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Abstract

Soil-Structure Interaction (SSI) analysis is required in structural dynamic analysis under

seismic excitations in the current standards, and it significantly influences the Floor Re-

sponse Spectra (FRS), which are used in the safety assessment for the secondary systems in

nuclear power facilities. A direct spectra-to-spectra method is well developed to generate

FRS in fixed-base models efficiently and accurately. Thus it is necessary to address SSI effect

and integrate it into the free field motion as the seismic input for the fixed-base model.

For the fully or partly embedded nuclear power reactors, earthquake excitations come from

both bottom foundations and external structures. In this case, the foundations and external

structures behave like a foundation system with seismic input at multiple supporting points.

The objective of this study is to develop an approach to address SSI effect considering

the foundation flexibility and spatially varying ground motions. A substructure method

is analytically derived to convert the three dimensional free field motion, i.e., Foundation

Input Response Spectra (FIRS) given by site response analysis, into Foundation Level Input

Response Spectra (FLIRS). The latter can be used as the seismic input in the direct spectra-

to-spectra method to generate FRS considering SSI. Only FIRS, dynamic soil stiffness,

mass matrix, geometry of the structure, and basic modal information, including natural

frequencies and modal shapes, are needed. Both flexible and rigid foundations are con-

sidered under the excitation of spatially varying ground motions or uniform seismic input.

Furthermore, parametric study is performed to examine the influence of the foundation

flexibility on SSI analysis and the resultant FRS. It is observed that FLIRS and FRS are am-

plified significantly due to SSI effect. This amplification is more severe and the associated

frequency is smaller with a more flexible foundation.

A semi-analytical method is proposed to generate dynamic soil stiffness of rigid founda-

tions and flexible foundations. Given the soil properties, the Green’s influence function is

formulated analytically from wave propagation functions. And Boundary Element Method

(BEM) is employed to determine the dynamic stiffness of foundations with arbitrary shapes.

The resultant 6M×6M dynamic soil stiffness matrix is then used as the generalized soil

springs in the proposed substructure method.
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This study presents a fully probabilistic method for addressing the uncertainty resulting

from seismic input and soil properties in the generation of FRS. A large number of FLIRS

are developed by Monte Carlo simulations, which enables the uncertainty to be propagated

from site response analysis to SSI analysis consistently. Then a uniform hazard FLIRS is

obtained. Compared to the approach specified in current codes, the uniform hazard FRS

lowered the seismic demand significantly to provide a more economical solution for seismic

design. Meanwhile, it overcomes the underestimation of FRS by current method in some

frequency range. A realistic and continuous distribution is proposed for shear wave velocity

(Vs ) to replace the current application. Sensitivity study is performed on the correlation

coefficient and the standard derivation of Vs. The results show that these two parameters

do not influence much in uncertainty analysis.

Based on the proposed method, SSI analysis is performed in a realistic model to develop

uniform hazard FLIRS for performance-based seismic design, and the direct spectra-to-

spectra method is extended to generate safe and economical FRS considering SSI.
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1C H A P T E R

Introduction

Earthquakes are natural disaster influencing human life and properties significantly. An

earthquake can disrupt the structure directly by causing a structure failure or shaking the

ground supporting the structure, and damage the secondary system as shown in Figure

1.1. Nuclear power plants (NPPs) design pays more attention to earthquake excitation

than other types of structures because of the severe consequence. After the accident of

Fukushima Daiichi nuclear power plant in Japan caused by Tohoku Earthquake in 2011, the

seismic design of NPPs raised more awareness in North America. Currently, 15 percent of

the total electrical power comes from 19 NPPs in Canada, and 19 percent from 104 NPPs

in the USA. In order to guarantee their safety, the response of NPPs under earthquake

excitation need to be well researched to prevent their damage or failure.

Secondary systems, including electrical systems, mechanical systems, control systems,

etc, are structures, systems and components (SSCs) which are attached to or supported

by primary systems, such as buildings. During earthquakes, secondary systems are even

more vulnerable than primary systems in NPPs. The failure of secondary systems not only

causes economic loss, but also threats human lives (Bozorgnia and Bertero, 2004; Villaverde,

2009). The safety assessment of secondary systems in an earthquake relies on the seismic

excitations at its supporters which is determined by both the ground motions and the

dynamic characteristics of primary structures. Thus it is necessary to develop practical and

accurate excitations for the seismic design of secondary systems.
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Figure 1.1 Damaged primary structures and secondary system

In the seismic analysis, it is common to assume that the input ground motion at the

base is equal to the free-field ground motion without structure. For structures founded

on rigid rock, this assumption is justified since the high stiffness of the base can constrain

the structure motion to be close to the free-field one as the left structure in Figure 1.2.

For structures supported on soft soil or with large mass, however, the ground motion

is different from the free-field one due to the change in geometry and properties of the

wave propagation medium caused by the structure. In this case, the structure suffers both

translational and rotational ground motions as the right structure in Figure 1.2. This

effect is called Soil-Structure Interaction (SSI) defined as the interdependence between a

structure and its foundation soil (Villaverde, 2009). That is, the dependence of the dynamic

response of a structure on the dynamic response of its supporting foundation soil and

2



Seismic Input at Bedrock

Fixed Base Soil

Figure 1.2 Illustration of soil-structure interaction

the dependence of the dynamic response of a soil deposit on the dynamic response of the

structure supported by it.

The SSI effect could be important for stiff and massive structures such as NPPs. SSI

analysis is mandatory for safety-related secondary systems in nuclear structures by ASCE

(2000). Based on SSI analysis, the resultant ground motion integrated with local site

effect and SSI effect will be obtained as a basis for the structural analysis and to analyze

secondary design. It can also be used in Seismic Probability Risk Assessment (SPRA) for

seismic safety evaluation of existing power stations, and seismic design of new-built plants.

Besides, the current research mainly focus on the SSI analysis with a rigid foundation.

For Small Modular Rectors (SMRs) fully or partly embedded in the site, the earthquake

excitation comes from both the bottom foundation and the external structure of SMRs. In

this case, the external structure and the foundation perform like a structure-foundation

system undergoing seismic input at multiple points. Therefore, it is necessary to develop

a reliable and efficient approach to provide the seismic input considering SSI effect with

flexible foundation systems for seismic design of secondary systems.

3



1.1 generation of floor response spectra

1.1 Generation of Floor Response Spectra

In secondary systems, there are a large number of SSCs, and their stiffness and mass are

relatively smaller than the primary structure. It is computationally expensive to model

the primary structure and secondary system together, and some problems, such as ill-

conditioning of the stiffness matrix, may arise in the mathematical model of entire structure

systems. Since the interaction between secondary systems and their supporting structures

are negligible due to the relatively small mass of SSCs, a decoupled approach, floor response

spectrum approach, is usually used in seismic response analysis: secondary systems and

primary structures are analyzed separately (ASCE, 1978).

In floor response spectrum approach, the dynamic analysis is firstly performed for the

primary structure without considering the secondary system under seismic excitation. The

response of the supporting structure, such as floors and walls where secondary systems are

attached, as Floor Response Spectra (FRS).Then FRS is utilized as the seismic input for SSCs

analysis. In this decoupled approach, the change of SSCs only leads to reanalyze secondary

systems, and dose not influence the primary structure, which improves the efficiency of

engineering design.

Two methods are proposed to generate FRS: time history analyses and a direct spectra-

to-spectra method as shown in Figure 1.3 (ASCE, 2000).

❧ In the time history method, the spectrum-compatible time history with a target

Ground Response Spectra (GRS) is taken as the seismic input for the primary struc-

ture. Then the time histories at the desired location is obtained for the seismic design

of secondary systems. Since the real ground motion is unavailable, and the input time

history is artificial, there are significant variabilities in the generation of FRS by this

method (Chen and Soong, 1988; Singh, 1988; Villaverde, 1997). In order to provide re-

liable FRS, a large number of spectrum-compatible time histories are needed, which

means the variability of FRS is involved and it is time-consuming.

❧ For direct spectra-to-spectra method, GRS is considered as the seismic input directly.

FRS is obtained analytically based on the input GRS and the modal information of the

4



1.1 generation of floor response spectra
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Figure 1.3 Time history method and direct method to generate FRS

primary structure, e.g., natural frequencies, mode shapes, and modal participation

factors. Therefore, the variability is avoided and the efficiency is high.

In the traditional direct spectra-to-spectra method, FRS can not be determined accurately

under the tuning cases, i.e., the frequency and damping ratio of a single degree-of-freedom

(SDOF) oscillator is equal to those of a SDOF supporting structure, which accounts for the

uncertainty of FRS resulting from ground motions (Li, 2015). In order to generate proba-

bilistic FRS, t-Response Spectrum (tRS) is proposed to illustrate how tuning cases influence

the uncertainty of FRS by Li (2015). The tRS represents equipment-structure resonance or

tuning corresponding to a specified GRS. Based on numerical simulations with a wide va-

riety of selected two dimensional ground motions at different sites, it is demonstrated that

tRS is almost independent on site conditions in the horizontal direction, while the influence
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1.1 generation of floor response spectra

of site conditions can not be neglected in the vertical direction. Therefore, a statistical

relationship between tRS and GRS is established in horizontal direction for all sites, and

vertical relationships are obtained at hard sites and soft sites, respectively. The resultant tRS

are effective for any GRS in the valid coverage, including design spectra in USNRC R.G. 1.60

and NUREG/CR-0098, UHS in Western North America (WNA). Besides, amplification

ratio method is developed to calculate tRS under seismic input with high frequency spectral

accelerations, e.g., UHS in Central and Eastern North America (CENA). With the proposed

method to generate tRS, exact FRS considering uncertainty from GRS can be obtained by

the direct spectra-to-spectra method.

A new direct spectra-to-spectra method for generating FRS in three-dimensional struc-

tures is developed by Jiang et al. (2015). In this method, seismic response of a SDOF

oscillator supported by a SDOF primary structure is derived at first, and tRS is employed

for the tuning case. Based on Random Vibration Theory (RVT), a new modal combination

Figure 1.4 Direct method for generating FRS
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1.2 soil-structure interaction

method for generating FRS, i.e., FRS-CQC, is then proposed to represent the correlation of

responses between SSCs and the associated primary structure with closely-spaced modes,

by which a SDOF oscillator supported by a multiple DOF primary structure is considered.

As a result, FRS can be obtained from input GRS and the modal information of primary

structures which is calculated by a typical modal analysis. The general procedure of this di-

rect spectra-to-spectra method is illustrated in Figure 1.4. In this direct spectra-to-spectra

method, accurate FRS in the perfect-tuning and near-tuning cases can be generated for

conventional Newmark-type GRS and UHS with high frequency spectral accelerations by

tRS. Through FRS-CQC combination, FRS in complex three-dimensional structures under

tri-directional seismic input can be developed with closely-spaced modes.

In this direct method, the mathematical model of structures is a fixed model which can

not deal with SSI effect. Hence, SSI analysis should be conducted to integrate the SSI effect

into GRS, which extends the direct spectra-to-spectra method to generate FRS considering

SSI.

1.2 Soil-Structure Interaction

Modern SSI analysis can be traced to 1970s (Veletsos and Wei, 1971; Luco and Westmann,

1972) starting from an equivalent single-degree-of freedom system method (Kausel, 1984).

Currently, SSI analysis are usually performed by two kinds of methods: complete method

and substructure method.

1.2.1 Complete Method

In the complete method, a part of the surrounding soil deposit called near field soil and

the structure are modeled as a single system, soil-structure system, and analyzed in one

step based on the seismic input as shown in Figure 1.5 (Wolf, 1985; Bielak and Christiano,

1984). This model is always based on the Finite Element Method (FEM), and the system is

discretized into finite elements. Since the soil deposit is actually an unbounded continuous

solid and cannot be modeled by finite elements, an artificial boundary is needed to get

7



1.2 soil-structure interaction

Artificial
Boundary

Near Field

Far Field

Structure

Outside Seismic Input

Inside Seismic Input

Figure 1.5 Finite element model for SSI complete method

the near field soil separated in SSI analysis. The response of each node can be solved by

performing the finite element analysis.

The analysis of the soil-structure system can be performed in frequency domain or time

domain. For analysis in frequency domain, the input ground motion is first transformed

to frequency domain by Fourier transform. Then the response of system is obtained by

multiplying the transfer function. Based on the same transfer function, the response for

different input ground motions can be easily obtained. The frequency domain method

assumes the systems are linear and an iterative analysis is needed for nonlinear system to

get stain-compatible properties. In time domain, the response is solved by a step-by-step

integration and the nonlinear properties are considered. Since some input parameters, e.g.,

artificial boundaries, are frequency dependent, an iterative procedure is required.

When establishing the artificial boundary to make the system bounded, one needs to deal

with the reflected waves by the boundary which do not exist in actual unbounded soil. One

method to treat the reflected waves is to make them absorbed at the boundary. This kind of

boundaries is called Absorbing Boundary Condition (ABC).

The first ABC is viscous boundary. In the viscous boundary, the viscous dampers are

added to absorb the waves without any reflection. It behaves as simple dashpots and was em-

8



1.2 soil-structure interaction

ployed by Lysmer and Kuhlemeyer (1969). Then a model based on paraxial approximations

was developed by Clayton and Engquist (1977) for elastic wave propagation problems. Some

other models (Higdon, 1978; Higdon, 1991) relying on the same approach were proposed for

different problems. These techniques can be combined with the approach based on layers of

damping materials to eliminate the reflection on the artificial boundary. Since the viscous

boundary only deals with waves coming from a certain direction. A new boundary was

proposed to absorb reflected waves in up to 2 directions by Higdon (1990). Then Collino

(1993) developed the first high order ABC which increased the accuracy of ABC and was

able to be used in numerical simulations (Givoli, 2004). The high order ABC usually led

to long-time instability issues which was overcame by a new ABC proposed by Baffet et al.

(2012). The Perfectly Matched Layer (PML), which can absorb all incoming waves without

any reflection, was developed by Berenger (1994), and was applied in dynamic problems

by Basu and Chopra (2003). Compared to high order ABC, PML is more convenient to

implement in engineering domain (Rabinovich et al., 2010).

Another choice of the artificial boundary is Infinite Elements (IE). The IE was presented

by Ungless (1973) to account for radiation condition at infinite far field. This approach

combines the shape functions of the FEM framework with oscillatory decay functions

which can simulate the asymptotic behaviour. Bettess (1977) and Astley (1983) developed

different decay functions for different wave propagation problems. The main drawbacks

of this approach is that some parameters, e.g., the decay function, have to be evaluated by

analytical solutions or empirical results (Mesquita and Pavanello, 2005; Shah et al., 2011).

In the complete method, the procedures are simple, and much computational effort and

time are needed to work on the system with a large amount of degrees-of-freedom.

1.2.2 Substructure Method

In the substructure method (Gutierrez and Chopra, 1978), the structure and the soil deposit

are considered separately at first so that these two substructures can be analyzed by suitable

methods.

The coupled soil-structure model is shown in Figure 1.6. Let Us be the absolute displace-

ment vector of the superstructure while let Ub be that of the foundation. The subscripts

9



1.2 soil-structure interaction

Ss
ss Us

Ub

Ug
b

Ss
sb, S

s
bs

Ss
bb

S
g
bb

Seismic Input at Bedrock Seismic Input at Bedrock

Soil with Excavation
Structure

Figure 1.6 Coupled soil-structure model

“s” and “b” stand for the degrees-of-freedom of “structure”and “base”, respectively. The

equation of of motion for the structure is expressed by




Sss
s Ssb

s

Sbs
s Sbb

s











Us

Ub






=







Ps

Pb






, (1.1)

where Ps is the load vector applied on the structure while Pb is the interaction force vector

between the structure and soil. During earthquake ground motion, the structure, except

the part contacting with the soil, are not loaded, which leads to

Pb = Sss
s Us + Ssb

s Ub = 0. (1.2)

For the soil with excavation, let Sbb
g and Ub

g be the dynamic stiffness matrix and the

absolute displacement vector under earthquake ground motion, respectively, where the

subscript “g” stands for the soil with excavation. Pb is determined by the relative displace-

ment between the foundation and the soil as

Pb = Sbb
g (Ub −Ub

g ). (1.3)

Then equation (1.5) becomes




Sss
s Ssb

s

Sbs
s Sbb

s +Sbb
g











Us

Ub






=







0

Sbb
g Ub

g






. (1.4)
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1.2 soil-structure interaction

In equation (1.4), the soil-structure system is characterized by the dynamic stiffness of

the structure and soil, and the ground motion on the soil-structure interface. Thus the

system is analyzed by the structure and the soil separately.

In substructure method, the analysis of structure can be conducted by FEM, which is

adequate based on the current technique. It is necessary to generate the dynamic stiffness

of soil deposit, also called soil impedance, which varies with the excitation frequency

and consists of complex values. The dynamic soil stiffness represents the constitutive

relationship between interaction forces and the relevant displacements in three translational

directions and three rotational directions at the soil-foundation interface. Then the results

of two parts are combined to get the response of the structure with input ground motions.

Starting as early as 1960s, numerous research focused on the generation of dynamic soil

stiffness (Kausel, 1984).

An integral equation approach was firstly proposed to develop the analytical solutions

of the vibration of rigid circular foundations supported by elastic half-space (Luco, 1971;

Veletsos and Wei, 1971; Veletsos and Verbic, 1973). Then this method was extended to half-

space with multiple horizontal layers by Luco (1974; 1976). And the performance of strip

foundations were considered under dynamic loads by Gazetas and Rosset (1976). After that,

the dynamic stiffness of embedment foundation with arbitrary shapes was generated for

horizontally layered half-space by a semi-analytical method (Luco and Apsel, 1983; Apsel

and Luco, 1983; Veletsos and Verbic, 1987). For this kind of method, it is computationally

expensive.

Rizzo (1967) developed the Boundary Element Method (BEM) for boundary value prob-

lems of elastostatics. In this approach, only the domain boundaries are discretized and the

number of mesh is reduced. The BEM is well-adapted to simulate unbounded domains,

and the coupling of BEM and FEM is an interesting choice to account for SSI analysis for

many researchers. The dynamic stiffness of a strip foundation, two dimensional foundation,

resting on viscoelastic half-space was derived by Abascal and Dominguez (1986). Based on

BEM, the dynamic response of three dimensional foundation–soil–foundation interaction

on layered soil site was studied by Karabalis and Mohammadi (1991). Estorff and Kausel

(1989) presented a time domain formulation of BEM. Despite much research (Estorff and
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1.3 local site response on seismic analysis

Prabucki, 1990; Elleithy and Tanaka, 2003) focused on transient BEM-FEM formulations to

solve nonlinear problems, this approach can be formulated in the frequency domain as well

(Wolf and Darbre, 1984) especially for layered medium (Pak and Guzina, 1999). The main

shortcoming of BEM is that it has to consider fully populated (and possibly non-symmetric)

matrices, which leads to much computational effort for large models.

A new kind of semi-analytical method, the Scaled Boundary Finite Element Method

(SBFEM), proposed by Wolf and Song (1995a; 1995b; 1996a; 1996b; 1997), is another

alternative to model the unbounded domain. This approach is based on a similarity

technique (Dasgupta, 1982), and the dynamic soil stiffness is obtained by formulating

the similarity relationships between the dynamic stiffness of the original and scaled SSI-

interface. Recently, Birk and Behnke (2012) applied the modified SBFEM to perform SSI

analysis. In this approach, only the boundaries have to be discretized and no fundamental

solution is required. It can be applied for both rigid and flexible foundations supported by

layered soil site.

The dynamic stiffness can also be obtained by numerical methods, e.g., FEM with

artificial boundaries as introduced in 1.2.1. Besides the aforementioned boundaries to

isolate the near field, the consistent boundary is developed based on the Thin Layer Method

(TLM) (Waas, 1972; Lysmer and Waas, 1972; Kausel et al., 1975;). At this kind of boundary,

the interaction forces on the boundary are the same as the ones imposed by the far field,

which yields the effect as the waves are transmitted to far field. The weakness of consistent

boundary is that it can only focus on plane strain and symmetric cases.

In the substructure method, the different techniques, i.e., numerical or analytical

method, are allowable for the structure and soil, and it requires less computational effort

and time to perform the SSI analysis. Once the analysis of each substructure are finished,

further modification only leads to repeated computation of the modified part.

1.3 Local Site Response on Seismic Analysis

The topography and soil properties can significantly affect characteristics of the earthquake

ground motions propagating in the soil deposit. When earthquake ground motions propa-
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1.3 local site response on seismic analysis

gate in a soil deposit, the flexibility of the site makes it vibrate and the motions can be greatly

amplified due to resonant effects. The extent of this influence depends on the inherent stiff-

ness, density, and damping characteristics of the site. On the other hand, the soil dynamic

properties are changed due to the soil strain caused by earthquake. The local site response

determines the free field motion and strain-compatible soil properties. The former is the

seismic input for SSI analysis, and the latter is the essential information for the calculation

of dynamic soil stiffness. Therefore, site response analysis is a precursor to SSI analysis.

To evaluate the effect of local site on earthquake waves, two types of methods to describe

the soil site effect are used: Equivalent-Linear (EL) site response analysis and nonlinear

(NL) site response analysis.

1.3.1 Equivalent Linear Site Response Analysis

In EL method (Seed and Idress, 1969), site response analysis is performed with one di-

mensional vertically propagating shear waves in horizontally layered halfspace. The model

shows that shear modulus (G) and the damping ratio (ζ ) of soil deposit are shear strain-

dependent, and an iterative procedure is established to obtain the equivalent soil properties.

The EL method analyzes the earthquake wave propagation through the soil deposit in

frequency domain, and assumes that the G and ζ have constant values during the ground

motion. This method starts with initial G and ζ for each soil layer. Linear-elastic analysis

is performed and the effective shear strains for soil layers are obtained. Based on the shear

strain-dependent normalized modulus (G/Gmax) reduction curves and damping curves, the

new G and ζ are evaluated. This process is repeated until the stain-compatible properties

are consistent with the input properties.

This method requires a few input parameters and small computational effort. Several

equivalent-linear computer codes are available, such as SHAKE (Schnabel et al., 1972),

SHAKE91 (Idriss and Sun, 1992), and Deepsoil (Hashash and Park, 2002).

1.3.2 Nonlinear Site Response Analysis

In NL analysis, the nonlinear behavior of soil during cyclic ground motions and the effect

of pwp generation on soil properties can be represented. These two factors influence the
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1.4 objectives of proposed research

soil site significantly when high seismicity and soft soils are present. NL analysis solves the

ground motion propagating the soil deposit in time domain. Two types of NL analysis are

used including nonlinear total stress analysis and nonlinear analysis with pwp change.

In total stress analysis, the soil deposit is discretized into lumped mass or finite element.

The equation of motion is written as

Mü + Cu̇ + Ku = −Müg , (1.5)

where M, C, and K are the mass matrix, damping matrix, and stiffness matrix, respectively.

ü, u̇, and u are the displacements, velocities, and accelerations of the mass relative to the

bedrock, respectively. üg is the earthquake ground acceleration. The ground motion after

propagating in the soil deposit can be obtained by solving equation (1.5). The influence of

pwp is neglected in this analysis.

For the nonlinear analysis with pwp change, the influence of pwp is taken into con-

sideration in two ways: semi-empirical pwp generation models and advanced effective-

stress-based models. In the former models, pwp generation is calculated by semi-empirical

models, in which the most widely used one is Modified Konder and Zelasko (MKZ) model

by Matasovic and Vucetic (1993; 1995). In the advanced effective-stress-based models, the

pwp is computed as the difference between effective-stresses and total stresses. Then the

effect of pwp generation is included when calculating K in equation (1.5), and the required

ground motion is obtained by performing the total stress analysis.

1.4 Objectives of Proposed Research

The objective of this study is to develop an approach accounting for SSI effect accurately

and efficiently. The specific objectives of this study include:

❧ The frequency-dependent dynamic soil stiffness is generated for flexible foundations,

which bridges the site response analysis and SSI analysis.

❧ The uncertainty in earthquake excitations and soil properties are considered con-

sistently in site response analysis and SSI analysis to provide site-structure specific

amplification factors for performance-based seismic design.
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1.5 organization of this study

❧ A substructure method is developed to conduct SSI analysis considering flexible

foundations under spatially varying ground motions, which combines the SSI effect

with the fixed-base model in the generation of FRS by the direct spectra-to-spectra

method.

1.5 Organization of This Study

In Chapter 2, the RVT-based one dimensional EL site response analysis is reviewed. Based

on random vibration theory, the fourier response spectrum is obtained from acceleration

response spectrum to enable site response analysis to be performed in frequency domain.

In order to address the local site effect, the transfer function from bedrock motion to the

ground motion at any level is derived, which provides the free field motion for SSI analysis.

Meanwhile, the strain compatible soil properties is generated to be further used in the

calculation of dynamic soil stiffness.

In Chapter 3, the substructure method to address SSI effect with rigid foundations

is reviewed. Based on the soil stiffness and structural modal information, a transfer

function is derived to convert the three dimensional free-field motion into FLIRS, which

is then used as the seismic input to the fixed-base model to generate FRS using the direct

spectra-to-spectra method. The frequency dependant complex soil stiffness is utilized in

the application of this substructure method.

In Chapter 4, a semi-analytical method is proposed to generate dynamic soil stiffness.

In the horizontally layered soil model, the three dimensional wave propagation function is

derived based on the boundary conditions. The flexibility functions are then developed

representing the relationship between point loads and the associated displacements in k

domain. According to Fourier series and Bessel transform pair, the frequency dependent

stiffness matrix under a unit load is obtained in frequency domain, which is then utilized to

develop the dynamic soil stiffness under rigid foundations or flexible foundations by BEM.

The effect of dynamic soil stiffness on the resultant FLIRS and FRS is studied illustrating its

significance in seismic design.
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1.5 organization of this study

In Chapter 5, a fully probabilistic method is proposed to perform site response analysis

and SSI analysis addressing the uncertainty resulting from earthquake excitations and soil

properties. Based on the proposed substructure method, the uncertainty of seismic input

at bedrock, the variability of soil parameters, and the nonlinear behavior of soil properties

are comprehensively integrated into SSI analysis to develop amplification factors which is

employed to generate uniform hazard FLIRS with a specific annual exceedance probability.

According to the current treatment of epistemic and aleatory uncertainty in shear wave

velocity profiles, a continuous and realistic distribution of shear wave velocities is proposed.

The correlation coefficient in adjacent soil layers and standard derivation of the distribution

is studied. The resultant uniform hazard FLIRS is utilized to develop FRS which leads to a

safe and economical demand in seismic design.

