field soil and
the structure are modeled as a single system, soil-structure system, and analyzed in one
step based on the seismic input as shown in Figure 1.5 (Wolf, 1985; Bielak and Christiano,
1984). This model is always based on the Finite Element Method (FEM), and the system is
discretized into finite elements. Since the soil deposit is actually an unbounded continuous

solid and cannot be modeled by finite elements, an artificial boundary is needed to get
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Structure

. Artificial
Far Field Boundary
Outside Seismic Input

Figure 1.5 Finite element model for SSI complete method

the near field soil separated in SSI analysis. The response of each node can be solved by
performing the finite element analysis.

The analysis of the soil-structure system can be performed in frequency domain or time
domain. For analysis in frequency domain, the input ground motion is first transformed
to frequency domain by Fourier transform. Then the response of system is obtained by
multiplying the transfer function. Based on the same transfer function, the response for
different input ground motions can be easily obtained. The frequency domain method
assumes the systems are linear and an iterative analysis is needed for nonlinear system to
get stain-compatible properties. In time domain, the response is solved by a step-by-step
integration and the nonlinear properties are considered. Since some input parameters, e.g.,
artificial boundaries, are frequency dependent, an iterative procedure is required.

When establishing the artificial boundary to make the system bounded, one needs to deal
with the reflected waves by the boundary which do not exist in actual unbounded soil. One
method to treat the reflected waves is to make them absorbed at the boundary. This kind of
boundaries is called Absorbing Boundary Condition (ABC).

The first ABC is viscous boundary. In the viscous boundary, the viscous dampers are

added to absorb the waves without any reflection. It behaves as simple dashpots and was em-
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ployed by Lysmer and Kuhlemeyer (1969). Then a model based on paraxial approximations
was developed by Clayton and Engquist (1977) for elastic wave propagation problems. Some
other models (Higdon, 1978; Higdon, 1991) relying on the same approach were proposed for
different problems. These techniques can be combined with the approach based on layers of
damping materials to eliminate the reflection on the artificial boundary. Since the viscous
boundary only deals with waves coming from a certain direction. A new boundary was
proposed to absorb reflected waves in up to 2 directions by Higdon (1990). Then Collino
(1993) developed the first high order ABC which increased the accuracy of ABC and was
able to be used in numerical simulations (Givoli, 2004). The high order ABC usually led
to long-time instability issues which was overcame by a new ABC proposed by Baffet et al.
(2012). The Perfectly Matched Layer (PML), which can absorb all incoming waves without
any reflection, was developed by Berenger (1994), and was applied in dynamic problems
by Basu and Chopra (2003). Compared to high order ABC, PML is more convenient to
implement in engineering domain (Rabinovich et al., 2010).

Another choice of the artificial boundary is Infinite Elements (IE). The IE was presented
by Ungless (1973) to account for radiation condition at infinite far field. This approach
combines the shape functions of the FEM framework with oscillatory decay functions
which can simulate the asymptotic behaviour. Bettess (1977) and Astley (1983) developed
different decay functions for different wave propagation problems. The main drawbacks
of this approach is that some parameters, e.g., the decay function, have to be evaluated by
analytical solutions or empirical results (Mesquita and Pavanello, 2005; Shah et al., 2011).

In the complete method, the procedures are simple, and much computational effort and

time are needed to work on the system with a large amount of degrees-of-freedom.

1.2.2 Substructure Method

In the substructure method (Gutierrez and Chopra, 1978), the structure and the soil deposit
are considered separately at first so that these two substructures can be analyzed by suitable
methods.

The coupled soil-structure model is shown in Figure 1.6. Let U, be the absolute displace-

ment vector of the superstructure while let Uy be that of the foundation. The subscripts
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g
Sto
Structure

Soil with Excavation

Figure 1.6 Coupled soil-structure model

«_ »
S

and “b” stand for the degrees-of-freedom of “structure”and “base”, respectively. The

equation of of motion for the structure is expressed by

S Sb | | Us P

— 10 (1.1)
Sts Seb| | Up Py

where Py is the load vector applied on the structure while Py is the interaction force vector

between the structure and soil. During earthquake ground motion, the structure, except

the part contacting with the soil, are not loaded, which leads to

For the soil with excavation, let §§ and US be the dynamic stiffness matrix and the
absolute displacement vector under earthquake ground motion, respectively, where the

subscript “g” stands for the soil with excavation. Py is determined by the relative displace-

ment between the foundation and the soil as

Then equation (1.5) becomes
ssosy [fu]_[ o | -
Sts StoT S8 | | U Stb Up
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In equation (1.4), the soil-structure system is characterized by the dynamic stiffness of
the structure and soil, and the ground motion on the soil-structure interface. Thus the
system is analyzed by the structure and the soil separately.

In substructure method, the analysis of structure can be conducted by FEM, which is
adequate based on the current technique. It is necessary to generate the dynamic stiffness
of soil deposit, also called soil impedance, which varies with the excitation frequency
and consists of complex values. The dynamic soil stiffness represents the constitutive
relationship between interaction forces and the relevant displacements in three translational
directions and three rotational directions at the soil-foundation interface. Then the results
of two parts are combined to get the response of the structure with input ground motions.
Starting as early as 1960s, numerous research focused on the generation of dynamic soil
stiffness (Kausel, 1984).

An integral equation approach was firstly proposed to develop the analytical solutions
of the vibration of rigid circular foundations supported by elastic half-space (Luco, 1971;
Veletsos and Wei, 1971; Veletsos and Verbic, 1973). Then this method was extended to half-
space with multiple horizontal layers by Luco (1974; 1976). And the performance of strip
foundations were considered under dynamic loads by Gazetas and Rosset (1976). After that,
the dynamic stiffness of embedment foundation with arbitrary shapes was generated for
horizontally layered half-space by a semi-analytical method (Luco and Apsel, 1983; Apsel
and Luco, 1983; Veletsos and Verbic, 1987). For this kind of method, it is computationally
expensive.

Rizzo (1967) developed the Boundary Element Method (BEM) for boundary value prob-
lems of elastostatics. In this approach, only the domain boundaries are discretized and the
number of mesh is reduced. The BEM is well-adapted to simulate unbounded domains,
and the coupling of BEM and FEM is an interesting choice to account for SSI analysis for
many researchers. The dynamic stiffness of a strip foundation, two dimensional foundation,
resting on viscoelastic half-space was derived by Abascal and Dominguez (1986). Based on
BEM, the dynamic response of three dimensional foundation-soil-foundation interaction
on layered soil site was studied by Karabalis and Mohammadi (1991). Estorff and Kausel

(1989) presented a time domain formulation of BEM. Despite much research (Estorff and

11
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Prabucki, 1990; Elleithy and Tanaka, 2003) focused on transient BEM-FEM formulations to
solve nonlinear problems, this approach can be formulated in the frequency domain as well
(Wolf and Darbre, 1984) especially for layered medium (Pak and Guzina, 1999). The main
shortcoming of BEM is that it has to consider fully populated (and possibly non-symmetric)
matrices, which leads to much computational effort for large models.

A new kind of semi-analytical method, the Scaled Boundary Finite Element Method
(SBFEM), proposed by Wolf and Song (19954; 1995B; 1996A; 1996B; 1997), is another
alternative to model the unbounded domain. This approach is based on a similarity
technique (Dasgupta, 1982), and the dynamic soil stiffness is obtained by formulating
the similarity relationships between the dynamic stiffness of the original and scaled SSI-
interface. Recently, Birk and Behnke (2012) applied the modified SBFEM to perform SSI
analysis. In this approach, only the boundaries have to be discretized and no fundamental
solution is required. It can be applied for both rigid and flexible foundations supported by
layered soil site.

The dynamic stiffness can also be obtained by numerical methods, e.g., FEM with
artificial boundaries as introduced in 1.2.1. Besides the aforementioned boundaries to
isolate the near field, the consistent boundary is developed based on the Thin Layer Method
(TLM) (Waas, 1972; Lysmer and Waas, 1972; Kausel et al., 1975;). At this kind of boundary;,
the interaction forces on the boundary are the same as the ones imposed by the far field,
which yields the effect as the waves are transmitted to far field. The weakness of consistent
boundary is that it can only focus on plane strain and symmetric cases.

In the substructure method, the different techniques, i.e., numerical or analytical
method, are allowable for the structure and soil, and it requires less computational effort
and time to perform the SSI analysis. Once the analysis of each substructure are finished,

further modification only leads to repeated computation of the modified part.

1.3 Local Site Response on Seismic Analysis

The topography and soil properties can significantly affect characteristics of the earthquake

ground motions propagating in the soil deposit. When earthquake ground motions propa-

12
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gate in a soil deposit, the flexibility of the site makes it vibrate and the motions can be greatly
amplified due to resonant effects. The extent of this influence depends on the inherent stiff-
ness, density, and damping characteristics of the site. On the other hand, the soil dynamic
properties are changed due to the soil strain caused by earthquake. The local site response
determines the free field motion and strain-compatible soil properties. The former is the
seismic input for SSI analysis, and the latter is the essential information for the calculation
of dynamic soil stiffness. Therefore, site response analysis is a precursor to SSI analysis.

To evaluate the effect of local site on earthquake waves, two types of methods to describe
the soil site effect are used: Equivalent-Linear (EL) site response analysis and nonlinear

(NL) site response analysis.

1.3.1 Equivalent Linear Site Response Analysis

In EL method (Seed and Idress, 1969), site response analysis is performed with one di-
mensional vertically propagating shear waves in horizontally layered halfspace. The model
shows that shear modulus (G) and the damping ratio (¢) of soil deposit are shear strain-
dependent, and an iterative procedure is established to obtain the equivalent soil properties.

The EL method analyzes the earthquake wave propagation through the soil deposit in
frequency domain, and assumes that the G and ¢ have constant values during the ground
motion. This method starts with initial G and ¢ for each soil layer. Linear-elastic analysis
is performed and the effective shear strains for soil layers are obtained. Based on the shear
strain-dependent normalized modulus (G/G,,,,) reduction curves and damping curves, the
new G and ¢ are evaluated. This process is repeated until the stain-compatible properties
are consistent with the input properties.

This method requires a few input parameters and small computational effort. Several
equivalent-linear computer codes are available, such as SHAKE (Schnabel et al., 1972),

SHAKE91 (Idriss and Sun, 1992), and Deepsoil (Hashash and Park, 2002).

1.3.2 Nonlinear Site Response Analysis

In NL analysis, the nonlinear behavior of soil during cyclic ground motions and the effect

of pwp generation on soil properties can be represented. These two factors influence the
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soil site significantly when high seismicity and soft soils are present. NL analysis solves the
ground motion propagating the soil deposit in time domain. Two types of NL analysis are
used including nonlinear total stress analysis and nonlinear analysis with pwp change.

In total stress analysis, the soil deposit is discretized into lumped mass or finite element.

The equation of motion is written as
Mii + Cu + Ku = —Mii,, (1.5)

where M, C, and K are the mass matrix, damping matrix, and stiffness matrix, respectively.
i, U, and u are the displacements, velocities, and accelerations of the mass relative to the
bedrock, respectively. i, is the earthquake ground acceleration. The ground motion after
propagating in the soil deposit can be obtained by solving equation (1.5). The influence of
pwp is neglected in this analysis.

For the nonlinear analysis with pwp change, the influence of pwp is taken into con-
sideration in two ways: semi-empirical pwp generation models and advanced effective-
stress-based models. In the former models, pwp generation is calculated by semi-empirical
models, in which the most widely used one is Modified Konder and Zelasko (MKZ) model
by Matasovic and Vucetic (1993; 1995). In the advanced effective-stress-based models, the
pwp is computed as the difference between effective-stresses and total stresses. Then the
effect of pwp generation is included when calculating K in equation (1.5), and the required

ground motion is obtained by performing the total stress analysis.

1.4 Objectives of Proposed Research

The objective of this study is to develop an approach accounting for SSI effect accurately

and efficiently. The specific objectives of this study include:

O The frequency-dependent dynamic soil stiffness is generated for flexible foundations,

which bridges the site response analysis and SSI analysis.

O The uncertainty in earthquake excitations and soil properties are considered con-
sistently in site response analysis and SSI analysis to provide site-structure specific

amplification factors for performance-based seismic design.
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O A substructure method is developed to conduct SSI analysis considering flexible
foundations under spatially varying ground motions, which combines the SSI effect
with the fixed-base model in the generation of FRS by the direct spectra-to-spectra
method.

1.5 Organization of This Study

In Chapter 2, the RVT-based one dimensional EL site response analysis is reviewed. Based
on random vibration theory, the fourier response spectrum is obtained from acceleration
response spectrum to enable site response analysis to be performed in frequency domain.
In order to address the local site effect, the transfer function from bedrock motion to the
ground motion at any level is derived, which provides the free field motion for SSI analysis.
Meanwhile, the strain compatible soil properties is generated to be further used in the
calculation of dynamic soil stiffness.

In Chapter 3, the substructure method to address SSI effect with rigid foundations
is reviewed. Based on the soil stiffness and structural modal information, a transfer
function is derived to convert the three dimensional free-field motion into FLIRS, which
is then used as the seismic input to the fixed-base model to generate FRS using the direct
spectra-to-spectra method. The frequency dependant complex soil stiftness is utilized in
the application of this substructure method.

In Chapter 4, a semi-analytical method is proposed to generate dynamic soil stiffness.
In the horizontally layered soil model, the three dimensional wave propagation function is
derived based on the boundary conditions. The flexibility functions are then developed
representing the relationship between point loads and the associated displacements in k
domain. According to Fourier series and Bessel transform pair, the frequency dependent
stiffness matrix under a unit load is obtained in frequency domain, which is then utilized to
develop the dynamic soil stiffness under rigid foundations or flexible foundations by BEM.
The effect of dynamic soil stiffness on the resultant FLIRS and FRS is studied illustrating its

significance in seismic design.
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In Chapter 5, a fully probabilistic method is proposed to perform site response analysis
and SSI analysis addressing the uncertainty resulting from earthquake excitations and soil
properties. Based on the proposed substructure method, the uncertainty of seismic input
at bedrock, the variability of soil parameters, and the nonlinear behavior of soil properties
are comprehensively integrated into SSI analysis to develop amplification factors which is
employed to generate uniform hazard FLIRS with a specific annual exceedance probability.
According to the current treatment of epistemic and aleatory uncertainty in shear wave
velocity profiles, a continuous and realistic distribution of shear wave velocities is proposed.
The correlation coefficient in adjacent soil layers and standard derivation of the distribution
is studied. The resultant uniform hazard FLIRS is utilized to develop FRS which leads to a
safe and economical demand in seismic design.

In Chapter 6, a methodology is developed to account for the effect of soil-structure in-
teraction with flexible foundations under spatially varying ground motions. The structural
response of a three-dimensional structure under multi-point excitations, three transla-
tional and three rotational directions at each point, is derived, and is expressed by the
modal information of the structure and coupled stiffness matrix between structures and
foundations. Then the transfer matrix, which is determined by modal information of the
structure-foundation system and the generalized soil springs, is developed to modify FIRS
by SSI effect. The modified seismic input, FLIRS, are then considered as the input at multi-
ple points of the fixed-base structure to generate FRS through the direct spectra-to-spectra
method. The parametric study is performed to demonstrate the influence of foundation
flexibility on FLIRS and FRS.

In Chapter 7, some conclusions from this study are presented, and directions for further

research are proposed.
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Seismic Site Response Analysis

Seismic site response analysis has to be performed to obtain the dynamic properties of the
site and develop the modified ground motions due to the propagation of shear waves in the
soil deposit. Therefore, seismic site response plays a significant role in seismic design and
provides strain-compatible soil properties and ground motions at a specific elevation level
to conduct Soil-Structure Interaction (SSI) analysis.

The site response analysis is generally conducted based on one-dimensional elastic wave
propagation in the soil column, incorporating the nonlinear effects of the soil deposit. The

procedure includes two steps:
[ Development of the input ground motions at reference hard rock.

O Calculation of transfer functions and strain-compatible soil properties in the geotech-

nical model.

2.1 Developing Input Ground Motions
2.1.1 Stochastic Ground Motion Model

A theoretical-empirical modelling method is employed to estimate ground motion ampli-
tudes in Eastern North America (ENA) (EPRI TR-102293-V1, EPRI, 19934). This approach
uses a stochastic ground motion model, which has been validated using data largely from

California, where instrumental records are available over a wide range of magnitudes and
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distances (McGuire et al., 1984), to estimate ground motion amplitudes in the frequency
band of interest to engineering analysis and design.

For sites in the ENA, a point-source stochastic model is used to determine the total
Fourier Amplitude Spectrum (FAS) Fp(M,, R, f) of ground motion displacement due to
earthquake sources

Fp(My, R, f) = E(My, ) - P(R, ) - G(f), (2.1)

where E(M,, f) is the Brune point-source spectrum, P(R, f) represents the propagation

path effects, and G(f) is the modification due to site effects. M, is seismic moment
MO — 101.5 (M+10.7), (22)

where M is the moment magnitude. R is hypocenter distance determined by

R=/RZ;+d> (2.3)

where R.; is the epicenter distance, and d is the source depth (the perpendicular distance
between the source and generic hard rock surface).
E(M,, f) can be expressed as (Boore, 2003)

Rgy VF

EM,, f) = CM,S(f), C= m’

(2.4)

where Ry = 0.55 is the shear-wave radiation pattern average over the focal sphere, V=1 /ﬁ
is the partition of total shear-wave energy into two horizontal components, F=2 is the ef-
fect of the free surface, p, and B, are the density and shear-wave velocity in the vicinity
of the earthquake source, and R,=1 km is the reference distance. For sites in ENA,
Mid-Continent Crustal Model with p,=2.71g/cm? and B;=3.52 km/s in Table B-5 of
EPRI-1025287 is used.

S(f) is the source spectrum, which can be obtained from a single-corner frequency

source model as

S(f) = fo=4.9x10° B, (Aa/M,) '/, (2.5)

1
L+ (f/f)*

or a empirical double-corner frequency source model

S(f) = S, (f) xS, (), (2.6)
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2.1 DEVELOPING INPUT GROUND MOTIONS

where f is frequency in Hz, f_ is the corner frequency, and Ao is the stress drop, which is
taken as 110 bars in Table B-4 of EPRI-1025287. S,(f) and Sy (f) are given by Boore (2003).
Propagation path effects P(R, f) is given by

PR, f) = Z(R) { /R } (2.7)
5 = - exX — N .
Pl ems,
where Z(R) is geometric spreading function, given in Boore (2003),
R
-9, R<R,,
Z(R) = (2.8)

R \?i
Z(Rg(f), R, <R<R,, ,, i=1,2,...,n.

Three-segment geometric spreading operator is usually used in GMPEs in ENA. For ex-

ample, in Atkinson and Boore (1995), Ry=1 km, R; =70 km, p, =0, R, =130 km, and
p,=0.5 are used. Seismic quality factor Q(f) is given by

QN =Q - f". (2.9)

For sites in ENA, Q, =670 and n=1/3 in Tables B-4 and B-7 of EPRI-1025287 are usually
used.

Site effects G(f) is given by

G(f) = A(H)-D(f), (2.10)

where A(f) is amplification factor relative to source depth velocity conditions; in practice,
amplification factors given in Table 2.1 are usually used (Table 4, Campbell, 2003). D(f)
accounts for the path-independent loss of high-frequency energy in ground motions and

can be obtained by (EPRI-1025287)

D(f) = e ™, (2.11)

where the diminution parameter «,=0.006 is used for sites in ENA. An alternative f_ ..

filter (Boore, 2003),
81—1/2
D(f) = [14 (f/ fuma)’] " (2.12)
can be combined with (2.11), and fax =50 Hz may be used for sites in ENA.
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2.1 DEVELOPING INPUT GROUND MOTIONS

Table 2.1  Site amplification factors from the ENA stochastic model.

Frequency f(Hz) | 0.1 | 0.2]0.3 05|09 (1.25|1.8|3.05.0]8.0|14.0] 100

Amplification A(f) [1.02]1.03|1.05|1.07(1.09|1.11|1.12|1.13| 1.14|1.15| 1.15 | 1.15

Bazzurro and Cornell (2004) demonstrate that soil amplification is virtually indepen-
dent of earthquake magnitude M except when frequencies f are less than initial resonant
frequency f,. of soil column. A sufficient depth is required to be taken so that f, <0.5
Hz to ensure that site response has no influence on frequencies greater than 0.5 Hz (EPRI-
1025287). Furthermore, sensitivity analysis also shows that the difference in the derived
amplification functions for different earthquake magnitudes is minor. Hence, in practice, a
representative earthquake magnitude is obtained from seismic hazard deaggregation (SHD)
with a mean AEP of 1x 10~%. If the representative earthquake magnitude is very close to
M6.5, then M 6.5 is used; otherwise, the actual representative earthquake magnitude is
used.

Given a pair of earthquake magnitude M and hypocenter distance R, and seismological

parameters, FAS at reference hard rock can be obtained from equation (2.1).

2.1.2 Developing Acceleration Response Spectra

Having obtained FAS, Random Vibration Theory (RVT) is often employed to obtain Accel-
eration Response Spectra (ARS) (Kottke et al., 2013).

Consider a single degree-of-freedom (SDOF) oscillator (with circular frequency w, and
damping ratio ¢,) that is mounted on the reference hard rock and under the excitation
of reference hard rock motion in terms of FAS Fa (M, R,w). The FAS of the absolute

acceleration ii(t) =X(t) 4 i, (f) is
| U(w)| = of [H(w)| FaMy, R, w). (2.13)

H(w) is complex frequency response function with respect to base excitation of the SDOF

oscillator given by
1

(0§ —w?) +12¢,wy o '

H(w) =
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Applying the Parseval’s theorem, the mean-square response of the absolute acceleration is

1 Trus
2. = / ii*(Hdt =
0

TRMS

1 1 / 4 2 2
- — wy | H(w)|” TX(My, R, w)dw
T'ems 27 Jo 0‘ ‘ A0

1 (0.8]
= T_/o f04|H(f)}2Tj(MO,R,f)df, (2.14)

in which
1
(fE—1 +i28fof

By considering the responses of the oscillator and using results from time-domain numer-

H(f) =

ical simulations, Boore and Joyner (1984) proposed to determine the root-mean-square

duration Tgys as

K" Teom
Trms = GM+T0<K;1+O[)’ K = > (2.15)

where To=1/(w,¢,) is the duration of the SDOF oscillator, and Tgy=Ts+T; is the
duration of ground motion. Tyys approaches Tgy and Tgy+ T, respectively, for small
and large earthquakes. Ts =1/ f. is the source duration with f. being the corner frequency
obtained from equation (2.5). T, is path duration given by, for sites in ENA (Atkinson and
Boore, 2006),

0, R<10,

0.16 (R—10), 10 < R< 70,

Tp = | (2.16)
9.6 —0.03(R—70), 70 <R<130,

7.8 +0.04(R—130), R > 130.

