

Accepted Manuscript

Fine-Grained Data Access Control with Attribute-Hiding Policy for
Cloud-Based IoT

Jialu Hao, Cheng Huang, Jianbing Ni, Hong Rong, Ming Xian,
Xuemin (Sherman) Shen

PII: S1389-1286(19)30179-3
DOI: https://doi.org/10.1016/j.comnet.2019.02.008
Reference: COMPNW 6735

To appear in: Computer Networks

Received date: 30 June 2018
Revised date: 6 December 2018
Accepted date: 14 February 2019

Please cite this article as: Jialu Hao, Cheng Huang, Jianbing Ni, Hong Rong, Ming Xian,
Xuemin (Sherman) Shen, Fine-Grained Data Access Control with Attribute-Hiding Policy for Cloud-
Based IoT, Computer Networks (2019), doi: https://doi.org/10.1016/j.comnet.2019.02.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.comnet.2019.02.008
https://doi.org/10.1016/j.comnet.2019.02.008
Jordan Hale
The final publication is available at Elsevier via https://doi.org/10.1016/j.comnet.2019.02.008. © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/�

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fine-Grained Data Access Control with
Attribute-Hiding Policy for Cloud-Based IoT

Jialu Haoa,∗, Cheng Huangb, Jianbing Nib, Hong Ronga, Ming Xiana, Xuemin
(Sherman) Shenb

aCollege of Electronic Science and Technology, National University of Defense Technology,
Changsha, 410073, PR China

bDepartment of Electrical and Computer Engineering, University of Waterloo, Waterloo,
ON N2L 3G1, Canada

Abstract

Ciphertext-policy attribute-based encryption (CP-ABE) is a promising approach

to achieve fine-grained access control over the outsourced data in Internet of

Things (IoT). However, in the existing CP-ABE schemes, the access policy is

either appended to the ciphertext explicitly or only partially hidden against pub-

lic visibility, which results in privacy leakage of the underlying ciphertext and

potential recipients. In this paper, we propose a fine-grained data access control

scheme supporting expressive access policy with fully attribute hidden for cloud-

based IoT. Specifically, the attribute information is fully hidden in access policy

by using randomizable technique, and a fuzzy attribute positioning mechanism

based on garbled Bloom filter is developed to help the authorized recipients

locate their attributes efficiently and decrypt the ciphertext successfully. Secu-

rity analysis and performance evaluation demonstrate that the proposed scheme

achieves effective policy privacy preservation with low storage and computation

overhead. As a result, no valuable attribute information in the access policy

will be disclosed to the unauthorized recipients.

Keywords: Access control, attribute-based encryption, attribute hiding,

policy privacy, cloud computing, Internet of Things

∗Corresponding author
Email addresses: jialu.hao@uwaterloo.ca (Jialu Hao), cheng.huang@uwaterloo.ca

(Cheng Huang), jianbing.ni@uwaterloo.ca (Jianbing Ni), r.hong nudt@hotmail.com (Hong
Rong), qwertmingx@sina.com (Ming Xian), sshen@uwaterloo.ca (Xuemin (Sherman) Shen)

Preprint submitted to Computer Networks February 15, 2019

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

Internet of Things (IoT) is the network of physical “things”, such as smart

phones, sensors, and wearable devices, that enables these things to connect

and exchange data, creating opportunities to improve our daily lives in different

domains including electronic healthcare, smart home and transportation [1, 2, 3].5

Almost 50 billion IoT devices will be connected together by 2020 [4], and they

will continuously produce large amounts of data which should be stored and

processed in a well-organized way. In such situation, the traditional local data

management is not scalable for large data volume [5]. The cloud computing

technology, which provides plentiful storage and computation resources, has10

been widely used to maintain and manage these IoT-driven data[6, 7].

However, the data owners lose the physical control over their data after

outsourcing them to the cloud [8]. The frequent data leakage incidents [9, 10, 11]

undermine trust in the cloud service provider, which make data privacy and

security be a serious concern for data owners [12, 13]. Although traditional15

encryption technology can be used to protect data confidentiality, it is relatively

inefficient to serve the needs of flexible data sharing. Thus, the novel attribute-

based encryption (ABE) [14] is applied to achieve fine-grained access control

and preserve data confidentiality simultaneously. Especially, ciphertext-policy

attribute-based encryption (CP-ABE) [15] enables the data owners to encrypt20

their data under specified access policy over a set of attributes, and the data

recipients are allowed to decrypt the ciphertext only if their attributes satisfy

the access policy associated with the ciphertext. However, in the conventional

CP-ABE schemes [15, 16], the access policy is explicitly appended to the data

ciphertext, thus anyone who obtains the ciphertext, including the cloud service25

provider, may be able to infer some secret information about the data content or

the privileged data recipients from the policy. For example, to share the medical

records with the doctors or nurses in the Cardiology Department of Hospital A or

B, a patient encrypts them under the access policy {[Occupation: (“Doctor”

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

OR “Nurse”)] AND [Department: (“Cardiology”)] AND [Hospital: (“A” OR30

“B”)]}, and uploads the encrypted data including the policy explicitly to the

cloud server. In such situation, anyone who obtains the ciphertext infers that

the data owner may suffer from a heart problem, although they do not obtain the

plaintext. Even worse, the cloud service provider may conclude that the users

who request these data regularly are working at the Cardiology Department of35

Hospital A or B. Obviously, such information disclosures are not expected by

both the data owners and recipients, which makes it necessary to preserve the

privacy of access policy in certain applications, just like this sensitive electronic

healthcare system.

To solve the privacy leakage problem caused by the public access policy, a40

direct solution is to hide the attribute information in the policy. However, the

simple approach makes the decryption infeasible for the authorized recipients,

since they do not know which attributes should be used for decryption. Some

proposed schemes [17, 18, 19, 20, 21, 22] consider a trade-off between the policy

privacy and the feasibility, in which the attribute is split into two parts: name45

and value. Instead of hiding the whole attribute, only the attribute value is

concealed in the access policy. Though these schemes can protect the policy

privacy to some extent, the attribute name itself could still reveal some valuable

information. On the other hand, inner-product predicate encryption (IPE) [23]

can be applied to construct a CP-ABE scheme with fully hidden policy, but the50

blow up in size caused by the access structure transformation makes it extremely

inefficient [21].

Recently, Yang et al. [24] put forward an innovative idea of removing the

attribute mapping function ρ from the access policy (M,ρ), which is in the form

of linear secret sharing scheme (LSSS). Without sending ρ directly, they utilize55

a Bloom filter structure [25, 26] to help the recipients to locate their attributes

to the access matrix M precisely. However, their scheme is not secure against

the dictionary attacks, which means anyone can query any attribute from the

Bloom filter to confirm whether it is in the access policy, and further recover

the whole access policy through multiple trials.60

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In this paper, we handle the above issue of policy privacy preservation by

hiding the whole attribute. Based on the observation in [24], since the attribute

mapping function ρ reveals the relationship between the row and attribute in

the expressive LSSS-based access policy (M,ρ), removing it can effectively hide

the attribute information. However, how to recover the relationship between65

their attributes and the access matrix M for the authorized recipients, while re-

sisting dictionary attacks, is a challenging problem. In our scheme, we propose

a fuzzy attribute positioning mechanism based on garbled Bloom filter to help

the recipients query the row numbers for their attributes, in which only autho-

rized recipients are allowed to verify the validity of the results through successful70

decryption, while for unauthorized recipients no valuable attribute privacy can

be compromised. Thus, we can realize fine-grained data access control on the

outsourced data, and protect both data confidentiality and policy privacy.