In Chapter 6, a methodology is developed to account for the effect of soil-structure in-

teraction with flexible foundations under spatially varying ground motions. The structural

response of a three-dimensional structure under multi-point excitations, three transla-

tional and three rotational directions at each point, is derived, and is expressed by the

modal information of the structure and coupled stiffness matrix between structures and

foundations. Then the transfer matrix, which is determined by modal information of the

structure-foundation system and the generalized soil springs, is developed to modify FIRS

by SSI effect. The modified seismic input, FLIRS, are then considered as the input at multi-

ple points of the fixed-base structure to generate FRS through the direct spectra-to-spectra

method. The parametric study is performed to demonstrate the influence of foundation

flexibility on FLIRS and FRS.

In Chapter 7, some conclusions from this study are presented, and directions for further

research are proposed.
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2C H A P T E R

Seismic Site Response Analysis

Seismic site response analysis has to be performed to obtain the dynamic properties of the

site and develop the modified ground motions due to the propagation of shear waves in the

soil deposit. Therefore, seismic site response plays a significant role in seismic design and

provides strain-compatible soil properties and ground motions at a specific elevation level

to conduct Soil-Structure Interaction (SSI) analysis.

The site response analysis is generally conducted based on one-dimensional elastic wave

propagation in the soil column, incorporating the nonlinear effects of the soil deposit. The

procedure includes two steps:

❧ Development of the input ground motions at reference hard rock.

❧ Calculation of transfer functions and strain-compatible soil properties in the geotech-

nical model.

2.1 Developing Input Ground Motions

2.1.1 Stochastic Ground Motion Model

A theoretical-empirical modelling method is employed to estimate ground motion ampli-

tudes in Eastern North America (ENA) (EPRI TR-102293-V1, EPRI, 1993a). This approach

uses a stochastic ground motion model, which has been validated using data largely from

California, where instrumental records are available over a wide range of magnitudes and
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2.1 developing input ground motions

distances (McGuire et al., 1984), to estimate ground motion amplitudes in the frequency

band of interest to engineering analysis and design.

For sites in the ENA, a point-source stochastic model is used to determine the total

Fourier Amplitude Spectrum (FAS) FD(M0, R, F ) of ground motion displacement due to

earthquake sources

FD(M0, R, F ) = E(M0, F ) ·P(R, F ) ·G( F ), (2.1)

where E(M0, F ) is the Brune point-source spectrum, P(R, F ) represents the propagation

path effects, and G( F ) is the modification due to site effects. M0 is seismic moment

M0 = 101.5(m+10.7), (2.2)

where m is the moment magnitude. R is hypocenter distance determined by

R =
√

R2
epi + D2, (2.3)

where Repi is the epicenter distance, and D is the source depth (the perpendicular distance

between the source and generic hard rock surface).

E(M0, F ) can be expressed as (Boore, 2003)

E(M0, F ) = C M0 S( F ), C =
Rθφ VF

4πρs β
3
s R0

, (2.4)

where Rθφ =0.55 is the shear-wave radiation pattern average over the focal sphere, V=1/
√

2

is the partition of total shear-wave energy into two horizontal components, F=2 is the ef-

fect of the free surface, ρs and βs are the density and shear-wave velocity in the vicinity

of the earthquake source, and R0 =1 km is the reference distance. For sites in ENA,

Mid-Continent Crustal Model with ρs =2.71 g/cm3 and βs =3.52 km/s in Table B-5 of

EPRI-1025287 is used.

S( F ) is the source spectrum, which can be obtained from a single-corner frequency

source model as

S( F ) =
1

1 + ( F/ Fc)
2

, Fc = 4.9×106 βs

(

1σ/M0

)
1/3, (2.5)

or a empirical double-corner frequency source model

S( F ) = Sa( F )×Sb( F ), (2.6)

18



2.1 developing input ground motions

where F is frequency in Hz, Fc is the corner frequency, and 1σ is the stress drop, which is

taken as 110 bars in Table B-4 of EPRI-1025287. Sa( F ) and Sb( F ) are given by Boore (2003).

Propagation path effects P(R, F ) is given by

P(R, F ) = Z(R) · exp

{

−
π F R

Q( F )βs

}

, (2.7)

where Z(R) is geometric spreading function, given in Boore (2003),

Z(R) =













R0

R
, R6R1,

Z(RI)

(
RI

R

)pI

, RI
6R6RI+1, I=1, 2, . . . , n.

(2.8)

Three-segment geometric spreading operator is usually used in GMPEs in ENA. For ex-

ample, in Atkinson and Boore (1995), R0 =1 km, R1 =70 km, p1 =0, R2 =130 km, and

p2 =0.5 are used. Seismic quality factor Q( F ) is given by

Q( F ) = Q0 · F η. (2.9)

For sites in ENA, Q0 =670 and η=1/3 in Tables B-4 and B-7 of EPRI-1025287 are usually

used.

Site effects G( F ) is given by

G( F ) = A( F ) ·D( F ), (2.10)

where A( F ) is amplification factor relative to source depth velocity conditions; in practice,

amplification factors given in Table 2.1 are usually used (Table 4, Campbell, 2003). D( F )

accounts for the path-independent loss of high-frequency energy in ground motions and

can be obtained by (EPRI-1025287)

D( F ) = e−πκ0 F , (2.11)

where the diminution parameter κ0 =0.006 is used for sites in ENA. An alternative Fmax

filter (Boore, 2003),

D( F ) =
[

1 + ( F/ Fmax)
8
]−1/2

, (2.12)

can be combined with (2.11), and Fmax =50 Hz may be used for sites in ENA.
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2.1 developing input ground motions

Table 2.1 Site amplification factors from the ENA stochastic model.

Frequency F (Hz) 0.1 0.2 0.3 0.5 0.9 1.25 1.8 3.0 5.0 8.0 14.0 100

Amplification A( F ) 1.02 1.03 1.05 1.07 1.09 1.11 1.12 1.13 1.14 1.15 1.15 1.15

Bazzurro and Cornell (2004) demonstrate that soil amplification is virtually indepen-

dent of earthquake magnitude m except when frequencies F are less than initial resonant

frequency Fsc of soil column. A sufficient depth is required to be taken so that Fsc
60.5

Hz to ensure that site response has no influence on frequencies greater than 0.5 Hz (EPRI-

1025287). Furthermore, sensitivity analysis also shows that the difference in the derived

amplification functions for different earthquake magnitudes is minor. Hence, in practice, a

representative earthquake magnitude is obtained from seismic hazard deaggregation (SHD)

with a mean AEP of 1×10−4. If the representative earthquake magnitude is very close to

m 6.5, then m 6.5 is used; otherwise, the actual representative earthquake magnitude is

used.

Given a pair of earthquake magnitude m and hypocenter distance R, and seismological

parameters, FAS at reference hard rock can be obtained from equation (2.1).

2.1.2 Developing Acceleration Response Spectra

Having obtained FAS, Random Vibration Theory (RVT) is often employed to obtain Accel-

eration Response Spectra (ARS) (Kottke et al., 2013).

Consider a single degree-of-freedom (SDOF) oscillator (with circular frequency ω0 and

damping ratio ζ0) that is mounted on the reference hard rock and under the excitation

of reference hard rock motion in terms of FAS FA(M0, R, ω). The FAS of the absolute

acceleration ü(t)= ẍ(t)+ ühr(t) is

∣
∣ Ü(ω)

∣
∣ = ω2

0

∣
∣H(ω)

∣
∣FA(M0, R, ω). (2.13)

H(ω) is complex frequency response function with respect to base excitation of the SDOF

oscillator given by

H(ω) =
1

(ω2
0 −ω2) + i2ζ0ω0 ω

.
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2.1 developing input ground motions

Applying the Parseval’s theorem, the mean-square response of the absolute acceleration is

ü 2
rms =

1

Trms

∫ Trms

0
ü2(t)dt =

1

Trms

·
1

2π

∫ ∞

0
ω 4

0

∣
∣H(ω)

∣
∣

2
F 2

A(M0, R, ω)dω

=
1

Trms

∫ ∞

0
F 4

0

∣
∣H( F )

∣
∣

2
F 2

A(M0, R, F )d F , (2.14)

in which

H( F ) =
1

( F 2
0 − F 2) + i2ζ0 F0 F

.

By considering the responses of the oscillator and using results from time-domain numer-

ical simulations, Boore and Joyner (1984) proposed to determine the root-mean-square

duration Trms as

Trms = Tgm + To

(
κn

κn + α

)

, κ =
Tgm

To

, (2.15)

where To =1/(ω0 ζ0) is the duration of the SDOF oscillator, and Tgm =Ts +Tp is the

duration of ground motion. Trms approaches Tgm and Tgm +To, respectively, for small

and large earthquakes. Ts =1/ Fc is the source duration with Fc being the corner frequency

obtained from equation (2.5). Tp is path duration given by, for sites in ENA (Atkinson and

Boore, 2006),

Tp =





















0, R610,

0.16 (R−10), 10< R670,

9.6 − 0.03 (R−70), 70< R6130,

7.8 + 0.04 (R−130), R >130.

(2.16)

In equation (2.15), the constants n=3 and α=1/3 are used by Boore (2003). Liu and

Pezeshk (1999) suggest that n=2 and α is taken as

α =
[

2π

(

1 −
λ2

1

λ0 λ2

)]1/2

, (2.17)

where

λK =
∫ ∞

0
(2π F )K F 4

0

∣
∣H( F )

∣
∣

2
F 2

A(M0, R, F )d F, K=0, 1, . . . . (2.18)
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Having obtained the root-mean-square response ürms from equation (2.14), peak accel-

eration response |ü |max or ARS can be determined through the peak factor Pf

SA( F0) = |ü |max ≈ Pf · ürms. (2.19)

In Cartwright and Longuet-Higgins (1956) peak factor model, the expected Pf is calculated

by

Pf =
√

2

∫ +∞

0

{

1 −
[

1 − I e−z2 ]
Ne

}

dz, (2.20)

in which Ne is the number of extrema given as (Boore, 1983)

Ne =
Tgm

π

√

λ4

λ2

. (2.21)

To cover the range of loading levels, a minimum of eleven expected (median) peak accel-

eration values at reference hard rock (usually taken at F0 =100 Hz) are needed to span from

0.01g to 1.50g (i.e., 0.01g, 0.05g, 0.10g, 0.20g, 0.30g, 0.40g, 0.50g, 0.75g, 1.00g, 1.25g,

1.50g). Given the earthquake magnitude m and seismological parameters, changing the

hypocenter distance R can result in the ARS with these eleven peak acceleration values.

2.1.3 Developing Input Ground Motions in Frequency Domain

When ARS is given in Section 2.1.2, input ground motions at reference hard rock can be

determined in frequency-domain (Kottke et al., 2013).

An Inverse Random Vibration Theory (IRVT) method is applied to convert ARS to FAS,

which are used as the input ground motions at reference hard rock. The IRVT technique

proposed by Gasparini and Vanmarcke (1976) and further developed by Rathje and Kottke

(2008) gives the square of FAS at F0 of an SDOF oscillator (with frequency F0 and damping

ratio ζ0) as

F 2
A( F0) ≈

1
∫ ∞

0
F 4

0

∣
∣H( F )

∣
∣

2
d F − F0

[
Trms

2
·

S
2
A( F0)

Pf
2

−
∫ F0

0

∣
∣FA( F )

∣
∣

2
d F

]

, (2.22)

in which SA( F0) is the target ARS obtained from equation (2.19). It can be shown that
∫ ∞

0
F 4

0

∣
∣H( F )

∣
∣

2
d F = F 4

0 ·
π

4ζ0 F 3
0

=
π F0

4ζ0

. (2.23)
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Hence, equation (2.22) can be simplified as

F 2
A( F0) ≈

1

F0

(
π

4ζ0
−1

)

[
Trms

2
·

S
2
A( F0)

Pf
2

−
∫ F0

0
F 2

A( F )d F

]

. (2.24)

To solve for FAS, equation (2.24) is applied first to determine F( F0) at a sufficient low

frequency, e.g., F0 =0.01 Hz. At this low frequency, the integral in equation (2.24) is

assumed to be zero. The peak factor Pf is assumed to be a preset value, e.g., Pf =2.5.

Having obtained F( F0) at 0.01 Hz, FAS values at frequency F
(I)
0 , I>1, can be determined

by

F 2
A

(

F
(I)
0

)

≈
1

F
(I)
0

(
π

4ζ0
− 1

)

{
Trms

2
·

S
2
A( F

(I)
0 )

Pf
2

−
I

∑

K=1

F 2
A

(

F
(K−1)
0

)

·
[

F
(K)
0 − F

(K−1)
0

]

}

. (2.25)

The accuracy of the estimated FAS FA( F0) is improved iteratively by comparing the ARS

S
rvt
A ( F0) determined from the estimated FAS FA( F0) using the IRVT technique and the

target ARS SA( F0):

1. Initial FAS FA

(

F
(I)
0

)

, I>0, is determined by equations (2.24) and (2.25).

2. Calculate the ARS S
rvt
A ( F0) associated with the initial FAS using the RVT presented in

Section 2.1.2, i.e., equations (2.13) and (2.18).

3. Determine the correction factor by

C( F0) =
SA( F0)

S
rvt
A ( F0)

. (2.26)

Multiplying the FAS by C( F0) results in a new FAS.

4. Based on the new FAS, new peak factor Pf can be obtained from equations (2.17) and

(2.20); the new ARS S
rvt
A ( F0) is then determined using equations (2.13) and (2.18).

5. Steps 3 and 4 are repeated until one of following conditions is met:

• a preset maximum number of iterations (e.g., 30) is reached;

• the absolute error of root-mean-square response between |ü |rvt
max corresponding to

S
rvt
A ( F0), determined using equations (2.13), and |ü |max corresponding to SA( F0) is

less than a prespecified tolerance (e.g., 0.005);
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2.2 addressing local site effect

• change in the error of root-mean-square response is less than a prespecified value

(e.g., 0.001).

2.2 Addressing Local Site Effect

Given the input ground motion at bedrock, site response analysis is performed in frequency

domain to evaluate the local site effect based on the equivalent-linear method given by

Schnabel et al. (1972). The FAS at bedrock is multiplied by the transfer function to generate

FAS at each layer. Then ARS can be obtained by 2.1.2. In site response analysis, the

soil deposit is considered as a one-dimensional continuous model characterized by the layer

thickness (H), density (ρ ), shear wave velocity (Vs ), shear modulus (G), and damping ratio

(ζ ). The nonlinear effect of shear modulus and damping ratio is taken into consideration

by an equivalent linearization technique, i.e., an iteration process.

2.2.1 Transfer Function in Site Response Analysis

The displacement u in a single layer caused by bedrock motion with frequency ω can be

expressed as

u(z, t) = [A exp(iKz) + B exp(−iKz)] exp(iωt), (2.27)

where A and B represent the amplitudes of waves traveling upward and downward, re-

spectively, z is the depth in the layer ranging from 0 to H, K is the wave number defined

as

K =
ω

Vs
∗ ,

and Vs
∗ is the complex shear wave velocity as

Vs
∗ = Vs

√

(1 + 2ζ i).

According to equation (2.27), the shear stress can be obtained as

τ(z, t) = G∗ ∂u

∂z
= iKG∗[A exp(iKz) − B exp(−iKz)] exp(iωt), (2.28)

where G∗ is the complex shear modulus calculated by

G∗ = G(1 + 2ζ i).
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2.2 addressing local site effect

Since the displacement and the shear stress are the same in two layers at their interface,

one obtains

uI+1(0, t) = uI (HI , t), (2.29)

τI+1(0, t) = τI (HI , t), (2.30)

in which I represents the number of soil layers ranging from 1 to n, and n is total number of

soil layers.

Based on equations (2.27) and (2.28), equations (2.29) and (2.30) can be rewritten as

AI+1 + BI+1 = AI exp(iKHI) + BI exp(−iKHI), (2.31)

KI+1G∗
I+1(AI+1 − BI+1) = KIG

∗
I [AI exp(iKHI) − BI exp(−iKHI)]. (2.32)

Solving equations (2.31) and (2.32) yields

AI+1 =
AI

2
(1 + αI) exp(iKHI) +

BI

2
(1 − αI) exp(−iKHI), (2.33)

BI+1 =
AI

2
(1 − αI) exp(iKHI) +

BI

2
(1 + αI) exp(−iKHI), (2.34)

where α is equal to

α =
KIG

∗
I

KI+1G∗
I+1

.

At the free surface, i.e., I = 1 and z = 0, the shear stress should be vanished. This leads

to

τ1(0, t) = iK1G∗
1 [A1 − B1] exp(iωt) = 0, (2.35)

which results in A1 = B1.

By performing a recursive process on equations (2.33) and (2.34) and introducing A1 =
B1, the amplitudes in the Ith layer can be expressed as

AI = aI(ω)A1, (2.36)

BI = BI(ω)A1. (2.37)

Then transfer function from the top of jth layer to the top of Ith layer is

HIj(ω) =
uI(0, t)

uj(0, t)
=

(AI + BI) exp(iωt)

(Aj + Bj) exp(iωt)
=

aI + BI

aj + Bj

. (2.38)
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Particularly, the transfer function from the bedrock motion to the free surface is

H1n(ω) =
u1(0, t)

un(0, t)
=

(A1 + B1) exp(iωt)

(An + Bn) exp(iωt)
=

2

an + Bn
. (2.39)

If the bedrock is considered as a outcrop, i.e., bedrock is not influenced by the soil

deposit, the amplitudes of the upward and downward waver are the same, which means

An = Bn. The transfer function (2.39) becomes

H1n(ω) =
1

an
. (2.40)

Finally, based on the input FAS and soil parameters, the FAS at any depth can be

calculated by equations (2.36) to (2.40).

2.2.2 Treatment of Soil Nonlinearity

Under severe ground motions, the shear strain of soil is high, which leads to a nonlinear

stress-strain behavior in soils. In this case, G and ζ vary with the shear strain of soil.

For example, the curves showing nonlinear soil properties in EPRI TR-102293-V2 (EPRI,

1993b) are shown in Figure 2.1.

The soil nonlinearity is considered by an equivalent linear method in frequency domain.

In this technique, G and ζ are assumed to be constant in the analysis. Initially, G and ζ are

taken as low-strain values. Then the shear strain can be obtained as

γ (z, t) =
∂u

∂z
= iK[A exp(iKz) − B exp(−iKz)] exp(iωt). (2.41)

Based on the resultant strain, new G and ζ are obtained from the shear modulus and

hysteretic damping curves. This process is performed repeatedly until G and ζ become

stable, i.e., the difference of them in successive iterations is smaller than 1%.

As a result, the ground motion at free field and strain-compatible soil properties are

determined.

2.3 Summary

In this chapter, the methodology of seismic site response analysis, including generation of

input motions, the transfer function, and the treatment of nonlinearity in soil is presented.

Some conclusions are obtained:
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Figure 2.1 Shear modulus and hysteretic damping curves for cohesionless soil

❧ The ground motion is modified during the propagation from bedrock to free field.

❧ Due to the ground motion, the soil properties vary with the resultant soil strains.

Strain-compatible soil properties and the site-specific free filed motion are obtained,

which are essential for the calculation of dynamic soil stiffness and the conduction SSI

analysis.
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3C H A P T E R

Soil-Structure InteractionAnalysis with
Rigid Foundation

Since the presence of structure in a soil deposit and the interaction between soil and

structure, the dynamic response of a soil deposit is different from the free field and response

of structure is different from that with fixed-base. The Floor Response Spectra (FRS) vary

significantly compared to the fixed-base model (Jiang, 2016). A direct spectra-to-spectra

method have recently developed by Jiang et al. (2015) for fixed-base structures. The effect

of Soil-Structure Interaction (SSI) cannot be neglected for soil site. In this Chapter, the

substructure method for Soil-Structure Interaction (SSI) analysis in Jiang et al. (2015) is

reviewed, and extended to perform with frequency dependent soil stiffness. Foundation

Level Input Response Spectra (FLIRS) is generated by combining SSI effect into free field

motion, so that the direct spectra-to-spectra method for generating FRS can be applied for

structures founded on soil.

Based on the modal information of structures, the structural response is obtained under

the seismic input at the foundation for the fixed-base model. Then the equilibrium equa-

tions are established for structure nodes and the entire structure-foundation system, which

makes it possible to get the structural response from the free field motion. By eliminating

the structural response, a transfer function bridging the free field motion and fixed-base

motion is determined. Finally, the modification factor from Foundation Input Response

Spectra (FIRS) to FLIRS is calculated by random vibration theory.
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3.1 substructure method

3.1 Substructure Method

3.1.1 Substructure Model for Rigid Foundation

In many engineering applications, such as in nuclear power plants, the foundations can be

assumed to be rigid. In this case, the free-field earthquake excitation is applied at only one

node O on the foundation. The coupled soil-structure model is shown in Figure 3.1. Let

Us and UO be amplitudes of the absolute displacement vectors of the superstructure and

foundation, respectively, where the subscripts “s” and “O” stand for the degrees-of-freedom

of “structure” and “base” (or boundary of soil-structure interface), respectively. The

equation of of motion for the structure is expressed by




Sss
s Ss

sO

Ss
Os Ss

OO











Us

UO






=







Ps

PO






, (3.1)

where Ps is the amplitude vector of the load applied on the nodes of the structure, and

PO is the amplitude vector of the interaction forces between the structure and soil. For

earthquake excitation, the nodes of the structure not in contact with the soil are not loaded,

i.e., Ps =0, and hence

Sss
s Us + Ss

sO UO = 0. (3.2)

For the soil with excavation, let Sg
OO and Ug

O be the dynamic stiffness matrix and the

amplitudes of absolute displacement vector under earthquake ground motion, respectively,

where the subscript “g” stands for the soil with excavation. The interaction forces of the

soil depend on the relative displacement between the foundation (base) and the soil at the

interface, i.e.,

PO = Sg
OO (UO −Ug

O ). (3.3)

Then equation (3.1) becomes




Sss
s Ss

sO

Ss
Os Ss

OO +Sg
OO











Us

UO






=







0

Sg
OO Ug

O






. (3.4)

In equation (3.4), the earthquake excitation is characterized by Ug
O , which is the motion

of the node on the soil-structure interface of the soil with excavation. It is desirable to

replace Ug
O by the free-field motion UO

f that does not depend on the excavation.

29



3.1 substructure method

Excavated Soil  

    ⇒ “Structure”

Ss
ss Us

UO

O O

UO=UO
fUO

f

UO
g

Ss
sO, S

s
Os

Ss
Os=0

Ss
OO

Ss
OO=Se

OO

S
g
OO

Finite-Element
Model

Coupled Soil-Structure Model (Rigid Foundation)

Free Field

Site Response Analysis

Seismic Input at Bedrock

Seismic Input at Bedrock

Seismic Input at Bedrock

Sf
OO

Seismic Input at Bedrock

~
~

~

Se
OO

UO
g

S
g
OO

OO

Foundation Input Response Spectra

FIRS

Free-Field Soil
Model

Soil with Excavation

Figure 3.1 Coupled soil-structure model with rigid foundation

3.1.2 Free-Field Soil Model

The free-field soil can be divided into the excavated soil and the soil without excavation as

shown in Figure 3.1. Regarding the excavated soil as a “structure”, referring to the coupled

soil-structure model and equation (3.4), one has ŨO = UO
f , S̃Os

s =0, and hence S̃sO
s = Se

OO ,

which is the dynamic stiffness matrix of the excavated soil; the subscript “e” stands for

excavated soil. Hence, the second block-row of equation (3.4) gives

[

S̃Os
s S̃sO

s +Sg
OO

]







×

UO
f






=

{

Sg
OO Ug

O

}

=⇒ (Se
OO +Sg

OO)UO
f = Sg

OO Ug
O . (3.5)
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Note that adding the excavated soil to the soil with excavation leads to the free-field

system, i.e.,

Sg
OO + Se

OO = Sf
OO , or Sg

OO = Sf
OO −Se

OO . (3.6)

Hence, equation (3.5) can be written as

Sf
OO UO

f = Sg
OO Ug

O , (3.7)

where Sf
OO is the dynamic stiffness matrix of the free-field that is discretized at the nodes

at which the structure is inserted, and UO
f is the free-field motion at the nodes of the soil-

structure interface. Hence, UO
f is the free-field response of the soil at the foundation level;

the acceleration response spectra of üO
f are the Foundation Input Response Spectra (FIRS),

which can be obtain from a site response analysis of the free-field.

Using equation (3.7), equation (3.4) becomes





Sss
s Ss

sO

Ss
Os Ss

OO +Sg
OO











Us

UO






=







0

Sf
OO UO

f






. (3.8)

Equation (3.8) is the equation of motion of the structure supported on a generalized spring

characterized by the dynamic stiffness matrix Sg
OO , and the other end of the spring is

subjected to earthquake excitation UO
f , which is free-field response at the foundation level

(node O as shown in Figure 3.2).

Using equation (3.6), equation (3.8) can also be written as





Sss
s Ss

sO

Ss
Os (Ss

OO −Se
OO)+Sf

OO











Us

UO






=







0

Sf
OO UO

f






. (3.9)

For a structure with N nodes (not including the rigid foundation), each node has 6 DOF

(three translational and three rotational). The rigid foundation has one node O with 6

DOF. The dimensions of the vectors Us , UO , and UO
f are 6N, 6, and 6, respectively. The

dimensions of the dynamic stiffness sub-matrices of the structure Sss
s , Ss

sO , Ss
Os , Ss

OO are

6N×6N, 6N×6, 6×6N, and 6×6, respectively. The dimensions of the dynamic stiffness

sub-matrices of the soil Sf
OO , Sg

OO , and Se
OO are all 6×6.
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Figure 3.2 Soil-spring model of SSI with rigid foundation

3.1.3 Fixed-Base Model for Rigid Foundation

If the soil is firm enough so that the structure can be considered as fixed-base as shown in

Figure 3.3, the motion of point O of the basemat is the earthquake input to the structure.

From the first block-row of equation (3.8), one has

Sss
s Us + Ss

sO UO = 0 =⇒ Us = S
fb UO , S

fb = −
(

Sss
s
)−1

Ss
sO , (3.10)

where S
fb is the dynamic stiffness matrix for fixed-base analysis, the superscript “fb”

stands for fixed-base.

