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Abstract

This thesis is part of the research activities of the Living Architecture System Group
(LASG). LASG develops immersive, interactive art sculptures combining concepts of ar-
chitecture, art, and electronics which allow occupants to interact with immersively. The
primary goal of this research is to investigate the design of effective human-robot interac-
tion behaviours using reinforcement learning. In this thesis, reinforcement learning is used
adapt human designed behaviours to maximize occupant engagement.

Algorithms were tested in a simulation environment created using Unity. The system
developed by LASG was simulated and simplified human visitor models are designed for
the tests. Three adaptive behaviour modes and two exploration methods were compared in
the simulated environment. We showed that reinforcement learning algorithms can learn
to increase engagement by adapting to visitors’ preferences and exploring with parameter
noise performed better than action noise because of wider exploration.

A field study was conducted based on the LASG’s installation Aegis, Transforming
Space exhibition at the Royal Ontario Museum (ROM) from June 2nd to October 8th, 2018.
The experiment was conducted in a natural setting where no constraints are imposed on
visitors and group interaction is accommodated. Experimental results demonstrated that
learning on top of human designed pre-scripted behaviours (PLA) is better at increasing
visitors engagement than only using pre-scripted behaviours (PB). Visitor responses to the
GodSpeed standardized questionnaire suggested that PLA is more highly rated than PB
in terms of Likeability and interactivity.
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Chapter 1

Introduction

Human-Robot Interaction (HRI) addresses the understanding, design, and evaluation of
robotic systems for use by or with humans. These robotic systems interact with humans
through various forms of communication in different environments. HRI involves both
physical and social interactions. The physical HRI focuses on application scenarios where
direct contact between humans and robots is crucial. Research work such as cooperative
robots[2][3], teleoperation surgery[4] and rehabilitation[5][6][7] consider physical HRI. On
the other hand, the social HRI focuses more on the social, emotive, and cognitive aspects
of interactions. According to the proximity between humans and robots, HRI can be
categorized as remote or proximate[8], and most of the social HRI work belongs to the
latter.

Interactive art sculptures designed by the Living Architecture Systems Group (LASG)
and Philip Beesley Architecture Inc. (PBAI)1 provide us with an opportunity to study
HRI from the social perspective. Combining concepts in art, architecture and engineering,
PBAI creates complex art sculptures at architectural scales which integrate computers,
sensors and actuators allowing spectators to have immersive interactions. The aim of
LASG’s systems is to encourage humans to think differently about their environments.
This thesis will be developed upon the Aegis installation at Royal Ontario Museum.

The aim of interactive systems such as the sculptures created by LASG is to engage
humans. Generating and measuring human engagement becomes increasingly difficult
when the interaction happens in a natural setting with a group of spectators. Responsive
behaviours are often manually crafted by human designers, which is relatively easy for
simple systems with small scales. However, for a complex system like Transforming Space

1PBAI/LASG website: http://philipbeesleyarchitect.com

1
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that has hundreds of actuators and sensors, designing an optimal set of behaviours that
maximize engagement is time-consuming and difficult. Therefore, autonomous generation
of behaviours could be beneficial. At the same time, interactive systems like those of the
LASG which require long-term, continuous interaction, face another challenge. During
such extended periods of interaction, the characteristics of the humans interacting with
the system and the environment may change by a great extent over time, e.g., viewers can
be adults at one time and children at another. Therefore, being able to adapt to the non-
stationary interaction environment is important. Additionally, invariable behaviours may
become less attractive over time as spectators become more familiar with the system. This
requires the system to change its behaviours autonomously over time in order to maintain
viewer interest and engagement.

To address these challenges, we introduce reinforcement learning to the interactive sys-
tem. Reinforcement learning solves problems that can be modelled as Markov Decision
Processes (MDP). An MDP consists of a set of states S, a set of actions A, state transition
probability T , rewards R and a reward discount factor γ. In reinforcement learning, an
agent learns desired behaviours through trial-and-error interactions with its environment.
At each time step t, an agent receives an observation of the current state St of the en-
vironment, and then chooses an action At as output. This action is then enacted on the
environment, transitioning the environment into a new state St+1. A reward Rt+1 is re-
turned to the agent. The interaction diagram is provided in Figure 1.1. A single interaction
experience is (St, At, Rt+1, St+1).

Figure 1.1: The agent-environment interaction.[1]

The interactive behaviour design is sophisticated and often requires knowledge of the
visual representations of systems and the context of interactions. Human experts often
embed such knowledge in their behaviour designs, which may be beneficial to utilize by
the autonomous behaviour generating system. To take advantage of this expert knowledge,
instead of automating the composition of interactive behaviours entirely (direct control over
all actuators and sensors), we propose to use a reinforcement learning agent that acts on
top of human designed interactive behaviours. We decompose and parameterize the key
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components of human designed behaviours and let the learning agent learn the parameters
for these behaviours. By doing so, we exploit the design of interactive behaviours built
based on human expert knowledge, while enabling the system to constantly evolve and
adapt to visitor preferences during the long term interaction.

Meanwhile, reinforcement learning is generally studied in static environments such as
Atari[9] and OpenAI Gym[10] with stationary rewards and state transition probability.
However, as stated above, social HRI proceeds in a natural setting where this static en-
vironment assumption does not always hold. Further, interactions in the natural setting
happen less frequently and less regularly than in standard RL environments. This leads to
sparse rewards for the learning agent and makes learning more difficult. By deploying RL
on the living architecture system, we investigate the research problem of applying RL in a
non-stationary environment with sparse rewards.

1.1 Contributions

The contributions of this thesis lie in the application of reinforcement learning to interactive
environments in natural settings. They are listed in the following:

• A learning algorithm that uses human expert knowledge about interactive behaviours
is formulated to bootstrap the learning and reduce the dimensionality of the explo-
ration space.

• Simulations are performed for validation and we show that in a simplified interactive
environment, learning agents are capable of adapting to visitor preferences. The
ability to learn is affected by different adaptive behaviour generating modes.

• A field experiment was conducted on the Aegis installation together with Lingheng
Meng, a PhD candidate and Adam Francey, a Master candidate at the University
of Waterloo. In this joint work, Adam implemented a centralized network and pre-
scripted behaviour. Lingheng implemented learning agents in two adaptive behaviour
modes, Single Agent Raw Action Space (SARA) and Agent Community Raw Action
Space (ACRA), and was the lead on the data analysis. I implemented the learn-
ing agent in Parameterized Learning Agent (PLA) mode and helped with the data
analysis.
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1.2 Outline

The thesis is organized as follows:

Chapter 2 provides an overview of the related work regarding reinforcement learning al-
gorithms and their applications in human-robot interaction, interactive arts and interactive
systems in public spaces.

In Chapter 3, a detailed description of the testbed, Aegis installation, and the proposed
method of generating interactive behaviours are given.

In Chapter 4, the design of the simulator and visitor models are described, followed
by simulations of learning algorithms. Different exploration methods, adaptive behaviour
modes and their relationship with different attraction models are compared in the analysis
of simulation results.

In Chapter 5, we firstly explain the experimental and data processing procedures. Then
we discuss the metrics used in evaluations. After that, analysis of the visitor engagement
level and responses from the user study are presented.

Finally, conclusions and discussion of future work are presented in Chapter 6.
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Chapter 2

Related work

In this chapter, we review the related work in reinforcement learning in discrete and contin-
uous action spaces. Then, various application contexts of reinforcement learning in human
robot interaction are reviewed. After that, we summarize the relevant works in interactive
arts. A summary is provided at the end of the chapter.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a machine learning technique where the learner learns
to map situations to actions in order to maximize a numerical reward signal through
trial-and-error interactions. RL is generally categorized into two classes, model-based and
model-free. Model-based RL learns an environment model representing the state transition
probability distribution associated with Markov Decision Process (see Chapter 1). Model-
free reinforcement learning does not assume any environment model and learns the policy
directly through interactions. Value-based and policy-based RL are the two approaches in
model-free reinforcement learning. In value-based RL, the value function V (s) indicates
how good the current state s is for the agent. An alternative form of the value function is
the Q-function Q(s, a), which represents how good it is for the agent to take action a when
in state s. On the other hand, the policy-based RL learns a policy function π(a|s), which
is a probability distribution p(a|s) representing the chance of taking action a in state s.

State-Action-Reward-State-Action (SARSA) algorithm[1] and Q-learning[11] are exam-
ples of value-based approaches, in which the Q function is learned and used for deriving a
policy. These two algorithms have been used in many HRI works so far[12][13][14][15][16][17][18].
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As for policy-based methods, the REINFORCE algorithm[19] is an instance of using a
stochastic policy function consisting of differentiable functions with trainable parameters.

A combination of both value and policy functions has also been proposed, such as
Actor-Critic[1]. In Actor-Critic, the critic is a state value function evaluating current
states and the actor is a policy function producing actions. Asynchronous Advantage
Actor-Critic (A3C)[20] is an improvement of Actor-Critic which uses multiple actors to
collect experiences. In A3C, the critics learn the value function while multiple actors are
trained in parallel and synchronize the global parameters from time to time. Here, the
actors simultaneously work in different duplicates of one environment. However, in our
application, it is impossible to have multiple copies of the interaction environment at the
same time.

All works mentioned above are in discrete action space except the REINFORCE algo-
rithm. In our case, the action space of the living architecture system is continuous. For
continuous action space, Silver et al. proposed the Deterministic Policy Gradient (DPG)
algorithm[21] that learns a continuous deterministic policy function instead. The explo-
ration is realized by adding noise to generated actions.

Deep neural networks allow us to create more complex models as the state and action
space grow larger and/or become continuous, which allow the agents to handle more com-
plex situations and generate complex behaviours. In discrete action space, Deep Q-Network
(DQN)[22] represents the value function in Q-learning with a deep neural network capable
of handling large state spaces. Furthermore, DQN introduces a replay buffer to decorre-
late the experience, and a target network to reduce instability of training. In continuous
action space, Lillicrap et al. propose Deep Deterministic Policy Gradient (DDPG)[23] to
improve learning stability based on DPG, using a replay buffer and target networks for
both actor and critic. Other continuous action space RL algorithms include Trust Region
Policy Optimization (TRPO)[24] and Proximal Policy Optimization (PPO)[25]. TRPO
finds optimal updates within a small region (Trust Region) to improve sample efficiency
while maintaining training stability. PPO replaces the Trust Region with a clip function
that limits the difference between the new and old policy.