In equation (2.15), the constants n=3 and o =1/3 are used by Boore (2003). Liu and

Pezeshk (1999) suggest that n=2 and « is taken as

)\’2 1/2
o= [2n<1 S— )] , (2.17)
AOAZ

xk=/0 (2nf)’<f04}H(f)\sz(MO,R,f)dﬁ k=0,1,.... (2.18)

where
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Having obtained the root-mean-square response iirys from equation (2.14), peak accel-

eration response |ii|,, or ARS can be determined through the peak factor TPF
Spa(fo) = liilmax & PF - igus. (2.19)

In Cartwright and Longuet-Higgins (1956) peak factor model, the expected “PF is calculated
by

+00
PF = ﬁ/ {1 —[1- 4e—22]NE}dz, (2.20)
0
in which N is the number of extrema given as (Boore, 1983)
T, A
Ny = % [ 4 (2.21)
T Ay

To cover the range of loading levels, a minimum of eleven expected (median) peak accel-
eration values at reference hard rock (usually taken at f; =100 Hz) are needed to span from
0.01g to 1.50g (i.e., 0.01g, 0.05g, 0.10g, 0.20g, 0.30g, 0.40g, 0.50g, 0.75g, 1.00g, 1.25g,
1.50g). Given the earthquake magnitude M and seismological parameters, changing the

hypocenter distance R can result in the ARS with these eleven peak acceleration values.

2.1.3 Developing Input Ground Motions in Frequency Domain

When ARS is given in Section 2.1.2, input ground motions at reference hard rock can be
determined in frequency-domain (Kottke et al., 2013).

An Inverse Random Vibration Theory (IRVT) method is applied to convert ARS to FAS,
which are used as the input ground motions at reference hard rock. The IRVT technique
proposed by Gasparini and Vanmarcke (1976) and further developed by Rathje and Kottke
(2008) gives the square of FAS at f,, of an SDOF oscillator (with frequency f,, and damping

ratio ;) as

Trws  Sh fo
Ty ~ o ———| 2= B [MnpPey] e
fo fHHO | Af = f 0

in which $,(f,) is the target ARS obtained from equation (2.19). It can be shown that

T _ 7
4§0f§ 4éﬂO .

/0 1o \H(f)lzdf =fo- (2.23)
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Hence, equation (2.22) can be simplified as

T~ — [T‘;MS ShUo 3 / FI(S) df] (2.24)
(a5 —1)

To solve for FAS, equation (2.24) is applied first to determine F(f,)) at a sufficient low

frequency, e.g., f,=0.01 Hz. At this low frequency, the integral in equation (2.24) is

assumed to be zero. The peak factor PF is assumed to be a preset value, e.g., PF =2.5.

Having obtained F(f,)) at 0.01 Hz, FAS values at frequency f, @ i>1, can be determined

by
B ~ — ! {TRZMS_‘SA(f o) Xi:TZ (). [ 00 _ gk 1>]}. (2.25)
fo (m - 1)

The accuracy of the estimated FAS Fy(f,) is improved iteratively by comparing the ARS
SA""(f,) determined from the estimated FAS Fa(f,)) using the IRVT technique and the

target ARS S, (f):

1. Initial FAS TA( éi)), i=0, is determined by equations (2.24) and (2.25).

2. Calculate the ARS S)V"(f,)) associated with the initial FAS using the RVT presented in
Section 2.1.2, i.e., equations (2.13) and (2.18).

3. Determine the correction factor by

Salfp)
RVT ( fO)

Multiplying the FAS by “(f,) results in a new FAS.

O(fy) = (2.26)

4. Based on the new FAS, new peak factor ‘PF can be obtained from equations (2.17) and
(2.20); the new ARS S{V"(f,) is then determined using equations (2.13) and (2.18).

5. Steps 3 and 4 are repeated until one of following conditions is met:
e apreset maximum number of iterations (e.g., 30) is reached;

e the absolute error of root-mean-square response between |ii|~' corresponding to

max
SA""(f,)» determined using equations (2.13), and |ii| ., corresponding to S,(f,) is

less than a prespecified tolerance (e.g., 0.005);
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e change in the error of root-mean-square response is less than a prespecified value

(e.g., 0.001).

2.2 Addressing Local Site Effect

Given the input ground motion at bedrock, site response analysis is performed in frequency
domain to evaluate the local site effect based on the equivalent-linear method given by
Schnabel et al. (1972). The FAS at bedrock is multiplied by the transfer function to generate
FAS at each layer. Then ARS can be obtained by 2.1.2. In site response analysis, the
soil deposit is considered as a one-dimensional continuous model characterized by the layer
thickness (H), density ( p ), shear wave velocity ( V), shear modulus ( G),and damping ratio
(¢). The nonlinear effect of shear modulus and damping ratio is taken into consideration

by an equivalent linearization technique, i.e., an iteration process.

2.2.1 Transfer Function in Site Response Analysis

The displacement u in a single layer caused by bedrock motion with frequency w can be
expressed as

u(z,t) = [A exp(ikz) + Bexp(—ikz)] exp(iwt), (2.27)

where A and B represent the amplitudes of waves traveling upward and downward, re-
spectively, z is the depth in the layer ranging from 0 to H, k is the wave number defined

as

and Vi * is the complex shear wave velocity as
Ve = Ve/(1 4 220).
According to equation (2.27), the shear stress can be obtained as
1(z,t) = G*g—: = ikG*[A exp(ikz) — B exp(—ikz)] exp(iwt), (2.28)
where G* is the complex shear modulus calculated by
G* = G(1 4 2¢1i).
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2.2 ADDRESSING LOCAL SITE EFFECT

Since the displacement and the shear stress are the same in two layers at their interface,
one obtains

Uil (0’ t) = Uj (Hi’ t)) (2-29)
7i4+1(0, ) = 7 (H;, ), (2.30)

in which i represents the number of soil layers ranging from 1 to n, and n is total number of
soil layers.

Based on equations (2.27) and (2.28), equations (2.29) and (2.30) can be rewritten as
Ai+1 + Biy1 = Ajexp(ikH;) + B; exp(—ikH;), (2.31)
k,‘+1G;:_1(Ai+1 — Bit1) = k,’GE‘< [A;exp(ikH;) — B; exp(—ikH;)]. (2.32)

Solving equations (2.31) and (2.32) yields

A,’ . Bi .
Air = ?(1 + «;) exp(ikH;) + E(l — ;) exp(—ikH,), (2.33)

Aj . B; :
Biy1 = ?(1 — o) exp(ikH;) + E(l + «;) exp(—ikH;), (2.34)

where « is equal to
kG
o= ——0"—.
kiy1Gip,

At the free surface, i.e., i = 1 and z = 0, the shear stress should be vanished. This leads

to
71(0,¢) = ileiI< [A; — B] exp(iwt) =0, (2.35)
which resultsin A; = B;.

By performing a recursive process on equations (2.33) and (2.34) and introducing A; =

By, the amplitudes in the ith layer can be expressed as
A = ai(w)Ay, (2.36)

B; = bj(w)A;. (2.37)
Then transfer function from the top of jth layer to the top of ith layer is

ui(0,1)  (A; + Bj) exp(iwt)  a;+ b;

H:(w) = — = .
(@) uj(0,t)  (Aj+ By exp(iwt)  aj + bj

(2.38)
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2.3 SUMMARY

Particularly, the transfer function from the bedrock motion to the free surface is
u1(0,t) (A1 + By)exp(iot) 2
un(0,8)  (An+ Bp) exp(iot)  an+ by’

If the bedrock is considered as a outcrop, i.e., bedrock is not influenced by the soil

Hip(w) =

(2.39)

deposit, the amplitudes of the upward and downward waver are the same, which means

A,, = B,,. The transfer function (2.39) becomes

Hyp(w) = i. (2.40)

ap

Finally, based on the input FAS and soil parameters, the FAS at any depth can be
calculated by equations (2.36) to (2.40).

2.2.2 Treatment of Soil Nonlinearity

Under severe ground motions, the shear strain of soil is high, which leads to a nonlinear
stress-strain behavior in soils. In this case, G and ¢ vary with the shear strain of soil.
For example, the curves showing nonlinear soil properties in EPRI TR-102293-V2 (EPRI,
1993B) are shown in Figure 2.1.

The soil nonlinearity is considered by an equivalent linear method in frequency domain.
In this technique, G and ¢ are assumed to be constant in the analysis. Initially, G and ¢ are

taken as low-strain values. Then the shear strain can be obtained as
0
y(z,t) = 8_u = ik[A exp(ikz) — Bexp(—ikz)] exp(iwt). (2.41)
z

Based on the resultant strain, new G and ¢ are obtained from the shear modulus and
hysteretic damping curves. This process is performed repeatedly until G and ¢ become
stable, i.e., the difference of them in successive iterations is smaller than 1%.

As a result, the ground motion at free field and strain-compatible soil properties are

determined.

2.3 Summary

In this chapter, the methodology of seismic site response analysis, including generation of
input motions, the transfer function, and the treatment of nonlinearity in soil is presented.

Some conclusions are obtained:
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2.3 SUMMARY
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Figure 2.1 Shear modulus and hysteretic damping curves for cohesionless soil

O The ground motion is modified during the propagation from bedrock to free field.
[ Due to the ground motion, the soil properties vary with the resultant soil strains.

Strain-compatible soil properties and the site-specific free filed motion are obtained,
which are essential for the calculation of dynamic soil stiffness and the conduction SSI

analysis.
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Soil-Structure Interaction Analysis with
Rigid Foundation

Since the presence of structure in a soil deposit and the interaction between soil and
structure, the dynamic response of a soil deposit is different from the free field and response
of structure is different from that with fixed-base. The Floor Response Spectra (FRS) vary
significantly compared to the fixed-base model (Jiang, 2016). A direct spectra-to-spectra
method have recently developed by Jiang et al. (2015) for fixed-base structures. The effect
of Soil-Structure Interaction (SSI) cannot be neglected for soil site. In this Chapter, the
substructure method for Soil-Structure Interaction (SSI) analysis in Jiang et al. (2015) is
reviewed, and extended to perform with frequency dependent soil stiffness. Foundation
Level Input Response Spectra (FLIRS) is generated by combining SSI effect into free field
motion, so that the direct spectra-to-spectra method for generating FRS can be applied for
structures founded on soil.

Based on the modal information of structures, the structural response is obtained under
the seismic input at the foundation for the fixed-base model. Then the equilibrium equa-
tions are established for structure nodes and the entire structure-foundation system, which
makes it possible to get the structural response from the free field motion. By eliminating
the structural response, a transfer function bridging the free field motion and fixed-base
motion is determined. Finally, the modification factor from Foundation Input Response

Spectra (FIRS) to FLIRS is calculated by random vibration theory.
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3.1 SUBSTRUCTURE METHOD

3.1 Substructure Method
3.1.1 Substructure Model for Rigid Foundation

In many engineering applications, such as in nuclear power plants, the foundations can be
assumed to be rigid. In this case, the free-field earthquake excitation is applied at only one
node O on the foundation. The coupled soil-structure model is shown in Figure 3.1. Let
U, and U, be amplitudes of the absolute displacement vectors of the superstructure and

« »
S

foundation, respectively, where the subscripts “s” and “O” stand for the degrees-of-freedom
of “structure” and “base” (or boundary of soil-structure interface), respectively. The

equation of of motion for the structure is expressed by

S S

S So U, _ P, ’ G3.1)

Sos Soo] | Vo Po
where P is the amplitude vector of the load applied on the nodes of the structure, and
Po is the amplitude vector of the interaction forces between the structure and soil. For
earthquake excitation, the nodes of the structure not in contact with the soil are not loaded,

i.e.,, P, =0, and hence

S3U, + 85Uy = 0. (3.2)
For the soil with excavation, let S5, and Uj be the dynamic stiffness matrix and the
amplitudes of absolute displacement vector under earthquake ground motion, respectively,
where the subscript “g” stands for the soil with excavation. The interaction forces of the
soil depend on the relative displacement between the foundation (base) and the soil at the

interface, i.e.,

Then equation (3.1) becomes
Ssss SsSO Us _ 0 . ( 3 4)
Sos So0o+Sc0 | | Yo S60Uo

In equation (3.4), the earthquake excitation is characterized by U§, which is the motion
of the node on the soil-structure interface of the soil with excavation. It is desirable to

replace Ugj by the free-field motion U} that does not depend on the excavation.
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3.1 SUBSTRUCTURE METHOD
Coupled Soil-Structure Model (Rigid Foundation)
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Figure 3.1 Coupled soil-structure model with rigid foundation

3.1.2 Free-Field Soil Model

The free-field soil can be divided into the excavated soil and the soil without excavation as
shown in Figure 3.1. Regarding the excavated soil as a “structure”, referring to the coupled

soil-structure model and equation (3.4), one has Up = U3, S8s =0, and hence S& = 860>

which is the dynamic stiffness matrix of the excavated soil; the subscript “e” stands for
excavated soil. Hence, the second block-row of equation (3.4) gives
L X
Uo
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3.1 SUBSTRUCTURE METHOD

Note that adding the excavated soil to the soil with excavation leads to the free-field
system, i.e.,

Hence, equation (3.5) can be written as
S00 U5 = S50 U5> (3.7)

where Sf, is the dynamic stiffness matrix of the free-field that is discretized at the nodes
at which the structure is inserted, and U is the free-field motion at the nodes of the soil-
structure interface. Hence, Uy is the free-field response of the soil at the foundation level;
the acceleration response spectra of ) are the Foundation Input Response Spectra (FIRS),
which can be obtain from a site response analysis of the free-field.

Using equation (3.7), equation (3.4) becomes

SS ¥ U 0
ss sO _ . (3.8)

Sos Soot+S60 | | Vo S60 Yo

S

Equation (3.8) is the equation of motion of the structure supported on a generalized spring
characterized by the dynamic stiffness matrix S5,, and the other end of the spring is
subjected to earthquake excitation U/, which is free-field response at the foundation level
(node O as shown in Figure 3.2).

Using equation (3.6), equation (3.8) can also be written as

S % u | | o 69)

Sos  (S60—860)+S00 | | Yo S60 Yo

S

For a structure with N nodes (not including the rigid foundation), each node has 6 DOF
(three translational and three rotational). The rigid foundation has one node O with 6

DOF. The dimensions of the vectors U, U, and U} are 6N, 6, and 6, respectively. The

S

dimensions of the dynamic stiffness sub-matrices of the structure Sg,

850> Soss Sop are
6NX6N, 6Nx6, 6x6N, and 6x6, respectively. The dimensions of the dynamic stiffness

sub-matrices of the soil Sf,, S§), and S§, are all 6x6.
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3.1 SUBSTRUCTURE METHOD
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Figure 3.2 Soil-spring model of SSI with rigid foundation

3.1.3 Fixed-Base Model for Rigid Foundation

If the soil is firm enough so that the structure can be considered as fixed-base as shown in
Figure 3.3, the motion of point O of the basemat is the earthquake input to the structure.

From the first block-row of equation (3.8), one has

SSU, +S5Uy =0 — U, =S"U, S"=—(53)"s, (3.10)

SS

where S™ is the dynamic stiffness matrix for fixed-base analysis, the superscript “FB”
stands for fixed-base.
In seismic analysis, rotational ground motions are not considered and only translational
ground motions are considered. Re-organize vector U; and rewrite U, as
FB
U = Uar . Uy = Yo : (3.11)

S
V) 0
$RJ 6Nx1 6x1

in which the subscripts “T” and “R” stand for translational and rotational degrees-of-
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3.1 SUBSTRUCTURE METHOD
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ﬁ

Tri-Directional UY

Foundation Level Input Response Spectra

FLIRS

Figure 3.3 Fixed-base model with rigid foundation

freedom, respectively. Re-arrange and partition S™ accordingly, one has

_[sm osm
S — , (3.12)
S SE v

in which each submatrix is of dimension 3Nx3. Equation (3.10) can be written as

Usr St Str | | Yo St Vg’
— — . (3.13)

Usr Srr Skl | O St Vg’

Multiplying the first block-row of equation (3.13) by (S2)” yields
(5270, =[(s2)"s2]Ug 6.14)

The reason for performing this manipulation is to make [(S2)7S2] a square matrix of
dimension 3x 3, the purpose of which will be clear in Section 3.1.4.

The tri-directional (translational) acceleration response spectra U§* applied at the foun-
dation of a fixed-base structure are called Foundation Level Input Response Spectra

(FLIRS), as shown in Figure 3.3. It is important to note that FLIRS are different from
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3.1 SUBSTRUCTURE METHOD

Foundation Input Response Spectra (FIRS), which are the acceleration response spectra at
the elevation of the foundation of the free-field, as illustrated in Figure 3.2.

The concept of FLIRS, which are the seismic input to fixed-base structures, is important
in seismic design and assessment of nuclear power plants. Generic design of a nuclear
power plant is based on fixed-base analysis under the tri-directional seismic excitations
represented by standard GRS, such as those in CSA N289.3 or USNRC R.G. 1.60, anchored
at a specific Peak Ground Acceleration (PGA). By comparing the site-specific FLIRS with
the standard GRS, based on which the generic nuclear power plant is designed, initial
feasibility of the generic design at the desired site can be assessed and Systems, Structures,
and Components (SSCs) that may be vulnerable can be identified.

Since the dimension of the dynamic stiffness sub-matrix S is 6Nx6N, the evaluation
of its inverse in equation (3.10) could be numerically challenging when N is large. To take
advantage of the modal properties of the structure, a modal analysis is conducted.

For a three-dimensional model of a structure with N nodes (not including rigid foun-
dation), a typical node n has six DOF: three translational DOF Up 1> Uy 2o Uy 35 and three
rotational DOF Uy 4> Uy 55 Uy 6 The structure is subjected to tri-directional seismic excita-
tions at the foundation. In nuclear industry, the structures are required to stay linear under
any exactions. So the relative displacement vector x of dimension 6N is governed by (see,

e.g.,Jiang et al., 2015)

3 . .
Mx() + Cx() + Kx() = —M ) T'iig (), (3.15)
i=1
where
X, X1 I 8i1
. i ) .
x={0 b ol g U el (3.16)
Xy X, 6 1 di6

M, G, K are, respectively, the mass, damping, and stiffness matrices of dimension 6N x 6N,
x,, is the relative displacement vector of node n, 7' is the influence vector of the seismic

excitation in direction i, and 81.1. denotes the Kronecker delta function.
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3.1 SUBSTRUCTURE METHOD

When considering the rotational components of the excitations, equation (3.15) can be
written as

Mx(7) + Cx(¢) + Kx(t) = —MTiiy(1), (3.17)
where node O is at the rigid foundation, and
I=[1'" T T 1T 1°,  iip0 = {ib, i, i, 650, 630, G50}

Here 71! is defined in equation (3.16) for i=1, 2, 3, and

r r) 3

2 2 2

r r r
74:< 1 »’ 75:4 2 ’, 76:4 3 >,

e ) ey
0 En_éo _()_/n_)_/o)

rT:4 Yn=Yo = rg: _(xn_xo) = r?:« 0 =
1 0 0
1 0

0 0 1

where X, y,, and z, are the coordinates of the nth node while X, y), and z, represent the

coordinates of Node O in a Cartesian coordinate system.

Letting x(f) =Xe'®* and u,(H=1U, e'®!, equations (3.17) becomes
(—0*M+iwC+K)X = 0*MTUj,. (3.18)

Substituting X = ®Q and multiplying ®” from the left, where @ is the modal matrix, lead
to

(—’®"M® +iw® CP® + ®'K®)Q = 0’ ®"MTU,,. (3.19)

If the modal shapes are normalized such that ®’M® = I, applying the orthogonality yields

diag{ —?® + i2¢, 0,0 + 02} Q = &*TU,, (3.20)
g n“’n n (0]
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3.1 SUBSTRUCTURE METHOD
where I' = ®TMTis a 6N x 6 matrix of the modal contribution factors. Hence,
X = w*®HTI U, (3.21)

where H is a a diagonal matrix of the complex frequency response functions, i.e.,

1
H:diag{ }

2 _ 02 4
w; — w* +12{,w,0

Since the relative displacement x=u— Tu,), substituting into equation (3.21) gives
U= (0*®HT + DU, (3.22)
Comparing equation (3.22) with equations (3.10), one obtains
S$™ = w’®HI + 1. (3.23)

Based on Newton’s second law, the dynamic force equilibrium of the structure-foundation

system in Direction 1, as illustrated in Figure 3.3, is given by
1
—o*[(T)"™MU + mg, Uy, | = Fp (3.24)

and the the dynamic moment equilibrium of the structure-foundation system in Direction
5 is given by
5
—*[(T)'MU + my5 Uy 5] = Mg 5. (3.25)

The dynamic equilibrium in other directions can be derived similarly. Therefore, the

dynamic equilibrium of the entire system is
—w?(1"MU + Mo Uy) = Fo, (3.26)

where Mg is a 6 x 6 mass matrix of the foundation, and F denotes the vector of SSI forces
acting on the foundation, which is equal to S;,, (U5 — U,)) according to equation (3.7).

Hence, equation (3.26) can be rewritten as
—?T"MU + (—*Mo + S5o) Uy = S5 UG . (3.27)

Comparing with the second block-row of equation (3.9), a structure founded on the ground

surface implies S5, =0; hence
8 = —w?T'M, S, = —w’Mo. (3.28)
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Figure 3.4 Dynamic equilibrium of structure-foundation system

3.1.4 Foundation Level Input Response Spectra (FLIRS)

As discussed in Section 3.1.3, it is desirable to determine the equivalent FLIRS for the
structure with rigid foundation in seismic design and assessment. In SSI analysis, a fixed-
base analysis can be performed using the equivalent FLIRS as the seismic input, instead of a
coupled soil-structure analysis using FIRS as the seismic input.

From the first block-row of equation (3.9), one obtains
U . _(Ss)_l SSOUO = SFBUo. (3.29)

S SS

From the second block-row of equation (3.9), one has
S5 Us + [ (So0 — S60) +S00]Uo = S60 U5 - (3.30)
Substituting equation (3.29) into (3.30) yields

$6sS™ Up + (S50 —S60) +560]Uo = SH0 U5

which gives
Uy=S""850 U5, S=8 S+ (S50—St0) + Sto- (3.31)
i ———
6x1  6x6 6x6 6x1 6x6N 6Nx6 6%6 (3.32)
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3.1 SUBSTRUCTURE METHOD

Note that $7!Sf,, is a square matrix of dimension 6 x 6; partition it as follows:

er T Trg
Ter Trr 66
in which each submatrix is of dimension 3 x 3.

Substituting equation (3.28) into equation (3.33)
S = —?(T'MS™ + Mo) + S}, (3.34)

Since the earthquake influence matrix 7 and the fixed-base model structural response
transfer matrix $™ are dimensionless, and Sf,, denotes the dynamic stiffness of the soil

springs, equation (3.34) can be expressed in terms of a standard dynamic stiffness matrix as
S = —o’M +iwCf + K, (3.35)

where M= T MS™+ Moy is a 6 X 6 mass matrix which is determined by the structure and
foundation mass matrices, influence matrix, and the fixed-base structure transfer matrix
S*; K and Cf are the stiffness and damping matrices of soil springs, respectively. There-
fore, the problem can be interpreted as a synthesized 6-DOF mass, which is frequency-
dependent, supported by generalized soil springs.