In seismic analysis, rotational ground motions are not considered and only translational

ground motions are considered. Re-organize vector Us and rewrite UO as

Us =







Us,T

Us,R







6N×1

, UO =







UO
fb

0







6×1

, (3.11)

in which the subscripts “T” and “R” stand for translational and rotational degrees-of-
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Figure 3.3 Fixed-base model with rigid foundation

freedom, respectively. Re-arrange and partition S
fb accordingly, one has

S
fb =





S
TT

fb
S
TR

fb

S
RT

fb
S
RR

fb





6N×6

, (3.12)

in which each submatrix is of dimension 3N×3. Equation (3.10) can be written as






Us,T

Us,R






=





S
TT

fb
S
TR

fb

S
RT

fb
S
RR

fb











UO
fb

0






=







S
TT

fb
UO

fb

S
RT

fb
UO

fb






. (3.13)

Multiplying the first block-row of equation (3.13) by
(

S
TT

fb
)

T yields

(

S
TT

fb
)

T
Us,T =

[(

S
TT

fb
)

T
S
TT

fb
]

UO
fb . (3.14)

The reason for performing this manipulation is to make
[(

S
TT

fb
)

T
S
TT

fb
]

a square matrix of

dimension 3×3, the purpose of which will be clear in Section 3.1.4.

The tri-directional (translational) acceleration response spectra UO
fb applied at the foun-

dation of a fixed-base structure are called Foundation Level Input Response Spectra

(FLIRS), as shown in Figure 3.3. It is important to note that FLIRS are different from
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Foundation Input Response Spectra (FIRS), which are the acceleration response spectra at

the elevation of the foundation of the free-field, as illustrated in Figure 3.2.

The concept of FLIRS, which are the seismic input to fixed-base structures, is important

in seismic design and assessment of nuclear power plants. Generic design of a nuclear

power plant is based on fixed-base analysis under the tri-directional seismic excitations

represented by standard GRS, such as those in CSA N289.3 or USNRC R.G. 1.60, anchored

at a specific Peak Ground Acceleration (PGA). By comparing the site-specific FLIRS with

the standard GRS, based on which the generic nuclear power plant is designed, initial

feasibility of the generic design at the desired site can be assessed and Systems, Structures,

and Components (SSCs) that may be vulnerable can be identified.

Since the dimension of the dynamic stiffness sub-matrix Sss
s is 6N×6N, the evaluation

of its inverse in equation (3.10) could be numerically challenging when N is large. To take

advantage of the modal properties of the structure, a modal analysis is conducted.

For a three-dimensional model of a structure with N nodes (not including rigid foun-

dation), a typical node n has six DOF: three translational DOF un,1, un, 2, un, 3, and three

rotational DOF un,4, un,5, un,6. The structure is subjected to tri-directional seismic excita-

tions at the foundation. In nuclear industry, the structures are required to stay linear under

any exactions. So the relative displacement vector x of dimension 6N is governed by (see,

e.g., Jiang et al., 2015)

M ẍ(t) + C ẋ(t) + K x(t) = −M
3∑

I=1

I
I ü I

g(t), (3.15)

where

x =

















x1

x2
...

xN

















, xn =

















xn,1

xn, 2
...

xn,6

















, I
I =















1I

1I

...

1I















, 1I =

















δI1

δI2
...

δI6

















, (3.16)

M, C, K are, respectively, the mass, damping, and stiffness matrices of dimension 6N×6N,

xn is the relative displacement vector of node n, I I is the influence vector of the seismic

excitation in direction I, and δIj denotes the Kronecker delta function.
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When considering the rotational components of the excitations, equation (3.15) can be

written as

Mẍ(t) + Cẋ(t) + Kx(t) = −MI üO(t), (3.17)

where node O is at the rigid foundation, and

I =
[

I
1

I
2

I
3

I
4

I
5

I
6 ]

, üO(t) =
{

ü1
O(t), ü2

O(t), ü3
O(t), θ̈1

O(t), θ̈2
O(t), θ̈3

O(t)
}T

.

Here I I is defined in equation (3.16) for I=1, 2, 3, and

I
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0

1

0



























, rn
3 =



























−( ȳn − ȳO)

x̄n − x̄O

0

0

0

1



























,

where x̄n, ȳn, and z̄n are the coordinates of the nth node while x̄O, ȳO, and z̄O represent the

coordinates of Node O in a Cartesian coordinate system.

Letting x(t)=Xeiωt and uO(t)= UO eiωt, equations (3.17) becomes

(−ω2M + iωC + K)X = ω2MI UO . (3.18)

Substituting X=8Q and multiplying 8T from the left, where 8 is the modal matrix, lead

to

(−ω28TM8 + iω8TC8 + 8TK8)Q = ω28TMI UO . (3.19)

If the modal shapes are normalized such that 8TM8 = I, applying the orthogonality yields

diag
{

−ω2 + i2ζnωnω + ω2
n

}

Q = ω2ŴUO , (3.20)
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3.1 substructure method

where Ŵ = 8TMI is a 6N×6 matrix of the modal contribution factors. Hence,

X = ω28HŴ UO , (3.21)

where H is a a diagonal matrix of the complex frequency response functions, i.e.,

H = diag

{
1

ω2
n − ω2 + i2ζnωnω

}

.

Since the relative displacement x=u−I uO, substituting into equation (3.21) gives

U = (ω28HŴ + I)UO . (3.22)

Comparing equation (3.22) with equations (3.10), one obtains

S
fb = ω28HŴ + I. (3.23)

Based on Newton’s second law, the dynamic force equilibrium of the structure-foundation

system in Direction 1, as illustrated in Figure 3.3, is given by

−ω2
[

(I
1
)T MU + mO,1 UO,1

]

= FO,1, (3.24)

and the the dynamic moment equilibrium of the structure-foundation system in Direction

5 is given by

−ω2
[

(I
5
)T MU + mO,5 UO,5

]

= MO,5. (3.25)

The dynamic equilibrium in other directions can be derived similarly. Therefore, the

dynamic equilibrium of the entire system is

−ω2 (I
T

MU + MO UO) = FO, (3.26)

where MO is a 6×6 mass matrix of the foundation, and FO denotes the vector of SSI forces

acting on the foundation, which is equal to Sf
OO(UO

f − UO) according to equation (3.7).

Hence, equation (3.26) can be rewritten as

−ω2
I

T
MU +

(

−ω2 MO + Sf
OO

)

UO = Sf
OO UO

f . (3.27)

Comparing with the second block-row of equation (3.9), a structure founded on the ground

surface implies Se
OO =0; hence

Ss
Os = −ω2

I
T

M, Ss
OO = −ω2 MO. (3.28)
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Figure 3.4 Dynamic equilibrium of structure-foundation system

3.1.4 Foundation Level Input Response Spectra (FLIRS)

As discussed in Section 3.1.3, it is desirable to determine the equivalent FLIRS for the

structure with rigid foundation in seismic design and assessment. In SSI analysis, a fixed-

base analysis can be performed using the equivalent FLIRS as the seismic input, instead of a

coupled soil-structure analysis using FIRS as the seismic input.

From the first block-row of equation (3.9), one obtains

Us = −
(

Sss
s
)−1

Ss
sO UO = S

fb UO . (3.29)

From the second block-row of equation (3.9), one has

Ss
Os Us +

[(

Ss
OO −Se

OO

)

+Sf
OO

]

UO = Sf
OO UO

f . (3.30)

Substituting equation (3.29) into (3.30) yields

Ss
OsS

fb UO +
[(

Ss
OO −Se

OO

)

+Sf
OO

]

UO = Sf
OO UO

f ,

which gives

UO = S
−1 Sf

OO UO
f , S = Ss

Os S
fb +

(

Ss
OO −Se

OO

)

+ Sf
OO . (3.31)

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸

6×1 6×6 6×6 6×1 6×6N 6N×6 6×6 (3.32)

37



3.1 substructure method

Note that S−1 Sf
OO is a square matrix of dimension 6×6; partition it as follows:

S
−1 Sf

OO = T =





T
TT

T
TR

T
RT

T
RR





6×6

, (3.33)

in which each submatrix is of dimension 3×3.

Substituting equation (3.28) into equation (3.33)

S = −ω2
(

I
T

MS
fb + MO

)

+ Sf
OO . (3.34)

Since the earthquake influence matrix I and the fixed-base model structural response

transfer matrix S
fb are dimensionless, and Sf

OO denotes the dynamic stiffness of the soil

springs, equation (3.34) can be expressed in terms of a standard dynamic stiffness matrix as

S = −ω2M̃ + iωC f + K f, (3.35)

where M̃=I
T

MS
fb+MO is a 6×6 mass matrix which is determined by the structure and

foundation mass matrices, influence matrix, and the fixed-base structure transfer matrix

S
fb; K f and C f are the stiffness and damping matrices of soil springs, respectively. There-

fore, the problem can be interpreted as a synthesized 6-DOF mass, which is frequency-

dependent, supported by generalized soil springs.

In a site response analysis, the soil medium is modelled as a half-space, and the rational

responses of free-field should be very small under the translational excitation at bedrock.

Hence, the rotational input at foundation level is negligible compared to the translational

input; the rotational input is usually not given by a site response analysis and is taken as 0.

From equations (3.29) and (3.32), one has Us =S
fb
TUO

f , i.e.,







Us,T

Us,R







6N×1

=





S
TT

fb
S
TR

fb

S
RT

fb
S
RR

fb





6N×6





T
TT

T
TR

T
RT

T
RR





6×6







UO,T
f

0







6×1

=





S
TT

fb
S
TR

fb

S
RT

fb
S
RR

fb









T
TT

UO,T
f

T
RT

UO,T
f



 =







S
TT

fb
T
TT

UO,T
f + S

TR

fb
T
RT

UO,T
f

S
RT

fb
T
TT

UO,T
f + S

RR

fb
T
RT

UO,T
f






. (3.36)

Note that it is not possible to have a single set of tri-directional translational FLIRS in a

fixed base analysis to give both correct translational responses Us,T and rotational responses
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3.1 substructure method

Us,R . In the generation of floor response spectra (FRS), only translational responses are

needed. Hence, from the first block-row of equation (3.36), one has

Us,T = S
TT

fb
T
TT

UO,T
f + S

TR

fb
T
RT

UO,T
f . (3.37)

Multiplying
(

S
TT

fb
)

T from the left yields

(

S
TT

fb
)

T
Us,T =

{
(

S
TT

fb
)

T
S
TT

fb
T
TT

+
(

S
TT

fb
)

T
S
TR

fb
T
RT

}

UO,T
f

=
[(

S
TT

fb
)

T
S
TT

fb
]
{

T
TT

+
[(

S
TT

fb
)

T
S
TT

fb
]−1

(

S
TT

fb
)

T
S
TR

fb
T
RT

}

UO,T
f . (3.38)

Since
[(

S
TT

fb
)

T
S
TT

fb
]

is a square matrix of dimension 3×3, it is straightforward to determine

its inverse. Comparing equation (3.38) with equation (3.14), one obtains the equivalent

FLIRS as

UO
fb = T UO,T

f , (3.39)

where T is a complex transfer matrix from FIRS (generated by UO,T
f ) to FLIRS (generated

by UO
fb ), given as

T = T
TT

+
[(

S
TT

fb
)

T
S
TT

fb
]−1

(

S
TT

fb
)

T
S
TR

fb
T
RT

. (3.40)
︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

3×3 3×3 3×3 3×3N 3N×3 3×3

The first and second terms of T denote the contributions from the translational and rota-

tional motions of the foundation in the soil-structure system, respectively.

It is important to emphasize that, although the FLIRS given by equation (3.39) would not

give correct rotational responses Us,R of a structure, it gives exact translation responses

FRS because only translational responses are required to generate FRS. Therefore, the fixed-

base analysis of the structure under the excitation of FLIRS UO
fb given by equation (3.39)

gives exactly the same FRS as a full coupled soil-structure analysis under the excitation of

FIRS UO,T
f .

Based on the theory of random vibration, the relation between the power spectral density

functions of UO
fb and UO,T

f can be determined by

S
fb

ÜÜ
(ω) =

[∣
∣T(ω)

∣
∣

2 ]

S
f

ÜÜ
(ω) , (3.41)
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3.1 substructure method

where S
fb

ÜÜ
(ω) and S

f

ÜÜ
(ω) are the 3×1 vectors of the power spectral density functions of

UO
fb and UO,T

f , respectively. In equation (3.41),
[∣
∣T(ω)

∣
∣

2 ]

denotes a matrix in which each

element is equal to the squared modulus of the corresponding element in T. For a complex

number a+ iB, its modulus is defined as
∣
∣a+ iB

∣
∣=

√
a2 +B2. It is found that, for structures

in nuclear power plants, the off-diagonal terms of T are relatively small compared to the

diagonal terms, and thus may be neglected. It means that the motion of the foundation in

one direction is only induced by the excitations in the same direction.

It is known that the mean square response of a SDOF oscillator under a base excitation

UO,T
f can be obtained by

E[Ẍ2
0(t)] =

∫ ∞

−∞

∣
∣ω2

0 H0(ω)
∣
∣

2
S

f

ÜÜ
(ω)dω , (3.42)

in which H0(ω) is the complex frequency response function characterized by the circular

frequency ω0 and damping ratio ζ0 of the SDOF oscillator. For excitations with wide-band

power spectral densities, S
f

ÜÜ
(ω) can be approximated by constant S

f

ÜÜ
. From equations

(3.41) and (3.42), the ratios between the mean square responses of a SDOF oscillator under

base excitation UO
fb and those under base excitation UO,T

f can be calculated by

R
2(ω0, ζ0) =

∫ ∞

−∞

∣
∣ω2

0 H0(ω)
∣
∣

2 [∣
∣T(ω)

∣
∣

2 ]

S
f

ÜÜ
(ω)dω

∫ ∞

−∞

∣
∣ω2

0 H0(ω)
∣
∣

2
S

f

ÜÜ
(ω)dω

=

∫ ∞

−∞

∣
∣H0(ω)

∣
∣

2 [∣
∣T(ω)

∣
∣

2 ]

1 dω

∫ ∞

−∞

∣
∣H0(ω)

∣
∣

2
dω

,

(3.43)

The maximum response of a SDOF oscillator, which is by definition the response spec-

trum, is usually related to its root mean square response through a peak factor as

SA(ω0, ζ0) =
∣
∣X0(t)

∣
∣

max
= P ·

√

E[X2
0(t)]. (3.44)

Combining equations (3.43) and (3.44) yields the tri-directional fixed-base FLIRS

S
fb
A (ω0, ζ0) =

P
fb

P
f

·R(ω0, ζ0)S
f
A(ω0, ζ0). (3.45)

For responses in earthquake engineering, the values of peak factors P
fb and P

f are not

different significantly; they are often assigned the numerical value 3. Hence

S
fb
A (ω0, ζ0) = R(ω0, ζ0)S

f
A(ω0, ζ0), (3.46)
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3.1 substructure method

in whichR(ω0, ζ0) can be interpreted as response spectrum modification factors from FIRS

to FLIRS.

3.1.5 Generating FRS Considering SSI

For a structure in a nuclear power plant with its rigid foundation embedded in layered soil, a

procedure for generating FRS considering SSI is illustrated in Figure 3.5 and is summarized

as follows:

1. Consider the layered soil as a free-field. With seismic input applied at the bedrock, a site

response analysis is performed to obtain the Foundation Input Response Spectra (FIRS)

UO
f or UO,T

f at the elevation of the foundation.

2. Establish a model of the layered soil. Determined the dynamic stiffness matrices of the

excavated soil Se
OO and the soil with excavation Sg

OO . The dynamic stiffness matrix of

the free-field is Sf
OO = Sg

OO +Se
OO .

3. Set up a finite element model of the structure. Determine the dynamic stiffness matrices

Ss
ss, Sss

s , Ss
sO , Ss

Os , and Ss
OO . Perform a modal analysis to obtain the modal frequencies

ωn, modal damping coefficients ζn, modal matrix 8, and matrix of modal contribution

factors Ŵ.

4. Determine the Foundation Level Input Response Spectra (FLIRS):

❧ S
fb = ω28HŴ + I =





S
TT

fb
S
TR

fb

S
RT

fb
S
RR

fb





6N×6

H = diag

{
1

ω2
n −ω2 + i2ζnωnω

}

6N×6N

Ŵ = 8TMI is a 6N×6 matrix of the modal contribution factors.

I =
[

I
1

I
2

I
3

I
4

I
5

I
6 ]

6N×6

❧ S = Ss
OsS

fb +
(

Ss
OO −Se

OO

)

+ Sf
OO

Determine the inverse S
−1. The dimension is 6×6.
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Figure 3.5 Procedure for generating FRS considering SSI
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❧





T
TT

T
TR

T
RT

T
RR





6×6

= S
−1 Sf

OO

❧ Transfer matrix: T = T
TT

+
[(

S
TT

fb
)

T
S
TT

fb
]−1

(

S
TT

fb
)

T
S
TR

fb
T
RT

❧ FLIRS modification factor: R2(ω0, ζ0) =

∫ ∞

−∞

∣
∣H0(ω)

∣
∣

2 [∣
∣T(ω)

∣
∣

2]

1 dω

∫ ∞

−∞

∣
∣H0(ω)

∣
∣

2
dω

❧ FLIRS: S
fb
A (ω0, ζ0) = R(ω0, ζ0)S

f
A(ω0, ζ0)

5. The FLIRS S
fb
A (ω0, ζ0) are input to the fixed-base finite-element model of the structure

to generate the required FRS, which are exactly the same as the FRS obtained from a full

coupled soil-structure analysis under the excitation of FIRS.

Hence, when the direct spectra-to-spectra method developed by Jiang et al. (2015) is

applied to the fixed-base structure under the excitation of FLIRS S
fb
A (ω0, ζ0), FRS with

complete probabilistic descriptions of FRS peaks, i.e., FRS with any desired level of NEP

p can be obtained. If the method of time history is applied, such a result could only

be obtained from a large number of coupled soil-structure analyses using a commercial

finite-element software, such as ACS SASSI, with a large number of generated time

histories compatible with the FIRS.

3.2 Numerical Example

To verify the accuracy and efficiency of the proposed method, FRS of a typical reactor build-

ing and a service building in nuclear power plants founded on the surface of a homogeneous

half-space are generated following the procedure summarized in Section 3.1. The resultant

FRS are then compared with the FRS obtained from a commercial software ACS SASSI,

which generates FRS based on time history method. The transfer function, modification

factor, which affect the resultant FRS when considering SSI effect, are investigated.
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3.2 numerical example

Model information

The selected reactor building consists of a containment and an internal structure that

are supported by a circular disk foundation with a radius of 19.8m, as shown in Figure

3.6. Using the commercial finite element software ANSYS, the building is modelled as a

lumped-parameter system with a foundation at the bottom, which can characterize the most

Figure 3.6 Primary and secondary systems in a nuclear power plant
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significant dynamic properties of the structure. There are 11 nodes for the superstructure

and 112 plate elements for the rigid foundation. For a fixed-base model, the DOF of all the

nodes at the foundation elevation, are constrained. The model is symmetric about X- and

Y-axes, and the information of the finite element model is described in Tables 3.1 and 3.2

(Li et al., 2005). The plates are 2 meters thick.

Service Building

A three dimensional finite element model of a typical service building of a nuclear power

plant, as shown in Figure 3.7, is established using ANSYS and ACS SASSI. The superstruc-

ture of the building consists of steel frames and concrete floor slabs, and the basement is

constructed using concrete. The finite element model information is given in detail in Jiang

et al. (2015).

ug
1(t)

ug
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ug
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Seclected node
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-5.00 m

Figure 3.7 Finite element model of service building

45



3.2 numerical example

Table 3.1 Nodal information of reactor building model

Node
Elevation Mass Moment of inertia (×106 kg ·m2)

(m) (×106 kg) Ixx = Iyy Izz

1 −4.5 13420 1260 1931

2 4 5710 370 0

3 10.32 5970 394 0

4 19.15 6750 500 0

5 29 1270 110 0

6 −0.585 2288 424 824

7 9.875 3033 568 1087

8 20 2960 554 1063

9 30 2960 554 1063

10 39.15 3068 562 1081

11 50.02 6271 910 1727

Table 3.2 Beam Element Properties of reactor building model

Section Beam
Area (m2) Shear area (m2) Second area moment (m4)

1 0 1204 1084.7 115436

2 1 50 19 5720

3 2 110 70 8160

4 3 140 70 8160

5 4 60 30 325

6 5 176 88 30570

7 6-10 107 53.5 19241
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3.2 numerical example

Soil Property

The underlying site consists of 3 infinite soil layers resting on a homogeneous half-space.

The unit weight γ , Poisson’s ratio ν, damping ratio ζ , thickness of the top layers H, and

Vs are shown in Figure 3.8.

Foundation input response spectra

The R.G. 1.60 response spectra (USNRC, 1973) are assumed as the foundation input re-

sponse spectra (FIRS) obtained from a site response analysis. The peak ground accelera-

tions are anchored to 0.3g and 0.2g for the horizontal and vertical directions, respectively.

30 sets of tri-directional time histories, which are compatible with the target FIRS, are

generated by the Hilbert-Huang Transform method (Ni et al., 2013, 2011), and are used to

Figure 3.8 The soil layers and properties
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perform SSI analysis by ACS SASSI for comparison. The response spectra of 30 sets of time

histories in horizontal direction are shown in Figure 3.9.
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Figure 3.9 Foundation input response spectrum

Development of foundation level input response spectra (FLIRS)

The soil impedance matrix used to conduct SSI analysis is extracted from the analysis of

ACS SASSI, which provides the same basis for this study and ACS SASSI. The dynamic soil

stiffness is frequency dependent as shown in Figure 3.10.

According to Step 4 in Section 6.2.1, a modal analysis is performed for the fixed-base

model by ANSYS, which provides the structure information, including natural frequencies,

mode shapes of all the modes, mass matrix, influence matrix, and modal contribution

factors. The damping ratio of the structure is taken as 5%. The dimensionless transfer

matrix, regarded as fixed-base transfer function, of the fixed-base model Sfb is calculated

for different values of ω, varying from 0.4π to 200π . The modulus of the elements

corresponding to the translational DOF at Nodes 2 to 5 are shown in Figure 3.11. It can be

seen that the modulus of the transfer functions peak at the structural frequencies, i.e., 5.45

Hz and 12.72 Hz, of the significant modes.
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Figure 3.10 Dynamic soil stiffness of reactor building in SASSI

The transfer matrix T is defined by equation (3.40), in which the first term T
TT ,11

indicates the translational component and the second term accounts for the rotational

component. The modulus of entire transfer function T11 and the translational component

are shown in Figure 3.12. It shows that their difference is pronounced in the frequency

range of 2 Hz to 10 Hz, which covers the frequencies of the dominant structural modes.

Therefore, the rotational movement of foundation during the ground motion cannot be

neglected.

Analogous to the modulus of the transfer matrix of the fixed-base structure shown in

Figure 3.11, where peaks emerge at the frequencies of the significant structural modes, the

frequencies corresponding to the peaks in Figure 3.12 can be interpreted as the natural

frequencies of the entire soil-structure system (or the equivalent synthesized mass-spring-

damper system). For instance, the first two peaks of the soil-structure system, located at 4.1

Hz and 5.2 Hz, can be explained as a result of the frequency shifting of the fixed-base model

from 4.4 Hz and 5.4 Hz due to the SSI effect. Meanwhile, the significant modal frequencies
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3.2 numerical example

of the fixed-base model correspond to the bottom of the valley between the peaks, implying

considerable reductions of the responses of the structure.

The FLIRS modification factors R(ω0, ζ0) are then used to generate FLIRS from FIRS;

FLIRS are used in the direct method for generating FRS from the fixed-base model. Figure

3.13 shows the horizontal and vertical components of the FLIRS modification factors. The

resultant horizontal FLIRS are shown in Figure 3.14. The modification factor shows that the

FLIRS change significantly around the natural frequency of the entire system and are scaled

by up to 1.4 compared to FIRS, which may lead to increase of FRS at certain frequencies.

Development of floor response spectra (FRS)

In ACS SASSI, 30 sets of spectra-compatible time histories are used to generate 30 sets of

FRS. The general procedure to generate FRS at node 5 is shown in Figure 3.15. For each

input time history, a different FRS is developed by time history method. Since the input

GRS-Compatible
Time History

u1

u2

Internal Structure

Floor Response Spectrum2

1

ug(t) t

ug(t)

Ground Response Spectrum

−24%  

+24%

Bound: -10%

Bound: +10%

5
u5

u3
3

u4
4

Response Spectrum of 
GRS-Compatible Time History 

Supporting site

Figure 3.15 Generation of FRS in ACS SASSI
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3.3 summary

time history is artificial and not perfectly compatible with target GRS, the variability of the

resultant FRS is very large. Comparing to the mean values of 30 results at node 5, the peak

of FRS varies between -24% and +24%.

The direct spectra-to-spectra method (Jiang et al., 2015; Li et al., 2015) is applied to

generate FRS at Nodes 4 and 5 in the internal structure. The mean values of resultant

FLIRS are used as the input response spectra to the fixed-base model. FRS are calculated at

200 frequencies including the natural frequencies of the structure. The resultant FRS with

50% Non Exceedance Probability (NEP) at Node 4 and Node 5 are plotted along with FRS

generated by time history analyses by ACS SASSI based on 30 sets of time history in Figures

3.16 and 3.17, respectively. FRS obtained by the direct method and the mean FRS of the

time history analyses, which are regarded as the benchmark FRS, are shown in black solid

lines and red dash lines, respectively. It is seen that the FRS obtained by the direct method

generally agree very well with the benchmark FRS over the entire frequency range, whereas

individual FRS from time history analyses exhibit large variability. Particularly, FRS peak

values, which are of main interest of engineers, can be overestimated by more than 24% or

underestimated by more than 23%. However, the differences at the FRS peaks between the

direct method and the benchmark FRS are generally less than 5%, which are well within the

range of acceptable errors. Figures 3.18 and 3.19 present the FRS with 84.1% NEP by the

two approaches, which demonstrates the accuracy of the proposed method.

FRS at the selected node of the three-dimensional service building are also generated

following the same procedure. Figure 3.20 shows that the proposed method also produces

excellent results for a complex 3D model. The relative errors at FRS peaks are less than 5%,

while the results of time history method exhibit large variations from +226% to −30%,

even though the time histories are well compatible with the target input response spectra.

3.3 Summary

In this chapter, the substructure method to conduct the SSI analysis with rigid foundation

is reviewed. The frequency dependant soil stiffness is utilized in the application. Based

on the free-field ground motion (FIRS), soil properties, and structural modal information,
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the tri-directional response spectra are determined considering SSI effect. The modified

response spectra, called foundation level input response spectra (FLIRS), are then used as

the input to the fixed-base structure to generate FRS using the direct spectra-to-spectra

method (Jiang et al., 2015; Li et al., 2015).