2.2 RL in Human-Robot Interaction

Reinforcement learning algorithms have been used in a variety of human-Robot Interaction
contexts and the living architecture system in this thesis is designed for social behaviour
interactions. In [26], kinetic movements of feather-like devices are adapted towards user
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preferences through an RL framework which aims at raising positive emotions of the par-
ticipants. In [27], Mitsunaga et al. use a policy gradient reinforcement learning (PGRL)
algorithm on a robot to learn user preferences regarding interaction distance, gaze meeting,
motion speed and timing. Barraquand et al.[12] create a robot that learns to behave po-
litely in social circumstances. In this study, the reward is directly provided by human users.
Chan et al. [28][29] develop a Curiosity-Based Learning Algorithm (CBLA) and apply it
to LAS to automatically generate behaviour based on a computational notion of curiosity.
The intrinsic motivation of CBLA, based on Intelligent Adaptive Curiosity (IAC)[30][31],
allows for continuous evolution of behaviours. These studies were all conducted with one
participant at a time, but in our case, we have to handle group interactions.

Various information can be extracted to measure engagement from humans’ behaviours
that naturally happens in HRI. The simplest way to measure engagement is to use prox-
imity. For instance, Papaioannou et al. combine chat and task-based dialogue using RL
to produce a more user-friendly experience[16][15]. The dialog system is loaded onto a
Pepper robot that can detect a human’s proximity and communicate. The agent learns to
switch between chat and task dialogues and receives a penalty when users leave abruptly.
Human poses are often captured for analysis of engagement as well. In [32][33], Ritschel et
al. apply RL to vary a story-telling robot’s level of extroversion. A user’s pose is captured
by Microsoft Kinect 2 and mapped to predefined pose categories. Then this information is
translated into an engagement measure through a directed acyclic graph, which is used as
a reward for RL algorithms. Facial expressions are also widely used in identifying humans’
engagement levels. Kumagai et al. [26] convert facial expressions to level of delight by
analyzing captured videos and calibrating with users’ self-rating. In [18], facial expressions
and voice are captured and converted into confidence scores of detecting smiles and laughs.
Leite et al. [34] use facial expressions and task-related information to train empathic sup-
portive strategies to help children improve chess skills. In [17], RL is used to assist children
in learning a second language on a tablet, where facial expression is also used to evaluate
the valance of children. A combination of above methods is also used in [27]. Psycholog-
ical signals are also used to train a robot to adapt to children’s preferences[35]. Despite
the success of using facial expressions and human poses, these studies are all conducted
in a one-to-one manner, where the agent interacts with one participant at a time. Ac-
curately capturing facial and pose information is relatively easy in such cases. For our
system that simultaneously deals with multiple visitors in a spatially-distributed public
environment with uncontrolled lightning, accurate facial expression and pose analysis is
technically challenging and may not be reliable.

In addition to extracting feedback from human behaviours, human feedback can be
explicitly used to guide the learning. Thomaz et al. [14][13] present Interactive Rein-
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forcement Learning (IRL) for training assistive robots through natural interaction, where
a human coachs feedback is used to shape the predefined reward. In their study, the IRL
agent learns to complete a cooking task containing multiple sub tasks. A human coach
can award a scalar reward signal at any point in the operation of the learning agent. Ad-
ditionally, at any point, a human trainer can give guidance by specifying an object in
the environment and the agent will randomly choose an action that interacts with the
specified object. Results show that human teachers tend to use rewards as implications
of future actions and the guidance from human teachers leads to efficient exploration and
performance improvement. Suay et al. apply IRL in a real-world robotic system[36]. In
this study, humans teach a Nao robot to place objects in cups. The experimental result
supports findings in [14][13] and further shows that this positive impact of human guidance
increases as the state space size grows. In these works, humans are involved as teachers,
and the objective of the robot is not necessarily to improve the human experience. In other
words, humans are assumed to be expert teachers who are explicitly designing the reward
functions. But for the social HRI application in this thesis, the human experience is the
primary objective, and spectators may not be experts at designing robot behaviours.

2.3 Interactive Art

According to [37], interactive art is divided into four categories, Static, Dynamic-Passive,
Dynamic-Interactive and Dynamic-Interactive (varying). For Static art, art objects do
not change and no interaction between the artwork and human observers happens. In
contrast, dynamic art objects change over time and according to their evoking mechanism,
they are further categorized into three types. A Dynamic-Passive artwork changes its form
either with an internal mechanism, or by environmental factors. [38] is an example of such
artwork, in which researchers transform the sound of music into multiple frequency bands
and output them as tactile vibrations on a matrix of voice coils. The vibration of the
voice coils changes as music is being played, and users sense the music through their skins.
There is no difference in how Dynamic Passive artworks behave when humans are present
or not. However, in the context of HRI, the human is an essential element which decides
the responses from interactive systems.

On the other side, Dynamic-Interactive artworks can sense human activities and use
these sensations to trigger variations. In Dynamic-Interactive (varying), the extent of
interaction is furthered when visitor activities could change original specifications of the
art objects. Many Dynamic-Interactive artworks have been created [39][40][41]. In [39],
a swarm of agents is used to interact with users. User positions and objects placed in
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space are captured by a video camera and processed as input to swarm control. The
limitation of this work is that it only responds to a single visitor’s position and cannot
respond to multiple visitors. [40] creates a musical interface to encourage participants to
create their own mixing of sound. The interface contains multiple speakers. Each speaker
plays one sound track and participants alter the sound by placing tubes and balls on the
top. This interface can be operated by multiple people at the same time and thus allows
cooperative composition of sounds. Cubic polyurethane blimps are used as interactive
objects in [41]. These cubes are capable of flying around in an enclosed environment and
react to users’ activity. Although the cubes autonomously move towards visitors when
they are detected, no autonomous system is used during the following close-up interaction.
Instead, the researchers project their faces onto the cube and communicate with visitors
through speakers and microphones remotely.

Previous work by LASG[42][43][44] and the installation in this project are also dynamic-
interactive systems. The previous Hylozoic Series interactive art sculpture aims at creating
a perception of interacting with a living organism from visitors, using human designed inter-
active behaviours[42][43]. It is further developed in [28][29] with an intrinsically motivated
learning algorithm. The interactive behaviour is autonomously generated by the learning
algorithm. Because the learning algorithm uses intrinsic rewards only, it is not designed
for adapting to visitor preferences. It is intended to engage visitors by continuously gener-
ating different interactive actions. Hylozoic Series were exhibited in a public area without
learning system applied1, and were tested during interaction with a single visitor in a con-
trolled setting[28]. In this work, we use the interactive sculpture developed by LASG in the
natural setting and with a reinforcement learning agent for autonomous action generation.

2.4 Interactive System in Public Setting

Social interaction studies also examine interactive systems in the public areas. Scheeff et
al. [45] observed how people interact with a creature-like social robot in a science museum.
Their study suggests that a rich sensory suite to sense users’ locations and facial expressions
is helpful.

Works have been done in short-term interactions between the system and humans.
The RHINO robot was used to guide visitors in a museum[46]. The robot communicates
with visitors using an on-board multi-media interface. It can also play music to entertain

1Epiphyte Chamber, Museum of Modern and Contemporary Art, Seoul, South Korea. Link: http:

//philipbeesleyarchitect.com/sculptures/1312_MMCA_Epiphyte-Chamber/index.php
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visitors. MINERVA, an improvement of RHINO, uses memory-based RL[47] to choose
the best interactive actions [48]. Even though the guiding robot could encounter multiple
visitors at the same time, it typically interacts with only one of them each time. In [49],
a mobile robot is placed in the transit area to entertain pedestrians. As the people in
transit areas are often determined in walking to their destinations, the interaction time
window is small. Others are applied in areas including the urban environment[50], the train
station[51] and the shopping mall[52]. The interactions in these studies are not designed
to last long. On the contrary, our system is exhibited at a museum for several months and
visitors usually have more patience and time to experience and interact with our system.
Thus the interaction time is significantly longer.

Other works investigate long-term interactions. Kanda et al. [53] deploy two humanoid
robots in classrooms at an elementary school for English education. The field trail lasted
18 days and there was a sharp decrease in the interaction frequency between robots and
children at the end of the trial. Even though hundreds of interactive behaviours are created
and used in [53], the decrease in the interaction frequency reveals the need for a behaviour
generation system that evolves to remain engaging.

2.5 Summary

This chapter provided an overview of related work on reinforcement learning, its applica-
tion in human-robot interaction, interactive art and interactive systems in public settings.
Methods in the discrete and continuous action space were reviewed. The applications in
human-robot interaction are organized into different application fields. Categories of inter-
active arts are discussed and examples of each category are presented. Several studies that
apply interactive systems in the public areas are also discussed. In our application, we focus
on a dynamic-interactive system with continuous action space that aims for long-term user
engagement. The RL algorithm with continuous action space is examined in simulation
(Chapter 4) and deployed on the LAS at a museum for social interactions (Chapter 5).
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Chapter 3

The Interactive Architecture and
Behaviour System

In this chapter1, we describe the physical system used as the testbed in this thesis, and the
design of Pre-scripted Behaviours (PBs) that drive the interactive behaviour of the system.
The PBs, which are designed by expert architects and interactive system designers, are
the baseline we use to compare to the learning systems described in Section 3.2 below.
Then we propose an adaptive behaviour mode, Parameterized Learning Agent (PLA), to
automatically generate interactive actions.

3.1 Living Architecture Testbed

3.1.1 Physical Living Architecture System

Our testbed is the installation called Aegis, as shown in the top-left sub-figure in Figure 3.1,
which was exhibited at the Royal Ontario Museum (ROM) in Toronto, Canada from June
2 to October 8, 2018 (https://www.rom.on.ca/en/philip). The installation consists of
the Canopy and Sphere, which are both publicly accessible to visitors of the museum.

Since this work mainly used the Canopy part of the installation, we will describe the
design of the Canopy in detail, and subsequently refer to the Canopy part of the installation
as the Living Architecture System (LAS).

1Part of this chapter is adapted from [54]
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Figure 3.1: Installation Diagram and Interaction Types

Figure 3.2: LAS: Canopy
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The LAS hangs overhead within the Canopy space, with an approximate height of 1.8
meters. Figure 3.1 shows the front view of the LAS. The system is composed of eight
speakers and 24 nodes. The arrangement of the speakers and nodes is illustrated in Figure
3.2, where the 24 nodes are highlighted by red circles. A photo of the physical LAS is shown
in the bottom-left of Figure 3.2. The 24 nodes are at varying height levels. Specifically,
nodes at the left and right edges are slightly higher than those in the middle of the LAS.
This spatial arrangement distinguishes three types of visitor engagement with the system.
When visitors observe the LAS but are not underneath the LAS, no IR sensor is activated,
i.e., visitors are observing the LAS but cannot be observed by the LAS sensors. As shown
in Figure 3.1, when visitors walk or stand underneath the LAS, which we name Passive
Interaction, the IR sensors above them are activated, but the distance between the visitor
and the system is still large, corresponding to a small reading of the IR sensor. Visitors
engaging in Active Interaction might also reach their hand upwards to interact with the
LAS, resulting in a higher activation value of the closest IR sensor.

