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Abstract

Machine learning methods, and particularly deep neural networks, are a rapidly growing
field and are currently being employed in domains such as science, business, and gov-
ernment. However, the significant success of neural networks has largely been due to the
increasingly large model sizes and enormous amounts of required training data. As a result,
powerful neural networks are accompanied by growing storage and memory requirements,
making these powerful models infeasible for practical scenarios that use small embedded
devices without access to cloud computing.

As such, methods for significantly reducing the memory and computational require-
ments of high-performing deep neural networks via sparsification and/or compression have
been developed. More recently, the concept of evolutionary deep intelligence was proposed,
and takes inspiration from nature and allows highly-efficient deep neural networks to or-
ganically synthesize over successive generations. However, current work in evolutionary
deep intelligence has been limited to the use of asexual evolutionary synthesis where a
newly synthesized offspring network is solely dependent on a single parent network from
the preceding generation.

In this thesis, we introduce a general framework for synthesizing efficient neural net-
work architectures via multi-parent evolutionary synthesis. Generalized from the asexual
evolutionary synthesis approach, the framework allows for a newly synthesized network to
be dependent on a subset of all previously synthesized networks. By imposing constraints
on this general framework, the cases of asexual evolutionary synthesis, 2-parent sexual
evolutionary synthesis, and m-parent evolutionary synthesis can all be realized.

We explore the computational construct used to mimic heredity, and generalize it be-
yond the asexual evolutionary synthesis used in current evolutionary deep intelligence
works. The efficacy of incorporating multiple parent networks during evolutionary syn-
thesis was examined first in the context of 2-parent sexual evolutionary synthesis, then
generalized to m-parent evolutionary synthesis in the context of varying generational pop-
ulation sizes. Both experiments show that the use of multiple parent networks during
evolutionary synthesis allows for increased network diversity as well as steeper trends in
increasing network efficiency over generations.

We also introduce the concept of gene tagging within the evolutionary deep intelligence
framework as a means to enforce a like-with-like mating policy during the multi-parent
evolutionary synthesis process, and evaluate the effect of architectural alignment during
multi-parent evolutionary synthesis. We present an experiment exploring the quantification
of network architectural similarity in populations of networks.
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In addition, we investigate the the computational construct used to mimic natural se-
lection. The impact of various environmental resource models used to mimic the constraint
of available computational and storage resources on network synthesis over successive gen-
erations is explored, and results clearly demonstrate the trade-off between computation
time and optimal model performance.

The results of m-parent evolutionary synthesis are promising, and indicate the poten-
tial benefits of incorporating multiple parent networks during evolutionary synthesis for
highly-efficient evolutionary deep intelligence. Future work includes studying the effects of
inheriting weight values (as opposed to random initialization) on total training time and
further investigation of potential structural similarity metrics, with the goal of developing
a deeper understanding of the underlying effects of network architecture on performance.
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Chapter 1

Introduction

The field of machine learning (ML) and artificial intelligence (AI) is rapidly growing in
modern society, and these techniques are currently being used in a variety of domains,
including science, business, and government. In the last few years, deep neural networks
(DNNs) [1–4] have taken over the field of AI due to their demonstrated ability to ac-
curately model abstract problem spaces and significantly improve the performance over
other machine learning methods. Deep neural networks, especially deep convolutional
neural networks (CNNs), have exploded in popularity and have regularly been applied to
various challenging areas of research, such as image recognition [4–7] and speech recog-
nition [2, 8–10]. However, this boost in performance of deep neural networks is largely
attributed to increasing model sizes and complexity. In addition to requiring enormous
amounts of data to properly train, these increasingly large models have resulted in growing
storage and memory requirements [11].

1.1 Problem Definition

The astronomical computational requirements and memory requirements make high per-
formance deep neural networks infeasible for on-the-edge devices without access to cloud
computing. For many practical situations such as self-driving cars and smartphone appli-
cations, the available computing resources are limited to low-power, embedded graphics
processing units (GPUs) and central processing units (CPUs). For example, the NVIDIA
Jetson Nano has 4GB of memory [12] while the Raspberry Pi 4 has 1GB, 2GB, or 4GB
of memory available [13]. In addition, much of the power consumption of these edge de-
vices is attributed to simply loading the neural network (as opposed to the computations
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themselves) [14]. As shown in [15], reducing a network model size by one order of mag-
nitude (343Mb to 16.7Mb) can be the difference between insufficient memory and model
tractability. With such limited computational power and storage, smaller and more com-
pact versions of deep neural networks that can run on these stand-alone systems are highly
desirable. As such, research into highly efficient deep neural networks has been conducted,
and methods have been developed (as detailed in Section 2.3) for significantly reducing
the memory and computational requirements with minimal drop in performance via the
sparsification and/or compression of high-performing deep neural networks.

Rather than attempting to compress existing deep neural networks into smaller and
more compact models directly, Shafiee et al. [16] recently proposed a radically differ-
ent approach to efficient neural networks: “Can deep neural networks evolve naturally
over successive generations into highly efficient deep neural networks?” Taking inspiration
from nature, Shafiee et al. introduced the concept of evolutionary deep intelligence, where
highly efficient deep neural networks are organically synthesized over successive genera-
tions. While the genetic encoding scheme used to mimic heredity during the evolutionary
synthesis of new networks has been further explored via synaptic cluster-driven genetic
encoding [17,18], previous work in evolutionary deep intelligence [16–18] has been limited
to the use of asexual evolutionary synthesis where a new synthesized offspring network is
solely dependent on a single parent network from the preceding generation.

Asexual evolutionary synthesis, while effective at synthesizing increasingly efficient net-
works, results in limited network diversity and only explores a limited range of possible
offspring networks as the structure of newly synthesized networks is highly constrained by
its parent network. Relative to asexual reproduction, sexual two-parent reproduction allows
for rapid adaptation to changing environments and has the potential to accelerate evolution
by several orders of magnitude due to the increased diversity in the population [19].

Generalizing on the idea of sexual evolutionary synthesis, multi-parent evolutionary
synthesis for highly efficient deep neural networks is proposed to increase offspring network
diversity and architectural efficiency over generations. To the best of our knowledge, no
research has been conducted in multi-parent evolutionary synthesis of deep neural networks
to statistically generate efficient neural network architectures from populations of neural
networks via network mating and environmental resource constraints. The focus of other
existing research was to produce efficient neural networks via the direct sparsification of
computationally expensive networks (as described in Chapter 2.3) or, by applying principles
from genetic algorithms, stochastically and iteratively converge on an optimally efficient
network in the search space of possible networks (as described in Chapter 2.5) rather than
the guided optimization of network architectures via evolutionary synthesis.
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1.2 Challenges and Objectives

Although highly desirable, creating efficient deep neural network architectures is compli-
cated, and research to enable the use of deep learning on embedded systems has only
begun to emerge in the last few years [11,20,21]. The abstract nature of DNNs is ill-suited
for human intuition (making the manual creation of efficient architectures difficult) [22]
and awkward to parameterize for higher-level learning-based methods [23,24]. Falling into
the last category, the guided optimization of neural network architectures via evolutionary
deep intelligence presents a unique set of challenges:

• Generalization. The first challenge relates to the generalization of the evolutionary
deep intelligence method. The seminal works present a constrained realization of
the method, and a general formulation must allow for both flexibility in network
dependencies and synthesis as well as the recreation of past realizations via user-
imposed constraints.

• Parameter optimization. The evolutionary deep intelligence framework is relatively
new and, as a result, largely unexplored beyond the parameters previously used. A
primary challenge is therefore to study how these various parameters and biologically-
inspired computational constructs can best be leveraged to allow for the synthesis of
efficient network architectures.

• Interpretability. DNNs are regularly referred to as a “black box” technology [25–29],
and it is notoriously difficult to interpret their predictions. Even more difficult to
understand, then, are the networks themselves. How do we compare the synthesized
neural network architectures, and how can we begin to understand the advantages
and disadvantages of various architectures?

Evolutionary deep intelligence shows great promise towards guiding the creation of
highly efficient architectures; however, the method is relatively early in its development,
and further exploration beyond its initial realization can lead to both a deeper understand-
ing of the proposed computational constructs and neural network architectures themselves.
To this end, the following objectives are addressed throughout this thesis:

• The primary objective is to propose a general formulation of the evolutionary deep
intelligence method, and to study the use of multiple parents during the evolutionary
synthesis of efficient neural network architectures.
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• The second objective is to investigate the computational constructs used to mimic
biological evolution. Specifically, heredity and natural selection should be considered,
as random mutation is somewhat analogous to neural network training.

• The third objective is to explore how we can begin to compare different neural net-
work architectures, and the implications of architecture similarity (or dissimilarity)
on performance. In the context of this thesis, this will be limited to comparing the
synthesized network architectures.

1.3 Contributions

The main contributions of this thesis are as follows:

• The general formulation and evaluation of m-parent evolutionary synthesis relative
to asexual evolutionary synthesis (Chapter 3,Chapter 4,Chapter 5). Generalizing
the original evolutionary deep intelligence to m-parent evolutionary synthesis, we
investigate the effects of the number of parent networks used to synthesize a new
network and network population (i.e., the number of networks in each generation)
on network performance accuracy and architectural efficiency over generations. The
incorporation of multiple networks during the synthesis process allows for increased
network architecture diversity and exploration of the architecture search space.

• A gene tagging system to mitigate architectural mismatch during evolutionary syn-
thesis (Chapter 6). Gene tagging is explored within the context of m-parent sexual
evolutionary synthesis and evaluated over a range of environmental resource models.
The gene tagging system allows for the proper alignment of architectural structures

• Assessment of the role of simulated external environmental resources (Chapter 7).
Used to mimic the abundance or scarcity of resources in biological evolution, the en-
vironmental resource model is thoroughly explored using a range of possible models
during the evolutionary synthesis process. This study shows that there is an optimal
range of environmental resource models to facilitate a more gradual trade-off between
performance accuracy and model size. that originated from the same location in the
ancestor network. The similarity of the resulting network architectures shows less
architectural variability than networks synthesized without gene tagging as quan-
tified by relatively higher overlap percentages of architectural clusters, indicating
that enforcing a like-with-like mating policy via gene tagging potentially restricts the
exploration of the search space of possible network architectures.
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1.4 Thesis Structure

Chapter 2 introduces deep neural networks (with an emphasis on convolutional neural net-
works), and presents a literature review of current neural network sparsity methods and
research on evolutionary computing. Chapter 3 proposes a general problem formulation for
the synthesis of a new network architecture, and presents realizations of the framework for
the asexual evolutionary synthesis and sexual evolutionary synthesis cases via assumptions
on network dependency during synthesis. Chapter 4 presents an initial experiment com-
paring asexual and sexual (i.e., two-parent) evolutionary synthesis, and Chapter 5 extends
the formulation and preliminary results to the general m-parent evolutionary synthesis case
in varying population sizes per generation. Chapter 6 introduces a gene tagging system
to mitigate architectural mismatch during synthesis and enforces a like-with-like mating
policy, and Chapter 7 details a study on the role of simulated external environmental re-
sources during the evolutionary synthesis process. Chapter 8 presents an overview of the
achieved performance of m-parent evolutionary synthesis with a comparison to state-of-
the-art methods. Lastly, Chapter 9 concludes the thesis, providing a summary of thesis
contributions and proposing potential research directions for future work.
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Chapter 2

Background

2.1 Neural Networks

At the core of nearly all modern deep neural networks (NNs) is the feedforward deep net-
work model [30]. Feedforward models are named for the directionality of information flow
in the model (unlike recurrent neural networks which incorporate feedback connections),
and the goal of the feedforward model is to approximate some function f ∗ using a para-
metric approximation f . In the case of classification, feedforward NNs find a mapping
y = f(x;θ) and learn the values for parameters θ that best approximate a function that
maps an input x into category y, i.e., y = f ∗(x). The optimal values for θ are found via
a training algorithm and, depending on the size and complexity of the model, can require
millions of training samples to reach convergence. In practice, stochastic gradient descent
(SGD) is one of the most commonly used optimization methods during training [3]. Thus,
feedforward networks can be seen as nonlinear function approximators that are trained
via gradient descent to minimize the approximation error. In general, this is done by
minimizing the expected loss on the training set:

1

m

m∑
i=1

L(f(x(i);θ),y(i)) (2.1)

where L is some loss function and m is the number of training examples.

Figure 2.1 shows a visual representation of a general fully connected feedforward NN.
Inspired by the human brain, NNs consist of neurons (coloured circles) with connections
between them (black lines). The input layer takes in the data samples, and the output layer
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Figure 2.1: Visual representation of a general fully connected feedforward neural network,
with an input layer (blue), four hidden layers (green), and an output layer (red).

presents the model’s corresponding prediction. While the training data directly specify the
behaviour of the output layer, the desired output of each individual layer is left unspecified;
as a result, these layers are referred to as hidden layers. The design of the hidden layers
has been the focus of a lot of research, and most neurons in general can be described
as some affine transformation of a vector of inputs x, i.e., z = WTx + b, followed by an
element-wise nonlinear activation function g(z). The choice of g(z) impacts how easily
these neurons can be optimized; as such, rectified linear units (g(z) = max{0, z}) are the
most commonly used based on the principle that models with closer to linear behaviour
are easier to optimize [30].

2.2 Convolutional Neural Networks

Deep convolutional neural networks (CNNs) [3] are a specialized kind of neural network for
processing data with grid-like structure, and essentially refers to any deep neural network
that uses convolution in place of the classic matrix multiplication in at least one of its layers.
The main advantage of CNNs is their ability to drastically reduce the number of parameters
that must be learned via parameter sharing and locality while improving computational
efficiency on parallel computing hardware. Based on a spatial stationarity assumption,

7



Figure 2.2: Visual representation of a convolutional neural network. The convolutional
layers (represented using stacks of kernels) generally act as feature extractors, and are
often followed by at least one fully-connected layer (green).

CNNs leverage the idea of local receptive fields and only the elements in the convolution
kernels that are applied across the data need to be learned. Relative to feedforward NNs
of similar size, CNNs have comparably fewer network parameters and connections to train
with minimal drop in the theoretical best performance. As a result, CNNs have been
used in a wide variety of computer vision and image-based applications [3], and have been
extensively applied to the field of image classification in particular [5, 7, 31–33].

Figure 2.2 shows a visual representation of a convolutional neural network. CNNs have
at least one convolutional layer (shown as stacks of kernels) and are often followed by at
least one fully-connected later (coloured circles). A convolutional layer typically consists of
a convolution stage where the kernels are applied to the layer’s input, a nonlinear activation
function (similar to a feedforward NN), and a pooling stage to help make the representation
invariant to small translations of the input data [30]. Unlike traditional NN layers that
use matrix multiplication by a matrix of separate parameters describing the interaction
between each unit, CNN typically have sparse interactions which are accomplished by
making the convolution kernels smaller than the input.

One of the earliest CNNs that was proposed is the LeNet architecture [34]. Compara-
tively small relative to recently developed CNNs, LeNet was used for digit recognition and
only has three convolutional layers. Due to its shallow architecture, LeNet fails to perform
well on more challenging datasets (such as object recognition); however, as there are rel-
atively few parameters to learn, LeNet is still used in applications with limited training
samples. Since LeNet, however, a number of notable CNNs have been proposed.

Credited with re-popularizing NNs in 2012, Krizhevsky et al. [5] trained AlexNet, one of
the largest convolutional neural networks at the time, on the subsets of ImageNet database
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used in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) for ILSVRC-
2010 [35] and ILSVRC-2012 [36] competitions and achieved the best results reported
on those databases at the time. Consisting of five convolutional layers and three fully-
connected layers, Krizhevsky et al. also employed the “dropout” regularization method to
prevent overfitting. Krizhevsky et al. clearly demonstrated the efficacy of neural networks
in solving visual perception problems, and a large number of architectural design advances
have been introduced over the past several years to improve the original architecture.

In 2014, Simonyan and Zisserman [31] explored the effects of increasing the depth of
Krizhevsky et al.’s architecture by fixing other parameters of the architecture, using very
small (3 × 3) convolutional receptive fields, and steadily increasing the depth by adding
more convolutional layers. The final VGG architectures (up to 19 weight layers) not only
achieved state-of-the-art accuracy on ILSVRC classification and localization tasks, but also
generalized well to a wide range of tasks and datasets.

Szegedy et al. [7] introduced the “Inception module” (inspired by Lin et al.’s Network-
in-Network approach [37]) and proposed the Inception architecture to consider how an
optimal local sparse structure of a CNN can be approximated by dense components. The
Inception architecture is a network consisting of stacked Inception modules, and allows
for increased network depth and width while maintaining a computational budget. The
architecture used in the ILSVRC-2014 submission was named GoogLeNet, and consisted
of 22 layers through repeated Inception layers.

In 2016, He et al. proposed ResNet [32] via a deep residual learning framework to
mitigate the training requirements of substantially deeper networks than the ones that
had been previously used. He et al. addressed the degradation problem that exists with
deeper networks (i.e., the accuracy of deeper networks saturate during convergence, and
then rapidly degrade) by allowing layers to fit a residual mapping F(x) := H(x)−x rather
than directly fit a desired underlying mapping H(x). Using the ImageNet dataset, He et al.
were able to train ResNets of up to 152 layers with lower complexity than VGG networks.

Most recently, Szegedy et al. [33] proposed the combination of ResNets [32] and a re-
vised version of their Inception architecture [7] by replacing the filter concatenation in
the Inception architecture with residual connections. Szegedy et al. noted that the in-
corporation of residual connections allowed for significantly improved training speed in
the Inception architecture, and that the residual Inception networks marginally outper-
formed similarly expensive Inception networks without residual connections. However, all
the recent advances in performance has largely been by virtue of increased model size and,
as such, do little for the use of deep neural networks in practical situations with limited
computing resources.
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2.3 Network Sparsity and Compression Methods

One of the first approaches for adapting the size of a neural network was optimal brain
damage [38]. The method removed unimportant parameters (as determined using the
second derivative of the objective function as a saliency approximation of each parameter)
from the network before retraining the network to a reasonable solution. This procedure can
be repeated to iteratively improve network generalizability, increase the speed of learning,
and reduce the number of training samples required.

Another early approach was proposed by Suzuki et al. [39]. A relatively simple neural
network pruning algorithm, Suzuki et al. removed units from the neural network to assess
the influence of removing each unit on the error. The unit resulting in the least increase
in error was removed, and the neural network was retrained to recover the damage from
removing the unit. This process was repeated until the network error increased to the
predetermined allowable error.

Gong et al. [20] proposed a network compression framework where vector quantization
was leveraged to shrink the storage requirements of deep neural networks trained for com-
puter vision tasks. Gong et al. noted that vector quantization has clear advantages over
existing matrix factorization methods, and found a good balance between model size and
accuracy could be achieved via the application of k-means clustering to the weights or
product quantization.

Chen et al. [40] introduced the HashedNet architecture for the compression of neural
networks via the hashing trick, which uses a low-cost hash function to randomly group
network weights into hash buckets with a single shared parameter value. The parameters
are then re-tuned given the weight sharing architecture. Exploiting the redundancy in
network layers, the HashedNet architecture leverages the idea of weight-sharing and allows
for considerable savings in terms of memory and storage.

Han et al. [11] reduced the storage and computational requirements of neural networks
with no drop in accuracy by training a network to learn which weights are important, prun-
ing the unimportant connections, and retraining the network to fine tune the remaining
weights. Han et al. [21] extended their previous method and introduced deep compression
to address the limitations of computational power and memory that comes with embedded
systems via a three stage pipeline: pruning, trained quantization, and Huffman coding.
Deep compression first prunes the network by removing small-weight connections and re-
training the network. The remaining network connections are then quantized (8-bit bins for
convolutional layers, 5-bit bins for fully-connected layers) and k-means clustering is used
to identify the shared weights for each layer. The network is then retrained to fine-tune
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the pruned and quantized centroids before the weights and clustering indices are encoded
via Huffman coding. The method reduced the storage requirements of a neural network
by 35x to 49x with no loss in accuracy.

Other methods for reducing the computational requirements of neural networks include
low rank approximations [41–43]. Sainath et al. [41] proposed a low-rank matrix factoriza-
tion of the final weight layer of neural networks, reducing training time with no significant
loss in accuracy. Jaderberg et al. [42] used low-rank expansions to speed up the computa-
tion of deep neural networks (specifically the convolutional layers of convolutional neural
networks) by exploiting cross-channel or filter redundancy to construct a low rank basis of
filters. Similarly, Ioannou et al. [43] created computationally efficient networks using low
rank representations of convolutional filters by learning a set of small basis filters that are
then combined into more complex filters.