In a site response analysis, the soil medium is modelled as a half-space, and the rational
responses of free-field should be very small under the translational excitation at bedrock.
Hence, the rotational input at foundation level is negligible compared to the translational
input; the rotational input is usually not given by a site response analysis and is taken as 0.

From equations (3.29) and (3.32), one has U, =S™TUj, i.e.,

FB FB F
Us,T S17 Str T Trg UO,T
sm s Ter T 0
$SRJ gNx1 RT  “RRUgnxe L RT  "RRgyg 6x1
FB FB B F FB F FB F
St S T UO,T St Tt UO,T + StR Try UO,T
= = . (3.36)
FB FB F FB F FB F
SRT SRR _TRT UO,T SRT TTT UO,T + SRR TRT UO,T

Note that it is not possible to have a single set of tri-directional translational FLIRS in a

fixed base analysis to give both correct translational responses U + and rotational responses
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3.1 SUBSTRUCTURE METHOD

U, ;- In the generation of floor response spectra (FRS), only translational responses are

needed. Hence, from the first block-row of equation (3.36), one has
Ugr = ST Ty UOF,T + S1R Trr U(;,T' (3.37)
Multiplying (S¥%)” from the left yields
(S77)"Uyr = [ (S73)7S7 Ty + (SI2) /R Tr | UGy
=[(sm)7si] [T +[(87)TSBI(SH) S Ter | USr. (339)

Since [(S+2)T SI®] is a square matrix of dimension 3 x 3, it is straightforward to determine
its inverse. Comparing equation (3.38) with equation (3.14), one obtains the equivalent
FLIRS as

Uy =TU5;, (3.39)

where T is a complex transfer matrix from FIRS (generated by Ug ) to FLIRS (generated

by U§*), given as

T =T +[(S77)"Sr7] 7 (S77)" STr Ter- (3.40)
—_ = ———— —— —
3x3 3x3 3x3 3x3N 3Nx3 3x3

The first and second terms of T denote the contributions from the translational and rota-
tional motions of the foundation in the soil-structure system, respectively.

It is important to emphasize that, although the FLIRS given by equation (3.39) would not
give correct rotational responses U o of a structure, it gives exact translation responses
FRS because only translational responses are required to generate FRS. Therefore, the fixed-
base analysis of the structure under the excitation of FLIRS U’ given by equation (3.39)
gives exactly the same FRS as a full coupled soil-structure analysis under the excitation of
FIRS UZ ;.

Based on the theory of random vibration, the relation between the power spectral density

functions of U and UZ - can be determined b
0 o,T Yy

fb 27 of
Si(@) =[|T@)]"] S5 (3.41)
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3.1 SUBSTRUCTURE METHOD

where S?;U(w) and SEU(w) are the 3 x 1 vectors of the power spectral density functions of

U& and UJ, respectively. In equation (3.41), [| T () ‘2} denotes a matrix in which each
element is equal to the squared modulus of the corresponding element in T. For a complex
number a+ib, its modulus is defined as |a+ib|= Va2 +b2. Ttis found that, for structures
in nuclear power plants, the off-diagonal terms of T are relatively small compared to the
diagonal terms, and thus may be neglected. It means that the motion of the foundation in
one direction is only induced by the excitations in the same direction.
It is known that the mean square response of a SDOF oscillator under a base excitation
Ug 1 can be obtained by
00
E[X2(n] = / N |0 Hy(@)|*S (@) dav, (3.42)

in which H(w) is the complex frequency response function characterized by the circular
frequency w, and damping ratio ¢, of the SDOF oscillator. For excitations with wide-band
power spectral densities, SEU(a)) can be approximated by constant S{]U From equations
(3.41) and (3.42), the ratios between the mean square responses of a SDOF oscillator under
base excitation U’ and those under base excitation Uy ; can be calculated by

/ 2 Ho(e) [ | T@)[*] 85 (@) dov f IHy (@) [| T@)[ ] 1de

R*(wo, &) =

>

/ |2 Hy(@)|” 8555, (w) dow f |Hy(@)|* do

(3.43)
The maximum response of a SDOF oscillator, which is by definition the response spec-

trum, is usually related to its root mean square response through a peak factor as

Salwos &o) = [Xp(0)] = P-\/E[X5(1)]. (3.44)

Combining equations (3.43) and (3.44) yields the tri-directional fixed-base FLIRS

fb ' £
S, (w0, 8o) = F'ﬂ(wo, o) 8, (w0, &o)- (3.45)

For responses in earthquake engineering, the values of peak factors P® and P! are not

different significantly; they are often assigned the numerical value 3. Hence
tb f
S, (o, §o) = R(wo, §o) S (w0, o), (3.46)
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in which R(wy, o) can be interpreted as response spectrum modification factors from FIRS

to FLIRS.

3.1.5 Generating FRS Considering SSI

For a structure in a nuclear power plant with its rigid foundation embedded in layered soil, a
procedure for generating FRS considering SSI is illustrated in Figure 3.5 and is summarized

as follows:

1. Consider the layered soil as a free-field. With seismic input applied at the bedrock, a site
response analysis is performed to obtain the Foundation Input Response Spectra (FIRS)

Ug or Ug ¢ at the elevation of the foundation.

2. Establish a model of the layered soil. Determined the dynamic stiffness matrices of the
excavated soil Sj, and the soil with excavation S§,. The dynamic stiffness matrix of
the free-field is S5, =S5, + S50 -

3. Set up a finite element model of the structure. Determine the dynamic stiffness matrices

Si> S

s> Sexs S50» Sog> and Sp . Perform a modal analysis to obtain the modal frequencies

o, modal damping coefficients ¢,,, modal matrix ®, and matrix of modal contribution

factors I'.

4. Determine the Foundation Level Input Response Spectra (FLIRS):

SFB SFB
0 S® —?dHT +1=| =

SrT SRR gywe
1

22 }
wy; — 0 +128,0,0 ) Ny on

H= diag{

I' = ®"M1T is a 6Nx6 matrix of the modal contribution factors.
1=[1 " T 1T T 1°,,,
0 8 =85,S™ + (S50 —S60) *+ Sto

Determine the inverse S~!. The dimension is 6 x 6.
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3.2 NUMERICAL EXAMPLE
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5. The FLIRS Sib (wo, &o) are input to the fixed-base finite-element model of the structure
to generate the required FRS, which are exactly the same as the FRS obtained from a full
coupled soil-structure analysis under the excitation of FIRS.

Hence, when the direct spectra-to-spectra method developed by Jiang et al. (2015) is
applied to the fixed-base structure under the excitation of FLIRS ij\b (w0, ¢o0)> FRS with
complete probabilistic descriptions of FRS peaks, i.e., FRS with any desired level of NEP
p can be obtained. If the method of time history is applied, such a result could only
be obtained from a large number of coupled soil-structure analyses using a commercial
finite-element software, such as ACS SASSI, with a large number of generated time

histories compatible with the FIRS.

3.2 Numerical Example

To verify the accuracy and efficiency of the proposed method, FRS of a typical reactor build-
ing and a service building in nuclear power plants founded on the surface of a homogeneous
half-space are generated following the procedure summarized in Section 3.1. The resultant
FRS are then compared with the FRS obtained from a commercial software ACS SASSI,
which generates FRS based on time history method. The transfer function, modification

factor, which affect the resultant FRS when considering SSI effect, are investigated.
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3.2 NUMERICAL EXAMPLE

Model information

The selected reactor building consists of a containment and an internal structure that

are supported by a circular disk foundation with a radius of 19.8m, as shown in Figure

3.6. Using the commercial finite element software ANSYS, the building is modelled as a

lumped-parameter system with a foundation at the bottom, which can characterize the most
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Figure 3.6 Primary and secondary systems in a nuclear power plant

44



3.2 NUMERICAL EXAMPLE

significant dynamic properties of the structure. There are 11 nodes for the superstructure
and 112 plate elements for the rigid foundation. For a fixed-base model, the DOF of all the
nodes at the foundation elevation, are constrained. The model is symmetric about X- and
Y-axes, and the information of the finite element model is described in Tables 3.1 and 3.2

(Liet al.,2005). The plates are 2 meters thick.

Service Building

A three dimensional finite element model of a typical service building of a nuclear power
plant, as shown in Figure 3.7, is established using ANSYS and ACS SASSI. The superstruc-
ture of the building consists of steel frames and concrete floor slabs, and the basement is
constructed using concrete. The finite element model information is given in detail in Jiang

et al. (2015).
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Figure 3.7 Finite element model of service building
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3.2 NUMERICAL EXAMPLE

Table 3.1 Nodal information of reactor building model
Elevation Mass Moment of inertia ( x 106kg- m?)
Node

(m) (x 10°kg) L =1 L.
1 —4.5 13420 1260 1931
2 4 5710 370 0
3 10.32 5970 394 0
4 19.15 6750 500 0
5 29 1270 110 0
6 —0.585 2288 424 824
7 9.875 3033 568 1087
8 20 2960 554 1063
9 30 2960 554 1063
10 39.15 3068 562 1081
11 50.02 6271 910 1727

Table 3.2 Beam Element Properties of reactor building model

L . Area (m?) | Shear area (m?) Second area moment (m*)
Sectton——Beam

1 0 1204 1084.7 115436

2 1 50 19 5720

3 2 110 70 8160

4 3 140 70 8160

5 4 60 30 325

6 5 176 88 30570

7 6-10 107 53.5 19241
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3.2 NUMERICAL EXAMPLE

Soil Property

The underlying site consists of 3 infinite soil layers resting on a homogeneous half-space.
The unit weight y, Poisson’s ratio v, damping ratio ¢, thickness of the top layers H, and

Vs are shown in Figure 3.8.

Foundation input response spectra

The R.G. 1.60 response spectra (USNRC, 1973) are assumed as the foundation input re-
sponse spectra (FIRS) obtained from a site response analysis. The peak ground accelera-
tions are anchored to 0.3g and 0.2¢ for the horizontal and vertical directions, respectively.
30 sets of tri-directional time histories, which are compatible with the target FIRS, are

generated by the Hilbert-Huang Transform method (Ni et al., 2013, 2011), and are used to
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Figure 3.8 The soil layers and properties
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3.2 NUMERICAL EXAMPLE

perform SSI analysis by ACS SASSI for comparison. The response spectra of 30 sets of time

histories in horizontal direction are shown in Figure 3.9.
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Figure 3.9 Foundation input response spectrum

Development of foundation level input response spectra (FLIRS)

The soil impedance matrix used to conduct SSI analysis is extracted from the analysis of
ACS SASSI, which provides the same basis for this study and ACS SASSI. The dynamic soil
stiffness is frequency dependent as shown in Figure 3.10.

According to Step 4 in Section 6.2.1, a modal analysis is performed for the fixed-base
model by ANSYS, which provides the structure information, including natural frequencies,
mode shapes of all the modes, mass matrix, influence matrix, and modal contribution
factors. The damping ratio of the structure is taken as 5%. The dimensionless transfer
matrix, regarded as fixed-base transfer function, of the fixed-base model $™ is calculated
for different values of w, varying from 0.4 to 200r. The modulus of the elements
corresponding to the translational DOF at Nodes 2 to 5 are shown in Figure 3.11. It can be
seen that the modulus of the transfer functions peak at the structural frequencies, i.e., 5.45

Hz and 12.72 Hz, of the significant modes.
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3.2 NUMERICAL EXAMPLE
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Figure 3.10 Dynamic soil stiffness of reactor building in SASSI

The transfer matrix T is defined by equation (3.40), in which the first term T
indicates the translational component and the second term accounts for the rotational
component. The modulus of entire transfer function T;; and the translational component
are shown in Figure 3.12. It shows that their difference is pronounced in the frequency
range of 2 Hz to 10 Hz, which covers the frequencies of the dominant structural modes.
Therefore, the rotational movement of foundation during the ground motion cannot be
neglected.

Analogous to the modulus of the transfer matrix of the fixed-base structure shown in
Figure 3.11, where peaks emerge at the frequencies of the significant structural modes, the
frequencies corresponding to the peaks in Figure 3.12 can be interpreted as the natural
frequencies of the entire soil-structure system (or the equivalent synthesized mass-spring-
damper system). For instance, the first two peaks of the soil-structure system, located at 4.1
Hzand 5.2 Hz, can be explained as a result of the frequency shifting of the fixed-base model
from 4.4 Hz and 5.4 Hz due to the SSI effect. Meanwhile, the significant modal frequencies
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3.2 NUMERICAL EXAMPLE
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Figure 3.11 Modulus of fixed-base model transfer function for Nodes 2 to 5 in X-direction
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3.2 NUMERICAL EXAMPLE

of the fixed-base model correspond to the bottom of the valley between the peaks, implying
considerable reductions of the responses of the structure.

The FLIRS modification factors R (wy, ¢p) are then used to generate FLIRS from FIRS;
FLIRS are used in the direct method for generating FRS from the fixed-base model. Figure
3.13 shows the horizontal and vertical components of the FLIRS modification factors. The
resultant horizontal FLIRS are shown in Figure 3.14. The modification factor shows that the
FLIRS change significantly around the natural frequency of the entire system and are scaled

by up to 1.4 compared to FIRS, which may lead to increase of FRS at certain frequencies.

Development of floor response spectra (FRS)

In ACS SASSI, 30 sets of spectra-compatible time histories are used to generate 30 sets of
FRS. The general procedure to generate FRS at node 5 is shown in Figure 3.15. For each
input time history, a different FRS is developed by time history method. Since the input

Internal Structure

09—
(4] ._&1
Us :
@o— /
e Bound: -10%
&)
Oe— Response Spectrum of Floor Response Spectrum
GRS-Compatible Time History
(1] .—Zl
(1)
- GRS-Compatible
Supporting site Time History

Ground Response Spectrum

Figure 3.15 Generation of FRS in ACS SASSI
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3.3 SUMMARY

time history is artificial and not perfectly compatible with target GRS, the variability of the
resultant FRS is very large. Comparing to the mean values of 30 results at node 5, the peak
of FRS varies between -24% and +24%.

The direct spectra-to-spectra method (Jiang et al., 2015; Li et al., 2015) is applied to
generate FRS at Nodes 4 and 5 in the internal structure. The mean values of resultant
FLIRS are used as the input response spectra to the fixed-base model. FRS are calculated at
200 frequencies including the natural frequencies of the structure. The resultant FRS with
50% Non Exceedance Probability (NEP) at Node 4 and Node 5 are plotted along with FRS
generated by time history analyses by ACS SASSI based on 30 sets of time history in Figures
3.16 and 3.17, respectively. FRS obtained by the direct method and the mean FRS of the
time history analyses, which are regarded as the benchmark FRS, are shown in black solid
lines and red dash lines, respectively. It is seen that the FRS obtained by the direct method
generally agree very well with the benchmark FRS over the entire frequency range, whereas
individual FRS from time history analyses exhibit large variability. Particularly, FRS peak
values, which are of main interest of engineers, can be overestimated by more than 24% or
underestimated by more than 23%. However, the differences at the FRS peaks between the
direct method and the benchmark FRS are generally less than 5%, which are well within the
range of acceptable errors. Figures 3.18 and 3.19 present the FRS with 84.1% NEP by the
two approaches, which demonstrates the accuracy of the proposed method.

FRS at the selected node of the three-dimensional service building are also generated
following the same procedure. Figure 3.20 shows that the proposed method also produces
excellent results for a complex 3D model. The relative errors at FRS peaks are less than 5%,
while the results of time history method exhibit large variations from +226% to —30%,

even though the time histories are well compatible with the target input response spectra.

3.3 Summary

In this chapter, the substructure method to conduct the SSI analysis with rigid foundation
is reviewed. The frequency dependant soil stiffness is utilized in the application. Based

on the free-field ground motion (FIRS), soil properties, and structural modal information,
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Figure 3.20 Comparison of FRS with 50% NEP in service building

the tri-directional response spectra are determined considering SSI effect. The modified
response spectra, called foundation level input response spectra (FLIRS), are then used as
the input to the fixed-base structure to generate FRS using the direct spectra-to-spectra
method (Jiang et al., 2015; Li et al., 2015).

Numerical examples are performed to verify the proposed method. FRS of a reactor
building and a service building are generated considering SSI by 30 sets of time history
analyses and the proposed method. It is observed that the FRS obtained by the proposed
method agree well with the resultant FRS from a large number of time history analyses,
which are regarded as the benchmark FRS; whereas FRS obtained from time history anal-
yses exhibit large variability at the FRS peaks. It is also demonstrated that the effect of SSI
may increase FRS at certain frequencies, which leads to higher seismic demands for SSCs
mounted on the supporting structure.

Some conclusions are obtained:
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3.3 SUMMARY

O The difference between the FLIRS and FIRS is significant. The numerical example
shows the spectral acceleration is scaled up to 1.4 at certain frequencies and the natural

frequency of the soil-structure system is different from the fixed-base structure.

0 From the numerical example, the FRS based on FLIRS and direct method agrees well
with the result of SASSI in most frequency domain. Large variability is observed in

time time history analyses by ACS SASSI, which is overcame by the proposed method.

0 The frequency dependent soil stiffness varies dramatically over the frequency range,
especially in high frequency domain (more than 10 Hz). It is necessary to generate

frequency dependent soil stiffness in SSI analysis.

In summary, the concept of FLIRS is proposed to represent the seismic input considering
SSI effect. It can be obtained conveniently based on the modal information of structure
and dynamic soil stiffness. FRS can be generated by the proposed substructure method and

direct method accurately and efficiently without any variability.
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Formulation of Dynamic Soil Stiffness

In Soil-Structure Interaction (SSI) analysis, the frequency-dependent dynamic soil stiffness
determines the response of soil base under foundation. It is a necessary element in SSI
analysis. In this chapter, it is aimed to generate dynamic soil stiffness by a semi-analytical
method based on the Green’s function by Wolf (1985).

A flexible foundation can be represented by m nodes. If the foundation is rigid, m is equal
to 1. For each node, there are 3 translational and 3 rotational degrees of freedom. Hence,
the soil stiffness is a 6 x6m matrix. The element S;; in dynamic stiffness matrix is the
amplitude of the reaction force at node i when the displacement at node j is forced to be
equal to ¢! as shown in Figure 4.1. w is the excitation frequency, and ¢ is the time. Thus
dynamic soil stiffness is frequency dependent 6 x 6m matrices.

In this study, the soil is modeled as a layered half-space characterized by the soil prop-
erties, including layer thickness, density, shear wave velocity, Poisson’s ratio, and damping
ratio. The soil properties are assumed to be linear in the generation of soil stiffness. Starting
from the wave propagation function, the relevant displacements under three dimensional
point loads are derived in wave number domain rigorously. The constitutive relation is
then established in frequency domain according to Fourier series and Bessel transform pair.
Finally, the Boundary Element Method (BEM) is employed to calculate the total stiffness

matrix for rigid or flexible foundations with arbitrary shapes.
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4.1 GENERATION OF DYNAMIC SOIL STIFFNESS

iwt

Unit displacement €'“" at node j
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¥ —7 7 Foundation

Soil Layers
Bedrock

Figure 4.1 Definition of dynamic soil stiffness

4.1 Generation of Dynamic Soil Stiffness

4.1.1 Wave Propagation Function

For harmonic excitation with frequency w, the three dimensional equilibrium equations in

Cartesian coordinates x, y, and z directions are

_ 2
Ox,x + Txy,y + Txz,z = —PW U,
T, . 4o, +T, , =—pwv
VX, X Yy vz,Z T o >
T 41, 40, . =—pw*w (4.1)
ZX, X zy,y z,z p > N

where 0 and t are normal stress and shear stress, respectively. p is the density. u, v, and w
are displacements in x, y, and z directions. The comma denotes a partial derivative.

The strain-displacement relationship are expressed as
€x = Uy, €y = Vsy» €z = Wz,
(4.2)
Vxy = Uy FVixs  Vaz = Uz TWix, Vyz = Vsz +W>y >

in which € is normal strain, and y is shear strain.
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4.1 GENERATION OF DYNAMIC SOIL STIFFNESS
Based on Hooke’s law, the constitutive equations are

ox = AMex + €, + €;) + 2Gey,
oy = AMex + €, + €,) + 2Ge,,
Y x T € TE y (4.3)
07, = Méx + €, + €;,) + 2Ge,,
Ty = GVxps Tz = GVxoo Tz = GV,
where G is the shear modulus, and A is given by

vE
A= .
14+v)(1 —2v)

(4.4)

E is the elasticity modulus, and v is Poisson’s ratio. G can be expressed by E and v as

E

6= 20+ v) (435)

Substituting equations (4.2) and (4.3) into equations (4.1) leads to

(A +2G) (Uyxx +V>yx +Wyzx ) + ZG(u,y), +Uyyr) = _pw2u>
(A + 2G)(u’x)’ iy +W>zy) + 2G(Vyxx +Vozz) = _prV, (4.6)
()‘ + 2G)(”>xz +V)yz +W)ZZ) + 2G(M/)xx +W,yy ) = —/OQ)ZW.

In order to solve the displacements and identify the different types of waves, new variables

are introduced as

€ = Uy +V)y +w,;, (47)

and

1
Qx = %(W:y _V)z)) Q)’ = %(uﬂ' _W’x)’ QZ = 7(V>x _u’Z)’ (48)

where e represents the volumetric strain, while 2 is the rotation-strain vector. So e can be
considered as the strain causing by primary waves (P-wave), and 2 results from shear waves
(S-wave).

Substituting equations (4.7) and (4.8) into equations (4.6) gives

(A +2G)ex +2G(Q,, — Q, ) = —pw’u, (4.9)

(r +2G)e,y +2G(2,, — Q) = —pw’y, (4.10)
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4.1 GENERATION OF DYNAMIC SOIL STIFFNESS

(A +2G)e,. +2G(Q,, — Q,,) = —pw’w. (4.11)

Differentiating equation (4.9) with respect to x, equation (4.10) with respect to y, equa-
tion (4.11) with respect to z, and taking the summation of these three equations result
in

(A + 2G) (esxx +eryy +esxx) = —pae. (4.12)

By introducing the primary wave velocity

) _ A+2G

c , (4.13)
b P
equation (4.12) is rewritten as
w2
Ve=——e. (4.14)
Cp

Differentiating equation (4.11) with respect to y, equation (4.10) with respect to z, and

letting the former equation subtract the latter yield

G(Qury + 2y + Q) = =00 Qs (4.15)
Similarly,

G(Q 0+, +9Q,,) =—po’Q, (4.16)

G+ 2, + 2, ) = —p0* Q. (4.17)

By introducing the shear wave velocity

G
==, (4.18)
0
equations (4.15)-(4.17) are rewritten as
w2
VO =-—=Q. (4.19)
CS

Under harmonic excitation, the equations of motion are specified in equation (4.14) with
the amplitude of volumetric strain e and (4.19) with the amplitude of rotation strain vector

Q.
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4.1 GENERATION OF DYNAMIC SOIL STIFFNESS

Propagation Function of P-wave
The displacements resulting from P-waves are shown in Figure 4.2.