There are eight speakers distributed throughout the LAS. These speakers play two
types of sound samples. The first sound is a background sound played on a continuous
loop. The second sound is triggered by the IR sensors. These speakers are independently
controlled by specialized software, so here we treat them as background behaviours.

Each node in the LAS consists of six Fronds, one Moth, and one high-power LED as its
actuated systems and one infrared (IR) sensor, as shown in Figure 3.3. Each Frond includes
a shape memory alloy (SMA) wire which contracts when voltage is applied, pulling a cord
attached to a flexible co-polyester sheet, as illustrated in Figure 3.3a. The contraction
generates a smooth and gentle movement, and when the applied voltage is removed the
SMA slowly relaxes to its original shape. The Moth consists of wing-like flexible flaps
attached to a small DC Motor that vibrates when activated, making the moth appear to
be flapping its wings. The Moth also houses two small LED lights which illuminate during
vibration. The single high-power LED located beneath the central flask can be faded to
illuminate the coloured liquid in the flask. The IR sensor senses the proximity of visitors,
and generates a continuous reading proportional to the distance between any part of the
body of a visitor and the sensor location in the canopy.

Two web cameras (labeled Camera1 and Camera2 in Figure 3.1 and Figure 3.2) are
used to record video during our experiment and to calibrate sensory data. These two web
cameras are mounted on the wall in the front-right and back-left corners of the LAS space.
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(a) Node Diagram (b) Fully Assembled Node

Figure 3.3: Diagram of Node in the LAS

Figure 3.4: Pre-scripted Behaviour
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3.1.2 Pre-scripted Behaviour

Pre-scripted behaviour (PB) is the spatially-distributed interactive behaviour manually
designed by the architects, and it is also the baseline used for comparison with adaptive
behaviours we will describe in Section 3.2. Within the PB mode, the system can be in
two types of states: active and background, which are mainly controlled by 17 parameters
(shown in Table 3.1) specified by the architects. The values in the Default and Range
columns are used in the PB and PLA modes, respectively.

In PB, if any of the IR sensors is triggered, the system enters the active state. In
this state, the node corresponding to the triggered sensor will first activate its local reflex
behaviour. In the local reflex behaviour, the Moth, the LED and six SMAs attached to
the same node as the triggered IR sensor will be activated. When a Moth is activated, it
will gradually increase the vibration (Tmru) to its maximum intensity (Imax) and then keep
vibrating for a period of time (Tmho). After that, it gradually stops (Tmrd). After a waiting
period (Tmgap) following the sensor trigger, the LED on the same node is activated. It ramps
up over time period (T lru) to its maximum brightness (Imax), holds for a period of T lho and
then gradually dims (T lrd). At the same time, the SMAs are activated one after another
separated by (T smagap ). A voltage is applied to contract the SMA, after which a cooling-down
time is started during which this SMA will not be activated again. The activation profile
of the SMA wires is fixed in order to protect them from overheating, so these are not
included in the parameterization shown in Table 3.1. Meanwhile, this detected event will
be propagated from the triggered node to neighbouring nodes (T ngap) until the edge nodes
of the LAS are reached (shown in Figure 3.4), causing a cascade of local reflex behaviours
at each node.

If no IR sensor triggering happens for a random time within (Tminbg ,Tmaxbg ), the system
goes into the background state. In this state, the LED and SMA will activate their local
reflex behaviours every random amount of time (Tw,Tsma) with probability (P ). The choice
of activating LEDs and SMAs are independent.

In either state, a sweep of LEDs along the longer axis in either direction of the instal-
lation happens every random amount of time (Tminsw ,Tmaxsw ). During the sweep, each LED
activates local reflex behaviour and propagates in the direction of the sweep.

3.2 Proposed Approach

In this section, we will describe how an adaptive behaviour mode, Parameterized Learn-
ing Agent (PLA), is designed to automatically generate interactive actions. The adaptive
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Parameters Meaning Default Range

Tmru, T lru
ramp up time: the time it takes for the Moths or

LEDs to fade up to their maximum value
1.5 [0, 5]

Tmho, T
l
ho

hold time: the time that Moths and
LEDs are held at their maximum value

1 [0, 5]

Tmrd , T lrd
ramp down time: the time it takes for Moths and

LEDs to fade down to 0
2.5 [0, 5]

Imax maximum percentage of duty cycle per PWM period 78 [0, 100]

Tmgap
the time gap between the Moth starting to ramp up

and the LED starting to ramp up
1.5 [0, 5]

T smagap

the time gap between activation of each SMA arm
on the nodes

0.3 [0, 5]

T ngap the time gap between activation of each node 1.8 [0, 5]

Tminbg

minimum time to wait before activating
background behaviour

45 [15, 60]

Tmaxbg

maximum time to wait before activating
background behaviour

90 [60, 100]

Tw time to wait before trying to pick a moth or LED 5 [0, 10]
P probability of successfully choosing an actuator 40 [0, 100]
Tsma time between choosing SMAs to actuate 0.7 [1, 5]
Tminsw minimum time to wait before performing sweep 120 [5, 200]
Tmaxsw maximum time to wait before performing sweep 240 [200, 400]

The unit of all time parameters is seconds, except Imax and P are percentages.

Table 3.1: Pre-scripted Behaviour Parameters

behaviour uses a standard reinforcement learning framework and an extrinsic reward for-
mulation estimating the occupancy and engagement level of visitors based on IR sensors.

3.2.1 Parameterized Learning Agent: Learning on Top of Pre-
scripted Behaviour

The proposed adaptive behaviour, PLA, is designed to learn on top of PB, i.e., parameter-
ized action space, as shown in Figure 3.5. The motivation for this approach is to bootstrap
learning by exploiting the designer’s knowledge of engaging behaviour, where we hypoth-
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esize the designer already has a good idea about what types of actions might be engaging
to visitors and this can form a helpful starting point for the learner.

Figure 3.5: Interaction diagram of the learning agent acting on top of human designed be-
haviours (PB). The agent receives an observation of the current state St of the environment
and outputs parameters of PB at each timestep.

Observation and Action Space Construction

For PLA, we select 11 parameters from Table 3.1 as the action space, i.e., the dimension
of the action vector is 11. This is because some parameters don’t take effect until a
subsequent trigger or until the current propagation finishes. This could lead to obtaining
an observation which is based on both previous and updated parameters. To avoid this
issue, we exclude Tminbg , Tmaxbg , Tw, P , Tminsw and Tmaxsw from the action space. In this way,
we make sure every observation is only related to the latest action. To attenuate IR sensor
noise, the observation for PLA is an average over 20 IR readings as defined in Eq. 3.1:

obs(t) =
1

20

19∑
i=0

ir(t−i∗∆t) (3.1)

where ir(t−i∗∆t) is the vector of 24 IR sensor readings at time (t− i ∗∆t),
∑

is element-
wise summation, and ∆t ≈ 0.1s is the time to retrieve one set of 24 IR values from the
physical LAS. Thus the dimension of the observation vector is 24 and each observation
vector represents the average IR readings over 2 seconds. Based on the observation, the
extrinsic reward for PLA is calculated according to Eq. 3.2 where n is 24.

The actions of the learning agent shown in Table 3.1 are scaled into [−1, 1], where -1
corresponds to minimum and 1 corresponds to maximum. The IR readings are scaled into
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[0, 1] corresponding to the nearest object being at a detected distance of 80cm or more (no
nearby humans detected), to the nearest object being 10cm (very close human detected).

Estimating and Using Engagement as a Reward for Learning

A key feature of our approach is the formulation of the reward function: we wish to
learn and reward behaviours which foster visitor engagement. Specifically, the extrinsic
reward is computed by summing over the IR observations, which can be regarded as a rough
estimate of occupancy and engagement, because: 1) more activated IRs means more people
are standing under the LAS, thus indicating higher occupancy; 2) closer distance between
visitors and IR sensors implies more active interaction, e.g., looking very closely or raising
hands, which are higher engagement behaviours. Therefore, higher occupancy and more
active interaction will cause higher extrinsic reward. Formally, given a new observation at
time t+1, obs(t+1) = (obs

(t+1)
1 , obs

(t+1)
2 , · · · , obs(t+1)

n )2, where the value of n depends on the
specific behaviour mode, the reward r(t) for taking action a(t) while observing obs(t) can
be expressed as Eq. 3.2:

r(t) =
n∑
i=1

obs
(t+1)
i . (3.2)

where n is the dimension of observation, e.g. n = 24 for PLA.

Implementation

Given the observation and extrinsic reward, the optimal policy can be learned with an
RL algorithm. In this thesis, learning is implemented using the Deep Deterministic Policy
Gradient (DDPG) algorithm[23], a variant of Deterministic Policy Gradient [21], where
both the actor and critic are approximated with deep neural networks.

We chose DDPG because: 1) the action space is continuous, and compared with bench-
marks reported in the literature [55] [56] the dimension of the action space is relatively
large, which means that even if we discretize the continuous action space, the dimension
of the discretized action space will be very large; 2) DDPG is a well-known algorithm that
has been successfully deployed in many applications.

The implementation of the learning algorithm is adapted from OpenAI’s Baselines
library[57]. The structure of the neural network is shown in Fig. 3.6. All layers are dense
layers, with layer-norm applied and ReLu as the activation function for all hidden neurons.

2In this thesis, we will use normal lowercase for scalar and bold lowercase for vector.
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The number under each layer indicates the neurons in that layer. tanh is used at the
output layer of the actor, and linear activation is used at the output layer of the critic.

(a) Actor (b) Critic

Figure 3.6: Actor-Critic of PLA

We discuss the choice of hyperparameters for the simulation and the field study in
Section 4.2.5 and Section 5.2 respectively.

Non-episodic Setting

In many reinforcement learning test environments, such as Atari games and OpenAI Gym,
the environment is reset to initial states once a termination state is reached. The ter-
mination can be either tasks being completed or the death of game characters, usually
indicated by a ”Done” signal. In our application, we could not define such a termination
state, as visitors can always interact with LAS and there is no final state. Therefore, the
concept of episodes does not exist. However, we still use the notation, ”episode”, for two
purposes: 1) we set a fixed number of steps per episode and the ”episode” indicates how
many interactions have happened so far; 2) we train the neural networks at the end of
episodes and the ”episode” represents the number of training iterations. Implementation
details of the algorithm can be found in Appendix A.
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Chapter 4

Simulation

In this chapter, we create a simplified simulation environment using Unity to examine the
performance of the learning algorithm. The purpose of the simulation is to verify whether
the learning algorithm can learn to adapt to visitors’ preferences and understand the algo-
rithm parameters that influence learning. Simple visitor models are used to facilitate the
initial simulation analysis. Specifically, a single visitor environment and a multiple visitor
environment are tested to verify the effectiveness of learning. Two exploration strategies,
parameter noise and action noise, are examined and compared.

