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Abstract

One of the main challenges for broad adoption of deep learning based models such as
Convolutional Neural Networks (CNN), is the lack of understanding of their decisions. In
many applications, a simpler, less capable model that can be easily understood is favorable
to a black-box model that has superior performance. Hence, it is paramount to have a
mechanism for deep learning models such as deep neural networks to explain their decisions.

To resolve this explainability issue, in this thesis the main goal is to explore and de-
velop new class-enhanced support strategies for visualizing and understanding the decision-
making process of deep neural networks. In particular, we take a three level approach to
provide a holistic framework for explaining deep neural networks predictions.

In the first stage (Chapter 3), we first try to answer the question: based on what
information neural networks make their decision and how it relates to a human expert’s
domain knowledge? To this end, we propose to introduce attentive response maps. The
attentive response maps are able to show: 1) The locations in the input image that are
contributing to decision making and 2) the level of dominance of such locations. Through
various experiments we elaborate how through attention response maps, we are able to
visualize the decision making process of deep neural networks and show where the neural
networks were able to or failed to use landmark features similar to a human expert’s domain
knowledge.

In second stage (Chapter 4), we propose a novel end-to-end design architecture for
obtaining end-to-end explanations through attentive response maps. Towards the end of
this stage, we explore some of the shortcomings of the attentive response maps in failing
to explain some of the complex scenarios.

In the last stage, (Chapter 5), we try to overcome the shortcomings of the binary atten-
tion maps introduced in the first stage. Towards this goal, a CLass-Enhanced Attentive
Response (CLEAR) approach was introduced to visualize and understand the decisions
made by deep neural networks (DNNs) given a specific input based on spatial support.
CLEAR facilitates the visualization of attentive regions and levels of interest of DNNs
during the decision-making process. It also enables the visualization of the most dom-
inant classes associated with these attentive regions of interest. As such, CLEAR can
mitigate some of the shortcomings of attention response maps-based methods associated
with decision ambiguity, and allows for better insights into the decision-making process of
DNNs.

In the last Chapter of this thesis (Chapter 6), we draw conclusions about the introduced
class based explanation strategies and discuss some interesting future directions, including
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a formulation for class based global explanation that can be used for discovering and
explaining the concepts identified by trained deep neural networks using human attribute
priors.
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Chapter 1

Introduction

[That] transparency is “absolutely critical” for applications in science, but it is also impor-
tant for many commercial applications. For example, in many countries, banks that deny
a loan have a legal obligation to say why - something a deep-learning algorithm might not
be able to do.

- Prof. Zoubin Ghahramani, University of Cambridge [83]
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Figure 1.1: Examples of two different scenarios where model explainability is crucial from
both spatial and temporal perspective. In both scenarios it is evident that using a black
box model for prediction is neither sufficient nor helpful for the end user. It is thus highly
necessary to use explainable model in such scenarios, where decision making is critically
important.

In recent years, we have seen tremendous success in the field of artificial intelligence
(AI). In particular, many of the recent advances have been related to one particular area of
machine learning: deep neural networks (DNNs). DNNs have been shown to outperform
previous machine learning techniques for a variety of tasks, such as fine-grained classifica-
tion [14,132], self-driving cars [10], captioning and answering questions about images [2,77],
and even defeating human champions at Go [107]. Although DNNs have demonstrated
tremendous effectiveness at a wide range of tasks, when they fail, they often fail spectac-
ularly, producing unexplainable and incoherent results that can leave one to wonder what
caused the DNN to make such decisions. This lack of transparency and interpretability of
DNNs during the decision-making process is largely due to their complex nature, where
individual neural responses, unlike other interpretable decision-making processes such as
decision trees, provide very little insight as to what is actually going on.
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1.1 Problem Definition and Challenges

The lack of transparency in the decision-making process of DNNs is a significant bottleneck
in their widespread adoption in industry, such as healthcare, defense, cyber-security, etc.
as shown in Fig. 1.1, where the error tolerance is very low and the ability to interpret,
understand, and trust decisions is critical. As such, a way to peer inside a DNN and see
why it made a decision the way it did can have tremendous potential for pushing towards
explainable AI, where a human expert gains the ability to understand, interpret and verify
the decisions made.

Recently, a number of researchers have been exploring the understanding and inter-
pretation of decisions made by DNNs, in particular by Convolutional Neural Networks
(CNNs), through spatial information support, by asking the following question: based on
what information in the image is the CNN making a decision? To tackle this question,
much recent work has focused on understanding the decision-making process of networks
in the spatial context by leveraging heatmaps that provide information about which areas
of the image is used by the CNNs to make a particular decision. These approaches have
produced some promising results in revealing what is important to a decision made by a
CNN. More details regarding the relevant works are provided in Chapter 2. However, there
are certain shortcomings relating to such approaches. Some of which are mentioned below:

• A common limitation with such heatmap-based visualization approaches to under-
standing the decision-making process of CNNs is that of decision ambiguity, where
one can gain insight into which regions of interest are important for making deci-
sions, but gives no insight as to why such regions of interest are important. An
example of this is shown in Fig. 1.2. As a result, these methods leave the “thought
process” of the CNN largely ambiguous.

• Another limitation of these methods is that they don’t always provide a co-relation
or justification from the human point of view. That is to say that no information is
provided as to how the identified region relates to human domain knowledge.

• Most of the methods can only be applied to the convolution layers i.e., there is a lack
of end-to-end explainable deep networks. For reliable explanations, the explainability
framework needs to be end-to-end from output space to input space.

• Most of the current methods also offer local level explanations i.e., they only provide
information for a given instance and nothing is conveyed as to how it relates to
global information in terms of what the deep network has learned or how it is making
decisions at the dataset level.

3



Input Output

3

Heatmap

DNN

2

3

Focuses on 
right areas: 
Looks correct!

Focuses on 
wrong part, curve 
might be two; but 
why not 3 or 5 or 
6?

Probably focuses 
on correct part, 
but why 3?

Interpretation

DNN

DNN

Figure 1.2: Examples of handwritten digits from MNIST are shown, along with: 1) the
decision made by the CNN, 2) heatmaps used in existing visualization methods, and 3)
what can be interpreted based on the heatmaps. While the heatmaps used in existing
approaches show which information in the image works for (positive focus: hot regions)
or against (negative focus: green), it is evident that the heatmaps are insufficient to fully
interpret and explain the decision made by the CNN.

1.2 Objectives

In an attempt to mitigate the problem of decision ambiguity and other challenges mentioned
above, we want to take a step towards “explaining the unexplained” with regards to the
decision-making process of CNNs. Thus, the main objective of this thesis is to explore
and develop new class-enhanced support strategies for visualizing and understanding the
decision-making process of deep neural networks. Using the class-enhanced explainability
framework, we want to address the challenges laid out in the previous section as follows:

• The first objective of the thesis to introduce a framework to address the question:
“What kind of features are used to make predictions by neural networks and how do
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they relates to human domain knowledge?”

• While addressing the above question, the thesis also aims to provide an explainability
framework that offers end-to-end explanations from the output predictions to input
space which is lacking in some of the current methods.

• Another major objective is to address the “unexplained” scenarios as shown in
Fig 1.2.

• Lastly, as most of the trusted explainability methods are for local explanations
whereas ideally for building trustworthy, reliable & satisfactory explanations, we
need methods that can provide both global and local explanation.

1.3 Contributions

The described objectives in this research lead to the following contributions:

• The thesis proposes a framework based on attention response maps, that is able to
first show a response for any given convolution layer in the input space and show how
the identified information relates to human expert domain information. This thesis
also provides experiments to show as to how through the use of attention response
maps we can identify when in the training of deep neural networks do they start
using human-expert identifiable landmarks.

• To turn the above process into an end-to-end procedure, we introduce a novel end-
to-end interpretable prediction pipeline. The presented deep architecture comprised
of stacked interpretable sequencing cells (SISC). The proposed SISC architecture is
shown to outperform previous approaches while providing more insight into its de-
cision making process. The SISC based architecture achieves state-of-the-art results
and also offers prediction interpretability in the form of attention response maps in
an end-to-end manner for binary class predictions.

• As mentioned in the above Section, there is a need to create a spatial context visu-
alization method that goes beyond the current binary heatmap based approaches as
they provide the attentive regions of interest only. Therefore in this thesis, we intro-
duce the CLass-Enhanced Attentive Response (CLEAR) approach that goes beyond
what existing heatmap-based approaches [5, 81, 135] can provide. The CLEAR ap-
proach allows for the visualization of not only the attentive regions of interest and
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corresponding attentive levels of CNNs during the decision-making process, but also
the corresponding dominant classes associated with these attentive regions of inter-
est. As such, compared to heatmaps, CLEAR visualization is much more effective
at conveying where and why certain regions of interest influence the decision-making
process. We further demonstrate the effectiveness of the proposed CLEAR approach,
both quantitatively and qualitatively, by conducting a number of experiments using
different publicly available datasets across domains.

• As noted above, for a complete and holistic explainable framework we need both
local and global explanations. Hence, in the last Chapter, the thesis also presents
a formulation for class based global explanation that can be used for discovering
and explaining the concepts identified by trained deep neural networks using human
attribute priors.

1.4 Thesis Structure

The thesis is organized in six Chapters and is structured as follows:

• Chapter 2 introduces the necessary definitions and concepts related to explainable
AI and DNNs. The Chapter also includes related work including various current
approaches for visualization and understanding the decision making process of DNNs
along with their mathematical definitions.

• Chapter 3 presents our proposed framework of attention maps to judge how DNNs
incorporate domain knowledge during training and while making decisions.

• As most of the above methods, including attention maps are not end-to-end, the
Chapter 4 forwards an end-to-end interpretable DNNs architecture framework for
learning and explaining binary classification.

• Chapter 5 first presents the shortcomings of the binary attention maps as presented in
the previous Chapter in providing holistic explaining. Motivated by this, we propose
a new framework for understanding their decision making process to address the un-
explainability problem from a spatial support level through a multi class enhanced
attention maps approach.

• In the last Chapter 6, we highlight the key contributions and some of the limitations
of the thesis research. The Chapter also presents some interesting future directions
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along which the thesis research can be extended. As the previous Chapters are based
on local explainability methods, in Chapter 6, we also provide a formulation for class
based global explanations that can help create a holistic framework for thorough
explanations.
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Chapter 2

Background & Related Work

“If you had a very small neural network, you might be able to understand it. But once it
becomes very large, and it has thousands of units per layer and maybe hundreds of layers,
then it becomes quite un-understandable.”

- Prof. Tommi Jaakkola, MIT [91]
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As noted in Chapter 1, contemporary deep AI systems offer a lot of promise and are
quite effective in solving complex problems. However, their effectiveness is limited by the
inability of these systems to explain their decisions and predictions in an understandable
manner to their users (humans). Thus, to solve this problem for explainability in deep
AI systems, in this Chapter we aim to first define what explainable AI is. We then cover
the basic fundamental background related to a particular type of deep neural network
architecture known as Convolutional Neural Networks (CNN). We define and cover CNNs,
as this is the architecture type that has been used throughout the thesis to define and
present our explainability formulations. After this, we elaborate on what are the different
approaches that can be used to solve the inherent un-explainability problem in the modern
deep AI systems, in particular for CNNs and the recent work done by AI researchers in
this regard.

2.1 Explainable AI

Explainable AI (X-AI) refers to the systems, programs, algorithms, techniques or methods
in the applications of artificial intelligence that are inherently able to provide explanations
that can be understood by human domain experts. Here, understanding from the human
domain experts perspective refers to the situation where the human expert is able to
understand, appropriately trust, and effectively manage the evolving AI solution. Thus,
for a AI system to be explainable, it needs to have the ability to explain its rationale,
explain how and why it fails and how it will behave in uncertain future scenarios 1, all of
this while maintaining a high level of performance. Hence, if an AI system contains all the
above mentioned attributes and is acceptable to human domain experts (also referred to
as end-users or users), we can refer to it as explainable.

Usually for humans to trust a system, it is imperative to show that the system uses
the same domain knowledge or features as humans to arrive at a particular decision. To
achieve this goal, the XAI can use different approaches or modes through which XAI is able
to explain its rationale. A detailed classification of the modes of explanation is presented
in the section below.

1https://www.darpa.mil/program/explainable-artificial-intelligence
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2.1.1 Modes Of Explanation

DARPA, the creator of the XAI program 2, has classified the different modes of explanation
in the following four different categories. These categories are:

1. Analytic (didactic) statements: In this mode, the explainable AI system uses
natural language to describe the various elements and context that support a given
prediction. For example, for identifying a zebra, the XAI can produce a statement
as: There is an animal with stripes.

2. Visualization: The XAI systems in this mode directly highlight the portions of the
raw data (e.g. group of pixels in an input image) to provide rationale for a given
prediction. This mode usually allows the human expert to form their own subjective
opinion for perceptual understanding. For example, for a given zebra image, it can
highlight the stripe features on the back of a zebra.

3. Cases: In this mode, the system provides specific examples that are similar to the
given input to support the prediction being made. For example, the person in a
given image is smiling because it looks like these other images of people who are also
smiling.