Sparsity learning [44–46] is another strategy used to sparsify deep neural networks. Feng
and Darrell [44] demonstrated a novel method for learning components of the structure of a
neural network by incorporating the Indian Buffet Process prior; especially effective when
there is limited labelled training data, this method captures complex data distributions in
an unsupervised generative manner. Liu et al. [45] showed how to reduce the number of
parameters in neural networks via sparse decomposition by exploiting both intra-channel
and inter-channel redundancy. Lastly, Wen et al. [46] recently proposed a Structured
Sparsity Learning (SSL) method to regularize the structures within deep neural networks
(e.g., filters shapes, channels, layer depth).

Hinton et al. [47] proposed the use of “distillation” to transfer the knowledge of an
ensemble of models or a large highly regularized model to a small deployable model. Class
probabilities from the softmax layer of the large model (or ensemble of models) are relaxed
to produce a soft set of targets for a transfer dataset, and the small model is trained using
the soft targets. Hinton et al. showed that the resulting small model performs significantly
better than a model of the same size learned directly from the same training data.

Sun et al. [48] introduced a method for sparsifying convolutional neural networks for
face recognition. Layer-by-layer, the method iteratively sparsifies and retrains the network
using the weights learned in previous iterations as initialization. Sun et al. noted that
training the sparse networks from scratch without the weight initializations of the denser
network failed to produce good solutions for face recognition.

Guo et al. [49] presented dynamic network surgery, a novel network compression method
that reduces network complexity by making on-the-fly connection pruning. Most interest-
ingly, Guo et al. incorporate connection splicing into the process to avoid incorrect pruning
and perform continual network maintenance. This combination of pruning and splicing al-
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lows for model compression via pruning, and connection recovery if pruned connections are
found to be important via splicing.

Scardapane et al. [50] proposed a group sparse regularization method for neural net-
works that simultaneously optimized the weights of a neural network, the number of neu-
rons per layer, and the subset of active input features. Extending the group Lasso penalty,
each group is defined as the set of outgoing weights from a unit and a group-level sparsity
is imposed, resulting in highly compact networks.

Inspired by Han et al. [21], Ullrich et al. [51] showed that similar compression rates can
be achieved using a version of “soft weight-sharing”, achieving both the quantization and
pruning done in [21] in one re-training procedure. Ullrich et al. optimize the minimum
description length (MDL) complexity lower bound, and present results indicating that this
method works well in practice when applied to different models.

Molchanov et al. [52] explored the Variational Dropout technique and extend it to
the case of unbounded dropout rates. By training Sparse Bayesian DNNs using Sparse
Variational Dropout, the authors found that this method led to extremely sparse solutions
in both convolutional and fully-connected layers. Molchanov et al. also noted that this
approach can be combined with other model compression techniques such as quantization
and Huffman coding [21,51].

Louizos et al. [53] proposed that the most principled and effective approach to model
compression and computational efficiency with via a Bayesian method, where large parts
of the network can be pruned using sparsity inducing priors. Louizos et al. use hierar-
chical priors to prune nodes rather than individual weights, and posterier uncertainties to
determine the optimal encoding precision for the weights.

Recently, He et al. [54] introduced AutoML for Model Compression (AMC). Foregoing
the hand-crafted features associated with conventional model compression methods, He et
al. leverage reinforcement learning to efficiently sample the design space for improved
model compression quality. The authors show that state-of-the-art model compression
rates are achieved in a fully automated manner without any human efforts.

2.4 Genetic Algorithms

Genetic algorithms [55–58] are the most prominent example of evolutionary computation
methods, and have largely been inspired by studying evolution in nature. First popular-
ized by Holland [59], genetic algorithms evolve a population of candidate solutions (often
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referred to as “chromosomes” or “phenotypes”) to solve an optimization problem. The
candidate solutions are assessed via a fitness function, and a new population of candidate
solutions is created via selection and genetic operators (crossover and mutation) within the
solution search space. A simple genetic algorithm typically follows these steps [55]:

1. A randomly generated population of candidate solutions are initialized.

2. The fitness of each candidate solution is calculated.

3. A new generation of candidate solutions is created via selection and genetic operators.

4. Repeat from step 2.

After several generations, one or more highly fit candidate solutions will often be present in
the population; however, the fitness of candidate solutions is defined relative to the fitness
function rather than the underlying optimization problem, making the design of an appro-
priately representative fitness function crucial. In addition, selection can be implemented
in a variety of ways, such as uniformly replicating the best 50% of the current population
or replicating candidate solutions proportional to their fitness [60].

Figure 2.3: Visualization of crossover (split at black line) and random mutation (indicated
by darker orange and blue) to create two new candidate solutions from two candidate
solutions in the current population. The two new candidate solutions are created by taking
the first part of one solution (e.g., blue) and the second part of the other solution (e.g.,
orange) prior to random mutation.

New candidate solutions are created via genetic operators, the most fundamental being
crossover and random mutation. Figure 2.3 shows a basic crossover between two candidate
solutions where a crossover point is selected at random, and two new candidate solutions are
created by taking the first part of one solution and the second part of the other solution.
Random mutation modifies a random fraction of the candidate solutions to prevent a
uniform population incapable of further evolution [59].
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2.5 Evolutionary Computing for Neural Networks

Previous studies [61–65] have been conducted that leverage the idea of using evolutionary
techniques to generate and train neural networks. In 1994, Angeline et al. [61] introduced
an evolutionary program GNARL (GeNeralized Acquisition of Recurrent Links) that non-
monotonically constructs recurrent networks. The GNARL algorithm simultaneously ac-
quires the network topology structure and weight values, minimizing network architectural
restrictions and avoiding structural hill climbing.

Stanley et al. [62] proposed NeuroEvolution of Augmenting Topologies (NEAT) to in-
vestigate the advantage of evolving neural network topologies along with weights. NEAT
resulted in faster learning and increased network efficiency by employing a principled
crossover method of varying topologies via gene mutation tracking through historical mark-
ings, protecting structural innovation through speciation, and incrementally growing net-
works from minimal structure. The contributions of each component was verified using a
series of ablations, and show that historical markings, protecting innovation through spe-
ciation, and incremental growth from minimal structure work together to evolve solutions
of minimal complexity.

Stanley et al. [63] extended the previous work to real-time NeuroEvolution of Aug-
menting Topologies (rtNEAT) for evolving increasingly complex neural networks real-time
during a Neuroevolving Robotics Operatives (NERO) game. NERO was created as a game
where learning is indispensable in which the player trains a team of virtual robots controlled
by rtNEAT for military combat against other players’ teams. The rtNEAT method only
produces one new offspring at a time and allows agents to change and evolve increasingly
sophisticated behaviours in real time by continually replacing poorly performing agents
with new agents while preserving speciation dynamics.

Gauci and Stanley [64] further extended this research to HyperNEAT, a Hypercube-
based NeuroEvolution of Augmenting Topologies method. HyperNEAT evolves a gener-
ative encoding called connective Compositional Pattern Producing Networks (connective
CPPNs) to discover geometric regularities in the application domain. HyperNEAT uses
NEAT to evolve CPPNs that represent spatial patterns, with the aim of encoding connec-
tivity patterns independent of the number of inputs and outputs to evolve large-scale neu-
ral networks. Unlike directly-encoded methods such as Perceptron NEAT (also proposed
in [64]), HyperNEAT can scale solutions to higher resolutions without further evolution as
it discovers a general connectivity concept that naturally generalizes to locations outside
the training set.

Most recently, Tirumala et al. [65] proposed a prospect for evolving network architec-
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tures that can reduce training time and provide a warm start to the deep learning process
by using optimized deep neural networks as a starting point rather than a randomly initial-
ized architecture. Using two populations of networks where one population evolves using
competitive co-evolution and the other population evolves using cooperative co-evolution,
the approach uses two different types of co-evolutionary processes by implementing a migra-
tion process between the two network populations after a few generations, and encourages
combinations with networks from different populations to create more diversity.

2.6 Evolutionary Deep Intelligence

While previous studies have been conducted that leverage the idea of using evolutionary
techniques to generate and train neural networks, Shafiee et al. [16] proposed an entirely
novel concept: Can deep neural networks naturally evolve to be highly efficient? Introduc-
ing the notion of evolutionary deep intelligence, Shafiee et al. took inspiration from bio-
logical evolution and developed an approach to produce highly efficient and compact deep
neural networks by allowing these networks to synthesize new networks with increasingly
compact representations with minimal drop in performance over successive generations
based on high-performing ancestor neural networks. The evolutionary deep intelligence ap-
proach is mimics biological evolutionary mechanisms via three computational constructs:
i) heredity, ii) natural selection, and iii) random mutation.

Shafiee et al. incorporate the idea of heredity by encoding architectural traits of deep
neural networks into synaptic probability models or “DNA” sequences, which are then
passed on through successive generations. In addition to the synaptic probability mod-
els, external environmental factor models are also considered to mimic the environmental
conditions that drive natural selection. Offspring networks are stochastically synthesized
based on these “DNA” sequences and computational environmental factor models prior to
being trained, thus mimicking heredity, natural selection, and random mutation.

There are key differences between existing evolutionary computing methods and the
evolutionary deep intelligence method proposed by Shafiee et al. [16]. Past works have
primarily focused on improving a network’s training and accuracy, while evolutionary deep
intelligence shifts the focus to organically synthesizing networks with high architectural
efficiency with minimal to no drop in performance accuracy. In addition, these previous
studies use classical evolutionary computation approaches such as genetic algorithms and
evolutionary programming, while Shafiee et al. introduced a novel probabilistic framework
that models genetic encoding and environmental conditions via probability distributions.
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Shafiee et al. has also proposed a modification of the original evolutionary deep intelli-
gence approach via synaptic cluster-driven genetic encoding [17,18]. Further investigating
the genetic encoding scheme used to mimic heredity, Shafiee et al. proposed the incorpora-
tion of synaptic clustering into the genetic encoding scheme, and introduced a multi-factor
synapse probability model. Modelling the synaptic probability as a product of the proba-
bility of synthesis of a particular cluster of synapses and the probability of synthesis of a
particular synapse within the cluster, this new genetic encoding scheme demonstrated state-
of-the-art performance while producing significantly more efficient network architectures
and compact feature representations specifically tailored for GPU-accelerated applications.

Shafiee et al. explored the imposition of synaptic precision restrictions and its impact
on the evolutionary synthesis of DNNs [66], where half-precision (16-bit) synaptic precision
was enforced during the synthesis of networks at each generation that were then trained
at full precision (32-bit). The resulting networks shows both a reduction in the number of
synapses as well as reduced precision requirements while maintaining performance accuracy.
Shafiee et al. has also introduced the notion of trans-generational genetic transmission of
environmental stresses [67], where the imposition of environmental stresses on a network
during training produces genetic coding favourable to more efficient offspring networks.

Most recently, Shafiee et al. introduced StressedNets [68], a stress-induced evolutionary
synthesis framework where stress signals are imposed during training to guide the evolu-
tionary synthesis process towards more efficient architectures over successive generations.
The results presented show spectacular increases in efficiency, synthesizing networks capa-
ble of state-of-the-art performance accuracy with orders of magnitude reduction in model
size. While the StressedNets framework clearly outperforms the seminal evolutionary deep
intelligence works [16–18], these improvements are compatible with the general framework
proposed in this thesis and can be combined accordingly.

Previous works in evolutionary deep intelligence [16–18] and their subsequent exten-
sions [66–68], however, formulate the evolutionary synthesis process based on asexual re-
production; that is, offspring neural networks are solely dependent on a single parent
network. In this thesis, we present a generalized framework for synthesizing new network
architectures that can be dependent on any subset of previously synthesized networks, and
evaluate the efficacy of multi-parent evolutionary synthesis.

2.7 Summary

This chapter presented the requisite neural network, convolutional neural network, and
genetic algorithms background for the remainder of the thesis, along with the relevant
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background literature in neural network sparsity and compression methods, evolutionary
computing for neural networks, and existing works in evolutionary deep intelligence. Mo-
tivated by the need for increasingly powerful deep neural networks that can run on the
edge, Chapter 3 extends the seminal evolutionary deep intelligence framework to general
architecture synthesis.
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Chapter 3

Evolutionary Synthesis Formulation

From Chapter 2, we see that neural networks are fundamentally comprised of neurons and
connections. In this chapter, we present the general architecture synthesis formulation, and
abstract away from the low-level design of neural network architecture to consider how a
new neural network architecture might be synthesized given existing network architectures.

3.1 General Architecture Synthesis

Let the network architecture H be formulated as H(N,S), where N denotes the set of
possible neurons and S denotes the set of possible synapses in the network. In general, the
set of possible neurons and the set of possible synapses are unbounded, representing all
(i.e., infinite) possible network architectures. Each neuron j ∈ N , the existence of which
is indicated by a binary indicator nj, is connected to neuron k ∈ N , as indicated by nk,
via a synapse (j, k) ∈ S such that the synaptic connectivity indicated is by sj,k and has
an associated wj,k ∈ R to denote the connection’s strength. As such, nj and nk binarily
indicate the existence of neurons j and k, respectively, where nj = 0 indicates that neuron
j does not exist in the network architecture while nj = 1 indicates that neuron j does
exist. Similarly, sj,k is a binary indicator that denotes the existence of synapse (j, k) (the
synaptic connection between neuron j and neuron k) where sj,k = 0 indicates that neurons
j and k are not connected in the network architecture while sj,k = 1 indicates that neurons
j and k are connected. The associated wj,k, then, represents the strength of the existing
synaptic connections (i.e., sj,k = 1), and the set of weights for the architecture is defined
as W = {wj,k}.
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Figure 3.1: Visualization of dependency for the synthesis of a new network. In this realiza-
tion, Hi is the 7th network H7, and is dependent on a subset of all previously synthesized
networks HG7 (in this case, HG7 = H1,H2,H4,H5).

The probability of synthesis for a new network architecture, then, is encoded as

P (Hnew|Hold,R) (3.1)

where the new architecture Hnew is dependent on an existing architecture Hold and sub-
ject to an environmental factor model R, the computational construct used the mimic
natural selection via the constraint of simulated available environmental resources (further
described in Section 3.6).

In the case of evolutionary synthesis, a newly synthesized network Hi is formulated to
be dependent on a subset of all previously synthesized networks HGi

, and is encoded as

P (Hi|HGi
,Ri) (3.2)

where Gi is the set of network indices corresponding to previous networks on which Hi

is dependent, and Ri denotes the environmental factor model applied to the ith network.
Figure 3.1 visualizes a sample realization of Hi’s dependency on a subset of previously
synthesized networks. Note that in the general case, the number of networks in subset HGi

is only constrained by the number of already synthesized networks.

From previous evolutionary synthesis work [16, 17], the synthesis probability of the ith

network Hi = H(Ni, Si) can be modelled as the product of the conditional probability of
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Si and the conditional probability of Ni:

P (Hi|HGi
,Ri) ' P (Si|SGi

,WGi
,RS

i ) · P (Ni|NGi
,RN

i ). (3.3)

Here, the synthesis probability of Hi is approximated by the product of the synthesis prob-
ability of its set of synapses Si given the corresponding set of dependent synapses SGi

and
weights WGi

and synapse environmental factor model RS
i , and the synthesis probability of

its set of neurons Ni given the set of existing neurons NGi
and neuron environmental factor

model RN
i . Thus, as a network architecture H is formulated as comprising a set of neurons

N and a set of synapses S, i.e., H(N,S), we similarly formulate the synthesis probability
of a network architecture H as comprising the synthesis probability of the set of neurons
P (Ni|NGi

,RN
i ) and the synthesis probability of the set of synapses P (Si|SGi

,WGi
,RS

i ). As
is the case in previous evolutionary synthesis work [16,17], we model this formulation as a
product of the synthesis probabilities of its set of neurons Ni and its set of synapses Si.

Thus far [16, 17], the nodal structure of any newly synthesized network has been such
that nj = 1 for all j ∈ Ni (i.e., every neuron exists in the network architecture) and
only the effects of altering the synaptic structure has been examined. However, note that
when all synapses connecting neuron j to other neurons (as indicated by sj,∗) have an
associated weight of zero (i.e., wj,∗ = 0), neuron j is effectively removed from that network
architecture realization, i.e., nj = 1, but neuron j exists in isolation since all wj,∗ = 0. For
the scope of this thesis, we will implement a similar nj = 1 nodal structure for synthesized
network architectures while allowing for changes in the synaptic structure; as such, the
synthesis probability can be reformulated as

P (Hi|HGi
,Ri) ' P (Si|SGi

,WGi
,Ri) (3.4)

where the synthesis probability of a network architecture Hi is approximated by the syn-
thesis probability of its set of synapses Si alone. By taking inspiration from nature, this
general formulation for network synthesis can be simplified using the concepts of asexual
and sexual reproduction.

In this thesis, the synthesis of a new network architecture Hi is effectively done via a
two-step process:

1. the synaptic structure Si of Hi is inherited from HGi
via SGi

, and

2. Hi is subject to simulated environmental resources via Ri and WGi
.

The inheritance of the synaptic structure is first described in Section 3.3 for asexual evo-
lutionary synthesis, and is extended to sexual evolutionary synthesis in Section 3.4. The
use of synaptic strengths and environmental resources during evolutionary synthesis is
described in Sections 3.5 and 3.6, respectively.
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3.2 Practical Considerations

Before we begin synthesizing new neural networks, however, some practical considerations
must first be addressed regarding the search space of potential network architectures. As
noted at the beginning of Section 3.1, the theoretical formulation for a network architecture
H(N,S) allows for the set of possible neurons N and the set of possible synapses S to
be unbounded, effectively representing all possible network architectures. This results
in an unbounded search space for potential network architectures, making the practical
application of this formulation intractable. In the scope of this thesis, then, the set of
possible neurons N and the set of possible synapses S are both bounded by the set of
neurons and the set of synapses present in the ancestor network architecture.

The motivation of this thesis is to synthesize compact and efficient network architec-
tures to reduce the memory and computational requirements of high-performance neural
networks; to this end, we constrain the set of neurons Ni and the set of synapses Si for newly
synthesized architecture Hi to the network architecture of the original high-performance
neural network. As such, we can denote the original ancestor network architecture as H
(formulated as H(N,S)), and any newly synthesized network Hi can be formulated as
Hi(Ni, Si) where Ni ∈ N and Si ∈ S so that the set of neurons in the ancestor architecture
N and the set of synapses in the ancestor architecture S serve as the practical constraints
for the set of possible neurons and the set of possible synapses, respectively, during the
evolutionary synthesis process.

3.3 Architecture via Asexual Evolutionary Synthesis

Figure 3.2: Visualization of dependency for the asexual evolutionary synthesis of a new
network Hg. In the asexual case shown here, Hg is solely dependent on the immediately
preceding network Hg−1. Relative to Figure 3.1, only a single network is synthesized at
each generation.
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In the case of asexual evolutionary synthesis, the synthesis probability of network Hi is
encoded as P (Hi|Hi−1,Rg(i)), where each newly synthesized network is its own generation
and is only dependent on the immediately preceding network (as shown in Figure 3.2). In
this case, i indicates the network number as well as the generation number, and i can be
dropped in favour of using g to indicate both the generation number and the associated
network number.