4.1 Simulator

4.1.1 LAS in Unity

A simplified replica of the Living Architecture System described in Chapter 3 is created
using Unity engine. The simulator can be seen in Figure 4.1. Inside this scene, we have
a 25m × 15m platform surrounded by walls and simulated visitors can walk inside this
area. The LAS system consists of 24 nodes and each node has 6 SMAs, 1 LED, and 1
IR sensor. Moths are not simulated for simplicity. Figure 4.1d shows a close-up view of
a node. The whole LAS system is centered in the space and the relative position of each
node is identical to the Canopy area of Transforming Space installation at ROM.

To simplify the simulation rendering, we replace the SMA actuation from curling to
changing colors. Thus, the states of LAS are the colors of SMAs and the light intensity of
LEDs.
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In the LAS system installed in the ROM exhibition, the orientations of IR sensors are
not fixed, and can be changed due to visitor actions. In the simulator, the orientations
are randomly generated but fixed through all experiments to ensure consistent simulation
results.

(a) Overview

(b) Front view (c) Top view (d) A single node

Figure 4.1: LAS simulation using Unity. (a),(b),(c) illustrate the platform and LAS. (d) is
a close view of a single node. There are 24 such nodes in the LAS in (a),(b) and (c).

4.1.2 Visitor Simulation

As LAS is an interactive installation, simulating visitors is crucial to our simulation. As
in real life, the simulated visitors can observe the current states of actuators in LAS. They
will be engaged if they observe attractions and the attractions can be any particular actions
generated by LAS. Based on the visitor’s attraction model, each visitor selects the most
interesting location by ranking the Heat of each node. The Heat of node i is the attractioni
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plus the sum of other nodes’ attractionj, j 6= i, divided by distances between node i and j.
If all visitors share the same attraction model, it is very likely that multiple visitors will
be attracted to the same location. To avoid this swarm behaviour, each visitor also takes
travel distances into consideration. In other words, they favour those attractions that are
close to themselves. Overall, Heat of node i is defined in Equation 4.1.

Heati = (attractioni +
∑
j,j 6=i

attractionj
dij

)/(Div) (4.1)

where

dij = Distance between the center of node i and j

attractioni = Attraction of node i

Div = Distance between node i and visitor v

Each visitor has its own measurement of the distance between himself and the desti-
nation. It considers himself as arrived if the distance is less than 0.1m. However, despite
the fact that distances are taken into account, it is still possible that more than one visitor
chooses the same destination. Those arriving late will be blocked by early arrivers, and
never be able to reach the destination. To model visitors moving if a desired location is
too crowded, a 10 second timeout is set. If visitors cannot get to a destination within this
amount of time, they will choose another one. The choice of new destination still follows
the ranks of Heat defined in Equation 4.1, except that the previous destination is excluded.
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The complete behaviour model of visitors is explained in Algorithm 1.

while True do
Take an observation.
The visitor selects the most interesting location as its destination according to
Heat.

while NOT arrived do
if Timed out then

break
else

Move toward destination.
end

end
if Arrived then

while attraction at Destination >0 do
Remain at the destination until no more attraction can be found.

end

end

end
Algorithm 1: Visitor Behaviour

Overall, the visitor observation is defined in Equation 4.2.

obs = (Act,x,y, IsArr, IsTmOut,vx,vy) (4.2)

Where

Act = (Act1, ..Actk) = Intensity of actuators (LED or SMA)

x,y = (x1, ..x24), (y1, ..y24) = Coordinates of center of all nodes

IsArr = (IsArr1, ..IsArrv) = Whether each visitor has arrived at destination

IsTmOut = (IsTmOut1, ..IsTmOutv) = Whether each visitor has timed out

vx,vy = (vx1, ..vxv), (vy1, ..vyv) = Coordinates of each visitor

4.1.3 Interface Structure

A new simulator interface structure is designed to handle the communication between LAS
and the learning algorithms, and to control simulated human visitors. We use Unity Ma-
chine Learning Toolkit[56] as the Python interface. The Unity Machine Learning Agents
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Toolkit (ML-Agents) is an open-source Unity plugin that enables games and simulations to
serve as environments for training intelligent agents. We adopt Python API into our sim-
ulator’s interface, as shown in Figure 4.2. As shown in Figure 4.2a, the Unity ML Toolkit
handles communication between Unity and two separate modules: adaptive behaviour
module and visitor module. For the adaptive behaviour module, it passes observations
to the module and returns actions to Unity. Figure 4.2b shows the adaptive behaviour
module, where two types of structures are used. SARA and Random are two additional
behaviour modes and will be detailed later in Section 4.2.1. The difference between the
two types is that SARA and Random output actions directly into Unity, whereas PLA’s
actions are translated into raw actuator actions by Prescripted Behaviour described in
Section 3.1.2. Meanwhile, the visitor module receives visitor observations and produces
desired destinations of each visitor. Inside this module are the visitor behaviour models
described later in Section 4.1.2.

(a) Overview (b) Adaptive Behaviour Module

Figure 4.2: Simulator interface.
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4.1.4 Specifications

Each simulated visitor has a cylinder physics collider, which can trigger IR sensors and
keep distances to other visitors. The radius of the cylinder is set to 0.1 m, close to the
radius of a human’s head. The reason for such a small radius is that due to the dimension
of LAS, if we set visitors’ collider cylinder radius to be larger, such as 0.5 m, then multiple
visitors could not move freely within the area under LAS without blocking each other’s
path.

In the field experiment, we want the system to take actions as frequently as possible
in order to generate more interactions, but at the same time not too fast for visitors
to respond. This ratio r between human speed and LAS action frequency is defined in
Equation 4.3. For the LAS of this project, the system takes 10 observations per second
(10 Hz) and one action per 20 observations (0.5Hz). Human’s average walking speed is 1.4
m/s. This gives the ratio r of 2.8.

r =
Human Speed

Action Frequency
(4.3)

In the simulation, we would also like to keep the same ratio r. Therefore, when acceler-
ating the simulation speed, we accelerate the visitor moving speed and adjust the number
of observations per action accordingly. The physics render interval in Unity is by default
0.02 s, thus the system frequency is 50 Hz. The parameters related to timing in PLA are
also adjusted accordingly. A comparison of parameter specifications is provided in Table.
4.1.

In Reality In Simulation using Simulator Time
Observations per Action 20 25
System Freq(Hz) 10 50
LAS Action Freq(Hz) 0.5 2
Human Speed(m/s) 1.4 5.5
Ratio r 2.8 2.75

Table 4.1: Parameters in simulation vs. parameters in reality
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4.2 Experiment Design

4.2.1 Adaptive Behaviour Modes

Three adaptive behaviour modes are tested in the simulation. Apart from PLA described
in Section 3.2.1, we consider two behaviour generating modes that act in the raw actuation
space. The first mode is Single Agent Raw Action Space (SARA) and it has a single
learning agent controlling all the individual actuators. SARA has the same observation
space and reward formulation as PLA. For more implementation details, see Appendix B.
The second mode is Random and it also directly controls each actuator, except that all
actions are randomly generated. The purpose of using Random is to have an estimation
of reward baselines. A summary of the three behaviour modes is given in Table 4.2.

Mode Learning Agent Observation Dimension Action Dimension
PLA Yes 24 11
SARA Yes 24 168
Random No 24 168

Table 4.2: Summary: behaviour modes in simulation.

4.2.2 Exploration Methods

Two exploration methods are compared in the experiment. As we know, DDPG is an
off-policy algorithm and its policy πθ is deterministic. The exploration is realized through
perturbation of actions. A common practice for creating perturbations is to apply a Gaus-
sian noise N on the action[21], which is described in Equation 4.4. We will refer to this
method as action noise in the rest of the thesis.

at = πθ(st) +Nt(0, σ) (4.4)

An alternative way is to apply a Gaussian noise N to neural network parameters θ and
get a perturbed policy πθ̃[58], where θ̃ = θ +Nt(0, σ). This method will be referred to as
parameter noise. The action is then given by new policy πθ̃ as in Equation 4.5.

at = πθ̃(st) (4.5)

Because the impact of the scale σ in Nt(0, σ) on the noise range of action a strongly
depends on the specific network architecture and its parameters, σ needs to be dynamic and
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adaptive. It is adjusted by a constant α depending on the distance d(·, ·) of resulting actions
(see Equation 4.6,4.7). The distance is estimated from a batch of experience sampled from
the memory buffer.

σk+1 =

{
ασk if d(π, πθ̃) ≤ δ
1
α
σk otherwise

(4.6)

d(π, πθ̃) =

√√√√ 1

N

N∑
i=1

Es
[
(π(s)i − πθ̃(s)i)

2] (4.7)

The resulting actions will have a relatively consistent exploration related to δ. There-
fore, this parameter noise could lead to more consistent exploration and a richer set of
behaviors. Thus, we would like to compare which method is suitable for our tasks.

4.2.3 Visitor Attraction Models

As mentioned in Section 4.1.2, visitors are simulated to exhibit behaviours based on at-
tractions. Real humans’ interests are complicated and modelling all possible stimuli is
unfeasible. Hereby, we only consider two simple attractions based on actions generated
by LAS. Firstly, we consider the intensity of an actuator as a basic attractor. Secondly,
because behaviours are time-related actions, we consider an action sequence as another at-
tractor. Therefore, two types of visitor attraction model, I and II, are crafted accordingly.
To further simplify the design, we arbitrarily use LED in the attraction models.

Attraction model I is based on the simple relationship to the intensity of each LED:
the brighter LEDs, the more attractive they are to visitors. The attraction of node i is
defined as:

attractioni = ILEDi

Attraction model II uses the number of action sequences observed in a time window. The
choice of time window length is arbitrary, and is set to 4 seconds. The attraction of node
i is then defined as:

attractioni = Naction sequence

The action sequence is a state transition from low to high, or vise versa. The duration of
each state is at least 1 second. The state is defined as follows:

state =

{
LOW ILEDi ≤ 0.5

HIGH ILEDi > 0.5
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Since PLA is better at generating time-related action sequences, whereas SARA is better at
generating time-independent actions, we expect these two attraction models to be helpful
for comparing PLA to SARA. As visitors’ preferences influence the performance of LAS
and learning algorithms, the choice of attraction model could help reveal the distinctions
between two behaviour generating modes.