Our contributions are summarized as follows.

1. We propose a fine-grained attribute-based data access control scheme75

with attribute-hiding policy for cloud-based IoT. Different from existing

schemes, our scheme supports expressive access policy and the attribute

information is fully hidden.

2. We design a fuzzy attribute positioning mechanism based on garbled

Bloom filter to assist the authorized recipients to locate the attributes80

effectively and decrypt the ciphertext successfully, and prevent the unau-

thorized recipients deducing any valuable attribute information from the

ciphertext.

3. We analyze the security and efficiency of our proposed scheme, and the fur-

ther simulations demonstrate that the scheme can achieve effective policy85

privacy preservation with low storage and computation overhead.

The remainder of this paper is organized as follows. We first introduce some

related work in Section 2 and review several preliminary concepts in Section

3. The system model, security model and design goals are presented in Section

4, followed by the detailed construction of our proposed scheme in Section 5.90

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Finally, we analyze the security and evaluate the performance in Section 6 and

give the conclusion in Section 7.

2. Related work

The notion of attribute-based encryption (ABE) was first introduced by Sa-

hai and Waters [14], which later develops into two forms: ciphertext-policy ABE95

(CP-ABE) [15] and key-policy ABE (KP-ABE) [27]. Since CP-ABE enables the

data owners to specify fine-grained access policy for their data, it soon became

popular in the outsourced data access control systems. In a CP-ABE system,

the data owners encrypt the data under the access policy on the system at-

tribute universe, and the data recipients request the secret key associated with100

their attributes from the attribute authority. If and only if the access policy of

the ciphertext is satisfied by the recipient’s attribute set, can it be decrypted

successfully. Generally, according to the expression form, the access policy is

divided into three categories: AND-based [17], tree-based [27] and LSSS-based

[15]. The AND-based policy is limited in expressiveness and the tree-based pol-105

icy is a more expressive one that supports the gates of AND, OR, and m of n

threshold. In addition, an LSSS-based access policy is often considered as the

most expressive representation, since any monotonic boolean formula can be

converted into this type[15].

Currently, many ABE schemes with some new promising functionalities110

which make them more practical have been proposed, such as revocable ABE

[28], lightweight ABE [29], outsourcing ABE [30] and large universe ABE [16].

However, most of the schemes expose the access policy in clear text, which may

incur privacy leakage, thus the research on anonymity of ABE is also necessary.

In an anonymous ABE, the access policy is hidden such that the unauthorized115

recipients cannot presume what access policy is formulated by the data own-

ers. The concept of partially hidden access policy was introduced into ABE

by Nishide et al. [17] to achieve anonymity, in which the attribute is split into

an attribute name and multiple attribute values, and only the attribute values

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

are concealed. Based on the scheme in [17], some works [18, 19, 20] improved120

the construction in terms of efficiency and security, but they are still restricted

with the less expressive AND-based access policy. Later, Lai et al. [21] put

forward an anonymous CP-ABE scheme in the composite order groups, which

partially hides the LSSS-based access policy. With the same form of the access

policy, Cui et al. [22, 31] proposed a more efficient scheme in the prime order125

groups on the basis of the large universe construction in [16], where opportunis-

tic decryption tests are required for the authorized recipients. It might also be

noted that all the above schemes focus on the partially hidden access policy,

but the public attribute names may also lead to the issue of privacy leakage.

Some other schemes [23, 32] based on the inner-product predicate encryption130

and hidden vector encryption are proposed to protect the policy privacy, but

the efficiency and expressiveness are restricted. Table 1 shows the comparisons

of some existing schemes in CP-ABE to preserve the policy privacy.

Table 1: Comparisons of CP-ABE schemes with policy hidden

Schemes Policy Hidden Access Policy Group Order Decryption Test

Basic CP-ABE [15] no LSSS prime N/A

Nishide et al. [17] yes (disclosed attribute name) AND gates with multi-values prime deterministic1

Li et al. [18] yes (disclosed attribute name) AND gates with multi-values prime deterministic

Lai et al. [19] yes (disclosed attribute name) AND gates with multi-values composite deterministic

Zhang et al. [20] yes (disclosed attribute name) AND gates with multi-values prime deterministic

Lai et al. [21] yes (disclosed attribute name) LSSS with multi-values composite opportunistic2

Cui et al. [22] yes (disclosed attribute name) LSSS with multi-values prime opportunistic

Michalevsky et al. [23] yes (whole policy hidden) Inner product predicates prime opportunistic

Khan et al. [32] yes (whole policy hidden) LSSS with hidden vectors prime opportunistic

Yang et al. [24] no LSSS prime N/A

Ours yes (whole attribute hidden) LSSS prime opportunistic

1 “deterministic” means that the number of decryption test is fixed, usually is one.

2 “opportunistic” means that multiple tests may be required before finding the attributes for

successful decryption.

Recently, Yang et al. [24] proposed a creative scheme to fully hide the

attribute information by removing the attribute mapping function ρ from the135

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

access policy, but their scheme is vulnerable against the dictionary attacks. In

their scheme, anyone is allowed to query any attribute from the attribute Bloom

filter to reveal whether it is in the access matrix and further recover the whole

access policy through multiple tests. To resist this dictionary attack, we design

a fuzzy attribute positioning mechanism, in which only authorized recipients140

can obtain the attribute information by successful decryption.

3. Preliminaries

In this section, we review some technical preliminaries related to our work.

3.1. Access Structure

Definition 1. (Access Structure [16]) An access structure on an attribute uni-145

verse U is a collection A of non-empty sets of attributes. The sets in A are called

the authorized sets. In addition, an access structure which satisfies the following

requirement is called monotone: if B ∈ A and B ⊆ C, then C ∈ A.

In the CP-ABE scheme, only the user who has an authorized attribute set is

allowed to decrypt the ciphertext. In this paper, we only consider the monotone150

access structure, and the concept of access structure is also referred to as access

policy in our context.

3.2. Linear Secret Sharing Scheme

We apply the linear secret sharing scheme to represent the access policy in

our scheme.155

Definition 2. (LSSS [16]) Let p be a prime. A linear secret sharing scheme
∏

with a secret in Zp according to the access policy over an attribute universe U

is called linear if:

1. The shares of a secret s ∈ Zp assigned to each attribute constitute a vector

over Zp.160

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2. For an access policy over U , there exist an l× n share-generating matrix,

and an attribute mapping function ρ labeling each row in M with an at-

tribute in U , which satisfy that:

With a column vector ~z = (s, z2, z3, . . . , zn), where z2, z3, . . . , zn are ran-

dom values in Zp, M~z is the vector formed by the l shares of the secret s165

based on
∏

, and (M~z)j is the share assigned to the attribute ρ(j). The

pair of (M,ρ) is referred to as access policy.

The linear secret sharing scheme satisfies reconstruction and security re-

quirements. Specifically, if S is an authorized set for the policy (M,ρ), there

exist constants {ωi ∈ Zp}i∈I such that
∑
i∈I(ωiMi) = (1, 0, . . . , 0), where I170

denotes the set of rows for which the corresponding attributes belong to S, i.e.