Numerical examples are performed to verify the proposed method. FRS of a reactor

building and a service building are generated considering SSI by 30 sets of time history

analyses and the proposed method. It is observed that the FRS obtained by the proposed

method agree well with the resultant FRS from a large number of time history analyses,

which are regarded as the benchmark FRS; whereas FRS obtained from time history anal-

yses exhibit large variability at the FRS peaks. It is also demonstrated that the effect of SSI

may increase FRS at certain frequencies, which leads to higher seismic demands for SSCs

mounted on the supporting structure.

Some conclusions are obtained:
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3.3 summary

❧ The difference between the FLIRS and FIRS is significant. The numerical example

shows the spectral acceleration is scaled up to 1.4 at certain frequencies and the natural

frequency of the soil-structure system is different from the fixed-base structure.

❧ From the numerical example, the FRS based on FLIRS and direct method agrees well

with the result of SASSI in most frequency domain. Large variability is observed in

time time history analyses by ACS SASSI, which is overcame by the proposed method.

❧ The frequency dependent soil stiffness varies dramatically over the frequency range,

especially in high frequency domain (more than 10 Hz). It is necessary to generate

frequency dependent soil stiffness in SSI analysis.

In summary, the concept of FLIRS is proposed to represent the seismic input considering

SSI effect. It can be obtained conveniently based on the modal information of structure

and dynamic soil stiffness. FRS can be generated by the proposed substructure method and

direct method accurately and efficiently without any variability.
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4C H A P T E R

Formulation of Dynamic Soil Stiffness

In Soil-Structure Interaction (SSI) analysis, the frequency-dependent dynamic soil stiffness

determines the response of soil base under foundation. It is a necessary element in SSI

analysis. In this chapter, it is aimed to generate dynamic soil stiffness by a semi-analytical

method based on the Green’s function by Wolf (1985).

A flexible foundation can be represented by m nodes. If the foundation is rigid, m is equal

to 1. For each node, there are 3 translational and 3 rotational degrees of freedom. Hence,

the soil stiffness is a 6m×6m matrix. The element SIj in dynamic stiffness matrix is the

amplitude of the reaction force at node I when the displacement at node j is forced to be

equal to eiωt as shown in Figure 4.1. ω is the excitation frequency, and t is the time. Thus

dynamic soil stiffness is frequency dependent 6m×6m matrices.

In this study, the soil is modeled as a layered half-space characterized by the soil prop-

erties, including layer thickness, density, shear wave velocity, Poisson’s ratio, and damping

ratio. The soil properties are assumed to be linear in the generation of soil stiffness. Starting

from the wave propagation function, the relevant displacements under three dimensional

point loads are derived in wave number domain rigorously. The constitutive relation is

then established in frequency domain according to Fourier series and Bessel transform pair.

Finally, the Boundary Element Method (BEM) is employed to calculate the total stiffness

matrix for rigid or flexible foundations with arbitrary shapes.
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4.1 generation of dynamic soil stiffness

Soil Layers
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Soil Surface
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x

z

Foundation

Unit displacement eiωt at node j

Reaction force          at node iijS
  
eiωt

Figure 4.1 Definition of dynamic soil stiffness

4.1 Generation of Dynamic Soil Stiffness

4.1.1 Wave Propagation Function

For harmonic excitation with frequency ω, the three dimensional equilibrium equations in

Cartesian coordinates x, y, and z directions are

σx, x + τxy, y + τxz, z = −ρω2u,

τyx, x + σy, y + τyz, z = −ρω2v,

τzx, x + τzy, y + σz, z = −ρω2w, (4.1)

where σ and τ are normal stress and shear stress, respectively. ρ is the density. u, v, and w

are displacements in x, y, and z directions. The comma denotes a partial derivative.

The strain-displacement relationship are expressed as

ǫx = u,x , ǫy = v,y , ǫz = w,z ,

γxy = u,y +v,x , γxz = u,z +w,x , γyz = v,z +w,y ,
(4.2)

in which ǫ is normal strain, and γ is shear strain.
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4.1 generation of dynamic soil stiffness

Based on Hooke’s law, the constitutive equations are

σx = λ(ǫx + ǫy + ǫz) + 2Gǫx,

σy = λ(ǫx + ǫy + ǫz) + 2Gǫy,

σz = λ(ǫx + ǫy + ǫz) + 2Gǫz,

τxy = Gγxy, τxz = Gγxz, τyz = Gγyz,

(4.3)

where G is the shear modulus, and λ is given by

λ =
νE

(1 + ν)(1 − 2ν)
. (4.4)

E is the elasticity modulus, and ν is Poisson’s ratio. G can be expressed by E and ν as

G =
E

2(1 + ν)
. (4.5)

Substituting equations (4.2) and (4.3) into equations (4.1) leads to

(λ + 2G)(u,xx +v,yx +w,zx ) + 2G(u,yy +u,zz ) = −ρω2u,

(λ + 2G)(u,xy +v,yy +w,zy ) + 2G(v,xx +v,zz ) = −ρω2v,

(λ + 2G)(u,xz +v,yz +w,zz ) + 2G(w,xx +w,yy ) = −ρω2w.

(4.6)

In order to solve the displacements and identify the different types of waves, new variables

are introduced as

e = u,x +v,y +w,z , (4.7)

and

�x = 1
2 (w,y −v,z ), �y = 1

2 (u,z −w,x ), �z = 1
2 (v,x −u,z ), (4.8)

where e represents the volumetric strain, while � is the rotation-strain vector. So e can be

considered as the strain causing by primary waves (P-wave), and � results from shear waves

(S-wave).

Substituting equations (4.7) and (4.8) into equations (4.6) gives

(λ + 2G)e,x +2G(�y,z − �z,y) = −ρω2u, (4.9)

(λ + 2G)e,y +2G(�z,x − �x,z) = −ρω2v, (4.10)
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4.1 generation of dynamic soil stiffness

(λ + 2G)e,z +2G(�x,y − �y,x) = −ρω2w. (4.11)

Differentiating equation (4.9) with respect to x, equation (4.10) with respect to y, equa-

tion (4.11) with respect to z, and taking the summation of these three equations result

in

(λ + 2G)(e,xx +e,yy +e,xx ) = −ρω2e. (4.12)

By introducing the primary wave velocity

c2
p =

λ + 2G

ρ
, (4.13)

equation (4.12) is rewritten as

∇e = −
ω2

c2
p

e. (4.14)

Differentiating equation (4.11) with respect to y, equation (4.10) with respect to z, and

letting the former equation subtract the latter yield

G(�x,xx + �x,yy + �x,zz) = −ρω2�x, (4.15)

Similarly,

G(�y,xx + �y,yy + �y,zz) = −ρω2�y, (4.16)

G(�z,xx + �z,yy + �z,zz) = −ρω2�z. (4.17)

By introducing the shear wave velocity

c2
s =

G

ρ
, (4.18)

equations (4.15)-(4.17) are rewritten as

∇� = −
ω2

c2
s

�. (4.19)

Under harmonic excitation, the equations of motion are specified in equation (4.14) with

the amplitude of volumetric strain e and (4.19) with the amplitude of rotation strain vector

�.
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4.1 generation of dynamic soil stiffness

Propagation Function of P-wave

The displacements resulting from P-waves are shown in Figure 4.2.

The solution of equation (4.14) is

e = −
iω

cp

APexp
[ iω

cp

(−Lxx − Lyy − Lzz)
]

, (4.20)

where AP is the amplitude of P-wave. Lx, Ly, and Lz can be considered as the cosines of the

angles between the direction of P-wave and x, y, and z axis. They meet

L2
x + L2

y + L2
z = 1. (4.21)

The corresponding displacements caused by P-wave are governed by

up = Lx APexp
[ iω

cp

(−Lxx − Lyy − Lzz)
]

,

vp = Ly APexp
[ iω

cp

(−Lxx − Lyy − Lzz)
]

,

wp = Lz APexp
[ iω

cp

(−Lxx − Lyy − Lzz)
]

.

(4.22)

Wave Front

Propagation
Direction

1lz

lx

x

y

z

P-Wave

AP

ly

wp

up

vp

Figure 4.2 Displacements associated with P-waves

Propagation Function of S-wave

The displacements resulting from S-waves are shown in Figure 4.3.

62



4.1 generation of dynamic soil stiffness
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Figure 4.3 Displacements associated with S-waves

The solution of equation (4.19) is

� = −
iω

2cp

Cexp
[ iω

cp

(−mxx − myy − mzz)
]

, (4.23)

where vector C represents the amplitude of S-wave. mx, my, and mz can be considered as

the cosines of the angles between the direction of S-wave and x, y, and z axis. They meet

m2
x + m2

y + m2
z = 1. (4.24)

The corresponding displacements caused by S-wave are

us = (mxCy − myCz)exp
[ iω

cs
(−mxx − myy − mzz)

]

,

vs = (mxCz − mzCx)exp
[ iω

cs
(−mxx − myy − mzz)

]

,

ws = (myCx − mxCy)exp
[ iω

cs
(−mxx − myy − mzz)

]

.

(4.25)

S-wave is usually decomposed into two components as SH-wave, containing the displace-

ment in x-y plane, and SV-wave, containing the displacement in z axis and propagation

direction plane. Hence, the corresponding displacement amplitude ASH and ASV are ex-
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4.1 generation of dynamic soil stiffness

pressed as

ASH =
Cx

√

m2
x + m2

y

,

ASV =
mxCy − myCx
√

m2
x + m2

y

.

Then the displacements become

us =
mxmzASV − myASH

√

m2
x + m2

y

exp
[ iω

cs
(−mxx − myy − mzz)

]

,

vs =
mymzASV + mxASH

√

m2
x + m2

y

exp
[ iω

cs
(−mxx − myy − mzz)

]

,

ws = −
√

m2
x + m2

yASV exp
[ iω

cs
(−mxx − myy − mzz)

]

.

(4.26)

Propagation Function of Total Earthquake Wave

Since the directions of propagation are always assumed to be in a vertical plane, e.g., x-z

plane or y-z plane, this means, when x-z plane is considered,

Ly = my = 0.

In this case, taking both P-wave and S-wave into consideration gives

u = Lx AP exp
[ iω

cp

(−Lxx − Lzz)
]

+ mz ASV exp
[ iω

cs
(−mxx − mzz)

]

, (4.27)

v = ASH exp
[ iω

cs
(−mxx − mzz)

]

, (4.28)

w = Lz AP exp
[ iω

cp

(−Lxx − Lzz)
]

+ mx ASV exp
[ iω

cs
(−mxx − mzz)

]

. (4.29)

The total displacement equations show that the displacements u and w depend on P-wave

and SV-wave in x-z plane, while v is determined by SH-wave out of x-z plane.
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4.1 generation of dynamic soil stiffness

4.1.2 Addressing Material Damping

The material damping of soil is introduced by replacing the elastic constants by the complex

values as

λ∗ + 2G∗ = (λ + 2G)(1 + 2ζpi),

c∗
s = cs

√

(1 + 2ζsi),

where ζp and ζs are damping ratios for P-wave and S-wave, respectively. The superscript

symbol ∗ represents the corresponding complex values.

4.1.3 Dynamic Stiffness Matrix under Point Loads

The analytical solution of dynamic stiffness matrix in a single layer, which is derived by

Wolf (1985), is used in this research.

A horizontal layer with depth D, P-damping ζp, S-damping as ζs, complex shear wave

velocity c∗
s , complex primary wave velocity c∗

p , complex shear modulus G∗, and density ρ

is studied.

The dynamic stiffness of this layer under three dimensional point loads with frequency ω

is addressed. The origin is located at the top of the layer and z axis is pointing downward.

Dynamic Stiffness Matrix of Out-of-Plane Motion under Point Load

The displacements v, strains τyz , and external forces Q associated with out-of-plane motion

in a horizontal layer are shown in Figure 4.4. The half-space can be considered as a layer

with infinite thickness, i.e., D approaches infinity.

In order to meet the boundary condition and address the waves propagating in both

positive and negative z directions, a second wave in x direction is introduced. Then the

out-of-plane motion, equation (4.28) becomes

v(x, z) = ASHexp
[ iω

cs
(−mxx − mzz)

]

+ BSHexp
[ iω

cs
(−mxx + mzz)

]

, (4.30)

where BSH is the amplitude of wave propagating in the negative direction.

Since

m2
x + m2

z = 1,

65
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Figure 4.4 Out-of-plane motion model for a horizontal layer

letting

mz = −
√

1 − m2
x, (4.31)

and introducing

K =
ωmx

c∗
s

, (4.32)

t =
√

1

m2
x

− 1, (4.33)

lead to

v(x, z) = v(z)exp(−iKx), (4.34)

in which

v(z) = ASH exp(iKtz) + BSH exp(−iKtz). (4.35)

The variable K can be considered as the wave number.

Since the out-of-plane motion and in-plane motion are uncoupled, w,y is equal to 0.

Based on equations (4.2) and (4.3), it is derived in

τyz(x, z) = G∗v,z = iKtG∗[

ASH exp(iKtz) + BSH exp(−iKtz)
]

exp(−iKx). (4.36)
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4.1 generation of dynamic soil stiffness

Then the displacement and stress at the top surface of layer with z = 0 (subscript 1) are

governed by






v1

τyz1






=





1 1

iKtG∗ −iKtG∗











ASH exp(−iKx)

BSH exp(−iKx)






. (4.37)

The displacement and stress at the bottom surface of layer with z = D (subscript 2) are

governed by







v2

τyz2






=





exp(iKtD) exp(−iKtD)

iKtG∗ exp(iKtD) −iKtG∗ exp(−iKtD)











ASH exp(−iKx)

BSH exp(−iKx)






. (4.38)

Due to Euler’s formula, substituting (4.37) into (4.38) to eliminate ASH, BSH, and (−iKx)

gives






v2

τyz2






=





cosKtD (KtG∗)−1sinKtD

−KtG∗sinKtD cosKtD











v1

τyz1






. (4.39)

For the surface, the external load is

Q1 = −τyz1,

denoting the load at the bottom as

Q2 = τyz2,

and performing a transformation of equation (4.39) lead to







Q1

Q2






= Kout







v1

v2






, (4.40)

in which Kout is the dynamic stiffness matrix of out-of-plane motion in a single layer as

Kout =
KtG∗

sinKtD





cosKtD −1

−1 cosKtD



 . (4.41)

For half-space, which means D approaches to infinity, both Q2 and v2 are equal to 0. Kout

becomes

Kout =
[

iKtG∗]

. (4.42)
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4.1 generation of dynamic soil stiffness

Dynamic Stiffness Matrix of In-Plane Motion under Point Load

The displacements u and w, strains τxz and σ , and external forces R and P associated with

in-plane motion in a horizontal layer are shown in Figure 4.5.
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Figure 4.5 In-plane motion model for a horizontal layer

The in-plane motions are caused by P-wave and SH-wave. The displacements in x and z

direction are given by equations (4.27) and (4.29). The boundary conditions of these two

motions will vary with x due to the terms exp(−iωLxx/c∗
p ) and exp(−iωmxx/c∗

s ). In this

case, letting
Lx

c∗
p

=
mx

c∗
s

,

allows the analysis to concentrate on the variation with z.

Similar to out-of-plane case, a second wave with the same amplitude in x direction is

introduced. Then the in-plane motions, equations (4.27) and (4.29), become

u(x, z) = LxAP exp
[ iω

c∗
p

(−Lxx − Lzz)
]

+ LxBP exp
[ iω

c∗
p

(−Lxx + Lzz)
]

+ mzASV exp
[ iω

c∗
s

(−mxx − mzz)
]

+ mzBSV exp
[ iω

c∗
s

(−mxx + mzz)
]

, (4.43)
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4.1 generation of dynamic soil stiffness

w(x, z) = LzAP exp
[ iω

c∗
p

(−Lxx − Lzz)
]

+ LzBP exp
[ iω

c∗
p

(−Lxx + Lzz)
]

+ mxASV exp
[ iω

c∗
s

(−mxx − mzz)
]

+ mxBSV exp
[ iω

c∗
s

(−mxx + mzz)
]

, (4.44)

where BP and BSH are the amplitudes of waves propagating in the negative direction.

Since

L2
x + L2

z = 1,

letting

Lz = −
√

1 − L2
x, (4.45)

introducing

s =
√

1

m2
L

− 1, (4.46)

and substituting (4.32) and (4.33) lead to

u(x, z) = u(z) exp(−iKx), (4.47)

w(x, z) = w(z) exp(−iKx), (4.48)

in which

u(z) = Lx

[

AP exp(iKsz) + BP exp(−iKsz)
]

− mxt
[

ASV exp(iKtz) − BSV exp(−iKtz)
]

, (4.49)

w(z) = −Lxs
[

AP exp(iKsz)−BP exp(−iKsz)
]

−mx

[

ASV exp(iKtz)+BSV exp(−iKtz)
]

. (4.50)

Based on equations (4.2) and (4.3), it gives

σz(x, z) = λ∗(u,x +w,z ) + 2G∗w,z

= iKLx(1 − t2)G∗[

AP exp(iKsz) + BP exp(−iKsz)
]

exp(−iKx)

− 2iKmxtG∗[

ASV exp(iKtz) − BSV exp(−iKtz)
]

exp(−iKx), (4.51)

τxz(x, z) = G∗(u,z +w,x )

= i2KLxsG∗[

AP exp(iKsz) − BP exp(−iKsz)
]

exp(−iKx)

+ iKmx(1 − t2)G∗[

ASV exp(iKtz) + BSV exp(−iKtz)
]

exp(−iKx). (4.52)
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Then the displacements and stresses at the top surface of layer with z = 0 (subscript 1) are governed by




















u1

w1

σz1

τxz1





















=












Lx Lx −mxt mxt

−Lxs Lxs −mx −mx

iKLx(1 − t2)G∗ iKLx(1 − t2)G∗ −2iKmxtG∗ 2iKmxtG∗

i2KLxsG∗ −i2KLxsG∗ iKmx(1 − t2)G∗ iKmx(1 − t2)G∗
































AP exp(−iKx)

BP exp(−iKx)

ASV exp(−iKx)

BSV exp(−iKx)





















. (4.53)

The displacements and stresses at the bottom surface of layer with z = D (subscript 2) are governed by




















u2

w2

σz2

τxz2





















=












Lx exp(iKsD) Lx exp(−iKsD) −mxt exp(iKtD) mxt exp(−iKtD)

−Lxs exp(iKsD) Lxs exp(textIKsD) −mx exp(iKtD) −mx exp(−iKtD)

iKLx(1 − t2)G∗ exp(iKsD) iKLx(1 − t2)G∗ exp(−iKsD) −2iKmxtG∗ exp(iKtD) 2iKmxtG∗ exp(−iKtD)

i2KLxsG∗ exp(iKsD) −i2KLxsG∗ exp(−iKsD) iKmx(1 − t2)G∗ exp(iKtD) iKmx(1 − t2)G∗ exp(−iKtD)
































AP exp(−iKx)

BP exp(−iKx)

ASV exp(−iKx)

BSV exp(−iKx)





















.

(4.54)
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Based on Euler’s formula, substituting (4.53) into (4.54) to eliminate AP, BP, ASV, BSV, and −iKx leads to











































u2

w2

σz2

τxz2











































=
1

1 + t2


























2cosKsD+ i 1−t2

s sinKsD+ 1
KsG∗ sinKsD+ i

KG∗ cosKsD−

(t2 − 1)cosKtD i2tsinKtD t
KG∗ sinKtD i

KG∗ cosKtD

−i2ssinKsD− (t2 − 1)cosKsD+ i
KG∗ cosKsD− s

KG∗ sinKsD+

i 1−t2

t
sinKtD 2cosKtD i

KG∗ cosKtD 1
KtG∗ sinKtD

−4KG∗ssinKsD− i2KG∗(1 − t2)cos KsD− 2cosKsD+ −i2ssinKsD−

KG∗ (1−t2)2

t
sinKtD i2KG∗(1 − t2)cosKtD (t2 − 1)cos KtD i 1−t2

t
sinKtD

i2KG∗(1 − t2)cosKsD− −KG∗ (1−t2)2

s sinKsD− i 1−t2

s sinKsD+ (t2 − 1)cos KsD+

i2KG∗(1 − t2)cosKtD 4KG∗tsin KtD i2tsinKtD 2cosKtD




































































u1

w1

σz1

τxz1











































.

(4.55)

At the surface, the external loads are

P1 = −τxz1, R1 = −σz1,

denoting the loads at the bottom as

P2 = τxz2, R2 = σz2,

and performing a transformation of equation (4.55) result in




















P1

iR1

P2

iR2





















= Kin





















u1

iw1

u2

iw2





















, (4.56)
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in which i is added before R1, R2, w1, and w2 to keep Kin symmetric.

Kin is the dynamic stiffness matrix of in-plane motion in a single layer expressed as

Kin =
(1 + t2KG∗)

D
×


























1
t
cosKsDsinKtD+ i 3−t2

1+t2 (1 − cosKsDcos KtD)+ −ssinKsD− icosKsD−

ssinKsDcosKtD i 1+2s2t2−t2

st(1+t2)
sin KsDsinKtD 1

t
sinKtD icosKtD

−i 3−t2

1+t2 (1 − cosKsDcos KtD)− 1
s sinKsDcosKtD+ icosKsD− −1

s sinKsD−

i 1+2s2t2−t2

st(1+t2)
sin KsDsinKtD tcosKsDsinKtD icosKtD tsinKtD

−ssinKsD− −icosKsD+ 1
t
cosKsDsinKtD+ −3−t2

1+t2 (1 − cosKsDcosKtD)−
1
t
sinKtD icosKtD ssinKsDcosKtD i 1+2s2t2−it2

st(1+t2)
sinKsDsinKtD

−icosKsD+ −1
s sinKsD− i 3−t2

1+t2 (1 − cosKsDcos KtD)+ 1
s sinKsDcosKtD+

icosKtD tsinKtD i 1+2s2t2−t2

st(1+t2)
sin KsDsinKtD +tcosKsDsinKtD


























,

(4.57)

where

D = 2(1 − cosKsDcosKtD) + (st +
1

st
sinKsDsinKtD).

For half-space, which means D approaches infinity, P2, R2, u2 and w2 are equal to 0. Kin becomes

Kin =
KG∗

1 + st





is(1 + t2) 1 + 2st − t2

1 + 2st − t2 it(1 + t2)



 . (4.58)
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4.1 generation of dynamic soil stiffness

4.1.4 Formulation of Flexibility Function

A site with n horizontal layers on a half-space is considered. Three dimensional forces with

frequency ω are applied at the origin as shown in Figure 4.6.

Soil Layer 1

Soil Surface

Soil Layer i

Soil Layer n

y

x

z

u0

w0

v0

P0

R0

Q0

un

wn

vn

ui

wi

vi

Bedrock

Figure 4.6 Layered half-space under three-dimensional forces

Flexibility Function of Out-of-Plane Motion

According to equation (4.40), the equilibrium equations are expressed as






Q I
1

Q I
2






= K I

out







v I
1

v I
2






, (4.59)

where I is the number of layer, and varies from 1 to n − 1. The subscripts 1 and 2 are

denoted the top and bottom of the layer, respectively. When I is equal to n, i.e., the bottom

half-space, the equilibrium equation is

Qn
1 = Kn

out
vn

1 . (4.60)

Since all the forces, excluding the external forces applied at the surface, are internal

forces, it means the forces at any interface follow

Q I
2 + Q I+1

1 = 0.
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4.1 generation of dynamic soil stiffness

Then the total equilibrium equations for out-of-plane motion is obtained by assembling

the equilibrium equations of each layer as

Lout = Sout1out, (4.61)

where Lout and 1out are the n×1 vectors of external loads and displacements in y direction,

respectively, given as

Lout =
{

Q1, Q2, · · · , Qn

}T =
{

Q1, 0, · · · , 0
}T

1out =
{

v1, v2, · · · , vn

}T
.

Sout is a n×n matrix and assembled by K I

out
and Kn

out
. For two adjacent layers, K I

out
are

partly overlapped.

Rewriting equation (4.61) as







Q1

Q2∼n






=





Sout,1,1 Sout,1,2∼n

Sout,2∼n,1 Sout,2∼n,2∼n











v1

v2∼n







to eliminate v2∼n gives

Q1 = Sout,1,1 · v1 + Sout,1,2∼n · S−1
out,2∼n,2∼n

·
(

Q2∼n − Sout,2∼n,1 · v1

)

=
(

Sout,1,1 − Sout,1,2∼n · S−1
out,2∼n,2∼n

· Sout,2∼n,1

)

· v1. (4.62)

Based on equation (4.62), one obtains

v1 = FoutQ1, (4.63)

in which Fout is the flexibility function of out-of-plane motion and it is equal to

Fout = Fvv =
(

Sout,1,1 − Sout,1,2∼nS−1
out,2∼n,2∼n

Sout,2∼n,1

)−1
. (4.64)
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4.1 generation of dynamic soil stiffness

Flexibility Function of In-Plane Motion

According to equation (4.56), the equilibrium equations fir in-plane motion are expressed

as 



















P I
1

R I
1

P I
2

R I
2





















= K I
in





















u I
1

w I
1

u I
2

w I
2





















. (4.65)

When I is equal to n, i.e., the half-space case, the equilibrium equations become






Pn
1

Rn
1






= Kn

in







un
1

wn
1






. (4.66)

Since all the forces, except the external forces applied at the surface, are internal forces,

it means the forces at any interface follow

P I
2 + P I+1

1 = 0,

R I
2 + R I+1

1 = 0.

Then the total equilibrium equations for in-plane case is obtained by assembling the

equilibrium equations of each layer as

Lin = Sin1in, (4.67)

where Lin and 1in are the 2n×1 vectors of external loads and displacements in x and z

directions, respectively, as

Lin =
{

P1, R1, P2, R2, · · · , Pn, Rn

}T =
{

P1, R1, 0, 0, · · · , 0, 0
}T

,

1in =
{

u1, w1, u2, w2, · · · , un, wn

}T
.

Sin is a 2n×2n matrix and assembled by K I
in and Kn

in. For two adjacent layers, K I
in are

partly overlapped.