Similar to the asexual evolutionary synthesis formulation from Shafiee et al. [16], the
synthesis probability can be rewritten as P (Hg|Hg−1,Rg) at generation g, and comprises
an environmental factor model Rg to imitate natural selection via a changing environ-
ment for successive generations of networks to adapt to and the synaptic probability
P (Sg|Sg−1,Wg−1) to emulate heredity through the generations of networks; that is, the
synthesis probability can be formulated as follows:

P (Hg|Hg−1,Rg) ' P (Sg|Sg−1,Wg−1,Rg) (3.5)

More recently, Shafiee et al. [17] introduced a synaptic cluster-driven genetic encoding
scheme via a multi-factor synaptic probability model. Synaptic clustering was incorpo-
rated to improve memory and storage requirements by promoting the formation of strong
synaptic clusters, as well as tailoring the neural network architecture for devices such as
embedded GPUs by defining the synaptic cluster to allow for parallel operations. Similar
to [17], we define synaptic clusters in this thesis to be a filter (i.e., a collection of convo-
lutional kernels within a convolutional layer), and denote a single synaptic cluster as C
within the set of all synaptic clusters C. To incorporate the multi-factor synaptic prob-
ability model and different quantitative environmental factor models at the synapse and
cluster levels [17], the synthesis probability is modelled as

P (Hg|Hg−1,Rg) =
∏
C∈C

[
P (sg,C |sg−1,C , wg−1,C ,Rc

g) ·
∏
j∈C

P (sg,j|sg−1,j, wg−1,j,Rs
g)
]

(3.6)

where P (sg,C |sg−1,C , wg−1,C ,Rc
g) represents the probability of synthesis for a given cluster

of synapses sg,C ; that is, P (sg,C |sg−1,C , wg−1,C ,Rc
g) denotes the likelihood that a synap-

tic cluster sg,C will exist in the network architecture in generation g given sg−1,C , the
cluster’s synaptic indicator in generation g − 1; wg−1,C , the cluster’s synaptic strength
in generation g − 1; and the cluster-level environmental factor model Rc

g. Comparably,
P (sg,j|sg−1,j, wg−1,j,Rs

g) represents the likelihood of the existence of synapses j, ∗ within
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the synaptic cluster C in generation g given sg−1,j, the indicators for synapses j, ∗ in gen-
eration g − 1; wg−1,j, the synaptic strength in the previous generation g − 1 of synapses
j, ∗; and the synapse-level environmental factor model Rs

g. Here, C is the set of possible
synaptic clusters for network architecture H}. Note that this multi-factor synthesis prob-
ability formulation allows for both a cluster-level environmental factor model Rc

g and a
synapse-level environmental factor model Rs

g; this allows for a more flexible computational
construct for constraining the simulated availability of environmental resources (as further
discussed in Section 3.6). This multi-factor probability model encourages both the persis-
tence of strong synaptic clusters and the persistence of strong synaptic connectivity over
successive generations.

In the context of this thesis, a given neuron j with synapses j, ∗ ∈ C that are zero
weight synapses (i.e., wj,∗ = 0 for all associated synapses j, ∗) is still recoverable with the
possibility of non-zero weight synapses in future network architecture realizations provided
there is at least one non-zero weight synapse in C, i.e., j, ∗ ∈ C can still recover non-zero
weights wj,∗ provided C contains at least one non-zero weight synapse. When all synapses
in a given synaptic cluster C are zero weight synapses, C is removed from the set of possible
synaptic clusters C. A neuron j, then, can no longer recover non-zero weight synapses in
subsequently synthesized network architectures when all synaptic clusters containing its
synapses j, ∗ have been removed from the set of possible synaptic clusters C.

3.4 Architecture via Sexual Evolutionary Synthesis

Evolutionarily speaking, sexual reproduction is thought to have developed in living or-
ganisms due to the fact that it favours the survival of groups rather than individuals by
allowing for accelerated adaptation to changing environments via the combination of mu-
tations occurring in distinct individuals in a single descendant [69,70]. Relative to asexual
reproduction, sexual reproduction has the potential to accelerate evolution by several or-
ders of magnitude [19], with its effects most prominent in a large population with a high
frequency of beneficial mutations. This motivates the idea that the use of sexual reproduc-
tion in evolutionary synthesis can accelerate the generation-by-generation development of
highly efficient neural networks.

With sexual evolutionary synthesis, a newly synthesized network Hi is dependent on m
previously synthesized networks, i.e., m-parent sexual evolutionary synthesis. In the sim-
plest two-parent case (m = 2), Hi is dependent on HGi

where HGi
comprises two networks

from the immediately preceding generation (Figure 3.3). However, it is possible to increase
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Figure 3.3: Visualization of dependency for the m-parent sexual evolutionary synthesis of
a new network Hi. In the two-parent case (m = 2), Hi is dependent on HGi

where HGi
is

comprised of two networks from the immediately preceding generation. Here, we show the
simplest case where it is only necessary to synthesize m networks per generation.

m beyond two (as will be explored in Chapter 5), with multiple network architectures be-
ing synthesized at each generation. It is similarly possible to extend HGi

further back to
other generations to have Hi dependent on more generationally distant ancestor networks
(as is shown in Figure 3.1). In this thesis, however, HGi

is restricted to the immediately
preceding generation.

In contrast to the asexual evolutionary synthesis case, which was formulated earlier in
this chapter in (3.6) as

P (Hg|Hg−1,Rg) =
∏
C∈C

[
P (sg,C |sg−1,C , wg−1,C ,RC

g ) ·
∏
j∈C

P (sg,j|sg−1,j, wg−1,j,Rs
g)
]

where the probability of synthesis was dependent on a cluster’s or neuron’s synaptic
strength of the parent network and the corresponding environmental factor models, we
now extend the synthesis probability formulation to the sexual evolutionary synthesis case.

In the case of sexual evolutionary synthesis, more than one network architecture is
synthesized at each generation. As such, we introduce a second subscript i to H to indicate
the ith network synthesized at any generation g. For sexual evolutionary synthesis, then,
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the synthesis probability for a new network Hg,i can be encoded as

P (Hg,i|HGi
,Rg) =

∏
C∈C

[
P (sg,C |MS

C(sGi,C),MW
C (wGi,C),Rc

g)·∏
j∈C

P (sg,j|MS
s (sGi,j),MW

s (wGi,j),Rs
g)
]
. (3.7)

In the asexual evolutionary synthesis case, the probability of synthesis for a given cluster
of synapses is dependent on Sg−1 and Wg−1, and the likelihood of existence of a synapse
is dependent on sg−1,j and wg−1,j. In the sexual evolutionary synthesis case, however, the
probability of synthesis for a given cluster of synapses is now dependent on a multiple sets
of synapses sGi,C subject to some synaptic structure cluster-level mating function MS

C(.)
and multiple sets of weights wGi,C subject to some synaptic strength cluster-level mating
functionMW

C (.). Similarly, the likelihood of existence of a synapse (j, ∗) (indicated by sj,∗)
is dependent on multiple possible synapses sGi,j subject to some synaptic structure synapse-
level mating function MS

s (.) and multiple possible weights wGi,j subject to some synaptic
strength synapse-level mating function MW

s (.). The selection of the mating functions
MC(.) andMs(.) are of particular interest in the sexual evolutionary synthesis process, as
they directly impact the viability and diversity of the synthesized networks. Simple mating
functions used in the scope of the first part of this thesis are introduced in Chapter 4, and
more sophisticated mating functions are introduced in Chapter 5.

3.5 Realization of Genetic Encoding

In this thesis, we use the genetic encoding scheme introduced by Shafiee et al. [17]. In both
asexual and sexual evolutionary synthesis, the probability of synthesis for a given synaptic
cluster sg,C is encoded as:

P (sg,C = 1|Wg−1,C) =
1

Z

[
exp
(

Σj∈Cbwg−1,jc
)
− 1
]

(3.8)

P (sg,C = 1|wg−1,C) + P (sg,C = 0|wg−1,C) = 1

where b.c encodes a synaptic weight truncation and Z is the normalization factor required
to construct a probability distribution, i.e., P (sg,C = 1|wg−1,C) ∈ [0, 1]. The truncation of
synaptic weights lessens the impact of weak synapses in a synaptic cluster.

Similarly, the probability of synthesis for synapses (j, ∗) associated with neuron j, as
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indicated by sg,j, within a synaptic cluster C is encoded as:

P (sg,j = 1|wg−1,j) =
1

z

[
exp
(
wg−1,jz

)
− 1
]

(3.9)

P (sg,j = 1|wg−1,j) + P (sg,j = 0|wg−1,j) = 1

where z is a layer-wise normalization factor. This genetic encoding scheme allows for
the simultaneous consideration of both inter-synapse relationships and individual synapse
strength, and is employed throughout this thesis.

3.6 Environmental Resources During Synthesis

In this section, we present the formulation behind the environmental factor models previ-
ously introduced in (3.6). These factor models are the computational construct used the
mimic natural selection via the constraint of simulated available environmental resources.
In nature, a main environmental factor in encouraging high efficiency during evolution
is via the restriction of available resources; one such example is proposed in a study by
Moran et al. [71] about the eyeless Mexican cavefish. Moran et al. hypothesized that the
eyeless Mexican cavefish lost its vision system over successive generations due to the high
energy cost of its visual system and the low food availability in its subterranean habitat. As
such, the loss of its vision system substantially lowered the amount of energy expended on
neural tissue, allowing for increased survivability in the food-limited habitat. Here, we aim
to encourage highly efficient network architectures during the evolutionary synthesis pro-
cess by simulating available (or lack thereof) environmental resources using computational
constructs, i.e., the environmental factor models.

In evolutionary synthesis, (3.6) models these simulated environmental resources via
environmental factor models Rg, using a cluster-level environmental factor model RC

g and
a synapse-level environmental factor model Rs

g. We use the synaptic cluster existence
indicator sg,C and the synaptic existence indicator sg,j from Section 3.1 to denote whether
a synaptic cluster or a synapse will be synthesized, respectively.

In this thesis, RC
g and Rs

g are constrained to be between 0 and 1, where a lower environ-
mental factor model is more permissive. As shown in (3.10) and (3.11), an environmental
factor model of 0 guarantees that the given cluster or synapse will be synthesized, while
an environmental factor model of 1 means that the probability of synthesis of the clus-
ter or synapse is equivalent to the strength of the synaptic cluster or the strength of the
synapse, respectively. As wg−1,C and wg−1,j correspond to clusters of or single network
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weights, respectively, learned during the neural network training process [1–4], we leverage
the synaptic weight truncation and normalization factor from the previous section to en-
sure that the weight magnitudes used in (3.10) and (3.11) are between 0 and 1. Here, we
present the formulation behind the environmental factor models for the asexual evolution-
ary synthesis case before extending the formulation to multi-parent evolutionary synthesis
in Chapter 4 and Chapter 5.

At the cluster level, then, the existence of all clusters C ∈ C is determined as:

P (sg,C = 1|RC
g , sg−1,C , wg−1,C) =

{
0 sg−1,C = 0

1− (RC
g · (1− |wg−1,C |)) otherwise

(3.10)

P (sg,C = 1|RC
g , sg−1,C , wg−1,C) + P (sg,C = 0|RC

g , sg−1,C , wg−1,C) = 1

where sg,C incorporates both the strength of the synapses in a cluster (wg−1,C) of the
parent network and the cluster-level environmental resources available (RC

g ), subject to
the existence of the synaptic cluster as determined by sg−1,C .

Similarly at the synapse level, the existence of all synapses is determined as:

P (sg,j = 1|Rs
g, sg−1,j, wg−1,j) =

{
0 sg−1,j = 0

1− (Rs
g · (1− |wg−1,j|)) otherwise

(3.11)

P (sg,j = 1|Rs
g, sg−1,j, wg−1,j) + P (sg,j = 0|Rs

g, sg−1,j, wg−1,j) = 1

where sg,j incorporates both the strength of each synapse (wg−1,j) and the synapse-level en-
vironmental resources available (Rs

g), subject to the existence of the synapse as determined
by sg−1,j.

We formulate the environmental resource models separately at the cluster and synapse
levels to allow for increased flexibility when applying this computational construct. While
existing evolutionary synthesis methods [16, 17] have considered the cluster-level environ-
mental factor model and synapse-level environmental factor model together, having sepa-
rate environmental factor models allows for future work to explore more complex schemes
for constraining environmental resources, e.g., specifically constraining the synapse-level
environmental resources to encourage network filter sparsity, or constraining the cluster-
level environmental resources more to decrease the number of filters in the network architec-
ture. In the context of this thesis, we similarly assume the cluster-level and synapse-level
environmental factor models to be equal [16, 17], and enforce that RC

g = Rs
g. As such,

the cluster-level and synapse-level environmental factor models, RC
g and Rs

g, were varied
simultaneously such that RC

g = Rs
g in every experiment. The impact of environmental

factor models is explored in Chapter 7.
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3.7 Learning Offspring Networks

After the synthesis of a new network architecture Hi via the inheritance of its synaptic
structure and being subject to simulated environmental resources, each newly synthesized
architecture Hi is fully trained using the following training parameters:

• Epochs: 50

• Learning rates:

– 0.05 (20 epochs)

– 0.005 (20 epochs)

– 0.0005 (10 epochs)

• Weight decay: 0.0001

• Batch size: 100

Network Hi is trained using the same dataset as the original ancestor network archi-
tecture. For Chapters 4, 5, 6, and 7, the first generation ancestor networks are initialized
using the LeNet-5 architecture [34]. In this thesis, we constrain the training data made
available to the offspring network to the data used to train the parent networks. While it
is possible (and generally of interest) to investigate introducing new datasets to offspring
networks, this thesis focuses on reducing the computational and memory requirements of
existing high-performance neural networks rather than investigating the effects of new data
on network generalization and robustness.

3.8 Assessing the Architecture

The performance of a given network architecture H can be most directly assessed via a
dataset. In this case, the probability of error E given a synthesized network architecture
and a dataset D can be evaluated as P (E|H,D). Thus, the error E (or, more commonly,
1− E for the performance accuracy) of a synthesized network architecture is a key metric
used to assess the efficacy of a neural network for a given dataset.

Conversely, the efficiency of the network can be assessed by evaluating the size of the
network architecture. This can be done by computing the synaptic network sparsity via
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the proportion of sg,C = 1 for all sj,k ∈ S and examining the number of filters in each
convolutional layer (though in Chapter 8, we use the more indirect w 6=0

|W |% for the sake of

comparing against state-of-the-art neural network sparsity methods), and we also propose
a more direct measure of network size for this thesis by leveraging network storage size (see
Chapter 4 and Chapter 5). Rather than implicitly assessing the amount of computational
memory required for a neural network, we explicitly measure each network architecture
size in terms of number of bytes on a computer hard drive.

In this thesis, we assess both the performance accuracy and the storage size of each net-
work architecture, and monitor the trends over successive generations. While decreasing
storage size indicates a more compact and efficient network architecture, it often corre-
sponds to a drop of performance accuracy as the network loses the complexity required
to model the problem space. As such, we also evaluate the performance accuracy of the
synthesized network architectures as a function of network storage size to directly assess
the trade-off between network size and accuracy.

Having extended the asexual evolutionary synthesis previously used in past evolution-
ary deep intelligence works [16, 17] to sexual evolutionary synthesis in this chapter, we
now assess the efficacy of the proposed framework in the context of 2-parent evolutionary
synthesis (Chapter 4) and m-parent evolutionary synthesis (Chapter 5).

29



Chapter 4

Asexual vs. Sexual Evolutionary
Synthesis

In this chapter and the next, we explore the computational construct for network hered-
ity in the evolutionary synthesis framework. As explained in Chapter 2, previous works
in evolutionary deep intelligence [16–18] had constrained this construct to asexual evolu-
tionary synthesis where a single offspring network is synthesized at each generation using
the one parent network in the previous generation. Inspired by biological motivations
for 2-parent sexual reproduction [19], we propose a realization of the sexual evolutionary
synthesis process in Chapter 3 as an adaptation of the network synthesis process towards
more compact offspring networks. In this chapter, we explore the use of a second parent
network during the synthesis process and compare the performance to the single parent
asexual evolutionary synthesis case.

We first extend the computational construct for network heredity to 2-parent evo-
lutionary synthesis to begin exploring the effects of sexual evolutionary synthesis when
synthesizing offspring network architectures. Thus, we augment the evolutionary deep in-
telligence scheme to incorporate a second parent network during the process of synthesizing
new offspring networks as shown in Figure 4.1. At each generation, two parent networks
from the preceding generation are combined via mating policies (as described below) to
synthesize new offspring networks containing information from both parent networks to
drive network diversity and adaptability by mimicking sexual reproduction.

Recall from (3.6) that for an asexually synthesized network, the synaptic cluster syn-
thesis probability, i.e., P (sg,C |sg−1,C , wg−1,C ,RC

g , and the synapse synthesis probability,
i.e., P (sg,j|sg−1,j, wg−1,j,Rs

g), are conditional on the synaptic architecture and synaptic
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Figure 4.1: The proposed 2-parent evolutionary synthesis process over successive gener-
ations as an extension of asexual cluster-driven genetic encoding. The effects of sexual
evolutionary synthesis are explored via the incorporation of a second parent network dur-
ing the synthesis of offspring networks. At each generation, two parent networks from
the preceding generation are combined via a mating function to synthesize new offspring
networks.

strength of a single parent network in the previous generation and the environmental fac-
tor models. To explore the effects of sexual evolutionary synthesis in evolutionary deep
intelligence, we reformulate the synthesis probability to combine the cluster and synapse
probabilities of two parent networks, e.g., HA and HB as indicated with subscripts A and
B, respectively, during the synthesis of an offspring network via some cluster-level mating
functions MC(·) and some synapse-level mating functions Ms(·). Specifically, we rewrite
the synthesis probability P (Hg,i|HGi

,Rg) in (3.7) as

P (Hg,i|HA,HB,Rg) =
∏
C∈C

[
P (sg,C |MS

C(sA,C , sB,C),MW
C (wA,C , wB,C),RC

g )·∏
j∈C

P (sg,j|MS
s (sA,j, sB,j),MW

s (wA,j, wB,j),Rs
g)
]

(4.1)

whereMS
C(.) andMW

C are the cluster-level mating functions for the synaptic structure and
synaptic weights, respectively, andMS

s (.) andMW
s are the synapse-level mating functions

for the synaptic structure and synaptic weights, respectively.

4.1 2-Parent Mating of Deep Neural Networks

In the context of this thesis, we restrict the the parent networks, HA and HB, to the
immediately preceding generation; that is, for an offspring Hg,i at generation g, the parent
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networks HA and HB are from generation g − 1. To inherit the synaptic structure Sg,i

of Hg,i, we propose a simple intersection-based synaptic architecture mating policy, where
only synaptic clusters and synapses present in both parent networks HA and HB are
synthesized in Hg,i. An intersection-based synaptic architecture mating policy encourages
a sparser synaptic architecture in Hg,i, as it is unlikely the synaptic architecture of one
parent network perfectly overlaps with the other parent network; this results in fewer
synaptic clusters and synapses being synthesized in the offspring network. As such, we
propose the cluster-level mating functionMS

C(.) and synapse-level mating functionMS
s (.)

to be as follows:

MS
C(sA,C , sB,C) = sA,C · sB,C (4.2)

MS
s (sA,j, sB,j) = sA,j · sB,j (4.3)

where sA,C and sB,C represent the cluster’s synaptic architecture for parent networks HA

and HB, respectively. Similarly, sA,j and sB,j represent the existence of a synapse j within
cluster C for parent networks HA and HB, respectively.

Given the inherited synaptic structure Sg,i of Hg,i, Hg,i is then subject to simulated
environmental resources via Rg and the synaptic strengths of parent networks HA and HB.
Extending (3.10) and (3.11) to the 2-parent evolutionary synthesis case, we propose that
the simulated environmental resources can be applied as follows at the cluster level and at
the synapse level:

P (sg,C = 1|RC
g , sGi,C , wGi,C) =

{
0 sGi,C = 0

1− (RC
g · (1− |MW

C (wGi,C)|)) otherwise
(4.4)

P (sg,j = 1|Rs
g, sGi,j, wGi,j) =

{
0 sGi,j = 0

1− (Rs
g · (1− |MW

s (wGi,j)|)) otherwise
(4.5)

where MW
C (.) is the cluster-level synaptic strength mating function and MW

s (.) is the
synapse-level synaptic strength mating function. From previous evolutionary deep in-
telligence methods [16, 17], we know that a newly synthesized network also inherits the
corresponding synaptic weights from its parent network as an initialization. Thus in the 2-
parent case, we propose the synaptic strength mating policies for the purposes of applying
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(a) Sample images from the MNIST hand-
written digits dataset [72]

(b) Sample images from the CIFAR-10 ob-
ject classification dataset [73].

Figure 4.2: Sample images from the MNIST hand-written digits dataset and the CIFAR-10
object classification dataset.

the simulated environmental resources Rg to the newly synthesized network Hg,i to be

MW
C (wA,C , wB,C) =

wA,C + wB,C

2
(4.6)

MW
s (wA,j, wB,j) =

wA,j + wB,j

2
(4.7)

where wA,C and wB,C represent the cluster’s synaptic strength for parent networks HA and
HB, respectively. Similarly, wA,j and wB,j represent the synaptic strength of a synapse j
within cluster c for parent networks HA and HB, respectively.

4.2 Experimental Setup

The asexual and sexual evolutionary synthesis of deep neural networks were performed over
multiple generations, and the effects of sexual evolutionary synthesis relative to asexual
evolutionary synthesis were explored using the full MNIST [72] hand-written digits and full
CIFAR-10 [73] object classification datasets with the first generation ancestor networks
trained using the LeNet-5 architecture [34]. Figure 4.2 shows sample images from the
MNIST and CIFAR-10 datasets.