4. Rejection of Alternative Choices: In this case, the XAI systems produces argu-
ment against less preferred answers based on analytics, cases and data points. These
methods are sometimes also referred to as counterfactual methods.

2.1.2 Types Of Explanation

Using the different modes, explanations can be provided at two different levels. These two
levels of explanations are presented in detail below. A detailed discussion regarding the
relevant recent work pertaining to their levels is discussed in Section 2.3.

• Local Explanations: In this type of explanation method, explanations and justifi-
cations are produced by the XAI system for a given instance i.e., for a particular
input. Hence, these type of methods are sometimes also referred to as instance-based
methods. For example, for a given input image of a cat that is correctly identified,
rationale is produced as such to show what is the evidence in the given input based
on which the prediction is being made.

2The author and Dr. Graham W. Taylor are part of this program and the research was funded partly
with the associated funds.
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• Global Explanations: In these type of XAI methods, explanations are produced on
a class or dataset level. These methods usually aim to provide a rationale at the
global level as to what the XAI system has learned about a class or dataset. For
a given class level, these methods aim to answer, what is the interpretation of the
learned XAI system with regards to that particular class. For example, for the class
cat, what are the attributes a cat should have to be identified as a cat by a given
model. On the other extreme, at the dataset or model level, these methods aim to
explain what each of the learned components such as weights, other parameters, and
structures entail to with respect to the given dataset.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are currently one of the most popular deep learning
architectures, especially for image based visual recognition tasks. More formally, a CNN
is a particular type of deep learning based feed forward neural network, which can take an
input and assign prediction for a particular task for objects present in the input. The idea
of architectural design for CNNs is loosely inspired by the information process that happens
in the visual cortex of human brain. In the visual cortex, each individual neuron responds
to stimuli only for a certain region of the visual field known as a receptive field. Hence,
CNNs use the idea of a receptive field to identify and optimize its various parameters.
While CNN architectures have many optimizable parameters that make them unique from
each other, CNNs are typically composed of few key constituent layers and operations. The
main constituents of the typical CNN architecture design are: convolutional layer, pooling
layer, activation function, batch-normalization, dropout and fully connected layer. All of
these individual components are explained below in detail with the full architecture design
explained at the end of the Section.

2.2.1 Convolutional Layer

In discrete mathematics, the convolution of a 1D signal f with another signal g is defined
as follows:

o[n] = f [n] ∗ g[n] =
∞∑

u=−∞

f [u]g[n− u]. (2.1)

Here, n & u are discrete variables. However, this definition can be extended for 2D
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convolution, as required for pixel based convolutions:

o[m,n] = f [m,n] ∗ g[m,n] =
∞∑

u=−∞

∞∑
v=−∞

f [u, v]g[m− u, n− v]. (2.2)

where m and n index the two dimensions of the original signal, and u, v index the second
signal. However, when considering convolutions applied on images, the input is no longer
(−∞,∞). The input is bound to finite numbers, i.e., size of the input images and associated
filters.

2.2.2 Activation Function

Activation functions are responsible for inducing non-linear properties in neural networks.
These functions are responsible in deciding whether a neuron should be fired or not i.e. to
see if the information from the previous neuron is relevant or not. Usually an activation
function is applied to the linear output of every convolution to prevent the network from
collapsing to a single layer. As shown below, we multiply the input I with the weight W
of the neuron, add the bias b, and then apply a particular activation function σ (non-linear
function). The transformed output O is then sent to the next layer.

O = σ(W ∗ I + b). (2.3)

Some of the popular activation functions are: sigmoid, tanh and ReLU (rectified linear
unit).While tradionally in past, neural networks have used tanh, and sigmoid as activation
functions, many of the state-of-the art networks are now using Rectified Linear Units
(ReLU).

ReLU consists of a maximum operator, that takes an input x and if x > 0, lets the
information/signal pass through it as seen in the equation below.

R(x) = max(x, 0). (2.4)

As the ReLU activation function, doesn’t constrain the input into a set fixed upper
bound unlike sigmoid and tanh, it helps in avoiding and rectifying the vanishing gradient
problem.
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2.2.3 Pooling Layer

Pooling layer is generally applied after convolution and non-linear activation layers or
functions. Pooling layer in a CNN architecture is responsible for reducing the spatial size
of the feature maps at a given layer. In the spatial reduction process, local regions (window
size) of the previous layers are replaced with statistics that summarize the neighbouring
outputs, meaning the size of every input region and eventually the input feature map is
spatially reduced. The spatial reduction is usually done using one of the two operations:
max or average. In the max-pooling operation, pooling is done over a window as shown in
Fig 2.1, and the maximum activation value of the a window size is selected.

5
4
3
0 2 2 3

2
2
42 2

1
13

1 5
3

4
3

2x2
Max Pool

Figure 2.1: Example of max-pooling using a 2x2 stride.

Mathematically, the same can be expressed by considering a pooling layer with square
input matrix of size Min, which outputs a square matrix of size Mout. Assuming choosing
a stride that leads to no overlapping of filters, the input is divided into pooling regions pi,j
of a stride of size k × l.

Max pooling than becomes a max operation applied element wise to given region, and
tiled across the feature map with the given stride.

Mout = max(k,l)∈pi,jMin. (2.5)

Here, k, l is the stride, where usually k has the same value as l.

In average pooling, the average of the activation values in the window is used. The
pooling operation is also done to decrease the computational power required to process
the data through dimensionality reduction and also to propagate only most dominant and
relevant information further down the network.
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Most commonly, max pooling is used over average pooling in various modern CNN
architectures.

Unpooling
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Figure 2.2: Example of Unpooling using a 2x2 stride.

In the above part we described the pooling operation. In this thesis, presented methods
also use an operation known as “unpooling”. Hence, we describe it in detail here.

As explained above, in the forward pass, for the max-pooling operation we choose a widow
stride. Then, we choose the max value in that window to create a max-pooled output. In
the unpooling operation, two additional operations are done. First, in the forward pass,
we save the location of the max-values as a binary “switch” matrix. In the backward pass,
we just the replace the open “switch” values at layer l from the values of layer l + 1. An
example of this is shown in Fig. 2.2
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2.2.4 Batch-Normalization Layer

Batch normalization (BN) layer [51] normalizes the output of the previous layer (x) by
subtracting the mean (µ) from the output and dividing it with the standard deviation of
the output matrix (σ2) for a given batch (b). Similar to the seminal paper on BN [51],
mathematically for a batch (b) with k examples, it can be expressed as:

µb ←−
1

k

k∑
i=1

xi ; σ2
b ←−

1

k

k∑
i=1

(xi − µb)2 (2.6)

x̂i ←−
xi − µb√
σ2 + ε

(2.7)

For better optimization, a shift (α) and scale factor (β) is applied (the two trainable
parameters) at the end after the normalization operation.

oi ←− αx̂i + β (2.8)

2.2.5 Dropout

Dropout’s idea is based on probability. The method temporarily “drops out” certain neu-
rons during training of the neural network. Mathematically, we use a probability p, to
select whether to drop a neuron temporarily. Usually the value range for p varies from
0.25− 0.5. During inference, dropout is disabled.

2.2.6 Fully Connected (FC) Layer

Fully Connected (FC) layers are generally used closer to the output layer to capture global
context and model high-level concepts. In a fully connected layer, as the name suggest,
each neuron in the previous layer is connected to the every neuron in the next layer. This
layer can be realised as a matrix multiplication and adding of a bias term. Consider a
neural network with L hidden layers expressed in matrix form:

Ol = σl(WlIl−1 + bl). (2.9)
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Here, l is a particular layer in the given network, Ol is the output of the layer l, σ is the
activation function, Wl is the weight matrix of the layer, Il−1 is the output of the previous
layer and bl is the bias.

There is another constituent layer or operation known as batch normalization in CNN.
As most of the methods described in the thesis work in the inference mode, where the
batch normalization operation parameters are fixed, hence it is not covered in detail here.

2.2.7 CNN Architecture

Combining the different components mentioned in the Sections above, we can obtain the
architecture as described in Fig. 2.3. In the given example, the architecture of the CNN
consists of three convolutional layers, two max pooling layers and two fully connected layers
in the end. Activation functions are assumed to be implicitly applied after each convolu-
tional operation, therefore not shown explicitly in the figure. For information processing,
first the input image is fed into the first convolutional layer. Where the convolutional filters
are applied to the different channels in the image, and summed up individually to form
feature maps equal to the number of convolutional filters in the given layer. Each map
is then passed first through activation function and then along the max-pooling layers.
This process is repeated two more times. After the last convolutional, the feature maps
outputs are flatten and then passed along to the fully connected layers. At the end, we
pass the obtained activations through classifier (such as softmax activation, for multi class
classification) to produce a prediction (such as a label here).

Max-
Pooling

Max-
Pooling

Conv
Layer

Conv
Layer

FC
Layer

FC
Layer

Cat

Input
Image

Figure 2.3: Example of CNN architecture design. Architecture of the deep convolutional
network here consists of 3 convolutional layers and 2 max pooling layers, and two fully
connected layers. The network takes an image as input (cat) and outputs a class label.
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2.3 Types Of Explanation Methods

The proposed thesis research aims to investigate both local and global approaches to get a
more comprehensive, well-rounded perspective of how deep neural networks make decisions.
There has been a significant body of work in recent years in the domain of local explanations
via visualizing and understanding CNNs from spatial-level support only. Also, as the thesis
aims at the shortcoming with the heatmap based spatial-level support approaches, hence
the literature pertaining to spatial support is described more in detail as compared to other
methods in this Chapter.

This literature can be broadly divided into two groups:

• Instance Based Methods: approaches that mainly focus on understanding the decision-
making process of trained networks for a specific instance [5,81,108,112,129,132,135].

• Global Understanding Based Methods: approaches that aim to understand the global
structure of a trained network and its internal working scenarios [6, 28, 38,127] .

Our presented work in Chapters 3, 4 and 5 can be considered as belonging to the first
category, while the human attribute based explainability framework in Chapter 6 relates
to the second category. Hence, we focus on approaches belonging to both categories and
discuss relevant work pertaining to both groups. To follow the chronological order of the
types of methods, we first present works related to local explainability and then briefly
mention the few recent approaches belonging to second category as well.

2.4 Local Explanations via Instance-Based Methods

These methods are based on interpreting individual decisions made by a trained CNN for
a particular image instance. This approach can also be known as post-hoc interpretability.
Even though these approaches don’t exactly elude to how a model works, they nonetheless
provide useful information to the end user of the model. One of the major advantages of
these approaches for interpretability is that we can interpret opaque models after-the-fact
without sacrificing predictive performance [72].

Instance-based methods can be further divided into two categories, visualization via
propagation methods and text explanation methods. These methods are explained below.
It is important here to point out that all of the proposed approaches in this thesis belongs
to visualization via propagation methods, hence they are explained in more detail.
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2.4.1 Visualization via Propagation Based Methods

Approaches in this category use variants of either back-propagating or forward propagating
information to create visualization maps. Such approaches use trained network structure
itself for their visualizations. The common factor between different methods in this ap-
proach is that each method finds the contribution of each pixel in the input image by
starting at an activation of interest in a particular layer of a network and then iteratively
computing the contributions of each unit in the lower layer to that activation. This way,
by moving backwards through the network from a particular unit to the input image, the
contribution level of each pixel in the input image can be obtained leading to the creation
of a visualization of the most attentive features that are most relevant to the activation of
interest.

One of the first methods in this category was proposed by Simonyan et al. in [108]. The
authors used back-propagated partial derivatives of the class score with respect to pixel
values while masking out the negative entries in the feature maps to create class saliency
maps. The authors reason that the derivative of the class score in the input space defines
the relative importance of the input pixels for the resulting class score. From a different
angle, this process is equivalent to finding pixels that if changed even slightly can produce
a large effect on the final class score values. The underlying assumption is that the pixels
constituting the objects are far more important than the pixels from unrelated objects or
parts of an image.

Zeiler & Fergus [129] proposed a deconvolution-based method to project the activations
from feature space back to the input space (pixels) recursively. Deconvolution networks,
initially proposed for unsupervised training of CNNs were shown by Zeiler & Fergus that
they can also be used to reverse the external stimuli to show which pattern and pixels
in the input image are responsible for observed activations or output. Given a high level
feature map in a layer, the deconvnet approach inverts the data flow of the given CNN for
a particular unit in the layer. This is done by making all the units except the one we are
interested in zeros. It results in a visualization map showing which regions in the image
are mostly activating that particular unit. Also, in order to deal with max-pooling layers,
that are not invertible, the authors first do a forward pass to compute switches which are
binary maps with positions of maxima within each pooling region. These switches are then
used in the backward pass to obtain discriminative reconstruction. This process is usually
known as unpooling as explained in Section 2.2.3.