4.2.4 Non-Episodic Simulation

As discussed previously in Section 3.2.1, the learning algorithm is used in a non-episodic
setting. As a result, in the simulation, the states of LAS and visitors are carried over
between episodes. No reset is applied in each run so that we simulate an interactive
environment in which agents are continuously learning and evolving.

4.2.5 Hyperparameter Selection

We set the learning rate of the actor and critic to be 10−4 and 10−3. The discount factor
γ = 0.99 and the batch size is 64. We experimented with different neural network sizes:
64, 128 and 300 neurons in each layer of the two layer network (see Figure 3.6), and find
no obvious influence on the results. Therefore, we only show the results using 64 neurons
in each layer.

4.3 Single Visitor Environment

4.3.1 Setup

We firstly examine how learning algorithms perform in a simple situation by placing one
visitor in the environment. The two attraction models are tested separately, and under
each mode, two exploration methods are compared. The visitor is always spawned in a
fixed location away from LAS, so that it cannot be immediately detected by LAS.

We run each case 5 times with the same initial state of the LAS and visitors, the length
of each run is 1000 episodes and each episode is 25 steps. Because there is one visitor in
the space and the IR sensor value can range from 0 to 1 (see Section 3.2.1), the maximum
reward at every timestep step is 1, assuming the visitor could be only detected by one IR
sensor in each timestep. Note that this assumption is not always correct as there exists

28



overlapping in IR detection areas. But the overlapping areas are all far away from sensors,
therefore, the sum of two IR sensor readings is still less than 1. Then we estimate the total
maximum reward of each episode to be 1× 25 = 25.

4.3.2 Results

We report the average return of all runs (solid line) and the variance (shaded region) for
each behaviour generating mode and noise method, and show visitor position histories in
the space.

Attraction Model I

From Figure 4.3 we can see that SARA’s returns are higher than those of PLA and Random.
Using either exploration method, SARA reaches rewards close to maximum (25) and much
higher than PLA’s rewards. This matches our expectation, because attraction model I is
based on the intensity of each LED. SARA has the ability to control individual actuators
including LED and any LED with intensity ILED > 0 will be an attraction to the visitor, so
this task can be easily achieved with SARA. However, PLA can only control the parameters
of behaviours in which LEDs must follow a ramp-up - hold - fade sequence. The difference
in action space causes the difference in rewards. Further, the reward of PLA is higher than
the reward of Random, showing that there is still a benefit to learn over taking random
actions, even when the action space is not a good match to the visitor preferences.

With SARA, rewards when using parameter noise are noisier than when using action
noise. This is because this task is relatively easy. The learning algorithm with action
noise quickly finds and sticks to an optimal policy, while parameter noise explores the
action space more thoroughly than action noise and produces sub-optimal actions that
are less effective in attracting visitors during exploration. When comparing exploration
methods in PLA, it can be seen that parameter noise exploration gives higher rewards and
an improving trend, while action noise exploration has similar result as Random and no
sign of improvement over the learning process. It is hypothesized that parameter noise has
wider exploration than action noise, thus leading to a relatively higher reward in PLA.

Figure 4.4 shows a sample of visitor travel history during the entire training process
using action noise. Similar results are also observed in using parameter noise and here we
only show one of them. From the graph it is clear that the visitor travels much more in
PLA than in SARA. In SARA, the visitor mainly stays under one single node after the
learning algorithm quickly learns to keep the lights on. But in PLA, the visitor seems
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Figure 4.3: Attraction Model I: Cumulative rewards under PLA, SARA and Random.
First row: action noise; second row: parameter noise.

to be constantly moving and switching destinations, concentrating within the area under
LAS. This could explain the reward difference between SARA and PLA. If the visitor
moves frequently in simulation space, their time within the IR detection range is reduced.
Conversely, if the visitor tends to stay under one of the sensors and changes his destination
less often, the rewards will be higher. This also shows that SARA is better at providing the
visitor’s desired action, which is determined by the match between the visitor attraction
model and the learning agent’s action space.

Attraction Model II

Figure 4.5 shows the accumulated rewards of LAS in the simulation in which a visitor
is attracted by simple action sequences. The learning algorithm achieves approximately
maximum rewards using parameter noise in both PLA and SARA. Meanwhile, SARA using
action noise leads to a reward similar to Random at the end of training and PLA is slightly
higher.

Notice that the variance of rewards using action noise is significantly greater than pa-
rameter noise, because there is a huge discrepancy between different training runs. Figure
4.6 compares training runs using two exploration methods in SARA. As shown in the
figure on the left, runs with action noise differ greatly from each other. In some runs,
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Figure 4.4: Attraction Model I: Sample visitor positions during the entire training process.
Left: PLA; Right: SARA. 24 blue dots are the center of LAS nodes and light blue bars
are IR detection ranges. Each pixel (from yellow to red) indicates the number of times the
visitor occupied the area covered by the pixel.

Figure 4.5: Attraction Model II: Cumulative rewards under PLA, SARA and Random.
First row: action noise; second row: parameter noise.

they completely fail to attract visitors, while others might do well. This is because with
action noise, the exploration is not as thorough as parameter noise and in a single visitor
environment, the reward is sparse. In each run, the parameters of the neural network are
randomly initialized (see Appendix A). If the network is initialized to a bad policy, it is
extremely hard to learn with barely any reward. Only occasionally, such as run3, the sys-
tem is initialized with a good initial policy which is capable of attracting visitors, then this
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policy is reinforced over the training process. On the contrary, a policy using parameter
noise could always generate attractions to visitors, regardless of the initial policy.

Figure 4.6: Comparison of training runs under SARA: parameter noise vs. action noise

Figure 4.7 compares the visitor’s position history between PLA and SARA, both using
action noise. We can see that in SARA the visitor either stays under nodes or randomly
walks in the whole space. In contrast, with PLA the visitor’s position is condensed near
LAS. We compare the amount of time the visitor spent right under the nodes and within
the LAS area using PLA and SARA. In Table 4.3, we can see that on average the visitor
spends less time directly under the nodes in PLA than in SARA. This would cause an
obvious gap in average rewards between SARA and PLA. However, we do not see such gap
in Figure 4.5. On the other hand, if we look at the percentage of time within the LAS area
in Table 4.3, this gap between SARA and PLA is narrower. Based on this, we believe the
visitor is detected by IR sensors along the way while travelling under the LAS, and this
compensates the loss in rewards obtained by the learning algorithm.

Figure 4.7: Attraction Model II: Sample visitor positions during the entire training process.
Left: PLA; Right: SARA. 24 blue dots are the center of LAS nodes and light blue bars are
IR detection ranges. Each pixel (from yellow to red) indicates number of times the visitor
occupied the area covered by the pixel. The dashed line square outlines the LAS area.
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Percent of Time Under Nodes Percent of Time In LAS Area
Avg Std Avg Std

SARA 0.653 0.297 0.833 0.212
PLA 0.465 0.290 0.724 0.289

Table 4.3: Attraction Model II: Visitor position statistics of all runs using action noise.
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4.4 Multiple Visitor Environment

4.4.1 Setup

In the real application, multiple visitors can be present within the space at the same time
and we want to investigate how the learning system can perform in such a case.

We place 5 visitors inside the simulation space. All visitors share the same observations
which are identical to those observed by a single visitor in Section 4.3. Two attraction
models are inspected separately and all visitors share the same attraction model in each
experiment. Like the single visitor environment, all visitors initially spawn within a fixed
area away from LAS.

We run each case 5 times and each time the neural network is initialized randomly.
The length of each run is 1000 episodes and each episode has 25 steps. Assuming each
visitor can only be detected by a single IR sensor at each timestep, the estimated maximum
reward per episode is 5× 25 = 125.

4.4.2 Results

We report the average return/reward of all runs (solid line) and the variance (shadow
region) for each behaviour generating mode and noise method, and show visitor position
histories of all 5 visitors.

Attraction Model I

In Figure 4.8, the rewards of three behaviour configurations using two different exploration
methods are shown. In both exploration methods, SARA obtains higher reward than PLA,
which is consistent with the results of the single visitor experiment in Section 4.3.

Comparing the two different exploration methods, we can see that PLA has better
results using parameter noise than action noise. In SARA, the final rewards are similar
and the parameter noise method is marginally better. However, the speed of learning using
action noise is much faster than using parameter noise.

We further examine the policy SARA learnt by plotting the agents’ action history and
IR observation history shown in Figure 4.9 and Figure 4.10. By comparing the actions
in the first row against the second row in Figure 4.9, we can see that the agent learns to
keep three nodes (circled in red) ON. However, as the reward structure does not penalize
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Figure 4.8: Attraction Model I: Cumulative rewards under PLA, SARA and Random.
First row: action noise; second row: parameter noise.

turning on LEDs, therefore, there are other lights which are also kept on at the end of
training. By observing the visitors’ positions in Figure 4.10, we can see that at the end
of training, visitors are all standing under or near the nodes which have their LEDs kept
ON. This illustrates that the learning algorithm can learn visitors’ preferences, which are
turned ON LEDs. In most of the runs, the learning agent is only capable of attracting
visitors to three nodes, with two nodes surrounded by more than one visitor. The reward
is not maximized yet under this situation. The task of distributing all visitors to separate
nodes seems to be much harder to learn.

35



Figure 4.9: Upper-left: Average of first 5000 actions; Upper-right: Log sum of first 5000
IR observations; Lower-left: Average of last 5000 actions; Lower-right: Log sum of last
5000 IR observations.

Figure 4.10: Attraction Model I: Top row: Heat map (log scale) of 5 visitors for first
5000 timesteps; bottom row:Heat map (log scale) of last 5000 timesteps. Blue dot is the
location of IR sensor and its detection area is represented by light blue bars. Each pixel
(from yellow to red) indicates number of times the visitor occupied the area covered by the
pixel.
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Attraction Model II

From Figure 4.11 we can see that PLA has higher rewards than SARA in both exploration
methods, while Random receives the lowest rewards. This demonstrates that PLA is
better at generating visitors’ desired action sequence than SARA and Random. In fact,
the attraction model II is a subset of PLA’s behaviours. For SARA, however, given a
learnt deterministic policy, the action sequence can only be produced with the help of
action noise. The chance of SARA generating a desired sequence is reduced compared
to PLA. The random policy can generate any sequence of actions, but the requirement
of minimum duration of each state is hard to satisfy. Thus Random obtains the worst
rewards among the three adaptive behaviour modes.