Similar to Shafiee et al.’s work [17], we designed the environmental factor models RC
g

and Rs
g to be 70%, thus decreasing the total number of clusters and synapses in the

newly synthesized network relative to its parent networks in the previous generation; this
allows increasingly more compact feature representations and for the synthesized deep
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neural networks to become progressively more efficient in the successive generations while
minimizing any loss in accuracy. As in Shafiee et al.’s work [17], each filter (i.e., collection
of convolution kernels) was considered as a synaptic cluster in the multi-factor synapse
probability model.

At each generation, the neural network with the highest validation accuracy was se-
lected as representative of that generation, and was assessed for network performance and
efficiency. In particular, we use validation accuracy as a metric for network performance
accuracy and leverage network storage size (in bytes) as a direct measure of network ef-
ficiency. Each experiment was performed 5 times, and error bars showing the standard
deviation of the synthesized networks at each generation are plotted at each data point.
The difference in validation accuracy and network storage size trends between asexual
evolutionary synthesis and sexual evolutionary synthesis is assessed for statistical signif-
icance via a multivariate analysis of variance (MANOVA) test [74], the generalization of
the analysis of variance (ANOVA) method [75]. There are, however, notable limitations
of the MANOVA method, as assessing all the synthesized networks include networks that
are fundamentally expected to not be significantly different; these networks occur in the
earliest generations when the synthesized networks are still similar to the common ancestor
network, and in the last generations when the synthesized networks are no longer complex
enough to model the dataset (i.e., 10% performance accuracy representative of random
guessing). As a result, networks synthesized using asexual evolutionary synthesis and sex-
ual evolutionary synthesis are also assessed using a paired t-test [76], where the theoretical
storage size of the networks are compared at a selected performance threshold via linear
interpolation between the nearest data points.

4.3 Results

In this chapter, we explore the use of 2-parent sexual evolutionary synthesis during the
synthesis of offspring networks, and compare these networks to the network architectures
synthesized via asexual evolutionary synthesis. At each generation, the network validation
accuracy and the network storage size (in bytes) were evaluated. Figure 4.3 and Figure 4.4
show the validation accuracy and network storage size of networks synthesized using asexual
and sexual evolutionary synthesis as a function of generation number, and evaluated on
the MNIST and CIFAR-10 datasets, respectively. Note that in both the asexual and
sexual evolutionary synthesis cases, there is a trade-off between performance accuracy
and architectural efficiency, i.e., validation accuracy decreases as the network storage size
decreases; this trade-off is also shown in Figure 4.3 and Figure 4.4.
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(a) MNIST validation accuracy. (b) MNIST network storage size.

(c) MNIST accuracy vs. storage size.

Figure 4.3: MNIST average validation accuracy and average neural network storage size
vs. generation number (top row) for synthesized networks for networks synthesized us-
ing asexual (blue) and sexual (pink) evolutionary synthesis, with error bars showing the
standard deviation over 5 runs. Note that while sexual evolutionary synthesis results in
networks that more rapidly decrease in accuracy and storage, these networks also show
potential for a better the accuracy vs. storage size trade-off (bottom row), as shown by
the pink data points close to the top left corner of the scatter plot.
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Figure 4.3 shows the MNIST performance accuracy and network efficiency for networks
synthesized using asexual (blue) and sexual (pink) evolutionary synthesis. Figure 4.3 (a)
shows the validation accuracy and Figure 4.3 (b) shows the storage size in bytes for net-
works synthesized using asexual and sexual evolutionary synthesis. For this experiment, the
original fully-trained ancestor network (generation 1) had a performance accuracy of ap-
proximately 99.5% with 143,136 synapses and 7,200 kernels (corresponding to a 1-channel
input LeNet architecture [34]). As expected, both asexual and sexual evolutionary synthesis
produced networks that decrease in performance accuracy and storage size over successive
generations; however, note that sexual evolutionary synthesis produced a network with a
1− 2% drop in validation accuracy and a decrease in storage size of approximately two or-
ders of magnitude at generation 3 while asexual evolutionary synthesis produced a similar
network with a higher drop in validation accuracy (5 − 6%) and slightly smaller decrease
in storage size at generation 5.

Figure 4.3 (c) shows the trade-off between performance accuracy and network storage
size for networks synthesized using asexual and sexual evolutionary synthesis and evaluated
using the MNIST dataset. The best networks are those closest to the top-left corner,
indicating a high performance accuracy for a smaller network storage size. While networks
synthesized using asexual (blue) and sexual (pink) evolutionary synthesis generally show
similar trade-offs in performance accuracy and network efficiency, note the two data points
near the top left corner of Figure 4.3 (c); interestingly, these two data points correspond
to the generation 3 network produced via sexual evolutionary synthesis (pink) and the
generation 5 network produced via asexual evolutionary synthesis (blue). Note that the
network produced via sexual evolutionary synthesis has both a higher performance accuracy
and a smaller storage size, indicating the potential of sexual evolutionary synthesis to
produce more efficient and compact networks.

To assess the statistical significance of 2-parent sexual evolutionary synthesis relative
asexual evolutionary synthesis across multiple runs, we use the multivariate generaliza-
tion of the analysis of variance (MANOVA) method to assess the performance accuracy
and network storage size as dependent variables. For this experiment with MNIST, the
MANOVA statistical significance analysis resulted in a p-value of 0.0405, indicating that
there is statistical significance (based on a p < 0.05 significance criterion) between networks
synthesized using asexual evolutionary synthesis and networks synthesized using 2-parent
sexual evolutionary synthesis. We also assess statistical significance via a paired t-test by
comparing the linearly interpolated network storage sizes at a performance threshold of
95% accuracy; this threshold was selected for this experiment as representative of the per-
formance accuracy of the best networks (as per Figure 4.3 (c)). The paired t-test resulted
in a p-value of 0.0448, similarly indicating that there is statistical significance (based on
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a p < 0.05 significance criterion) between networks synthesized using asexual evolutionary
synthesis and networks synthesized using 2-parent sexual evolutionary synthesis.

Figure 4.4 shows the CIFAR-10 performance accuracy and network efficiency for net-
works synthesized using asexual (blue) and sexual (pink) evolutionary synthesis. Figure 4.4
(a) shows the validation accuracy and Figure 4.4 (b) shows the storage size in bytes for net-
works synthesized using asexual and sexual evolutionary synthesis. For this experiment,
the original fully-trained ancestor network (generation 1) had a performance accuracy
of approximately 77.5% with 144,736 synapses and 7,264 kernels (corresponding to a 3-
channel input LeNet architecture [34]). Similar to the MNIST dataset, both asexual and
sexual evolutionary synthesis produced networks that decrease in performance accuracy
and storage size over successive generations. Sexual evolutionary synthesis produced a
network with an approximately 2% drop in validation accuracy and a decrease in stor-
age size of approximately one order of magnitude at generation 2; in comparison, asexual
evolutionary synthesis produced a network with a similar drop in validation accuracy and
notably smaller decrease in storage size at generation 2, and a network with a higher drop
in validation accuracy (approximately 6%) and slightly smaller decrease in storage size at
generation 3.

Figure 4.4 (c) shows the trade-off between performance accuracy and network storage
size for networks synthesized using asexual and sexual evolutionary synthesis and evaluated
using the CIFAR-10 dataset. The best networks are those closest to the top-left corner,
indicating a high performance accuracy for a smaller network storage size. While networks
synthesized using asexual (blue) and sexual (pink) evolutionary synthesis show similar
trade-offs between performance accuracy and network efficiency, the two pink data points
near the top left corner of Figure 4.4 (c) (corresponding to the networks produced via sexual
evolutionary synthesis at generation 2 and 3) have both higher performance accuracy and
smaller storage size relative to the five comparable blue data points (corresponding to the
networks produced via asexual evolutionary synthesis at generation 2 through 6). As with
the MNIST dataset, this further indicates the potential of sexual evolutionary synthesis to
produce more efficient and compact networks.

We similarly assess the statistical significance of 2-parent sexual evolutionary synthe-
sis relative asexual evolutionary synthesis across multiple runs for the CIFAR-10 dataset
using the multivariate generalization of the analysis of variance method (MANOVA) with
performance accuracy and network storage size as dependent variables. The MANOVA
statistical significance analysis resulted in a p-value of 0.0556, which could be considered
as not statistically significant given a statistical significance criterion of p < 0.05. As with
the MNIST dataset, we also assess the statistical significance using the paired t-test by
comparing the linearly interpolated network storage sizes at a performance threshold of
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(a) CIFAR validation accuracy. (b) CIFAR network storage size.

(c) CIFAR accuracy vs. storage size.

Figure 4.4: CIFAR-10 average validation accuracy and average neural network storage
size vs. generation number (top row) for synthesized networks for networks synthesized
using asexual (blue) and sexual (pink) evolutionary synthesis, with error bars showing the
standard deviation over 5 runs. Note that while sexual evolutionary synthesis results in
networks that more rapidly decrease in accuracy and storage, these networks also show
potential for a better the accuracy vs. storage size trade-off (bottom row), as shown by
the pink data points close to the top left corner of the scatter plot.

38



70% accuracy; this threshold was similarly selected as representative of the performance
accuracy of the best synthesized networks (as per Figure 4.4 (c)). Unlike the MANOVA
analysis, the paired t-test resulted in a p-value of 7.4454 × 10−5 and indicates that there
is statistical significance (based on a p < 0.05 significance criterion) between networks
synthesized using asexual evolutionary synthesis and networks synthesized using 2-parent
sexual evolutionary synthesis at the crucial trade-off point between performance accuracy
and storage size.

Notice that in both the experiments with MNIST and CIFAR-10 datasets, fewer gen-
erations were required to reach similar levels of network performance (e.g., similar drops
in validation accuracy) using sexual evolutionary synthesis relative to asexual evolutionary
synthesis. This is likely due to the intersection-based synaptic architecture mating policy
proposed in (4.2) and (4.3). With two parent network architectures, the synaptic archi-
tecture for a newly synthesized network only contains synapses that are present in both
parent architectures; this results in a synaptic architecture that is sparser in nature than if
the synthesized network only inherited from a single parent network architecture. Lastly,
it is worth noting that the MNIST dataset allows for larger increases in architectural ef-
ficiency relative to the CIFAR-10 dataset (i.e., a larger decrease in network storage size
for a comparable drop in validation accuracy); this is likely due to the simplicity of the
MNIST dataset (1-channel images of handwritten digits) relative to the CIFAR-10 dataset
(3-channel natural images of objects).

4.4 Summary

An extension of asexual evolutionary synthesis, the use of 2-parent sexual evolutionary
synthesis during the synthesis of offspring networks for evolutionary deep intelligence was
explored in this chapter. The efficacy of 2-parent evolutionary synthesis was examined
by comparing networks synthesized via asexual and sexual evolutionary synthesis using
both the MNIST and CIFAR-10 datasets. The 2-parent sexual evolutionary synthesis
experiment resulted in the synthesis of more efficient deep neural networks at earlier gen-
erations relative to asexual evolutionary synthesis. Showing clear trends in increasing
architecture efficiency over successive generations for both asexual and sexual evolutionary
synthesis, 2-parent sexual evolutionary synthesis results in a networks with better accu-
racy to storage size trade-offs relative to the asexual case for both the MNIST (p-value
of 0.0405 for MANOVA analysis, p-value of 0.0448 for paired t-test at 95% performance
accuracy threshold) and CIFAR-10 (p-value of 0.0556 for MANOVA analysis, p-value of
7.4454 × 10−5 for paired t-test at 70% performance accuracy threshold) datasets. In par-
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ticular, the MNIST dataset showed more obvious gains in network efficiency compared to
the CIFAR-10 dataset, likely due to the relative simplicity of the MNIST dataset. The
results of both datasets indicate that the use of 2-parent evolutionary synthesis allows for
the synthesis of increasingly efficient network architectures at relatively earlier generations,
accelerating the rate at which successive offspring networks increase in efficiency.
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Chapter 5

m-Parent Evolutionary Synthesis

In this chapter, we further explore the computational construct for network heredity in
the evolutionary synthesis framework and generalize the 2-parent evolutionary synthesis
from Chapter 4 to m-parent evolutionary synthesis in varying population sizes. Having
considered the computational construct for network heredity in the 2-parent evolutionary
synthesis case in Chapter 4, we now generalize this construct to inherit from any m parent
networks during offspring synthesis. In this chapter, we investigate the effects of m-parent
evolutionary synthesis in varying population sizes. Two main concepts are explored here:
i) the effect of varying the number of parent networks used when synthesizing a new net-
work, and ii) the effect of varying population size where there are multiple potential parent
network candidates. The evolutionary deep intelligence scheme from Chapter 4 is general-
ized to use m parents during the evolutionary synthesis process (as shown in Figure 5.1).
At each generation, m parent networks from the preceding generation are combined via
a mating function to synthesize new offspring networks containing information from all
parent networks to drive network diversity and adaptability.

We use the generalized synthesis probability P (Hg,i|HGi
,Rg) for m-parent evolution-

ary synthesis. This m-parent synthesis probability was originally detailed in (4.1), where
the cluster and synapse probabilities of m parent networks Hg,i are combined during the
synthesis of an offspring network via some cluster-level mating function MC(·) and some
synapse-level mating function Ms(·):
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Figure 5.1: A generalization of Figure 4.1, the proposed m-parent evolutionary synthesis
process over successive generations. The effects of m-parent evolutionary synthesis are
explored via the combination of m parent networks during the synthesis of offspring net-
works. At each generation, m parent networks from the preceding generation are combined
via a mating function to synthesize new offspring networks.

P (Hg,i|HGi
,Rg) =

∏
C∈C

[
P (sg,C |MS

C(sGi,C),MW
C (wGi,C),RC

g )·∏
j∈C

P (sg,j|MS
s (sGi,j),MW

s (wGi,j),Rs
g)
]

(5.1)

whereMS
C(.) andMW

C are the cluster-level mating functions for the synaptic structure and
synaptic weights, respectively, andMS

s (.) andMW
s are the synapse-level mating functions

for the synaptic structure and synaptic weights, respectively. In this chapter, we extend
the idea of 2-parent sexual evolutionary synthesis from Chapter 4 to incorporate m parent
networks during the network synthesis process.

5.1 m-Parent Mating of Deep Neural Networks in Vary-

ing Population Sizes

As in Chapter 4, we limit HGi
to networks in the immediately preceding generation, i.e.,

for a newly synthesized network Hg,i at generation g, the m parent networks in HGi
are
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from generation g − 1. In this chapter, we first generalize the proposed mating functions
(4.2) and (4.3) by extending the idea to m parent networks during evolutionary synthesis,
and rewrite the synaptic architecture cluster-level and synapse-level mating functions to
be as follows:

MS
C(sGi,C) =

m∏
k=1

sk,C (5.2)

MS
s (sGi,j) =

m∏
k=1

sk,j (5.3)

where sk,C represents the cluster’s synaptic architecture for the kth parent network Hk ∈
HGi

. Similarly, sk,j represents the existence of a synapse j within cluster C for the kth

parent network Hk ∈ HGi
.

As demonstrated in Chapter 4, an intersection-based synaptic architecture mating pol-
icy results in the synthesis of more efficient deep neural network architectures at earlier
generations relative to asexual evolutionary synthesis. Note that Figure 4.3 and Figure 4.4
show that 2-parent evolutionary synthesis only allows for two to three generations of viable
(i.e., 2% drop in performance accuracy) network architectures, indicating that a simple
intersection-based synaptic architecture mating policy is unlikely to produce any viable
network architectures at all with additional parent networks.

In this chapter, we relax this intersection-based synaptic architecture mating policy
via the introduction of a cluster-level percent of population parameter χ to control the
proportion of parent network architectures that must contain any given cluster during
evolutionary synthesis. This introduces a parameter-based lower bound on the subset
of parent networks with existing architectural clusters. In Chapter 4, we employed an
intersection-based mating policy where a cluster was synthesized only if the cluster existed
within allm parent networks. To allow for more flexibility within them-parent evolutionary
synthesis process, we propose χ so that only synaptic clusters that exist within the specified
proportion of parent networks are synthesized, and the intersection-based policy previously
used in Chapter 4 can be achieved using χ = 1.

As such, we rewrite the synaptic architecture cluster-level mating function (5.2) as

MS
C(sGi,C) =

1 1
m

m∑
k=1

sk,C ≥ χ

0 otherwise
(5.4)
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where χ is the proportion of parent network architectures that must contain any given
synaptic cluster during evolutionary synthesis for the newly synthesized network to inherit
the cluster. The synapse-level mating function shown in (5.3) remains the same.

Given the inherited synaptic structure Sg,i of Hg,i, Hg,i is then subject to simulated
environmental resources via Rg and the synaptic strengths of parent networks HGi

. Using
(4.4) and (4.5) from Chapter 4, the simulated environmental resources are applied at the
cluster-level and at the synapse-level:

P (sg,C = 1|RC
g , sGi,C , wGi,C) =

{
0 sGi,C = 0

1− (RC
g · (1− |MW

C (wGi,C)|)) otherwise

P (sg,j = 1|Rs
g, sGi,j, wGi,j) =

{
0 sGi,j = 0

1− (Rs
g · (1− |MW

s (wGi,j)|)) otherwise

where MW
C (.) is the cluster-level synaptic strength mating function and MW

s (.) is the
synapse-level synaptic strength mating function.

In contrast to Chapter 4, we now modify the synaptic strength mating policies to
incorporate the effects of the cluster-level percent of population parameter χ when applying
the simulated environmental resources Rg to the newly synthesized network Hg,i:

MW
C (wGi,C) =

1

m

m∑
k=1

sk,C · wk,C (5.5)

MW
s (wGi,j) =

1

m

m∑
k=1

sk,j · wk,j (5.6)

where wGi,C represents the cluster’s synaptic strength for parent networks HGi
, and wGi,j

represents the synaptic strength of a synapse j within cluster C for parent networks HGi
.

5.2 Experimental Setup

The m-parent evolutionary synthesis of deep neural networks was performed over several
generations for m = 1, 2, 3, and 5, and the effects of m-parent evolutionary synthesis in
varying population sizes of three, five, and eight synthesized networks per generation were
explored using a 10% subset of the MNIST [72] hand-written digits dataset (a sample of
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which is shown in Figure 4.2 in Chapter 4) with the first generation ancestor networks
trained using the LeNet-5 architecture [34]. In this study, m parents were randomly se-
lected (without replacement) from the population of networks in the immediately preceding
generation, and we select the cluster-level percent of population parameter χ to be 50%
for this experiment. Similar to Chapter 4, we assess the statistical significance of our re-
sults using a multivariate analysis of variance (MANOVA) test, as well as a paired t-test
where the theoretical storage size of the networks are compared at a selected performance
threshold via linear interpolation between the nearest data points.

As in Chapter 4, we designed the environmental factor models RC
g and Rs

g to enforce
that an offspring deep neural network is limited to a fraction of the total number of synapses
available in the previous generation, allowing for the synthesized deep neural networks to
become progressively more efficient in the successive generations while minimizing any loss
in accuracy. In Chapter 4, there were only a few generations of viable network architectures
before performance accuracy dropped too low; as a result, we leverage both a more relaxed
synaptic architecture mating policy (as detailed in the previous section) as well as a less
aggressive environmental factor model. In this chapter, we select an environmental factor
model of 50% (relative to the 70% used in Chapter 4); the environmental factor models
are more thoroughly explored in Chapter 7. As in Shafiee et al.’s work [17] and Chapter 4,
each filter (i.e., collection of kernels) was considered as a synaptic cluster in the multi-
factor synapse probability model, and both the synaptic efficiency and cluster efficiency
were assessed along with testing accuracy.

5.3 Results

In this chapter, the effects of m-parent evolutionary synthesis in varying population sizes
were investigated using m = 1, 2, 3, and 5, and population sizes of three, five, and eight
synthesized networks per generation. At each generation, the network validation accuracy
and the network storage size (in bytes) were evaluated. As was the case in Chapter 4,
there is generally a trade-off between performance accuracy and network storage size, i.e.,
accuracy decreases as the network storage size decreases. For all experiments, 10% of
the MNIST dataset was used for training and the original fully-trained ancestor network
(generation 1) had a testing accuracy of 98% with 143,136 synapses and 7,200 kernels
(corresponding to a 1-channel input LeNet architecture [34]).