I = {i|ρ(i) ∈ S ∩ i ∈ [l]1}. Obviously, the secret s can be recovered through
∑
i∈I(ωiλi) = s. However, no such constant exists for any unauthorized set.

3.3. Bloom Filter

Bloom filter [25] is a space-efficient data structure for probabilistic set mem-175

bership querying. A Bloom filter includes an m-bit array to encode a set A

including at most n elements, and a set of independent hash functions H, where

each hi ∈ H maps an element to a position index in [m] uniformly. In general,

(m,n, k,H)-BF is used to represent a Bloom filter with parameters (m,n, k,H),

BFA denotes a Bloom filter encoding the set A, and BFA[i] denotes the value180

in the ith position of BFA.

At first, each bit in the array is 0. To add an element x ∈ A to the filter,

x is hashed by k hash functions respectively to generate k position indexes.

Then, for each i ∈ [k], set BFA[hi(x)] = 1. To query whether an element y

belongs to the set A, y is also hashed by the hash functions, and if there exists185

BFA[hj(y)] = 0, then y /∈ A. Otherwise, y ∈ A with a high probability. A false

positive exists in the Bloom filter, which means it is possible that y /∈ A but all

1For simplicity, in our context we define [n]
def.

===== {1, 2, ..., n} for n ∈ N.

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

BFA[hj(y)] equal to 1. Given the size of A, the probability of false positive can

be adequately small by selecting m and k optimally.

The garbled Bloom filter is proposed by Dong et al. [26] to deal with the190

issue of private set intersection. Instead of using an array of bits, an array of η-

bit strings is applied in the garbled Bloom filter. To add an element x ∈ A to the

filter, it is split into k shares which will be stored at the positions {hi(x)}i∈[k].

To query an element y, if the value recovered from the shares of the k positions

{hi(y)}i∈[k] is equal to y, then y ∈ A, otherwise y is not in A.195

4. System Model and Design Goals

4.1. System Model

Four entities are included in our system, namely data owners, data recipients,

attribute authority and cloud server, as shown in Fig. 1.

Cloud Server

Data Owners Data RecipientsAttribute Authority

PK SK

Cip
he
rte
xt Ciphertext

Figure 1: System model

• Data owners To save the local storage and computing cost, the data200

owners would like to outsource the data generated by the IoT devices

to the cloud. Meanwhile, fine-grained access control over the outsourced

data is desired by the owners, thus they will use the CP-ABE scheme to

encrypt the data before uploading them to the cloud.

• Data recipients The data recipients originate data requests to the cloud205

server and receive the ciphertext. Only authorized recipients possessing

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

attributes that satisfy the access policy of the data, can decrypt the ci-

phertext successfully. While for unauthorized recipients, they can neither

recover the plaintext, nor guess the attributes involved in the access policy.

• Attribute authority The attribute authority manages the system at-210

tribute universe and distributes the attributes and corresponding private

keys to the recipients according to their roles or credentials. In addition,

the system public key is also generated and published by the attribute

authority.

• Cloud server The cloud server is considered to have powerful storage215

and computing resources and is always online to provide services. It helps

the data owners store and process their data, responses the requests from

the recipients, and distributes the corresponding data to them. Note that,

in our system, the data access control is embedded into the decryption,

but not implemented by the cloud server.220

4.2. Security Model

In our system, the attribute authority is regarded as a entirely credible party

and the data owners are honest as well. Since the cloud server is in different trust

domain with the data owners, it is assumed to be semi-honest, which means it is

interested in the data privacy and is not reliable to make the access decisions of225

the data, but will execute the operations requested by the system users faithfully.

The recipients are divided into two kinds: authorized and unauthorized. The

authorized recipients are allowed to obtain the data content, and we assume that

they will not leak the data information actively. The unauthorized recipients

are the potential attackers of the system. They may collude with each other to230

attempt to decrypt the ciphertext which cannot be accessed individually, also

they are interested in the policy privacy of the ciphertext.

Note that, the dictionary attack is considered in our scheme, which means

the attribute universe is public, such that the unauthorized recipients, even the

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

cloud server, may conspire to compromise the hidden attribute information of235

the access policy by testing all the system attributes.

4.3. Design Goals

Considering the requirement mentioned in the system and security model,

our goal is to design a fine-grained and privacy preserving data access control

scheme supporting expressive access policy with fully hidden attributes. Con-240

cretely, the following goals should be fulfilled.

• Fine-grained access control. The recipients whose attributes satisfy the

access policy can decrypt the ciphertext to obtain the data content, while

those unauthorized recipients cannot even through colluding.

• Privacy preservation of expressive policy. The expressive LSSS-based ac-245

cess policy should be supported. Meanwhile, the unauthorized recipients,

include the cloud server, cannot compromise the attribute privacy of the

access policy.

• Practical implementation. The underlying system operations, such as en-

cryption and decryption, should be completed by the corresponding enti-250

ties effectively and efficiently.

5. Our Proposed Scheme

In this section, we first give an overview of the proposed scheme, and then

describe the construction in detail of four phases: 1) system setup; 2) key gen-

eration; 3) data encryption, and 4) data decryption. Our construction is on the255

basis of the CP-ABE scheme in [15], and the idea of the attribute-hiding policy

can also be used in other ABE schemes with LSSS-based access policy. Table 2

presents some notations used in our scheme.

5.1. Scheme Overview

We propose a fine-grained and privacy preserving data access control scheme260

supporting expressive access policy with fully hidden attributes for cloud-based

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Notations used in our scheme

Notations Descriptions

PK,MSK system public key and master secret key

U = {att1, . . . , att|U |} system attribute universe

hattx public key components for attribute attx in U

S = {att∗j} attribute set of the data recipient, S ⊂ U
SKS secret key associated with attribute set S

M an l × n matrix in the access policy

ρ an attribute mapping function in the access policy

msg data file to be uploaded

CT final ciphertext uploaded to the cloud

(m,n, k,H, η)-T attribute Bloom filter T with parameters (m,n, k,H, η)

Θ a mapping function from attribute set S to a set of rows J ⊆ [l]

MJ a submatrix of M including the rows belonging to J

I
a set of minimum subsets of J such that

for each I∈I there exists
∑
i∈I wiMi = (1, 0, . . . , 0)

IoT. In our scheme, we apply the basic CP-ABE primitive to achieve flexible

access control, and remove the attribute mapping function ρ from the access pol-

icy (M,ρ) to hide the attribute information. To help the authorized recipients

locate their attributes to the access matrix, a fuzzy attribute positioning mech-265

anism is designed based on a modified garbled Bloom filter, which is referred to

as attribute Bloom filter in our context.

As shown in Table 3, to add an attribute attx to the original garbled Bloom

filter [26], the value attx itself is inserted. While in [24], a unique value rownumx||attx
associated with the attribute attx is inserted, where rownumx is used to help270

the recipients to precisely recover the corresponding row number in the ac-

cess matrix M of attribute attx. However, since the attribute universe U may

be public, anyone including the cloud server can launch the dictionary attack,

which means they are able to query any attribute from the filter to make sure

whether it is in the access policy, thus the attribute privacy is still revealed.275

Different from their schemes, to add an attribute to the filter, a unique value

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

binding with the corresponding row number is inserted in our scheme. When

the recipients look up the filter, a correct row number can be recovered for those

attributes belonging to the policy, but a random row number for others. In ad-

dition, only authorized recipients can verify the validity of the row numbers for280

the attributes through successful decryption, thus the attribute privacy can be

preserved effectively.