The solution of equation (4.14) is

iw iw
e= ——Apexp[—(—lxx — Ly — Zz)} ,
p p

(4.20)

where Ap is the amplitude of P-wave. Iy, I, and I, can be considered as the cosines of the

angles between the direction of P-wave and x, y, and z axis. They meet
2,2, P2
P+P+E=1.

The corresponding displacements caused by P-wave are governed by

iw
u, = Iy Apexp _g(—lxx — Ly — zZ)_

-

1w
vp = I, Apexp _g(—lxx —Ly— zZ)_

-

- iw -
wp = LLApexp| —(—=Lx — Ly —L2)|.
L ¢p .

Wave Front
L
A >\ .~~~ Propagation

d /‘//‘( \ Direction

Ll

Figure 4.2 Displacements associated with P-waves

Propagation Function of S-wave
The displacements resulting from S-waves are shown in Figure 4.3.
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4.1 GENERATION OF DYNAMIC SOIL STIFFNESS
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Figure 4.3 Displacements associated with S-waves

The solution of equation (4.19) is

iw

s

Q= _ ¢
= ——~Cex
S Cexp

Cp

— (—myx —

m}/y - mzz)] >
P

(4.23)

where vector C represents the amplitude of S-wave. my, m,, and m, can be considered as

the cosines of the angles between the direction of S-wave and x, y, and z axis. They meet

2 2 2 _
my +my, +m; = L.

The corresponding displacements caused by S-wave are

riw

us = (myC, — m,C,)exp c_( MyX — M,y — mzz)
)
riw

vs = (myC, — m;Cy)exp c_( MyX — Myy — mzz)
- s
M iw

ws = (m,Cy — myCy)exp c_( MyX — M,y — mzz) .
)

(4.24)

-

(4.25)

S-wave is usually decomposed into two components as SH-wave, containing the displace-

ment in x-y plane, and SV-wave, containing the displacement in z axis and propagation

direction plane. Hence, the corresponding displacement amplitude Asy and Agy are ex-
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4.1 GENERATION OF DYNAMIC SOIL STIFFNESS

pressed as
Cx
AsH = )
m3 + m;
myCy — my,Cy
Agy =
ms + m;

Then the displacements become

mym;Agy — myAsy

Us = exp[g(—mxx —myy — mzz)] ,
Jm2 + m’ Cs
m,m,Asy + myA i
Ve = —2— SV x7SH exp[y(—mxx —myy — mzz)] , (4.26)
Cs

[m3 + m;

ws = — /m2 + m2Agyex ig(— — — m,z)

s %+ My Asy exp| —(—mx — myy — mz) |
S

Propagation Function of Total Earthquake Wave

Since the directions of propagation are always assumed to be in a vertical plane, e.g., x-z

plane or y-z plane, this means, when x-z plane is considered,

In this case, taking both P-wave and S-wave into consideration gives

u=I1,Ap exp[g(—lxx — lzz)] + myAgy exp[g(—mxx — mzz)} , (4.27)
Cp CS
iw

v = Agy exp[ —(—myx — mzz)] , (4.28)
Cs
iw iw

w=LAp exp[—(—lxx — lzz)] + myAsy exp[—(—mxx — mzz)} . (4.29)
Cp Cs

The total displacement equations show that the displacements u and w depend on P-wave

and SV-wave in x-z plane, while v is determined by SH-wave out of x-z plane.
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4.1 GENERATION OF DYNAMIC SOIL STIFFNESS

4.1.2 Addressing Material Damping

The material damping of soil is introduced by replacing the elastic constants by the complex
values as

A 42G* = (A +26)(1 + 24i),

¢ = s/ (1 + 2&),

where ¢, and ¢s are damping ratios for P-wave and S-wave, respectively. The superscript

symbol * represents the corresponding complex values.

4.1.3 Dynamic Stiffness Matrix under Point Loads

The analytical solution of dynamic stiffness matrix in a single layer, which is derived by
Wolf (1985), is used in this research.

A horizontal layer with depth d, P-damping ¢p, S-damping as {5, complex shear wave
velocity ¢', complex primary wave velocity 7, complex shear modulus G*, and density p
is studied.

The dynamic stiffness of this layer under three dimensional point loads with frequency @

is addressed. The origin is located at the top of the layer and z axis is pointing downward.

Dynamic Stiffness Matrix of Out-of-Plane Motion under Point Load

The displacements v, strains 7,,, and external forces Q associated with out-of-plane motion
in a horizontal layer are shown in Figure 4.4. The half-space can be considered as a layer
with infinite thickness, i.e., d approaches infinity.

In order to meet the boundary condition and address the waves propagating in both
positive and negative z directions, a second wave in x direction is introduced. Then the

out-of-plane motion, equation (4.28) becomes
iw iw
v(x,z) = ASHeXp[ —(—myx — mzz)] + BSHeXp[ —(—mex + mzz)] , (4.30)
CS CS

where Bgy is the amplitude of wave propagating in the negative direction.

Since
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y 2 TyzZ/
v,/

Figure 4.4 Out-of-plane motion model for a horizontal layer

letting

and introducing

r— a)mx’
¢
t= ! 1
= 2 ,
lead to
v(x, z) = v(z) exp(—ikx),
in which

v(z) = Aspexp(iktz) + Bsyexp(—iktz).

The variable k can be considered as the wave number.

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

Since the out-of-plane motion and in-plane motion are uncoupled, w,, is equal to 0.

Based on equations (4.2) and (4.3), it is derived in

Ty2(%,2) = G, = iktG*[ASH exp(iktz) + Bsy exp(—iktz)] exp(—ikx).
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Then the displacement and stress at the top surface of layer with z = 0 (subscript 1) are

governed by
2] 1 1 Agp exp(—1kx)
— . (4.37)
Tyz1 iktG* —iktG* Bsp exp(—ikx)
The displacement and stress at the bottom surface of layer with z = d (subscript 2) are
governed by
V) exp (iktd) exp(—iktd) Agp exp(—ikx)
= . (4.38)
T2 iktG*exp(iktd) —iktG*exp(—iktd) Bsp exp(—ikx)

Due to Euler’s formula, substituting (4.37) into (4.38) to eliminate Asy, Bsy, and (—ikx)

gives
V2 cosktd (ktG*)~lsinktd V1
— . (4.39)
Ty —ktG*sinktd cosktd Tyz1
For the surface, the external load is
Q1 = —71,
denoting the load at the bottom as
Q= Tyz2>
and performing a transformation of equation (4.39) lead to
Q v
=K, , (4.40)
Q2 V2

in which K, is the dynamic stiffness matrix of out-of-plane motion in a single layer as

ktG* | cosktd  —1
out = = : (4.41)
sinktd | _1 cosktd

For half-space, which means d approaches to infinity, both Q; and v, are equal to 0. K,
becomes

K, = [iktG*]. (4.42)
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Dynamic Stiffness Matrix of In-Plane Motion under Point Load

The displacements u and w, strains 7,, and o, and external forces R and P associated with

in-plane motion in a horizontal layer are shown in Figure 4.5.

y 2

Figure 4.5 In-plane motion model for a horizontal layer

The in-plane motions are caused by P-wave and SH-wave. The displacements in x and z
direction are given by equations (4.27) and (4.29). The boundary conditions of these two
motions will vary with x due to the terms exp(—iwl,x/ c;‘) and exp(—iwmyx/c}). In this

case, letting

I,  my
T
Cp C;

allows the analysis to concentrate on the variation with z.
Similar to out-of-plane case, a second wave with the same amplitude in x direction is
introduced. Then the in-plane motions, equations (4.27) and (4.29), become
u(x,z) = L, Ap exp[ IC—C:(—lxx — lzz)] + I,Bp exp[ ICL:(—lxx + lzz)]
p p

iw iw
+ myAgy exp[ C—*(—mxx — mzz)] + m,Bgy exp[ C—*(—mxx + mzz)] , (4.43)

N S
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iw iw
w(x,z) = LAp exp[ — (—Lx — lzz)] + I,Bp exp[ C—*(—lxx + lzz)]
p p

iw iw
+ myAsv eXp[ ;(—mxx - mZZ)} + myBsy eXp[ ;(—mxx + mZZ)} ,  (4.44)
N

S

where Bp and Bgy are the amplitudes of waves propagating in the negative direction.

Since
E4+E=1,
letting
L=—J1-8 (4.45)
introducing

1
s= |——1, (4.46)
m

and substituting (4.32) and (4.33) lead to
u(x,z) = u(z) exp(—ikx), (4.47)
w(x, z) = w(z) exp(—ikx), (4.48)

in which
u(z) = lx[Ap exp(iksz) + Bp exp(—iksz)] — mxt[ASV exp(iktz) — Bsy exp(—iktz)], (4.49)
w(z) = —Ixs [Ap exp(iksz) — Bp exp(—iksz)] - mx[ASV exp(iktz) + Bsy exp(—iktz)]. (4.50)
Based on equations (4.2) and (4.3), it gives
02(%,2) = A* (U +W,;) + 2G*w,,
=ikl (1 — tZ)G*[Ap exp(iksz) + Bp exp(—iksz)]exp(—ikx)

— 2ikmtG*[Agy exp(iktz) — Bsy exp(—iktz)]exp(—ikx), (4.51)

Tz (%, 2) = G*(u:z +Wsx )
= 12kl,sG* [Ap exp(iksz) — Bp exp(—iksz)} exp(—ikx)

+ ikmy(1 — £#)G*[Asy exp(iktz) + Bsy exp(—iktz) |exp(—ikx). (4.52)
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Then the displacements and stresses at the top surface of layer with z = 0 (subscript 1) are governed by

ui

w1

0z1

Txz1

L

_xs

ikl,(1 — 2)G* ikl (1 — *)G*

i2kl,sG*

I, — Myt Myt Ap exp(—ikx)
Is — My — My Bp exp(—ikx)
} - (4.53)
—2ikmtG* 2ikm,tG* Agy exp(—ikx)
—i2kl,sG*  ikmy(1 — £2)G* ikmy(1 — t2)G* | | Bsy exp(—ikx)

The displacements and stresses at the bottom surface of layer with z = d (subscript 2) are governed by

uz

w2

F7)

Txz2

L, exp(iksd)

—Iys exp(iksd)

12kl sG™ exp(iksd)

L, exp(—1iksd)

L.s exp(textiksd)

ikl (1 — 2)G*exp(iksd) ikl (1 — t*)G* exp(—iksd)

—i2klsG* exp(—iksd)

—myt exp(iktd) myt exp(—iktd)
—my exp(iktd) —my exp(—iktd)
—2ikmtG* exp(iktd) 2ikmytG* exp(—iktd)
ikmy(1 — 2)G* exp(iktd) ikmy(1 — t*)G* exp(—iktd)_

Ap exp(—ikx)
Bp exp(—ikx)

Agy exp(—ikx)

Bgy exp(—ikx)
(4.54)
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Based on Euler’s formula, substituting (4.53) into (4.54) to eliminate Ap, Bp, Agy, Bsy, and —ikx leads to

uz

)

%)

Txz2

> —
1+ £

2cosksd+ i%sinksd—l— @sinksd—l— Wi*cosksd—

(t? — 1)cosktd 12tsinktd kG%sinktd kG%cosktd
—i2ssinksd— (£ — 1)cosksd+ kG%cosksd— Ws*sinksd—l—
i% sinktd 2cosktd ké* cosktd kth* sinktd
—4kG*ssinksd— i2kG*(1 — t*)cos ksd— 2cosksd+ —i2ssinksd—
kG*@sinktd 2kG*(1 — t*)cosktd | (£* — 1)cos ktd i%sinktd

i2kG*(1 — t*)cosksd—

i2kG*(1 — t*)cosktd

At the surface, the external loads are

denoting the loads at the bottom as

—kG* A= gin ksd—

and performing a transformation of equation (4.55) result in

P, uy
iRl iW1

3 S Kin 1 4
P, up
iRz iW2

i%sin ksd+

12tsin ktd

4kG*tsin ktd
Py = =11, Ry = -0y,
P, =14, Ry =o0y,

(> — 1)cos ksd+

2cosktd

Ui

w1

Txzl

(4.55)

(4.56)

¥
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in which i is added before R;, R;, w1, and w; to keep Kj, symmetric.

Kipn is the dynamic stiffness matrix of in-plane motion in a single layer expressed as

(1 + £2kG*)
in = D X
%cosksd sinktd+ i?;—g(l — cosksdcos ktd)+ —ssinksd— icosksd—
ssinksdcosktd i%sin ksdsinktd Ysinktd icosktd
st(1412) t
—ii’;—g(l — cosksdcos ktd)— %sinksdcosktd—i— icosksd— —%sinksd—
iwsin ksdsinktd tcosksdsinktd icosktd tsinktd
st(1+¢%)
—ssinksd— —icosksd+ %cosksdsinktd—!— —%ﬁ(l — cosksdcosktd)—
%sinktd icosktd ssinksdcosktd i%sinksdsinktd
—icosksd+ —%sinksd— i%ﬁ(l — cosksdcos ktd)+ %sinksdcosktd—i—
icosktd tsinktd i% sin ksdsin ktd +tcosksdsinktd
(4.57)
where
1
D = 2(1 — cosksdcosktd) + (st + —tsinksdsinktd).
s
For half-space, which means d approaches infinity, P, R;, u; and w; are equal to 0. Kj,, becomes
kG* | s+ 1+2st—¢
in — (4-58)
Ltst 14202 i1+ 1)
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4.1 GENERATION OF DYNAMIC SOIL STIFFNESS

4.1.4 Formulation of Flexibility Function

A site with n horizontal layers on a half-space is considered. Three dimensional forces with

frequency w are applied at the origin as shown in Figure 4.6.

Soil Surface

Soil Layer n

Bedrock

Figure 4.6 Layered half-space under three-dimensional forces

Flexibility Function of Out-of-Plane Motion
According to equation (4.40), the equilibrium equations are expressed as

i i
Q %
1 i 1
- Kout >

i i
Q 1$)

where i is the number of layer, and varies from 1 to n — 1. The subscripts 1 and 2 are

(4.59)

denoted the top and bottom of the layer, respectively. When i is equal to n, i.e., the bottom
half-space, the equilibrium equation is

Qf =K" v/ (4.60)

1 = out
Since all the forces, excluding the external forces applied at the surface, are internal

forces, it means the forces at any interface follow
,+Q =0
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Then the total equilibrium equations for out-of-plane motion is obtained by assembling

the equilibrium equations of each layer as

=S, A (4.61)

out out = out?

L

where L and A are the nx1 vectors of external loads and displacements in y direction,
respectively, given as
T T
Lout: {Ql) Q2> ) Qn} = {Ql) 0, --- )0]

Aout = {Vl) V2, ot Vn}T-

S, is @ nxn matrix and assembled by K’ and K" . For two adjacent layers, K’ are
out out out out

partly overlapped.
Rewriting equation (4.61) as
Q Sout,l,l Sout,1,2~n Vi
Qo S0ut,2~n,1 Sout,2~n,2~n V2~n
to eliminate v, gives

_ -1
Q = Sout,l,l Vit Sout,1,2~n ) sout,2~n,2~n ) (QZ"’” - Sout,2~n,1 ’ Vl)

= (Sout1,1 — Sout1.2~1 ° S;ult,zwn,zwn *Souga~m1) * V1. (4.62)
Based on equation (4.62), one obtains
vi =F_,Q, (4.63)
in which F_ , is the flexibility function of out-of-plane motion and it is equal to
Fout = Foy = (Sout,l,l - Sout,1,2~nsgult,2,vn,zwnSout,2~n,1)_1' (4.64)
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Flexibility Function of In-Plane Motion

According to equation (4.56), the equilibrium equations fir in-plane motion are expressed

as
P Uy
Ri||w
1 (=K1 ¢ (4.65)
Py Uy
R; w5

When i is equal to n, i.e., the half-space case, the equilibrium equations become

Py uy
!oot=xr! L. (4.66)
R{ wi

Since all the forces, except the external forces applied at the surface, are internal forces,

it means the forces at any interface follow
P, + Pit! =,
R+ R =0.

Then the total equilibrium equations for in-plane case is obtained by assembling the

equilibrium equations of each layer as
Lin = SinAin, (4.67)

where Lj, and Aj, are the 2nx1 vectors of external loads and displacements in x and z

directions, respectively, as
T T
Lin:{PbRb P2>R2; ’PnaRn} == {Pl) Rl) O) 0) )0) O} >
T
Ain = {u1, wi, uz, wa, -+, Uy Wal .

Sin is a 2nx2n matrix and assembled by K/ and K!*. For two adjacent layers, K! are

partly overlapped.
Rewriting equation (4.67) as
Lin1~2 Sini~2,1~2  Sin1~2,3~2n Ainir
Lin,3~2n Sin,3~2n,1~2 Sin,3~2n,3~2n Ain,3~2n
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to eliminate A,

in,3~2n gives

Lin,1~2 = Sin,1~z,1~z ) Ain,1~2

-1
+ Sin,1~2,3~2n ’ Sin,%z”ﬁwz” ) (Lin,3~2n - Sin,3~2n,1~2 ’ Ain,1~2)

_ ~1
= (Sin,1~2,1~2 = Sin1~23~2n Sin)3~2n)3~2n : Sin,3~2n,1~2) A1 (4.68)

Based on equation (4.68), it is derived in

= Fin > (4-69)
w1 R1

in which Fj; is the flexibility function of in-plane motion and it is equal to

Fuu  Fuw 1

~1
Fin = = (Sin,1~2,1~2 ~ Sin1~2,3~2n in’3~2n’3N2nSin,3~2n,1~2) . (470)
FWM FWW

4.1.5 Formulation of Green’s Influence Function

Based on the flexibility function, Green’s influence function is formulated to get the dis-
placement of any points when a small circular disk is loaded (Wolf, 1985). A circular disk
with radius of a under uniformly distributed horizontal loads, py and g, and vertical load
1o is studied as shown in Figure 4.7.

In cylindrical coordinates, the load can be expressed as Fourier series as

p(r,0,z,n) = Zps(r,e,z)cose + Zpa(r,é?,z)sin 0, (4.71)
n n

where r, 0, and z are radial distance, azimuth, and height. 7 is the Fourier series number.
ps and p, are the symmetric and anti-symmetric amplitude in Fourier series.
The load and displacement can also be expanded in frequency domain with wave number

k by Bessel transform pair

[fik,n)} = a, f OorC,,(kr) / ’ D, {f(r,6)|dodr, (4.72)
r=0 6=0
{fir,6)] = Dy fk OkCn(kr){f(k, n)|dk, (4.73)
r=0 =
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Figure 4.7 Disk under three-dimensional uniform load

where a,, isequal to 1/2m (n = 0), or 1/m (n # 0).
C, (kr) is given by
%]n(kr))r kﬂr]n(kr) 0
Cutkr) = | L], (kr) Ia(kr)yy 0 |, (4.74)
0 0 —Jn(kr)

in which J,,(kr) is the Bessel function of order n of the first kind. The Bessel function holds

the following features:

[T (%) ]x = x"Ju—1(x) or / x"Ju—1(x)dx = x"],(x) + constant, (4.75)
[x_n]n(x)})x = —x "Jur1(%), (4.76)
[0 o = J100) = ZJ) = 21 () = Jos1 (. (4.77)
D,, for symmetric case, is equal to
cos nd 0 0
Dy = 0 —sin n6 0 , (4.78)
0 0 cos né
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while, for anti-symmetric case, it is

sin nf 0 0
Dy = 0 cosnf 0 . (4.79)
0 0 sin n6

Green’s Influence Function Under Vertical Load

The vertical uniform load ry is considered at first as shown in Figure 4.8.

u(r,0)

w(r,0) l\

VZ

Figure 4.8 Disk under vertical uniform load

Based on equation (4.71), p, can be considered as symmetric load with Fourier index of
0as

Pz(">0) = 19.

According to equation (4.72), p, can be transformed in k domain as

1 a 2 a

p(k) = — / r[ —J (kr)] / cos Orgdfdr = —ry / rJo(kr)dr. (4.80)
21 J,—o 0 r=0

Given the identity of Bessel function as shown in equation (4.75), equation (4.80) can be

rewritten as
a
pz(k) = _Eh (ka)ro. (4.81)
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Then the displacements in racial, u, and vertical directions, w, in frequency domain are

given based on equation (4.73) as

u(r, 0) cos@ 0 | poo [DEDr g u(k)
= / k dk. (4.82)
w(r, 0) 0 cos@ | k=0 0 —Jo(kr) w(k)
Based on equations (4.63) and (4.69), one obtains
u(k) Fy (k)
= pz(k). (4.83)
w(k) Fyw (k)

Substituting equations (4.83) and (4.81) into equation (4.82), and applying the identity
of Bessel function as shown in equation (4.76), lead to
u(r,0) Guw
= 105 (484)
w(r,0) Gww
where G, and G,,,, are Green’s function in radial and vertical directions under the vertical

load as
Guw o0 Fuw(k)h (kr)
=a J1(ka) dk, (4.85)
wa k=0 Fww(k)]o (kT)
Green’s Influence Function Under Horizontal Load

Then the horizontal uniform load p is studied as shown in Figure 4.9.
Based on equation (4.71), px and p, can be considered as anti-symmetric load with

Fourier index of 1 as

px(r,0) = pocosb, Py(r,0) = —posin 6.

According to equation (4.72), it is derived in k domain as

px(k) 1 [ %]1 (kr),r kirh (kr) 27 | cos 6 0 pocos
= — / r dr f do
py(k) TJr=0 | LT(kr)  1Ji(kr), 0 0 —sin® | | —posind
po (@ | TTi(kr)sr +]1(kr)
= — dr. (4.86)

ke Je=0 | 11y (kP 41 (kr)
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Figure 4.9 Disk under horizontal uniform load

Based on identities of Bessel functions as shown in equation (4.75), equation (4.86) can

be rewritten as
Px(k) = py(k) = % / (1 (kr)sr +11 (kr))dr
r=0

— %(/_0 kr]o(kr)dr + /_0 J1(kr)dr) = 1%]1 (ka). (4.87)

Then the displacements in racial, u, and vertical directions, w, are given in frequency

domain by equation (4.73) as

u(r,6) cosf 0 0 Ti(kr)e LT (kr) 0 u(k)
v(r,0) ¢ = 0 —sinf 0 / k| ZJi(kr) %]1(’“’))1’ 0 v(k) ¢ dk.
k=0
w(r,0) 0 0 cosé 0 0 —J1(kr) | | w(k)
(4.88)

Through equations (4.63) and (4.69), one obtains

u(k) Fu() 0
px(k)

v(k) ¢ = 0 F,k . (4.89)
py(k)

w(k) Fou(k) 0
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Substituting equations (4.87) and (4.89) into equation (4.88), and applying the identities

of Bessel functions as equations (4.76) and (4.77) result in

u(r,0) Guu
v(r,0) ¢ = 1 Gyu { Pos (4.90)
w(r, 6) Gwu

where G, Gy, and G, are Green’s function in radial, angular, and vertical directions

under horizontal load in x direction as

Guu cos b 0 0

Gy, (=a 0 —sinfd O

Guu 0 0 cosf
So(kr) — 3 (kr)  03Jo(kr) + 32(kr) 0 Fyu(k)
) Jika) | 3Jo(kr) + 32(kr)  03Jo(kr) — 3a(kr) 0 Fy (k) ( dk.
=0
0 0 —J1(kr) Fyyy (k)

(4.91)

For the horizontal load in y direction g, it can be considered as an anti-symmetric load

in cylindric coordinate. D, is applied as (4.79) rather than (4.78). So the Green’s influence

function is expressed as

Gy sin 6 0 0

G, (=a 0 cosf 0

Gy 0 0 siné
Totkr) = 3a(kr)  YJo(kr) + 3J2(kr) 0 Fuu (k)
L (ka) | 3Jo(kr) + 3J2(kr)  3Jo(kr) — 3Ta(kr) 0 Fyy (k) ¢ dk,
0 0 —J1(kr) Fyyy (k)

(4.92)
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Green’s Influence Function Under Three Dimensional Loads

When three dimensional loads, i.e., po, qo, and ry, are considered simultaneously, the dis-

placements at point i in cylindrical coordinate are

ui(r,0) pi
vi(r,0) ¢ = Gi14i (> (4.93)
wi(r,0) ri
where
Guui Guvi Guw,i
Gi=|G,; Gu; 0 | (4.94)
Guwi Guvi Guw,i

Then the displacements in cartesian coordinate, é,;, 8, ;, and §, ;, can be expressed as

8yi (%) u;i(r,0) pi
8,6y ¢ = Tiyvi(r,0) ¢ = T:G; {qi ¢ > (4.95)
8,i(%y) wi(r,0) r;

where
cos®; —sinb; O

T;=|sin6; cosh; 0], (4.96)
0 0 1
in which @ is the coordinate of point i in cylindric coordinate with the origin of the disk

center.