Figure 5.2, Figure 5.3, and Figure 5.4 show the MNIST validation accuracy and network
storage size for networks synthesized via evolutionary synthesis using one parent (blue), two
parents (pink), three parents (green), and five parents (black, not shown in Figure 5.2) as a
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(a) MNIST validation accuracy. (b) MNIST network storage size.

(c) MNIST accuracy vs. storage size.

Figure 5.2: MNIST average validation accuracy and average neural network storage size
vs. generation number (top row) for networks synthesized using one (blue), two (pink),
and three (green) parents, with error bars showing the standard deviation over 5 runs.
These plots show the effects of m-parent evolutionary synthesis for a population of three
synthesized networks per generation. Like the five network population case (Figure 5.3) and
the eight network population case (Figure 5.4), increasing the number of parent networks
results in improved accuracy vs. storage size trade-off (bottom row). Notice that the 2-
parent (pink) case appears to drop in both accuracy and storage size more slowly than the
other cases.
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(a) MNIST validation accuracy. (b) MNIST network storage size.

(c) MNIST accuracy vs. storage size.

Figure 5.3: MNIST average validation accuracy and average neural network storage size
vs. generation number (top row) for networks synthesized using one (blue), two (pink),
three (green), and five (black) parents, with error bars showing the standard deviation over
5 runs. These plots show the effects of m-parent evolutionary synthesis for a population
of five synthesized networks per generation. Networks synthesized using three (green) and
five (black) parents show the best accuracy vs. storage size trade-off (bottom row), with
data points closest to the top left corner of the scatter plot. As in Figure 5.2, the 2-parent
(pink) case appears to drop in both accuracy and storage size more slowly than the other
cases.
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(a) MNIST validation accuracy. (b) MNIST network storage size.

(c) MNIST accuracy vs. storage size.

Figure 5.4: MNIST average validation accuracy and average neural network storage size
vs. generation number (top row) for networks synthesized using one (blue), two (pink),
three (green), and five (black) parents, with error bars showing the standard deviation over
5 runs. These plots show the effects of m-parent evolutionary synthesis for a population
of eight synthesized networks per generation. Similar to the five network population case
(shown in Figure 5.3), networks synthesized using three (green) and five (black) parents
show the best accuracy vs. storage size trade-off (bottom row). As in Figure 5.2 and
Figure 5.3, the 2-parent (pink) case appears to drop in both accuracy and storage size
more slowly than the other cases.
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function of generation number, and evaluated on the 10% subset of the MNIST dataset for
populations of three, five, and eight networks per generation, respectively. Figure 5.2 (a),
Figure 5.3 (a), and Figure 5.4 (a) show the validation accuracy for networks synthesized
using m-parent evolutionary synthesis in a population of three, five, and eight networks per
generation. Similarly, Figure 5.2 (b), Figure 5.3 (b), and Figure 5.4 (b) show the neural
network storage size for networks synthesized using m-parent evolutionary synthesis in a
population of three, five, and eight networks per generation. Note that Figure 5.2 only
shows networks synthesized using one, two, and three parent networks (but not five) due
to having only a population size of three networks at each generation, and therefore having
insufficient networks at each generation for 5-parent evolutionary synthesis.

In all three figures, 3-parent and 5-parent evolutionary synthesis produced networks
with a 1 − 3% drop in validation accuracy and a decrease in model storage size of ap-
proximately two orders of magnitude at generation 4. Conversely, 1-parent evolutionary
synthesis produced networks of comparable performance accuracy with a decrease in stor-
age size of approximately one and a half orders of magnitude at generation 6. This indicates
that increasing the number of parents during evolutionary synthesis can allow for the syn-
thesis of more efficient network architectures with minimal loss in testing accuracy. While
there is generally a trend of faster decrease in both performance accuracy and network
storage size as the number of parent networks increase (i.e., validation accuracy and stor-
age size decrease at an earlier generation number), the 2-parent evolutionary synthesis case
appears to be an anomaly in that the validation accuracy has minimal to no decrease over
10 generations while the network storage size also decreases more gradually. This will be
investigated in Section 5.4.

Figure 5.2 (c), Figure 5.3 (c), and Figure 5.4 (c) shows the trade-off between perfor-
mance accuracy and network storage size for networks produced via evolutionary synthesis
using one parent (blue), two parents (pink), three parents (green), and five parents (black,
not shown in Figure 5.2). As in Chapter 4, the best networks are those closest to the top-left
corner, indicating a high performance accuracy for a smaller network storage size. Net-
works synthesized via 3-parent (green) and 5-parent (black) evolutionary synthesis appear
to have better trade-offs between accuracy and storage size relative to 1-parent evolution-
ary synthesis (blue). In addition, the anomaly with the 2-parent evolutionary synthesis
case can be seen in the pink data points along the top of the plot. Note that the trend of
these data points do not appear to have progressed sufficiently to where the network ar-
chitectures are at an optimal trade-off between accuracy and storage size (i.e., close to the
top left corner), implying that the network mating in the 2-parent evolutionary synthesis
case is not reducing the number of synaptic clusters and/or synapses at a rate comparable
to 1-parent, 3-parent, or 5-parent evolutionary synthesis over the 10 generations.
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Table 5.1: Statistical significance assessment for networks synthesized using one, two,
three, and five parent networks in population sizes of three, five, and eight networks per
generation over 5 runs and trained using 10% of the MNIST dataset. We use the MANOVA
statistical significance analysis method, and present the p-values resulting from both overall
and one-to-one comparisons (statistical significance criterion of p < 0.05).

Network Population Size (Per Generation)
Three (p-value) Five (p-value) Eight (p-value)

1-Parent & 2-Parent 7.947×10−5 7.706×10−5 6.754×10−5

1-Parent & 3-Parent 0.1235 0.0624 0.0849
1-Parent & 5-Parent N/A 0.0953 0.0148
3-Parent & 5-Parent N/A 0.9122 0.7773
Overall 0.0000 0.0000 0.0000
Overall
(excluding 2-parent) 0.1235 0.1478 0.0626

As in Chapter 4, we assess the statistical significance of the networks synthesized using
1-parent, 2-parent, 3-parent, and 5-parent evolutionary synthesis in varying population
sizes via the multivariate analysis of variance (MANOVA) method [74]. Table 5.1 presents
the p-values resulting from both overall (i.e., m-parent evolutionary synthesis for a given
population size) and one-to-one comparisons (e.g., comparing 1-parent asexual evolutionary
synthesis and 3-parent sexual evolutionary synthesis in a network population size of 5
networks per generation). For the overall MANOVA analysis (second last row), the p-
value for all three population sizes is 0, indicating that that there is clear evidence that the
group (i.e., various m-parent evolutionary synthesis methods) means are not at the same
point in space and, thus, are significantly different.

We also directly compare the networks synthesized using 2-parent, 3-parent, and 5-
parent (where available) sexual evolutionary synthesis to the networks synthesized via
1-parent asexual evolutionary synthesis via the statistical significance MANOVA method,
as shown in the first three rows of Table 5.1. While a MANOVA analysis of 3-parent and
5-parent evolutionary synthesis compared with 1-parent evolutionary synthesis results in
relatively low p-values (e.g., < 0.15), we see that only a MANOVA analysis of 1-parent and
5-parent evolutionary synthesis in a population of eight networks is statistically significant
with a p-value of 0.0148 (given a statistical significance criterion of p < 0.05). As expected
given the trends show in Figure 5.2, Figure 5.3, and Figure 5.4, the networks synthesized
using 3-parent and 5-parent evolutionary synthesis are not significantly different, with
p-values of 0.9122 and 0.7773 in populations of five and eight networks, respectively.
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We also see from Table 5.1 that 2-parent evolutionary synthesis is statistically significant
relative to the asexual case (first row), with p-values less than 0.0001 for populations of
three, five, and eight networks per generation. This is consistent with the anomalous 2-
parent evolutionary synthesis trends shown in Figure 5.2, Figure 5.3, and Figure 5.4, and
is likely the cause for the p-values of 0 shown in the second last row of the table. As
such, we re-evaluate the overall statistical significance excluding the 2-parent evolutionary
synthesis networks (bottom row), with resulting p-values of 0.1235, 0.1478, and 0.0626
for population sizes of three, five, and eight networks, respectively; note that excluding
2-parent evolutionary synthesis in a population size of three is the same as comparing 1-
parent and 3-parent directly, resulting in the same p-value. While the p-values for 3-parent
and 5-parent evolutionary synthesis do not indicate statistical significance relative to the
1-parent evolutionary synthesis case, the corresponding p-values are consistently low and
suggest that m-parent evolutionary synthesis can potentially synthesize good (i.e., efficient)
network architectures.

Lastly, we applied the MANOVA method to networks synthesized using 3-parent evo-
lutionary synthesis in varying population sizes (three, five, and eight networks per gen-
eration), and produced a p-value of 0.9962. Similarly, we applied the MANOVA method
to networks synthesized using 5-parent evolutionary synthesis in varying population sizes
(five and eight networks per generation), and produced a p-value of 0.6531. Both these
p-values indicate that the networks synthesized in different population sizes are not signifi-
cantly different (using a statistical significance criterion of p < 0.05). As such, we will only
synthesize the required number of network architectures at each generation for m-parent
evolutionary synthesis in the subsequent experiments in this thesis, i.e., we will synthesis
m networks per generation.

As in Chapter 4, we also assess the statistical significance via paired t-test by comparing
the linearly interpolated network storage sizes at a performance threshold of 90% accuracy.
This threshold was selected for this chapter as representative of the performance accuracy
of the best networks (as per Figure 5.2 (c), Figure 5.3 (c), and Figure 5.4 (c)); however, note
that networks synthesized using 2-parent evolutionary synthesis were omitted as none of
the synthesized networks had a performance accuracy below the 90% threshold (due to the
anomalous trends). As such, paired t-tests were performed between networks synthesized
using 3-parent and 5-parent (where available) sexual evolutionary synthesis and networks
synthesized using 1-parent asexual evolutionary synthesis (shown in Table 5.2).

From Table 5.2, we see that the paired t-test of 3-parent and 5-parent evolutionary
synthesis compared with 1-parent evolutionary synthesis results in relatively low p-values
(e.g., approximately 0.15 or less). In particular, the paired t-test between 1-parent and 3-
parent in a population size of five networks per generation (p-value of 0.0325) and the paired
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Table 5.2: Statistical significance assessment via paired t-test for networks synthesized
using one, three, and five parent networks (two parent networks omitted due to anomalous
trends) in population sizes of three, five, and eight networks per generation over 5 runs
and trained using 10% of the MNIST dataset. We compare interpolated network storage
sizes at a performance threshold of 90% accuracy, and present the p-values resulting from
one-to-one comparisons (statistical significance criterion of p < 0.05).

Network Population Size (Per Generation)
Three (p-value) Five (p-value) Eight (p-value)

1-Parent & 3-Parent 0.1508 0.0325 0.0848
1-Parent & 5-Parent N/A 0.0639 0.0215

t-test between 1-parent and 5-parent in a population size of eight networks per generation
(p-value of 0.0215) showing statistical significance using a statistical significance criterion
of p < 0.05. The paired t-tests, then, show statistical significance results similar to the
MANOVA statistical significance analysis in Table 5.1.

5.4 2-Parent and 4-Parent Evolutionary Synthesis

In the previous section, we see that there is anomalous behaviour in the 2-parent evolu-
tionary synthesis case (as shown in Figure 5.2, Figure 5.3, and Figure 5.4). In this section,
we now investigate these trends more thoroughly and speculate as to the cause of the com-
paratively slow decrease in performance accuracy and network storage size relative to the
1-parent, 3-parent, and 5-parent evolutionary synthesis trends.

In the previous section, we had selected the cluster-level percent of population param-
eter χ to be 50% for the experiment. However, this value of χ is ill-suited for 2-parent
evolutionary synthesis as a χ of 50% aligns exactly with having one of the two parent net-
works containing any given cluster, making the χ threshold ambiguous. The algorithmic
implementation of this specifies that a cluster present in less than χ parent networks would
be removed. As a result, a χ of 50% results in a synaptic cluster being synthesized in an
offspring network if present in either of the two parent networks, and essentially produces
an offspring network containing the union of the synaptic clusters present in the two par-
ent networks. To investigate this potential ambiguity, we investigate 2-parent evolutionary
synthesis using cluster-level percent of population parameters of χ = 45% and χ = 55%.
In addition, we also examine the previously unexplored 4-parent evolutionary synthesis
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(as 2-parent evolutionary synthesis was the only even number of parent networks in the
previous section that would suffer from this ambiguity with χ = 50%) using χ = 45% and
χ = 55% for comparison. To allow for direct comparison between 2-parent and 4-parent
evolutionary synthesis, we only synthesize population sizes of five and eight networks per
generation using 10% of the MNIST dataset for training, and the original fully-trained
ancestor network (generation 1) had a testing accuracy of 98% with 143,136 synapses and
7,200 kernels (corresponding to a 1-channel input LeNet architecture [34]).

Figure 5.5 and Figure 5.6 show the MNIST validation accuracy and network storage
size for networks synthesized using two parents and χ = 45% (dark red), two parents and
χ = 55% (pink), four parents and χ = 45% (dark blue), and four parents and χ = 55%
(light blue) as a function of generation number for populations of five and eight networks
per generation, respectively. Specifically, Figure 5.5 (a) and Figure 5.6 (a) show the val-
idation accuracy as a function of generation number while Figure 5.5 (b) and Figure 5.6
(b) show the network storage size as a function of generation number. Notice that for
2-parent evolutionary synthesis, the accuracy and storage size trends for χ = 45% (dark
red) closely resemble those shown in Figure 5.2, Figure 5.3, and Figure 5.4; this is ex-
pected, as (algorithmically speaking) a χ of 45% is functionally equivalent to a χ of 50%
and essentially results in a union-based mating policy as explained earlier in this section.
Similarly, notice that the accuracy and storage size trends for 2-parent evolutionary syn-
thesis using χ = 55% (pink) a similar to those shown in Figure 4.3. While the steep drop
in validation accuracy and storage size is perhaps delayed by a generation (i.e., accuracy
drops to approximately 10% at generation 5 rather than at generation 4 as in Chapter 4),
the trends themselves are comparable as a χ of 55% requires that both parent networks
contain any given synaptic cluster and results in an intersection-based mating policy, and
the delay in performance accuracy drop is likely due to the environmental factor model
being 50% in this chapter (as compared to the 70% in Chapter 4).

More interesting, then, are the accuracy and storage size trends with 4-parent evolu-
tionary synthesis. In the 4-parent case, a χ of 45% (dark blue) requires that at least two
of the four parent networks contain any given cluster while a χ of 55% (light blue) requires
that at least three of the four parent networks contain any given cluster. As expected, a
χ of 45% results in a slower decrease in validation accuracy and network storage size over
the 10 generations relative to a χ of 55%; however, the decrease in accuracy and storage
size is notably faster than the 2-parent case for a χ of 45% where only one parent network
must contain any given cluster. Conversely, a χ of 55% results in similar accuracy and
storage size trends for both 2-parent and 4-parent evolutionary synthesis. This indicates
that requiring three of the four parent networks to contain any given cluster in 4-parent
evolutionary synthesis is comparable to an intersection-based mating policy in 2-parent
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(a) MNIST validation accuracy. (b) MNIST network storage size.

(c) MNIST accuracy vs. storage size.

Figure 5.5: MNIST average validation accuracy and average neural network storage size
vs. generation number (top row) for networks synthesized using two (χ = 0.45 dark red,
χ = 0.55 pink) and four (χ = 0.45 dark blue, χ = 0.55 light blue) parents, with error bars
showing the standard deviation over 5 runs. These plots show the effects of 2-parent and
4-parent evolutionary synthesis for a population of five synthesized networks per generation
given a percent of population χ of 45% and 55%. The bottom row shows the accuracy
vs. storage size trade-off, with data points closest to the top left corner of the scatter
plot indicating the best networks. Notice that a χ of 55% results in a much faster drop in
accuracy relative to a χ of 45%.
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(a) MNIST validation accuracy. (b) MNIST network storage size.

(c) MNIST accuracy vs. storage size.

Figure 5.6: MNIST average validation accuracy and average neural network storage size
vs. generation number (top row) for networks synthesized using two (χ = 0.45 dark red,
χ = 0.55 pink) and four (χ = 0.45 dark blue, χ = 0.55 light blue) parents, with error
bars showing the standard deviation over 5 runs. These plots show the effects of 2-parent
and 4-parent evolutionary synthesis for a population of eight synthesized networks per
generation given a percent of population χ of 45% and 55%. The bottom row shows the
accuracy vs. storage size trade-off, with data points closest to the top left corner of the
scatter plot indicating the best networks. Similar to Figure 5.5, a χ of 55% results in a
much faster drop in accuracy relative to a χ of 45%.
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Table 5.3: Statistical significance assessment for networks synthesized two and four parent
networks in population sizes of five and eight networks per generation over 5 runs and
trained using 10% of the MNIST dataset; a percent of population χ of 45% and 55$
were used for both 2-parent and 4-parent evolutionary synthesis. We use the MANOVA
statistical significance analysis method, and present the p-values resulting from both overall
and one-to-one comparisons (statistical significance criterion of p < 0.05).

Network Population Size (Per Generation)
Five (p-value) Eight (p-value)

2-Parent χ = 45% & χ = 55% 1.451× 10−14 1.372× 10−14

4-Parent χ = 45% & χ = 55% 4.752× 10−10 3.151× 10−9

2-Parent & 4-Parent (χ = 45%) 2.614× 10−4 1.052× 10−4

2-Parent & 4-Parent (χ = 55%) 0.9723 0.9919
Overall 0.0000 0.0000

evolutionary synthesis, and implies that there is an optimal value of χ that can produce
efficient network architectures in relatively few (e.g., less than 10) generations.

Figure 5.5 (c) and Figure 5.6 (c) show the trade-off between performance accuracy
and network storage size for networks synthesized using two parents and χ = 45% (dark
red), two parents and χ = 55% (pink), four parents and χ = 45% (dark blue), and four
parents and χ = 55% (light blue). Notice that 2-parent evolutionary synthesis produced
data points similar to those shown in Figure 5.2 (c), Figure 5.3 (c), and Figure 5.4 (c)
for χ = 45% and data points similar to those shown in Figure 4.3 for χ = 55%. While
the trend for 4-parent evolutionary synthesis is similar to that of 2-parent evolutionary
synthesis for χ = 55%, the data points corresponding to networks produced via 4-parent
evolutionary synthesis for χ = 45% (dark blue) appears to result in comparably better
network architectures (as indicated by their closeness to the top-left corner of the plot),
and further supports the idea that the incorporation of multiple parent networks during the
evolutionary synthesis process can produce network architectures with improved trade-offs
between accuracy and storage size.

Similar to the experiment in the previous section, we leverage the multivariate analysis
of variance (MANOVA) method to test for statistical significance between the networks
synthesized using 2-parent and 4-parent evolutionary synthesis in population sizes of five
and eight networks with a percent of population χ of 45% and 55$. The resulting p-values
for both overall (i.e., 2-parent and 4-parent evolutionary synthesis using a χ of 45% and
55$) statistical significance for a given population size and one-to-one comparisons are
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shown in Table 5.3. The overall p-value (bottom row) for both populations of five and
eight networks per generation is 0; this indicates that there is clear evidence that the
means of the different groups are significantly different.

Table 5.3 also shows that networks synthesized using a χ of 45% (regardless of 2-parent
or 4-parent evolutionary synthesis) are significantly different than networks synthesized
using a χ of 55%, as indicated by the small p-values (< 1.0× 10−8) and given a statistical
significance criterion of p < 0.05. While networks synthesized using 2-parent evolutionary
synthesis are significantly different than networks synthesized using 4-parent evolutionary
synthesis for a χ of 45% with p-values of 2.614 × 10−4 (population of five networks) and
1.052 × 10−4 (population of eight networks), the opposite is true for a χ of 55%. A χ
of 55% produced networks that were not significantly different for 2-parent and 4-parent
evolutionary synthesis with p-values > 0.95. The p-values shown in Table 5.3 are congruent
with the trends shown in Figure 5.5 and Figure 5.6. In particular, Table 5.3 shows that
networks synthesized using 4-parent evolutionary synthesis and a χ of 45% achieve a signif-
icantly better trade-off between performance accuracy and network storage size relative to
the other combinations of number of parent networks and χ evaluated in this experiment.