Table 3: Comparisons of value inserting

Schemes Added attribute Inserted value

Dong et al. [26] attx attx

Yang et al. [24] attx rownumx||attx
Ours attx ξl + rownumx

Generally, the following four algorithms are included in our scheme.

• Setup(U) → (PK,MSK) This algorithm takes as input the attribute

universe U , and outputs the public key PK and the system master secret285

key MSK.

• KeyGen(PK,MSK,S) → SKS This algorithm takes as input PK,

MSK and a attribute set S, and generates the secret key SKS associ-

ated with S.

• Encrypt(PK,msg, (M,ρ)) → CT This algorithm takes as input PK,290

a message msg and an access policy (M,ρ), and outputs the ciphertext

CT , where only M is included in the ciphertext. More specifically, two

functions are included in the Encrypt algorithm: CTGen and ABFBuild.

– CTGen: This function encrypts the data under the access policy,

which can be seen as the encryption algorithm in the basic CP-ABE295

scheme.

– ABFBuild: This function constructs an attribute Bloom filter to

hide the attribute information from the access policy.

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Decrypt(CT, SKS) → msg/⊥ This algorithm takes as input the cipher-

text CT and SKS associated with S, and returns the message msg if the300

attribute set S satisfies the access policy embedded in CT . Otherwise, it

returns ⊥ with a overwhelming probability. It contains three functions:

ABFQuery, MapRecover and DecTest.

– ABFQuery: This function is used to query a row number from the

attribute Bloom filter for each attribute in the recipient’s attribute305

set.

– MapRecover: This function helps to recover a set of the possible

attribute mapping functions.

– DecTest: This function is designed to test whether the Decrypt al-

gorithm is successful, and returns the final result.310

5.2. Scheme Description

5.2.1. System Setup

The attribute authority first executes the Setup algorithm with the input of

the attribute universe U = {att1, . . . , att|U |}. Let G and GT be multiplicative

cyclic groups of prime order p, g be a generator of G, and e : G × G → GT be315

a bilinear map. The attribute authority randomly chooses α, β ∈ Z∗p and group

elements hatt1 , . . . , hatt|U| ∈ G for all the attributes in U . The public key PK

is published as

PK = 〈e(g, g)α, g, gβ , hatt1 , . . . , hatt|U|〉

The attribute authority sets MSK = gα as the system master secret key.320

5.2.2. Key Generation

When the data recipient joins the system, the authority will assign an at-

tribute set S ⊂ U to him according to his roles or credentials, and run the

KenGen algorithm to generate the corresponding secret keys.

• KeyGen(PK,MSK,S)→ SKS325

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

This algorithm takes as input PK, MSK and an attribute set S. It chooses

a random number t ∈ Z∗p , and computes

D = gαgβt, D′ = gt, ∀attx ∈ S Dattx = htattx

Finally, the secret key is distributed to the recipient as

SKS = 〈S,D,D′, {Dattx}attx∈S〉

5.2.3. Data Encryption

To achieve data confidentiality and fine-grained access control simultane-

ously, the data owner first specifies an access policy (M,ρ) over U for the data

msg. Then, it executes the Encrypt(PK,msg, (M,ρ)) algorithm to produce the

ciphertext CT which will be uploaded to the cloud server.330

The Encrypt algorithm in our scheme includes two functions: CTGen and

ABFBuild. The function CTGen is used to produce the real ciphertext compo-

nents and the function ABFBuild is designed to help the recipients locate their

attributes to the access matrix M . Note that the second one is indispensable

since the attribute mapping function ρ is removed from the final ciphertext CT335

to prevent the disclosure of attribute privacy in the access policy.

1. CTGen(PK,msg, (M,ρ))→ CT0

The function takes as input the public key PK, the data msg and the access

policy (M,ρ), where M is an l × n access matrix and ρ is an injective function

that maps each row in M to a unique attribute in U . It first selects random

numbers s, z2, . . . , zn ∈ Zp, and constructs a vector ~z = (s, z2, . . . , zn). It cal-

culates λi = Mi · ~z for each i ∈ [l], where Mi means the ith row of M . Here λi

can be seen as the secret share that is assigned to the attribute ρ(i). Then the

ciphertext CT0 is produced as

CT0 = 〈C = msg · e(g, g)αs, C0 = gs, {Ci = gaλih−sρ(i)}i∈[l]〉

Remarks. In order to allow the recipient to test whether the decryption

succeeds, we can adopt the technique introduced in [33], in which two in-

dependent and uniform δ-bit symmetric keys (key1, key2) are generated from340

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

a randomly selected value key ∈ GT . Then key is encrypted by running

CTGen(PK, key, (M,ρ)) = CT0. In addition, the data msg is encrypted un-

der key1 with the symmetric encryption SEkey1
(msg). Finally, the ciphertext is

in the form CT ′ = (CT0, key2,SEkey1
(msg)). After decrypting key from CT0,

the recipient first uses key2 in CT ′ to verify whether key is decrypted success-345

fully, where the false positive probability (approximately 1/2δ) can be ignored

with a long enough δ. If successful, the recipient can decrypt msg from the

symmetric ciphertext SEkey1
(msg) through key1 derived from key.

2. ABFBuild(M,ρ)→ T

The function first defines the parameters (m,n, k,H, η) of the attribute350

Bloom filter T , where m means the size of the filter, n is the number of at-

tributes to be added, k means the number of the hash functions in H, and η

represents the bit length of the inserted value. In our scheme, n is set as the

number of rows in M , which also means the number of attributes in the policy.

Then, m and k can be selected optimally according to n, η should be longer355

than the bit length of l, and H = {hj}j∈[k] are k independent hash functions

that hash each attribute to [m] uniformly.

1 2 3 4 5 6 7 8 9 10

m=10
k=3

Figure 2: Example of inserting values into the attribute Bloom filter

To add an attribute ρ(i) to the filter, a unique value vi = ξil+ i binding with

the row number i will be inserted, where ξi is a random number and vi < 2η.

More specifically, vi is split into k shares {rji }j∈[k] with the (k, k) secret sharing360

scheme based on XOR operations [34], and the share rji is put at the position

hj(ρ(i)). The k shares of vi are computed as follows: it first chooses k−1 random

number r1
i , r

2
i , . . . , r

k−1
i with η bits, and computes rki = r1

i ⊕r2
i ⊕· · ·⊕rk−1

i ⊕vi.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Note that during the inserting process, some location pos = hj(ρ(i)) could

have been occupied by a previous inserted value. In such a case, the existing365

T [pos] will not be overwritten, which means rji is set as T [pos] and used to

compute the final share. For example, as shown in Fig. 2, a value v1 is inserted

into the filter first, and the corresponding positions 2, 4, 7 have be filled with

the shares of v1. Then for the value v2, position 4 have already be occupied by

the share r2
1 of v1. So in order to guarantee that the previous inserted value370

v1 can be recovered, r2
1 will be reused, which means that instead of randomly

choosing a new share, we set r1
2 = r2

1. Following Function 1 shows the detailed

implement process of ABFBuild.