Rewriting equation (4.67) as






Lin,1∼2

Lin,3∼2n






=





Sin1∼2,1∼2 Sin,1∼2,3∼2n

Sin,3∼2n,1∼2 Sin,3∼2n,3∼2n











1in,1∼2

1in,3∼2n






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4.1 generation of dynamic soil stiffness

to eliminate 1in,3∼2n gives

Lin,1∼2 = Sin,1∼2,1∼2 · 1in,1∼2

+ Sin,1∼2,3∼2n · S−1
in,3∼2n,3∼2n

·
(

Lin,3∼2n − Sin,3∼2n,1∼2 · 1in,1∼2

)

=
(

Sin,1∼2,1∼2 − Sin,1∼2,3∼2n · S−1
in,3∼2n,3∼2n

· Sin,3∼2n,1∼2

)

· 1in,1∼2. (4.68)

Based on equation (4.68), it is derived in






u1

w1






= Fin







P1

R1






, (4.69)

in which Fin is the flexibility function of in-plane motion and it is equal to

Fin =





Fuu Fuw

Fwu Fww



 =
(

Sin,1∼2,1∼2 − Sin,1∼2,3∼2nS−1
in,3∼2n,3∼2n

Sin,3∼2n,1∼2

)−1
. (4.70)

4.1.5 Formulation of Green’s Influence Function

Based on the flexibility function, Green’s influence function is formulated to get the dis-

placement of any points when a small circular disk is loaded (Wolf, 1985). A circular disk

with radius of a under uniformly distributed horizontal loads, p0 and q0, and vertical load

r0 is studied as shown in Figure 4.7.

In cylindrical coordinates, the load can be expressed as Fourier series as

p(r, θ , z, n) =
∑

n

ps(r, θ , z)cos θ +
∑

n

pa(r, θ , z)sin θ , (4.71)

where r, θ , and z are radial distance, azimuth, and height. n is the Fourier series number.

ps and pa are the symmetric and anti-symmetric amplitude in Fourier series.

The load and displacement can also be expanded in frequency domain with wave number

K by Bessel transform pair

{

F(K, n)
}

= an

∫ ∞

r=0
rCn(Kr)

∫ π

θ=0
Dnθ

{

F(r, θ)
}

dθdr, (4.72)

{

F(r, θ)
}

=
∞
∑

r=0

Dnθ

∫ ∞

K=0
KCn(Kr)

{

F(K, n)
}

dK, (4.73)
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y

x

z

θ

p
0

r
0

q
0

r

u(r,θ)

w(r,θ)

v(r,θ)

a

Figure 4.7 Disk under three-dimensional uniform load

where an is equal to 1/2π (n = 0), or 1/π (n 6= 0).

Cn(Kr) is given by

Cn(Kr) =








1
K

Jn(Kr),r
n
Kr Jn(Kr) 0

n
Kr Jn(Kr) 1

K
Jn(Kr),r 0

0 0 −Jn(Kr)








, (4.74)

in which Jn(Kr) is the Bessel function of order n of the first kind. The Bessel function holds

the following features:

[

xnJn(x)
]

,x = xnJn−1(x) or

∫

xnJn−1(x)dx = xnJn(x) + constant, (4.75)

[

x−nJn(x)
]

,x = −x−nJn+1(x), (4.76)

[

Jn(x)
]

,x = Jn−1(x) −
n

x
Jn(x) =

n

x
Jn(x) − Jn+1(x). (4.77)

Dnθ , for symmetric case, is equal to

Dnθ =








cos nθ 0 0

0 −sin nθ 0

0 0 cos nθ








, (4.78)
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while, for anti-symmetric case, it is

Dnθ =








sin nθ 0 0

0 cos nθ 0

0 0 sin nθ








. (4.79)

Green’s Influence Function Under Vertical Load

The vertical uniform load r0 is considered at first as shown in Figure 4.8.

y

x

z

θ
r

a

u(r,θ)

w(r,θ)

r
0

Figure 4.8 Disk under vertical uniform load

Based on equation (4.71), pz can be considered as symmetric load with Fourier index of

0 as

pz(r, θ) = r0.

According to equation (4.72), pz can be transformed in k domain as

pz(K) =
1

2π

∫ a

r=0
r

[

− J0(Kr)
]

∫ 2π

0
cos θr0dθdr = −r0

∫ a

r=0
rJ0(Kr)dr. (4.80)

Given the identity of Bessel function as shown in equation (4.75), equation (4.80) can be

rewritten as

pz(K) = −
a

K
J1(Ka)r0. (4.81)
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Then the displacements in racial, u, and vertical directions, w, in frequency domain are

given based on equation (4.73) as






u(r, θ)

w(r, θ)






=





cos θ 0

0 cos θ





∫ ∞

K=0
K





J0(Kr),r
r 0

0 −J0(Kr)











u(K)

w(K)






dK. (4.82)

Based on equations (4.63) and (4.69), one obtains






u(K)

w(K)






=







Fuw(K)

Fww(K)






pz(K). (4.83)

Substituting equations (4.83) and (4.81) into equation (4.82), and applying the identity

of Bessel function as shown in equation (4.76), lead to






u(r, θ)

w(r, θ)






=







Guw

Gww






r0, (4.84)

where Guw and Gww are Green’s function in radial and vertical directions under the vertical

load as 





Guw

Gww






= a

∫ ∞

K=0
J1(Ka)







Fuw(K)J1(Kr)

Fww(K)J0(Kr)






dK, (4.85)

Green’s Influence Function Under Horizontal Load

Then the horizontal uniform load p0 is studied as shown in Figure 4.9.

Based on equation (4.71), px and py can be considered as anti-symmetric load with

Fourier index of 1 as

px(r, θ) = p0 cos θ , py(r, θ) = −p0 sin θ.

According to equation (4.72), it is derived in k domain as







px(K)

py(K)






=

1

π

∫ a

r=0
r





1
K

J1(Kr),r
1
Kr J1(Kr)

1
Kr J1(Kr) 1

K
J1(Kr),r



 dr

∫ 2π

0





cos θ 0

0 −sin θ











p0 cos θ

−p0 sin θ






dθ

=
p0

K

∫ a

r=0





rJ1(Kr),r +J1(Kr)

rJ1(Kr),r +J1(Kr)



 dr. (4.86)

79



4.1 generation of dynamic soil stiffness

y
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θ
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u(r,θ)

w(r,θ)
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Figure 4.9 Disk under horizontal uniform load

Based on identities of Bessel functions as shown in equation (4.75), equation (4.86) can

be rewritten as

px(K) = py(K) =
p0

K

∫ a

r=0

(

rJ1(Kr),r +J1(Kr)
)

dr

=
p0

K

(

∫ a

r=0
KrJ0(Kr)dr +

∫ a

r=0
J1(Kr)dr

)

=
p0a

K
J1(Ka). (4.87)

Then the displacements in racial, u, and vertical directions, w, are given in frequency

domain by equation (4.73) as













u(r, θ)

v(r, θ)

w(r, θ)













=








cos θ 0 0

0 −sin θ 0

0 0 cos θ








∫ ∞

K=0
K








1
K

J1(Kr),r
1
Kr J1(Kr) 0

n
Kr J1(Kr) 1

K
J1(Kr),r 0

0 0 −J1(Kr)




















u(K)

v(K)

w(K)













dK.

(4.88)

Through equations (4.63) and (4.69), one obtains













u(K)

v(K)

w(K)













=








Fuu(K) 0

0 Fvv(K)

Fwu(K) 0














px(K)

py(K)






. (4.89)
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Substituting equations (4.87) and (4.89) into equation (4.88), and applying the identities

of Bessel functions as equations (4.76) and (4.77) result in













u(r, θ)

v(r, θ)

w(r, θ)













=













Guu

Gvu

Gwu













p0, (4.90)

where Guu, Gvu, and Gwu are Green’s function in radial, angular, and vertical directions

under horizontal load in x direction as













Guu

Gvu

Gwu













= a








cos θ 0 0

0 −sin θ 0

0 0 cos θ








∫ ∞

K=0
J1(Ka)








1
2 J0(Kr) − 1

2 J2(Kr) 0 1
2 J0(Kr) + 1

2 J2(Kr) 0

1
2 J0(Kr) + 1

2 J2(Kr) 0 1
2 J0(Kr) − 1

2 J2(Kr) 0

0 0 −J1(Kr)




















Fuu(K)

Fvv(K)

Fwu(K)













dK.

(4.91)

For the horizontal load in y direction q0, it can be considered as an anti-symmetric load

in cylindric coordinate. Dnθ is applied as (4.79) rather than (4.78). So the Green’s influence

function is expressed as













Guv

Gvv

Gwv













= a








sin θ 0 0

0 cos θ 0

0 0 sin θ








∫ ∞

K=0
J1(Ka)








1
2 J0(Kr) − 1

2 J2(Kr) 1
2 J0(Kr) + 1

2 J2(Kr) 0

1
2 J0(Kr) + 1

2 J2(Kr) 1
2 J0(Kr) − 1

2 J2(Kr) 0

0 0 −J1(Kr)




















Fuu(K)

Fvv(K)

Fwu(K)













dK,

(4.92)
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Green’s Influence Function Under Three Dimensional Loads

When three dimensional loads, i.e., p0, q0, and r0, are considered simultaneously, the dis-

placements at point I in cylindrical coordinate are












uI(r, θ)

vI(r, θ)

wI(r, θ)













= Gc
I













pI

qI

rI













, (4.93)

where

Gc
I =








Guu,I Guv,I Guw,I

Gvu,I Guv,I 0

Gwu,I Gwv,I Gww,I








. (4.94)

Then the displacements in cartesian coordinate, δx,I, δy,I, and δx,I, can be expressed as













δx,I(x, y)

δy,I(x, y)

δz,I(x, y)













= TI













uI(r, θ)

vI(r, θ)

wI(r, θ)













= TI Gc
I













pI

qI

rI













, (4.95)

where

TI =








cos θI −sin θI 0

sin θI cos θI 0

0 0 1








, (4.96)

in which θ I is the coordinate of point I in cylindric coordinate with the origin of the disk

center.

So the Green’s influence function in cartesian coordinate is given by

GI = TIG
c
I . (4.97)

4.1.6 Total Dynamic Soil Stiffness by Boundary Element Method

Dynamic Stiffness for Rigid Foundation

A rigid foundation can be simplified as one node with 6 degrees of freedom, i.e., three trans-

lational components and three rotational components. A rigid foundation with arbitrary
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shape supported by a horizontally layered half-space are shown in Figure 4.10. The foun-

dation is discretized into n uniformly distributed subdisks with the radius a. The total area

of subdisks is the same as the original foundation. a is small enough that the displacement

within each subdisk can be considered the same. Since 6 points in a wavelength are needed

to address each wave (Wolf, 1985), a should be no more than cs/6Fmax, in which Fmax is the

maximum frequency under consideration.

Soil Layer 1

Soil Surface Foundation

Soil Layer i

Soil Layer n

y

x

z

P
  
eiωt

z

P
  
eiωt

x

P
  
eiωt

y

M
  
eiωt

x

M
  
eiωt

y

Loaded foundation

Discretizaton of 

arbitrary foundation

M
  
eiωt

z

Bedrock

Figure 4.10 Foundation-site model and discretization of foundation

The six dimensional external loads Pr applied on the foundation and the displacements

1r caused by the load vector are

Pr =
{

Fx, Fy, Fz, Mx, My, Mz

}T
,

1r =
{

1x, 1y, 1z, θx, θy, θz

}T
,

where Fx, Fy, and Fz are translational loads in x, y, and z directions, respectively, while

Mx, My, and Mz are moments in three directions. 1x, 1y, and 1z are translational

displacements in x, y, and z directions, respectively, and θx, θy, and θz are rotations in

three directions.
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Then the Ith subdisk is considered, where I ranges from 1 to n. When the three dimen-

sional loads px,I, py,I, and pz,I are applied on this disk, the displacements of the jth disk

are 











δx,jI

δy,jI

δz,jI













= GjI













px,I

py,I

pz,I













, (4.98)

where is GjI a 3×3 matrix given by equation (4.97).

By loading the disks one by one, the total displacements of each disk can be obtained as

δ = Gp, (4.99)

where δ and p are the 3n×1 displacement vector and the 3n×1 load vector of all nodes,

respectively, as

δ =
{

δx,1, δy,1, δz,1, · · · , δx,n, δy,n, δz,n

}T
,

p =
{

px,1, py,1, pz,1, · · · , px,n, py,n, pz,n

}T
,

and G are the 3n×3n total Green’s function matrix as

G =












G11 G12 · · · G1n

G21 G22 · · · G2n

...
...

. . .
...

Gn1 Gn2 · · · Gnn












.

The relationship of 1r and δ is

δ = Nr1r, (4.100)

where Nr is a 3n×6 matrix given by

Nr =
{

N1, N2, · · · , Nn

}T
,

in which

NI =








1 0 0 0 0 −yI

0 1 0 0 0 xI

0 0 1 yI xI 0








,
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xI and yI are the coordinates of Ith disk center.

For the external loads, one obtains

Pr = NT
r p. (4.101)

Substituting equations (4.99) and (4.100) into equation (4.101) leads to

Pr = NT
r G−1δ3n×1 = NT

r G−1Nr1r,

which can be written as

Pr = Kr1r, (4.102)

where Kr is the 6×6 stiffness matrix of the soil base as

Kr = NT
r G−1Nr. (4.103)

Kr is determined by the frequency of excitation forces, the geometry of the foundation,

soil properties, and thickness of each layer.

Dynamic Stiffness for Flexible Foundation

A flexible foundation, e.g., a group of independent foundations or a foundation consisting

of more than one member, can be simplified as m nodes with 6m degrees of freedom. Each

node represents a rigid part or member. The whole flexible foundation is then discretized

into n uniformly distributed subdisks with the radius a. The total area of subdisks is the

same as the original foundation.

The 6m×1 external loads vector PF applied on the foundation and the 6m×1 displace-

ments vector 1F caused by the load vector are

PF =
{

P1, P2, · · · , Pm
}T

,

1F =
{

11, 12, · · · , 1m
}T

,

where

P j =
{

F
j
x, F

j
y, F

j
z, M

j
x, M

j
y, M

j
z

}T
,

1j =
{

1
j
x, 1

j
y, 1

j
z, θ

j
x, θ

j
y , θ

j
z

}T
,
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the superscript j is the foundation node number, F
j
x, F

j
y, and F

j
z are translational loads in

x, y, and z directions on jth foundation member, respectively, while M
j
x, M

j
y, and M

j
z are

moments in three directions. 1
j
x, 1

j
y, and 1

j
z are translational displacements in x, y, and z

directions on jth foundation member, respectively, and θ
j

x, θ
j

y , and θ
j

z are rotations in three

directions.

Similar to the rigid foundation, the relationship of 1F and δ is

δ = NF 1F, (4.104)

where NF is a 3n×6m matrix.

When the foundation is considered as flexible and represented by m foundation nodes, NF

can be obtained from the stiffness and damping matrices of foundations. If external loads

Peiωt are applied on m foundation nodes, the displacement are governed by





Mm 0

0 0











üm(t)

ün(t)






+





Cmm Cmn

Cnm Cnn











u̇m(t)

u̇n(t)






+





Kmm Kmn

Knm Knn











um(t)

un(t)






=





Peiωt

0



 ,

(4.105)

where M, C, K are, respectively, the mass, damping, and stiffness matrices. They can be

extracted from finite element model. The subscripts m and n represent foundation nodes

and subdisks nodes, respectively.

Introducing um(t)=1eiωt and un(t)=δeiωt leads the second block row of Equation

(4.105) to

(−iωCnm + Knm)1 + (−iωCnn + Knn)δ = 0, (4.106)

which can be rewritten as

δ = NF1, (4.107)

where

NF = −(−iωCnn + Knn)
−1(−iωCnm + Knm). (4.108)
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When the foundation consists of m rigid components, e.g., a discrete foundation system,

NF is given by

NF =





















N11 N12 · · · N1m

N21 N22 · · · N2m

...
...

. . .
...

Nn1 N2n · · · Nnm





















,

in which, when the Ith subdisk is within the jth foundation member,

NIj =








1 0 0 0 0 −(yI − yj)

0 1 0 0 0 xI − xj

0 0 1 yI − yj xI − xj 0








.

Otherwise NIj is a zero matrix if the Ith subdisk is not under the jth foundation component.

xj and yj are the coordinates of jth foundation component center.

Considering the external loads, one obtains

PF = NT
F p. (4.109)

Substituting equations (4.99) and (4.104) into equation (4.109) leads to

PF = NT
F G−1δ3n×1 = NT

F G−1NF1F,

which can be written as

PF = KF1F, (4.110)

where Kr is the frequency-dependent 6m×6m stiffness matrix of the soil base under the

flexible foundation as

KF = NT
F G−1NF. (4.111)

4.1.7 Procedures of Generating Frequency-Dependant Complex
Soil Stiffness

The derivation of frequency-dependent dynamic soil stiffness is illustrated in Figure 4.11.

For a horizontally layered soil site, a procedure for generating frequency-dependant

dynamic soil stiffness is summarized as follows:
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Boundary conditions

Wave Propagation Function

Flexibility Function

Bessel transform

Green’s In!uence Function

Frequency-dependent 

Dynamic Soil Sti"ness Matrix

BEM

Figure 4.11 Procedures to generate frequency-dependent soil stiffness

1. Given the soil properties of each layer, the dynamic stiffness matrix is established for

each layer under point loads.

2. The dynamic stiffness matrix is assembled to calculate the flexibility function.

3. The foundation is discretized into small subdisks, i.e., circular elements. Through

considering the loaded subdisk one by one, the Green’s Function is obtained based on

the flexibility function.

4. Boundary element method is applied to generate frequency-dependent dynamic soil

stiffness.

4.2 Numerical Examples of the Generation of Dynamic
Soil Stiffness

In order to verify the proposed method, four numerical examples are performed. The

resultant dynamic soil stiffness are compared.
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4.2.1 A Rigid Square Foundation Supported by a Layer on
Half-space

The dynamic soil stiffness of a rigid square foundation with side length of L is considered on

a layer with the thickness of L resting on a half-space. The Poisson’s ratio for the both layers

is 0.33, and the damping ratios are equal to 0.05 for the top layer and 0.03 for the half-space.

The ratios of the shear-wave velocities and densities are cs,2/cs,1 = 1.25 and ρ2/ρ1 = 1.13,

in which the subscripts 1 and 2 denote the top layer and half-space, respectively. In this

example, the square foundation is divided into 256 subdisks with the diameter of L/16. The

foundation-soil model, and the discretization of foundation are shown in Figure 4.12.
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Discretizaton of foundation

L

Foundation and soil site

L

16
×16=L

L 16
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Figure 4.12 Square foundation-site model and discretization of foundation

The results are compared to those calculated by Wong and Luco (1985). A dimensionless

frequency ao is introduced as

ao =
ωR

cs
, (4.112)

where R is the radius or equivalent radius of foundations, and the dynamic stiffness can be

expressed as

K = Ks + iaoCs,
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Figure 4.13 Dynamic soil stiffness of square foundation on a layer and halfspace
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4.2 numerical examples of the generation of dynamic soil stiffness

where Ks is the stiffness coefficient, i.e., real part, and Cs is damping coefficient, i.e.,

imaginary part.

In Wong’s case, the layer and half-space are assumed to be elastic, homogeneous, and

isotropic.

The dynamic soil stiffness are shown in Figures 4.13. The comparison of results show

that the dynamic soil stiffness by proposed method agrees perfectly with Wong’s results.

4.2.2 A Rigid Circular Foundation Supported by a Layer on
Half-space

The dynamic stiffness of a rigid circular foundation with radius of R is considered on a layer

with the thickness of R resting on a half-space. For the both layers, the Poisson’s ratio is

0.25, and the damping ratio are equal to 0.001. The ratios of the shear-wave velocities and

densities are cs,1/cs,2 = 0.8 and ρ1/ρ2 = 0.85, in which the subscripts 1 and 2 denote the

top layer and half-space, respectively. In this example, the circular foundation is divided

into 200 subdisks with the radius of R/8. The foundation-soil model, and the discretization

of foundation are shown in Figure 4.14.
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Figure 4.14 Circular foundation-site model and discretization of foundation
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Figure 4.15 Dynamic soil stiffness of circular foundation on a layer and halfspace

The decomposed dynamic stiffness based on the dimensionless frequency ao are intro-

duced to illustrate the result as

K = Ko(K + iaoc), (4.113)

where K and c are the dimensionless stiffness and damping coefficients, respectively. Ko is

equal to a coefficient β multiplies the static-stiffness, and the static-stiffness (Wolf, 1985)
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4.2 numerical examples of the generation of dynamic soil stiffness

given as

KH =
8GR

2 − ν
, Kv =

4GR

1 − ν
, KφH =

8GR3

3(1 − ν)
, Kφv =

16GR3

3
,

where KH, Kv, KφH, and Kφv are horizontal, vertical, rocking, and torsional stiffness,

respectively.

The results are compared to those calculated by Luco (1974). In Luco’s calculation, the

layer and half-space are assumed to be elastic, homogeneous, and isotropic. The contact

between the foundation and the underlying site is considered to be relaxed, i.e., no friction

exits between the foundation and the soil for vertical and rocking vibrations, while for

horizontal vibrations the normal component of stress at the contact is assumed to be zero.

Based on the boundary conditions, the dynamic stiffness is obtained by a set of Fredholm

integral equations.

The resultant soil stiffness associated with Luco’s are shown in Figures 4.2.2. Excellent

agreement with Luco’s results shows the good accuracy of the proposed method.

4.2.3 A Rigid Circular Foundation Supported by Half-space and a
Layer on Half-space

The dynamic stiffness of a rigid circular foundation with radius of R is considered in two

sites. In the first case, the foundation is supported by a homogeneous half-space. The

Poisson’s ratio is ν =0.33. For the second case, a layer with the thickness of R rests on a

half-space. For the both layers, the Poisson’s ratio is 0.33, the damping ratio is equal to

0.05, and the densities are the same. The ratio of the shear-wave velocities is cs,2/cs,1 = 2, in

which the subscripts 1 and 2 denote the top layer and half-space, respectively.

In this example, the circular foundation is divided into 200 subdisks, which is the same

as the previous circular foundation as shown in Figure 4.14.

The results are compared to those calculated by Wolf (1985) shown in Figures 4.16 and

4.17. The coefficient βH, βv, βφH, and βφv are 1.01, 1.02, 1.03, and 1.00 for half-space case,

respectively, while they are 1.32, 1.82, 1.19, and 1.04 for a layer on the half-space. The

comparison of results show that the dynamic stiffness agrees well with Wolf ’s results.
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Figure 4.16 Dynamic soil stiffness of circular foundation on halfspace
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Figure 4.17 Dynamic soil stiffness of circular foundation on a layer and halfspace
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4.3 Numerical Examples of the Generation of FRS

Floor response spectra (FRS) of a typical reactor building in nuclear power plants is gen-

erated based on the dynamic soil stiffness given by the proposed method and ACS SASSI,

respectively, to examine the proposed method in the application.

At first, one set of soil stiffness is calculated by the proposed method, and the other set

of soil stiffness is obtained from ACS SASSI. Then foundation level input response spectra

(FLIRS) are developed based on the two sets of soil stiffness. Finally, FRS are generated

by the direct method. The two sets of soil stiffness, FLIRS, and FRS are compared and

discussed.

The model information of the selected reactor building, foundation input response spec-

tra, and the soil properties are given in 3.2.

Computing Soil Stiffness

According to the proposed method, the soil stiffness is calculated and shown in Figure 4.18,

along with the ACS SASSI soil stiffness. It can be observed that the difference of horizontal

and vertical soil stiffness is small, while the difference of rocking and torsional soil stiffness

is significant.

For a half-space case, the soil stiffness at low frequency domain is approximately equal

to the static frequency-independent soil stiffness (Wolf, 1985; Luco, 1974). If vertical static

uniform load qs is applied at the foundation placed on the soil surface, the additional stress

at the bottoms of the top 3 layers are 0.14qs, 0.039qs, and 0.026qs, respectively, which

indicates that the top 3 layers play the dominant role in the determination of static soil

stiffness. Since the Vs of top 3 layers are 2100 m/s, 2150 m/s, and 2200 m/s, respectively, the

soil stiffness in low frequency domain is reasonable to be larger than half-space with Vs of

2100 m/s, and smaller than half-space with Vs of 2200 m/s.

The static stiffness of halfspace is calculated by equations in ASCE (2000). The rocking

and torsional soil stiffness at 0.2 Hz and static values are given in Table 4.1. It can be seen

that the rocking and torsional soil stiffness by the proposed method at 0.2 Hz are between

the values of two half-space cases, while ACS SASSI results are noticeably larger than half-
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Figure 4.18 Dynamic soil stiffness of reactor building

space case with Vs of 2200 m/s. It means the rocking and torsional soil stiffness are too large

in ACS SASSI, which will influence the analysis of SSI effect.

Table 4.1 Rocking and torsional stiffness in reactor building case

Item
Rocking Stiffness Torsional Stiffness

(×1014 N ·m/rad) (×1014 N ·m/rad)

Half-space (Vs = 2100m/s) 3.39 4.75

Half-space (Vs = 2200m/s) 3.72 5.21

This study (at 0.2 Hz) 3.50 4.80

SASSI (at 0.2 Hz) 4.46 6.93

Developing Foundation Level Input Response Spectra

The translational component of horizontal transfer matrix are shown in Figure 4.19. It

represents the contribution of translational motions in the determination of FLIRS. The

main difference of two sets ranges from 10 Hz to 40 Hz.
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The horizontal transfer function T are shown in Figure 4.20. This transfer function

represents the relationship from FIRS to FLIRS. The shape and values of two sets transfer

matrix are almost the same. It consists of translational components and rotational com-

ponents. Compared to the noticeable difference of peak values at 4.1 Hz, the difference

resulting from the translation component between 10 Hz and 40 Hz are not significant.

Hence, this means the main difference is caused by the rotational components influenced

by the rotational and torsional stiffness.

FLIRS are then developed as shown in Figures 4.21 and 4.22. It shows that the difference

of horizontal FLIRS at around 4 Hz and vertical FLIRS at around 12 Hz can not be neglected,

which is consistent with the trend of transfer function. Due to the accurate rocking and

torsional soil stiffness, the SSI effect is addressed reasonably in this study. Apart from that,

the two sets of FLIRS match each other well.

Generating Floor Response Spectra

FRS at nodes 4 and 5 are generated by the direct method as shown in Figures 4.23 and 4.24.

The two sets of FRS agree well with each other except the first peak at around 4 Hz. It

results from the difference of FLIRS, which represents the importance of accurate dynamic

soil stiffness. For FLIRS in the other frequency domain, the relative error does not exceed

1.2%.