Springenberg et al. [112] provided another gradient-based visualization method, which
builds upon the work of [108] and [129]. The method presented by Springenberg et. al.
is mostly similar to [108] and [129] except how data goes through the non-linear ReLU

18



1 5 -2

6 -3 2

-1 2 -1

1 -1 2

5 -2 4

-2 3 -1

1 5 0

6 0 2

0 2 0

1 -1 2

5 -2 4

-2 3 -1

1 -1 2

5 -2 4

-2 3 -1

1 -1 0

5 0 4

0 3 0

1 0 2

5 0 4

0 3 0

1 0 0

5 0 4

0 3 0

where

activation:

backpropagation:

deconvolution:

guided 
backpropagation:

Figure 2.4: Different methods of back propagating through ReLU non-linearity along with
the formal formulation for propagating an output back through a ReLU unit in layer l.
Here, f is the feature map in the forward pass and R is the reconstructed feature map in
the backward pass.

function in the backward pass and the fact that the authors used a network without
max-pooling. The authors called this approach guided backpropagation. The deconvnet
approach is equivalent to a backward pass through the network, except that when propa-
gating through a non-linearity, its gradient is solely computed based on the top gradient
signal, ignoring the bottom-up input. In the case of the ReLU non-linearity this amounts
to setting to zero certain entries based on the top gradient. Rather than masking out
values corresponding to negative entries of the top gradient (deconvnet) or bottom data
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(back-propagation), guided back-propagation masks out the values for which at least one
of these values is negative. This process is explained in equations 2.1-2.4 and Fig 2.5. This
leads to sharper visualizations. The guided propagation approach also strongly shows the
efficacy of networks with global average pooling for image classification and visualization
for interpretability.

Activation : f l+1
i = ReLU(f li ) = max(f li , 0). (2.10)

Backpropagation : Rl
i = (f li > 0).Rl+1

i ;Rl+1
i =

∂f out

∂f l+1
i

. (2.11)

Deconvolution : Rl
i = (Rl+1

i > 0).Rl+1
i . (2.12)

Guided Backpropagation : Rl
i = (f li > 0).(Rl+1

i > 0).Rl+1
i . (2.13)

In the above equations, Rl
i is the response at the lth of given network, and Rl+1

i is the
response from the layer ahead of lth layer. f l is the feature map out for filter at lth layer.

However, the above mentioned methods did not provide any meaning to the assignments
other than that they should form a coherent set of interpretable pixels that are responsible
for certain outputs.

To visually discern unique features for a particular category of image, Zhou et. al. [132]
created a Class Activation Map (CAM) using CNNs with a global average pooling layer.
This class activation map was also used for localizing objects within the image as shown
in Fig 2.6. The CAM indicates the discriminative regions in the input image used by a
CNN to classify the image with respect to a particular category. Zhou et. al. added one
more additional layer between GAP layer and softmax to learn weights associated with a
particular class in the all convolutional layers. Using CAMs as a prior, the authors were
also able to improve localization accuracy.

Recently Selvaraju et.al [99] proposed a method known as Grad-CAM in which the
authors combined the guided-backpropagation [112] and Class Activation Map (CAM)
methods [132] to weight the visualization maps provided by the CAM method with the
gradients provided by guided backpropagation.

Also, some other related works in this area include Bach et al. [5] and Montavon et
al. [81] which aimed at finding a general approach to visualize non-linear classifiers, leading
to interesting heatmap generation. Recently, similar to the occlusion-based methodology
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Figure 2.5: Different methods for creating visualization maps [40]. The figure shows the
visualization maps and original images. All images were classified correctly.

for creating heatmaps in [129], Zintgraf et al. [135] proposed a method based on multivariate
conditional sampling over image patches to visualize and interpret individual decisions of
CNNs as binary saliency maps to represent information that contributes for or against
the decision. This technique extends upon the work of Robnik-Sikonja & Kononenko [92]
converting it from a univariate approach to a multivariate one.

In our work (Chapter 5), instead of only obtaining feature maps, we attribute meaning
to each pixel in the back-projected response in the input space using a class-based approach.
Also, unlike [5, 81] or [135], that provide heatmaps or binary heatmaps for correctly
classified samples, we create CLEAR maps that are more interpretable (Fig. 5.5) for both
correctly or misclassified cases. Finally, compared to the per-class maps created in [132],
CLEAR maps show multiple class-specific contributions at once.
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Figure 2.6: Class activation map example.

2.4.2 Text Based Local Explanations

Humans generally provide explanations using words. Using this motivation, Krening
et.al. [59] used a two network approach where a CNN was used for prediction and a second,
recurrent neural network was used to generate text based explanations. These explanations
are trained to maximize the likelihood of previously observed ground truth explanations
from humans.

In recommender systems, McAuley & Leskovec [78] used text to explain the decisions
of the latent factor. The authors used simultaneous training of a latent factor model for
ranking and a topic model over product reviews. Park et. al. [87] used an attention based
VQA model to provide explanation for human activities. Recently, Selvaraju et.al. [99] also
provided a VQA model with their Grad-CAM method to provide text based explanations
for instances.

2.5 Global Explanations Based Methods

Many methods in this domain try to understand the decision-making process of deep
networks by measuring their operating characteristics; for example, finding an input that
maximizes the response of a particular neuron [28], measuring the network’s invariance to
certain kinds of data augmentation [38], or determining global decision structure [6]. Other
methods seek to find image instances from a database that maximally activate particular
neurons or the posterior class probability of a given network [127].
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Recently, there has been an emerging line of research in the sub-field of global expla-
nations methods based on human concepts. In this line of research, the aim is to provide
explanations in terms of human understandable high level “concepts” instead of providing
justifications for a given instance via feature based visualization methods (explained in in-
stance based methods above). As this is an emerging sub-field, only a handful of research
studies have been published so far. In Zhou et. al. [8], authors created a database of 1200
odd pre-defined concepts for generic natural images. Using the database, they evaluated
specific nodes in deep neural networks to probe which concept do each of the specific node
respond to. This is an important starting point, but this requires a large fixed database
of concepts, which is difficult to adopt for various other specialized domains such as med-
ical imaging. Kim et. al. [57] introduced another method known as TCAV, where they
use human provided concepts for each instance and test the sensitivity of prediction with
respect to the given concept. For example, how sensitive a prediction of “zebra” is to the
presence of the concept of stripes. One of the major shortcomings of this method is that
the human user needs to provide concepts for each given instance (image in this case). The
same has been pointed out in their later work in [34]. In [34], the authors proposed to use
an automated method to discover different levels of concepts for a given neural network.
The proposed Automated Concept Explanation (ACE) method uses three different levels
of super-pixel segmentation to get “important” parts of a given image and then use the
trained neural network for discovering concepts. This is an interesting approach in au-
tomating concept discovery. However, in this approach there is still a considerable amount
of subjectivity involved with regards to the discovered concepts as the human expert still
needs to go through the discovered concept and try to understand what exactly has been
discovered. This defeats the purpose of automated concept discovery as the human expert
is the end-user and she/he still needs to approve the discovered concept. Also, though
the ACE approach works well, it cannot be used explicitly to compare different trained
networks as the concepts are discovered uniquely to a given network.

To overcome some of above mentioned challenges, in Chapter 6 we provide a framework
with human attribute prior based concept explanation method. In our proposed method,
the human expert uses few exemplar images for a given class to define “concepts” specific for
their domain. Using the defined concepts, the proposed method automatically evaluates if
the predictions being made by given neural network for a specific class is based on human
expert defined concepts or not. In the Chapter, we also present arguments on how the
proposed approach can be used to provide a quantitative metric to explanations and in
theory can be used to evaluate and compare different trained neural networks and various
local instance based visualization methods.
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2.6 Summary

In the present Chapter, we covered some of the recent and relevant work in the field
of explainability for both local and global explanations. In Chapter 3, we will go into
detail regarding some of the shortcomings of current heatmap based (visualization) local
explainability methods. This includes the scenarios where the current heatmap-based
approaches fail and how through an introduction of layer wise response method, we can
solve some of the shortcomings. Experiments using three different datasets are provided
in Chapter 3 to introduce the shortcomings of the current methods and present solutions
for some of them.
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Chapter 3

Domain Knowledge Based
Architecture Design Using Attentive
Response Maps

At the same time, Deep Patient is a bit puzzling. It appears to anticipate the onset of
psychiatric disorders like schizophrenia surprisingly well. But since schizophrenia is no-
toriously difficult for physicians to predict, Dudley wondered how this was possible. He
still doesn’t know. The new tool offers no clue as to how it does this. If something like
Deep Patient is actually going to help doctors, it will ideally give them the rationale for its
prediction, to reassure them that it is accurate and to justify, say, a change in the drugs
someone is being prescribed. “We can build these models,” Dudley says ruefully, “but we
don’t know how they work.”

- “The Dark Secret at the Heart of AI”, Wired Magazine, 2017
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Prologue to Articles

The Chapter borrows contribution from two different papers, details of which are mentioned
below.

3.0.1 Article Details

Insightful classification of crystal structures using deep learning, A. Ziletti, D.
Kumar, M. Scheffler, L. M. Ghiringhelli, Nature Communications, Vol. 9(1), p.2775, 2018

Understanding anatomy classification through attentive response maps, D. Ku-
mar, V. Menkovski, G. W. Taylor, A. Wong, IEEE 15th International Symposium on
Biomedical Imaging (ISBI), 2018

Personal Contribution For the second paper, I devised the study on the x-ray human
anatomy medical image dataset, and conducted various experiments to explore the signifi-
cance of attention maps beyond individual node outputs and wrote the manuscript. After
our first work, I was invited to work with physicists at FHI, Berlin. For this work, I wrote
the code for the visualization and the initial code for training the CNN model used in this
study. Dr. Angelo Zilleti was the lead on acquiring the data, study setup and eventually
making the graphs and visualization from my code more presentable. He also wrote most
of the manuscript, except the parts related to explainability.

3.0.2 Context

The idea of working on explainable AI (XAI) came up during my internship at Philips
Research at their HQ in Eindhoven, Netherlands. At that time, there was very limited work
being done in the XAI domain. Realizing its potential impact and with motivation from a
mentor at Philips research, I decided to work in this field. As the attentive visualization
methods were the first forayed direction in this area, I decided to pursue the same. First,
under the guidance of my mentor at Philips research, Dr. Vlado Menkovskiv (now a Prof.
at TU Eindhoven), and later with my PhD supervisors, we decided to first explore how
attentive methods could be leveraged to understand the learning process of deep neural
networks. Later, I collaborated with physicists on a similar study for crystal structure
classification. I was invited by physicists at FHI, Max Plack, Berlin, who were impressed
by our first study and wanted to explore it for their new material discovery project known
as NOMAD.
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3.0.3 Contribution

In our human anatomy study, we explore and show case how attention maps can be formed
beyond individual neurons to understand the neural network’s decision process. We present
experimentation to show where in the training process does the hierarchy of features emerge
and at which stage do neural networks start to use landmarks that correlate with human
domain knowledge.

Most of the current methods in the crystal structure identification study fail on slight
noise/imperfect data and require a tolerance threshold to produce coherent results. Our
procedure does not require any tolerance threshold, and it is very robust to defects (even
at defect concentrations as high as 40%). First, we introduce a way to represent crystal
structures (by means of images, i.e. two-dimensional maps of the three-dimensional crystal
structures, see below), then we present a classification model based on convolutional neural
networks, and finally we unfold the internal behavior of the classification model through
visualization. An interactive online tutorial for reproducing the main results of this work
is also provided to further the development of advanced methods in this field.

The articles used in this Chapter have gained a total of 67 citations to date (based on
Google Scholar).
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3.1 Introduction

The previous Chapter outlaid various attention based visualizations for explaining local
predictions for deep neural networks. However there are various shortcomings associated
with such methods, some of which are listed below:

• These methods only convey the attentive region for individual nodes in a particular
layer. A holistic layer wise representation is absent.

• No additional information is provided for the attentive regions such as how the at-
tentive regions relate to human domain expertise.

• No information is shown regarding how the learning process of neural networks
changes with or during training and how it relates to human domain expertise.

• There is a lack of overall end-to-end explanations that are provided with these meth-
ods.

To overcome some of the challenges and shortcomings mentioned above, in this Chapter
we introduce the concept of attention response maps. First, we show how attention maps
can be used to form an interpretability response as attentive regions for any convolutional
layer in a given CNN. We then relate these attentive regions used by deep neural networks
for making decisions to the human domain expertise through various carefully designed
experiments and ablation studies. Along with this, we also conduct experiments to show
where in the training process of such neural network’s learning process does the hierarchy of
features emerge and at which stage of training, do neural networks start to use landmarks
that correlate with human domain knowledge.

In the following sections, we first lay out the basic framework and formulation for
forming the attentive response maps for any given convolutional layer for a trained network.
We then show the relevance of attentive regions through two different experimental design
studies to show the efficacy of the proposed framework.