Remarks. Note that the false positive error leads to an empty value of

the variable EmptyPos after the inner loop (line 9-22), which will cause an375

illegal index position of the attribute Bloom filter T in line 23. In such a

situation, the ABFBuild function will be failed and the encryption process will

be interrupted, so it will not degrade the security of our scheme. In addition, as

proved in [26], the upper bound of the failure rate of the ABFBuild function is

pk(O(kp

√
lnm−k ln p

m) + 1), where p = 1− (1− 1/m)(n−1)k, which can be ignored380

with optimally selected m and k. Different from [24], our scheme enables the

data owners to select the parameters of the attribute Bloom filter, such that

even if the false positive error occurs, the ABFBuild function can be efficiently

re-executed with new parameters (less than 5ms for 50 attributes). Thus, the

effects on the efficiency of the proposed scheme caused by false positive property385

is limited and acceptable.

After calling the two functions, the data owner uploads the final ciphertext

CT = 〈M,CT ′, (m,n, k,H, η)-T 〉 to the cloud server.

5.2.4. Data Decryption

The recipients are allowed to download the ciphertext from the cloud server390

depending on their interests. When they obtain the ciphertext CT , they can

run the Decrypt(CT, SKS) algorithm to recover the plaintext, if their attribute

sets satisfy the access policy. In our scheme, the Decrypt algorithm consists of

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Function 1 ABFBuild
Input: (M,ρ)

Output: (m,n, k,H, η)-T

1: n = l, Select m, k,H, η optimally

2: T= new m-element array of η-bit strings

3: for i = 1 to m do

4: T [i] = null

5: end for

6: for i = 1 to l do

7: Select a random number ξi, such that ξil + i < 2η

8: EmptyPos = 0, FinalShare = ξil + i

9: for j = 1 to k do

10: pos = hj(ρ(i))

11: if T [pos] == null then

12: if EmptyPos == 0 then

13: EmptyPos = pos

14: else

15: Select a random number v from {0, 1}η

16: T [pos] = v

17: FinalShare = FinalShare⊕ T [pos]

18: end if

19: else

20: FinalShare = FinalShare⊕ T [pos]

21: end if

22: end for

23: T [EmptyPos] = FinalShare

24: end for

25: for i = 1 to m do

26: if T [i] == null then

27: Select a random number v from {0, 1}η

28: T [i] = v

29: end if

30: end for 18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

three functions: ABFQuery, MapRecover and DecTest. The first function is

used to query a row number for each attribute in S, the second one is to recover395

a set of possible attribute mapping functions, and the last one is to test whether

the decryption succeeds.

1. ABFQuery(S, T)→ Θ

The function takes as input the attribute set S and the attribute Bloom

filter T , where the parameters of T are include implicitly. For each attribute400

attx ∈ S, it first computes the k positions {hj(attx)}j∈[k] and obtains the shares

{rjx = T [hj(x)]}j∈[k]. Then the corresponding row number of the attribute attx

is calculated as rownumx = (r1
x⊕r2

x⊕· · ·⊕rkx) mod l. As shown in Function 2,

a mapping function Θ : S → J from the attribute set S to a set of rows J ⊆ [l]

will be generated after calling the ABFQuery function.405

Remarks. Note that for those attributes existed in the access policy, the

row numbers recovered from T are valuable, but for others are just random

numbers in [l]. In addition, it is possible that some different attributes may

recover the same row number, and the possibility is influenced by the number

of attributes in the attribute set and access policy.410

After generating Θ, the Decrypt algorithm calls the following MapRecover

function.

2. MapRecover(Θ)→ P

This function takes as input Θ, and produces a set of attribute mapping

functions P by choosing only one attribute for each row in J , such that each415

ρ̃ ∈ P is an injective function which maps J to an attribute set S̃ ⊆ S. As

shown in Function 3, it first generates the attributes associated with each row

in J and calculates the total number of the mapping functions in P (line 1-5).

Then for each ρ̃i, it chooses only one attribute for each row in J to compose an

attribute set S̃i, with the condition that i 6= j ⇒ S̃i 6= S̃j (line 8-15). Finally, it420

adds all ρ̃i to the set P (line 16).

At last, for each ρ̃i ∈ P and corresponding secret key SKS̃i
⊆ SKS , the

Decrypt algorithm calls the following DecTest function. If any of them outputs

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Function 2 ABFQuery

Input: S, T

Output: Θ : S → J

1: J = ∅, Θ = ∅

2: for attx ∈ S do

3: temp = 0

4: for j = 1 to k do

5: pos = hj(attx)

6: temp = temp⊕ T [pos]

7: end for

8: rownumx = temp mod l

9: if rownumx == 0 then

10: rownumx = l

11: end if

12: if rownumx /∈ J then

13: add rownumx into J

14: end if

15: Add attx → rownumx into Θ

16: end for

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Function 3 MapRecover

Input: Θ : S → J

Output: P
1: Num = 1

2: for each rownum ∈ J do

3: attsrownum = Θ−1(rownum)

4: Num = Num ∗ length(attsrownum)

5: end for

6: for i = 0 to (Num− 1) do

7: step = Num, ρ̃i = ∅, S̃i = ∅

8: for each rownum ∈ J do

9: len = length(attsrownum)

10: step = step/len

11: attIndex = (i/step) mod len

12: att = attsrownum[attIndex]

13: Add att to S̃i

14: Add rownum→ att into ρ̃i : J → S̃i

15: end for

16: Add ρ̃i into P
17: end for

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

msg, then the decryption completes successfully. Otherwise, the Decrypt algo-

rithm outputs ⊥, which represents that the recipient’s attributes do not satisfy425

the access policy.

3. DecTest(CT ′, (MJ , ρ̃), SKS̃)→ msg/⊥

Here MJ denotes the matrix composed of the rows belonging to J . Similarly

with [21] and [22], this function first computes a set I from MJ , where I denotes

the set of minimum subsets of J such that for each I∈I there exists
∑
i∈I wiMi =

(1, 0, . . . , 0). Then, for each I∈I, it calculates

B =
e(C0, D)∏

i∈I(e(C0, Dρ̃(i))e(Ci, D′))wi

For authorized recipients with the right choice of ρ̃ and I, Ci and Dρ̃(i) are

matched which means they are generated from the same public key component

hρ̃(i), such that

B =
e(g, g)αse(g, g)βts∏
i∈I e(g, g)βtwiλi

= e(g, g)αs,
C

B
= key

Then, it generates key1 and key2 from key. After verifying that key2 is

correct, it can recover msg with the symmetric decryption algorithm under key1.

Otherwise, B is a random value in GT , so a random key2 will be derived,430

which cannot pass the validation process with a overwhelming probability. Thus

the function outputs ⊥.

Remarks. Since MJ is fixed during the DecTest phase, I only needs to be

calculated once. In addition, the paring results can be reused in different tests.

6. Security Analysis and Performance Evaluation435

6.1. Security Analysis

We analyze the security features of the proposed scheme from the perspec-

tives of data confidentiality and policy privacy.