As per Section 5.3, we also assess the statistical significance of the synthesized networks
using the paired t-test by comparing the linearly interpolated network storage sizes at a
performance threshold of 90% accuracy. Note that similar to the previous section, the
anomalous behaviour in 2-parent sexual evolutionary synthesis persists in this section;
as such, networks synthesized via 2-parent evolutionary synthesis were omitted from this
analysis, and the paired t-test was only performed on networks synthesized via 4-parent
evolutionary synthesis. The paired t-test comparing networks synthesized via 4-parent
evolutionary synthesis using a χ of 45% and using a χ of 55% resulted in a p-value of 0.0086
for a population of five networks per generation, and a p-value of 0.0100 for a population of
eight networks per generation. In both cases, the paired t-test shows statistical significance
using a significance criterion of p < 0.05, indicating that networks synthesized via 4-parent
evolutionary synthesis with a χ of 45% are significantly different than those synthesized
using a χ of 55%.

5.5 Summary

Building on the concept of sexual evolutionary synthesis from the previous chapter, the
use of multi-parent sexual evolutionary synthesis during the synthesis of offspring networks
for evolutionary deep intelligence was explored in this chapter. The efficacy of sexual
evolutionary synthesis was examined via m-parent evolutionary synthesis in the context of
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varying generational population sizes using 10% of the MNIST dataset. In contrast to the
intersection-based mating policy in Chapter 4, we leverage a more flexible mating policy
via the introduction of a cluster-level percent of population parameter χ, allowing for the
synthesis of synaptic clusters present in a subset of the m parent networks.

Initially, we investigated m = 1, 2, 3, 5 number of parent networks during evolutionary
synthesis using a χ of 50%, and demonstrate that the incorporation of multiple parent
networks during evolutionary synthesis allows for a better trade-off between accuracy and
storage size. However, upon discovering anomalous behaviour in the 2-parent evolutionary
synthesis cases, we further investigated 2-parent and 4-parent evolutionary synthesis with
cluster-level percent of population parameters of χ = 45% and χ = 55%. While 2-parent
evolutionary synthesis can only synthesize networks using a union-based mating policy (in
the case of χ = 45%) or an intersection-based mating policy (in the case of χ = 55%),
the difference in trends for 4-parent evolutionary synthesis using χ = 45% and χ = 55%
implies that there is an optimal value of χ that can produce efficient network architectures
in relatively few (e.g., less than 10) generations. We will further investigate the effect of
the cluster-level percent of population parameters of χ in the next chapter.

Both experiments indicate that the use of multiple parent networks during evolution-
ary synthesis allows for the synthesis of networks increasingly efficient architectures, and
(generally) the addition of more parent networks during the evolutionary synthesis pro-
cess results in networks with improved trade-off between accuracy and storage size. While
assessing the performance accuracy and network storage size as a function of generation
number is appropriate in the context of the evolutionary synthesis formulation presented in
Chapter 3, it is difficult to interpret such an abstract concept outside of evolutionary deep
intelligence. As such, we propose evaluating the performance accuracy and network storage
size as function of computation time as a more direct measure of network progression in
the following chapters.
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Chapter 6

Gene Tagging

In Chapters 4 and 5, we explored the computational construct used to mimic heredity via
the incorporation of multiple parent networks during the evolutionary synthesis process
using both intersection-based mating functions (Chapter 4) and more flexible proportional
mating functions (Chapter 5). The use of these mating functions during the evolutionary
synthesis process, however, essentially combines architectural structures sequentially re-
gardless of their relative positions in each parent network. Without a system to track the
original locations of the architectural synaptic clusters, offspring networks created during
the evolutionary synthesis process are produced by combining parent networks independent
of architectural alignment, resulting in a mismatch of network structures. The implications
and mitigation of this architectural mismatch are explored in this chapter.

Figure 6.1 shows a simple visualization of architectural mismatch due to a lack of gene
tagging where two offspring network architectures are synthesized using the same ances-
tor architecture. Because not all synapses are synthesized in the offspring networks, the
two offspring networks show in Figure 6.1 appear to have comparable architectural struc-
tures, despite their bottom left nodes originating from different locations in the ancestor
network (blue on the left, red on the right). This misalignment in structure, then, re-
sults in an architectural mismatch if the two offspring networks shown were to be used as
parent networks for a new offspring network. We propose to mitigate this architectural
mismatch by tracking the originating locations of each architectural cluster (represented
in Figure 6.1 as single nodes) to prevent the combination of different architectural clusters
due to misalignment in the parent network architectures.

In order to track architectural clusters over successive generations, we introduce the
concept of gene tagging into the multi-parent evolutionary synthesis process. We evaluate
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Figure 6.1: Visualization of architectural mismatch during m-parent (2-parent shown)
evolutionary synthesis due to lack of gene tagging. While the bottom left node of the left
offspring network (blue) appears in the same architectural location as the bottom left node
of the right offspring network (red), they originate from different locations in the ancestor
network (shown at the top).

the efficacy of gene tagging using the most complex multi-parent evolutionary synthesis
case, i.e., 5-parent evolutionary synthesis, to maximize the occurrence of architectural
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mismatch. First, we present a study into the effects of architectural alignment during
evolutionary synthesis via the introduction of a gene tagging system. Gene tagging is
explored within the context of m-parent sexual evolutionary synthesis and evaluated over
a range of environmental resource models. The gene tagging system allows for the proper
alignment of architectural structures that originated from the same location in the ancestor
network, and enforces a like-with-like mating policy during evolutionary synthesis. Recall
from Chapter 5 that we introduced χ in (5.4), the cluster-level percent of population
parameter to allow for more flexibility during the evolutionary synthesis process. To better
understand its effect (especially in the context of gene tagging), we evaluate a range of
χ in the context of 3-parent evolutionary synthesis, and evaluate a limited range of χ in
combination with varying environmental factor models for 5-parent evolutionary synthesis.

Results from the first two sections show that networks synthesized with gene tagging
have a slight drop in trade-off between accuracy and storage size, leading to speculation
whether gene tagging produces networks with less architectural variability. In the last
section of this chapter, we attempt to answer the following question: “how can we assess
the architectural similarity of DNNs in a meaningful and useful way?” We present an
experiment exploring the quantification of network architectural similarity in populations
of evolutionary synthesized neural networks via percentage overlap of architectural clusters.
Architectural similarity is explored within the context of multi-parent sexual evolutionary
synthesis (specifically, 5-parent evolutionary synthesis), and will hopefully allow for the
development of improved similarity-based mating policies during the evolutionary synthesis
of highly efficient networks.

6.1 Mitigating Architecture Mismatch

In prior chapters, offspring networks were created during the evolutionary synthesis process
by combining parent networks via a simple mating function that operated independent of
architectural alignment. As a result, architectural clusters were combined sequentially,
regardless of relative positions in the parent networks, and resulted in a mismatch of
architectural structures.

To encourage like-with-like mating during evolutionary synthesis, we introduce a gene
tagging system to track the original locations of each cluster over successive generations.
This allows us to enforce structural alignment during the mating process, i.e., only allowing
architectural clusters originating from the same location in the ancestor network to mate.
As such, we reformulate the synaptic architecture cluster-level mating function (5.4) from
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the previous chapter as follows:

MS
C(sGi,C) =

1 1
m

m∑
k=1

sk,C ≥ χ

0 otherwise
(6.1)

where s is the indicator for the gene tagged and structurally-aligned synaptic clusters,
meaning that any given synaptic cluster in one network in Gi is only ever mated with the
same synaptic cluster in another network in Gi. Each gene tagged architectural cluster
holds information with its original location in the ancestor network, and this gene tag
can be used during the evolutionary synthesis process to ensure that only clusters with
the same original location (i.e., same gene tag) are combined during mating. Similar to
Chapter 5, the synapse-level mating function shown in (5.3) remains the same. Given
the inherited structurally-aligned synaptic structure Sg,i of Hg,i, Hg,i is then subject to
simulated environmental resources via Rg and the synaptic strengths of parent networks
HGi

as per (4.4) and (4.5). We also leverage the χ-based synaptic strength mating policies
from Chapter 5 proposed in (5.5) and (5.6).

Figure 6.2 shows the performance accuracy and storage size for 5-parent evolution-
ary synthesis with gene tagging (top row) and no gene tagging (bottom row) given various
cluster-level and synapse-level environmental factor models for a single run. The incorpora-
tion of gene tagging resulted in a more gradual decrease in both performance accuracy and
storage size relative to computational time, while the omission of gene tagging produced
network architectures with more rapidly decreasing performance accuracy and storage size.
Note that the bottom plateau in performance accuracy is once again at 10% akin to ran-
dom guessing, as the MNIST dataset consists of 10 classes of handwritten digits. While
there is no inherent limit in network reduction when using the evolutionary deep intelli-
gence approach, Figure 6.2 shows that there are natural plateaus in network storage size,
particularly with the higher environmental factor models, i.e., environmental factor models
of 80%, 85%, and 95%. In addition, note that these plateaus in network storage size tend
to occur more when synthesizing networks using gene tagging.

Figure 6.3 shows performance accuracy as a function of storage size for 5-parent sexual
evolutionary synthesis using various cluster-level and synapse-level environmental factor
models, where the best synthesized networks are closest to the top left corner, i.e., high
performance accuracy and low storage size. Networks synthesized using gene tagging (dia-
mond points) appear to be minimally worse relative to networks synthesized without gene
tagging (round points) in terms of maintaining performance accuracy while decreasing stor-
age size. However, this raises an interesting question (addressed at the end this chapter):
how can we assess the architectural similarity of DNNs in a meaningful and useful way?
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Figure 6.2: Performance accuracy (left) and storage size (right) for 5-parent evolutionary
synthesis with gene tagging (top row) and no gene tagging (bottom row) using various
environmental factor models. Plots best viewed in colour.

6.2 Percent of Population Parameter χ

To better understand the percent of population parameter χ introduced in Chapter 5,
we further explore its impact within the context of 3-parent and 5-parent evolutionary
synthesis. Percent of population parameter χ is used to control the proportion of parent
network architectures that must contain any given cluster in order for that cluster to be
synthesized during evolutionary synthesis.
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Figure 6.3: Performance accuracy as a function of storage size for 5-parent sexual evolu-
tionary synthesis using various environmental factor models. Networks synthesized using
gene tagging (diamond) show minimal to no noticeable difference relative to networks syn-
thesized without gene tagging (round) in terms of maintaining performance accuracy while
decreasing storage size. Plots best viewed in colour.

6.2.1 3-Parent Evolutionary Synthesis with Varying χ

As an initial assessment of percent of population parameter χ, we evaluate a range of
values within the context of gene tagged 3-parent evolutionary synthesis for ten generations.
Having used χ = 0.5 (or 50%) in the previous section where we introduced the gene tagging
system, we now evaluate the following values of χ:

χ = {0, 0.25, 0.5, 0.75, 1}. (6.2)

As in the previous section, we use an environmental factor model of 50% and, to validate
its efficacy in a less complex case, we use 3-parent evolutionary synthesis.

Figure 6.4 shows the performance accuracy (left) and storage size (right) of the gene
tagged 3-parent evolutionary synthesis as a function of computation time for a single
run. Note that in the case of 3-parent evolutionary synthesis, χ = 0 and χ = 0.25 are
functionally equivalent where a cluster needs to exist in any of the parent networks to be
synthesized in the offspring network (as existing in a single parent network would result in
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Figure 6.4: Performance accuracy (left) and storage size (right) as a function of compu-
tation time for 3-parent sexual evolutionary synthesis using various percent of population
parameter χ. Plots best viewed in colour.

a percent of population of approximately 0.33 or 33%). Similarly, χ = 0.75 and χ = 1 are
functionally equivalent where a cluster needs to exist in all three of the parent networks to
be synthesized in the offspring network (as existing in two parent networks would result in
a percent of population of approximately 0.67 or 67%). We see this reflected in Figure 6.4,
as the trends are very similar between χ = 0 and χ = 0.25 as well as between χ = 0.75
and χ = 1 for both performance accuracy and storage size.

Figure 6.4 also confirms some speculations with respect to how the percent of popula-
tion parameter χ affects the synthesis of increasingly efficient network architectures. As
expected, enforcing that any given cluster must exist within all parent networks in order to
be synthesized (as is the case for χ = 0.75, 1 in this section) results in a rapid sparsification
of the network structure; this can clearly be seen in the steep drops in both performance
accuracy and storage size for χ = 0.75 (yellow) and χ = 1 (pink). Conversely, allowing
a cluster to be synthesized if it exists in any parent network (χ = 0, 0.25 in this section)
results in a much slower sparsification process. Figure 6.4 shows that there is minimal drop
in performance accuracy for χ = 0 (dark blue) and χ = 0.25 (light blue); this corresponds
to a much more gradual decline in storage size, having achieved a reduction of only one
order of magnitude by the end of the ten generations in this experiment.

Most interesting, then, are the performance accuracy and storage size plots for χ = 0.5
(green). In the context of 3-parent evolutionary synthesis, χ = 0.5 enforces that any given
cluster must exist within at least two parent networks to be synthesized in an offspring
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Figure 6.5: Performance accuracy as a function of storage size for the first ten generations
of 3-parent sexual evolutionary synthesis using various percent of population parameter χ.
Plots best viewed in colour.

network. Figure 6.4 implies that χ = 0.5 achieves a good trade-off between maintaining
performance accuracy and reducing model storage size, as the accuracy is maintained for
the first few generations before dropping off after the storage size is reduced by two orders
of magnitude.

Figure 6.5 shows the performance accuracy of 3-parent evolutionary synthesis as a
function of storage size. By comparing the networks synthesized using various percent of
population parameter χ, we see that the best networks (those closest to the top-left corner)
with the highest accuracy to storage size ratio are synthesized using χ = 0.5 (green). This
is congruent with the implications of Figure 6.4. As such, this experiment implies that the
optimal percent of population parameter χ is one that allows for the synthesis of clusters
that exist in some, but not all, of the parent network architectures.
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6.2.2 5-Parent Evolutionary Synthesis with Varying χ

From the previous section, we see that the optimal percent of population parameter χ
tends to enforce that a cluster can be synthesized in the offspring network given that it
exists within some non-zero subset of the parent networks. We now extend this experiment
to the most complex multi-parent case in this thesis, i.e., 5-parent evolutionary synthesis,
and evaluate the following subset of χ:

χ = {0.25, 0.5, 0.75}. (6.3)

These selected χ values will be used to investigate the effect of χ when a given cluster
exists in two parent networks (χ = 0.25), three parent networks (χ = 0.5), or four parent
networks (χ = 0.75) during 5-parent evolutionary synthesis. To better evaluate the percent
of population parameter χ within the context of the gene tagging system proposed earlier
in this chapter, the above χ parameters are used to synthesize network architectures both
with and without gene tagging using the same range of environmental factor models, i.e.,
50% to 95% at 5% increments.

Figure 6.6 shows the performance accuracy (left) and storage size (right) for the first ten
generations using percent of population parameter χ = 0.25 with various environmental
factor models (for a single run). As it is 5-parent evolutionary synthesis, a χ of 0.25 enforces
that any given cluster must exist in at least two parent networks to be synthesized in an
offspring network for both with gene tagging (top row) and without gene tagging (bottom
row). This is the most lenient of existence criteria tested in this experiment, and we see the
corresponding leniency in how the synthesized networks maintain performance accuracy
over successive generations; this is most obvious in the low environmental factor models,
such as 50% (dark blue), 55% (light blue), 60% (dark green), and 65% (light green). We
likewise see a more gradual decrease in storage size over the generations, which is congruent
with similar efficiency trends in this thesis.

Figure 6.7 shows the performance accuracy (left) and storage size (right) for the first
ten generations using percent of population parameter χ = 0.5 with various environmental
factor models. This enforces that a cluster must exist within a minimum of three of the
parent networks during 5-parent evolutionary synthesis both with gene tagging (top row)
and without gene tagging (bottom row). This figure is essentially a truncated version of
Figure 6.2 limited to ten generations for comparison purposes in this section. As expected,
χ of 0.5 enforces a stricter existence criterion than a χ of 0.25, and we observe steeper and
more sudden drops in performance accuracy as the model storage size decreases by more
than two orders of magnitude.

67



Figure 6.6: Performance accuracy (left) and storage size (right) for 5-parent evolutionary
synthesis with gene tagging (top row) and no gene tagging (bottom row) using percent
of population parameter χ = 0.25 with various environmental factor models. Plots best
viewed in colour.
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Figure 6.7: Performance accuracy (left) and storage size (right) for 5-parent evolutionary
synthesis with gene tagging (top row) and no gene tagging (bottom row) using percent
of population parameter χ = 0.5 with various environmental factor models. Plots best
viewed in colour.
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Figure 6.8: Performance accuracy (left) and storage size (right) for 5-parent evolutionary
synthesis with gene tagging (top row) and no gene tagging (bottom row) using percent
of population parameter χ = 0.75 with various environmental factor models. Plots best
viewed in colour.

Lastly, Figure 6.8 shows the performance accuracy (left) and storage size (right) as a
function of computation time for the first ten generations using percent of population
parameter χ = 0.75 with various environmental factor models. A χ of 0.75 enforces
that any given cluster must exist in at least four parent networks to be synthesized in
an offspring network during the evolutionary synthesis process with gene tagging (top
row) and without gene tagging (bottom row). This is the strictest of existence criteria
evaluated in this section, and the effects are reminiscent of the trends seen in the 3-parent
evolutionary synthesis plots using χ = 0.75, 1 (see Figure 6.4) where the accuracy and
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storage size rapidly decline within the first few generations. Relative to χ = 0.25 and
χ = 0.5, χ = 0.75 only produces viable offspring networks (i.e., network architectures with
enough complexity to represent the problem space) during the first few generations. This
is most obvious with the highest environmental factor models, such as 95% (dark purple),
90% (light purple), and 85% (pink), where the accuracy drops to about 10% within the
first two generations.

Figure 6.9: Performance accuracy as a function of storage size for the first ten generations
of 5-parent sexual evolutionary synthesis using percent of population parameter χ = 0.25
with gene tagging (diamond) and without (round). Plots best viewed in colour.

Figures 6.9, 6.10, and 6.11 show the performance accuracy of the networks synthesized
using χ = 0.25, χ = 0.5, and χ = 0.75, respectively, as a function of storage size. The
networks are synthesized during the first ten generations of 5-parent evolutionary synthesis
both with gene tagging (diamond) and without gene tagging (round). The plots confirm
the earlier observations regarding percent of population parameter χ, where a more lenient
existence criterion produces networks with maintained performance accuracy (as can be
seen with the dense distribution of networks in the top right of Figure 6.9) and a stricter
existence criterion mostly produces networks unable to model the problem space (as can
be seen with the dense distribution of networks in the bottom left of Figure 6.11). This
suggests that a percent of population parameter χ of 0.5 is a good choice for maintaining
performance accuracy over successive generations while reducing the model storage size.
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6.3 Assessing Architectural Similarity of Networks

Thus far in the chapter, experimental results have shown that networks synthesized with
and without gene tagging have similar trends in performance accuracy and model storage
size, with networks synthesized using gene tagging perhaps slightly worse at maintaining
accuracy while decreasing storage size. This slight drop in trade-off between accuracy
and storage size has led us to speculate whether gene tagging produces networks with
less architectural variability, and raises an interesting question: “how can we assess the
architectural similarity of DNNs in a meaningful and useful way?”

In this last section, we present an experiment exploring the quantification of network
architectural similarity in populations of evolutionary synthesized neural networks via per-
centage overlap of architectural clusters. Architectural similarity is explored within the
context of multi-parent sexual evolutionary synthesis, and will allow for the development
of improved similarity-based mating policies during the evolutionary synthesis of highly
efficient networks.

To investigate the quantification of architectural similarity in the context of multi-
parent sexual evolutionary synthesis, the percentage overlap of architectural clusters be-

Figure 6.10: Performance accuracy as a function of storage size for the first ten generations
of 5-parent sexual evolutionary synthesis using percent of population parameter χ = 0.5
with gene tagging (diamond) and without (round). Plots best viewed in colour.
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Figure 6.11: Performance accuracy as a function of storage size for the first ten generations
of 5-parent sexual evolutionary synthesis using percent of population parameter χ = 0.75
with gene tagging (diamond) and without (round). Plots best viewed in colour.

tween two networks is formulated as the proportion of intersecting clusters:

%overlapAB =
|CA ∩ CB|

1
2
(|CA|+ |CB|)

, (6.4)

where CA and CB are the sets of architectural clusters that exist in the compared networks.