According to Figure 4.11, parameter noise exploration decreases the learning speed of
PLA and SARA, which is consistent with the results with attraction model I. Final reward
levels of two exploration methods are similar in both PLA and SARA, except parameter
noise exploration is marginally better in SARA.

Figure 4.11: Attraction Model II: Cumulative rewards under PLA, SARA and Random.
First row: action noise; second row: parameter noise.

We notice that with PLA, the learning algorithms achieve rewards close to maximum
by the end of training. We show the learnt policy by plotting the visitor position history
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at the beginning and the end of training process in Figure 4.12. Both exploration methods
have similar results, so we choose action noise for demonstration. From the figure we can
see that initially visitors move around under LAS. By the time training finishes, all visitors
found their own attractive spots (circled in red) and stay there. They keep triggering the IR
sensor of the node above them, and LED in the node keeps making ramp-hold-fade action
sequences to maintain occupancy. Further, we notice a phenomenon that is different from
SARA in attraction model I. In this case, each visitor stands under a different node, which
optimizes the rewards of LAS. We hypothesize that the propagation behaviour in PLA
helps distribute visitors to separate nodes.

Figure 4.12: Attraction Model II: Top row: Heat map (log scale) of 5 visitors for first 5000
timesteps; bottom row:Heat map (log scale) of last 5000 timesteps. Blue dots are locations
of IR sensors and light blue bars represent their detection areas. Each pixel (from yellow
to red) indicates number of times the visitor has appeared in the area covered by the pixel.

It is worth mentioning that attraction model II has differing results between single
visitor (Figure 4.5) and multiple visitor environments (Figure 4.11). Specifically, there are
two differences: (i) rewards using action noise (ii) difference between PLA and SARA.

• (i) Compared to the failure in the single visitor situation, the learning algorithm using
action noise did acquire a policy that attracts visitors in the multiple visitor setting.
We believe the learning algorithm benefited from the abundance of rewards brought
by more visitors. There is a higher chance of receiving rewards when more people are
present in space. Further, we hypothesize that the increase in number of visitors helps
shaping reward gradient which is beneficial to learning. Reward gradient refers to a
characteristic of reward formation that could guide learning into a correct direction.
The numerical gradient of rewards could inform learning algorithms about which
actions or states are more preferable. This is a similar idea to the potential-based
reward shaping function proposed by Andrew Y. Ng. et al.[59]. In the multiple visitor
environment, different number of visitors detected by IR sensors can form a gradient
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and tells learning algorithms to attract as many as possible, which can be considered
as a subgoal-based heuristic for potential-based shaping function in [59]. In the single
visitor case, however, the reward is sparse and no gradient can be utilized. The task
is thus harder to learn.

• (ii) In the single visitor experiment, results of PLA and SARA are equally good
or bad. But when multiple visitors are present, PLA is better than SARA using
both exploration methods. The rise of difficulty exposes the advantage of PLA in
generating action sequences over SARA.

4.4.3 Stochastic Visitor

To make the simulation closer to reality, we introduce randomness into visitors’ behaviour.
Every time a visitor determines its destination, it has a probability of ε to go to a random
position. ε is set to different levels, {0, 0.01, 0.05, 0.1, 0.3}, representing different levels of
unpredictability of human beings.

Figure 4.13: Attraction Model I: Reward of different level of randomness. First row: action
noise; second row: parameter noise

The average returns of all runs are shown in Figure 4.13 and Figure 4.14. By looking at
the third column of both figures, we can tell that as ε increases, the rewards that LAS can
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Figure 4.14: Attraction Model II: Reward of different level of randomness. First row:
action noise; second row: parameter noise

get are generally reduced. This is expected as randomly selecting a destination will make
visitors less likely to stay under or walk towards a node and be captured by IR sensors.

In Figure 4.13, when ε > 0 and visitors are not deterministic anymore, rewards of
both PLA and SARA decrease as ε increases. The magnitude of variation is greater than
Random, which means learning algorithm performance is affected by ε.

In Figure 4.14, there is a drop in performance when ε > 0. This is because when
visitors arrive at a node, they decide whether to stay by polling the state of LEDs at each
timestep. This decision has ε chance to cause the visitor to leave and move towards a
random location (refer to Algorithm 1). It notably reduces the amount of time visitors are
captured by IR sensors, thus diminishing rewards and increasing the difficulty of learning.
According to the figure, learning with action noise in SARA is mostly influenced by this
lack of reward. Larger exploration range by parameter noise helps offset this effect.

Overall, DDPG’s learning ability is hindered by visitors’ stochasticity and this effect is
more severe as stochasticity increases. In reality, people’s randomness may not be as high
as 30%, but will still affect learning of algorithms.
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4.5 Conclusion

In this chapter, we showed the performance of learning algorithms in a simulated envi-
ronment with single and multiple visitors. In the single visitor environment, parameter
noise exploration results in better rewards in PLA than action noise exploration, because
of larger range of exploration. But it has a slight cost of learning speed in SARA. Similar
results are observed in the multiple visitor environment and the effect is more prominent
than in the single visitor case.

In both environments, it can be concluded that PLA and SARA have their own advan-
tages when the visitor preference is different. Specifically, when the visitor preference is
a subset of adaptive behaviour actions, the learning algorithm performs better. The ad-
vantage of different behaviour generating methods under different visitor attraction modes
becomes more prominent in the multiple visitor environment than in the single visitor
environment.

In addition, compared to a single visitor, multiple visitors yields richer rewards which
is helpful to learning.

When visitors become stochastic, the ability of learning decreases as stochasticity in-
creases and using parameter noise can offset the effect to some extent.

In a field experiment, the environment and visitors are much more complex. Each
visitor has their own attraction model and it may change over time. As a result, a certain
action might only interest some of the visitors, and visitors might get bored after certain a
amount of time. A policy learnt from one group of visitors might not work on another. To
accommodate unpredictable changes in the non-stationary environment, wider exploration
is more desirable and therefore parameter noise is a better choice.
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Chapter 5

Field Experiment

In this chapter, we deployed the proposed reinforcement learning approach in the Aegis
installation and conducted a field study. We describe the experimental and data processing
procedures. Finally we give a quantitative analysis of the results.

5.1 Adaptive Behaviour Modes

Four adaptive behaviour modes were tested in the field study. The first three modes are PB,
PLA and SARA described in Section 3.1.2, 3.2.1 and 4.2.1. Like SARA, the fourth mode,
Agent Community Raw Act (ACRA), is designed to act in raw action space, i.e. directly
control actuators, rather than acting in parameterized action space. SARA directly controls
all actuators of the LAS using a single agent, while ACRA controls the raw actuators in
a decentralized way, where a distributed multi-agent learning system replaces the single
large learner in SARA. Compared with SARA, ACRA enables reducing the dimension of
the action and observation spaces for each agent in ACRA, and by sharing observations
among agents ACRA is also hypothesized to exhibit cooperating and competing behaviour
as in other multi-agent systems[60]. In the experiment, SARA and ACRA are implemented
by Lingheng Meng. Therefore, in this thesis, we focus on our analysis on the PLA and PB
results.
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5.2 Implementation Choice

As stated Chapter 4 Section 4.5, we use parameter noise in PLA as the exploration strategy.
The choice of hyperparameters are identical to those in the simulation (see Section 4.2.5).
Selecting hyper-parameters with real experiments is challenging, since we do not have a
”validation set” that allows us to do multiple runs to choose hyper-parameters. Therefore,
all hyper-parameters used are empirically chosen.

5.3 Experimental Procedure

Our experiment was conducted for two weeks from September 14 to October 3, 2018, at
the ROM. We were permitted by the ROM to collect data from 1 p.m. to 4 p.m. every
day on weekdays. At the same time, we conducted in-person surveys on September 18, 20,
and 27. During the entire experiment period, visitors were free to visit and interact with
the installation without any interference from researchers.

For each day of the experiment, the following procedure was followed:

1. Randomly schedule the different agent conditions into 1 or 1.5 hour time slots as
shown in Figure 5.1. PB and PLA were scheduled on each day, while only one of
SARA and ACRA were scheduled per day.

2. Automatically run scheduled behaviour at each time slot, and save interaction data
and learned models and videos at the end of each behaviour.

During days where no visitor surveys were collected, researchers were not present in the
environment. During the three survey days, researchers were present, but did not provide
any additional instructions to visitors. Researchers observed which visitors interacted with
the LAS, passively or actively, within a specific behaviour period. When visitors were
finished with their visit, researchers unobtrusively approached visitors who had interacted
with the system, and asked them if they were willing to participate in a survey. If a
visitor agreed to do the survey, they were guided to a table located around a corner and
were provided with a tablet with a questionnaire (see Section 5.4). The researchers also
recorded which mode the visitor had interacted with. We only recruited visitors who had
interacted with only one behaviour mode.

The overall experiment schedule is shown in Figure 5.1, where red, blue, green, yellow
and white areas correspond to PB, PLA, SARA, ACRA and no schedule respectively. A
summary of the experiment schedule and collected data is shown in Table 5.1.
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Video was not available on Sep. 14.

Figure 5.1: Experiment Schedule

Table 5.1: Summary of Experiment Schedule
and Data

Behaviour Days Hours
Survey

Participants
PB 14 15.5 14

PLA 13 15 15
SARA 4 4 4
ACRA 4 4 3

Video was not available on Sep. 14. The Data for SARA on Sep. 20 was corrupted.

5.4 Data Collection

The data collected comes in four types: sensor readings, learning agent logs, human survey
data and video data from the two web-cams.

Every raw sensor reading is logged. In addition to the raw sensor data, each agent also
logs its own learning algorithm data collected during the course of learning.

For human survey data, 14, 15, 4, and 3 participants completed surveys in the PB, PLA,
SARA and ACRA modes respectively, as summarized in Table 5.1. The questionnaire used
in our experiment is a standardized measurement tool for HRI: the Godspeed questionnaire
[61]. In addition to the 24 Godspeed questions, we asked participants about their interests
and background, and their general feedback and comments. The Questionnaire consists of
four types of questions:

1. Participants’ interests and background (multiple-select multiple choice);

2. Participants prior knowledge about interactive architecture and machine learning,
including “How familiar are you with interactive architecture?” and “How familiar
are you with machine learning algorithms?”;

3. 24 Godspeed questions namely Godspeed I: Anthropomorphism, Godspeed II: Ani-
macy, Godspeed III: Likeability, Godspeed IV: Perceived Intelligence and Godspeed
V: Perceived Safety [61];

4. Participants’ general feedback, i.e., “Any additional comments regarding your expe-
rience?” and “Any overall feedback?”.
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Video data is collected to calibrate sensory readings and validate occupancy estimates,
which will be discussed in detail in Section 5.5. Video data is available for all the experi-
ments except for Sep. 14.