3.2 Methodology - Attention Maps Formation

This section presents the generic framework and formulation of the attentive response maps
for any convolution layer in a CNN. The below mentioned formulation is then applied to
two different studies that deal with classification experiments as explained in detail by
their respective experiments section later in the Chapter.
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3.2.1 Formulation

To explain the formulation of the attentive response maps, first consider a single layer of a
CNN. Let ĥl be the deconvolved output response of the single layer l with n unit weights
w. The deconvolution output response at layer l then can be then obtained by convolving
each of the feature maps zl with unit weights wl and summing them as:

ĥl =
∑n

k=1 zk,l ∗ w′k,l. Here ∗ represents the convolution operation. For notational
brevity, we can combine the convolution and summation operation for layer l into a single
convolution matrix Gl. Hence the above equation can be denoted as: ĥl = Glzl.

For multi-layered CNNs, we can extend the above formulation by adding an additional
un-pooling operation U as described in Section 2.2.3 and [129]. Thus, we can calculate
the deconvolved output response from feature space to input space for any layer l in a
multi-layer network as:

Rl = G1U1G2U2 · · ·Gl−1Ul−1Glzl. (3.1)

For attentive response maps, we specifically calculate the output responses from indi-
vidual units of the last conv. layer of a network. Hence, given a network with last layer
L containing n top activated units, we can calculate the attentive response map; R(x|f)
(where x denotes the response back-projected to the input layer, and thus an array the
same size as the input) for any unit f (1 ≤ f ≤ n) in the last conv layer as:

R(x|f) = G1U1G2U2 · · ·GL−1UL−1G
f
LzL. (3.2)

Here Gf
L represents the convolution matrix operation in which the unit weights wL are

all zero except that at the f th location.

Given the set of individual attentive response maps, we then compute the dominant at-
tentive response map, D̂(x), by finding the value at each pixel that maximizes the attentive
response level, R(x|f), across all top n units:

D̂(x) = argmax
f

R(x|f). (3.3)

The above formulation is used to form attentive response maps for two different studies
namely crystal structure classification and human anatomy classification. We first present
the whole experimental design, formulation and results pertaining to the crystal structure
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classification study, make some observations and then proceed to the human anatomy
classification study to show how the learning process of the network changes with the
change in architecture. We then show how deep neural networks with sufficient depths
use the same landmarks as human experts. We further solidify our observations in both
classification scenarios by using carefully designed ablation experiments.

3.3 Experiments- Crystal Structures Classification

3.3.1 Motivation

Crystals play a crucial role in materials science. In particular, knowing chemical composi-
tion and crystal structure - the way atoms are arranged in space - is an essential ingredient
for predicting properties of a material [15, 30, 86]. Indeed, it is well-known that the crys-
tal structure has a direct impact on materials properties [84]. Just to give a concrete
example: in iron, carbon solubility (important for steel formation) increases nearly forty
times going from body-centered-cubic (bcc) α-Fe (ferrite) to face-centered-cubic (fcc) γ-Fe
(austenite) [110]. From the computational point of view, identification of crystal symme-
tries allows, for example, to construct appropriate k-point grids for sampling, generate
paths between high-symmetry points in band structure calculations, or identify distortions
for finite-displacement calculations.

Given the importance of atomic arrangement in both theoretical and experimental
materials science, an effective way of classifying crystals is to find the group of all trans-
formations under which the system is invariant; in three-dimensions, these are described
by the concept of space groups [43]. Currently, to determine the space group of a given
structure, one first determines the allowed symmetry operations, and then compares them
with all possible space groups to obtain the correct label; this is implemented in exist-
ing symmetry packages such as FINDSYM [115], Platon [111], Spglib [27, 39], and most
recently the self-consistent, threshold-adaptive AFLOW-SYM [47]. For idealized crystal
structures, this procedure is exact. But in most practical applications atoms are displaced
from their ideal symmetry positions due to (unavoidable) intrinsic defects or impurities or
experimental noise. To address this, thresholds need to be set in order to define how loose
one wants to be in classifying (namely, how much deviation from the ideal structures is
acceptable); different thresholds may lead to different classifications (see for instance Ta-
ble 3.2). So far, this was not a big problem because individual researchers were manually
finding appropriate tolerance parameters for their specific dataset.
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However, our goal here is to introduce an automatic procedure to classify crystal struc-
tures starting from a set of atomic coordinates and lattice vectors; this is motivated by
the advent of high-throughput materials science computations, thanks to which millions
of calculated data are now available to the scientific community (see the Novel Materials
Discovery (NOMAD) Laboratory [23] and references therein). Clearly, there is no univer-
sal threshold that performs optimally (or even sub-optimally) for such a large number of
calculations, nor a clear procedure to check if the chosen threshold is sound. Moreover,
the aforementioned symmetry-based approach fails - regardless of the tolerance thresholds
- in the presence of defects such as, for example, vacancies, interstitials, antisites, or dis-
locations. In fact, even removing a single atom from a structure causes the system to lose
most of its symmetries, and thus one typically obtains the (low symmetry, e.g. P1) space
group compatible with the few symmetry operations preserved in the defective structure.
This label - although being technically correct - is practically always different from the
label that one would consider appropriate (i.e. the most similar space group, in this case
the one of the pristine structure). Robustness to defects, however, is paramount in local
and global crystal structure recognition. Grain boundaries, dislocations, local inclusions,
and in general all crystallographic defects can have a large impact on macroscopic materi-
als properties (e.g. corrosion resistance [24, 97]). Furthermore, atom probe tomography -
arguably the most important source of local structural information for bulk systems - pro-
vides three-dimensional atomic positions with an efficiency up to 80% [32] and near-atomic
resolution; which, on the other hand, means that at least 20% of atoms escaped detection,
and the uncertainty on their positions is considerable.

Here, we propose a procedure to efficiently represent and classify potentially noisy and
incomplete three-dimensional materials science structural data according to their crystal
symmetry (and not to classify x-ray diffraction images, or powder x-ray diffraction data
[88]). These three-dimensional structural data could be for example atomic structures
from computational materials science databases, or elemental mappings from atom-probe
tomography experiments. Our procedure does not require any tolerance threshold, and it
is very robust to defects (even at defect concentrations as high as 40%). First, we introduce
a way to represent crystal structures (by means of images, i.e. two-dimensional maps of
the three-dimensional crystal structures, see below), then we present a classification model
based on convolutional neural networks, and finally we unfold the internal behavior of the
classification model through visualization. An interactive online tutorial for reproducing
the main results of this work is also provided [134].
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Figure 3.1: The model workflow of automatic crystal-structure classification. First, ev-
ery crystal structure is represented by its two-dimensional diffraction fingerprint. Then, a
small subset of these structures is used as training set to generate a classification model.
In particular, a convolutional neural network is used, and optimized by minimizing the
training set classification error. However, this is in general not enough to have a sound
and generalizable model. Thus, we unfold the neural network internal operations by vi-
sualization, and ensure that the model arrives at its classification decision on physically
motivated grounds. Finally, a classification model is deployed, and crystal structures can
be directly and efficiently classified without any additional model optimization.
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3.3.2 Dataset Explanation

Our pristine dataset consists of materials from the AFLOWLIB elemental solid database
[16] belonging to centrosymmetric space groups which are represented with more than 50
configurations in the database. Specifically, we extract structures that have a consistent
space group classification for different symmetry tolerances. This gives us crystal struc-
tures belonging to the following space groups: 139 (bct), 141 (bcc), 166 (rh), 194 (hex),
221 (sc), 225 (fcc), 227 (diam), and 229 (fct). From this, we apply the defective trans-
formations (random displacements, vacancies, and chemical substitutions) to the pristine
structures; the resulting dataset is used as a test set. For this defective dataset we use
labels from the pristine structures because the materials’ class will unlikely be changed
by the transformations above. To quantify this, let us consider the transformation of bcc
into sc crystals for the case of random vacancies as an illustrative example. As stated, sc
structure can be obtained removing all atoms laying at the center of the bcc unit cell (see
Fig.3.2b). Therefore, for a structure comprising N atoms, one needs to remove exactly
the N/2 atoms which are at the center of the cubic unit cell (note that each corner atom
is shared equally between eight adjacent cubes and therefore counts as one atom). For
N/2 randomly generated vacancies, the probability of removing all and only these central

atoms is PN = 2
[(

N
N/2

)]−1
which - for the structure sizes considered in this work - leads to

negligible probabilities (P64 ≈ 10−18, P128 ≈ 10−38). The same holds for chemical substitu-
tions: even if in principle they could change the space group (e.g. diamond to zincblende
structure), the probability of this happening is comparable with the example above, and
therefore negligible. Finally, in the case of displacements, atoms are randomly moved about
their original positions, and due to this randomness it is not possible to obtain any long-
range re-organization of the crystal, necessary to change the materials’ class; moreover, for
large displacements, the system becomes amorphous (without long-range order).

3.3.3 Experiment Design

Neural network architecture and training procedure

The architecture of the convolutional neural network used in this work is detailed in Table
3.1. Training was performed using Adam optimization with batches of 32 images for 5
epochs with a learning rate of 10−3, and cross-entropy as cost function.
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Layer type Specifications

Convolutional Layer (Kernel: 7x7; 32 filters)
Convolutional Layer (Kernel: 7x7; 32 filters)
Max Pooling Layer (Pool size: 2x2, stride: 2x2)
Convolutional Layer (Kernel: 7x7; 16 filters)
Convolutional Layer (Kernel: 7x7; 16 filters)
Max Pooling Layer (Pool size: 2x2, stride: 2x2)
Convolutional Layer (Kernel: 7x7; 8 filters)
Convolutional Layer (Kernel: 7x7; 8 filters)
Fully connected Layer + Dropout (Size: 128; dropout: 25%)
Batch Normalization (Size: 128)
Softmax (Size: 7)

Table 3.1: Architecture of the convolutional neural network used in this work.

3.3.4 Results

For the sake of completeness, we first present the results associated with how to represent
a material and obtain the various crystal structure figures used in the study succinctly.

How to represent a material

The first necessary step to perform any machine learning and/or automatized analysis on
materials science data (see Fig. 3.1) is to represent the material under consideration in a
way that is understandable for a computer. This representation termed as “descriptor” [33]
should contain all the relevant information about the system needed for the desired learning
task.

In the case of crystal-structure recognition, it is essential that the descriptor captures
the system’s symmetries in a compact way, while being size-invariant in order to reflect
the infinite nature of crystals. Periodicity and prevailing symmetries are evident and more
compact in reciprocal space, and therefore we introduce an approach based on this space.
Details of how the representation is formed are explained in Appendix A.1

However, a disadvantage of the two-dimensional diffraction fingerprint (as shown in
Fig 3.2) is that it is not unique across space groups. This is well-known in crystallography:
the diffraction pattern does not always determine unambiguously the space group of a
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Figure 3.2: The two-dimensional diffraction fingerprint. (a) Schematic representation of
the two-dimensional diffraction fingerprint calculation. An incident plane wave is scat-
tered by the material, and the diffraction pattern on a plane perpendicular to the incident
radiation is computed. (b) Prototypes of the crystal classes considered in this work. (c)
Examples of two-dimensional diffraction patterns for materials belonging to each of the
eight classes. The ordering is the same as b. Rhombohedral and hexagonal structures have
the same two-dimensional diffraction fingerprint.(d)-(e)-(f) A pristine simple-cubic struc-
ture (d), the same structure with 25% of vacancies (e), and with atoms displaced randomly
according to a Gaussian distribution with standard deviation of 0.08 Å (f), together with
their diffraction fingerprints. (g) (h) Difference between the diffraction fingerprints of the
defective e-f and the pristine structure d.
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crystal. This is primarily because the symmetry of the diffraction pattern is not necessar-
ily the same as the corresponding real-space crystal structure; for example, Friedel’s law
states that if anomalous dispersion is neglected a diffraction pattern is centrosymmetric,
irrespective of whether or not the crystal itself has a centre of symmetry. Thus, the diffrac-
tion fingerprint DF cannot represent non-centrosymmetric structures by construction. The
non-uniqueness of the diffraction pattern I (q) across space groups also implies that crystal
structures belonging to different space groups can have the same diffraction fingerprints.
Nevertheless, from Fig. 3.2c we notice that out of the eight crystal structure prototypes
considered (covering the large majority of the most thermodynamically stable structures
formed in nature by elemental solids, only the rhombehedral and hexagonal structures
whose real-space crystal structures are quite similar have the same two-dimensional diffrac-
tion fingerprint.

The classification model

Having introduced a way to represent periodic systems using scattering theory, we tackle
the problem of their classification in crystal classes based on symmetries. A first (and
naive) approach to classify crystals - now represented by the diffraction descriptor DF -
would be to write specific programs that detect diffraction peaks in the images, and classify
accordingly. Despite appearing simple at first glance, this requires numerous assumptions
and heuristic criteria; one would need to define what is an actual diffraction peak and what
is just noise, when two contiguous peaks are considered as one, how to quantify relative peak
positions, to name but a few. In order to find such criteria and determine the associated
parameters, one in principle needs to inspect all (thousands or even millions of) pictures
that are being classified. These rules would presumably be different across classes, require
a separate and non trivial classification paradigm for each class, and consequently lead to
a quagmire of ad-hoc parameters and task-specific software. In addition, the presence of
defects leads to new peaks or alters the existing ones (see Fig. 3.2g and 3.2h), complicating
matters even further. Thus, this approach is certainly not easy to generalize to other
crystal classes, and lacks a procedure to systematically improve its prediction capabilities.