Percentage overlap of architectural clusters is an intuitive representation of network
architecture similarity made viable in the context of multi-parent evolutionary synthesis by
leveraging the gene tagging system introduced in this chapter. As such, gene tagging (which
allows for architectural alignment during evolutionary synthesis) can similarly be used to
calculate percentage overlap of existing architectural clusters originating from the same
location in the ancestor network. Percentage overlap is indicative of network population
diversity within a generation, e.g., relatively low average percentage overlap would indicate
a generation of synthesized networks with comparatively higher architectural variability.

Figure 6.12 shows the performance accuracy as a function of storage size for the popula-
tions of synthesized networks in the first seven generations of 5-parent sexual evolutionary
synthesis, where the best synthesized networks are closest to the top left, i.e., high perfor-
mance accuracy and low storage size. Networks synthesized using gene tagging (diamond
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Figure 6.12: Performance accuracy as a function of storage size for the first seven genera-
tions of 5-parent sexual evolutionary synthesis for networks synthesized with gene tagging
(diamond) and without gene tagging (round). Plots best viewed in colour.

plot points) show a slightly slower progression in maintaining performance accuracy while
decreasing storage size relative to networks synthesized without gene tagging (round plot
points), as can be seen by comparing generations 4 (yellow) and 5 (orange) in Figure 6.12.

Synthesizing networks with gene tagging and without gene tagging both produced ar-
chitectures that increase in variability over successive generations; however, networks syn-
thesized with gene tagging diversify more slowly than those without gene tagging (as shown
in Tab. 6.1). Figure 6.12 and Tab. 6.1 also suggest that generations of networks approach-
ing an optimal trade-off between performance accuracy and storage size tend to also have
the highest architectural variability, e.g., in generations 3 and 4.

Lastly, it is worth noting that the increasing percentage overlap in generations 6 and 7
of networks synthesized without gene tagging is a result of sparse, low-variability architec-
tures that can no longer represent the problem space (i.e., performance accuracy of 10%
on the 10-class MNIST dataset, equivalent to random guessing). Similarly, the percent-
age overlap in generations 6 and 7 of networks synthesized with gene tagging increases as
the performance accuracy begins to rapidly decrease. Conversely, there is unpredictability
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Table 6.1: Average percentage overlap of architectural clusters in network models for the
first seven generations of 5-parent sexual evolutionary synthesis. Note that the increasing
percentage overlap in generations 6 and 7 of networks synthesized without gene tagging is
a result of sparse, low-variability architectures that can no longer represent the problem
space, while the unpredictability of percentage overlap in generations 6 and 7 of networks
synthesized with gene tagging may be a result of some (but not all) networks having sparse,
low-variability architectures.

Gen No. Gene Tagging No Gene Tagging

1 93.75% 93.71%
2 87.59% 78.11%
3 83.49% 68.84%
4 71.81% 66.64%
5 73.17% 68.44%
6 69.09% 82.74%
7 73.48% 91.05%

in percentage overlap in generations 6 and 7 of networks synthesized with gene tagging.
Observing the distribution of architectures synthesized with gene tagging in generation 6
(pink diamond) and generation 7 (light purple diamond) shown in Figure 6.12, we spec-
ulate that this may be a result of some (but not all) networks in that generation having
sparse,low-variability architectures.

In this section of the thesis, we presented a study in assessing architectural similarity
between deep neural networks to improve the sexual evolutionary synthesis process. Re-
sults show that networks synthesized using gene tagging have less architectural variability
than networks synthesized without gene tagging, as quantified by relatively higher over-
lap percentages of architectural clusters. This indicates that the use of gene tagging can
potentially restrict the exploration of efficient network architectures in the search space.

6.4 Summary

In this chapter, we introduced a gene tagging system to explore the effect of architectural
alignment and/or mismatch during multi-parent evolutionary synthesis. We evaluated
gene tagging using 5-parent evolutionary synthesis over a range of environmental factor
models, and found that networks synthesized using gene tagging appear to be minimally
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worse at maintaining performance accuracy while minimizing storage size when compared
to networks synthesized without gene tagging.

The introduction of gene tagging also introduced a percent of population parameter χ,
which acts as an existence criterion where any given architectural cluster is only synthesized
when it exists in a larger proportion of the parent networks than χ. The impact of χ was
explored within the context of both 3-parent and 5-parent evolutionary synthesis. Results
indicate that the optimal χ is one that allows for the synthesis of clusters that exist in
some, but not all, of the parent networks. As such, we selected a percent of population
parameter χ to be 0.5 as the optimal trade-off between maintaining performance accuracy
over successive generations while reducing the model storage size.

Lastly, we explored how different neural network architectures can be compared. For
the scope of this thesis, we limited the network architectures to those synthesized at each
generation, and quantified the network architectural similarity in populations of synthe-
sized networks via the percentage overlap of gene tagged architectural clusters. Results
show that networks synthesized with gene tagging have a relatively higher overlap per-
centages of architectural clusters, implying that networks synthesized using gene tagging
have less architectural variability than networks synthesized without gene tagging. This
indicates that the use of gene tagging may be restricting the exploration of the efficient
network architecture search space.

However, one key limitation of this architectural similarity assessment is that it is only
applicable to network architectures that originate from the same ancestor network, as is
the case in this thesis. Specifically, assessing the architectural similarity of networks is only
enabled by the introduction of the gene tagging system, as it allows us to track which archi-
tectural clusters are being synthesized in successive generations (even when gene tagging
is not actively being used during evolutionary synthesis). Thus, the architectural simi-
larity assessment performed in this chapter is a preliminary step towards a more general
method for comparing neural network architectures, but by no means solves the problem
of comparing different network architectures trained from scratch. The question of how
to assess network architectures that do not share a common ancestor network or inherit
weight initialization from parent networks (i.e., we cannot ensure that we are comparing
analogous parts of the networks) remains, and further investigation into both the quan-
tification of architectural similarity and the associated implications on network variability
will be discussed in future work (Chapter 9).
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Chapter 7

Nature vs. Nurture: the Role of
Environmental Resources

In the previous chapters, we explored the computational construct used to mimic heredity
by studying the efficacy of incorporating multiple parent networks during the evolutionary
synthesis process. In this chapter, we shift our focus to the computational construct used to
simulate natural selection within the evolutionary deep intelligence framework and consider
the environmental resource model.

We propose a study to determine the role of the simulated environmental resources
during the evolutionary synthesis process and their effects on generations of synthesized
neural networks. To do this, we leverage the evolutionary deep intelligence framework (as
formulated in Chapter 3), using previously proposed cluster-driven genetic encoding [17]
and m-parent evolutionary synthesis, and vary the availability of simulated external envi-
ronmental resources.

7.1 The Role of Environmental Resources

Thus far, the effect of environmental factors (e.g., abundance or scarcity of resources) dur-
ing the evolutionary synthesis process on generations of synthesized network architectures
has largely been unexplored. Inspired by the nature versus nurture debate, we aim to bet-
ter understand the role of external factors on the network synthesis process by varying the
availability of simulated environmental resources during m-parent evolutionary synthesis.
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In this chapter, we examine the computational construct used the mimic natural se-
lection by studying the effects of the cluster-level environmental factor model Rc

g and the
synapse-level environmental factor model Rs

g (as proposed in Section 3.6). From (3.10), we
present a deterministic realization at the cluster level of the existence of all clusters C ∈ C
as:

sg,C =

{
1 RC

g · (1− |wGi,C |) ≤ γ

0 otherwise
(7.1)

where the synthesis of a synaptic cluster sg,C incorporates both the strength of the synapses
in a cluster (wGi,C) and the cluster-level environmental resources available (RC

g ), and γ is
a randomly generated number between 0 and 1.

Similarly from (3.11), we present the realization at the synapse level of the existence of
all synapses as:

sg,j =

{
1 Rs

g · (1− |wGi,j|) ≤ γ

0 otherwise
(7.2)

where sg,j incorporates both the strength of each synapse (wGi,j) and the synapse-level
environmental resources available (Rs

g), and γ is a randomly generated number between 0
and 1. To better understand the role environmental resources play, we vary the cluster-
level environmental factor model RC

g and the synapse-level environmental factor model Rs
g

at 5% increments. In the context of this thesis, we assume the cluster-level and synapse-
level environmental factor models are equal, and enforce that RC

g = Rs
g. As such, the

cluster-level and synapse-level environmental factor models, RC
g and Rs

g, were varied si-
multaneously such that RC

g = Rs
g in every experiment, and can be represented using a

single environmental factor model Rg.

The m-parent evolutionary synthesis of deep neural networks was performed over mul-
tiple generations, and the effects of various environmental factor models were explored
using 10% of the MNIST [72] hand-written digits dataset to increase the training speed
of the synthesized network architectures as well as increase the inherently low intra-class
variation within the MNIST dataset. The first generation ancestor networks trained us-
ing the LeNet-5 architecture [34]. Similar to Shafiee et al.’s work [17], each filter (i.e.,
collection of kernels) was considered as a synaptic cluster in the multi-factor synapse prob-
ability model, and we assessed the synthesized networks using performance accuracy on the
MNIST dataset and storage size (representative of the architectural efficiency of a network)
of the networks with respect to the computational time required.
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7.2 Preliminary Range Showing Stochasticity

This section presents a preliminary study into a range of environmental factor models using
the method proposed in previous evolutionary deep intelligence works [16–18]. Specifically,
this section demonstrates the inherent stochasticity characteristic of these past works, and
allows for a clear comparison against the methods used in this thesis (as presented in
the following section) when evaluated using a range of environmental factor models. Of
particular interest is the difference in the variability of trends for 5-parent evolutionary
synthesis shown in this section (i.e., with the inherent stochasticity of past works [16–18])
in comparison to the method proposed in this thesis (see Figure 7.2).

Previous studies in evolutionary deep intelligence [16–18] employed environmental fac-
tor models of Rc

g = 70% and Rs
g = 70%, i.e., the probability of synthesis for a given cluster

and a given synapse in an offspring network during the evolutionary synthesis process was
scaled by 70%. As such, we selected a preliminary range of environmental factor models
to be from 50% to 95% at 5% increments, i.e.,:

RC
g ,Rs

g = {50, 55, 60, 65, 70, 75, 80, 85, 90, 95}% (7.3)

In this preliminary study, we evaluate these environmental factor models in the context
of 1-parent evolutionary synthesis (as the most basic) and 5-parent evolutionary synthesis
(as the most complex and variable).

The top row of Figure 7.1 shows the performance accuracy and storage size for 1-
parent evolutionary synthesis using various environmental factor models, and shows a
clear monotonic trend with respect to the environmental factors. As the environmental
factor models decrease, the rate of decrease in storage size of synthesized networks slows
accordingly and the rate of performance accuracy loss over generations is similarly slowed.
As such, the top row of Figure 7.1 shows that networks synthesized with environmental
factors of 50% (dark blue) has the most gradual decrease in performance accuracy and
storage size, while networks synthesized with environmental factors of 90% (light purple)
or 95% (dark purple) have the steepest decrease in performance accuracy and storage size
over successive generations.

One aspect to note in Figure 7.1 is the bottom plateau in performance accuracy at 10%
(most apparent in the 1-parent evolutionary synthesis plots); this is due to the MNIST
dataset [72] itself which consists of 10 classes of individual handwritten digits (i.e., digits 0
to 9), and the 10% performance accuracy is akin to random guessing. There is similarly a
bottom plateau in network storage size that is most easily seen in the trends for environ-
mental factors of 90% (light purple) and 95% (dark purple). This plateau corresponds to
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Figure 7.1: Performance accuracy (left) and storage size (right) with respect to computa-
tional time for 1-parent (top row) and 5-parent (bottom row) evolutionary synthesis using
various environmental factor models. Networks synthesized via 1-parent evolutionary syn-
thesis and subject to various environmental factors show a clear monotonic trend, while
networks synthesized via 5-parent evolutionary synthesis are difficult to interpret due to
the variability in the trends. Plots best viewed in colour.
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networks where there is only a single synapse in each convolution layer and, thus, cannot be
reduced any further. This network storage size reduction of approximately three orders of
magnitude is a result of using the LeNet-5 [34] architecture as the first generation ancestor
network, and there is no inherent limit in network reduction when using the evolutionary
deep intelligence approach.

The bottom row of Figure 7.1 shows the performance accuracy and storage size for
5-parent evolutionary synthesis using various environmental factor models. There is no-
ticeably more variability in both performance accuracy and storage size with the increased
number of parent networks, making the trends difficult to interpret; this is likely a result
of only one synthesized network being represented per generation in 5-parent evolutionary
synthesis. As well, there is inherent stochasticity present from the implementations from
the previous realizations of evolutionary deep intelligence [16–18] that was removed in this
thesis, and the difference in variability of the trends can be seen in comparison with the
next section.

7.3 Full Range of Environmental Resources

As stated in the previous section and at the end of Chapter 5, there is inherent stochasticity
from previous evolutionary deep intelligence works [16–18] that resulted in increasing levels
of noise in the efficiency trends as the number of parent networks used during evolutionary
synthesis increased. This variability (as shown in Figure 7.1) makes it difficult to draw
conclusions regarding the effects of the environmental resource model. As a result, the ad
hoc stochasticity was removed in the context of this thesis to allow for cleaner and more
easily interpretable trends in network efficiency over generations.

In this section, we revisit the environmental factor model by testing the full range
of models from 5% to 95% at 5% increments, and re-evaluating its effect in more stable
synthesis conditions. As the previous section found that the best network architectures
were synthesized using the lowest tested environmental factor models, we propose the full
range of environmental factor models evaluated to be:

RC
g ,Rs

g = {05, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95}%. (7.4)

For this experiment, the full range of environmental factor models is evaluated only for the
most complex case (i.e., 5-parent evolutionary synthesis) using the gene tagging structural
alignment from Chapter 6, and the environmental factor models were tested using a percent
of population parameter χ = 0.5, i.e., only clusters that exist within at least half of the
parent networks are synthesized.
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Figure 7.2: Performance accuracy (left) and storage size (right) with respect to computa-
tional time for 5-parent evolutionary synthesis using the full range of environmental factor
models. The top row shows the accuracy and storage size for environmental factor models
5% to 50%, and the bottom row shows the plots for environmental factor models 50%
to 95%. Environmental factor model 50% (dark blue) is shown on both sets of plots for
comparison purposes. Note that the trends have much less variability than those shown in
Figure 7.1. Plots best viewed in colour.
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Figure 7.2 shows the performance accuracy (left) and storage size (right) with respect
to computational time for 5-parent evolutionary synthesis using the full range of environ-
mental factor models. The top row shows the accuracy and storage size for environmental
factor models 5% to 50% and the bottom row shows the plots for environmental factor
models 50% to 95%, with environmental factor model 50% (dark blue) shown on both
sets of plots for comparison purposes. Note that the performance accuracy tends to reach
a minimum of 10%, which is equivalent to random guessing given the 10-class MNIST
dataset. Similarly, the storage size reaches a minimum of approximately 1 KB, which
corresponds to a network architecture with only one convolutional kernal at each layer.

Figure 7.2 shows clear monotonic trends similar to those seen when evaluating the
preliminary range of environmental factor models using 1-parent evolutionary synthesis
(see top row of Figure 7.1), indicating that removing the inherent stochasticity from past
evolutionary deep intelligence works [16–18] has correspondingly removed much of the
variability associated with increasing the number of parent networks during synthesis seen
in the previous section (as shown in the bottom row of Figure 7.1). This allows for an
easier interpretation of the performance accuracy and storage size trends with respect to
various environmental factor models.

While the shape of the plots for environmental factor models 50% to 95% are as expected
given the previous section, the trends for environmental factor models 5% to 50% present
more insight into how network performance changes over successive generations given more
gradual decreases in simulated environmental resources. For environmental factor models
5% to 25%, we see that there is little to no decrease in performance accuracy over the
generations (Figure 7.2, top left) while the storage size decreases (Figure 7.2, top right);
however, we do see steeper decreases in storage size with increasing environmental factor
models, indicating that decreasing the amount of available resources produces more efficient
network architectures.

Most interesting are environmental resource models 30%, and 35%, as these parame-
ters appear to allow for the synthesis of network architectures on the cusp of losing the
computational complexity required to model the problem space. In particular, note that
the networks synthesized at the latest generations have a performance accuracy of approx-
imately 70% to 80% while the corresponding storage size has decreased by two orders of
magnitude. This indicates that environmental resource models 30% and 35% can perhaps
best capture the optimal tradeoff between performance accuracy and storage size.

To better evaluate this tradeoff between accuracy and storage size, we can plot the
performance accuracy of the synthesized networks as a function of storage size. Figure 7.3
shows an overview of the network architectures synthesized using different environmental
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Figure 7.3: Performance accuracy as a function of storage size for 5-parent sexual evolu-
tionary synthesis using the full range of environmental factor models. Split over two plots
with environmental factor model 50% (dark blue) as overlap, environmental factor model
35% (light green, left) achieves the best accuracy and storage size trade-off. Plots best
viewed in colour.

factor models split over two plots, with the best networks closest to the top-left corner,
i.e., the highest accuracy for the lowest storage size. Environmental factor models 5% to
50% are shown on the left plot, and environmental factors models 50% to 95% are shown
on the right; environmental factor model 50% is shown on both plots in the same colour
(dark blue) to allow for easier comparison between the plots.

As speculated given Figure 7.2, environmental resource models 30% and 35% appear
to synthesize the best network architectures. By comparing the synthesized networks on
the two plots, the results shown in Figure 7.3 indicate that an environmental factor model
of 35% (light green on the left plot) achieves the best performance accuracy to storage size
trade-off, with networks closest to the top-left corner.

We can also observe that environmental factor models 30% and below maintain a higher
performance accuracy, but lose accuracy more quickly with decreasing storage size. This
results in a steep accuracy drop-off, and indicates that too low of an environmental factor
model (i.e., too slow a decrease in simulated resources) fails to produce networks that can
compensate for the loss in accuracy given decreasing storage sizes.
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7.4 Summary

In this chapter, we investigated the computational construct used to mimic natural selec-
tion via the availability and/or scarcity of simulated environmental resources. The effect
of these simulated resources was explored in two experiments. First, we evaluated a pre-
liminary range of environmental factor models (based on the environmental factor models
used in previous evolutionary deep intelligence works [16–18]) in the context of 1-parent
and 5-parent evolutionary synthesis, and show that the inherent stochasticity from previous
evolutionary deep intelligence works resulted in high variability trends 5-parent synthesis.
The effect of these simulated resources was then explored using a full range of environmen-
tal factor models in more stable synthesis conditions after the inherent stochasticity from
previous works was removed. The experiment evaluating the full range of environmental
factor models leveraged the gene tagging structural alignment from in Chapter 6, and were
evaluated using a percent of population parameter χ = 0.5.

The results of the full range of environmental factor models were evaluated in terms
of performance accuracy and storage size with respect to computational time, showing
clear trends of increasingly gradual loss of both accuracy and storage size with decreas-
ing environmental resource models. Most interestingly, the performance accuracy of the
synthesized models were plotted as a function of storage size, and environmental factor
model 35% was selected as the optimal environmental factor model with the corresponding
synthesized networks achieving the best performance accuracy to storage size trade-off.
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Chapter 8

Performance Comparison

In this chapter, we compare the networks synthesized via multi-parent evolutionary syn-
thesis using two benchmark datasets. Based on the experiments from previous chapters in
this thesis, we evaluate multi-parent evolutionary synthesis using the following:

• 5-parent evolutionary synthesis (Chapter 5)

• Networks synthesized with gene tagging (Chapter 6)

• Percent of population parameter χ as 0.5 (Chapter 6)

• Environmental factor model 35% (Chapter 7).

We evaluate the efficacy of multi-parent evolutionary synthesis using the Matlab version of
the LeNet [34] architecture (32-32-64-64-10). This is the architecture used in Chapters 5, 7,
and 6 due to its simplicity and ease of training, making it ideal for synthesizing multiple
networks over successive generations. We also evaluate MNIST using the LeNet5-Caffe
architecture (20-50-800-500), implemented in Matlab to the best of our abilities, and com-
pare against other state-of-the-art network efficiency methods. In the previous chapters,
we also trained using only a random 10% subset of the MNIST dataset to further minimize
training times; however, in this chapter, we train using the full MNIST dataset [72] and
CIFAR-10 dataset [73]. Experiments using the MNIST dataset and the CIFAR-10 dataset
are described in sections 8.1 and 8.2, respectively.
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Figure 8.1: Sample images from the MNIST hand-written digits dataset [72]. The MNIST
dataset contains 10 different digits with grey scale images being 28× 28 in size.