4.4 Summary

In this chapter, a semi-analytical method is developed for accurate and efficient generation

of dynamic soil stiffness. Depending on the soil properties, the flexibility function on the

ground surface is derived analytically from wave propagation function. Then the Green’s

influence function is formulated under a three-dimensional loads according to Fourier

series and Bessel transform pair. Based on the discretized foundation, the dynamic stiffness

matrix of the whole soil base is established accurately and efficiently.

Numerical examples are presented to validate the proposed method. The dynamic soil

stiffness is calculated for foundations with different shapes, i.e., circular foundation and

square foundation, supported by layered halfspace. The results agree well with the former
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results. It shows that dynamic soil stiffness varies significantly with changing frequencies,

which can not be neglected in the SSI analysis. In the proposed method, the dynamic

response of soil base can be addressed accurately.

The generation of FRS is performed with the dynamic soil stiffness given by proposed

method and ACS SASSI. The result shows that the proposed method can give accurate

dynamic soil stiffness, by which the SSI effect is addressed and the resultant FRS can be

generated.

The proposed method has three following features:

❧ The flexibility function and the Green’s influence function are derived rigorously, and

then the total dynamic stiffness matrix of foundations is obtained by BEM, which can

give an accurate result.

❧ Each soil layer with any thickness can be treated as one element and the flexibility

function is formulated analytically. There is no need to discretize soil layers into

sub-layers. As a result, it can quickly generate the flexibility function and Green’s

influence function.

❧ The application of BEM enables to calculate the dynamic soil stiffness of rigid or

flexible foundations with arbitrary shapes and any number of members.

In summary, the proposed method is accurate and efficient with the analytical formula-

tion of flexibility function and Green’s influence function, and the application of BEM. It

eliminates the gap between site response analysis and SSI analysis, providing a basis for the

analysis of SSI effect with flexible foundations. According to its efficiency, it is convenient

to perform the fully probabilistic uncertainty analysis in the generation of FRS.
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5C H A P T E R

Analysis of Uncertainty in the Genera-
tion of FRS

In the generation of floor response spectra (FRS), both the earthquake ground motion and

the soil properties are not determinant. They are described by probabilistic values, and

needs to be considered (USNRS, 1978; ASCE, 1998; EUR, 2002). In this chapter, a fully

probabilistic method is proposed to address the uncertainty during the generation of FRS.

For a halfspace layered site, characterized by thickness, density (ρ), and shear-wave velocity

(Vs ), etc. in each layer, and Probabilistic Seismic Hazard Analysis (PSHA) at this site, the

uniform hazard FRS is obtained with a specified Return Period (RP).

Based on a given site information, the site profiles and properties are developed by

Monte-Carlo simulation to account for soil uncertainties. Different levels of ground mo-

tions are taken as the seismic input to capture the uncertainty in earthquake. Through the

site response analysis and Soil-Structure Interaction (SSI) analysis, the Foundation Input

11 Ground
Motions

11n FLIRS
Uniform
Hazard
FLIRS

Uniform
Hazard

FRS

n Site Pro!les 11n FIRS

11n Strain-
Compatible
Soil Pro!les

FRSSite ResponseUncertainty  SSI

Figure 5.1 Logic Tree of Uncertainty Analysis
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5.1 generation of fully probabilistic frs

Response Spectra (FIRS) and Foundation Level Input Response Spectra (FLIRS) are gen-

erated. The FLIRS and input ground motions are compared to calculate the site-structure

specific amplification functions which represent both the site response effect and SSI effect.

Finally, a set of uniform hazard FLIRS and floor response spectra (FRS) with a specific

RP are obtained. The logic tree of the proposed method are shown in Figure 5.1. The

uncertainty in the earthquake excitation and soil properties are represented by 11 ground

motions and n random geotechnical models, respectively. So there are totally 11×n = 11n

analyses. After site response analysis and SSI analysis, the uncertainty are propagated into

the 11n FLIRS which is used to develop site and structure specific amplification factors.

Finally, a uniform hazard FRS is generated.

5.1 Generation of Fully Probabilistic FRS

5.1.1 Developing Input Ground Motions

The Acceleration Response Spectra (ARS) and Fourier Amplitude Spectra (FAS) of the input

ground motion are obtained for given Peak Ground Acceleration (PGA) by the method

in Chapter 2. Since the levels of ground motions influence the site response analysis

significantly, at least eleven response spectra with PGA ranging from 0.01g to 1.5g are

taken as input ground motions to address variation of earthquakes (EPRI, 2013).

5.1.2 Generating Geotechnical Models

Two kinds of uncertainty, epistemic uncertainty and aleatory uncertainty, are considered in

the geotechnical model in current application. Epistemic uncertainty can be addressed by

multiple sets of soil properties, and aleatory uncertainty can be accounted by randomizing

(at least 30 times) parameters of soil properties. In this study, the uncertainty in layer

thickness and depth to bedrock, and dynamic material properties are considered by the

traditional approach, while a new combination of Vs in different layers is proposed to treat

the uncertainty in Vs .
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Uncertainty in Layer Thickness and Depth to Bedrock

Assumptions of the probability distributions (e.g., normal, uniform, or lognormal) of layer

thickness and depth to bedrock are based on measured information, such as data in bore-

hole logs. For example, when both properties follow normal distributions, the random

values for the Ith layer thickness and depth to bedrock can be determined by

HI = H̄I + εI,1 · σH,I , BI = B̄I + εI,2 · σB,I ,

where H̄I and σH,I are the mean and standard deviation of the Ith layer thickness, B̄I and

σB,I are the mean and standard deviation of depth of the Ith layer to bedrock, and εI,1,

εI,2 are random values following the standard normal distribution. The random values

should be checked by comparing to measured data. The variation in the depth to bedrock

is accommodated by adjusting the thickness of the deepest soil layer.

Uncertainty in Shear-Wave Velocity

Since limited information is available, there is considerable uncertainty in the shear-wave

velocity profile. In current application, Vs is assumed to be lognormally distributed. The

estimate for epistemic uncertainty in Vs is taken as σ e
LN which is taken as 0.35, 0.5 for sparse

measurements, and 0.175 for sufficient information. To represent epistemic uncertainty

in Vs profiles with a minimum three cases, i.e., 50th-percentile best-estimate (BE), 90th-

percentile upper-bound (UB), and 10th-percentile lower-bound (LB), are used, with the

weights of 0.4 for BE and 0.3 for LB and UB. In each branch, the Vs in all layers hold

the same percentile value. For instance, all Vs are 90th-percentile values in UB case. In

other words, Vs in each layer are assumed fully correlated when epistemic uncertainty is

considered.

In order to capture aleatory uncertainty, random field models are used to generate Vs

profiles (EPRI-1025287). The model assumes that Vs at mid-depth of the layer follows

lognormal distribution and correlates between adjacent layers. The empirical standard

deviation σ a
LN of the natural logarithm of Vs is 0.25 and decreases to 0.15 below 15 m (50

ft). A bound of 2σ a
LN should be imposed throughout the profile, and Vs should be limited

to 2830 m/s (9200 ft/s). So Vs actually follows truncated lognormal distribution. The

Probability Density Function (PDF) is normalized to let the integration of PDF between
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5.1 generation of fully probabilistic frs

Vse2 σ a
LN and Vse−2 σ a

LN be equal to 1. Meanwhile, Vs is set to 2830 m/s when the random

Vs exceeds this value.

After considering the epistemic uncertainty and aleatory uncertainty in each layer, the

random values of Vs,I are given by

Vs,I = Vs eσ e
LN8−1(QI)+ZI σ

a
LN , (5.1)

where Vs,I is the Ith random value of Vs.

QI is determined by a random value θI which follows uniform distribution and ranges

from 0 to 1. QI is equal to 10% for 0 < θI ≤ 0.3, 50% for 0.3 < θI ≤ 0.7, and 90% for

0.7 < θI ≤ 1.

ZI is generated from

Z1 = ε1; ZI = ZI−1 ·ρ + εI

√

1−ρ2, I >1, (5.2)

in which εI is a random value following the truncated standard normal distribution between

−2 and 2. The PDF of this truncated standard normal distribution is normalized, i.e., let

the PDF multiply 1/[8(2) − 8(−2)].
ρ is the correlation coefficient and is a function of depth D and thickness H of the layer

(Toro, 1995):

ρ(D, H) =
[

1 − ρ
D
(D)

]

ρ
H
(H) + ρ

D
(D), (5.3)

where ρ
H

and ρ
D

are the thickness-dependent and depth-dependent correlations:

ρ
H
(H) = ρ

0
e− H

1 , ρ
D
(D) =









ρ
200

( D + D0

200 + D0

)B

, D< 200 m,

ρ
200

, D>200 m.

(5.4)

B and D0 are parameters given in Geomatrix and Vs30 classifications. The parameters are

listed in Table 5.1 and Geomatrix classification is given in Table 5.2 (Toro, 1995).

In summary, two random numbers θI and εI are generated for each layer. Then the

random value of Vs,I is calculated by equation (5.1) to represent the uncertainty in Vs . The

probability density function (PDF) are shown in Figure 5.2.

The PDF of current distributions are not continuous as shown in Figure 5.2, and its shape

is not realistic. Hence, it is desirable to develop a continuous distribution to represent the
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Table 5.1 Parameters for shear-wave velocity correlation coefficient

Parameter
Geomatrix Vs30 (m/s)

A and B C and D <180 180 to 360 360 to 750 > 750

ρ0 0.96 0.99 0.95 0.97 0.99 0.00

1 13.10 8.00 3.40 3.80 3.90 5.00

ρ200 0.96 1.00 0.42 1.00 0.98 0.50

D0 0.00 0.00 0.00 0.00 0.00 0.00

b 0.095 0.160 0.063 0.293 0.344 0.744

Table 5.2 Geomatrix classification

Description

A. Rock

Instrument is found on rock material (Vs > 600 m/s) or a very thin veneer (less than

5 m) of soil overlying rock material.

B. Shallow (Stiff) Soil

Instrument is founded in/on a soil profile up to 20 m thick overlying rock material,

typically a narrow canyon, near a valley edge, or on a hillside.

C. Deep Narrow Soil

Instrument is found in/on a soil profile at least 20 m thick overlying rock material in a

narrow canyon or valley no more than several kilometers wide.

D. Deep Broad Soil

Instrument is found in/on a soil profile at least 20 m thick overlaying rock material in

a broad canyon or valley.

E. Soft Deep Soil

Instrument is found in/on a deep soil profile that exhibits low average shear-wave

velocity (Vs < 150 m/s).

uncertainty in soil. Vs,I is proposed to be generated by

Vs,I = Vs eZI σln , (5.5)

where σln is the standard deviation. ZI is generated from Equation (5.2).

107



5.1 generation of fully probabilistic frs

Monte-Carlo simulation are performed for the current distributions. The Vs following 6

distributions are generated for 107 times, and the σln of each distributions are calculated as

❧ σln =0.4111 for σ e
LN =0.35 and σ a

LN =0.25,

❧ σln =0.3716 for σ e
LN =0.35 and σ a

LN =0.15,

❧ σln =0.5428 for σ e
LN =0.5 and σ a

LN =0.25,

Ln(V )sLn(V )-1.2s Ln(V )+1.2s
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Ln(V )+random values

Ln(V )sLn(V )-1.2s Ln(V )+1.2s

Ln(V )sLn(V )-1.2s Ln(V )+1.2s

Ln(V )sLn(V )-1.2s Ln(V )+1.2s

Ln(V )sLn(V )-1.2s Ln(V )+1.2s

0

P
D

F

0.010

0.005

0.015

0

P
D

F

0.004

0.002

0.008

0.006

0

P
D

F

0.004

0.008

0.012

0

P
D

F

0.004

0.008

0.012

0

P
D

F

0.010

0.005

0.015

0.020

0
P

D
F

0.004

0.008

0.012

σ e

LN

σ a

LN

=0.35,

=0.25

σ
LN

=0.4111

σ e

LN

σ a

LN

=0.35,

=0.15

σ
LN

=0.3716

σ e

LN

σ a

LN

=0.5,

=0.25

σ
LN

=0.5428 σ e

LN

σ a

LN

=0.5,

=0.15

σ
LN

=0.5135

σ e

LN

σ a

LN

=0.175,

=0.25

σ
LN

=0.2802

σ e

LN

σ a

LN

=0.175,

=0.15

σ
LN

=0.2181

distribution 1 distribution 2

distribution 3 distribution 4

distribution 5 distribution 6

Ln(V )+random values

Ln(V )+random values Ln(V )+random values

Ln(V )+random values Ln(V )+random values

Figure 5.2 Probability density function of Vs distributions
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❧ σln =0.5135 for σ e
LN =0.5 and σ a

LN =0.15,

❧ σln =0.2802 for σ e
LN =0.175 and σ a

LN =0.25,

❧ σln =0.2181 for σ e
LN =0.175 and σ a

LN =0.15.

The PDF of proposed distributions are shown in Figure 5.2.

Parametric study is conducted on the proposed distributions and the influence of ρ in

Section 5.2.

Uncertainty in Dynamic Material Properties

According to EPRI-1025287, two sets of G/GMAX and hysteretic damping are developed

to characterize epistemic uncertainty in material properties for soil (cohesionless soils

comprised of sands, gravels, silts, and low plasticity clays) and rock (Cenozoic or Paleozoic

sedimentary rocks including shale, sandstones, and siltstone).

For soil conditions, EPRI soil curves in EPRI TR-102293-V2 (EPRI, 1993b), which ac-

commodate with more nonlinear soils (Figure 5.3), and Peninsular Range curves (Silva

et al., 1996; Walling et al., 2008), which accommodate with more linear soils, are used. The

two sets of soil curves are given equal weights. The Peninsular Range curves reflect a subset

of the EPRI soil curves, with the 51 to 120 ft (15 to 37 m) EPRI curve applied to the 0 to 50

ft (0 to 15 m) depth range and the EPRI 501 to 1,000 ft (153 to 305 m) curve applied to the

51 to 500 ft (15 to 152 m) depth range.

For rock conditions, EPRI rock curves in EPRI-1025287 (Figure 5.4) and linear response

are used. In the model of linear response, damping remains constant with cyclic shear

strain at input loading levels up to and beyond 1.5g. For all sites where soil and firm rock

extended to depth exceeding 150 m (500 ft), linear response can be assumed in the deep

portions of profiles.

The two sets of material properties are summarized in Table 5.3.

According to EPRI-1025287, aleatory variability in dynamic material properties is ac-

commodated by randomizing G/Gmax and hysteretic damping curves. Lognormal dis-

tributions are assumed with σln of 0.15 and 0.3 for G/Gmax and hysteretic damping,

respectively, at a cyclic shear strain of 0.03%. A bound of 2σln is applied. The random

curves are generated by computing the change of G/Gmax and hysteretic damping at 0.03%

109



5.1 generation of fully probabilistic frs

0.8

0.6

0.4

0.2

0

1

G
/G

m
ax

Shear strain (%)

0.0001 0.001 0.01 0.1 1

Shear strain (%)

0.0001 0.001 0.01 0.1 1

D
am

p
in

g 
( %

)

30

20

10

0

25

15

5

Figure 5.3 Shear modulus and hysteretic damping curves for cohesionless soil

D
am

p
in

g 
(%

)

0.8

0.6

0.4

0.2

0

1

Shear strain (%)

Shear strain (%)

0.0001 0.001 0.01 0.1 1

0.0001 0.001 0.01 0.1 1

30

20

10

0

40

G
/G

m
ax

Figure 5.4 Shear modulus and hysteretic damping curves for cohesionless rock

110



5.1 generation of fully probabilistic frs

Table 5.3 Dynamic property values

Layers Curve Set 1 Curve Set 2

Soil EPRI soil Peninsular range

Rock in top 150 m (500 ft) depth EPRI rock Linear response

Deeper rock Linear response Linear response

cyclic shear strain and applying this factor at all strains. The factor should be reduced

near the end of the range to preserve the general shape of the base-case curves. Hysteretic

damping at 0.03% shear strain should not exceed 15% in applications.

So similar to Vs distribution, G/Gmax and hysteretic damping also follows truncated

lognormal distribution, and the PDF is is normalized to ensure its integration is equal to 1.

Meanwhile, hysteretic damping is set to 15% when the random number exceeds this value.

G/Gmax and hysteretic damping curves can be developed by

G/Gmax, I = G/Gmax e0.15εI,1 , DI = D e0.3εI,2 , (5.6)

where G/Gmax, I and DI are the Ith random modulus reduction and hysteretic damping,

respectively, and εI,1 and εI,2 are independent standard normal random numbers.

5.1.3 Determining Foundation Level Input Response Spectra

After considering propagation effect, site response analysis, and SSI effect, the site-

structure specific amplification functions af are calculated. Then seismic hazard curves at

reference hard rock and af are convolved to compute FLIRS with a specified RP. Based on

the direct spectra-to-spectra method, FRS with the RP can be generated.

Amplification Function

The amplification function af is defined as the ratio of spectral acceleration S
s
A

(

F
∣
∣a

)

in

FLIRS to S
hr
A

(

F
∣
∣a

)

at reference hard rock, given the amplitude of rock motion a, i.e.,

af
(

F
∣
∣a

)

=
S

s
A

(

F
∣
∣a

)

S
hr
A

(

F
∣
∣a

) . (5.7)
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Figure 5.5 Logic tree for the generation of amplification function

Figure 5.5 gives an example logic tree for determining amplification functions af , in

which there are 4 branches accounting for epistemic uncertainty in seismic source model

and site-specific geotechnical model. For each branch, a minimum of 30 random realiza-

tions are generated to capture aleatory randomness in the model. The outputs of analyses

are FLIRS by site response analysis and SSI analysis.

The site response analysis is performed at first to give horizontal and vertical FIRS,

and the relevant stain-compatible soil properties in each layer. The nonlinearity of G

and ζ are considered by an equivalent linear method as described in Section 2.2.2. For

example, if the shear strain in the nth soil layer is γn, the strain-compatible soil properties

are determined from the shear modulus and hysteretic damping curves as βnGn and ζn

as shown in Figure 5.6. Gn is the low-strain shear modulus which is determined by

density ρn and initial shear wave velocity Vs,n as ρnVs,n
2 . βn and ζn are the shear

modulus reduction coefficient, G/Gmax, and damping ratio with respect to the shear strain

γn , respectively. Strain-compatible soil properties mean that the ground motion resulting

from soil properties βnGn and ζn gives the compatible shear strain γn in the nth soil layer.

Then the strain-compatible soil properties are assumed to be constant in the generation

of dynamic soil stiffness which can calculated based on Chapter 4. As shown in Figure

5.6, the strain-compatible soil properties βnGn and ζn are used to develop dynamic soil
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stiffness. According to the proposed substructure method, FLIRS is generated by each set

of FIRS and dynamic soil stiffness.

Figure 5.6 Treatment of nonlinear soil properties

af
(

F
∣
∣a

)

is assumed to be lognormally distributed given the amplitude of rock motion a .

For the Ith epistemic branch, the logarithmic mean µI and logarithmic standard deviation

σI of af
(

F
∣
∣a

)

can be obtained from the set of at least 30 random profiles. Then the total

µ
ln af

∣
∣a

and σ
ln af

∣
∣a

for each frequency given the amplitude of rock motion a are calculated

by

µ
ln af

∣
∣a

=
∑

I

wI ·µI, σ 2
ln af

∣
∣a

=
∑

I

wI ·
[(

µI − µ
ln af

∣
∣a

)2 + σ 2
I

]

, (5.8)

where wI is the weight for the Ith epistemic branch.
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Foundation Level Input Response Spectra

The seismic hazard on ground surface for a specified structure, uniform hazard FLIRS

with RP, is calculated by convolving amplification functions and seismic hazard curves at

reference hard rock as

H
s
Z(z) =

∫ ∞

0

∫

r

∫

m
P

{

af >
z
a

∣
∣
∣m, r, a

}

FM, R
∣
∣A(m, r

∣
∣a)h

hr
A (a)dm dr da, (5.9)

where af is the amplification function depending on m, r, and a. a is the amplitude of rock

motion, and FM, R
∣
∣A(m, r

∣
∣a) is the joint probability density function of M and R given the

amplitude a of rock motion. h
hr
A (a) is the absolute value of the derivative of the seismic

hazard at reference hard rock.

As stated in Chapter 2, site amplification is virtually independent of earthquake magni-

tude m and source-to-site distance R when frequencies F are greater than initial resonant

frequency Fsc of soil column, i.e., F > Fsc . When Fsc is small enough, equation (5.9) can be

simplified as

.H
s
Z(z) =

∫ ∞

0
P

{

af >
z
a

∣
∣
∣a

}
∣
∣
∣
∣

dHhr
A (a)

da

∣
∣
∣
∣

da =
∫ ∞

0
P

{

af >
z
a

∣
∣
∣a

}

h
hr
A (a)da. (5.10)

P

{

af >
z
aI

∣
∣
∣aI

}

can be determined by assuming that af is lognormally distributed given

the amplitude aI of rock motion

P

{

af >
z
aI

∣
∣
∣aI

}

= 1 − 8







ln
(

z/aI

)

− µ
ln af

∣
∣aI

σ
ln af

∣
∣aI






, (5.11)

where µ
ln af

∣
∣aI

and σ
ln af

∣
∣aI

are mean value and standard deviation of ln af given the

amplitude aI of rock motion, which can be obtained from equation (5.8). Finally FLIRS is

taken as the seismic input for primary structures to generate FRS.

The logic tree of the proposed method and the current method are compared as shown in

Figure 5.7. Based on 11 ground motions and n random geotechnical models, 11×n = 11n

sets of FIRS and strain-compatible soil properties are obtained from site response analysis.

In current application, the FIRS with RP is calculated. Then three site profiles, BE, LB and

UB, are used in SSI analysis, which lead to three sets of FLIRS and the resultant FRS. The

final FRS is obtained by maximum value method, i.e., three sets of FRS are enveloped at

114



5.1 generation of fully probabilistic frs

Current Method

Proposed Method

11 Ground
Motions

n Site Pro!les 11n FIRS

11n Strain-
Compatible
Soil Pro!les

FRSSite ResponseUncertainty

Current Method

 SSI

FIRS
(AEP)

3 Site
Pro!les

3 FRS
Enveloping Final

FRS

11n FLIRS

Uniform
Hazard
FLIRS

Uniform
Hazard

FRS

Proposed Method

Figure 5.7 Comparison of two methods

each frequency point. Since only three site profiles are considered, the uncertainty in soil

properties is not considered from site response and SSI analysis consistently. The risk in the

final FRS can not be evaluated. In the proposed method, the uncertainty are propagated into

the 11n FLIRS which is used to develop site and structure specific af . Finally, a uniform

hazard FRS is generated after fully considering the uncertainty resulting from both soil and

earthquakes.

5.1.4 Procedures of Generating Uniform Hazard FRS

For a structure supported by a horizontally layered soil site, procedures for generating

uniform hazard FRS are summarized as follows:

1. The seismic input at bedrock is developed. At least 11 ground motions with different

loading levels are needed to represent the uncertainty in earthquakes.

2. The geotechnical models are established including soil parameters of layer thickness,

shear-wave velocity, damping ratio, density, and Poisson’s ratio. The uncertainty in

the layer thickness, depth to bedrock, shear-wave velocity, and soil properties are

considered to generate random site profiles based on Monte Carlo simulation.

3. The site response analysis is performed at each random site with every input ground mo-

tion to determine the free field motion. The nonlinearity of soil properties is addressed

in site response analysis to develop stain-compatible soil properties.
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4. The dynamic soil stiffness is generated from the strain-compatible soil properties which

are assumed to be constant in this step.

5. Based on the dynamic soil stiffness and structural information, SSI analysis is conducted

to generate FLIRS.

6. Comparing FLIRS and input ground motion at bedrock, af is determined for each

combination of random sites and ground motions. According to the probabilistic

description of seismic excitation at bedrock and the distribution of af , the uniform

hazard FLIRS is developed with a desired RP. This uniform hazard FLIRS can be taken

as the seismic input for a fixed-base model to generate uniform hazard FRS.

5.2 Application and Parametric Study

The FRS of reactor building shown in Section 3.2 is generated after considering the uncer-

tainty in soil properties and seismic hazard at reference hard rock. The results obtained by

the proposed method and the current method are compared.

5.2.1 Site Information and Seismic Input

The uniform hazard spectra representing seismic hazard are shown in Figure 5.8. Two sites,

i.e., soil site and rock site, are taken into consideration in this study. The soil properties are

listed in Tables 5.4 and 5.5.

According to PSHA results, 11 levels of ground motions are generated with peak acceler-

ation values spanning from 0.01g to 1.5g to examine the af by site response and SSI. The

FAS of ground motions are shown in Figure 5.9.

5.2.2 Uncertainty in Geotechnical Model

Shear-Wave Velocity and Thickness Profiles

In this study, the distribution of each layer thickness and the depth to rock are assumed to

be normal distribution and coefficient of variation is taken as 0.2.

The Vs follows log-normal distribution. In the three branches, the median values of the

Vs in all layers are one of BE, UB, and LB. For instance, Vs in every layer is UB value in
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UB branch. The weights are 0.4, 0.3, and 0.3 for BE, UB, and LB, respectively. These three

Vs profiles are shown in Table 5.6. Then 30 profiles are generated to represent the aleatory

uncertainty. The two values of σ a
LN are applied in the top 15 m, i.e., 0.25, soil layers and under

15 m, i.e., 0.15. The randomized site profiles are shown in Figure 5.10.

Table 5.4 Soil properties at soil site.

Layer Number Thickness (m) Density (g/cm3) Shear-Wave Velocity (m/s) Damping Ratio

1 6 1.9 500 0.05

2 9 2.1 1200 0.03

3 20 2.2 1500 0.03

4 20 2.2 1800 0.03

5 halfspace 2.5 2830 0.01

Table 5.5 Soil properties at rock site.

Layer Number Thickness (m) Density (g/cm3) Shear-Wave Velocity (m/s) Damping Ratio

1 15 2.1 1400 0.03

2 20 2.2 1600 0.03

3 20 2.2 1800 0.03

4 halfspace 2.5 2830 0.01

Table 5.6 Shear-wave velocity profiles

Layer Number
Soil Site Rock Site

BE (m/s) UB (m/s) LB (m/s) BE (m/s) UB (m/s) LB (m/s)

1 500 783 319 1400 2192 894

2 1200 1879 766 1600 2506 1022

3 1500 2349 958 1800 2819 1149

4 1800 2819 1149 2830 2830 2830

5 2830 2830 2830 N/A N/A N/A
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Figure 5.10 Realizations of shear-wave velocity profile in case 1

Dynamic Material Properties Curves

According to Section 5.1.2, 2 sets of G/GMax and damping are used with equal weights.