However, it has been shown that all these challenges can be solved by deep-learning
architectures [68, 98]. These are computational non-linear models sequentially composed
to generate representations of data with increasing level of abstraction. Hence, instead of
writing a program by hand for each specific task, we collect a large amount of examples that
specify the correct output (crystal class) for a given input (descriptor image DF), and then
minimize an objective function which quantifies the difference between the predicted and
the correct classification labels. Through this minimization, the weights (i.e. parameters)
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Figure 3.3: Schematic representation of the convolutional neural network (ConvNet) used
for crystals classification. (a) A learnable filter (also called kernel) is convolved across
the image, and the scalar product between the filter and the input at every position is
computed. This results in a two-dimensional activation map (in red) of that filter at each
spatial position, which is then passed through a rectified linear unit (ReLu). (b) The same
procedure as point a is applied to this activation map (instead of the original image), pro-
ducing another activation map (in purple). (c) A down-sampling operation (in blue) is
performed to coarse-grain the representation. Six convolutional and two down-sampling
(max-pooling) layers are stacked sequentially (see Methods for additional details). (d) The
output of the convolutional/down-sampling layers sequence is passed to fully-connected lay-
ers (regularized using dropout) to complete the classification procedure. (e) The ConvNet
outputs the probabilities that the input image, and therefore the corresponding material,
belongs to a given class. Minimizing the classification error, the above-mentioned filters
are learned - through back-propagation - and they will activate when a similar feature (e.g.
edges or curves for initial layers, and more complex motifs for deeper layers) appears in
the input.

of the neural network are optimized to reduce such classification error [48, 49]. In doing
so, the network automatically learns representations (also called features) which capture
discriminative elements, while discarding details not important for classification. This
task known as feature extraction usually requires a considerable amount of heuristics and
domain knowledge, but in deep learning architectures is performed with a fully automated
and general-purpose procedure [68]. In particular, since our goal is to classify images,
we use a specific type of deep learning network which has shown superior performance
in image recognition: the convolutional neural network (ConvNet) [61, 69]. A schematic
representation of the ConvNet used in this work is shown in Fig. 3.3.
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As detailed in Chapter 2, CNNs are inspired by the multi-layered organization of the
visual cortex: filters are learned in a hierarchical fashion, composing low-level features
(e.g. points, edges or curves) to generate more complex motifs. In our case, such motifs
encode the relative position of the peaks in the diffraction fingerprint for the crystal classes
considered, as we will show below.

The model performance

For every calculation in the AFLOWLIB elemental solid database [16], we determine its
space group using a symmetry-based approach [27,39] as implemented by the Spglib code.
We then extract all systems belonging to centrosymmetric space groups which are repre-
sented with more than 50 configurations. This gives us systems with the following space
group numbers: 139, 141, 166, 194, 221, 225, 227, and 229. For the case of elemental solids
presented here, these space groups correspond to body-centered-tetragonal (bct, 139 and
141), rhombohedral (rh, 166), hexagonal (hex, 194), simple cubic (sc, 221), face-centered-
cubic (fcc, 225), diamond (diam, 227), and body-centered-cubic (bcc, 229) structures.
This represents a rather complete dataset since it includes the crystal structures adopted
by more than 80% of elemental solids under standard conditions. It is also a challeng-
ing dataset because it contains 10, 517 crystal structures comprising 83 different chemical
species, cells of various size, and structures that are not necessarily in the most stable
atomic arrangement for a given composition, or even at a local energy minimum. This last
point in particular could potentially be a problem for the symmetry-based approach: when
crystals are not in a perfect arrangement, it can fail in returning the correct labels. In fact,
if atoms are slightly displaced from their expected symmetry positions, the classification
could return a different space group because symmetries might be broken by this numerical
noise. To avoid this, we include in the pristine dataset only systems which are successfully
recognized by the symmetry-based approach to belong to one of the eight classes above,
thus ensuring that the labels are correct. We refer to the above as the pristine dataset;
the dataset labels are the aforementioned space groups, except for rh and hex structures,
which we merge into one class (hex/rh) since they have the same diffraction fingerprint
(see Fig. 3.2c).

We apply the workflow introduced here (and schematically shown in Fig. 3.1) to this
dataset. For each structure, we first compute the two-dimensional diffraction fingerprint
DF; then, we train the ConvNet on (a random) 90% of the dataset, and use the remaining
10% as test set. We obtain an accuracy of 100% on both training and test set, showing that
the model is able to perfectly learn the samples and at the same time is capable of correctly
classifying systems which were never encountered before. The ConvNet model optimization

38



R
an

d
om

D
is

p
la

ce
m

en
ts

(σ
)

V
ac

an
ci

es
(η

)
0.

00
1Å
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5Å

0.
01

Å
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(i.e. training) takes 80 minutes on a quad-core Intel(R) Core(TM) i7-3540M CPU, while
one class label is predicted - for a given DF - in approximately 70 ms on the same machine
(including reading time). The power of machine learning models lies in their ability to
produce accurate results for samples that were not included at training. In particular,
the more dissimilar test samples are from the training samples, the more stringent is the
assessment of the model generalization performance. To evaluate this, starting from the
pristine dataset, we generate heavily defective structures introducing random displacements
(sampled from Gaussian distributions with standard deviation σ), randomly substituting
atomic species (thus forming binaries and ternaries alloys), and creating vacancies. This
results in a dataset of defective systems, for some of which even the trained eyes of a
materials scientist might have trouble identifying the underlying crystal symmetries from
their structures in real space (compare for example, the crystal structures in Fig.3.2d with
3.2e and 3.2f).

As mentioned in the Introduction and explicitly shown below, symmetry-based ap-
proaches for space group determination fail in giving the correct (most similar) crystal
class in the presence of defects. Thus, strictly speaking, we do not have a true label with
which to compare. However, since in this particular case the defective dataset is generated
starting from the pristine, we do know the original crystal class for each sample. Hence,
to estimate the model generalization capability, we label the defective structures with the
class label of the corresponding pristine (parental) system. This is a sensible strategy given
that displacing, substituting or removing atoms at random will unlikely change the ma-
terials’ crystal class. Using the ConvNet trained on the pristine dataset (and labels from
the pristine structures), we then predict the labels for structures belonging to the defective
dataset. A summary of our findings is presented in Table 3.2, which comprises results for
10, 517× (6 + 4) = 105, 170 defective systems.

When random displacements are introduced, Spglib accuracy varies considerably ac-
cording to the threshold used; moreover, at σ ≥ 0.02 Å Spglib is never able to identify the
most similar crystal class, regardless of threshold used. Conversely, the method proposed in
this work always identifies the correct class up to σ as high as 0.06 Å. Similar are the results
for vacancies: Spglib accuracy is ∼ 0% already at vacancies concentrations of 1%, while
our procedure attains an accuracy of 100% up to 40% vacancies, and greater than 97%
for vacancy concentrations as high as 60% (Table 3.2). Since no defective structure was
included at training, this represents a compelling evidence of both the model robustness
to defects and its generalization ability.

If random changes will unlikely modify a crystal class, it is however possible to apply
targeted transformations in order to change a given crystal from one class to another.
In particular, starting from a bcc one can obtain a sc crystal removing all atoms at the
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Figure 3.4: Neural network predictions on structural transitions. (a)(b) Body-centered-
cubic (bcc) to simple cubic (sc) structural transition. (a) Examples of a bcc, an inter-
mediate bcc/sc, and a sc structure. (b) Distributions of classification probability for the
bcc (purple) and sc (red) classes as a function of the percentage of central atoms being
removed (see text for more details). The shaded area corresponds to a range of one stan-
dard deviation above and below these distributions. (c)(d) Structural transition: transition
path including rhombohedral, body-centered-cubic, simple-cubic and face-centered-cubic
structures.
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center of the bcc unit cell (Fig.3.2b, and 3.4a). We remove different percentages of central
atoms (from 0% to 100%, at 10% steps) from a subset of bcc structures in the pristine
dataset; this gives us a collection of structures which are intermediate between bcc and sc
by construction (see Fig. 3.4a center for a concrete example).

Let us now recall that the output of our approach is not only the crystal class, but also
the probability that a system belongs to a given class; this quantifies how certain the neural
network is regarding its classification. The probability of the aforementioned structures
being bcc (purple) or sc (red) according to our model are plotted in Fig.3.4b as function of
the percentage of central atoms removed (the shaded area indicates the standard deviation
of such distributions). This percentage can be seen as a order parameter of the bcc-to-sc
structural phase transition. If no atoms are removed, the structures are pure bcc, and
the model indeed classifies them as bcc with probability 1, and zero standard deviation.
At first, removing (central) atoms does not modify this behavior: the structures are seen
by the model as defective bcc structures. However, at 75% of central atoms removed, the
neural network judges that such structures are not defective bcc anymore, but are actually
intermediate between bcc and sc. This is reflected in an increase of the classification
probability of sc, a corresponding decrease in bcc probability, and a large increment in
the standard deviation of these two distributions. When all central atoms are removed,
we are left with pure sc structures, and the model classifies again with probability 1, and
vanishing standard deviation: the neural network is confident that these structures belong
to the sc class.

We conclude our model exploration applying the classification procedure to a structural
transition path encompassing rhombohedral, body-centered-cubic, simple-cubic and face-
centered-cubic structures. From the AFLOW Library of Crystallographic Prototypes, we
generate rhombohedral structures belonging to space group 166. To test our model on
this structural-transition path, we generate crystal structures, and use the neural network
trained above to classify these structures. The results are shown in Fig. 3.4d. Our approach
is able to identify when the prototype reduces to the high-symmetry structures mentioned
above (at µbcc, µsc, and µfcc), and also correctly classify the structure as being rhombohedral
for all other values of µ. This is indeed the correct behavior: outside the high symmetry
bcc/sc/fcc the structure goes back to hex/rh precisely because that is the lower symmetry
family (µ not equal to µbcc, µsc, or µfcc).

Opening the black-box using attentive response maps

Our procedure based on diffraction fingerprints and ConvNet correctly classifies both pris-
tine and defective examples but are we obtaining the right result for the right reason? And
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how does the ConvNet arrive at its final classification decision?

To answer these questions, we need to unravel the neural network’s internal opera-
tions; a challenging problem which has recently attracted considerable attention in the
deep learning community [129]. The difficulty of this task lies in both the tendency of
deep learning models to represent the information in a highly distributed manner, and the
presence of non-linearities in the network’s layers. This in turn leads to a lack of inter-
pretability which hindered the widespread use of neural networks in natural sciences: linear
algorithms are often preferred over more sophisticated (but less interpretable) models with
superior performance.

To shed light on the ConvNet classification process, we resort to visualization: using
the fractionally strided convolutional technique as formulated in Section 3.2, we back-
project attentive response maps (i.e. filters) in image space. Such attentive response maps
- shown in Fig. 3.5 - identify the parts of the image which are the most important in the
classification decision.

Figure 3.5: Visualizing the convolutional neural network (ConvNet) attentive response
maps. (a) Attentive response maps from the top four most activated filters of the first,
third and last convolutional layers for the simple-cubic class. The brighter the pixel, the
most important is that location for classification. Comparing across layers, we notice that
the ConvNet filters are composed in a hierarchical fashion, increasing their complexity
from one layer to another. At the third convolutional layer, the ConvNet discovers that
the diffraction peaks, and their relative arrangement, are the most effective way to predict
crystal classes. (b) Sum of the last convolutional layer filters for all seven crystal classes:
the ConvNet learned crystal templates automatically from the data.
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The top four most activated (i.e. most important) filters from the first, third and
last convolutional layers for each of the three color channels are shown in Fig. 3.5a for
the sc class. The complexity of the learned filters grows layer by layer, as demonstrated
by the increasing number of diffraction peaks spanned by each motif. The sum of the
last convolutional layer filters for each class is shown in Fig. 3.5b; they are class templates
automatically learned from the data by the ConvNet. From the figure, there are interesting
observations that can be made:

• Along the lines of hypothesis and what has been observed in the past, the network
builds the unique features through hierarchy of feature across multiple layers for
identifying crystal structure.

• Certain channels are more responsive to the stimuli than others.

Comparing Fig.3.2c and 3.5b, we see that our deep learning model is able to au-
tonomously learn, and subsequently use, the same features that a domain expert would
use. This not only confirms the soundness of the classification procedure, but also explains
its robustness in terms of generalization.