• Data confidentiality The proposed construction is based on the under-

lying CP-ABE primitive in [15], which has been proved selectively CPA-440

secure on the basis of the decisional q-BDHE assumption. Following we

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

will demonstrate that the modifications in our scheme do not affect the

data confidentiality. It can be seen the Setup and KeyGen algorithms

in our proposed scheme are the same with that in [15]. In addition, the

ciphertext generated from the Encrypt algorithm in our scheme has the445

similar structure with [15], except that an attribute Bloom filter T is in-

cluded. Note that, the attribute Bloom filter is derived only from the

access policy (M,ρ), which is public in [15]. Since no more information

in our scheme has been disclosed to the adversary compared with [15],

the advantages of the adversary to break the data confidentiality in our450

scheme is no more than that in [15]. Thus, based on the same security as-

sumption with [15], we can conclude that our scheme is able to guarantee

the data confidentiality.

• Policy privacy In our scheme, the attribute mapping function ρ is re-

moved from the access policy to prevent the leakage of attribute informa-455

tion. Additionally, a fuzzy attribute positioning algorithm is designed to

help the authorized recipients to decrypt the ciphertext. Following we will

show that the adversary (unauthorized recipients) cannot recover valuable

attribute information from the fuzzy attribute positioning algorithm. In

the fuzzy attribute positioning algorithm, the row number corresponding460

to each attribute in the access policy is inserted into the attribute Bloom

filter through the ABFBuild function. By calling the ABFQuery func-

tion, the adversary is allowed to query a row number for every attribute in

his attribute set. Furthermore, considering the dictionary attack, the ad-

versary can check all the system attributes. However, correct row numbers465

can be recovered only for those attributes belonging to the access policy,

while for others, a random row number is returned. Note that, the validity

of the row number for an attribute can only be verified through success-

ful decryption. Since the adversary cannot break the data confidentially,

even through colluding, nor can it identify the attribute mapping relation-470

ship. Thus, our scheme can protect the policy privacy through hiding the

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

attribute information in the access policy.

6.2. Performance Evaluation

We first give a comparison of our scheme and some other CP-ABE schemes

with LSSS-based access policy in the literature [15, 21, 22, 24], with respect to475

storage overhead and computation cost. Some related notions are clarified as

follows.

- |G|, |GT |, |Zp|: The bit-length of element in G, GT and Zp, respectively.

- |U |, |S|, l: The number of attributes in the system attribute universe, re-

cipient attribute set and access policy, respectively.480

- |M |, |(M,ρ)|, |h|,m: The bit-length of access matrix, access policy and

hash function, respectively.

- Ll, Latt: The bit-length of the value l and attribute string, respectively.

- k: The number of hash functions for the attribute Bloom filter.

- m: The size of the attribute Bloom filter.485

- XM,1: The number of elements in IM = {I1, . . . , IXM,1
}, where IM means

the set of minimum subsets satisfying the access matrix M .

- XM,2: The total number of attributes in all the subsets of IM , i.e., |I1|+
· · ·+ |IXM,1

|.

- |P|: The number of elements in the set of attribute mapping functions P.490

- |J |: The number of rows used in the decryption.

- |I|: The number of attributes used during the final successful decryption.

Table 4 presents the sizes of the public key, master secret key, recipient secret

key and ciphertext (i.e., storage overhead). It demonstrates that our scheme

achieves attribute hiding only with few ciphertext storage overhead caused by495

the attribute Bloom filter compared with the underlying CP-ABE scheme [15].

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Due to the small size of the value inserted into the Bloom filter, our scheme has

a better performance than [24]. Compared with [21] and [22] which apply the

LSSS-based access policy with multi-valued attributes, the size of the recipient

secret key in our scheme is much smaller. In addition, since the bit-length of500

the group element is much longer than that of l, our scheme can also save some

ciphertext storage space.

Table 4: Comparisons of storage overhead

Schemes Public Key Master Secret Key Recipient Secret Key Ciphertext

Basic CP-ABE [15] (2 + |U |)|G|+ |GT | |G| (2 + |S|)|G| |GT |+ (1 + l)|G|+ |(M,ρ)|
Lai et al. [21] (4 + |U |)|G|+ |GT | |U ||G|+ |Zp| (2 + |U |)|G| 2|GT |+ 4l|G|+ |(M,ρ)|
Cui et al. [22] 9|G|+ |GT |+ |h| |G|+ 4|Zp| (2 + 5|S|)|G| (3 + 6l)|G|+ |(M,ρ)|

Yang et al. [24] (2 + |U |)|G|+ |GT |+ k|h| |G| (2 + |S|)|G| |GT |+ (l + 1)|G|+ |M |+m(Ll + Latt)

Ours (2 + |U |)|G|+ |GT | |G| (2 + |S|)|G| |GT |+ (1 + l)|G|+ |M |+mLl + k|h|

Table 5: Comparisons of computation cost

XXXXXXXXXXXXXXXSchemes

Operations Encryption Decryption

Multi Expo Pairing Hash Multi Expo Pairing Hash

Basic CP-ABE [15] l + 1 2l + 2 0 0 |I|+ 2 |I| 2|I|+ 1 0

Lai et al. [21] 6l + 2 8l + 4 0 0 ≤ XM,2 +XM,1 + |I|+ 2 ≤ |I|+XM,2 ≤ 2(1 + |I|+ |S|) 0

Cui et al. [22] 2l + 1 8l + 4 0 1 ≤ 5XM,2 + 2XM,1 ≤ XM,2 + 2XM,1 ≤ 6|S|+ 1 ≤ XM,1

Yang et al. [24] l + 1 2l + 2 0 k |I|+ 2 |I| 2|I|+ 1 k

Ours l + 1 2l + 2 0 k ≤ |S||J |+ 2|P|XMJ ,1 ≤ |P|XMJ ,2 ≤ |S|+ |J |+ 1 k

Table 5 shows the computing operations involved in the encryption and de-

cryption processes, in which only some time-consuming operations are consid-

ered, such as pairing, hashing and multiplication and exponentiation on groups.505

Considering the encryption process, our scheme only has some additional hash-

ing operations compared with the underlying CP-ABE scheme. Our scheme also

has a better performance compared with [21] and [22] in terms of the multipli-

cation and exponentiation operations. With regard to the decryption process,

since opportunistic decryption test is required in [21], [22] and our scheme, we510

give the results in a worst-case scenario. For [21] and [22], a set of minimum

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

subsets of attributes IM from M needs to be calculated before the decryption

test. While in our scheme, we compute IMJ
from MJ , thus XMJ ,1 ≤ XM,1 and

XMJ ,2 ≤ XM,2. In addition, for the most time-consuming pairing operation,

our scheme has a significantly better performance. For the multiplication and515

exponentiation operations, although the cost in our scheme is affected by |P|,
the smaller XMJ ,1 and XMJ ,2 make them be completed efficiently.

Generally, taking into a comprehensive consideration of storage overhead,

computation cost and policy privacy, our scheme can achieve more effective

privacy preservation with a better overall performance.520

We simulate our scheme with python 3.5 on a notebook with an Intel Core

i7-7600U CPU at 2.80GHz and 16GB RAM running Ubuntu 18.04. Charm

framework (v0.5) is applied to implement the cryptographic operations from

the supporting of the PBC library (v0.5.14) and the OpenSSL library (v1.0.2).

We use the double hashing technology [35] based on the 128-bit MurmurHash525

and SpookyHash to construct the k hash functions of the attribute Bloom filter.