5.5 Data Analysis

The camera view includes regions outside of the LAS itself. To only focus on areas directly
related to the LAS, we define three parts of the whole camera view (as shown in Figure 5.2a
and Figure 5.2b for Camera1 and Camera2 respectively). In Figure 5.2, each camera view is
divided into Camera View, Whole Interest Area and Core Interest Area. For both IR Data
Calibration and Occupancy Estimation, we only consider the Whole Interest Area. Any
visitors outside this interest area will be ignored for the purposes of occupancy estimation.
The Core Interest Area approximates the space directly underneath the LAS.

(a) Camera1 (b) Camera2 (c) Sample of Estimated
Occupancy from Cam-
era1

Figure 5.2: Interest Area Used to Estimate Occupancy

5.5.1 IR Data Calibration

To enable comparison between different behaviour modes, the sensor data must be pre-
processed to ensure consistency between conditions. Since visitors can physically interact
with the system, it is possible that a visitor changes the direction of the IR sensor thus
changing its field of view and subsequent readings. To calibrate the IR data, two cali-
bration steps are taken: 1) IR sensors, whose value is relatively constant and effectively
not responding to occupants (e.g., due to obstructions or height being greater than the
sensor range), are removed, 2) the baseline reading for each sensor is shifted to zero. Note
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that the calibration is only done for analysis, during the learning uncalibrated readings are
used. To identify blocked IR and baseline shifts, we visually checked the videos recorded
by the two web-cams, and selected a time period when there is no visitor within the whole
interest area. Then, we find the IR data corresponding to the no-visitor time. Using the
no-visitor time, we determine the thresholds for noise removal and blocked IR detection
for the IR data. We use these thresholds to calibrate the raw IR data.

5.5.2 Occupancy Estimation

We also use the camera data to generate a second estimate of occupancy. We estimate the
number of people occupying the space during a one minute interval, using OpenPose1 [62]
based on the videos recorded by one of the web-cams2. When estimating occupancy, we
only considered the Whole Interest Area.

5.5.3 Non-visitor Period Examination

We also used the camera data to determine whether there are significant periods when no
visitors are present. To identify the time periods with no visitors in Whole Interest Area,
we manually labelled the time periods when no person is under either camera in the Whole
Interest Area. If a person’s body is partially visible in Whole Interest Area, we consider
it as a person being in the area. The total amount of non-visitor time throughout the
experiment is 1 hour, only 2.5% of total experiment time. Therefore, we use the whole
time period for analysis without removing any non-visitor intervals.

5.6 Evaluation Metrics

For quantitative comparison, instead of using accumulative reward commonly seen in RL
analysis, we consider average estimated engagement and average active interaction as two
evaluation metrics, considering the complexity of the environment which is non-episodic
and non-stationary. In the natural setting of LAS, the number of visitors varies at dif-
ferent time periods and is highly irregular, which makes the evaluation based on periodic
accumulated reward unfeasible since this is a non-episodic environment. Besides, manually

1https://github.com/CMU-Perceptual-Computing-Lab/openpose
2Videos from Camera2 are highly affected by the changing light of the projector as shown in Figure

5.2b, so for occupancy estimation we only used videos from Camera1.
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setting the maximum length of an evaluation period and comparing accumulated reward
in that period is also unfair, because the total number of visitors in space is time-varying
and maximum available rewards in episodes are also time-related. Therefore, we choose
to regard the whole experiment as a continuous learning and evaluate in terms of average
estimated engagement and average active interaction.

Both estimated engagement level and active interaction count are based on IR readings,
but they emphasize different aspects of engagement. Specifically, estimated engagement
level does not differentiate between passive and active interaction (illustrated in Figure
3.1), while active interaction count focuses on measuring active interaction.

5.6.1 Estimated Engagement Level

The observation vectors used for training PLA, SARA and ACRA are different (see Section
3.2), so the estimated engagement, i.e., reward used for training each behaviour, cannot
be directly compared. Therefore, we use raw IR readings recorded during each behaviour
and Equation 5.1 to calculate an estimated engagement for comparison among behaviours.
Specifically, given M IR readings received within 1 minute (typically sampled at 10Hz){
ir(1), ir(2), ..., ir(M)

}
where each IR reading ir(i) is a vector of 24 IR values, the estimated

engagement level e is defined by Equation 5.1:

e =
1

M

1

24

M∑
m=1

24∑
i=1

ir
(m)
i (5.1)

where ir
(m)
i is the ith IR sensor in the mth IR reading. The estimated engagement is in

the range [0,1], where the maximum 1 corresponds to a maximally engaging state, where
all IR sensors are receiving maximum readings during the entire 1 minute window, while
the minimum 0 corresponds to fully non-engaging state, where all IR sensors are receiving
minimum readings for the duration of the one-minute window.

5.6.2 Active Interaction Count Analysis

In addition to the estimate of engagement, we separately estimate the level of active inter-
action. To capture active interactions, we count the number of IR readings having value
>= 0.25, which corresponds to a proximity of 35cm or less from an IR sensor, within
1 minute. Despite the behavioral difference among IR sensors caused in manufacturing
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and installation3, we assume all sensors behave in the same way for simplicity. Formally,
given M IR readings received within 1 minute (typically sampled at frequency F = 10Hz){
ir(1), ir(2), ..., ir(M)

}
where each IR reading ir(i) is a vector of 24 IR values, the number

of active interactions Nactive is defined by Equation 5.2:

Nactive =
1

F

M∑
m=1

24∑
i=1

1

{
ir

(m)
i ≥ 0.25

}
(5.2)

where ir
(m)
i is the ith IR sensor in the mth IR reading, and 1 {·} is a indicator function.

Therefore, Nactive is the total detected active interactions within 1 minute.

5.7 Results

5.7.1 Quantitative Comparison Between PB and PLA

In this section, we quantitatively compare the performance of the two behaviour modes
based on sensory data collected during the interaction between visitors and the LAS. We
use two ways to quantitatively compare the four behaviours’ performance: 1) comparing
the estimated engagement level, as described in Section 5.6.1, and 2) comparing the number
of active interactions, as introduced in Section 5.6.2.

Our experiment is run in a natural setting, i.e., a publicly accessible museum, so it is
possible that there are different occupancy levels in the space due to factors not related
to the behaviour mode. To check whether there are different occupancy levels between
conditions (which might be caused either by some behaviours being more attractive to
visitors, or factors not related to system behaviours), we analyze the overall occupancy
level for PB and PLA, as described in Section 5.5.2. Figure 5.3 shows a comparison of the
estimated occupancy between PB and PLA, where (a) shows that, in only about 5% of data,
PLA has approximately 1 more visitor than PB, and (b) shows that the average occupancy
between PB and PLA is very similar. A Mann-Whitney U test indicates that there is no
significant difference between PB and PLA in terms of occupancy level, U = 239030.5,
p = 0.92 (two-sided).

3The heights of sensors in the Aegis installation are not identical, thus there are differences in the
distance of detected activities.
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(a) Comparison of Estimated Occupancy Distribu-
tions.

(b) Average Estimated Occupancy

Figure 5.3: Estimated Occupancy Comparison. (a) is a Q-Q (100-quantiles-100-quantiles)
plot of estimated per-minute occupancy, using the method introduced in Section 5.5.2,
where the coordinate (x, y) of the q-th point from bottom-left to up-right corresponds to
the estimated occupancy of (PB, PLA) for the q-th percentile, i.e. Qq, q = 0, 1, ..., 100,
and the reference line indicates a perfect match of distribution between PB and PLA. For
example, the point (4.3, 4) for PB vs PLA at the Q75 means that 75% of observations
for PB and PLA are less than 4.3 and 4, respectively. (b) shows the average estimated
per-minute occupancy and its standard error for PB and PLA.

Estimated Engagement Level Comparison

Figure 5.4 compares the estimated engagement (defined in Section 5.6.1) between PB and
PLA. From Figure 5.4a, we can observe that for the first 75% of data there is no noticeable
difference between PB and PLA, while for the last 25% of data PLA has larger estimated
engagement than PB. Figure 5.4b shows the average estimated engagement and average
estimated engagement, in which PLA achieved higher rewards than PB.
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(a) Estimated Engagement (b) Average Estimated Engagement

Figure 5.4: Estimated Engagement Comparison (a) is a Q-Q (100-quantiles-100-quantiles)
plot between PB and PLA based on average estimated engagement, and the reference line
represents a perfect match of distributions between PB and PLA. (b) compares the average
estimated engagement, where blue bars with standard errors show the average estimated
engagement and its corresponding standard error.

Active Interaction Comparison

Figure 5.5 compares the active interaction count based on Eq. 5.2. From Figure 5.5a, we
can see that for about 50% of observations, PLA achieves higher active interaction than
PB. Figure 5.5b compares PB against PLA in terms of average active interaction count.
As shown in these results, PLA almost doubles the PB average active interaction count.

Daily Average Estimated Engagement and Active Interaction

To analyse how performance evolved over the 3 week experiment, we plot the daily average
engagement and active interaction over the whole experiment. Figure 5.6 shows daily
average metrics of PB and PLA. From the regression lines in Figure 5.6a, we can see
that at the first couple of days PB outperforms PLA, while after Sep. 25 PLA overtakes
PB for the rest of time. However, daily average active interaction shown in Figure 5.6b
shows different pattern that PLA receives more active interaction than PB at the very
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(a) Comparison of Average Active Interaction Dis-
tributions

(b) Average Active Interaction Count

Figure 5.5: Active Interaction Count Comparison. (a) is the Q-Q (100-quantiles-100-
quantiles) plot on active interaction count per minute obtained using Eq. 5.2. The reference
line indicates a perfect match of distribution between PB and PLA. (b) compares the
average active interaction count per minute between PB and PLA.

beginning and keeps expanding the gap between PLA and PB. Even though it seems PLA
is evolving, we are not clear if this is caused by variation of number of visitors or by
continuous adapting of PLA, because the daily average estimated occupancy in Figure
5.6c also continuous increase over the whole experiment and the increase of estimated
occupancy could be caused by more engaging behaviour of PLA or independent from the
interactive action of the LAS.
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(a) Estimated Engagement (b) Active Interaction (c) Estimated Occupancy

Figure 5.6: Trajectory of Daily Average Metrics. (a) Daily Average Estimated Engage-
ment, (b) Daily Average Active Interaction and (c) Daily Average Estimated Occupancy,
where each data point is the corresponding average on each day, and the lines are the linear
regression of these data and the translucent bands around the regression line are the 95%
confidence interval for the regression estimate.
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5.7.2 Human Survey Results

In this section, we analyze the visitor responses to the survey for PB and PLA, and omit
analysis of SARA and ACRA due to the very limited number of participants (see Table
5.1). We first examine if there are any differences in the population characteristics between
the participants who engaged with the system in PB or PLA behaviour modes. Then, we
compare the PB and PLA responses for each Godspeed category. Finally, we compare PB
and PLA for each Godspeed question individually, comparing the number of participants
providing a rating of five.