3.4 Discussions

We have introduced a way of representing crystal structures by means of (easily inter-
pretable) images. Being based on reciprocal space, this descriptor termed two-dimensional
diffraction fingerprint compactly encodes crystal symmetries, and possesses numerous at-
tractive properties for crystal classification. In addition, it is complementary with existing
real-space based representations [7], making possible to envision a combined use of these
two descriptors. Starting from these diffraction fingerprints, we use a CNN to predict crys-
tal classes. As a result, we obtain an automatic procedure for crystal classification which
does not require any user-specified threshold, and achieves perfect classification even in the
presence of highly defective structures. In this regard, we argue that since materials science
data are generated in a relatively controlled environment defective datasets represent prob-
ably the most suitable test to probe the generalization ability of any data-analytics model.
Given the solid physical grounds of the diffraction fingerprint representation, our deep
learning model is modest in size, which translates in short training and prediction times.
Finally, using recently developed visualization techniques, we uncover the learning process
of the neural network. Thanks to its multi-layered architecture, we demonstrate that the
network is able to learn, and then use in its classification decision the same landmarks
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a human expert would use. Further work is needed to make the approach proposed here
unique across space groups and to widen its domain of applicability to non-centrosymmetric
crystals, which can exhibit technologically relevant ferroelectric, piezoelectric or nonlinear
optical effects. In accordance with the principle of reproducible research, we also provide an
online tutorial [134] where users can interactively reproduce the main results of this work
(but also produce their own) within the framework of the NOMAD Analytics-Toolkit. As
an outlook, our method could also be applied to the problem of local micro-structure deter-
mination in atomic probe tomography experiments, with the ultimate goal of discovering
structural-property relationships in real materials.

3.5 Experiments - Human Anatomy Classification

Automated classification of human anatomy is an important pre-requisite for many com-
puter aided diagnosis systems. The changing complexity and variability of anatomy through-
out the human body makes it an arduous task to classify various anatomical parts. Re-
cently, deep learning methods, in particular CNNs have shown to outperform other methods
in such tasks. Hence, in this study, we use CNN based architecture for automated human
anatomy classification.

In order to understand the decision making process of deep CNNs in the medical domain
and to construct an informed approach to designing models for medical diagnosis, we first
build three different deep CNN models with different architectures and hyper-parameters:
a shallow CNN, a deeper CNN without data augmentation and a deeper CNN with data
augmentation inspired by the work of Razavian et al. [89]. The network architecture
for each model is depicted in Fig. 3.7. After successfully training the above mentioned
networks, we examine which part of a particular input image from an anatomy class,
particularly the spatially distributed information, is used in the decision process of the
CNN. It is done by visualizing attentive response maps from the top n most activated
units of the last convolutional layer in the above described models, similarly to Bau et.
al. [8] and as formulated in the Formulation section of the Chapter. The top n units are
used to visualize the parts of the input image that the network considers important. The
formation of attentive response maps are done by projecting the top unit activations back
to image space. The back projection to input space is achieved by using the fractionally
strided convolution, also known as the transposed convolution, and sometimes incorrectly
termed the deconvolution technique [129] as shown in Fig. 3.6. To explain the formulation
for the formation of attentive response maps, let us consider a multi-layered neural network
with n layers.
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Individual Response  Maps

Attentive Response Map

Fractional strided
convolutional

Last conv layer

FC layers

Prediction

Individual Response  Maps

Max =

It’s a 
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Input Image

Figure 3.6: overview of the proposed visualization framework for understanding and visual-
izing human anatomy prediction. As an illustrative case in this study, a new x-ray anatomy
image is fed into the convolutional neural network to obtain the prediction (in this case,
body-part classification) and through the fractionally strided convolution, individual at-
tentive response maps are computed through top-n units from the last convolutional layer
in the network. By computing the max operation per pixel across all the individual maps,
we obtain the attentive response map. The attentive response map shows: 1) The locations
in the input image that are contributing to decision making and 2) the level of dominance
of such locations.
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Figure 3.7: Architecture of three different CNNs with different capacities that were used in
this human anatomy classification study. The experiment was done to show what different
kind of features are used for making predictions by different network architectures.
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(a) Anatomy description of
foot found in literature,
unique bone structures
pertaining to class are

indicated.

(b) Foot X-ray image from
ImageCLEF dataset.

(c) Attentive response map from top
25 filters from last conv layer of

network overlayed on original image

(d) Anatomy description of
hand found in literature,
unique bone structures
pertaining to class are

indicated.

(e) Hand X-ray image from
ImageCLEF dataset.

(f) Attentive response map from top
25 filters from last conv layer of

network overlayed on original image

Figure 3.8: Correspondence between anatomical descriptions found in the literature that
are used by human experts ((a) & (d)) and the attentive response maps overlaid on the
original images ((b) & (e)) from the last conv layer of the deeper network with data
augmentation ((c) & (f)) for the foot and hand class. It can be observed that the deeper
neural network uses the same landmarks as a human expert for anatomy classification.
Best viewed in color.
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3.5.1 Dataset Explanation

To visualize and understand the decision making of a deep neural network, we used anatomy
classification from X-ray images as an example use-case. To train our three different convo-
lutional neural networks, radiographs from the ImageClef 2009 Medical Image Annotation
task 1 were used. This data set consists of a wide range of X-ray images for clinical routine,
along with a detailed anatomical classification. For uniform training without any bias, we
removed the hierarchical class representation and removed the classes consisting of less
than 50 examples. Using this, we ended up with 24 unique classes e.g. foot, knee, hand,
cranium, thoracic spine etc., from the full body anatomy.

3.5.2 Experiment Design & Results

For training the three networks described in Fig. 3.7, we resized the images to 224 × 224.
For evaluation, we divided the ImageClef dataset (14,676) images into randomly selected
training and test sets with 90 % and 10 % of the data respectively. For the third (deeper)
network specifically, we used various data augmentation techniques ranging from cropping,
rotation, translation, shearing, stretching and flipping. We trained the three networks for
all the 24 classes simultaneously. The results obtained by training the three models are
shown in Table 3.3.

Table 3.3: Results: Accuracy in percent for three different networks trained on the Image-
Clef 2009 annotation task

Shallow Net Deeper Net Deeper Net+data aug
71.1 90.36 95.62

We visualized the internal activations of the models on test data through attentive
response maps. More specifically, we combined the attentive response maps of the top n =
25 units from the last convolutional layer and overlaid them on the original image. In this
way we constructed the focused attentive response maps that can be easily examined by a
human expert. The n = 25 was chosen empirically as it produced attentive response maps
closer to the anatomical landmarks with least number of units. The results are shown
in 3.8, 3.9, 3.10 and 3.11 for foot, hand and knee classes from ImageClef dataset. In
the end, we also conducted an ablation study by only keeping the unique bone structures
identified through attentive response maps for various human anatomy classes and passing

1http://www.imageclef.org/2009/medanno
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(a)

Figure 3.9: Attentive response maps overlaid on the original images from the last conv
layer of the deeper network with no data augmentation for foot and hand class. It can be
observed that this network fails to use the same landmarks as a human expert for anatomy
classification, as shown in Fig. 3.8: (a) & (c). Best viewed in color.

Figure 3.10: Focus area of the top 5 attentive response maps from top 5 most activated
units from last conv layer of the shallow network. For clarity, instead of top 25 only top
5 units are shown separately. It is evident that the network doesn’t learn any medically
relevant landmarks. Best viewed in color.
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the images again for classification through CNN. An example of this is shown in Fig. 3.12.
In Fig. 3.12, even after removing rest of structures and only keeping part of cuneiforms
and metatarsals bones, the trained CNN is able to still classify the human anatomy class
correctly.

3.6 Discussions

Through the attentive maps, we first examine the correlation of those regions obtained
through visualizing the dominant attentive response maps with identified regions and
shapes of image landmarks that are mentioned in the medical radiology literature. With
the qualitative assessment, we can establish that the same landmarks that are described in
the medical image literature are also used by the CNN. For example, in Fig. 3.8, 3.9, 3.10
and 3.11, we observe that the particular outlines of bones are used to detect the human
anatomy part in the image rather than some background information. In Fig. 3.11, we can
observe the obtained attentive response map (part (b)), and the medically relevant land-
marks from medical literature outlining the unique bone structures for a knee (part (c)
& (d)). Observing these images, we can conclude that the CNN is identifying the unique
bone structures for knee, namely the neck of tibia and fibula bones and the joint. These
are the main identifying bone structures for a knee. Hence, it can be established that CNN
is identifying a knee through medically relevant landmarks.

We use this to guide the decisions for the model architecture and learning algorithm. We
can furthermore use this method to detect biases or limitations of the models. In certain
examples of mis-classification (Fig. 3.13), we can observe that the information used for
making decisions is part of an artifact rather than the object in the image. From Fig. 3.8,
we know that the trained CNN model identifies hand by the unique bones structures of
Phalanges (specifically Distal Phalanx and Interphalanges joints). As these landmarks
are missing in Fig. 3.13, the CNN model mis-classifies this particular examples. Hence,
through attentive response maps we can identify the key landmarks for certain classes and
its limitations in the absence of such landmarks. This understanding can inform us about
the possible adjustments to the pre-processing of data augmentation procedures needed to
remove the bias from the model or adjust for the prediction being made.

In Fig. 3.8, we show a correspondence between the obtained attentive response maps
and the anatomical landmarks from the medical literature 2 for the anatomy of hand and

2http://www.meddean.luc.edu/lumen/meded/radio/curriculum/bones/Strcture_Bone_teach_f.

htm
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(a) Original Knee
X-ray Image

(b) Attentive Response
Maps from top 4 nodes

(c) Knee unique
landmarks

(d) Knee landmarks on
actual x-ray

Figure 3.11: Illustration of the effectiveness of the attentive response maps in highlighting
key medically relevant landmarks for knee class. (a) original image, (b) shows attentive
response map for correctly identified original image, and (c) represents the key bone land-
marks points in knee from medical literature. (d) presents the key landmarks on an actual
knee x-ray. Observing (b) and (d), we can see how attentive response maps highlighting
the key landmarks (points 1, 2, 5 & 6) related to the neck of tibia and fibula bones in
a knee. Thus, proving that the CNN model is relying on relevant medical landmarks for
making predictions.
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CNN Foot

CNN Foot

(a) Original Image

(b) ablated Image

Figure 3.12: Illustration of ablation study conducted to test the effectiveness and efficacy
of the key landmarks identified by attentive response maps. In (b) we can observe that
even after removing rest of the bone structures other than some part of the cuneiforms
and metatarsals bones, the network is still able to identify the human anatomy correctly.
Cuneiforms and metatarsals were identified as key landmarks by attentive response maps
earlier and are indeed medically unique bones in foot. Hence, this proves the network is
relying on the key bone structure landmarks for making predictions.
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foot. Particularly for the foot image, we can observe that the edges of the metatarsals’
shaft has been used together with the distal phalangies, navicular, cuboid, tibia, and
fibula. Similarly for the hand, three of the distal phalanxes, many of the heads of joints,
metacarpals’ shafts as well certain carpals. In contrast to this, in Fig. 3.9 and Fig. 3.10 we
can observe that the shallow and deep network trained without specific data augmentation
fails to learn such specific landmarks. These models use broader ranges that are clearly
not as specific as the information used in the first model. From the above visual results as
well as the performance of the final model we come to the conclusion that sufficiently deep
neural network models can be successfully trained to use the same medical landmarks as
a human expert while attaining superior performance.

To summarize, the following observations can be made:

• Attentive response maps are useful for highlighting if the trained model is able to use
medically relevant landmarks or not for its predictions. This can eventually guide
network architecture design and training procedure.

• Attentive response maps can help in identifying key features associated with a class.

• Attentive response maps can also potentially help in detecting bias and limitations
of trained models. This can assist the end user in understanding when and why there
can be a failure case.

3.7 Summary

In the domain knowledge experiments specially via the human anatomy classification, we
show that the design of the model architectures for deep CNN and the training procedure
does not necessarily need to be a trial-and-error process, solely focused on optimizing the
test set accuracy. Through attentive response map visualization, we managed to incor-
porate domain knowledge and overall managed to achieve a much more informed decision
process, which finally resulted in a model with superior performance. This approach is
applicable to many different image analysis applications of deep learning that are unable
to easily leverage the potentially large amount of available domain knowledge. Further-
more, visually understanding the information involved in the model decision allows for
more confidence in its performance on unseen data.

In the aforementioned formulation and experimental studies in the present Chapter,
some of the shortcoming of the current visualization based methods were solved through
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Figure 3.13: Individual attentive response maps for top 9 activated units from the last conv
layer of the deeper network with augmentation for the hand class example, mis-classified
as cranium. From the figure, it is evident that the top 9 most activated units are focusing
on the wrong information present in the signal. Best viewed in color.
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attentive response maps. However, similar to the previous methods, the above described
attentive response maps methods wasn’t end-to-end. Here, end-to-end refers to the scenar-
ios where explanations are formed from the last layer of neural networks, just before the
prediction layer. To build trust in human experts using such systems and for providing ef-
fective explainability, especially for critical sectors such as heath-care, these methods have
to be end-to-end. The next Chapter of the thesis aims to solve precisely this shortcoming of
the current methods including attention based methods. In Chapter 4, we present an end-
to-end approach and architectural design for forming the attention response maps. The
following study is presented through forming and explaining the decision made by deep
radiomics sequencers, that act as computer aided diagnostics (CAD) system for identifying
malignancy of lung nodules.
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Chapter 4

End To End Interpretable
Architecture Design

“Interpretability is a domain-specific notion, so there cannot be an all-purpose definition.
Usually, however, an interpretable machine learning model is constrained in model form so
that it is either useful to someone, or obeys structural knowledge of the domain, such as
monotonicity, or physical constraints that come from domain knowledge.”