So the Green’s influence function in cartesian coordinate is given by

G; = T;G:. (4.97)

4.1.6 Total Dynamic Soil Stiffness by Boundary Element Method
Dynamic Stiffness for Rigid Foundation

A rigid foundation can be simplified as one node with 6 degrees of freedom, i.e., three trans-

lational components and three rotational components. A rigid foundation with arbitrary
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shape supported by a horizontally layered half-space are shown in Figure 4.10. The foun-
dation is discretized into n uniformly distributed subdisks with the radius a. The total area
of subdisks is the same as the original foundation. a is small enough that the displacement
within each subdisk can be considered the same. Since 6 points in a wavelength are needed
to address each wave (Wolf, 1985), a should be no more than ¢;/6fax, in which fi,. is the

maximum frequency under consideration.

P eiwt
z
Mzeiwt \/ )
t
Rﬁw

[
M.et ,Aﬂ.-
/g ‘.49,!, = e
M eiwt Px eiwt
. ‘ O O O O R e N

Foundation

Soil Surface

R R R T e e R R SR
[0 0. 0 0 3 30000807
S PP B

0 0 0 0 0

> SO L=
)00 O O O O O O 7))
GEENEREERRY,

O O O

Soil Layer n

Bedrock Discretizaton of

Loaded foundation arbitrary foundation

Figure 4.10 Foundation-site model and discretization of foundation

The six dimensional external loads P, applied on the foundation and the displacements

A, caused by the load vector are

T
P ={Ey B, Foo Mo My, M)

T
A, = {Ax,A,AZ, ex,e,ez} :

where Fy, F), and F; are translational loads in x, y, and z directions, respectively, while
My, M,, and M, are moments in three directions. Ay, A,, and A, are translational
displacements in x, y, and z directions, respectively, and 6y, ), and 6, are rotations in

three directions.
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Then the ith subdisk is considered, where i ranges from 1 to n. When the three dimen-

sional loads p, ;, p, ;> and p,; are applied on this disk, the displacements of the jth disk

are
8y ji Py,
8,ji Pz

where is Gj; a 3x3 matrix given by equation (4.97).

By loading the disks one by one, the total displacements of each disk can be obtained as
§ = Gp, (4.99)

where § and p are the 3nx1 displacement vector and the 3nx1 load vector of all nodes,
respectively, as

T
o SO ) } )

y,n> “zn

§ = {3,6,1, 5,1, 8

y,10 Oz 10 "7 O

T
P= {px,D py,l’ pz,l’ T px,n’ py,n’ pz,n} >

and G are the 3nx3n total Green’s function matrix as

(G G -+ G
G G G2 - Gy
|G Grz - G|
The relationship of A, and § is
§=N,A,, (4.100)

where N, is a 31 x6 matrix given by
T
N, = {N1>N2> aNn} >

in which
1000 0 —y

Ni=]|010 0 0 x |>
001y xi O
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x; and y; are the coordinates of ith disk center.

For the external loads, one obtains
P, = N'p.
Substituting equations (4.99) and (4.100) into equation (4.101) leads to
P, =N/G 83,1 = N'G™IN,A,,

which can be written as

P, =K/A,,

where K, is the 6 x6 stiffness matrix of the soil base as

K, = N/GN,.

(4.101)

(4.102)

(4.103)

K; is determined by the frequency of excitation forces, the geometry of the foundation,

soil properties, and thickness of each layer.

Dynamic Stiffness for Flexible Foundation

A flexible foundation, e.g., a group of independent foundations or a foundation consisting

of more than one member, can be simplified as m nodes with 6m degrees of freedom. Each

node represents a rigid part or member. The whole flexible foundation is then discretized

into n uniformly distributed subdisks with the radius a. The total area of subdisks is the

same as the original foundation.

The 6mx1 external loads vector Py applied on the foundation and the 6mx1 displace-

ments vector A caused by the load vector are
T
P;= {Pl, PZ, ..., Pm} ,

T
Ap= {Al, A2 ..., Am} :
where

PJ = {ng Fj’/) Fi) MBIC) Mj’/) Mé} >
i RN
A] = {Ax> Aya AZ: Qxa 9)/) 92} >
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4.1 GENERATION OF DYNAMIC SOIL STIFFNESS

the superscript j is the foundation node number, Ff;, F;, and Fi are translational loads in
x, ¥, and z directions on jth foundation member, respectively, while Mfc, M)j,, and Mi are
moments in three directions. A];c, A{V, and A]:z are translational displacements in x, y, and z
directions on jth foundation member, respectively, and 0., 9){ , and 6/ are rotations in three
directions.

Similar to the rigid foundation, the relationship of Arand § is
d =NrAg (4.104)

where Nris a 3n x 6m matrix.
When the foundation is considered as flexible and represented by m foundation nodes, N¢
can be obtained from the stiffness and damping matrices of foundations. If external loads

Pel®! are applied on m foundation nodes, the displacement are governed by

M, O iy (1) n Com Cmn (1) n Kim Kmn un () Pel®!
0 0 i (1) Cim Cmn u, (1) Kim K u, (1) 0
(4.105)

where M, C, K are, respectively, the mass, damping, and stiffness matrices. They can be
extracted from finite element model. The subscripts m and n represent foundation nodes
and subdisks nodes, respectively.
Introducing upy, (f) = Ael® and u,(f) =8e!“! leads the second block row of Equation
(4.105) to
(—iwCpm + Kym) A + (—iwCpp + Kpp)d = 0, (4.106)

which can be rewritten as

8 = NfA, (4.107)

where

Ny = —(—i@wChn + Knn) " (—i0Cpm + Knm). (4.108)
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4.1 GENERATION OF DYNAMIC SOIL STIFFNESS

When the foundation consists of m rigid components, e.g., a discrete foundation system,

Nris given by
Ni; Niz -+ Nim
N1 N -+ Nop
Nf: 1 ¢ >
an N2n e Nnm

in which, when the ith subdisk is within the jth foundation member,

100 O 0 —i —j)
Nij: 010 0 0 Xi — Xj
0 01 Yi—)Yj Xi—Xj 0

Otherwise Nj; is a zero matrix if the ith subdisk is not under the jth foundation component.
x; and y; are the coordinates of jth foundation component center.

Considering the external loads, one obtains
Py = Npr. (4.109)
Substituting equations (4.99) and (4.104) into equation (4.109) leads to
Pr=N{G '830 = NfG'NAp,
which can be written as
P =K, (4.110)

where K, is the frequency-dependent 6mx6m stiffness matrix of the soil base under the
flexible foundation as

Kr=N{G™'Ny. (4.111)

4.1.7 Procedures of Generating Frequency-Dependant Complex
Soil Stiffness

The derivation of frequency-dependent dynamic soil stiffness is illustrated in Figure 4.11.
For a horizontally layered soil site, a procedure for generating frequency-dependant

dynamic soil stiffness is summarized as follows:
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Wave Propagation Function

Boundary conditions
\
Flexibility Function

Bessel transform

Green’s Influence Function

BEM

Y
Frequency-dependent

Dynamic Soil Stiffness Matrix

Figure 4.11 Procedures to generate frequency-dependent soil stiffness

1. Given the soil properties of each layer, the dynamic stiffness matrix is established for

each layer under point loads.
2. The dynamic stiffness matrix is assembled to calculate the flexibility function.

3. The foundation is discretized into small subdisks, i.e., circular elements. Through
considering the loaded subdisk one by one, the Green’s Function is obtained based on

the flexibility function.

4. Boundary element method is applied to generate frequency-dependent dynamic soil

stiffness.

4.2 Numerical Examples of the Generation of Dynamic
Soil Stiffness

In order to verify the proposed method, four numerical examples are performed. The

resultant dynamic soil stiffness are compared.
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4.2.1 A Rigid Square Foundation Supported by a Layer on
Half-space

The dynamic soil stiffness of a rigid square foundation with side length of L is considered on
a layer with the thickness of L resting on a half-space. The Poisson’s ratio for the both layers
is 0.33, and the damping ratios are equal to 0.05 for the top layer and 0.03 for the half-space.
The ratios of the shear-wave velocities and densities are ¢, ,/c,; = 1.25and p2/p; = 1.13,
in which the subscripts 1 and 2 denote the top layer and half-space, respectively. In this
example, the square foundation is divided into 256 subdisks with the diameter of L/16. The

foundation-soil model, and the discretization of foundation are shown in Figure 4.12.

L
Soil Surface | | Foundation

Soil Layer ¢ ,p,, (=5%,v=0.33 =

EX16 L

Halfspace ¢ ,p, (=3%, v=0.33

Foundation and soil site Discretizaton of foundation

Figure 4.12 Square foundation-site model and discretization of foundation

The results are compared to those calculated by Wong and Luco (1985). A dimensionless
frequency a, is introduced as
wR
0, = (4.112)
Cs
where R is the radius or equivalent radius of foundations, and the dynamic stiffness can be
expressed as

K = K; + ia,C;,
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Figure 4.13 Dynamic soil stiffness of square foundation on a layer and halfspace

90



4.2 NUMERICAL EXAMPLES OF THE GENERATION OF DYNAMIC SOIL STIFFNESS

where K; is the stiffness coefficient, i.e., real part, and C, is damping coefficient, i.e.,
imaginary part.

In Wong’s case, the layer and half-space are assumed to be elastic, homogeneous, and
isotropic.

The dynamic soil stiffness are shown in Figures 4.13. The comparison of results show

that the dynamic soil stiffness by proposed method agrees perfectly with Wong’s results.

4.2.2 A Rigid Circular Foundation Supported by a Layer on
Half-space

The dynamic stiffness of a rigid circular foundation with radius of R is considered on a layer
with the thickness of R resting on a half-space. For the both layers, the Poisson’s ratio is
0.25, and the damping ratio are equal to 0.001. The ratios of the shear-wave velocities and
densities are ¢, /c;, = 0.8 and p;/p, = 0.85, in which the subscripts 1 and 2 denote the
top layer and half-space, respectively. In this example, the circular foundation is divided
into 200 subdisks with the radius of R/8. The foundation-soil model, and the discretization

of foundation are shown in Figure 4.14.

R X 16=2R
3 =

2R
Soil Surface | | Foundation

—_—

]I.

Soil Layer ¢ ,p, (=0.1%, v=0.25 =

Halfspace  c_, p, (=0.1%, v=0.25

Foundation and soil site Discretizaton of foundation

Figure 4.14 Circular foundation-site model and discretization of foundation
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Figure 4.15 Dynamic soil stiffness of circular foundation on a layer and halfspace

The decomposed dynamic stiffness based on the dimensionless frequency a, are intro-

duced to illustrate the result as

where k and c are the dimensionless stiffness and damping coefficients, respectively. K, is

equal to a coefficient 8 multiplies the static-stiffness, and the static-stiffness (Wolf, 1985)
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given as

« _ 8GR . _ 4GR 8GR’ _ 16GR’
h = > V—l_va ¢h—3(1_v)) dv — 3 >

where Ky, K,, Kgn, and Ky, are horizontal, vertical, rocking, and torsional stiffness,
respectively.

The results are compared to those calculated by Luco (1974). In Luco’s calculation, the
layer and half-space are assumed to be elastic, homogeneous, and isotropic. The contact
between the foundation and the underlying site is considered to be relaxed, i.e., no friction
exits between the foundation and the soil for vertical and rocking vibrations, while for
horizontal vibrations the normal component of stress at the contact is assumed to be zero.
Based on the boundary conditions, the dynamic stiffness is obtained by a set of Fredholm
integral equations.

The resultant soil stiffness associated with Luco’s are shown in Figures 4.2.2. Excellent

agreement with Luco’s results shows the good accuracy of the proposed method.

4.2.3 A Rigid Circular Foundation Supported by Half-space and a
Layer on Half-space

The dynamic stiffness of a rigid circular foundation with radius of R is considered in two
sites. In the first case, the foundation is supported by a homogeneous half-space. The
Poisson’s ratio is v =0.33. For the second case, a layer with the thickness of R rests on a
half-space. For the both layers, the Poisson’s ratio is 0.33, the damping ratio is equal to
0.05, and the densities are the same. The ratio of the shear-wave velocities is €s2/C1 =2, in
which the subscripts 1 and 2 denote the top layer and half-space, respectively.

In this example, the circular foundation is divided into 200 subdisks, which is the same
as the previous circular foundation as shown in Figure 4.14.

The results are compared to those calculated by Wolf (1985) shown in Figures 4.16 and
4.17. The coefticient By, By, Byn, and By, are 1.01, 1.02, 1.03, and 1.00 for half-space case,
respectively, while they are 1.32, 1.82, 1.19, and 1.04 for a layer on the half-space. The

comparison of results show that the dynamic stiffness agrees well with Wolf’s results.
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Figure 4.17 Dynamic soil stiffness of circular foundation on a layer and halfspace
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4.3 Numerical Examples of the Generation of FRS

Floor response spectra (FRS) of a typical reactor building in nuclear power plants is gen-
erated based on the dynamic soil stiffness given by the proposed method and ACS SASSI,
respectively, to examine the proposed method in the application.

At first, one set of soil stiffness is calculated by the proposed method, and the other set
of soil stiffness is obtained from ACS SASSI. Then foundation level input response spectra
(FLIRS) are developed based on the two sets of soil stiffness. Finally, FRS are generated
by the direct method. The two sets of soil stiffness, FLIRS, and FRS are compared and
discussed.

The model information of the selected reactor building, foundation input response spec-

tra, and the soil properties are given in 3.2.

Computing Soil Stiffness

According to the proposed method, the soil stiffness is calculated and shown in Figure 4.18,
along with the ACS SASSI soil stiffness. It can be observed that the difference of horizontal
and vertical soil stiffness is small, while the difference of rocking and torsional soil stiffness
is significant.

For a half-space case, the soil stiffness at low frequency domain is approximately equal
to the static frequency-independent soil stiffness (Wolf, 1985; Luco, 1974). If vertical static
uniform load g; is applied at the foundation placed on the soil surface, the additional stress
at the bottoms of the top 3 layers are 0.14q;, 0.0394;, and 0.0264;, respectively, which
indicates that the top 3 layers play the dominant role in the determination of static soil
stiffness. Since the V; of top 3 layers are 2100 m/s, 2150 m/s, and 2200 m/s, respectively, the
soil stiffness in low frequency domain is reasonable to be larger than half-space with V; of
2100 m/s, and smaller than half-space with V; of 2200 m/s.

The static stiffness of halfspace is calculated by equations in ASCE (2000). The rocking
and torsional soil stiffness at 0.2 Hz and static values are given in Table 4.1. It can be seen
that the rocking and torsional soil stiffness by the proposed method at 0.2 Hz are between
the values of two half-space cases, while ACS SASSI results are noticeably larger than half-
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Figure 4.18 Dynamic soil stiffness of reactor building

space case with V of 2200 m/s. It means the rocking and torsional soil stiffness are too large

in ACS SASSI, which will influence the analysis of SSI effect.

Table 4.1 Rocking and torsional stiffness in reactor building case

Rocking Stiffness Torsional Stiffness

ftem (x 10N -m/rad) (x 10N -m/rad)
Half-space (V; = 2100m/s) 3.39 4.75
Half-space (V; = 2200m/s) 3.72 5.21
This study (at 0.2 Hz) 3.50 4.80
SASSI (at 0.2 Hz) 4.46 6.93

Developing Foundation Level Input Response Spectra

The translational component of horizontal transfer matrix are shown in Figure 4.19. It
represents the contribution of translational motions in the determination of FLIRS. The

main difference of two sets ranges from 10 Hz to 40 Hz.
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The horizontal transfer function T are shown in Figure 4.20. This transfer function
represents the relationship from FIRS to FLIRS. The shape and values of two sets transfer
matrix are almost the same. It consists of translational components and rotational com-
ponents. Compared to the noticeable difference of peak values at 4.1 Hz, the difference
resulting from the translation component between 10 Hz and 40 Hz are not significant.
Hence, this means the main difference is caused by the rotational components influenced
by the rotational and torsional stiffness.

FLIRS are then developed as shown in Figures 4.21 and 4.22. It shows that the difference
of horizontal FLIRS at around 4 Hz and vertical FLIRS at around 12 Hz can not be neglected,
which is consistent with the trend of transfer function. Due to the accurate rocking and
torsional soil stiffness, the SSI effect is addressed reasonably in this study. Apart from that,

the two sets of FLIRS match each other well.

Generating Floor Response Spectra

FRS at nodes 4 and 5 are generated by the direct method as shown in Figures 4.23 and 4.24.
The two sets of FRS agree well with each other except the first peak at around 4 Hz. It
results from the difference of FLIRS, which represents the importance of accurate dynamic
soil stiffness. For FLIRS in the other frequency domain, the relative error does not exceed

1.2%.

4.4 Summary

In this chapter, a semi-analytical method is developed for accurate and efficient generation
of dynamic soil stiffness. Depending on the soil properties, the flexibility function on the
ground surface is derived analytically from wave propagation function. Then the Green’s
influence function is formulated under a three-dimensional loads according to Fourier
series and Bessel transform pair. Based on the discretized foundation, the dynamic stiffness
matrix of the whole soil base is established accurately and efficiently.

Numerical examples are presented to validate the proposed method. The dynamic soil
stiffness is calculated for foundations with different shapes, i.e., circular foundation and

square foundation, supported by layered halfspace. The results agree well with the former
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results. It shows that dynamic soil stiffness varies significantly with changing frequencies,
which can not be neglected in the SSI analysis. In the proposed method, the dynamic
response of soil base can be addressed accurately.

The generation of FRS is performed with the dynamic soil stiffness given by proposed
method and ACS SASSI. The result shows that the proposed method can give accurate
dynamic soil stiffness, by which the SSI effect is addressed and the resultant FRS can be
generated.

The proposed method has three following features:

[ The flexibility function and the Green’s influence function are derived rigorously, and
then the total dynamic stiffness matrix of foundations is obtained by BEM, which can

give an accurate result.

O Each soil layer with any thickness can be treated as one element and the flexibility
function is formulated analytically. There is no need to discretize soil layers into
sub-layers. As a result, it can quickly generate the flexibility function and Green’s

influence function.

O The application of BEM enables to calculate the dynamic soil stiffness of rigid or

flexible foundations with arbitrary shapes and any number of members.

In summary, the proposed method is accurate and efficient with the analytical formula-
tion of flexibility function and Green’s influence function, and the application of BEM. It
eliminates the gap between site response analysis and SSI analysis, providing a basis for the
analysis of SSI effect with flexible foundations. According to its efficiency, it is convenient

to perform the fully probabilistic uncertainty analysis in the generation of FRS.
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Analysis of Uncertainty in the Genera-
tion of FRS

In the generation of floor response spectra (FRS), both the earthquake ground motion and
the soil properties are not determinant. They are described by probabilistic values, and
needs to be considered (USNRS, 1978; ASCE, 1998; EUR, 2002). In this chapter, a fully
probabilistic method is proposed to address the uncertainty during the generation of FRS.
For a halfspace layered site, characterized by thickness, density (o), and shear-wave velocity
(Vs), etc. in each layer, and Probabilistic Seismic Hazard Analysis (PSHA) at this site, the
uniform hazard FRS is obtained with a specified Return Period (RP).

Based on a given site information, the site profiles and properties are developed by
Monte-Carlo simulation to account for soil uncertainties. Different levels of ground mo-
tions are taken as the seismic input to capture the uncertainty in earthquake. Through the

site response analysis and Soil-Structure Interaction (SSI) analysis, the Foundation Input

Uncertainty ! Site Response ! SSI I FRS
. | |
n Site Profiles :|_|r|: 11n FIRS Uniform | Uniform
11# Strain- 117 FLIRS — Hazard T Hazard
I ;\/IG;Olilnd | Compatible FLIRS | FRS
otions Soil Profiles

Figure 5.1 Logic Tree of Uncertainty Analysis
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5.1 GENERATION OF FULLY PROBABILISTIC FRS

Response Spectra (FIRS) and Foundation Level Input Response Spectra (FLIRS) are gen-
erated. The FLIRS and input ground motions are compared to calculate the site-structure
specific amplification functions which represent both the site response effect and SSI effect.
Finally, a set of uniform hazard FLIRS and floor response spectra (FRS) with a specific
RP are obtained. The logic tree of the proposed method are shown in Figure 5.1. The
uncertainty in the earthquake excitation and soil properties are represented by 11 ground
motions and n random geotechnical models, respectively. So there are totally 11 xn = 11n
analyses. After site response analysis and SSI analysis, the uncertainty are propagated into
the 11n FLIRS which is used to develop site and structure specific amplification factors.

Finally, a uniform hazard FRS is generated.

5.1 Generation of Fully Probabilistic FRS
5.1.1 Developing Input Ground Motions

The Acceleration Response Spectra (ARS) and Fourier Amplitude Spectra (FAS) of the input
ground motion are obtained for given Peak Ground Acceleration (PGA) by the method
in Chapter 2. Since the levels of ground motions influence the site response analysis
significantly, at least eleven response spectra with PGA ranging from 0.01g to 1.5g are

taken as input ground motions to address variation of earthquakes (EPRI, 2013).