The numbers of attributes in the access policy and recipient attribute set are

both from 5 to 50. All the results are average running time in milliseconds of

50 trials.

5 10 15 20 25 30 35 40 45 50
Number of Attributes

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ti
m

e
(m

s)

k=8
k=16
k=24

(a) ABFBuild

5 10 15 20 25 30 35 40 45 50
Number of Attributes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(m

s)

k=8
k=16
k=24

(b) ABFQuery

Figure 3: Computation time for ABFBuild and ABFQuery functions

Fig. 3 shows the running time of the ABFBuild and ABFQuery functions530

with k = 8, 16, 24, where m = 1024, η = 8, and n is the number of attributes.

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5 10 15 20 25 30 35 40 45 50
Number of Attributes

20

40

60

80

100

120

140

Ti
m

e
(m

s)

SS512
MNT159
MNT201
MNT224

(a) Encrypt

5 10 15 20 25 30 35 40 45 50
Number of Attributes

0

50

100

150

200

250

300

350

400

Ti
m

e
(m

s)

SS512
MNT159
MNT201
MNT224

(b) Decrypt

Figure 4: Computation time for Encrypt and Decrypt algorithms

In Fig. 3(a), 50 attributes can be inserted into the filter in less than 5ms, thus

in a worst case that the ABFBuild function fails, it can be completed with

the new parameters soon. In addition, it can be calculated that the ABFBuild

function has a negligible failure rate of 10−5 with k = 16, so we adopt k = 16535

in the subsequent simulations.

We simulate the encryption and decryption algorithms in our scheme on

the basis of four elliptic curves: SS512, MNT159, MNT201 and MNT2242,

which provide different security levels. Fig. 4 shows that the execution time

of encryption and decryption increases linearly with the number of attributes.540

The running time for building and querying the attribute Bloom filter is only

a tiny fraction of the total time for the encryption and decryption processes.

In addition, in our experiment, the decryption of a ciphertext containing 50

attributes can be completed in less than 400ms with a secret key of 50 attributes,

and the results are acceptable even with multiple decryption tests in practical545

applications.

2“SS” means the super singular curves (symmetric) and “MNT” is Miyaji, Nakabayashi,

Takano curves (asymmetric). The number after the type of the curve means the bit size of

the base field [16].

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7. Conclusion

In this paper, we have proposed a fine-grained data access control scheme

supporting expressive access policy with fully attribute hidden for cloud-based

IoT. We have designed a fuzzy attribute positioning mechanism based on gar-550

bled Bloom filter such that the authorized recipients are able to locate their

attributes to the access matrix and decrypt the ciphertext efficiently, while for

unauthorized recipients no valuable attribute information can be presumed. Our

scheme can achieve both data confidentiality and policy privacy preservation on

the basis of the underlying CP-ABE scheme. Numerical analysis and simulation555

results demonstrate that our scheme can achieve effective policy privacy preser-

vation with low storage and computation overhead. In the future work, we will

focus on how to decrease the number of decryption tests for the authorized re-

cipients with more redundant attributes which are not in the ciphertext access

policy.560

References

References

[1] J. Ni, K. Zhang, X. Lin, X. Shen, Securing fog computing for internet of

things applications: Challenges and solutions, IEEE Commun. Surv. Tutor.

20 (1) (2018) 601–628. doi:10.1109/COMST.2017.2762345.565

[2] Internet of things security: A top-down survey, Comput. Netw. 141 (2018)

199–221. doi:10.1016/j.comnet.2018.03.012.

[3] K. Zhang, J. Ni, K. Yang, X. Liang, J. Ren, X. Shen, Security and privacy

in smart city applications: Challenges and solutions, IEEE Commun. Mag.

55 (1). doi:10.1109/MCOM.2017.1600267CM.570

[4] Popular internet of things forecast of 50 billion devices by

2020 is outdated, Available at: https://spectrum.ieee.org/tech-

talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-

devices-by-2020-is-outdated, accessed June 1, 2018.

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[5] A. Ouaddah, H. Mousannif, A. A. Elkalam, A. A. Ouahman, Access control575

in the internet of things: Big challenges and new opportunities, Comput.

Netw. 112 (2017) 237–262. doi:10.1016/j.comnet.2016.11.007.

[6] X. Liu, R. Deng, K.-K. R. Choo, Y. Yang, H. Pang, Privacy-preserving

outsourced calculation toolkit in the cloud, IEEE T. Depend. Securedoi:

10.1109/TDSC.2018.2816656.580

[7] K. Yang, Z. Liu, X. Jia, X. Shen, Time-domain attribute-based access

control for cloud-based video content sharing: A cryptographic approach,

IEEE T. Multimedia 18 (5). doi:10.1109/TMM.2016.2535728.

[8] J. Shu, X. Liu, X. Jia, K. Yang, R. Deng, Anonymous privacy-preserving

task matching in crowdsourcing, IEEE Internet Things J. 5 (4) (2018)585

3068–3078. doi:10.1109/JIOT.2018.2830784.

[9] 47gb of medical records and test results found in unsecured amazon

s3 bucket, Available at: https://www.hipaajournal.com/47gb-medical-

records-unsecured-amazon-s3-bucket, accessed June 1, 2018.

[10] 7 most infamous cloud security breaches, Available at:590

https://blog.storagecraft.com/7-infamous-cloud-security-breaches, ac-

cessed June 1, 2018.

[11] Top 5 largest data leaks of 2017 - so far, Available at:

https://www.kaspersky.com/blog/data-leaks-2017/19723, accessed June 1,

2018.595

[12] 8 public cloud security threats to enterprises in 2018, Available

at: https://www.comparethecloud.net/articles/8-public-cloud-security-

threats-to-enterprises-in-2017, accessed June 1, 2018.

[13] The dirty dozen: 12 top cloud security threats for 2018, Avail-

able at: https://www.csoonline.com/article/3043030/security/12-top-600

cloud-security-threats-for-2018.html, accessed June 1, 2018.

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[14] A. Sahai, B. Waters, Fuzzy identity-based encryption, in: Proc. of EURO-

CRYPT’05, 2005, pp. 457–473. doi:10.1007/11426639_27.

[15] B. Waters, Ciphertext-policy attribute-based encryption: An expressive,

efficient, and provably secure realization, in: Proc. of PKC’11, 2011, pp.605

53–70. doi:10.1007/978-3-642-19379-8_4.

[16] Y. Rouselakis, B. Waters, Practical constructions and new proof methods

for large universe attribute-based encryption, in: Proc. of CCS’13, 2013,

pp. 463–474. doi:10.1145/2508859.2516672.

[17] T. Nishide, K. Yoneyama, K. Ohta, Attribute-based encryption with par-610

tially hidden encryptor-specified access structures, in: Proc. of ACNS’08,

2008, pp. 111–129. doi:10.1007/978-3-540-68914-0_7.

[18] J. Li, K. Ren, B. Zhu, Z. Wan, Privacy-aware attribute-based encryption

with user accountability, in: Proc. of ISC’09, 2009, pp. 347–362. doi:

10.1007/978-3-642-04474-8_28.615

[19] J. Lai, R. H. Deng, Y. Li, Fully secure cipertext-policy hiding cp-abe, in:

Proc. of ISPEC’11, 2011, pp. 24–39. doi:10.1007/978-3-642-21031-0_3.