- Adrian Colyer, Venture Partner, Accel.
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Prologue to Article

4.0.1 Article Details

SISC: End-to-end Interpretable Discovery Radiomics-Driven Lung Cancer Pre-
diction via Stacked Interpretable Sequencing Cells, D. Kumar*, V. Sankar*, D. A.
Clausi, G. W. Taylor, A. Wong, IEEE Access Journal, 2019

Personal Contribution In this particular study, we created a process for obtaining at-
tention maps end-to-end. This work was a joint work with Vignesh Sankar. I designed the
study, and network architecture and wrote the interpretability code. I also conducted the
majority of the experiments and obtained the results. Vignesh processed the dataset and
conducted some additional experiments and co-wrote the manuscript with me.

4.0.2 Context

The SqueezeNet architecture introduced the concept of the “fire module”. Inspired by the
architecture of the fire module, we wanted to introduce a similar modular based architecture
that can produce state-of-the-art results while remaining end-to-end interpretable. Hence,
similar to the fire module, in this work we introduce the concept of a sequencing cells-based
(SISC) architecture. We choose to use lung nodule malignancy as the case study for the
SISC architecture, as to build upon my previous work in this domain.

4.0.3 Contribution

In this part of the thesis, we present an end-to-end based architectural design for forming
attention response maps. We introduce a SISC architecture comprising of an interpretable
sequencing cells module, for building models with state-of-the-art performance while in-
corporating interpretability within each module. We also form critical response maps
generated through a stack of interpretable sequencing cells which highlight the key critical
regions leveraged in the prediction process.
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4.1 Introduction

Chapter 3 proposed how attentive response maps can be used to form an interpretability
response as attentive regions for any convolutional layers in a given CNN. The Chapter
then extended the proposed framework by relating the obtained attentive response maps
to human domain knowledge. However, similar to other current approaches, the proposed
framework also lacks end-to-end explanations. Therefore, there is still a need to have an
end-to-end framework.

To address this issue, in this Chapter of the thesis, we propose a unique sequencing cell
based architectural design to make the whole process end-to-end. Overall, this Chapter
forwards a framework that can enable human domain experts to observe end-to-end ex-
planations on a layer wise (including the last layer) basis instead of just on a per neuron
level and also enables them to see how the given evidence for making a prediction relates
to particular domain knowledge. The end-to-end architecture’s efficacy in producing state-
of-the-art interpretable results is proved by modeling the end-to-end architecture in the
form of radiomics sequencer for detailed experimentation on a medical domain study of
lung nodule malignancy.

4.1.1 Motivation: End-to-End Deep Radiomics Sequencers

In recent times, radiomic sequencers with deep convolutional architectures (discovery ra-
diomics) that are discovered in an end-to-end manner were shown to consistently achieve
state-of-the art performance in medical imaging analysis. The use of such radiomic se-
quencers within the discovery radiomics framework is particularly effective for lung cancer
prediction using CT imaging. This is due to the availability of very large annotated CT
scan data sets such as LIDC-IDRI [4], which enables highly discriminative radiomic features
to be discovered directly from this wealth of data.

Despite the effectiveness of discovery radiomics-based approaches from a diagnostic per-
formance perspective, a key challenge that still remains is the difficulty in interpreting the
rationale behind their predictions. As such, one can view such radiomics-based approaches
as ‘black box’, and the lack of transparency in their decision-making processes makes it
difficult for radiologists to verify, validate, and ultimately trust the predictions being made.
To enable the widespread adoption of discovery radiomics within CAD systems, one needs
to improve radiologists’ trust by providing interpretable reasoning behind the predictions
made by radiomic sequencers.
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Also, it is important to note here that the previous interpretable techniques as shown
in previous Chapter and in the past, were not end-to-end. These method only worked up
to the final convolutional layers. As such, we need to have end-to-end visualization of the
attentive response maps for accurate diagnosis and interpretability and eventually to build
higher confidence and trust.

Motivated by this, we propose an end-to-end interpretable discovery radiomics-driven
lung cancer prediction pipeline for the binary prediction case. Specifically, the main con-
tributions of our approach are:

• the introduction of the SISC architecture (Fig. 4.1), comprising interpretable se-
quencing cells, for building radiomic sequencers with state-of-the-art performance
for lung cancer prediction, and

• interpretable lung cancer predictions in the form of critical response maps generated
through a stack of interpretable sequencing cells which highlight the key critical
regions leveraged in the prediction process (Fig. 4.2).

4.2 Methodology

This section describes the design and implementation of a radiomics sequencer. The mod-
ular design of the SISC architecture (see Section 4.2.2) enables a significant reduction in
the design search space while improving classification performance. Furthermore, the in-
troduction of interpretable sequencing cells allow us to achieve end-to-end interpretability
through the generation of critical region maps to aid the clinician in the decision-making
process (see Section 4.2.3). The LIDC-IDRI dataset (see Section 4.2.1) is used to validate
the proposed radiomic sequencer architecture.

4.2.1 Dataset Explanation- LIDC

The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative
(IDRI) [4] published a structured and categorized repository of computed tomography (CT)
scans to assist the development of CAD methods for automated lung cancer diagnosis. The
dataset consists of 1018 thoracic CT scans, where each scan is processed by four radiologists
at both blinded and un–blinded stages. In the blinded stage, each radiologist reviews the
CT scans without inputs from other radiologists. In the second, un–blinded stage, each
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radiologist is shown the results of other radiologists from the blinded stage and is given a
chance to change their initial evaluations. The two stage process was designed to provide
the best estimate of the nodule characteristics.

The suspected lung lesions in the LIDC dataset are divided into three categories: i)
Non-nodule≥3mm, ii) Nodule≥3mm, and iii) Nodule<3mm, where the diameter is mea-
sured as the length of the lesion’s longest axis. For each category, different nodule char-
acteristics are included in the dataset. Similar to previous methods, we decided to only
use Nodule≥3mm. For the Nodule≥3mm category, the required malignancy score along
with the nodule location and contour information by at least one radiologist are included.
Therefore, the Nodule≥3mm category is used for our experiments. A total of 2, 669 nodules
are reported in the dataset under the Nodule≥3mm category.

For each nodule, its characteristics are provided by at most four radiologists. The
final malignancy score for each nodule is obtained by combining the scores from all of
the radiologists. As suggested in [45], the average score rounded to the nearest integer
was taken as the final malignancy score. In each slice of the given nodule, a 96× 96 pixel
window was cropped at the nodule center. The size was determined to accommodate for all
the variability in the nodule contour and also to include sufficient background information.
The same malignancy score was assigned for all the slices in the given nodule. A total
of 14, 433 nodule images along with their corresponding malignancy score were extracted
from the dataset.

4.2.2 Interpretable Sequencing Cells

A modular design strategy was leveraged to construct the proposed SISC radiomics se-
quencer, where the underlying architecture is comprised of a deep stack of interpretable
sequencing cells with similar micro-architectures. More specifically, an intepretable se-
quencing cell as introduced in this study comprises a block of convolutional layers along
with max-pooling and dropout operations, all optimized using the available data. The
proposed SISC radiomic sequencer is then constructed by stacking the interpretable se-
quencing cells together in a depth-wise manner. The aim is to reduce the design search
space while improving classification accuracy, thus enabling optimized design of sequencer
architectures in a more predictable manner. The micro-architecture of an interpretable se-
quencing cell is defined by three convolutional layers separated by batch normalization [51]
and drop–out [113]. Furthermore, the ReLU [36] activation is used after each convolutional
layer. The interpretable sequencing cell is optimized by sharing the same architectural val-
ues. For example, all the dropout layers in a given interpretable sequencing cell have the
same dropout rate.
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Figure 4.2: Overview of the end-to-end interpretable discovery radiomics-driven framework
for lung cancer prediction. Part (a) shows the sequencer discovery process, where a spe-
cialized radiomic sequencer, comprised of a deep stack of interpretable sequencer cells, is
discovered for the given set of CT lung nodule data. Part (b) presents the cancer prediction
process, where the discovered radiomic sequencer is used to make a prediction based on
CT data and how interpretable critical response maps are generated through the stack of
sequencer cells. In part (b), the input CT data of a new patient is fed into the radiomic
sequencer to generate a radiomic sequence and perform prediction on whether it is a benign
and malignant case. To generate the critical response map, the output of the last layer in
the sequencing cell of the radiomic sequencer is back-propagated through each sequencing
cell using the method described in Section 4.2.3 for each of the possible prediction states
(benign and malignant). As such, we obtained two critical response maps, each highlight-
ing the critical regions used by the sequencer for making predictions regarding whether
the given input nodule is benign or malignant. The last part (c) is the interface seen by
the end user, which shows the given input, the prediction and evidence used to obtain the
particular prediction through critical response map.
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In this study, the proposed SISC radiomic sequencer is comprised of four interpretable
sequencing cells stacked together in a depth-wise manner as shown in Fig 4.1. The number
of channels is increased as we go deeper into the SISC architecture whereas the size of
the kernel is fixed for the first three cells. Each cell is followed by a max pooling layer.
The dropout, batch normalization parameters and number of cells are optimized with the
LIDC-IDRC dataset. The final cell of the SISC radiomic sequencer is defined as shown in
Fig. 4.1. The number of kernels in the final convolutional layer of the final cell is equivalent
to the total number of classes to enable end-to-end interpretability via critical response
maps, which will be further discussed in the following section. The final convolutional layer
is followed by a global average pooling layer, which is then followed by a softmax output
layer.

The proposed SISC radiomic sequencer formed by the stacking of interpretable sequenc-
ing cells with learned parameters is shown in Fig 4.1. We can observe that the repeated
modular approach allows us to compactly define the sequencer with a minimum number of
configurable architectural parameters. The modular approach also leads to state-of-the-art
results as described in Section 4.3.

4.2.3 Interpretability Through Critical Response Maps

To enable interpretability and explainability in the decision-making process of the pro-
posed SISC radiomic sequencer, we take inspiration from [67] and [66] and introduce an
approach where critical response maps are generated through the entire stack of inter-
pretable sequencing cells. An critical response map provides spatial insights on critical
regions in the CT scan and their level of contribution to a particular prediction made.
Here, an individual critical response map is generated for each possible prediction (benign
and malignant).

Using these critical response maps, the clinician can not only validate the the evidence
behind the predictions made using the proposed SISC radiomic sequencer, but the maps
also help in locating relevant regions in the CT scan responsible for either a malignant
or benign nodule prediction. An example pair of critical response maps can be seen in
Fig. 3.6.

For example, in the case of a malignant nodule, a successful and reasonable prediction
should lead to the malignant critical map highlighting the nodule regions. As such, critical
response maps may potentially help radiologists to have greater confidence in the CAD
system and in aiding them with their clinical diagnosis decisions.
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The critical response map generation process can be described as follows. Let the
critical response maps A(x|c) for a given CT scan slice image x for each prediction c be
computed via back-propagation from the last layer of the last interpretable sequencing cell
in the proposed SISC radiomic sequencer. The notation used in this study are based on
Chapter 3 for consistency. As shown in Fig 4.1, the last layer in the interpretable sequencing
cell at the end of the proposed SISC radiomic sequencer contains N = 2 nodes, equal to
the number of possible predictions (i.e., benign and malignant). The output activations of
this layer are followed by global average pooling and then a softmax output layer. So, to
create the critical maps for each possible prediction, the back-propagation starts with the
individual prediction nodes in the last layer to the input space. For a single layer l, The
deconvolved output response ĥl is given by,

ĥl =
K∑
k=1

fk,l ∗ pk,l. (4.1)

where fk is the feature map from the kthconvolutional filter. K is the total number of
filters in the layer l and pl is the kernel of layer l. the symbol ∗ represents the convolution
operator. For simplicity, The convolution and summation can be combined as ĥl = Dlfl.
Therefore, the critical response map C(x|c), for a given prediction c is defined as,

C(x|c) = D1U
′
1D2U

′
2....DL−1U

′
L−1D

c
LFL. (4.2)

Where U ′ is the un-pooling operation as described in [130] and Dc
L is the convolution

operation at the last layer with kernel pL replaced by zero except at the cth location
corresponding to the prediction c.

4.3 Experiments And Results

In this section, we will evaluate and discuss the efficacy of the proposed SICS radiomic
sequencer for the purpose of lung cancer prediction on two main fronts: i) cancer prediction
performance of the proposed sequencer compared to state-of-the-art, and ii) interpretability
of the cancer predictions made by the proposed sequencer through the generated critical
response maps.
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Table 4.1: Number of samples for corresponding malignancy scores, for three different
datasets. The datasets were created based on how the radiologist malignancy rating 3 was
treated i.e., Ignored (I), treated as benign (B), or treated as malignant (M).