5.1.2 Generating Geotechnical Models

Two kinds of uncertainty, epistemic uncertainty and aleatory uncertainty, are considered in
the geotechnical model in current application. Epistemic uncertainty can be addressed by
multiple sets of soil properties, and aleatory uncertainty can be accounted by randomizing
(at least 30 times) parameters of soil properties. In this study, the uncertainty in layer
thickness and depth to bedrock, and dynamic material properties are considered by the
traditional approach, while a new combination of Vj in different layers is proposed to treat

the uncertainty in V.
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5.1 GENERATION OF FULLY PROBABILISTIC FRS

Uncertainty in Layer Thickness and Depth to Bedrock

Assumptions of the probability distributions (e.g., normal, uniform, or lognormal) of layer
thickness and depth to bedrock are based on measured information, such as data in bore-
hole logs. For example, when both properties follow normal distributions, the random

values for the ith layer thickness and depth to bedrock can be determined by
H;=H;+ ¢, oy B;=B;+¢;, 0p;
where Hi and op,; are the mean and standard deviation of the ith layer thickness, Bi and

OB ;

; are the mean and standard deviation of depth of the ith layer to bedrock, and & 1>

&;, are random values following the standard normal distribution. The random values
should be checked by comparing to measured data. The variation in the depth to bedrock

is accommodated by adjusting the thickness of the deepest soil layer.

Uncertainty in Shear-Wave Velocity

Since limited information is available, there is considerable uncertainty in the shear-wave
velocity profile. In current application, V; is assumed to be lognormally distributed. The
estimate for epistemic uncertainty in Vs is taken as o5, which is taken as 0.35, 0.5 for sparse
measurements, and 0.175 for sufficient information. To represent epistemic uncertainty
in V; profiles with a minimum three cases, i.e., 50th-percentile best-estimate (BE), 90th-
percentile upper-bound (UB), and 10th-percentile lower-bound (LB), are used, with the
weights of 0.4 for BE and 0.3 for LB and UB. In each branch, the Vj in all layers hold
the same percentile value. For instance, all Vs are 90th-percentile values in UB case. In
other words, Vs in each layer are assumed fully correlated when epistemic uncertainty is
considered.

In order to capture aleatory uncertainty, random field models are used to generate Vj
profiles (EPRI-1025287). The model assumes that Vs at mid-depth of the layer follows
lognormal distribution and correlates between adjacent layers. The empirical standard
deviation o} of the natural logarithm of Vj is 0.25 and decreases to 0.15 below 15 m (50
ft). A bound of 25, should be imposed throughout the profile, and V; should be limited
to 2830 m/s (9200 ft/s). So Vy actually follows truncated lognormal distribution. The
Probability Density Function (PDF) is normalized to let the integration of PDF between
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5.1 GENERATION OF FULLY PROBABILISTIC FRS

V,e2%in and Vie 29N be equal to 1. Meanwhile, V5 is set to 2830 m/s when the random
Vs exceeds this value.
After considering the epistemic uncertainty and aleatory uncertainty in each layer, the

random values of Vj ; are given by

Vei= Vi eafN®_l(Qi)+ZiUfN, (5.1)

where Vj ; is the ith random value of V.

Q; is determined by a random value 6, which follows uniform distribution and ranges
from 0 to 1. Q; is equal to 10% for 0 < 6; < 0.3, 50% for 0.3 < 6, < 0.7, and 90% for
07 <6, <1

Z; is generated from
Z,=c¢; Z;=7Z,_1-p+e1—p% i>1, (5.2)

in which ¢, is arandom value following the truncated standard normal distribution between
—2 and 2. The PDF of this truncated standard normal distribution is normalized, i.e., let
the PDF multiply 1/[®(2) — ®(—2)].
p is the correlation coefficient and is a function of depth d and thickness & of the layer
(Toro,1995):
pd,h) = [1— p,(d)] p, (h) + p,(d), (5.3)

where p, and p, are the thickness-dependent and depth-dependent correlations:

d+dy \b
Pao (500 %)+ d<200m,

h
pp(h) = pye” s, p,(d) = 200 +d, (5.4)

Pr00? d=>200m.
b and d,, are parameters given in Geomatrix and V3 classifications. The parameters are
listed in Table 5.1 and Geomatrix classification is given in Table 5.2 (Toro, 1995).

In summary, two random numbers 6, and ¢; are generated for each layer. Then the
random value of V ; is calculated by equation (5.1) to represent the uncertainty in V. The
probability density function (PDF) are shown in Figure 5.2.

The PDF of current distributions are not continuous as shown in Figure 5.2, and its shape

is not realistic. Hence, it is desirable to develop a continuous distribution to represent the
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5.1 GENERATION OF FULLY PROBABILISTIC FRS

Table 5.1 Parameters for shear-wave velocity correlation coefficient

Geomatrix V3o (m/s)
Parameter
AandB [ CandD | <180 | 180to360 | 360to 750 | =750
Lo 0.96 0.99 0.95 0.97 0.99 0.00
A 13.10 8.00 3.40 3.80 3.90 5.00
0200 0.96 1.00 0.42 1.00 0.98 0.50
d, 0.00 0.00 0.00 0.00 0.00 0.00
b 0.095 0.160 0.063 0.293 0.344 0.744
Table 5.2 Geomatrix classification
Description
A.Rock

5 m) of soil overlying rock material.

Instrument is found on rock material (Vs > 600 m/s) or a very thin veneer (less than

B. Shallow (Stiff) Soil

typically a narrow canyon, near a valley edge, or on a hillside.

Instrument is founded in/on a soil profile up to 20 m thick overlying rock material,

C. Deep Narrow Soil

narrow canyon or valley no more than several kilometers wide.

Instrument is found in/on a soil profile at least 20 m thick overlying rock material in a

D. Deep Broad Soil

a broad canyon or valley.

Instrument is found in/on a soil profile at least 20 m thick overlaying rock material in

E. Soft Deep Soil

velocity (Vs < 150 m/s).

Instrument is found in/on a deep soil profile that exhibits low average shear-wave

uncertainty in soil. Vs ; is proposed to be generated by
Vsi= Vs e”i %ix,

where o,  is the standard deviation. Z; is generated from Equation (5.2).
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5.1 GENERATION OF FULLY PROBABILISTIC FRS
Monte-Carlo simulation are performed for the current distributions. The Vs following 6
distributions are generated for 107 times, and the o, , of each distributions are calculated as
O o0,,=0.4111 for 05,=0.35 and o3, =0.25,
0 o0,,=0.3716 for 05, =0.35 and o3, =0.15,
O o0,,=0.5428 for 05, =0.5 and o3, =0.25,

0.012 distribution 1 ‘ 0.012 distribution 2
= Oy =04111
N ‘
0.008 0.008} r | I N o N —
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2 2
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Figure 5.2 Probability density function of V; distributions
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O 0,,=0.5135 for 05, =0.5 and 03, =0.15,
O o,,=0.2802 for 05, =0.175 and o, =0.25,
O 0,,=0.2181 for 05,=0.175 and o3, =0.15.

The PDF of proposed distributions are shown in Figure 5.2.
Parametric study is conducted on the proposed distributions and the influence of p in

Section 5.2.

Uncertainty in Dynamic Material Properties

According to EPRI-1025287, two sets of G/Gyx and hysteretic damping are developed
to characterize epistemic uncertainty in material properties for soil (cohesionless soils
comprised of sands, gravels, silts, and low plasticity clays) and rock (Cenozoic or Paleozoic
sedimentary rocks including shale, sandstones, and siltstone).

For soil conditions, EPRI soil curves in EPRI TR-102293-V2 (EPRI, 19938), which ac-
commodate with more nonlinear soils (Figure 5.3), and Peninsular Range curves (Silva
et al.,1996; Walling et al., 2008), which accommodate with more linear soils, are used. The
two sets of soil curves are given equal weights. The Peninsular Range curves reflect a subset
of the EPRI soil curves, with the 51 to 120 ft (15 to 37 m) EPRI curve applied to the 0 to 50
ft (0 to 15 m) depth range and the EPRI 501 to 1,000 ft (153 to 305 m) curve applied to the
51 to 500 ft (15 to 152 m) depth range.

For rock conditions, EPRI rock curves in EPRI-1025287 (Figure 5.4) and linear response
are used. In the model of linear response, damping remains constant with cyclic shear
strain at input loading levels up to and beyond 1.5g. For all sites where soil and firm rock
extended to depth exceeding 150 m (500 ft), linear response can be assumed in the deep
portions of profiles.

The two sets of material properties are summarized in Table 5.3.

According to EPRI-1025287, aleatory variability in dynamic material properties is ac-
commodated by randomizing G/Gmax and hysteretic damping curves. Lognormal dis-
tributions are assumed with o, of 0.15 and 0.3 for G/Gmax and hysteretic damping,
respectively, at a cyclic shear strain of 0.03%. A bound of 20, is applied. The random

curves are generated by computing the change of G/Gnax and hysteretic damping at 0.03%
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Figure 5.4 Shear modulus and hysteretic damping curves for cohesionless rock
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Table 5.3 Dynamic property values

Layers Curve Set 1 Curve Set 2

Soil EPRI soil Peninsular range

Rock in top 150 m (500 ft) depth EPRIrock Linear response

Deeper rock Linear response | Linear response

cyclic shear strain and applying this factor at all strains. The factor should be reduced
near the end of the range to preserve the general shape of the base-case curves. Hysteretic
damping at 0.03% shear strain should not exceed 15% in applications.

So similar to V; distribution, G/Gpnax and hysteretic damping also follows truncated
lognormal distribution, and the PDF is is normalized to ensure its integration is equal to 1.
Meanwhile, hysteretic damping is set to 15% when the random number exceeds this value.

G/Gmax and hysteretic damping curves can be developed by

G/Gpa i = G/Gmax %1, D, = De’ 2, (5.6)

max, i

where G/Gy,, ; and D; are the ith random modulus reduction and hysteretic damping,

respectively, and ¢; | and ¢, , are independent standard normal random numbers.

5.1.3 Determining Foundation Level Input Response Spectra

After considering propagation effect, site response analysis, and SSI effect, the site-
structure specific amplification functions “Af are calculated. Then seismic hazard curves at
reference hard rock and Jf are convolved to compute FLIRS with a specified RP. Based on

the direct spectra-to-spectra method, FRS with the RP can be generated.

Amplification Function

The amplification function Yf is defined as the ratio of spectral acceleration Sy ( f ‘ a) in

FLIRS to Sy (f | a) at reference hard rock, given the amplitude of rock motion g, i.e.,

Tt (f|a) = %. (5.7)
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Figure 5.5 Logic tree for the generation of amplification function

Figure 5.5 gives an example logic tree for determining amplification functions A, in
which there are 4 branches accounting for epistemic uncertainty in seismic source model
and site-specific geotechnical model. For each branch, a minimum of 30 random realiza-
tions are generated to capture aleatory randomness in the model. The outputs of analyses
are FLIRS by site response analysis and SSI analysis.

The site response analysis is performed at first to give horizontal and vertical FIRS,
and the relevant stain-compatible soil properties in each layer. The nonlinearity of G
and ¢ are considered by an equivalent linear method as described in Section 2.2.2. For
example, if the shear strain in the n™ soil layer is y,, the strain-compatible soil properties
are determined from the shear modulus and hysteretic damping curves as 8,G, and ¢,
as shown in Figure 5.6. G, is the low-strain shear modulus which is determined by
density p, and initial shear wave velocity Vs, as p,Vs .. B. and ¢, are the shear
modulus reduction coefficient, G/Gmax, and damping ratio with respect to the shear strain
Yn» respectively. Strain-compatible soil properties mean that the ground motion resulting
from soil properties 8,G, and ¢, gives the compatible shear strain y, in the n'" soil layer.

Then the strain-compatible soil properties are assumed to be constant in the generation
of dynamic soil stiffness which can calculated based on Chapter 4. As shown in Figure

5.6, the strain-compatible soil properties §,G, and ¢, are used to develop dynamic soil
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stiffness. According to the proposed substructure method, FLIRS is generated by each set
of FIRS and dynamic soil stiffness.

SSI analysis

Reactor
Building

H i

e | Y] amiig
N -

Site Response Analysis

Layer 1
G]. ,Hl, \'1

Layer n Layer n
Gp, Hp, vy Gn> C1> Hyy v

Bedrock Bedrock
Glz’ (lz’ Vp Gh’ (vlz’ Vp

Figure 5.6 Treatment of nonlinear soil properties

T (f | a) is assumed to be lognormally distributed given the amplitude of rock motion a.
For the ith epistemic branch, the logarithmic mean p; and logarithmic standard deviation
o; of Tf(f | a) can be obtained from the set of at least 30 random profiles. Then the total

and o

In 5| a for each frequency given the amplitude of rock motion a are calculated

'ulnﬂf|a
by

2
Pincrla = Wit Oogle = 2 Wi (1 =ty o) 075 (5.8)
t i

where w; is the weight for the ith epistemic branch.
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Foundation Level Input Response Spectra

The seismic hazard on ground surface for a specified structure, uniform hazard FLIRS
with RP, is calculated by convolving amplification functions and seismic hazard curves at

reference hard rock as

Hy(z) = / // ﬁf>—‘m,r, }fMR}A(m,r}a)hA (a)dm drda, (5.9)

where Jf is the amplification function depending on m, r,and a. a is the amplitude of rock
motion, and fy; g4 (m, 1 } a) is the joint probability density function of M and R given the
amplitude a of rock motion. A" (a) is the absolute value of the derivative of the seismic
hazard at reference hard rock.

As stated in Chapter 2, site amplification is virtually independent of earthquake magni-
tude M and source-to-site distance R when frequencies f are greater than initial resonant
frequency f,. of soil column, i.e., f= f,.. When f is small enough, equation (5.9) can be

simplified as

sf{zs(z)=foo {ar>2|a }‘dg{?(“)
0 da
7|

the amplitude a; of rock motion

/OOO {gf>_‘ }ﬁim(a)da. (5.10)

ai} can be determined by assuming that 7f is lognormally distributed given

lnz/ai—un .
al=1-o kil e [ (5.11)

Glnﬂf!ai

where p, |a, and o are mean value and standard deviation of InJf given the

amplitude a; of rock nifi‘;) which can be obtained from equation (5.8). Finally FLIRS is
taken as the seismic input for primary structures to generate FRS.

The logic tree of the proposed method and the current method are compared as shown in
Figure 5.7. Based on 11 ground motions and n random geotechnical models, 11 xn = 11n
sets of FIRS and strain-compatible soil properties are obtained from site response analysis.
In current application, the FIRS with RP is calculated. Then three site profiles, BE, LB and
UB, are used in SSI analysis, which lead to three sets of FLIRS and the resultant FRS. The

final FRS is obtained by maximum value method, i.e., three sets of FRS are enveloped at
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Figure 5.7 Comparison of two methods

each frequency point. Since only three site profiles are considered, the uncertainty in soil
properties is not considered from site response and SSI analysis consistently. The risk in the
final FRS can not be evaluated. In the proposed method, the uncertainty are propagated into
the 11n FLIRS which is used to develop site and structure specific “f. Finally, a uniform
hazard FRS is generated after fully considering the uncertainty resulting from both soil and

earthquakes.

5.1.4 Procedures of Generating Uniform Hazard FRS

For a structure supported by a horizontally layered soil site, procedures for generating

uniform hazard FRS are summarized as follows:

1. The seismic input at bedrock is developed. At least 11 ground motions with different

loading levels are needed to represent the uncertainty in earthquakes.

2. The geotechnical models are established including soil parameters of layer thickness,
shear-wave velocity, damping ratio, density, and Poisson’s ratio. The uncertainty in
the layer thickness, depth to bedrock, shear-wave velocity, and soil properties are

considered to generate random site profiles based on Monte Carlo simulation.

3. Thesite response analysis is performed at each random site with every input ground mo-
tion to determine the free field motion. The nonlinearity of soil properties is addressed

in site response analysis to develop stain-compatible soil properties.
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4. The dynamic soil stiffness is generated from the strain-compatible soil properties which

are assumed to be constant in this step.

5. Based on the dynamic soil stiffness and structural information, SSI analysis is conducted

to generate FLIRS.

6. Comparing FLIRS and input ground motion at bedrock, “f is determined for each
combination of random sites and ground motions. According to the probabilistic
description of seismic excitation at bedrock and the distribution of %, the uniform
hazard FLIRS is developed with a desired RP. This uniform hazard FLIRS can be taken

as the seismic input for a fixed-base model to generate uniform hazard FRS.

5.2 Application and Parametric Study

The FRS of reactor building shown in Section 3.2 is generated after considering the uncer-
tainty in soil properties and seismic hazard at reference hard rock. The results obtained by

the proposed method and the current method are compared.

5.2.1 Site Information and Seismic Input

The uniform hazard spectra representing seismic hazard are shown in Figure 5.8. Two sites,
i.e., soil site and rock site, are taken into consideration in this study. The soil properties are
listed in Tables 5.4 and 5.5.

According to PSHA results, 11 levels of ground motions are generated with peak acceler-
ation values spanning from 0.01g to 1.5g to examine the Jf by site response and SSI. The

FAS of ground motions are shown in Figure 5.9.

5.2.2 Uncertainty in Geotechnical Model
Shear-Wave Velocity and Thickness Profiles

In this study, the distribution of each layer thickness and the depth to rock are assumed to
be normal distribution and coefficient of variation is taken as 0.2.
The Vs follows log-normal distribution. In the three branches, the median values of the

Vs in all layers are one of BE, UB, and LB. For instance, V; in every layer is UB value in

116



5.2 APPLICATION AND PARAMETRIC STUDY

100,000-year RP

10,000-year RP
2,475-year RP

1,000-year RP

C
g | |
S 10 ‘ e
=1 L |
«© C q I
—
()
o
Q
s 100-year RP
T& \
=
Q102 L~ ~ g~ ... = —
() B
o
w
0°0 . . L . e
0.25 1 10 100

Frequency (Hz)

Figure 5.8 UHRS

Fourier acceleration spectrum (cm/s?)

‘ Frequency (Hz)\\ 1
10 100
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UB branch. The weights are 0.4, 0.3, and 0.3 for BE, UB, and LB, respectively. These three
Vs profiles are shown in Table 5.6. Then 30 profiles are generated to represent the aleatory

uncertainty. The two values of o} are applied in the top 15 m,i.e., 0.25, soil layers and under

15 m,i.e., 0.15. The randomized site profiles are shown in Figure 5.10.

Table 5.4 Soil properties at soil site.

Layer Number | Thickness (m) | Density (g/cm?®) | Shear-Wave Velocity (m/s) | Damping Ratio
1 6 1.9 500 0.05
2 9 2.1 1200 0.03
3 20 2.2 1500 0.03
4 20 2.2 1800 0.03
5 halfspace 2.5 2830 0.01

Table 5.5 Soil properties at rock site.

Layer Number | Thickness (m) | Density (g/cm?®) | Shear-Wave Velocity (m/s) | Damping Ratio
1 15 2.1 1400 0.03
2 20 2.2 1600 0.03
3 20 2.2 1800 0.03
4 halfspace 2.5 2830 0.01

Table 5.6 Shear-wave velocity profiles
Soil Site Rock Site
Layer Number
BE (m/s) | UB (m/s) | LB (m/s) | BE (m/s) | UB(m/s) | LB (m/s)
1 500 783 319 1400 2192 894
2 1200 1879 766 1600 2506 1022
3 1500 2349 958 1800 2819 1149
4 1800 2819 1149 2830 2830 2830
5 2830 2830 2830 N/A N/A N/A
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Figure 5.10 Realizations of shear-wave velocity profile in case 1

Dynamic Material Properties Curves

According to Section 5.1.2, 2 sets of G/Gpax and damping are used with equal weights.
Dynamic properties for the sites are listed in Table 5.7. The random curves of EPRI soil
in first layer at the soil site are shown in Figure 5.11 which shows a wide range of random

curves used in this study.

Table 5.7 Dynamic property for the sites

Soil Site Rock Site
Layer Number

Curve Set 1 Curve Set 2 Curve Set1 | Curve Set 2
1 EPRIsoil | Peninsularrange | EPRIrock | Linear3%
2 EPRI rock Linear 3% EPRI rock Linear 3%
3 EPRI rock Linear 3% EPRI rock Linear 3%
4 EPRI rock Linear 3% Linear 1% Linear 1%
5 Linear 1% Linear 1% N/A N/A
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Figure 5.11 Realizations of shear modulus and hysteretic damping curves for 0-6 m soil.

5.2.3 Resultant Foundation Level Input Response Spectra

The logic tree for the generation of FRS in this application is shown in Figure 5.12. There are
2 %90 = 180 geotechnical models generated to capture epistemic uncertainty and aleatory
uncertainly. As 11 ground motion levels are considered, a total of 180 x 11 = 1980 analyses
are performed.

In this example, the site response analysis is conducted in frequency domain. The
horizontal FIRS and strain-compatible soil properties for all realizations are obtained.

Then the dynamic stiffness is calculated based on the strain-compatible soil properties. The
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Figure 5.12 Comparison of two methods in the application

strain-compatible dynamic stiffness under the ground motion with PGA of 0.3 g are shown
in Figure 5.13,

V/H ratios from GMPEs in the WUS is applied to calculate the site-specific V/H ratios.
Three GMPEs are usually used, e.g., Bozorgnia and Campbell (2004), and Gulerce and
Abrahamson (2011). The vertical FIRS is developed from the horizontal FIRS and site-
specific V/H ratios and is shown in Figure 5.14.

The horizontal FIRS at the soil site and the rock site are shown in Figures 5.15 and 5.16.
The FIRS with RP of 10,000 years is calculated and then used in the SSI analysis by the
current method.

According to the proposed substructure method, the FLIRS for each randomization are
generated. The horizontal FLIRS are shown in Figures 5.17 and 5.18. It illustrates that
FLIRS is amplified at different frequency points for each site. 1, and o; of Jf are calculated
for each site given the ground motion and frequency. 1y, g, and oy, o, of A given
eleven loading levels at soil site and rock site are presented in Figures 5.19 to 5.22. Based on
Gt and seismic hazard curves at reference hard rock, a sets of uniform hazard FLIRS with
different RP can be determined according to Equations (5.10) and (5.11) as illustrated in
Figures 5.17 and 5.18.

The comparison of FLIRS calculated by proposed method and current method are shown

in Figures 5.23 and 5.24. They demonstrate that the peaks of FLIRS at BE, UB, and LB sites
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Figure 5.16 Resultant FIRS at rock site
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are sharp, while the FLIRS generated by the proposed method is smooth with uniform
hazard. In low frequency domain, i.e., 3 Hz and below, the BE, UB, and LB FLIRS vibrate
significantly between 1,000-year RP and 100,000-year RP. In the frequency range above 3
Hz, the RP of 3 FLIRS is stable and partly parallel to the uniform hazard FLIRS. The BE
FLIRS is between 10,000-year RP and 20,000-year RP, while LB is between 2,475-year RP
and 10,000-year RP. However, the RP of UB at soil site changes from 20,000 years to 50,000

years, while this is different in rock case where it ranges from 10,000 years to 20,000 years.

5.2.4 Floor Response Spectra

Depending on the direct spectra-to-spectra method, 3 sets of FRS in the current method,
i.e., BE, UB, and LB, are calculated as shown in Figures 5.25 to 5.28. Then the final FRS are
obtained by maximum value method, i.e., enveloping the 3 sets of FRS at each frequency
point. According to the figures, it is observed that in the frequency range above 1 Hz, the
final FRS, the black dashed line, are solely determined from the UB case. That means only
one extreme soil case is considered in the the generation of FRS considering SSI after FIRS
with RP of 10,000 years is developed. This treatment eventually leads to an extreme FRS
which is not a reasonable seismic demand for secondary systems.