8.1 MNIST Dataset

In this section, we evaluate multi-parent evolutionary synthesis using the MNIST dataset [72]
of 10 different hand-written digits using two different network architectures: a version of
the LeNet architecture (as described in 8.1.1), and the LeNet5-Caffe architecture (8.1.2).
Note that both architectures are relatively simple with only four layers, and can train to
classify the MNIST dataset with over 99% accuracy.

8.1.1 LeNet

First, we evaluate the efficacy of multi-parent evolutionary synthesis using the Matlab
version of the LeNet [34] architecture (32-32-64-64-10). This is the architecture used in
Chapters 5, 7, and 6 due to its simplicity and ease of training, making it ideal for synthesiz-
ing multiple networks over successive generations. In the previous chapters, we also trained
using only a random 10% subset of the MNIST dataset to further minimize training times;
however, in this section, we train using the full MNIST dataset to achieve benchmark per-
formance accuracy, and evaluate the corresponding trends in performance accuracy and
storage size.

Figure 8.2 shows the performance accuracy (top left) and storage size (top right) as a
function of computational time for networks synthesized via 5-parent evolutionary synthesis
with an environmental factor of 35%. Both the performance accuracy and storage size
trends are reminiscent of those seen in the previous chapters of this thesis. Figure 8.2 also
presents the performance accuracy as a function of model storage size (bottom) for networks
synthesized via 5-parent evolutionary synthesis with an environmental factor of 35%. Note
that, as seen in previous chapters, we achieve a storage size reduction of approximately
two orders of magnitude before the performance accuracy rapidly drops off. By counting
the data points in Figure 8.2 (c), we can conclude that the accuracy steeply decreases after
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(a) MNIST performance accuracy. (b) MNIST network storage size.

(c) MNIST accuracy vs. storage size.

Figure 8.2: MNIST performance accuracy (top left) and storage size (top right) as a
function of computational time for networks synthesized via 5-parent evolutionary synthesis
with an environmental factor of 35% using the MNIST dataset [72]. The bottom row shows
performance accuracy as a function of storage size of networks synthesized
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Table 8.1: Experimental results for the LeNet architecture with the MNIST dataset. The
original architecture for this version of the LeNet is 32-32-64-64, and synthesized networks
via 5-parent evolutionary synthesis at different generations are shown for comparison.

Method w 6=0
|W |% Error% Architecture

Gen 0 (Ancestor) 100.0 0.55 32-32-64-64
Gen 7 (Env 35%) 1.31 1.11 17-20-32-43
Gen 8 (Env 35%) 0.59 2.71 17-23-34-42
Gen 9 (Env 35%) 0.37 3.22 18-19-26-36
Gen 10 (Env 35%) 0.23 4.76 13-17-25-31

generation 10, indicating that the optimal network architectures are synthesized at, or just
before, generation 10.

While the trends in Figure 8.2 are as expected, Table 8.1 presents a closer look into the
synthesized network architectures. Table 8.1 shows the experimental results for the LeNet
architecture with the MNIST dataset, and compares the networks synthesized via 5-parent
evolutionary synthesis at generations 7, 8, 9, and 10 to the original fully-trained ancestor
network (generation 0). We can clearly see the trade-off between performance accuracy
and network efficiency; for example, the network at generation 7 is approximately 76.3×
more efficient than the ancestor network with an error of 1.11%, while the network at
generation 10 is approximately 434.8× more efficient than the ancestor network, but has
an error of 4.76%.

8.1.2 LeNet5-Caffe

Here, we assess the efficacy of multi-parent evolutionary synthesis using the LeNet5-Caffe
network architecture by performing a comparative analysis of the proposed method against
eight state-of-the-art methods for achieving efficient DNNs [21,49,51–53,68]. The choice of
leveraging the LeNet5-Caffe network architecture with MNIST as a means of benchmarking
across different methods is motivated by this particular architecture-dataset configuration
being the most commonly used across literature for cross-method comparisons.

A number of observations can be made from Table 8.2, which shows both the percentage
of non-zero weights within the efficient DNNs produced by the eight different tested meth-
ods, as well as the corresponding test error. First of all, while the proposed multi-parent
evolutionary synthesis method does not outperform the other state-of-the-art methods, it is
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Table 8.2: Experimental results for the LeNet5-Caffe architecture with the MNIST dataset.
Some of the results were derived from the original authors of [53] and [68].

Method w 6=0
|W |% Error%

DC [21] 8.0 0.7
DNS [49] 0.9 0.9
SWS [51] 0.5 1.0
Sparse VD [52] 0.7 1.0
BC-GNJ [53] 0.9 1.0
BC-GHS [53] 0.6 1.0
StressedNets#1 [68] 0.8 1.2
StressedNets#2 [68] 0.3 1.6
Asexual (Gen 9) [17] 3.1 1.2
Proposed (Gen 5) 1.9 1.3

regardless able to produce a very efficient neural network architecture with just 1.9% non-
zero weights while still achieving a test error of 1.3%. Second, it is interesting to observe
that, when compared to deep compression [21], the DNN produced using the proposed
multi-parent evolutionary synthesis method is able to achieve significantly fewer non-zero
weights (4× fewer than deep compression) with a trade-off of 0.6% increase in test error.
This is particularly worth noting given that deep compression results in network architec-
tures with only synapse sparsity while the proposed method results in architectures with
both synaptic cluster sparsity and synapse sparsity. Third, it is interesting to observe that,
when compared to the asexual evolutionary synthesis approach [17], the proposed m-parent
sexual evolutionary synthesis method is able to achieve additional reductions in non-zero
weights (1.6× fewer than the asexual approach) at a comparable test error, indicating the
merit in leveraging multiple parents during the evolutionary synthesis process proposed in
this thesis.

8.2 CIFAR-10 Dataset

In this section, we evaluate the efficacy of the multi-parent evolutionary synthesis method
using the CIFAR-10 dataset [73], an object classification dataset containing 10 different
classes, and we leverage a version of the LeNet architecture (as described at the beginning
of this chapter) for this experiment. Note that while this architecture is insufficiently
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Figure 8.3: Sample images from the CIFAR-10 object classification dataset [73]. The
CIFAR-10 dataset contains 10 different classes with colour images being 32× 32 in size.

Figure 8.4: Performance accuracy (left) and storage size (right) as a function of computa-
tion time for networks synthesized via 5-parent evolutionary synthesis using the CIFAR-10
dataset [73]. Environmental factor models of 25% (dark blue), 30% (light blue), and 35%
(green) were evaluated. Plots best viewed in colour.

complex to achieve state-of-the-art performance on the CIFAR-10 dataset, we can still
observe trends in both the performance accuracy and model storage size over successive
generations of multi-parent evolutionary synthesis.

Figure 8.4 shows the performance accuracy (left) and the model storage size (right) of
synthesized networks as a function of computation time. The networks were synthesized
via 5-parent evolutionary synthesis on the CIFAR-10 dataset using environmental factor
models of 25% (dark blue), 30% (light blue), and 35% (green). The original environmental
factor model of 35% (green) proved to be too aggressive given the more complex CIFAR-10
dataset, showing a rapid drop in performance accuracy and storage size in one generation.
Thus, less aggressive environmental factor models (i.e., 25% and 30%) were also evaluated.

91



Figure 8.5: Performance accuracy as a function of storage size of networks synthesized via
5-parent evolutionary synthesis using the CIFAR-10 dataset [73]. Environmental factor
models of 25% (dark blue), 30% (light blue), and 35% (green) were evaluated. Plots best
viewed in colour.

Figure 8.5 shows the performance accuracy as a function of storage size for networks
synthesized using 5-parent evolutionary synthesis on the CIFAR-10 dataset. As expected
given Figure 8.4, an environmental factor model of 35% (green) is too aggressive given
this dataset, and fails to produce any network architectures near the optimal trade-off
between performance accuracy and storage size (represented by top-left corner of the plot).
Environmental factor models of 25% (dark blue) and 30% (light blue), however, allow
for the synthesis of networks that maintain accuracy while reducing storage size, with
environmental factor model 30% synthesizing slightly better networks. In both cases, there
is only a model storage size reduction of approximately one order of magnitude before the
performance accuracy begins to drop off as well.

Table 8.3 shows the experimental results for the LeNet architecture with the CIFAR-10
dataset using the matconvnet version of the LeNet architecture. The synthesized networks
via 5-parent evolutionary synthesis at generation 6 (environmental factor 30%) and gen-
eration 9 (environmental factor 25%) are shown for comparison. Note that we can see to
effects of a lower environmental factor model, as the network synthesized using environ-
mental factor 25% is at a later generation (generation 9) and is approximately 11.1× more
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Table 8.3: Experimental results for the LeNet architecture with the CIFAR-10 dataset.
The original architecture for this version of the LeNet is 32-32-64-64, and synthesized
networks via 5-parent evolutionary synthesis at generation 6 (environmental factor 30%)
and generation 9 (environmental factor 25%) are shown for comparison.

Method w 6=0
|W |% Error% Architecture

Gen 0 (Ancestor) 100.0 22.65 32-32-64-64
Gen 9 (Env 25%) 9.0 24.29 31-23-59-49
Gen 6 (Env 30%) 13.5 23.01 29-30-55-54

efficient than the ancestor network, while the network synthesized using environmental
factor 30% is at a relatively earlier generation (generation 6) and is approximately 7.4×
more efficient. Similar to the LeNet5-Caffe experiment, this implies that a lower environ-
mental factor model allows for more gradual decreases in accuracy and storage size, and
can produce overall more efficient networks.
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Chapter 9

Conclusion

In this thesis, we present a general formulation of the evolutionary deep intelligence frame-
work and investigate the use of multiple parents during the evolutionary synthesis process,
in addition to exploring the computational constructs used to mimic heredity and natural
selection, for the purposes of highly efficient deep neural networks.

9.1 Summary of Contributions

9.1.1 m-Parent Evolutionary Synthesis

Chapter 3 presented a general framework for the evolutionary synthesis of new network
architectures given existing neural networks. Abstracting away from the low-level design
of neural networks, the framework formulates a network architecture as a set of possible
neurons and a set of possible synapses, with associated weights to denote the strength of
synaptic connectivity. Thus, we can leverage the computational construct used to mimic
heredity by encoding a dependency on existing networks into the synthesis probability of
a new network architecture. We can also incorporate the computational construct used to
mimic natural selection by similarly encoding a dependency on an environmental factor
model into the synthesis probability. By imposing constraints on this general framework,
we showed that the cases of asexual evolutionary synthesis, 2-parent sexual evolutionary
synthesis, and multi-parent (i.e., m-parent) evolutionary synthesis can all be realized.

The efficacy of multi-parent evolutionary synthesis was shown in Chapter 4 and Chap-
ter 5 via two experiments. The first experiment (Chapter 4) compared asexual evolutionary
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synthesis with 2-parent sexual evolutionary synthesis, and introduced a basic mating func-
tion for combining two parent networks. The second experiment (Chapter 5) extended
this mating function to the general m-parent case, and assessed multi-parent evolutionary
synthesis in the context of varying population sizes. Chapter 5 also introduced a more flex-
ible mating policy relative to Chapter 4 via the use of a percent of population parameter
χ. The statistical significance of the results was assessed in Chapter 4 and Chapter 5 via
the multivariate analysis of variance (MANOVA) method, and both experiments indicated
that incorporating multiple parent networks during the evolutionary synthesis process ac-
celerated the rate at which successive offspring networks increased in efficiency.

9.1.2 Gene Tagging

Chapter 6 presented a gene tagging system to investigate the effect of architectural align-
ment and mismatch during evolutionary synthesis, and was evaluated using 5-parent evo-
lutionary synthesis with a range of environmental factor models. The impact of χ was
also assessed using both 3-parent and 5-parent evolutionary synthesis, and results indi-
cated that the optimal percent of population χ is one that enforces that only architectural
clusters that exist in some, but not all, parent networks are synthesized in an offspring net-
work. While generally comparable, a slight drop in performance for networks synthesized
with gene tagging relative to networks synthesized without gene tagging raised questions
regarding whether gene tagging produced networks with less architectural variability and,
more importantly, how the architectural similarity of neural networks can be assessed in a
meaningful and useful way.

Thus, Chapter 6 also presented a brief study exploring the quantification of network
architectural similarity via the percentage overlap of architectural clusters. Leveraging the
gene tagging system introduced in this chapter, percentage overlap is indicative of net-
work population diversity as low overlap would correspond to relatively high architectural
variability among the networks being compared. Results show that networks synthesized
with gene tagging tend to have higher percentage overlap, and imply that the use of gene
tagging can potentially restrict the exploration of the search space of efficient network
architectures during evolutionary synthesis.

9.1.3 Role of Environmental Resources

Chapter 7 presented an extensive analysis of the environmental resource model, the com-
putational construct used to mimic natural selection via the simulated availability of com-
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putational resources, and its effects during the evolutionary synthesis process. First, a pre-
liminary range of environmental factor models based on previously used values in literature
was evaluated in the context of asexual and 5-parent evolutionary synthesis to demonstrate
the stochasticity inherent in previous evolutionary deep intelligence works. As the best net-
works tended to be synthesized using the lowest environmental factor models tested, a full
range of environmental factor models were then revisited. Both experiments showed clear
trends of increasingly gradual drops in performance accuracy and model storage size with
decreasing environmental resource models, and an environmental factor model of 35% was
selected as the optimal parameter to achieve an effective performance accuracy to storage
size trade-off.

9.2 Limitations

The main limitation of this thesis is the up-front computational costs associated with
synthesizing entire populations of neural networks over successive generations. As multi-
parent evolutionary synthesis requires a minimum of m networks to be synthesized at each
generation, increasing the number of parent networks used to synthesized offspring net-
works rapidly becomes too computationally costly to be feasible. In this thesis, we leverage
a relatively simple network architecture (32-32-64-64-10) [34] for our exploratory experi-
ments and set m = 5 to be the upper limit of parent networks used during evolutionary
synthesis to keep the computational cost of repeated experiments tractable. Obviously,
this also raises questions of scalability given the simplicity of these neural networks. While
not presented in this thesis, recent evolutionary deep intelligence work [68] has applied the
asexual evolutionary synthesis method to AlexNet [5] for CIFAR-10 image classification
and YOLOv2 [77] for object detection, indicating that multi-parent evolutionary synthesis
should be viable for smaller network architectures meant to be run on edge devices.

As seen in Chapter 8, networks synthesized via the multi-parent evolutionary synthesis
process show notable increases in network efficiency for the matconvnet implementation of
the LeNet architecture [34] when trained on both the MNIST and CIFAR-10 datasets. We
also evaluate (to the best of our ability) the efficacy of multi-parent evolutionary synthesis
using the LeNet5-Caffe network architecture, and compare against seven state-of-the-art
methods for achieving efficient DNNs [21, 49, 51–53, 68]. Note that while [21, 49, 51–53, 68]
used the Caffe implementation of this network directly, a Matlab version was implemented
for comparison in this thesis as closely as possible, but fails to leverage some of the opti-
mization intrinsic to the Caffe implementation. As a result, a version of the LeNet5-Caffe
architecture is used for comparison in this section. While the proposed method performs
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somewhat comparably to (but fails to outperform) state-of-the-art algorithms when ap-
plied to the LeNet5-Caffe network architecture, the performance of StressedNets [68] is
promising, as this is a more recent realization of asexual evolutionary deep intelligence.
The modifications that boost the performance of StressedNets are complementary to the
contributions of this thesis, and it is likely that the combination of these modifications
with multi-parent evolutionary synthesis can produce larger gains in architecture efficiency
than the asexual StressedNets case.

The last limitation of multi-parent evolutionary synthesis process is that it is somewhat
sensitive to how aggressive the environmental factor model is. While an environmental
factor models of 35% was selected as optimal in Chapter 7 and used in section 8.1, it
proved to be too aggressive in combination with the CIFAR-10 dataset. As a result,
less aggressive environmental factor models (i.e., 25% and 30%) were also evaluated, and
successfully synthesized networks with notable gains in network efficiency with a less than
2% drop in accuracy. However, this implies that an appropriate environmental factor model
may need to be selected for each network and dataset combination.

Limitations in parameter sensitivity and up-front computational costs aside, the ex-
periments in this thesis allow for a deeper understanding of the evolutionary synthesis
framework via the exploration of the computation constructs used to mimic heredity and
natural selection. In addition, some key insights into the implications of structural similar-
ity between network architectures and its impact on navigating the search space of efficient
network architectures are presented.

9.3 Future Work

One key area of future work is the further investigation into the quantification of architec-
tural similarity between networks. The percentage overlap metric proposed in Chapter 6
is rudimentary, and more established quantities of information can be leveraged to better
compare different network architectures both within and outside the scope of evolutionary
deep intelligence. In particular, metrics inspired by information theory will be explored
to simultaneously encourage minimizing overlapping performance strengths between net-
works (mutual information) and the better compaction of individual network architectures
(self-information). With respect to this thesis, a better quantification of architectural sim-
ilarity can hopefully lead to the development of a custom similarity metric for optimal
architectural similarity during multi-parent evolutionary synthesis.

A potential application of the architectural similarity metric is the development of a
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parent network selection scheme to better determine which networks should produce off-
spring networks at each generation. Through this, we can incorporate the idea of “survival
of the fittest” for parent network selection given a population of networks. In addition to
selecting which candidate parent networks will mate to produce offspring networks, we can
leverage different selection criteria to explore how best to combine the candidate parent
networks to optimize population performance and diversity. The development of such a set
of criteria can allow for the selection of candidate networks purely on performance and/or
efficiency and combining the “fittest” networks, as well as investigating less conventional
combinations of candidates (e.g., “fittest” network with a relatively weak network) to study
its effect on network population over generations.

Given that populations of neural networks are synthesized at each generation of the
evolutionary synthesis process, a natural extension of this work would be to investigate the
combined performance of multiple neural networks (e.g., an ensemble). In combination with
the other future work, the impact of structural similarity and selection criteria should be
systematically investigated by assessing the inference accuracy, computational complexity,
and domain generalizability of both individual networks and ensembles of networks. While
predicting a networks performance accuracy prior to training has proved to be one of
the largest challenges in deep learning, studying the impact of architectural structure on
network performance can potentially allow for the development of predictive performance
metrics in the future.

Lastly, we present a preliminary experiment investigating the impact of architectural
cluster inheritance on number of required training epochs both with and without gene tag-
ging. To better understand how performance accuracy can be recovered through training,
each network was synthesized at a generation where performance accuracy was just begin-
ning to drop off. In the gene tagging case, the networks were synthesized at generation 13
via 5-parent evolutionary synthesis (environmental factor model 35%, χ = 0.5); in the no
gene tagging case, the networks were synthesized at generation 8 via 5-parent evolutionary
synthesis (environmental factor model 35%, χ = 0.5).

Figure 9.1 shows the validation accuracy as a function of training epochs for networks
synthesized with gene tagging (dark and light blue) and without gene tagging (dark red
and pink). In particular, Figure 9.1 compares the validation accuracy at each training
epoch for networks synthesized using inherited starting weights from the corresponding
architectural clusters in the parent networks (dark blue, dark red) against networks that
inherit the architectural cluster structure, but begin training with randomly initialized
weights (light blue, pink).

Note that there are clear advantages in initializing the synthesized architecture with
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Figure 9.1: Validation accuracy as a function of training epochs for network architectures
synthesized with gene tagging (dark and light blue) and without gene tagging (dark red
and pink) with inherited starting weights (dark blue, dark red) and randomly initialized
weights (light blue, pink).

the corresponding architectural cluster weights from the parent networks, as the networks
initialized with inherited weights recover most of the validation accuracy within the first
ten training epochs. Conversely, the networks that begin training with randomly initialized
weights do not recover most of the validation accuracy until after approximately 50 training
epochs. Interestingly enough, the difference in recovering validation accuracy over training
epochs between networks initialized using inherited weights and networks with randomly
initialized weights is more pronounced in the gene tagging case. As such, we speculate
that there are potentially deeper implications to structural alignment during evolutionary
synthesis that may result in network architectures that are more sensitive to training
conditions, and merits further investigation.

While the proposed future work largely focuses on understanding the effects of struc-
tural similarity of network architectures, the aim of this research is to enable a deeper
understanding of neural network architectures and the corresponding impact on model
performance. This deeper understanding can lead to improved network transparency and
interpretability. By unraveling the complexity behind understanding and improving deep
neural network architectures, we can develop better and more systematic approaches to cre-
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ating suitable deep neural networks for new and/or data-limited applications, and develop
more guided methods for boosting inference performance using ensembles of networks.
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[8] Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš Burget, and Jan Černockỳ.
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