We first analyze whether there are population differences between conditions. In Sec-
tion 5.5.2, we confirmed that there were no significant differences between PB and PLA
in terms of estimated occupancy. To test for differences in participant background and in-
terest, we performed a χ2-test on participants’ background and interests based on the first
two questions in our questionnaire (see Section 5.4), and found no statistically significant
differences between the two groups.

Cronbach’s α test was conducted on each category of Goodspeed for both PB and PLA
to examine the reliability of participants’ responses, results are shown in Table 5.2. As the
results shown, although α on Anthropomorphism and Perceived Safety is questionable or
unacceptable, α on others are all acceptable, especially for Likeability α ≥ 0.85.

Table 5.2: Cronbach’s α on Goodspeed for PB and PLA

Anthropomorphism Animacy Likeability
Perceived
Intelligence

Perceived
Safety

PB 0.74 0.77 0.85 0.89 0.52
PLA 0.64 0.80 0.93 0.85 0.27

A commonly accepted rule[63]: 0.9 ≤ α: Excellent; 0.8 ≤ α < 0.9: Good; 0.7 ≤ α < 0.8: Acceptable;
0.6 ≤ α < 0.7: Questionable; 0.5 ≤ α < 0.6: Poor; α < 0.5: Unacceptable.

Figure 5.7 shows the Box-plot and Violin-plot of the calculated average grade over each
Godspeed category for PB and PLA. Within the five Godspeed categories, only Likeability
has a relatively large gap between the medians of PB and PLA. In addition, Likeability
has a relatively small variance, whereas other categories have large variance. A t-test
on the average grade shows that PLA is rated higher than PB for Likeability with 95%
confidence, whereas for other categories there is no significant difference between PB and
PLA. A normality test was conducted for the Likeability category from PB and PLA
respectively. Shapiro-Wilk Test [64] indicates PB (p = 0.12) is normally distributed and
PLA (p = 0.0008) is not. Therefore, for clarity a histogram for PB and PLA on Likeability

53



is shown in Figure 5.8, from which we can see that more participants from PLA rated
grade 5 than that from PB.

Figure 5.7: Boxplot and Violinplot of Aver-
age Grade of each Godspeed Category over
Participants within PB or PLA.

Figure 5.8: Histogram of Participants
Average Grade over Questions in Like-
ability. The grade range [1,5] is uni-
formly divided into 15 binds

Figure 5.9 shows the proportion of participants who rated each question = 5. The
reason for choosing “5” for comparing participants’ responses is that participants for both
PB and PLA were very generous, and gave grades higher than or equal to 3 for most
questions (e.g. over 92% of all responses to questions in Likeability were 3 or higher).
From this figure, we can see that there are significant differences between PB and PLA in
questions related to Godspeed III-Likeability, whereas for most of the questions in the other
four Godspeed categories, there are no statistically significant differences. Specifically, for
questions Inert-Interactive, Unfriendly-Friendly, Unkind-Kind, Unpleasant-Pleasant and
Awful-Nice PLA is better than PB with a high confidence >90%, while for the other
questions there are no statistically significant differences.

In summary, PLA is rated higher than PB by the participants in terms of Likeability
and interactivity, while there are no significant differences between PB and PLA in the
other Godspeed categories.
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Figure 5.9: Proportion of Participants who Rated with Grade=5. The value above the
bars for each question is the p value of z-test with alternative hypothesis pPB < pPLA,
where pPB and pPLA are the proportion of participants who have a = 5 rating among all
participants within PB and PLA respectively.

5.8 Conclusions

In this chapter, we evaluate algorithms for generating interactive behaviours through a
field experiment in a natural setting. We analyze the interactions between human and
LAS and collect human survey data. By using two evaluation metrics, we show that a
learning agent acting on parameterized space, i.e. PLA, has higher average engagement
level than pre-scripted behaviour. The human survey data shows that PLA is better rated
than PB in terms of Likeability and interactivity.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions and Contributions

In this thesis, we proposed an approach to autonomously generate interactive behaviours
for human-robot interaction. The work was developed for an interactive art installation
developed by LASG/PBAI and exhibited at the ROM. An RL algorithm is used to learn
in a parameterized action space which exploits human designers’ knowledge. Simulations
were performed to validate the learning algorithm in a simplified setting. Then, a field
study was conducted in a natural setting, where no constraints were imposed on visitors
and group interaction was accommodated.

In the simulation, we compared three behaviour generation modes, PLA, SARA and
Random, in the single and multiple visitor environment. Two exploration methods, pa-
rameter noise and action noise, were also examined. The result shows that a small action
space (PLA) could benefit from using parameter noise for exploration, but in a large action
space (SARA), it slows down the learning speed. This effect becomes more noticeable when
the number of visitors in the space increases. Meanwhile, when the visitor preference is a
subset of adaptive behaviour, the learning algorithm has better performance. This effect is
also more prominent in the multiple visitor environment. We also investigated the influence
of the visitor’s stochasticity on learning performance, and find that the learning algorithm
becomes less effective as the stochasticity in simulated visitor behaviour increases.

In the field study, we developed and evaluated algorithms for generating interactive
behaviours with the LAS. Specifically, we provided a way to estimate engagement during
group interaction based on low level sensing, i.e. IR sensors. This might be helpful for
designing other large-scale interactive systems.
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PB and PLA were examined to evaluate how the use of human knowledge influences
the social interactions between the LAS and human visitors. We showed that PLA has
higher engagement level and active interaction count than PB. The human survey data
showed that participants gave higher ratings in Likeability and interactivity for PLA. It
is hypothesized that the PLA configuration outperforms PB because it benefits from both
human expert input, such as parameterized action space and manual reward function, and
learning. Our results illustrate how human expertise and autonomous learning may be
combined by using a reinforcement learning agent learning from estimated engagement of
group interactions.

6.2 Limitations

Even though we created several test scenarios, the simulation is still much simpler than
real life. People are attracted to different stimuli in various forms, such as sound, visual
effects and complex combinations of stimuli. The interests will also die out and change as
participants become more and more familiar with the system. In the simulation, we assume
the visitors have simple attraction models which remain unchanged during the training
process. In real life, different individuals may have different interaction preferences. They
do not necessarily walk towards the attractions immediately, nor necessarily figure out
instantly how to interact with the system, i.e. waving at IR sensors. In the simulation, we
assume visitors are capable of interacting with the LAS system efficiently by placing them
in front of IR sensors.

The field study is conducted in a natural setting, where basic assumptions of a station-
ary environment in reinforcement learning are violated. The response time from human
visitors is not constant and sets an upper bound for the interaction frequency, thus limiting
the number of experiences that the learning agent can learn from. Therefore, although we
exploit a RL framework in our work, the role it plays is different from that of standard
testbeds such as OpenAI Gym[10]. In this work, RL is used to introduce adaptability, but
there is no guarantee that the learning leads to optimal policy. In fact, we do not observe
a fixed policy learnt by the agent, but instead find the policy to be constantly evolving.
We hypothesize that the agent is adapting to the new environment.

As the field study is non-repeatable, we could not have runs with identical settings in
order to choose optimal hyperparameters. The choice of the hyperparmeters is completely
empirical even though they are validated in the simulation. Meanwhile, we used DDPG
because of its wide applications. There are other advanced algorithms for the continuous
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action space such as PPO[25] and TD3[65], and we did not have the chance to compare
their performances.

Due to the varying lighting condition in the exhibition area, we could not use the
webcam footage for the pose or the facial expression analysis. Compared to other social
HRI work with rich sensing such as cameras and microphones, we were still able to estimate
engagement with limited sensing and generate engaging behaviours accordingly. This might
be helpful to other large scale interactive systems where having sophisticated measurement
may be unfeasible.

6.3 Future Work

In this work, we proposed a learning agent that learns on one specific implementation
of human designed interactive behaviours. Other human designed behaviours should be
examined and compared to see how the change in human knowledge representation affects
the learning performance. In addition, hierarchical RL with PB bootstrapping could be
a promising extension, where we could design a pool of PBs and various levels of reward
functions, and see how complicated action patterns could emerge.

In the field study, even though PLA received higher average engagement and perceived
likeability than PB, we cannot be certain about the cause of this difference. Therefore,
a baseline with random policy can be tested to see if there is a difference between this
baseline and PLA to confirm that the learning agent is indeed learning from or adapting to
its interaction. Other advanced continuous control RL algorithms such as PPO and TD3
are also worth investigating. To tackle the low pace of interaction in LAS and high sample
requirement of RL, we can also investigate how to bootstrap the learning by transferring
learnt models in the simulation to the physical LAS.

Like previous work by Chan et al.[28], we could also introduce intrinsic motivation and
a learning algorithm driven both intrinsically and extrinsically for LAS. This would require
more sophisticated sensing in the LAS.
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Appendix A

DDPG Algorithm Implementation

Initialize policy paramters θ, Q function parameters φ, empty replay buffer D
Set target parameters equal to main parameters θtarg ← θ, φtarg ← φ
while True do

Observe state s and select action a = πθ(s) +N
Execute a in the environment
Observe next state, reward and done signal, s′, r and d
Store experience (s, a, r, s′, d) in buffer D
if Reach maximum steps per episode then

for fixed number of updates do
Sample a batch B from D and compute target y:
y(r, s′) = r + γQθtarg(s

′, πθtarg(s
′))

Update the critic by one step of gradient descent:
∇φ

1
|B|
∑

(s,a,r,s′,d)∈B (Qφ(s, a)− y (r, s′, d))2

Update the policy:
∇θ

1
|B|
∑

s∈B Qφ (s, µθ(s))

Update target networks:
θtarget ← ρθtarget + (1− ρ)θ
φtarget ← ρφtarget + (1− ρ)φ

end

end

end
Algorithm 2: DDPG algorithm with action noise as the exploration method.
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Appendix B

Implementation Details of SARA

The neural network structure for SARA’s actor-critic agent is shown in Figure. B.1, where
the number under each layer is the neural units in that layer. The neural network is fully-
connected with layer-norm applied. All hidden layers use ReLu activation function and
output layer uses tanh activation function. The exploration strategy for SARA is ε-greedy
in which the epsilon parameter is reset to 0.5 and discounted to 0.05 with discount rate
0.9 everyday.

(a) Actor (b) Critic

Figure B.1: Actor-Critic of SARA
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