Compared to the current method, a set of uniform hazard FRS with different RP are
generated by the proposed fully probabilistic method. The comparison of the results are
shown in Figures 5.29 to 5.32. In most frequency ranges, i.e., the frequency is above 3 Hz,
the RP of FRS is almost equal to 50,000 years at soil site as shown in Figures 5.29 and 5.30,
while the RP is close to 20,000 years at rock site as shown in Figures 5.31 and 5.32. It is
recognized that the hazard level of the final FRS in the current application is not consistent
at different sites. This will result in over estimated FRS at specific sites.

In the frequency range below 3 Hz, the smallest RP of FRS given by the enveloping
method is close to 2,475 years at the soil site, but the highest value is larger than 100,000
years. For the rock site, the RP of FRS ranges between 2,475 years to 100,000 years at low
frequency domain. This variation also happens between 8 Hz and 20 Hz at the soil site

where the RP of FRS at node 5 decreases from 50,000 years significantly. It is demonstrated
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that the FRS given by enveloping method may be too conservative at some frequency points,
while the underestimation also exits.

In nuclear industry, the RP is usually taken as 10,000 years in the seismic design. The
comparison of FRS given by the enveloping method and the values with RP of 10,000 years
by the proposed method are presented in Figures 5.33 to 5.36. The difference between
the enveloping method, the dashed black line, and the proposed method, the solid red
line, are noticeable. Based on the proposed method, the peak values of FRS at 5.6 Hz are
reduced by 46% and 20% at the soil site and rock site, respectively. For the second peak
of node 5 at the soil site, it is reduced by 39%. At the same time, the RP of FRS given by
the enveloping method is lower than 10,000 years at some low frequency points, e.g., RP of
current application are 5,910 years at 0.8 Hz on soil site and 6,730 years at 0.85 Hz on rock
site. In general, the final FRS decreases significantly based on the proposed method which
provides a cost-effective solution in the seismic design. Meanwhile, the proposed method
also improves the safety in the low frequency domain.

It illustrates that enveloping 3 sets of FRS dose not consider the uncertainty of earthquake
excitation and soil properties properly. The resultant FRS by the enveloping method is an
extreme case with high seismic demand, and can not represent the variation of the soil
properties. The hazard are not addressed reasonably and consistently throughout the
frequency range. The proposed method fully captures the uncertainty in the generation
of FRS. The uncertainty are convolved into uniform hazard FLIRS, which is the modified
free field motion after considering SSI. The uniform hazard FRS is generated by taking the

uniform hazard FLIRS as the seismic input in the fixed-base model.

5.2.5 Parametric Study on o, and o of v;

In order to address the influence of o, and the correlation coefficient p of the adjacent
layers, 7 cases of both the soil site and rock site are studied. The relevant parameters and the
generation of shear-wave velocity profiles are shown in Figure 5.37.

In case 1, current V; distribution is employed as described in Section 5.2.2, in which the

epistemic uncertainty are assumed fully correlated. In case 2, the correlation of epistemic
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Figure 5.37 Generation of site profiles

uncertainty is treated the same as aleatory uncertainty in each layer. The correlation
coefficient is determined as a function of depth and thickness.

In cases 3 to 5, the Vs profiles are generated following Equation (5.5), the continuous
log-normal distribution. Different o, are used to examine its sensitivity. In case 4, 0.41
used in top 15 m, and 0.37 used in lower layers, are the equivalent o of the current
distribution proposed in Section 5.1.2. In cases 6 and 7, different p are used to examine the
sensitivity about p. In order to compare with current application, the same number, 90, of
site profiles are generated.

In the comparison of cases 1 and 2 as shown in Figures 5.38 to 5.41, the difference is no-

ticeable, and is up to 5.24% when epistemic uncertainty is treated by different approaches. It

Table 5.8 Relative errors at the peak with different o,

Soil Site Rock Site
Case Number

Node 11 | Node 12 | Node 11 | Node 12

3 -1.59% -1.59% -0.75% -0.74%

5 2.21% 2.21% -1.33% -1.33%
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is demonstrated that the influence of correlation coefficient in the consideration of epistemic
uncertainty can not be neglected.

According to Figures 5.42 to 5.45, the proposed alternative o, in case 4 leads to similar
FRS to case 2. The relative error at the peaks are 0.18% in soil case and 2.33% in rock case.
It is reasonable to replace the current Vs distribution by the continuous distribution with
proposed o, as given in Section 5.1.2.

In cases 3 and 5, the FRS given by the different o,  are close to case 4 as shown in Figures
5.46 to 5.49, and the difference is less than 2.3% given in Table 5.8. It shows that the
sensitivity of FRS about o, is small. o, in this study represents the combination of both
the epistemic and aleatory uncertainty. If epistemic uncertainty is neglected, it will result
in a smaller o, . In this parametric study, the influence of difference o, is small, which
indicates that epistemic uncertainty will not affect the uniform hazard FRS much.

FRS determined by different p of V; are shown in Figures 5.50 to 5.53. At soil site, the
difference are up to 1.31% at 5.6 Hz and 6.54% at 12.6 Hz. At rock site, the 2 sets of FRS
is close to each other with the difference of 1.53% at the peak. It is recognized that the
influence of p is minor in most frequency range, while p may influence the resultant FRS in

high frequency domain.

5.3 Summary

In this chapter, a fully probabilistic method is developed for addressing the uncertainty
in the generation of FRS. Different levels of ground motions are taken to represent the
seismic hazard, and the geotechnical models are generated by Monte Carlo simulations
to account for the uncertainty in soil properties. The uncertainty is propagated from site
response analysis to SSI analysis consistently, and convolved into the uniform hazard FLIRS.
Since the fixed-base structure model is determinant without variability, the uniform hazard
FLIRS is taken as the seismic input, and FRS are developed with a specific RP. A realistic and
continuous V; distribution is proposed to represent the two kinds of uncertainty, epistemic

uncertainty and aleatory randomness.
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5.3 SUMMARY

Numerical examples are conducted to illustrate the proposed method. The FRS are gen-
erated by current method and proposed probabilistic method, respectively. Compared to
the current method, the proposed method can provide a more reasonable seismic demand.

Sensitivity study is performed on the o, and p of V. Some conclusions are obtained:

[ The FRS generated by the proposed method gives a uniform hazard design spectra.
It addresses the uncertainty in earthquake excitation and soil properties in a fully
probabilistic approach, which overcomes the underestimation and overestimated re-
sults in the current application. The seismic demand for secondary system is reduced
significantly. In the numerical examples, the peak values in FRS decrease by 46% and

20% at soil site and rock site, respectively.

O It is unreasonable to assume all layers are fully correlated when treating epistemic
uncertainty in current method. The proposed method generates randomization of Vi

in each layer with a correlation coefficient, which can give a more reasonable FRS.

O The FRS given by the proposed alternative o, , agrees well with the results led by the
current parameters. A continuous and more realistic distribution is applied in Monte
Carlo simulation. Sensitivity study shows that final FRS generated by different o, do

not change noticeably.

O In most frequency ranges, FRS dose not vary significantly with different p of V5,
especially at rock site. But the peak of FRS in the high frequency domain, e.g., above
10 Hz, may change significantly.

In summary, the proposed method can give a realistic and uniform hazard FRS, which can
improve the accuracy and economic in engineering design. The uncertainty is propagated

from site response analysis to SSI analysis consistently.
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Soil-Structure Interaction Analysis with
Flexible Foundation

For reactors placed underground, the earthquake excitation not only comes from the bot-
tom, but also exits at the side walls. The stiffness of external structures of reactors are
usually very high, and similar to the values of foundations. Thus the total foundation sys-
tem, including bottom foundations and external structures, can not be treated as rigid in
Soil-Structure Interaction (SSI) analysis. Besides, according to site response analysis, the
free field motion at different soil layers are different. In this Chapter, Foundation Level
Input Response Spectra (FLIRS) is generated considering the flexibility of foundations and
spatially varying ground motions, so that the direct spectra-to-spectra method for gener-
ating Floor Response Spectra (FRS) can be applied for structures with flexible foundation
under excitations at multiple points.

In the proposed method, the structural response is expressed in terms of the modal
information of the structure and the seismic input at multiple points. Then the equilibrium
equations are established for each structure and foundation node, as well as the entire
structure-foundation system, by which the structural response is obtained from the free
field motion. Based on the structural response, a transfer function from the free field
motion to fixed-base motion is determined. At last, the modification factor converting
Foundation Input Response Spectra (FIRS) to FLIRS is calculated by random vibration
theory.
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6.1 SUBSTRUCTURE METHOD

6.1 Substructure Method
6.1.1 Substructure Model for Flexible Foundation

The coupled soil-structure model with flexible foundation is shown in Figure 6.1. Let
U, and U, be amplitudes of the absolute displacement vectors of the superstructure

« »
S

and foundation, respectively, where the subscripts and “b” stand for the degrees-of-
freedom of “structure” and “base” (or boundary of soil-structure interface), respectively.
The equation of dynamic equilibrium of the structure is given by
s [u]_[®] o
St Stv] { Ub Py
where Py is the amplitude vector of the load applied on the nodes of the structure, and Py
is the amplitude vector of the interaction forces between the structure and soil.
Similar to the derivation with rigid foundation as given in Section 3.1, the free-field
earthquake excitation at node O is replaced by seismic input at multiple points on the

foundation (Figure 6.1). Hence, referring to the case of rigid foundation in Section 3.1.2,

one has
S00 = So»  S0s = Sps» S0 = Si» S0 = St S0 = Spb
U,=1U, U5=10U;, Uj=U;.
Then equation (3.8) becomes

ss sy || 0
= . (6.2)

Sts Seb+Spb | { Up Spp Up
Equation (6.2) is the equation of motion of the structure supported on generalized springs
characterized by the dynamic stiffness matrix S} as shown in Figure 6.2. The other ends
of the springs are subjected to earthquake excitation Uy, which is the free-field response of
the soil at the foundation level; the acceleration response spectra of ii;, are the Foundation

Input Response Spectra (FIRS), which can be obtained from a site response analysis of the

free-field.
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6.1 SUBSTRUCTURE METHOD

Finite-Element
Model Ses
>

s S
sb, Sbs @

Sby O
Ub
Free-Field Soil
Model Excavated Soil
Foundation Input Response Spectra => “Structure”
- Sts>s =0
s -s;,
U,=Uj Sth

Free Field

Soil with Excavation

Site Response Analysis

Figure 6.1 Coupled Soil-Structure Model

Considering the excavated soil, equation (6.2) can also be written as

S5t b Us 0

Sts (Stb—=Sbb) +Spp_| | Up shUE | 7

For a structure with N nodes (not including the foundation), each node has 6 DOF (three
translational and three rotational). The flexible foundation has M nodes with 6M DOE
The dimensions of the vectors U, U, and U} are 6N, 6M, and 6M, respectively. The
dimensions of the dynamic stiffness sub-matrices of the structure S, S3,, Spe> Spy, are
6Nx6N, 6Nx6M, 6Mx6N, and 6Mx6M, respectively. The dimensions of the dynamic

stiffness sub-matrices of the soil S, Sf,, and S, are all 6Mx6M.
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6.1 SUBSTRUCTURE METHOD

S
SS

Finite-Element
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e S5, Sbs

S
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b,1 F
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F F F
b,m-1 b,m bm+1

Figure 6.2 Soil-Spring Model of SSI with Flexible Foundation

6.1.2 Fixed-Base Model for Flexible Foundation

For the fixed-base model as shown in Figure 6.3, from the first block-row of equation (6.3),

one has
SSU,+8,U, =0 — U, =S"U,, S™=—(5)"'SS, (6.4)

where S™ is the dynamic stiffness matrix for fixed-base analysis with flexible foundation.
When only translational ground motions are considered, Re-organizing vector U and
rewriting Uy as

Us,T Utl:B

Ysir ) enst 0 ) 6ar
Re-arrange and partition S accordingly, one has
S
ST — , (6.6)

S8 GFB
RT RR_ Nx6
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6.1 SUBSTRUCTURE METHOD

Finite-Element
Model

Tri-Directional U}’

Figure 6.3 Fixed-Base Model with Flexible Foundation

in which each submatrix is of dimension 3Nx3. Equation (6.4) can be written as

U] _[sm s [ur] _[srur] o
.. sz osz]| o sy
Multiplying the first block-row of equation (6.7) by (S+% )R) T yields
(s8)7U,; =[(s1)"sB]up. 68)

The tri-directional (translational) acceleration response spectra U * applied at the flex-
ible foundation of a fixed-base structure are the Foundation Level Input Response Spectra
(FLIRS), as shown in Figure 6.3.

For a three-dimensional model of a structure with N nodes and a foundation with M
nodes, a typical node n has 6 DOF: three translational DOF u;, u,, u3, and three rotational
DOF uy, us, ug. The structure is subjected to tri-directional seismic excitations at one node

of the foundation. The displacement vector u of dimension 6(N + M) is governed by

Miu(t) + Cu(t) + Ku(t) =P, (6.9)
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6.1 SUBSTRUCTURE METHOD

where M, C, K are, respectively, the mass, damping, and stiffness matrices of dimension

(6N + 6M) x (6N + 6M), given by

M _ Ms 0 , C _ Css CSb ’ K _ Kss KSb ,
0 M, Cps  Cob K,

S

and P is the interaction forces applied on the nodes as

T
uis
T
u:iuS, Ub} >
where
1 2 NE n noon n T
uS:{us> uS’ te uS } > uS :{us,l’ uS,Z) R ) us,6} >
T
T
— 1 2 M m_|, m m. . m
ub —{ub> ub) s u-b } 5 ub _{ub,l’ ub,z’ 5 ub,6} )

Then the displacement of the structure is separated to two parts as a pseudostatic com-

ponent u} and a dynamic component x
u = u; + X, (6.10)

where uf is defined as the displacement when the ground motion at time ¢ is applied

statically, and meets

K K b us 0
v i = . (6.11)
Kps Kpp | (W P,°
According to the first block row of equation (6.11), one obtains
u = Lu, (6.12)
where
L= —K;'K. (6.13)

Based on equation (6.10), the first block row of equation (6.9) can be expressed as

M x(t) + Cssx(1) + K x(f) = —Mg ﬁz(t) — Css ﬁz(t) — K uZ(t) - Csb l.1];,(t) - Ksb ub(t)-
(6.14)
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6.1 SUBSTRUCTURE METHOD
Substituting equation (6.13) into equation (6.14) leads to

In engineering applications, the damping term is usually relatively small compared to the

inertia term. Neglecting the damping values in the right side of equation (6.15) gives
M, x(t) + Css X(t) + Ko x(£) = —MLii (7). (6.16)
Letting x(f) =Xe!®* and u, (=0, e'®!, equation (6.16) becomes
(—*M + i0Css + Kgs) Xs = ©*MLUj. (6.17)

Applying the modal transformation X;=®;Q,, where ®; is the modal matrix of the
structure obtained by modal analysis without the soil springs when the foundation nodes

are constrained, substituting into equation (6.17), and multiplying ®! from the left yield
(—*®IM @ + i ®! Cys®s + B K@) Qs = 0> @I ML U, (6.18)
Employing the orthogonality gives
diag{—a)2 + i2§n’sa)n)sa) + a)fl’s} Q = a)zI'Ub, (6.19)

where T is a 6Nx6 matrix given by

oML
= (6.20)
Hence,
X, = 0*®H;T U, (6.21)
where Hj is a diagonal matrix of the complex frequency response functions, i.e.,
H, = d 1 (6.22)
= dia . .
’ 8 0 —w?+i2 w
n,s n,S Mn,S

Since the dynamic displacement x; = us—ug, substituting into equation (6.21) gives
U = (0*®H,T + L) U,. (6.23)
Comparing equation (6.23) with equation (6.4), one obtains
S™ = w’® H,T + L. (6.24)
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6.1 SUBSTRUCTURE METHOD

6.1.3 Spring-Structure Model under Excitation

The spring-structure system is shown in Figure 6.4. In order to establish the governing
equation, the M nodes in the basement is expressed by two parts, i.e., one single node O
as origin and (M — 1) foundation nodes represented by f. The input earthquake motion
becomes
UF
ui={ "}. (6.25)
Uo
Comparing to the displacement at point O, the relative displacement vector x of dimen-
sion (6N 4 6M — 6) is governed by
Mi(f) + Cx(f) + Kx() = —M Tiiy (1) + P, (6.26)
where M, C, K are, respectively, the mass, damping, and stiffness matrices of dimension
(6N + 6M — 6)x (6N + 6M — 6), given as
MS 0 CSS Csf KSS st

M= , C= ) K = s
0 M Cy Ci K,

S

and P is the interaction forces applied on the nodes f as

T
p={o,p] .

F F F F F F
b,m-1 b,m Uf,mfl UO Uf,m

bm+1

Figure 6.4 Spring-Structure Model with Flexible Foundation under Excitation
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6.1 SUBSTRUCTURE METHOD

x and 7 are
T T
X:{XS, Xf} > q:{qs, qf} >
where
— 1 2 N T n_J.,n n n T
Xs Xs> Xs Xs > Xs _{xS,l’ xs,z’ o xs,6} i
T
N ) M-1 _ T
Xf—{xfaxf)"'xf } ) X;n—{xfljﬁ’xglza"')x:’%})
T T
t={1, ¢, - 1}, fL={g. ¢ . ],
100 0 Zn—20  —n—Yo)
0 1 0 _(Zn _Zo) 0 xn _xo
. 0 01 Yn — Yo —(Xn — Xo) 0
qS = >
0 0O 1 0 0
0 0O 0 1 0
0 00O 0 0 1
1 00 0 Zm—20  —m—Yo)
01 0 —(z—2) 0 Xm — Xo
o001 =y —(m — X0) 0
qf =
0 00O 1 0 0
0 0O 0 1 0
0 0O 0 0 1

xg and x{" are the relative displacement vector of structure node  and foundation node
m, respectively. 1, and 1, are the influence matrix of structure nodes and foundation
nodes, respectively. x,, y,, and z, are the coordinates of the nth node in a Cartesian
coordinate system, and x,, y,,and z, represent the coordinates of the node O.

The first block row of equation (6.26) can be expressed as

M X,(f) + Css X5(1) + Ko X(1) = _qusﬁo(t) - Csfkf(t) - stxf(t)- (6-27)

154



6.1 SUBSTRUCTURE METHOD

As stated in Section 6.1.2, the damping term Cx((¢) is usually relatively small. Neglect-
ing the damping term on the right side and introducing x(f) =Xe'® and u=Ue'** lead
to

(—CL)ZMS + ia)CSS + KSS)XS = a)zqus UO - stXf. (6.28)

Applying the modal transformation X = ®;Q;, where ®; is the modal matrix obtained
by modal analysis without the soil springs when all the foundation nodes are constrained,

substituting it into equation (6.28), and multiplying ®! from the left yield
(_a)ZQSTMs¢S + inZCss¢s + Q’STK55¢5)QS = C()2¢’STquS UO - QSTKS{.‘Xf. (6.29)

Employing the orthogonality gives

. 2 . 2 2
diag{ —»” + 20, ®, ®+ a)n,s}Qs = 0T, Uy — QX (6.30)
where .
_ (I)STMS 1; _ (I)s st
T oIM® T OIM @
Hence,
XS = (I)2¢5Hsrs UO - ¢SHSQS Xf. (6.31)

Since the relative displacement x=u— Tug, Uy is equal to
U, = 0*®H, I U, — ®H,Q (U; — 1, Up) + T, U, (6.32)

which can be rewritten as

U, = aU; + bU,, (6.33)

where

a=—-®HQ;, b=o’®HT,+ ®HQTL + Ts.
The second block row of equation (6.25) is
Mf)&f(t) + Cff).(f(t) + Kffo(t) + Kfs Xs(t) = —qufiio(t) — CfS Xs(t) + Pf. (6.34)

Similarly to the first block row, neglecting damping term Cg, X,(f), and introducing x(f) =

Xel®! and u=Ue!®! resultin
(—a)sz + ia)Cff + Kff)X_f + Kfs Xs = szquUo + Pf. (6.35)
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6.1 SUBSTRUCTURE METHOD
According to equation (6.31), X is replaced in equation (6.35) as
(—C()ZMf + iCl)Cff + Kff — Kfsq)SHst)Xf = C()Z(quf — Kfsq)sHsrs) Uo + Pf. (6.36)

Substituting the modal transformation X;= ®:Q; into equation (6.36), where ®; is the
modal matrix obtained by modal analysis without the soil springs when all the structure

nodes and node O are constrained, and multiplying <I>fT from the left yield
AQ; = o ®] (M T; — K ®H,T) U, + /Py (6.37)
where
A=—w’®M®;+i0®]Cyd; + & Ky® — &K B HQ Py (6.38)
Based on the the orthogonality, A can be expressed as
A = @M@ diag{— o’ +i2¢, (0 0+ o} [} — &K DHQ Py (6.39)
Then, X; can be obtained as

X; = o’ @A [ (M1 — K ®HT) Uy + &A™ @] Py (6.40)

U;,m—l UFO U]Ffm

Figure 6.5 Interaction Forces in Spring-Structure Model
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6.1 SUBSTRUCTURE METHOD

The interaction forces applied on the basement Py, = S{, (Uf —U,)), as shown in Figure
6.5, can be re-arranged as
Pe _ St Sip | | UF-U; | (641
Po ng Soo_| [ Us — Vo
where P; and Pg are (6M —6) x1 and 6 x1 vectors, respectively. Sff isa (6M—6)x(6M—6)
matrix, Sfo isa (6M — 6) x6 matrix, ng is a 6 (6M — 6) matrix, and Sj), is a 6 x6 matrix.
Replacing the relative displacement by x;=wu;— T;up, and substituting the interaction

forces into equation (6.40) gives
U = o* @A™ @] (M1 — K ®H,T) Uy + T U+
oAl o] [SE(UF-U) + 8, (U -Uo) | (642)
which can be rewritten as
(B+ @ 0]sh) U
+ [0t a 10T (MiT; - K@ HT,) — T+ 9a 7 0TSE | U

—1 45 TgFy1F —15/TcF
= &;A'®ISTUL + &, AT RTSE US,  (6.43)

where Eis a (6M — 6) x (6 M — 6) unit matrix.
Based on Newton’s second law, the dynamic equilibrium equation of a sub structure-
foundation system can be obtained in six directions. It is expressed as
T
— o’ ( +MoUp) = F; + Fo, (6.44)
1 o M| |U;
where Mo is the mass matrix of the node O. Then the first term represents the resultant of
the foundation (excluding node O) and structure’s motion about the origin O, the second
term represents the resultant of the node O’s motion, F; is the spring force matrix at
foundation nodes (excluding node O), and Fp denotes the force vector acting on the node

O. According to equation (6.41), they are equal to
Fe=1P=1; S (UF-U;) + %, (U5 -Uo) |,
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6.1 SUBSTRUCTURE METHOD

Fo=Po=S (UF—U;) + S5 (U~ Vo)

Therefore, equation (6.44) can be rewritten as
T T

) 1, M, O 0 U,
( —w + T )
1 0 M, 1; sff + sgf U;

+ [ —o™Mo + (17Sk, + St ) | Up = (17SE + S ) UF + (1785, + Sbo) Us.-
(6.45)

Introducing equation (6.33) leads to
T T T
[—a)zflf M; + (fIf SE + s&) — 1, Msa] U
+ [ oMo + (17'SE, + St ) — 1/ Mb| U,
_ ('IfT sF + sgf) Ut + ('IfT s+ sgo) U (6.46)

Assembling equations (6.25), (6.43) and (6.46) leads to

S¢  Sio | | Ut K K Uy
— Fff Ifo f (6.47)
Sor Soo | | Uo Kor Koo | | Uo
where
15 ToF
Sio = —a)2<I>fA_1<I>? (quf - Kfsq)sHsrs) — T + q’fA_l(I)fTSfO’
Soo = —a)ZMo + <'IfTSfO + Sgo) —a)quTMsb,
F _ 15 TcF F _ 1 & ToF
Ky = &A@ Sp, Kio = @A @Sy,
K — q7sE 4 §F KE, = 1'SF + SF
of — 7 T Yop 00 — “f ¥fo " T00-
Then one obtains
U, = TU{, (6.48)
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6.1 SUBSTRUCTURE METHOD

where
T =s'kF.