[20] Ensuring attribute privacy protection and fast decryption for outsourced

data security in mobile cloud computing, Inform. Sciences 379 (2017) 42–

61. doi:10.1016/j.ins.2016.04.015.620

[21] J. Lai, R. H. Deng, Y. Li, Expressive cp-abe with partially hidden ac-

cess structures, in: Proc. of ASIACCS’12, 2012, pp. 18–19. doi:10.1145/

2414456.2414465.

[22] H. Cui, R. H. Deng, G. Wu, J. Lai, An efficient and expressive ciphertext-

policy attribute-based encryption scheme with partially hidden access625

structures, in: Proc. of ProvSec’16, 2016, pp. 19–38. doi:10.1007/

978-3-319-47422-9_2.

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[23] Y. Michalevsky, M. Joye, Decentralized policy-hiding abe with receiver

privacy, Springer, 2018, pp. 548–567. doi:10.1007/978-3-319-98989-1_

27.630

[24] K. Yang, Q. Han, H. Li, K. Zheng, Z. Su, X. Shen, An efficient and

fine-grained big data access control scheme with privacy-preserving pol-

icy, IEEE Internet Things J. 4 (2) (2017) 563–571. doi:10.1109/JIOT.

2016.2571718.

[25] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors,635

Commun. ACM 13 (7) (1970) 422–426. doi:10.1145/362686.362692.

[26] C. Dong, L. Chen, Z. Wen, When private set intersection meets big data:

an efficient and scalable protocol, in: Proc. of CCS’13, 2013, pp. 789–800.

doi:10.1145/2508859.2516701.

[27] V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based encryption for640

fine-grained access control of encrypted data, in: Proc. of CCS’06, 2006,

pp. 89–98. doi:10.1145/1180405.1180418.

[28] J. Hao, C. Huang, J. Liu, M. Xian, X. Shen, Efficient outsourced data access

control with user revocation for cloud-based iot, in: Proc. of GlobeCom’18,

2018, pp. 1–6. doi:10.3233/MGS-180297.645

[29] Q. He, N. Zhang, Y. Wei, Y. Zhang, Lightweight attribute based encryption

scheme for mobile cloud assisted cyber-physical systems, Comput. Netw.

140 (2018) 163–173. doi:10.1016/j.comnet.2018.01.038.

[30] Z. Yu, M. H. Au, R. Yang, J. Lai, Q. Xu, Achieving flexibility for abe with

outsourcing via proxy re-encryption, in: Proc. of ASIACCS’18, 2018, pp.650

659–672. doi:10.1145/3196494.3196557.

[31] H. Cui, R. H. Deng, J. Lai, X. Yi, S. Nepal, An efficient and expressive

ciphertext-policy attribute-based encryption scheme with partially hidden

access structures, Comput. Netw. 133 (2018) 157–165. doi:10.1016/j.

comnet.2018.01.034.655

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[32] F. Khan, H. Li, L. Zhang, J. Shen, An expressive hidden access policy cp-

abe, in: Proc. of DSC’17, 2017, pp. 178–186. doi:10.1109/DSC.2017.29.

[33] D. Boneh, B. Waters, Conjunctive, subset, and range queries on en-

crypted data, in: Proc. of TCC’07, 2007, pp. 535–554. doi:10.1007/

978-3-540-70936-7_29.660

[34] B. Schneier, Applied cryptography: protocols, algorithms, and source code

in C, 1996. doi:10.1016/S0740-624X(96)90083-0.

[35] P. G. Bradford, M. N. Katehakis, A probabilistic study on combinatorial

expanders and hashing, SIAM J. Comput. 37 (1) (2007) 83–111. doi:

10.1137/S009753970444630X.665

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Jialu Hao

Cheng Huang670

Jianbing Ni

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

675

Hong Rong

680

Ming Xian

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Xuemin (Sherman) Shen

685

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Jialu Hao received the B.E. degree from Shandong University, Jinan, Shandong, in 2013, and

the M.S. degree from National University of Defense Technology, Changsha, Hunan, in 2015,

where he is currently pursuing the Ph.D. degree. In 2018, he joined the Department of

Electrical and Computer Engineering, University of Waterloo as a visiting student. His research

interests are in the areas of wireless network security, cloud security and applied cryptography.

Cheng Huang received the B.E. degree and M.E. degree from Xidian University, China, in 2013

and 2016 respectively, and was a Project Officer with the INFINITUS laboratory at the School

of Electrical and Electronic Engineering, Nanyang Technological University till July 2016. Since

September 2016, he has been a Ph.D. Candidate with the Department of Electrical and

Computer Engineering, University of Waterloo, ON, Canada. His research interests are in the

areas of applied cryptography, cyber security and privacy.

Jianbing Ni received the B.E. degree and the M.S. degree from the University of Electronic

Science and Technology of China, Chengdu, China, in 2011 and 2014, respectively. He is

currently working toward the Ph.D. degree with the Department of Electrical and Computer

Engineering, University of Waterloo, Waterloo, ON, Canada. His research interests are applied

cryptography and information security, with current focus on cloud computing, 5G network,

mobile crowdsensing and Internet of Things.

Hong Rong received the B.E. degree from the South China University of Technology, in 2011,

and M.S. degree from the National University of Defense Technology, in 2013, where he is

currently pursuing the Ph.D. degree. His research interests include privacy preservation of big

data, cloud computing, and virtualization.

Ming Xian received the B.E., M.S., and Ph.D. degrees from the National University of Defense

Technology, in 1991, 1995, and 1998, respectively. He is currently a Professor in College of

Electronic Science, National University of Defense Technology. His research focus on

cryptography and information security, cloud computing, and system modeling, and

simulation and evaluation.

Xuemin (Sherman) Shen received Ph.D. degree from Rutgers University, New Jersey (USA) in

electrical engineering, 1990. Dr. Shen is a University Professor, Department of Electrical and

Computer Engineering, University of Waterloo, Canada. His research focuses on resource

management in interconnected wireless/wired networks, wireless network security, social

networks, smart grid, and vehicular ad hoc and sensor networks. Dr. Shen is a registered

Professional Engineer of Ontario, Canada, an IEEE Fellow, an Engineering Institute of Canada

Fellow, a Canadian Academy of Engineering Fellow, a Royal Society of Canada Fellow, and a

Distinguished Lecturer of IEEE Vehicular Technology Society and Communications Society. Dr.

Shen is the Editor-in-Chief for IEEE Internet of Thing Journal and the vice president on

publications of IEEE Communications Society. He received the Joseph LoCicero Award in 2015

and the Education Award in 2017 from the IEEE Communications Society. He has also received

the Excellent Graduate Supervision Award in 2006, and the Outstanding Performance Award

in 2004, 2007, 2010, and 2014 from the University of Waterloo, the Premier's Research

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Excellence Award (PREA) in 2003 from the Province of Ontario, Canada. Dr. Shen served as

the Technical Program Committee Chair/Co-Chair for IEEE Globecom' 16, IEEE Infocom'14,

IEEE VTC'10 Fall, the Symposia Chair for IEEE ICC'10, the Tutorial Chair for IEEE VTC'11 Spring,

the Chair for IEEE Communications Society Technical Committee on Wireless

Communications, and P2P Communications and Networking.