Dynamic properties for the sites are listed in Table 5.7. The random curves of EPRI soil

in first layer at the soil site are shown in Figure 5.11 which shows a wide range of random

curves used in this study.

Table 5.7 Dynamic property for the sites

Layer Number
Soil Site Rock Site

Curve Set 1 Curve Set 2 Curve Set 1 Curve Set 2

1 EPRI soil Peninsular range EPRI rock Linear 3%

2 EPRI rock Linear 3% EPRI rock Linear 3%

3 EPRI rock Linear 3% EPRI rock Linear 3%

4 EPRI rock Linear 3% Linear 1% Linear 1%

5 Linear 1% Linear 1% N/A N/A
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Figure 5.11 Realizations of shear modulus and hysteretic damping curves for 0-6 m soil.

5.2.3 Resultant Foundation Level Input Response Spectra

The logic tree for the generation of FRS in this application is shown in Figure 5.12. There are

2×90 = 180 geotechnical models generated to capture epistemic uncertainty and aleatory

uncertainly. As 11 ground motion levels are considered, a total of 180×11 = 1980 analyses

are performed.

In this example, the site response analysis is conducted in frequency domain. The

horizontal FIRS and strain-compatible soil properties for all realizations are obtained.

Then the dynamic stiffness is calculated based on the strain-compatible soil properties. The
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Figure 5.12 Comparison of two methods in the application

strain-compatible dynamic stiffness under the ground motion with PGA of 0.3g are shown

in Figure 5.13,

V/H ratios from GMPEs in the WUS is applied to calculate the site-specific V/H ratios.

Three GMPEs are usually used, e.g., Bozorgnia and Campbell (2004), and Gulerce and

Abrahamson (2011). The vertical FIRS is developed from the horizontal FIRS and site-

specific V/H ratios and is shown in Figure 5.14.

The horizontal FIRS at the soil site and the rock site are shown in Figures 5.15 and 5.16.

The FIRS with RP of 10,000 years is calculated and then used in the SSI analysis by the

current method.

According to the proposed substructure method, the FLIRS for each randomization are

generated. The horizontal FLIRS are shown in Figures 5.17 and 5.18. It illustrates that

FLIRS is amplified at different frequency points for each site. µI and σI of af are calculated

for each site given the ground motion and frequency. µ ln af
∣
∣a and σln af

∣
∣a of af given

eleven loading levels at soil site and rock site are presented in Figures 5.19 to 5.22. Based on

af and seismic hazard curves at reference hard rock, a sets of uniform hazard FLIRS with

different RP can be determined according to Equations (5.10) and (5.11) as illustrated in

Figures 5.17 and 5.18.

The comparison of FLIRS calculated by proposed method and current method are shown

in Figures 5.23 and 5.24. They demonstrate that the peaks of FLIRS at BE, UB, and LB sites
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Figure 5.15 Resultant FIRS at soil site
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Figure 5.16 Resultant FIRS at rock site
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Figure 5.17 Resultant FLIRS at soil site
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Figure 5.23 FLIRS at soil site
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are sharp, while the FLIRS generated by the proposed method is smooth with uniform

hazard. In low frequency domain, i.e., 3 Hz and below, the BE, UB, and LB FLIRS vibrate

significantly between 1,000-year RP and 100,000-year RP. In the frequency range above 3

Hz, the RP of 3 FLIRS is stable and partly parallel to the uniform hazard FLIRS. The BE

FLIRS is between 10,000-year RP and 20,000-year RP, while LB is between 2,475-year RP

and 10,000-year RP. However, the RP of UB at soil site changes from 20,000 years to 50,000

years, while this is different in rock case where it ranges from 10,000 years to 20,000 years.

5.2.4 Floor Response Spectra

Depending on the direct spectra-to-spectra method, 3 sets of FRS in the current method,

i.e., BE, UB, and LB, are calculated as shown in Figures 5.25 to 5.28. Then the final FRS are

obtained by maximum value method, i.e., enveloping the 3 sets of FRS at each frequency

point. According to the figures, it is observed that in the frequency range above 1 Hz, the

final FRS, the black dashed line, are solely determined from the UB case. That means only

one extreme soil case is considered in the the generation of FRS considering SSI after FIRS

with RP of 10,000 years is developed. This treatment eventually leads to an extreme FRS

which is not a reasonable seismic demand for secondary systems.

Compared to the current method, a set of uniform hazard FRS with different RP are

generated by the proposed fully probabilistic method. The comparison of the results are

shown in Figures 5.29 to 5.32. In most frequency ranges, i.e., the frequency is above 3 Hz,

the RP of FRS is almost equal to 50,000 years at soil site as shown in Figures 5.29 and 5.30,

while the RP is close to 20,000 years at rock site as shown in Figures 5.31 and 5.32. It is

recognized that the hazard level of the final FRS in the current application is not consistent

at different sites. This will result in over estimated FRS at specific sites.

In the frequency range below 3 Hz, the smallest RP of FRS given by the enveloping

method is close to 2,475 years at the soil site, but the highest value is larger than 100,000

years. For the rock site, the RP of FRS ranges between 2,475 years to 100,000 years at low

frequency domain. This variation also happens between 8 Hz and 20 Hz at the soil site

where the RP of FRS at node 5 decreases from 50,000 years significantly. It is demonstrated
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Figure 5.25 FRS by current method at node 4 for soil site
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Figure 5.26 FRS by current method at node 5 for soil site
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Figure 5.27 FRS by current method at node 4 for rock site
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Figure 5.28 FRS by current method at node 5 for rock site
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Figure 5.30 Comparison of FRS at node 5 for soil site
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0

0.5

1.0

1.5

3.5

Sp
ec

tr
al

 a
cc

el
er

at
io

n
 (

g)

2.0

0.2 1 10 100
Frequency (Hz)

2.5

3.0
100,000-year RP

50,000-year RP

20,000-year RP

10,000-year RP

2,475-year RP

1,000-year RP

Enveloping method

Figure 5.32 Comparison of FRS at node 5 for rock site
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Figure 5.33 Resultant FRS at node 4 for soil site
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Figure 5.34 Resultant FRS at node 5 for soil site
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Figure 5.35 Resultant FRS at node 4 for rock site
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Figure 5.36 Resultant FRS at node 5 for rock site
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that the FRS given by enveloping method may be too conservative at some frequency points,

while the underestimation also exits.

In nuclear industry, the RP is usually taken as 10,000 years in the seismic design. The

comparison of FRS given by the enveloping method and the values with RP of 10,000 years

by the proposed method are presented in Figures 5.33 to 5.36. The difference between

the enveloping method, the dashed black line, and the proposed method, the solid red

line, are noticeable. Based on the proposed method, the peak values of FRS at 5.6 Hz are

reduced by 46% and 20% at the soil site and rock site, respectively. For the second peak

of node 5 at the soil site, it is reduced by 39%. At the same time, the RP of FRS given by

the enveloping method is lower than 10,000 years at some low frequency points, e.g., RP of

current application are 5,910 years at 0.8 Hz on soil site and 6,730 years at 0.85 Hz on rock

site. In general, the final FRS decreases significantly based on the proposed method which

provides a cost-effective solution in the seismic design. Meanwhile, the proposed method

also improves the safety in the low frequency domain.

It illustrates that enveloping 3 sets of FRS dose not consider the uncertainty of earthquake

excitation and soil properties properly. The resultant FRS by the enveloping method is an

extreme case with high seismic demand, and can not represent the variation of the soil

properties. The hazard are not addressed reasonably and consistently throughout the

frequency range. The proposed method fully captures the uncertainty in the generation

of FRS. The uncertainty are convolved into uniform hazard FLIRS, which is the modified

free field motion after considering SSI. The uniform hazard FRS is generated by taking the

uniform hazard FLIRS as the seismic input in the fixed-base model.

5.2.5 Parametric Study on σln and ρ of Vs

In order to address the influence of σln and the correlation coefficient ρ of the adjacent

layers, 7 cases of both the soil site and rock site are studied. The relevant parameters and the

generation of shear-wave velocity profiles are shown in Figure 5.37.

In case 1, current Vs distribution is employed as described in Section 5.2.2, in which the

epistemic uncertainty are assumed fully correlated. In case 2, the correlation of epistemic
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Figure 5.37 Generation of site profiles

uncertainty is treated the same as aleatory uncertainty in each layer. The correlation

coefficient is determined as a function of depth and thickness.

In cases 3 to 5, the Vs profiles are generated following Equation (5.5), the continuous

log-normal distribution. Different σln are used to examine its sensitivity. In case 4, 0.41

used in top 15 m, and 0.37 used in lower layers, are the equivalent σln of the current

distribution proposed in Section 5.1.2. In cases 6 and 7, different ρ are used to examine the

sensitivity about ρ. In order to compare with current application, the same number, 90, of

site profiles are generated.

In the comparison of cases 1 and 2 as shown in Figures 5.38 to 5.41, the difference is no-

ticeable, and is up to 5.24% when epistemic uncertainty is treated by different approaches. It

Table 5.8 Relative errors at the peak with different σln

Case Number
Soil Site Rock Site

Node 11 Node 12 Node 11 Node 12

3 -1.59% -1.59% -0.75% -0.74%

5 2.21% 2.21% -1.33% -1.33%
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Figure 5.38 FRS at node 4 for different treatment of epistemic at soil site
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Figure 5.39 FRS at node 5 for different treatment of epistemic at soil site

136



5.2 application and parametric study

0.2 1 10 100
Frequency (Hz)

0

0.2

0.4

0.6

0.8

1.0

1.2
Sp

ec
tr

al
 a

cc
el

er
at

io
n

 (
g)

case 1

case 2 

Relative error -5.24%

Figure 5.40 FRS at node 4 for different treatment of epistemic at rock site
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Figure 5.41 FRS at node 5 for different treatment of epistemic at rock site
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Figure 5.42 FRS at node 4 for proposed Vs distribution at soil site
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Figure 5.43 FRS at node 5 for proposed Vs distribution at soil site
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Figure 5.44 FRS at node 4 for proposed Vs distribution at rock site
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Figure 5.45 FRS at node 5 for proposed Vs distribution at rock site
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Figure 5.46 FRS at node 4 for different σln at soil site
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Figure 5.47 FRS at node 5 for different σln at soil site
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Figure 5.48 FRS at node 4 for different σln at rock site
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Figure 5.49 FRS at node 5 for different σln at rock site
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Figure 5.50 FRS at node 4 for different correlation coefficients at soil site
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Figure 5.51 FRS at node 5 for different correlation coefficients at soil site

142



5.2 application and parametric study
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Figure 5.52 FRS at node 4 for different correlation coefficients at rock site
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Figure 5.53 FRS at node 5 for different correlation coefficients at rock site
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5.3 summary

is demonstrated that the influence of correlation coefficient in the consideration of epistemic

uncertainty can not be neglected.

According to Figures 5.42 to 5.45, the proposed alternative σln in case 4 leads to similar

FRS to case 2. The relative error at the peaks are 0.18% in soil case and 2.33% in rock case.

It is reasonable to replace the current Vs distribution by the continuous distribution with

proposed σln as given in Section 5.1.2.

In cases 3 and 5, the FRS given by the different σln are close to case 4 as shown in Figures

5.46 to 5.49, and the difference is less than 2.3% given in Table 5.8. It shows that the

sensitivity of FRS about σln is small. σln in this study represents the combination of both

the epistemic and aleatory uncertainty. If epistemic uncertainty is neglected, it will result

in a smaller σln. In this parametric study, the influence of difference σln is small, which

indicates that epistemic uncertainty will not affect the uniform hazard FRS much.

FRS determined by different ρ of Vs are shown in Figures 5.50 to 5.53. At soil site, the

difference are up to 1.31% at 5.6 Hz and 6.54% at 12.6 Hz. At rock site, the 2 sets of FRS

is close to each other with the difference of 1.53% at the peak. It is recognized that the

influence of ρ is minor in most frequency range, while ρ may influence the resultant FRS in

high frequency domain.

5.3 Summary

In this chapter, a fully probabilistic method is developed for addressing the uncertainty

in the generation of FRS. Different levels of ground motions are taken to represent the

seismic hazard, and the geotechnical models are generated by Monte Carlo simulations

to account for the uncertainty in soil properties. The uncertainty is propagated from site

response analysis to SSI analysis consistently, and convolved into the uniform hazard FLIRS.

Since the fixed-base structure model is determinant without variability, the uniform hazard

FLIRS is taken as the seismic input, and FRS are developed with a specific RP. A realistic and

continuous Vs distribution is proposed to represent the two kinds of uncertainty, epistemic

uncertainty and aleatory randomness.
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5.3 summary

Numerical examples are conducted to illustrate the proposed method. The FRS are gen-

erated by current method and proposed probabilistic method, respectively. Compared to

the current method, the proposed method can provide a more reasonable seismic demand.

Sensitivity study is performed on the σln and ρ of Vs . Some conclusions are obtained:

❧ The FRS generated by the proposed method gives a uniform hazard design spectra.

It addresses the uncertainty in earthquake excitation and soil properties in a fully

probabilistic approach, which overcomes the underestimation and overestimated re-

sults in the current application. The seismic demand for secondary system is reduced

significantly. In the numerical examples, the peak values in FRS decrease by 46% and

20% at soil site and rock site, respectively.

❧ It is unreasonable to assume all layers are fully correlated when treating epistemic

uncertainty in current method. The proposed method generates randomization of Vs

in each layer with a correlation coefficient, which can give a more reasonable FRS.

❧ The FRS given by the proposed alternative σln agrees well with the results led by the

current parameters. A continuous and more realistic distribution is applied in Monte

Carlo simulation. Sensitivity study shows that final FRS generated by different σln do

not change noticeably.

❧ In most frequency ranges, FRS dose not vary significantly with different ρ of Vs ,

especially at rock site. But the peak of FRS in the high frequency domain, e.g., above

10 Hz, may change significantly.

In summary, the proposed method can give a realistic and uniform hazard FRS,which can

improve the accuracy and economic in engineering design. The uncertainty is propagated

from site response analysis to SSI analysis consistently.
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6C H A P T E R

Soil-Structure InteractionAnalysis with
Flexible Foundation

For reactors placed underground, the earthquake excitation not only comes from the bot-

tom, but also exits at the side walls. The stiffness of external structures of reactors are

usually very high, and similar to the values of foundations. Thus the total foundation sys-

tem, including bottom foundations and external structures, can not be treated as rigid in

Soil-Structure Interaction (SSI) analysis. Besides, according to site response analysis, the

free field motion at different soil layers are different. In this Chapter, Foundation Level

Input Response Spectra (FLIRS) is generated considering the flexibility of foundations and

spatially varying ground motions, so that the direct spectra-to-spectra method for gener-

ating Floor Response Spectra (FRS) can be applied for structures with flexible foundation

under excitations at multiple points.

In the proposed method, the structural response is expressed in terms of the modal

information of the structure and the seismic input at multiple points. Then the equilibrium

equations are established for each structure and foundation node, as well as the entire

structure-foundation system, by which the structural response is obtained from the free

field motion. Based on the structural response, a transfer function from the free field

motion to fixed-base motion is determined. At last, the modification factor converting

Foundation Input Response Spectra (FIRS) to FLIRS is calculated by random vibration

theory.
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6.1 substructure method

6.1 Substructure Method

6.1.1 Substructure Model for Flexible Foundation

The coupled soil-structure model with flexible foundation is shown in Figure 6.1. Let

Us and Ub be amplitudes of the absolute displacement vectors of the superstructure

and foundation, respectively, where the subscripts “s” and “b” stand for the degrees-of-

freedom of “structure” and “base” (or boundary of soil-structure interface), respectively.

The equation of dynamic equilibrium of the structure is given by





Sss
s Ssb

s

Sbs
s Sbb

s











Us

Ub






=







Ps

Pb






, (6.1)

where Ps is the amplitude vector of the load applied on the nodes of the structure, and Pb

is the amplitude vector of the interaction forces between the structure and soil.

Similar to the derivation with rigid foundation as given in Section 3.1, the free-field

earthquake excitation at node O is replaced by seismic input at multiple points on the

foundation (Figure 6.1). Hence, referring to the case of rigid foundation in Section 3.1.2,

one has

Ss
OO =⇒ Sbb

s , Ss
Os =⇒ Sbs

s , Ss
sO =⇒ Ssb

s , Sg
OO =⇒ Sbb

g , Sf
OO =⇒ Sbb

f ,

UO =⇒ Ub , Ug
O =⇒ Ub

g , UO
f =⇒ Ub

f.

Then equation (3.8) becomes





Sss
s Ssb

s

Sbs
s Sbb

s +Sbb
g











Us

Ub






=







0

Sbb
f Ub

f






. (6.2)

Equation (6.2) is the equation of motion of the structure supported on generalized springs

characterized by the dynamic stiffness matrix Sbb
f as shown in Figure 6.2. The other ends

of the springs are subjected to earthquake excitation Ub
f, which is the free-field response of

the soil at the foundation level; the acceleration response spectra of üb
f are the Foundation

Input Response Spectra (FIRS), which can be obtained from a site response analysis of the

free-field.
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6.1 substructure method

Excavated Soil  
    ⇒ “Structure”
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Figure 6.1 Coupled Soil-Structure Model

Considering the excavated soil, equation (6.2) can also be written as





Sss
s Ssb

s

Sbs
s (Sbb

s −Sbb
e )+Sbb

f











Us

Ub






=







0

Sbb
f Ub

f






. (6.3)

For a structure with N nodes (not including the foundation), each node has 6 DOF (three

translational and three rotational). The flexible foundation has M nodes with 6M DOF.

The dimensions of the vectors Us , Ub , and Ub
f are 6N, 6M, and 6M, respectively. The

dimensions of the dynamic stiffness sub-matrices of the structure Sss
s , Ssb

s , Sbs
s , Sbb

s are

6N×6N, 6N×6M, 6M×6N, and 6M×6M, respectively. The dimensions of the dynamic

stiffness sub-matrices of the soil Sbb
f , Sbb

g , and Sbb
e are all 6M×6M.
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6.1 substructure method
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Figure 6.2 Soil-Spring Model of SSI with Flexible Foundation

6.1.2 Fixed-Base Model for Flexible Foundation

For the fixed-base model as shown in Figure 6.3, from the first block-row of equation (6.3),

one has

Sss
s Us + Ssb

s Ub = 0 =⇒ Us = S
fb Ub , S

fb = −
(

Sss
s

)−1
Ssb

s , (6.4)

where S
fb is the dynamic stiffness matrix for fixed-base analysis with flexible foundation.

When only translational ground motions are considered, Re-organizing vector Us and

rewriting Ub as

Us =







Us,T

Us,R







6N×1

, Ub =







U
b
fb

0







6M×1

. (6.5)

Re-arrange and partition S
fb accordingly, one has

S
fb =





S
TT

fb
S
TR

fb

S
RT

fb
S
RR

fb





6N×6

, (6.6)
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6.1 substructure method
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Figure 6.3 Fixed-Base Model with Flexible Foundation

in which each submatrix is of dimension 3N×3. Equation (6.4) can be written as







Us,T

Us,R






=





S
TT

fb
S
TR

fb

S
RT

fb
S
RR

fb











U
b
fb

0






=







S
TT

fb
U

b
fb

S
RT

fb
U

b
fb






. (6.7)

Multiplying the first block-row of equation (6.7) by
(

S
TT

fb
,R

)
T yields

(

S
TT

fb
)

T
Us,T =

[(

S
TT

fb
)

T
S
TT

fb
]

U
b
fb . (6.8)

The tri-directional (translational) acceleration response spectra U
b
fb applied at the flex-

ible foundation of a fixed-base structure are the Foundation Level Input Response Spectra

(FLIRS), as shown in Figure 6.3.

For a three-dimensional model of a structure with N nodes and a foundation with M

nodes, a typical node n has 6 DOF: three translational DOF u1, u2, u3, and three rotational

DOF u4, u5, u6. The structure is subjected to tri-directional seismic excitations at one node

of the foundation. The displacement vector u of dimension 6(N + M) is governed by

M ü(t) + C u̇(t) + K u(t) = P, (6.9)
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6.1 substructure method

where M, C, K are, respectively, the mass, damping, and stiffness matrices of dimension

(6N + 6M)×(6N + 6M), given by

M =





Ms 0

0 Mb



 , C =





Css Csb

Cbs Cbb



 , K =





Kss Ksb

Kbs Kbb



 ,

and P is the interaction forces applied on the nodes as

P =
{

0, Pb

}T
.

u is

u =
{

us, ub

}T
,

where

us =
{

u1
s , u2

s , · · · uN
s

}T
, un

s =
{

un
s ,1

, un
s ,2

, · · · , un
s ,6

}T
,

ub =
{

u1
b

, u2
b

, · · · uM
b

}T
, um

b
=

{

um
b ,1

, um
b ,2

, · · · , um
b ,6

}T
,

Then the displacement of the structure is separated to two parts as a pseudostatic com-

ponent us
s and a dynamic component x

us = us
s + x, (6.10)

where us
s is defined as the displacement when the ground motion at time t is applied

statically, and meets




Kss Ksb

Kbs Kbb











us
s

ub






=







0

Pb
s






. (6.11)

According to the first block row of equation (6.11), one obtains

us
s = Lub, (6.12)

where

L = −K−1
ss Ksb. (6.13)

Based on equation (6.10), the first block row of equation (6.9) can be expressed as

Ms ẍ(t) + Css ẋ(t) + Kss x(t) = −Ms üs
s(t) − Css u̇s

s(t) − Kss us
s(t) − Csb u̇b(t) − Ksb ub(t).

(6.14)
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6.1 substructure method

Substituting equation (6.13) into equation (6.14) leads to

Ms ẍ(t) + Css ẋ(t) + Kss x(t) = −MsL üb(t) − Css u̇s
s(t) − Csb u̇b(t). (6.15)

In engineering applications, the damping term is usually relatively small compared to the

inertia term. Neglecting the damping values in the right side of equation (6.15) gives

Ms ẍ(t) + Css ẋ(t) + Kss x(t) = −MsL üb(t). (6.16)

Letting x(t)=Xeiωt and u
b
(t)= Ub eiωt, equation (6.16) becomes

(

−ω2Ms + iωCss + Kss

)

Xs = ω2MsLUb . (6.17)

Applying the modal transformation Xs =8sQs, where 8s is the modal matrix of the

structure obtained by modal analysis without the soil springs when the foundation nodes

are constrained, substituting into equation (6.17), and multiplying 8T
s from the left yield

(

−ω28T
s Ms8s + iω8T

s Css8s + 8T
s Kss8s

)

Qs = ω28T
s MsL Ub . (6.18)

Employing the orthogonality gives

diag
{

−ω2 + i2ζ
n, s

ω
n, s

ω + ω2
n, s

}

Qs = ω2ŴUb , (6.19)

where Ŵ is a 6N×6 matrix given by

Ŵ =
8T

s MsL

8T
s Ms8s

. (6.20)

Hence,

Xs = ω28s Hs Ŵ UO , (6.21)

where Hs is a diagonal matrix of the complex frequency response functions, i.e.,

Hs = diag

{

1

ω2
n, s

− ω2 + i2ζ
n, s

ω
n, s

ω

}

. (6.22)

Since the dynamic displacement xs =us −us
s, substituting into equation (6.21) gives

Us =
(

ω28s Hs Ŵ + L
)

Ub . (6.23)

Comparing equation (6.23) with equation (6.4), one obtains

S
fb = ω28s Hs Ŵ + L. (6.24)
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6.1 substructure method

6.1.3 Spring-Structure Model under Excitation

The spring-structure system is shown in Figure 6.4. In order to establish the governing

equation, the M nodes in the basement is expressed by two parts, i.e., one single node O

as origin and (M − 1) foundation nodes represented by f. The input earthquake motion

becomes

Ub
f =







UF
f

UO
f






. (6.25)

Comparing to the displacement at point O, the relative displacement vector x of dimen-

sion (6N + 6M − 6) is governed by

M ẍ(t) + C ẋ(t) + K x(t) = −M IüO(t) + P, (6.26)

where M, C, K are, respectively, the mass, damping, and stiffness matrices of dimension

(6N + 6M − 6)×(6N + 6M − 6), given as

M =





Ms 0

0 Mf



 , C =





Css Csf

Cfs Cff



 , K =





Kss Ksf

Kfs Kff



 ,

and P is the interaction forces applied on the nodes f as

P =
{

0, Pf

}T
.
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Figure 6.4 Spring-Structure Model with Flexible Foundation under Excitation
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x and I are

x =
{

xs, xf

}T
, I =

{

Is, If

}T
,

where

xs =
{

x1
s , x2

s , · · · xN
s

}T
, xn

s =
{

xn
s ,1

, xn
s ,2

, · · · , xn
s ,6

}T
,

xf =
{
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f
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f

, · · · xM−1
f

}T
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f
=
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, xm
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, · · · , xm
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}T
,
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1
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2
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s
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1
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2
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f

}T
,
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














.

xn
s and xm

f
are the relative displacement vector of structure node n and foundation node

m, respectively. Is and If are the influence matrix of structure nodes and foundation

nodes, respectively. xn, yn, and zn are the coordinates of the nth node in a Cartesian

coordinate system, and xo, yo, and zo represent the coordinates of the node O.

The first block row of equation (6.26) can be expressed as

Ms ẍs(t) + Css ẋs(t) + Kss xs(t) = −MsIs üO(t) − Csf ẋf(t) − Ksf xf(t). (6.27)
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As stated in Section 6.1.2, the damping term Csf ẋf(t) is usually relatively small. Neglect-

ing the damping term on the right side and introducing x(t)=Xeiωt and u=Ueiωt lead

to

(−ω2Ms + iωCss + Kss)Xs = ω2MsIs UO − Ksf Xf. (6.28)

Applying the modal transformation Xs =8sQs, where 8s is the modal matrix obtained

by modal analysis without the soil springs when all the foundation nodes are constrained,

substituting it into equation (6.28), and multiplying 8T
s from the left yield

(−ω28T
s Ms8s + iω8T

s Css8s + 8T
s Kss8s)Qs = ω28T

s MsIs UO − 8T
s Ksf Xf. (6.29)

Employing the orthogonality gives

diag
{

−ω2 + i2ζ
n, s

ω
n, s

ω + ω2
n, s

}

Qs = ω2Ŵs UO − �s Xf. (6.30)

where

Ŵs =
8T

s MsIs

8T
s Ms8s

, �s =
8T

s Ksf

8T
s Ms8s

.