Special Case 1: Rigid Foundation with Spatially Varying Ground Motions

For a structure with a rigid foundation under multi-support excitations, one has u; = Trup

and x; = 0. Then equation (6.32) becomes
U, = SIPU,, (6.49)

where

SF = 0’ ®H,T + Ts.

When the relative displacement of node f is 0, equation (6.35) is simplified as
K Xs = *M;1; U, + P;. (6.50)
Substituting the interaction forces (6.41) and equation (6.49) lets equation (6.50) become
F 2 F FyiF | oF
SEU; + [ ~0?MT; + Ky, (S — 1) + E| Uo = SEUE + 8,08 (6.51)
At the same time, the equilibrium equation (6.46) becomes
_2qT ToF F 2 ToF F ) _ 2qT FB
[~ 1M, + (178G + 85.) | Up + [ — oMo + (785, + S0 ) —? L MSF| Uy
ToF F F ToF
= (7'Sf + SE) UF + (17'SE, + Sbo) U5 (6:52)

Assemble equations (6.51) and (6.52) gives

Sriue Srifo | | Us K} K, U
> > — Pl‘ll,ff FI{l,fO f (6.53)
Sriof Sri00] | Yo Krior Kriood (Vo

where

Srufr = S?f’ Srif0 = —a)sz'If + Ky <S§B - '1s> + Sl;f;
2qT TF F

Swior = @I My + <7f Sg+ SOf) ’

Si00 = —®’Mo + (quSfo + 550) — 1 M S,
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F _ oF F _ gF
KRl,ff - Sff’ KRl,fO - Sfo’
F _ qTgF F F _ qTgF F
KRI,Of - qf Sff + SOf’ KRI,OO - qf Sfo + Soo-
Then one obtains
U, =Tr Ulf, (6.54)

where
Tri = Sy Kiy-
Special Case 2: Rigid Foundation with Uniform Seismic Input

For a structure with a rigid foundation under uniform seismic input, both the Uf and Uy
are the same at each point, and can be represented by the motion at a single point, i.e., U}
and Uj,. In this case, only the second block row of equation (6.53) is needed. It can be

expressed as

SrU, = K}, Up, (6.55)
where
— 2qT 2 2qT FB TQF F TQF F
SR2 = \|—w qf Mf—a) MO—CU qs MSSR ‘I— qf Sfqu + Squf ‘I— qf SfO + SOO 5
F ToF F TQF
Both Sy, and K}Fz2 are 6x6 matrices. In Sy, the first term is the total inertia forces of
the foundation-structure system, while the second term and K&, represent the dynamic soil
stiffness under the entire foundation.

Then one obtains

where

Tro = Sp, Ky
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6.2 FOUNDATION LEVEL INPUT RESPONSE SPECTRA (FLIRS)
6.2 Foundation Level Input Response Spectra (FLIRS)

FLIRS for the structure with flexible foundation is needed to be taken as the seismic input
in a fixed-base analysis instead of considering a coupled soil-structure analysis using FIRS
as the seismic input.

As demonstrated in Section 3.1.4, the seismic input in the fixed-base model and the free
field motion can be bridged by the translational responses. Hence, one obtains the FLIRS

with a flexible foundation as
UlfB =T UliT, (6.57)

where T is a complex transfer matrix from FIRS (generated by U, ;) to FLIRS (generated

by U;B ), given as
T =T +[(S5)7SE]7(S2) S Ter, (6:59)

where T and T; are 3Mx3M, Ty, is 3Nx3M, and ST% is 3Nx3M.

For the rigid foundation, the transfer function Ty is
T -1 T
To=Trro + [(SH)TSE T (S2) SH Tergr (659)

where Tg and Ty g, are 3x3, Tpr p, is 3NX3, and S{7 is 3Nx3.

Based on the transformation from response spectra S5 to fourier amplitude spectra as
stated in Section 2.1, the fourier amplitude spectra of free field motion Uy .. can be obtained
from §,. Then one obtains

Ui =TU, (6.60)

where UL can be any element of Uf 1 €. the free field motion at node O in the first
horizontal direction,and T" is given by
Uy ¢

T = .
Ut

(6.61)

Finally, FLIRS with a flexible foundation under multi-support excitations is obtained as

U” = Tn Uy, (6.62)
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6.2 FOUNDATION LEVEL INPUT RESPONSE SPECTRA (FLIRS)

where Ty, is the transformed complex transfer matrix from FIRS to FLIRS, given as

Ty=TT, (6.63)

where T, is 3M x 1.

The fixed-base analysis of the structure under the excitation of FLIRS U[® given by
equation (6.62) can give exactly the same FRS as a full coupled soil-structure analysis under
the excitation of FIRS Uy ;.

Based on the theory of random vibration, Equations 3.41 and 3.42, the ratios between
the mean-square responses of a SDOF oscillator under base excitation UEB and those under

base excitation Uy 1 can be calculated by

/ | 0§ Ho(@) [*[ | T (@)]*] 85 (e) deo

(Rz(w(p é‘o) = %) )
/_OO ‘a)(z) Ho(a))‘ SEU(a)) do

| @ P Tat)]’] do
== . (6.64)

/ ‘Ho(a))‘zda)

According to Equations 3.44 and 3.45, neglecting the difference of of peak factors leads
to FLIRS as

Sy (@g, &o) = R(wy, &) - Sp(wps &), (6.65)

in which R(w,, ¢,) are the modification factors from FIRS to FLIRS.

6.2.1 Generating FRS Considering SSI

For a structure in a nuclear power plant with its foundation embedded in layered soil, a
procedure for generating FRS considering SSI is illustrated in Figure 6.6 and is summarized

as follows:

1. Consider the layered soil as a free-field. With seismic input applied at the bedrock, a site
response analysis is performed to obtain the Foundation Input Response Spectra (FIRS)

Up or Uy, at the elevation of the foundation.
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6.2 FOUNDATION LEVEL INPUT RESPONSE SPECTRA (FLIRS)

2. Establish a model of the layered soil. Determined the dynamic stiffness matrices of the
free-field is Sy,.

3. Set up a finite element model of the structure and the foundation. Perform a modal
analysis to obtain the modal frequencies ®,, modal damping coefficients ¢,, modal
matrix ®, and matrix of modal contribution factors I', and get the stiffness matrix K,
and K.

4. Determine the Foundation Level Input Response Spectra (FLIRS):

2 sn sp
0 S® =w®H,IT +L=
sp s

6NxX6M
_sff st_
O S=
_SOf SOO_ 6Mx6M
CE KE
0 k= | Ko
K K
Lof 00 dariem
T Trr T
] =S 'K
Ter Tre 6Mx6M

O Transfer matrix: T = T, + [(SF—?)TSTFﬂ_I(STF?)TSTFE L
0

| _ @ (| Ta@)]1do
— 00

/ |H0(a))}2 dw

[0 FLIRS modification factor: ‘Rz(a)o, Zo) =
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5. The FLIRS Sib (w0, ¢o) are input to the fixed-base model of the structure to generate the

required FRS by the direct spectra-to-spectra method.
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6.3 APPLICATION AND PARAMETRIC STUDY ON FOUNDATION FLEXIBILITY

6.3 Application and Parametric Study on Foundation
Flexibility

The SSI effect is determined by both the the structure properties and dynamic soil stiffness.
In this section, the SSI analysis with flexible foundation is performed, and parametric study
is conducted to illustrate the influence of foundation flexibility in the determination of
FLIRS. A rigid foundation and six flexible foundations are considered in this study to show
the impact of foundation flexibility.

The same reactor building employed in Section 3.2 is utilized in this study.

Foundation input response spectra

The R.G. 1.60 response spectra (USNRC, 1973) are assumed as free field motions at foun-
dation level, i.e., FIRS. The peak ground accelerations are anchored to 0.3g and 0.2g for the
horizontal and vertical directions, respectively. The seismic input is assumed to be uniform

under the foundation in this study, i.e., FIRS at each foundation point are the same.

Foundation Information

The base slab is discretized into massless shell elements, and the base of the superstructure
connects to the center of the circular foundation. There are 112 plate elements for the
foundation, and the lumped masses are assigned at 9 points in the foundation, i.e., points

O and F1~F8, as shown in Figure 6.7 and Table 6.1. The flexible foundations are assigned

I

3.30x12 m

-

}4 3.30x12 m »‘

Figure 6.7 Mass distribution of flexible foundation
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different modulus of elasticity, given in Table 6.2, to present the influence of varying

foundation flexibility on SSI effect. The value in foundation 1 is the concrete modulus of

elasticity.
Table 6.1 Flexible foundation information of reactor building model
Moment of inertia ( x 10° kg-m?)
Node Mass ( x 10%kg)
Le=1y I,
O, F1~F4 1.2 16.6 33.3
F5~F8 0.6 4.16 8.32
Table 6.2 Modulus of elasticity of foundations
Foundation Number 1 2 3 4 5 6

4x108 | 4x10™ | 4x 107

Elasticity Modulus (Pa) | 4 x 1010 | 4x 10" | 4x10'?

Soil Property

The underlying site consists of 2 infinite soil layers resting on a homogeneous half-space.
The unit weight, Poisson’s ratio, damping ratio, thickness of the top layers, and V; are

shown in Figure 6.8.

Developing Foundation Level Input Response Spectra

A modal analysis is performed for the fixed-base model by ANSYS, which provides the
structure information, including natural frequencies, mode shapes of all the modes, mass
matrix, and influence matrix. The damping ratio of the structure is taken as 5%.

The transfer matrix T is defined by equation (6.58), in which the first term T,
indicates the translational component and the second term accounts for the rotational
component. The modulus of entire transfer function in horizontal direction T7; and its
translational component are shown in Figure 6.9 for the rigid foundation and Figure 6.10
for foundation 1. Compared to the translational component, the T;; varies significantly

because of the rotation component due to SSI effect. It is demonstrated that their difference
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Reactor
— Building

Soil Surface

Figure 6.8 The soil layers and properties

is pronounced in the frequency range of 1 Hz to 10 Hz, which covers the frequencies of the
dominant structural modes. Therefore, the rotational movement of foundation during the
ground motion cannot be neglected.

The frequencies corresponding to the peaks in Figures 6.9 and 6.10 can be interpreted as
the natural frequencies wy of the entire soil-structure system (or the equivalent synthesized
mass-spring-damper system). For instance, the first peak of the soil-structure system, is
located at 2.24 Hz for foundation 1, and 4.07 Hz for the rigid foundation, which can be
explained as a result of the frequency shifting of the fixed-base model from 4.44 Hz caused
by the SSI effect.

T 1, for the 6 foundations are shown in Figure 6.11. The main difference appears during
1 Hz to 5 Hz resulting from different foundation flexibility.

FLIRS are generated for the structures with different foundations as shown in Figure 6.12.
Comparing to the fixed-base motion FIRS, FLIRS changes significantly. Especially from
1 Hz to 5 Hz, a new peak is observed. When the foundation becomes more flexible, the

corresponding frequency point of the peak decreases, and the peak value becomes larger.
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Figure 6.9 Modulus of transfer matrix at node O for rigid foundation
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Figure 6.10 Modulus of transfer matrix at node O for foundation 1
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Figure 6.12 FLIRS by different foundation flexibility
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The FLIRS with foundation 6 is almost the same as FLIRS with rigid foundation. As long as
the foundation is not perfectly rigid, the resulting FLIRS is different from rigid foundation
as shown in Figure 6.12 and Table 6.3.

Table 6.3 Peak of FLIRS for all foundations

Foundation Number 1 2 3 4 5 6 | rigid

FLIRS peak value (g) 9.46 | 890 | 7.62 | 3.40 | 1.70 | 1.53 | 1.50

FLIRS peak frequency location (Hz) | 2.24 | 2.29 | 2.63 | 3.55 | 3.98 | 3.98 | 3.98

The foundation and the supporting soil springs can be defined as an interface system
between structures and sites. So at the same site, a softer foundation leads to a more flexible
interface system and soil spring-foundation-structure system. Thus, the structure rotation
is more severe as a result of SSI effect. Hence, wyr decreases and the peak value increases as
shown in Figure 6.12. It is observed that the flexible foundation leads to a higher peak, but it
also undergoes lower values in specific frequency domain. For instance, the values between

3.5 Hz to 4.5 Hz of FLIRS with foundation 1 is smaller than FLIRS with a rigid foundation.

Generating Floor Response Spectra

FRS at nodes 4 and 5 are generated by the direct method as shown in Figures 6.13 and
6.14. FRS changes significantly when flexible foundation is considered. Compared to the
fixed-base case, the peak between 5 Hz and 6 Hz of FRS considering SSI is smaller. This is
caused by the smaller values in FLIRS between 5 Hz and 6 Hz. Besides that, an extra peak
appears at wyr between 2 Hz and 4 Hz due to SSI effect.

It shows that a flexible foundation will not lead to a conservative FRS than a rigid
foundation, since the FRS with a flexible foundation is smaller than rigid foundation in

some frequency points, e.g., between 3.5 Hz to 4.5 Hz for foundation 1.

6.4 Summary

In this chapter, a substructure method is developed to conduct the SSI analysis consid-

ering the flexible foundation under the excitation of spatially varying ground motions.
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6.4 SUMMARY

Depending on the properties of structure and soil, the tri-directional response spectra
are determined by modifying the free-field ground motion. The modified response spec-
tra, FLIRS, is considered as the seismic input, which is integrated with SSI effect, to the
tixed-base structure for generating.

Numerical examples are performed to illustrate the proposed method and study the in-
fluence of foundation flexibility in SSI analysis. FLIRS is generated for different foundations,
i.e., arigid foundation and foundations with a couple of elasticity modulus. It is recognized
that FLIRS varies dramatically with changing elasticity modulus of foundations. Some

conclusions are obtained:

O The ground motion is modified noticeably because of SSI effect. The numerical
example illustrates that the spectral acceleration is scaled significantly at certain fre-
quencies, and the natural frequency of the soil-structure system shifts to a smaller

value compared with the fixed-base structure due to SSI effect.

00 When the foundation and site interface system become more flexible, e.g., the foun-
dation is softer, the amplitude of the peak resulting from SSI is larger, and the natural

frequency of the soil-structure system is smaller.

[ Since FLIRS is amplified and de-amplified in certain frequency domain for a specific
foundation and soil site, it is necessary to establish the exactly realistic structure-
foundation model. Otherwise, the resultant FLIRS will be underestimated at some

frequency points.

In summary, the flexible foundation and the excitation of spatially varying ground
motions are considered in SSI analysis by the proposed analytical method. Based on
dynamic soil stiffness and the modal information of structures and foundations, FLIRS can
be obtained conveniently to compute the FRS, which shows the seismic demand for the

equipment in the supporting structure.
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Conclusions and Future Research

Soil-Structure Interaction (SSI) analysis is essential for the generation of Floor Response
Spectra (FRS), which represent the demand for seismic design of secondary systems in
nuclear power facilities. The objective of this study is to develop an approach to address
SSI effect with flexible foundations and seismic input at multiple points in the generation of
Floor Response Spectra (FRS). FRS is developed after considering SSI effect accurately and
efficiently in this study. The uncertainty in soil properties and earthquakes are addressed
to generate a hazard consistent FRS with a specific Return Period (RP). Some contributions

made in this study are summarized as follows.

7.1 Generation of Dynamic Soil Stiffness

A semi-analytical method is developed for accurately and efficiently generating dynamic
soil stiffness of rigid foundations and flexible foundations. Given the soil properties, the
Green’s influence function is formulated analytically from wave propagation functions.
Based on Boundary Element Method (BEM), the dynamic stiffness of foundations with

arbitrary shapes is generated. Some features and conclusions are summarized as follows:

O As a semi-analytical method, the Green’s influence function is derived analytically,
and the soil-foundation interface is treated by numerical method BEM, which models
the unbounded soil properly. The dynamic soil stiffness can be generated accurately.

It bridges the site response analysis and SSI analysis, i.e., it links these two steps by
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7.2 DEVELOPING FRAMEWORK TO CONSTRUCT UNIFORM HAZARD FLIRS

calculating the dynamic soil stiffness for SSI analysis from the strain-compatible soil

properties given by site response analysis.

O The Green’s influence function is formulated rigorously based on wave propagation
function. Once the soil properties are known, it is convenient to calculate the Green’s
influence function. Each soil layer is treated as a single element in the formulation
of Green’s influence function, and only the soil-foundation interface is discretized by
BEM. Thus only a limited number of elements are involved in the proposed method,

which guarantees the efficiency of the proposed method.

[ The application of BEM adapts the proposed method to foundations with arbitrary
shapes or multiple components. Thus, it can provide the 6Mx6M dynamic soil

stiffness matrix for SSI analysis with flexible foundations.

O The influence of dynamic soil stiffness on the generation of FRS is examined. It affects

the resultant FRS noticeably.

7.2 Developing Framework to Construct Uniform
Hazard FLIRS

This study proposes a fully probabilistic method for addressing the uncertainty of seismic
input and soil properties in the generation of FRS. The uncertainty is propagated from site
response analysis to SSI analysis consistently, and a uniform hazard FLIRS is developed.
Some remarkable features and advantages of the proposed method are summarized as

follows:

0 The uniform hazard FLIRS and FRS with specific annual exceedance probability are
generated. Compared to the current approach, The seismic demand for secondary
system is reduced significantly. The uniform hazard FRS provide a safer and more
economical demand for seismic design. Meanwhile, the FRS may be underestimated
by the current method at some frequency range, which is overcame by the proposed

method.

[ A realistic and continuous shear wave velocity ( Vs ) distribution is proposed to replace

the current treatment of uncertainty which is not continuous and assumes the V5 in
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7.3 SSI ANALYSIS CONSIDERING FOUNDATION FLEXIBILITY AND INPUTS AT MULTIPLE POINTS

all layers are fully correlated. The difference of FRS generated by the proposed pa-
rameters is small and negligible. The uncertainty in soil properties can be accounted

reasonably.

O Sensitivity study is performed on the correlation coefficient and the standard deriva-
tion of V. The results show that their influence on FRS is minor. The FRS generated
by different standard derivation are almost the same as each other. There is only a little
difference around the peak. For correlation coefficients equal to 0 or 1, the change of
FRS is not significant. Hence, the correlation coefficient and the standard derivation

of Vi are not important parameters in uncertainty analysis.

7.3 SSI Analysis Considering Foundation Flexibility and
Inputs at Multiple Points

For nuclear power plants, the stiffness of foundations may be close to the values of the
external and internal structures. Thus the foundation flexibility can not be neglected. Be-
sides, the seismic excitation may be different at side walls and foundations for fully or partly
embedment reactors. A substructure method is proposed to perform SSI analysis con-
sidering the flexible foundation under the excitation of spatially varying ground motions.
Depending on the properties of structure and soil, the three dimensional response spectra
are determined by modifying the free-field ground motion. Some remarkable features and

advantages of the proposed scaling method are summarized as follows:

[ The SSI effect is integrated into Foundation Input Response Spectra (FIRS), which
is free field motion and obtained from site response analysis. The modified ground
motion is called Foundation Level Input Response Spectra (FLIRS), which can be used
as the seismic input for fixed model to generate FRS by the direct spectra-to-spectra

method. Thus, the SSI effect is addressed in the resultant FRS.

0 The foundation flexibility is considered in the proposed method, by which the SSI
analysis is more realistic. It is observed that, as long as the foundation is not perfectly

rigid, the foundation flexibility can not be neglected. Meanwhile, seismic excitation is
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imposed at the representative points of flexible foundations. This enables the analysis

with spatially varying ground motions.

0 Parametric study is performed to illustrate the influence of foundation flexibility on
SSI effect. FLIRS is generated for different foundations, i.e., a rigid foundation and
foundations with a couple of elasticity modulus. It is recognized that FLIRS varies
dramatically with changing elasticity modulus of foundations. When the foundation
becomes more flexible, the amplitude of the peak resulting from SSI is larger, and the
natural frequency of the soil-structure system is smaller. It is demonstrated that the

exactly realistic model of structures, and foundations is necessary for SSI analysis.

[0 The influence of SSI effect on FRS is studied. FRS is amplified at the natural frequency
of the soil-structure system, and the seismic demand of secondary system increases.

Meanwhile, FRS will decrease at specific frequency points.

00 The proposed substructure method is analytically formulated, so that it is conve-
nient to implement by a programming language, e.g., MATLAB or Python. Once the
dynamic soil stiffness and structure modal information are provided, FLIRS can be
generated efficiently. Besides, the soil and structure are analyzed separately, which
means the change of system only leads to repeated work of relevant part. The reanal-

ysis of the entire system is avoided.

7.4 Future Research

In the seismic analysis of secondary systems, FRS can be obtained by the direct spectra-to-
spectra method efficiently and accurately without variability. The fixed model considered
in the current direct spectra-to-spectra method assumes that the foundation is rigid and
the three dimensional seismic input is the same at any location of the foundation. For
foundations with fully or partly embedment, seismic input not only comes from the bottom
foundation, but also from the side walls, which leads to multiple points excitation. In future
research, the direct spectra-to-spectra method needs to be extended to generate FRS under

multiple seismic input.
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In the proposed substructure method, the surrounding soil, can be called interface
elements, is assumed to have the same properties as the site. Actually, the ground motion
at the foundation side of interface elements is the FLIRS which is generated by modifying
FIRS due to SSI effect, while the excitation at the other side is the free field motion FIRS.
Since FLIRS is amplified from FIRS in certain frequency domain, the properties of interface
elements will be different from the free field. This will influence the dynamic soil stiffness
and SSI effect. Thus, further studies needs to consider how the interface elements is

influenced by SSI effect, and how to integrate this influence into SSI analysis.
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