Hence,

Xs = ω28sHsŴs UO − 8sHs�s Xf. (6.31)

Since the relative displacement x=u−IuO, Us is equal to

Us = ω28sHsŴs UO − 8sHs�s (Uf − If UO) + Is UO , (6.32)

which can be rewritten as

Us = aUf + bUO , (6.33)

where

a = −8sHs�s, b = ω28sHsŴs + 8sHs�sIf + Is.

The second block row of equation (6.25) is

Mf ẍf(t) + Cff ẋf(t) + Kff xf(t) + Kfs xs(t) = −MfIf üO(t) − Cfs ẋs(t) + Pf. (6.34)

Similarly to the first block row, neglecting damping term Cfs ẋs(t), and introducing x(t) =
Xeiωt and u=Ueiωt result in

(−ω2Mf + iωCff + Kff)Xf + Kfs Xs = ω2MfIf UO + Pf. (6.35)
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According to equation (6.31), Xs is replaced in equation (6.35) as

(−ω2Mf + iωCff + Kff − Kfs8sHs�s)Xf = ω2(MfIf − Kfs8sHsŴs)UO + Pf. (6.36)

Substituting the modal transformation Xf =8fQf into equation (6.36), where 8f is the

modal matrix obtained by modal analysis without the soil springs when all the structure

nodes and node O are constrained, and multiplying 8T
f

from the left yield

1Qf = ω28T
f
(MfIf − Kfs8sHsŴs)UO + 8T

f
Pf. (6.37)

where

1 = −ω28T
f

Mf8f + iω8T
f

Cff8f + 8T
f

Kff8f − 8T
f

Kfs8sHs�s8f. (6.38)

Based on the the orthogonality, 1 can be expressed as

1 = 8T
f

Mf8f diag
{

−ω2 + i2ζ
n, f

ω
n, f

ω + ω2
n, f

}

− 8T
f

Kfs8sHs�s8f. (6.39)

Then, Xf can be obtained as

Xf = ω28f1
−18T

f
(MfIf − Kfs8sHsŴs)UO + 8f1

−18T
f

Pf. (6.40)
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Figure 6.5 Interaction Forces in Spring-Structure Model
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6.1 substructure method

The interaction forces applied on the basement Pb = Sbb
f (Ub

f −Ub), as shown in Figure

6.5, can be re-arranged as






Pf

PO






=





SF
ff

SF
fO

SF
Of

Sf
OO











UF
f
−Uf

UO
f −UO






, (6.41)

where Pf and PO are (6M−6)×1 and 6×1 vectors, respectively. SF
ff

is a (6M−6)×(6M−6)

matrix, SF
fO

is a (6M − 6)×6 matrix, SF
Of

is a 6×(6M − 6) matrix, and Sf
OO is a 6×6 matrix.

Replacing the relative displacement by xf =uf −If uO, and substituting the interaction

forces into equation (6.40) gives

Uf = ω28f1
−18T

f
(MfIf − Kfs8sHsŴs)UO + If UO+

8f1
−18T

f

[

SF
ff

(

UF
f
−Uf

)

+ SF
fO

(

UO
f −UO

) ]

, (6.42)

which can be rewritten as

(

E + 8f1
−18T

f
SF

ff

)

Uf

+
[

−ω28f1
−18T

f

(

MfIf − Kfs8sHsŴs

)

− If + 8f1
−18T

f
SF

fO

]

UO

= 8f1
−18T

f
SF

ff
UF

f
+ 8f1

−18T
f

SF
fO

UO
f , (6.43)

where E is a (6M − 6)×(6M − 6) unit matrix.

Based on Newton’s second law, the dynamic equilibrium equation of a sub structure-

foundation system can be obtained in six directions. It is expressed as

−ω2
(







Is

If







T 



Ms 0

0 Mf











Us

Uf






+ MO UO

)

= Ff + FO, (6.44)

where MO is the mass matrix of the node O. Then the first term represents the resultant of

the foundation (excluding node O) and structure’s motion about the origin O, the second

term represents the resultant of the node O’s motion, Ff is the spring force matrix at

foundation nodes (excluding node O), and FO denotes the force vector acting on the node

O. According to equation (6.41), they are equal to

Ff =I
T
f Pf =I

T
f

[

SF
ff

(

UF
f
−Uf

)

+ SF
fO

(

UO
f −UO

) ]

,
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6.1 substructure method

FO =PO =SF
Of

(

UF
f
−Uf

)

+ Sf
OO

(

UO
f −UO

)

.

Therefore, equation (6.44) can be rewritten as

(
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(6.45)

Introducing equation (6.33) leads to

[
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I

T
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I
T
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T
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Assembling equations (6.25), (6.43) and (6.46) leads to

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where

Sff = E + 8f1
−18T

f
SF

ff
,

SfO = −ω28f1
−18T

f

(

MfIf − Kfs8sHsŴs

)
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−18T

f
SF

fO
,
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+ SF

Of

)

−ω2
I

T
s Msa,

SOO = −ω2MO +
(

I
T
f SF

fO
+ Sf

OO

)

−ω2
I

T
s Msb,

KF
ff

= 8f1
−18T

f
SF

ff
, KF

fO
= 8f1

−18T
f

SF
fO

,

KF
Of

= I
T
f SF

ff
+ SF

Of
, KF
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T
f SF
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OO .

Then one obtains

Ub = T Ub
f, (6.48)
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6.1 substructure method

where

T = S
−1KF.

Special Case 1: Rigid Foundation with Spatially Varying Ground Motions

For a structure with a rigid foundation under multi-support excitations, one has uf = If uO

and xf = 0. Then equation (6.32) becomes

Us = S
fb
R UO , (6.49)

where

S
fb
R = ω28sHsŴs + Is.

When the relative displacement of node f is 0, equation (6.35) is simplified as

Kfs Xs = ω2MfIf UO + Pf. (6.50)

Substituting the interaction forces (6.41) and equation (6.49) lets equation (6.50) become

SF
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[
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(

S
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)
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]
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f
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f . (6.51)

At the same time, the equilibrium equation (6.46) becomes

[
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Assemble equations (6.51) and (6.52) gives
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where

SR1,ff = SF
ff

, SR1,fO = −ω2MfIf + Kfs

(

S
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)

+ SF
Of
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6.1 substructure method

KF
R1,ff

= SF
ff

, KF
R1,fO

= SF
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,

KF
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= I
T
f SF
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+ SF

Of
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R1,OO
= I

T
f SF

fO
+ Sf

OO .

Then one obtains

Ub = TR1 Ub
f, (6.54)

where

TR1 = S
−1
R1 KF

R1.

Special Case 2: Rigid Foundation with Uniform Seismic Input

For a structure with a rigid foundation under uniform seismic input, both the Ub
f and Ub

are the same at each point, and can be represented by the motion at a single point, i.e., UO
f

and UO . In this case, only the second block row of equation (6.53) is needed. It can be

expressed as

SR2 UO = KF
R2 UO

f , (6.55)

where

SR2 =
(
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T
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)
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T
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ff
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T
f SF

fO
+ Sf

OO .

Both SR2 and KF
R2 are 6×6 matrices. In SR2, the first term is the total inertia forces of

the foundation-structure system, while the second term and KF
R2 represent the dynamic soil

stiffness under the entire foundation.

Then one obtains

UO = TR2 UO
f , (6.56)

where

TR2 = S
−1
R2 KF

R2.
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6.2 foundation level input response spectra (flirs)

6.2 Foundation Level Input Response Spectra (FLIRS)

FLIRS for the structure with flexible foundation is needed to be taken as the seismic input

in a fixed-base analysis instead of considering a coupled soil-structure analysis using FIRS

as the seismic input.

As demonstrated in Section 3.1.4, the seismic input in the fixed-base model and the free

field motion can be bridged by the translational responses. Hence, one obtains the FLIRS

with a flexible foundation as

U
b
fb = T Ub,T

f , (6.57)

where T is a complex transfer matrix from FIRS (generated by Ub,T
f ) to FLIRS (generated

by U
b
fb ), given as

T = T
TT

+
[(

S
TT

fb
)

T
S
TT

fb
]−1

(

S
TT

fb
)

T
S
TR

fb
T
RT

, (6.58)

where T and T
TT

are 3M×3M, T
RT

is 3N×3M, and S
TT

fb is 3N×3M.

For the rigid foundation, the transfer function TR is

TR = T
TT ,R2 +

[(

S
TT

fb
,R

)
T
S
TT

fb
,R

]−1
(

S
TT

fb
,R

)
T
S
TR

fb
,R T

RT ,R2, (6.59)

where TR and T
TT ,R2 are 3×3, T

RT ,R2 is 3N×3, and S
TT

fb
R is 3N×3.

Based on the transformation from response spectra SA to fourier amplitude spectra as

stated in Section 2.1, the fourier amplitude spectra of free field motion Ub
f

,T can be obtained

from Sf
A. Then one obtains

Ub
f

,T = I
F

UF
m, (6.60)

where UF
m can be any element of Ub

f
,T, e.g., the free field motion at node O in the first

horizontal direction, and I
F

is given by

I
F =

Ub
f

,T

UF
m

. (6.61)

Finally, FLIRS with a flexible foundation under multi-support excitations is obtained as

U
b
fb = Tm UF

m, (6.62)
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6.2 foundation level input response spectra (flirs)

where Tm is the transformed complex transfer matrix from FIRS to FLIRS, given as

Tm = TI
F

, (6.63)

where Tm is 3M×1.

The fixed-base analysis of the structure under the excitation of FLIRS U
b
fb given by

equation (6.62) can give exactly the same FRS as a full coupled soil-structure analysis under

the excitation of FIRS Ub,T
f .

Based on the theory of random vibration, Equations 3.41 and 3.42, the ratios between

the mean-square responses of a SDOF oscillator under base excitation UFB
b

and those under

base excitation Ub
f

,T can be calculated by

R
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ÜÜ
(ω)dω

∫ ∞

−∞

∣
∣ω2

0 H0(ω)
∣
∣

2
S

f

ÜÜ
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. (6.64)

According to Equations 3.44 and 3.45, neglecting the difference of of peak factors leads

to FLIRS as

S
fb
A (ω0, ζ0) = R(ω0, ζ0) · Sf

A(ω0, ζ0), (6.65)

in which R(ω0, ζ0) are the modification factors from FIRS to FLIRS.

6.2.1 Generating FRS Considering SSI

For a structure in a nuclear power plant with its foundation embedded in layered soil, a

procedure for generating FRS considering SSI is illustrated in Figure 6.6 and is summarized

as follows:

1. Consider the layered soil as a free-field. With seismic input applied at the bedrock, a site

response analysis is performed to obtain the Foundation Input Response Spectra (FIRS)

Ub
f or Ub,T

f at the elevation of the foundation.
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2. Establish a model of the layered soil. Determined the dynamic stiffness matrices of the

free-field is Sbb
f .

3. Set up a finite element model of the structure and the foundation. Perform a modal

analysis to obtain the modal frequencies ωn, modal damping coefficients ζn, modal

matrix 8, and matrix of modal contribution factors Ŵ, and get the stiffness matrix Kss

and Ksb.

4. Determine the Foundation Level Input Response Spectra (FLIRS):

❧ S
fb = ω28s Hs Ŵ + L =





S
TT

fb
S
TR
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S
RT

fb
S
RR

fb





6N×6M

❧ S =





Sff SfO

SOf SOO





6M×6M

❧ K =





KF
ff

KF
fO

KF
Of

KF
OO





6M×6M

❧





T
TT

T
TR

T
RT

T
RR





6M×6M

= S
−1KF

❧ Transfer matrix: T = T
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+
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)
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)

T
S
TR

fb
T
RT

❧ FLIRS modification factor: R2(ω0, ζ0) =

∫ ∞
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❧ FLIRS: S
fb
A (ω0, ζ0) = R(ω0, ζ0)S

f
A(ω0, ζ0)

5. The FLIRS S
fb
A (ω0, ζ0) are input to the fixed-base model of the structure to generate the

required FRS by the direct spectra-to-spectra method.
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6.3 Application and Parametric Study on Foundation
Flexibility

The SSI effect is determined by both the the structure properties and dynamic soil stiffness.

In this section, the SSI analysis with flexible foundation is performed, and parametric study

is conducted to illustrate the influence of foundation flexibility in the determination of

FLIRS. A rigid foundation and six flexible foundations are considered in this study to show

the impact of foundation flexibility.

The same reactor building employed in Section 3.2 is utilized in this study.

Foundation input response spectra

The R.G. 1.60 response spectra (USNRC, 1973) are assumed as free field motions at foun-

dation level, i.e., FIRS. The peak ground accelerations are anchored to 0.3g and 0.2g for the

horizontal and vertical directions, respectively. The seismic input is assumed to be uniform

under the foundation in this study, i.e., FIRS at each foundation point are the same.

Foundation Information

The base slab is discretized into massless shell elements, and the base of the superstructure

connects to the center of the circular foundation. There are 112 plate elements for the

foundation, and the lumped masses are assigned at 9 points in the foundation, i.e., points

O and F1∼F8, as shown in Figure 6.7 and Table 6.1. The flexible foundations are assigned

3.30x12 m

3.
30

x1
2 

m

F3 O

F4

F2

F1

F7 F8

F5F6

Figure 6.7 Mass distribution of flexible foundation
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different modulus of elasticity, given in Table 6.2, to present the influence of varying

foundation flexibility on SSI effect. The value in foundation 1 is the concrete modulus of

elasticity.

Table 6.1 Flexible foundation information of reactor building model

Node Mass (×106 kg)
Moment of inertia (×106 kg ·m2)

Ixx = Iyy Izz

O, F1∼F4 1.2 16.6 33.3

F5∼F8 0.6 4.16 8.32

Table 6.2 Modulus of elasticity of foundations

Foundation Number 1 2 3 4 5 6

Elasticity Modulus (Pa) 4×1010 4×1011 4×1012 4×1013 4×1014 4×1015

Soil Property

The underlying site consists of 2 infinite soil layers resting on a homogeneous half-space.

The unit weight, Poisson’s ratio, damping ratio, thickness of the top layers, and Vs are

shown in Figure 6.8.

Developing Foundation Level Input Response Spectra

A modal analysis is performed for the fixed-base model by ANSYS, which provides the

structure information, including natural frequencies, mode shapes of all the modes, mass

matrix, and influence matrix. The damping ratio of the structure is taken as 5%.

The transfer matrix T is defined by equation (6.58), in which the first term T
TT ,11

indicates the translational component and the second term accounts for the rotational

component. The modulus of entire transfer function in horizontal direction T11 and its

translational component are shown in Figure 6.9 for the rigid foundation and Figure 6.10

for foundation 1. Compared to the translational component, the T11 varies significantly

because of the rotation component due to SSI effect. It is demonstrated that their difference
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Figure 6.8 The soil layers and properties

is pronounced in the frequency range of 1 Hz to 10 Hz, which covers the frequencies of the

dominant structural modes. Therefore, the rotational movement of foundation during the

ground motion cannot be neglected.

The frequencies corresponding to the peaks in Figures 6.9 and 6.10 can be interpreted as

the natural frequencies ωsF of the entire soil-structure system (or the equivalent synthesized

mass-spring-damper system). For instance, the first peak of the soil-structure system, is

located at 2.24 Hz for foundation 1, and 4.07 Hz for the rigid foundation, which can be

explained as a result of the frequency shifting of the fixed-base model from 4.44 Hz caused

by the SSI effect.

T11 for the 6 foundations are shown in Figure 6.11. The main difference appears during

1 Hz to 5 Hz resulting from different foundation flexibility.

FLIRS are generated for the structures with different foundations as shown in Figure 6.12.

Comparing to the fixed-base motion FIRS, FLIRS changes significantly. Especially from

1 Hz to 5 Hz, a new peak is observed. When the foundation becomes more flexible, the

corresponding frequency point of the peak decreases, and the peak value becomes larger.
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Figure 6.12 FLIRS by different foundation flexibility
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6.4 summary

The FLIRS with foundation 6 is almost the same as FLIRS with rigid foundation. As long as

the foundation is not perfectly rigid, the resulting FLIRS is different from rigid foundation

as shown in Figure 6.12 and Table 6.3.

Table 6.3 Peak of FLIRS for all foundations

Foundation Number 1 2 3 4 5 6 rigid

FLIRS peak value (g) 9.46 8.90 7.62 3.40 1.70 1.53 1.50

FLIRS peak frequency location (Hz) 2.24 2.29 2.63 3.55 3.98 3.98 3.98

The foundation and the supporting soil springs can be defined as an interface system

between structures and sites. So at the same site, a softer foundation leads to a more flexible

interface system and soil spring-foundation-structure system. Thus, the structure rotation

is more severe as a result of SSI effect. Hence, ωsF decreases and the peak value increases as

shown in Figure 6.12. It is observed that the flexible foundation leads to a higher peak, but it

also undergoes lower values in specific frequency domain. For instance, the values between

3.5 Hz to 4.5 Hz of FLIRS with foundation 1 is smaller than FLIRS with a rigid foundation.

Generating Floor Response Spectra

FRS at nodes 4 and 5 are generated by the direct method as shown in Figures 6.13 and

6.14. FRS changes significantly when flexible foundation is considered. Compared to the

fixed-base case, the peak between 5 Hz and 6 Hz of FRS considering SSI is smaller. This is

caused by the smaller values in FLIRS between 5 Hz and 6 Hz. Besides that, an extra peak

appears at ωsF between 2 Hz and 4 Hz due to SSI effect.

It shows that a flexible foundation will not lead to a conservative FRS than a rigid

foundation, since the FRS with a flexible foundation is smaller than rigid foundation in

some frequency points, e.g., between 3.5 Hz to 4.5 Hz for foundation 1.

6.4 Summary

In this chapter, a substructure method is developed to conduct the SSI analysis consid-

ering the flexible foundation under the excitation of spatially varying ground motions.
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6.4 summary

Depending on the properties of structure and soil, the tri-directional response spectra

are determined by modifying the free-field ground motion. The modified response spec-

tra, FLIRS, is considered as the seismic input, which is integrated with SSI effect, to the

fixed-base structure for generating.

Numerical examples are performed to illustrate the proposed method and study the in-

fluence of foundation flexibility in SSI analysis. FLIRS is generated for different foundations,

i.e., a rigid foundation and foundations with a couple of elasticity modulus. It is recognized

that FLIRS varies dramatically with changing elasticity modulus of foundations. Some

conclusions are obtained:

❧ The ground motion is modified noticeably because of SSI effect. The numerical

example illustrates that the spectral acceleration is scaled significantly at certain fre-

quencies, and the natural frequency of the soil-structure system shifts to a smaller

value compared with the fixed-base structure due to SSI effect.

❧ When the foundation and site interface system become more flexible, e.g., the foun-

dation is softer, the amplitude of the peak resulting from SSI is larger, and the natural

frequency of the soil-structure system is smaller.

❧ Since FLIRS is amplified and de-amplified in certain frequency domain for a specific

foundation and soil site, it is necessary to establish the exactly realistic structure-

foundation model. Otherwise, the resultant FLIRS will be underestimated at some

frequency points.

In summary, the flexible foundation and the excitation of spatially varying ground

motions are considered in SSI analysis by the proposed analytical method. Based on

dynamic soil stiffness and the modal information of structures and foundations, FLIRS can

be obtained conveniently to compute the FRS, which shows the seismic demand for the

equipment in the supporting structure.
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7C H A P T E R

Conclusions and Future Research

Soil-Structure Interaction (SSI) analysis is essential for the generation of Floor Response

Spectra (FRS), which represent the demand for seismic design of secondary systems in

nuclear power facilities. The objective of this study is to develop an approach to address

SSI effect with flexible foundations and seismic input at multiple points in the generation of

Floor Response Spectra (FRS). FRS is developed after considering SSI effect accurately and

efficiently in this study. The uncertainty in soil properties and earthquakes are addressed

to generate a hazard consistent FRS with a specific Return Period (RP). Some contributions

made in this study are summarized as follows.

7.1 Generation of Dynamic Soil Stiffness

A semi-analytical method is developed for accurately and efficiently generating dynamic

soil stiffness of rigid foundations and flexible foundations. Given the soil properties, the

Green’s influence function is formulated analytically from wave propagation functions.

Based on Boundary Element Method (BEM), the dynamic stiffness of foundations with

arbitrary shapes is generated. Some features and conclusions are summarized as follows:

❧ As a semi-analytical method, the Green’s influence function is derived analytically,

and the soil-foundation interface is treated by numerical method BEM, which models

the unbounded soil properly. The dynamic soil stiffness can be generated accurately.

It bridges the site response analysis and SSI analysis, i.e., it links these two steps by
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7.2 developing framework to construct uniform hazard flirs

calculating the dynamic soil stiffness for SSI analysis from the strain-compatible soil

properties given by site response analysis.

❧ The Green’s influence function is formulated rigorously based on wave propagation

function. Once the soil properties are known, it is convenient to calculate the Green’s

influence function. Each soil layer is treated as a single element in the formulation

of Green’s influence function, and only the soil-foundation interface is discretized by

BEM. Thus only a limited number of elements are involved in the proposed method,

which guarantees the efficiency of the proposed method.

❧ The application of BEM adapts the proposed method to foundations with arbitrary

shapes or multiple components. Thus, it can provide the 6M×6M dynamic soil

stiffness matrix for SSI analysis with flexible foundations.

❧ The influence of dynamic soil stiffness on the generation of FRS is examined. It affects

the resultant FRS noticeably.

7.2 Developing Framework to Construct Uniform
Hazard FLIRS

This study proposes a fully probabilistic method for addressing the uncertainty of seismic

input and soil properties in the generation of FRS. The uncertainty is propagated from site

response analysis to SSI analysis consistently, and a uniform hazard FLIRS is developed.

Some remarkable features and advantages of the proposed method are summarized as

follows:

❧ The uniform hazard FLIRS and FRS with specific annual exceedance probability are

generated. Compared to the current approach, The seismic demand for secondary

system is reduced significantly. The uniform hazard FRS provide a safer and more

economical demand for seismic design. Meanwhile, the FRS may be underestimated

by the current method at some frequency range, which is overcame by the proposed

method.

❧ A realistic and continuous shear wave velocity (Vs ) distribution is proposed to replace

the current treatment of uncertainty which is not continuous and assumes the Vs in
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7.3 ssi analysis considering foundation flexibility and inputs at multiple points

all layers are fully correlated. The difference of FRS generated by the proposed pa-

rameters is small and negligible. The uncertainty in soil properties can be accounted

reasonably.

❧ Sensitivity study is performed on the correlation coefficient and the standard deriva-

tion of Vs. The results show that their influence on FRS is minor. The FRS generated

by different standard derivation are almost the same as each other. There is only a little

difference around the peak. For correlation coefficients equal to 0 or 1, the change of

FRS is not significant. Hence, the correlation coefficient and the standard derivation

of Vs are not important parameters in uncertainty analysis.

7.3 SSI Analysis Considering Foundation Flexibility and
Inputs at Multiple Points

For nuclear power plants, the stiffness of foundations may be close to the values of the

external and internal structures. Thus the foundation flexibility can not be neglected. Be-

sides, the seismic excitation may be different at side walls and foundations for fully or partly

embedment reactors. A substructure method is proposed to perform SSI analysis con-

sidering the flexible foundation under the excitation of spatially varying ground motions.

Depending on the properties of structure and soil, the three dimensional response spectra

are determined by modifying the free-field ground motion. Some remarkable features and

advantages of the proposed scaling method are summarized as follows:

❧ The SSI effect is integrated into Foundation Input Response Spectra (FIRS), which

is free field motion and obtained from site response analysis. The modified ground

motion is called Foundation Level Input Response Spectra (FLIRS), which can be used

as the seismic input for fixed model to generate FRS by the direct spectra-to-spectra

method. Thus, the SSI effect is addressed in the resultant FRS.

❧ The foundation flexibility is considered in the proposed method, by which the SSI

analysis is more realistic. It is observed that, as long as the foundation is not perfectly

rigid, the foundation flexibility can not be neglected. Meanwhile, seismic excitation is
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7.4 future research

imposed at the representative points of flexible foundations. This enables the analysis

with spatially varying ground motions.

❧ Parametric study is performed to illustrate the influence of foundation flexibility on

SSI effect. FLIRS is generated for different foundations, i.e., a rigid foundation and

foundations with a couple of elasticity modulus. It is recognized that FLIRS varies

dramatically with changing elasticity modulus of foundations. When the foundation

becomes more flexible, the amplitude of the peak resulting from SSI is larger, and the

natural frequency of the soil-structure system is smaller. It is demonstrated that the

exactly realistic model of structures, and foundations is necessary for SSI analysis.

❧ The influence of SSI effect on FRS is studied. FRS is amplified at the natural frequency

of the soil-structure system, and the seismic demand of secondary system increases.

Meanwhile, FRS will decrease at specific frequency points.

❧ The proposed substructure method is analytically formulated, so that it is conve-

nient to implement by a programming language, e.g., MATLAB or Python. Once the

dynamic soil stiffness and structure modal information are provided, FLIRS can be

generated efficiently. Besides, the soil and structure are analyzed separately, which

means the change of system only leads to repeated work of relevant part. The reanal-

ysis of the entire system is avoided.

7.4 Future Research

In the seismic analysis of secondary systems, FRS can be obtained by the direct spectra-to-

spectra method efficiently and accurately without variability. The fixed model considered

in the current direct spectra-to-spectra method assumes that the foundation is rigid and

the three dimensional seismic input is the same at any location of the foundation. For

foundations with fully or partly embedment, seismic input not only comes from the bottom

foundation, but also from the side walls, which leads to multiple points excitation. In future

research, the direct spectra-to-spectra method needs to be extended to generate FRS under

multiple seismic input.
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7.4 future research

In the proposed substructure method, the surrounding soil, can be called interface

elements, is assumed to have the same properties as the site. Actually, the ground motion

at the foundation side of interface elements is the FLIRS which is generated by modifying

FIRS due to SSI effect, while the excitation at the other side is the free field motion FIRS.

Since FLIRS is amplified from FIRS in certain frequency domain, the properties of interface

elements will be different from the free field. This will influence the dynamic soil stiffness

and SSI effect. Thus, further studies needs to consider how the interface elements is

influenced by SSI effect, and how to integrate this influence into SSI analysis.
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