Malignancy score Size I B M

1 1376
3981

9638
3981

2 2605

3 5657 Ignored

104524 3192
4795 4795

5 1603

4.3.1 Experimental Setup

The setup of the experiments in this study can be described as follows. The cropped lung
nodule images with their corresponding malignancy scores are obtained from the LIDC-
IDRI dataset as explained in section 4.2.1. The distribution of the malignancy scores in
the dataset is described in Table 4.1. Malignancy scores 1 and 2 are considered as benign,
whereas scores 4 and 5 are considered as Malignant. The malignancy score 3 can be either
considered as benign, malignant or ignored depending on how it was done by previous
studies in this field. In this study, we have created three different datasets where the score
3 is considered malignant (dataset: ‘M’), benign (dataset: ‘B’), and ignored (Dataset: ‘I’).
The final dataset distribution is shown in Table 4.1. Each dataset was further divided
into 80% training data, 10% for validation and 10% testing data. The pre-processing and
dataset distribution is similar to Xie et. al. [126].

Table 4.2 shows the distribution of training data for the three datasets. We can ob-
serve that dataset ‘B’ and ‘M’ are not evenly distributed. To mitigate this imbalance, data
augmentation was performed on each of the datasets to balance the number of examples
associated with each class. Furthermore, the data augmentation performed also acts to
enhance the variability and generalizability of the radiomic sequencer. In particular, ran-
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dom horizontal shifts, vertical shifts, and rotations were applied along with vertical and
horizontal flips to construct the augmented training dataset. Since the size of the training
data has a huge impact on the performance of the proposed radiomic sequencer, three
different augmented datasets with varying size were created for each of the ‘M’, ‘B’ and
‘I’ datasets, as shown in Table 4.2. The performance of dataset ’I’ under different levels
of data augmentation is shown in Fig 4.9. We can observe that the ≈ 15k size yielded
the best performance. Going forward, we have finalized the dataset size to be ≈ 15k for
further hyper-parameter tuning and validations for the ‘M’, ‘B’ and ‘I’ datasets.

Different data normalization techniques such as standard deviation, Min-Max, and ZCA
whitening [60] were also applied to the lung nodule images. It was found that Min-Max
normalization yielded the best results. After optimizing the hyper-parameter using the
validation set, batch normalization was implemented with momentum= 0.99 and a dropout
layer was used with rate= 0.25. The Adam optimizer was used with learning rate = 1e−5

and batch size as 128. The proposed radiomic sequencer was learnt for approximately 200
epochs and evaluated against the test dataset. The final results were reported by averaging
over 10-fold cross validation for all three datasets.

4.3.2 Cancer Prediction Performance

To evaluate the cancer prediction performance of the proposed SISC radiomic sequencer, we
computed the sensitivity, specificity, accuracy, and AUC-ROC of the proposed sequencer
and compared it with five other state-of-the-art approaches. The average lung cancer
prediction performance of the proposed radiomic sequencer for dataset ‘M’, ‘B’ and ‘I’
are shown in Table. 4.5 & 4.4 & 4.3 respectively. The AUC curves of the 10 different
cross validation runs for each dataset are shown in Figs. 4.5-4.7. The best performing
AUC curve from each dataset is shown in Fig. 4.8. From the results, we can observe that,
for the dataset ‘I’, by leveraging the proposed SISC radiomic sequencer, we were able to
achieve comparable performance with the current state-of-the-art method proposed by Xie
et al. [126]. For datasets ‘B’ and ‘M’, the proposed sequencer is able to outperform the
accuracy results from Xie et al. [126]. The comparison of the existing and current state-
of-the-art methods with the proposed SISC radiomic sequencer is given in Tables 4.3- 4.5.
The comparison methods are based on the previous studies in this field, employing the
same data pre–processing steps for fair comparison amongst the methods. Based on these
experimental results, it can be observed that the proposed SISC radiomic sequencer can
provide strong cancer prediction performance that exceeds state-of-the-art in all but one
case, where in that case the performance is comparable to state-of-the-art.
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Table 4.3: Performance comparison between tested cancer prediction methods for the
ignored (I) dataset. Best results are highlighted in bold.

Method Accuracy Sensitivity Specificity AUC

Han et al [45] 85.59 70.62 93.02 89.25

Dhara et al [22] 88.38 84.58 90.03 95.76

Shen et al [105] 87.14 77.00 93.00 93.00

Sun et al [117] - - - 88.23±1.70

Xie et al [126] 89.53±0.09 84.19±0.09 92.02±0.01 96.65±0.01

Ours (SISC) 89.36±1.20 90.28±2.00 88.25±2.00 96.01±0.70

Table 4.2: Dataset distribution for the three different dataset configuration obtained from
the LIDC-IDRI dataset before and after data augmentation (as described in Section 4.3.1).

Dataset Grade Before Data Aug 15k 30k 60k

I

Malignant 3836 9836 15836 30836

Benign 3184 9184 15184 30184

Total 7020 19020 31020 61020

B

Malignant 3836 7672 19180 38360

Benign 7712 7712 21712 35712

Total 11548 15384 40892 74072

M

Malignant 8361 8361 16361 33444

Benign 3187 6374 15935 28683

Total 11548 14735 32296 62127
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Table 4.4: Performance comparison between tested cancer prediction methods for the
benign (B) dataset. Best results are highlighted in bold.

Method Accuracy Sensitivity Specificity AUC

Han et al [45] 87.36 73.75 93.37 93.79

Dhara et al [22] 87.69 80.00 89.30 94.44

Xie et al [126] 87.74±0.03 81.11±0.85 89.67±0.09 94.45±0.01

Ours (SISC) 88.57±1.70 78.32±8.12 93.66±2.06 94.34±0.08

Table 4.5: Performance comparison between tested cancer prediction methods for the
malignant (M) dataset. Best results are highlighted in bold.

Method Accuracy Sensitivity Specificity AUC

Kumar et al [63] 75.01 83.35 - -

Han et al [45] 70.97 53.61 89.41 76.26

Dhara et al [22] 71.17 53.47 89.74 79.74

Sharma et al [102] 84.13 91.69 73.16 -

Xie et al [126] 71.93±0.04 59.22±0.04 84.85±0.10 81.24±0.01

Ours (SISC) 84.17±1.50 90.71±4.01 67.00±8.64 89.06±1.20

4.3.3 Discussion

Here, we will investigate the efficacy of the proposed SISC radiomic sequencer in terms
of interpretability of the lung cancer predictions made. Fig. 4.3 shows example critical
response maps generated in an end-to-end manner for several example malignant nodule
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Figure 4.5: Receiver operating curve (ROC) for the ignored (I) dataset for 10 different
cross validation runs.
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Figure 4.6: Receiver operating curve (ROC) for the benign (B) dataset for 10 different
cross validation runs.

images that were correctly predicted to be malignant. From the figure, it can be observed
that the proposed SISC radiomic sequencer is able to successfully identify the nodule re-
gions in the given CT slices without being explicitly directed to do so. As shown in
Fig. 4.3, the highlighted region’s contour closely matches the contours given by the radi-
ologists, and in some cases provide improved contour localization than that provided by
the radiologists. The proposed SISC radiomic sequencer is able to successfully highlight a

72



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
Dataset 0
Dataset 1
Dataset 2
Dataset 3
Dataset 4
Dataset 5
Dataset 6
Dataset 7
Dataset 8
Dataset 9

Figure 4.7: Receiver operating curve (ROC) for the malignant (M) dataset for 10 different
cross validation runs.

wide range of nodules with different shapes and sizes. We can also infer the discriminative
nature of the proposed sequencer by observing that the highlighted regions in the critical
response maps that contribute highly to a malignancy prediction. This helps to gain better
insight in the rationale behind the malignancy prediction. Similar observations can also
be observed for benign nodules as shown in Fig. 4.4.

Due to the end-to-end interpretable nature of the proposed SISC radiomic sequencer,
the critical response maps produced through the entire stack of interpretable sequenc-
ing cells can potentially help improve the confidence of radiologists working with a CAD
system. Furthermore, the critical response maps can also assist radiologists to more con-
sistently and rapidly spot abnormal nodules within the large volume of a CT scan, as well
as understand the nature and characteristics most linked to malignancy.

4.4 Summary

In this Chapter, we introduce a novel end-to-end interpretable discovery radiomics-driven
lung cancer prediction framework. This framework is enabled by the proposed radiomic
sequencer: a deep stacked interpretable sequencing cell (SISC) architecture comprised of
interpretable sequencing cells. Experimental results show that the proposed SISC radiomic
sequencer is able to not only achieve state-of-the-art results in lung cancer prediction, but
also offers prediction interpretability. Interpretability is offered in the form of critical
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Figure 4.8: Comparing the best ROC curves for the three different datasets: ignored (I),
benign (B) and malignant (M).

response maps generated through the stack of interpretable sequencing cells. The sequenc-
ing cells highlights the critical regions used by the sequencer for making predictions. The
critical response maps are useful for not only validating the predictions of the proposed
SISC radiomic sequencer, but also provide improved radiologist-machine collaboration for
improved diagnosis.

However, there are certain scenarios which still remain unexplained. In the next Chap-
ter, we will explore some of the examples where the current binary attention maps fail to
produce explanations and why there is a need to more from binary class approach to a
multi class approach. To this effect, we introduce and explain a new class-enhanced atten-
tive response (CLEAR) maps and show their efficacy in explaining scenarios that cannot
be explained from simple binary attention maps.
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the three different dataset categories: ignored (I), benign (B), and malignant (M).
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Chapter 5

CLass-Enhanced Attentive Response
(CLEAR)

“Second, much like banks are required by law to “know their customer,” engineers that
build systems need to know their algorithms. For example, Eric Haller, head of Datalabs
at Experian told us that unlike decades ago, when the models they used were fairly simple,
in the AI era, his data scientists need to be much more careful. “In the past, we just
needed to keep accurate records so that, if a mistake was made, we could go back, find the
problem and fix it,” he told us. “Now, when so many of our models are powered by artificial
intelligence, it’s not so easy. We can’t just download open-source code and run it. We need
to understand, on a very deep level, every line of code that goes into our algorithms and be
able to explain it to external stakeholders.””

- Greg Satell, Harvard Business Review
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Prologue to Articles

This Chapter derives contributions from the below mentioned two papers.

5.0.1 Details Of Articles

Explaining the unexplained: A class-enhanced attentive response (CLEAR) ap-
proach to understanding deep neural networks, D. Kumar, A. Wong, G. W. Taylor,
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR-W),
2017

Discovery Radiomics With CLEAR-DR: Interpretable Computer Aided Di-
agnosis of Diabetic Retinopathy D. Kumar, G. W. Taylor, A. Wong, IEEE Access
Journal, Vol. 7, 2019
Best Paper Award at Transparent and Interpretable Workshop at 30th Neural Informa-
tion Processing (NIPS), 2017

Personal Contribution The idea of using multi-class enhanced maps instead of single
node or binary heatmaps came up during the discussions with Alex regarding extending
our attentive response maps work. I first proposed multi-class maps and Alex suggested
to use HSV space for representation. The idea was further refined through extensive
discussions with Graham and Alex. I implemented the CLEAR formulation and trained
all the convolutional neural network models for three different datasets namely MNIST,
SVHN & Stanford dog dataset. Through discussions with Graham & Alex, I devised the
controlled experiments and obtained quantitative and qualitative results for evaluating
the efficacy of CLEAR maps in providing explanations for scenarios that were previously
unexplained via binary heatmaps.

5.0.2 Context

The goal of CLEAR was to overcome the shortcomings introduced by the various heatmap
visualization methods and the binary heatmap approach introduced by Zintgraf et. al (ICLR
2017). Our CLEAR approach builds on the previous work introduced by Zeiler et. al. (ICCV
2014) and our attentive response map method (explained in Chapter 3). In Zeiler et. al. the
authors use their method to devise responses for individual nodes only for a single class as
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attention in input space. CLEAR however, does layer-wise mutli class end-to-end attentive
response in the input space.

5.0.3 Contributions

All of the heatmap visualization methods (such as CAM, Grad-CAM etc.) only highlight
the regions of attention and provide no meaning to the assignments other than that they
should form a coherent set of interpretable pixels. In CLass-Enhanced Attentive Response
(CLEAR), we provide an approach that not only provides the relevant attentive regions
but also provides meaning to the constituent pixels by assigning class-based information
for each individual pixel. This allows for explaining really complex scenarios that cannot
be explained via node-based visualization.

Also, Gondal et.al. [37] leveraged CAM maps to highlight the lesion areas for diabetic
retinopathy; however, this approach provides no interpretation of grading information and
thus is limited in providing clinical insight on grading decisions. Motivated by the need
for clinical interpretability, we proposed CLEAR-DR, a novel interpretable CAD sys-
tem based on the notion of CLass-Enhanced Attentive Response Discovery Radiomics
for the purpose of clinical decision support for diabetic retinopathy. CLEAR-DR not
only generates discriminative radiomic sequences for making grading decisions for diabetic
retinopathy as a use case, but also visually interprets and understands these decisions via
information back-propagation. The back-propagation is done through the discovered ra-
diomic sequencer by embedding the CLEAR approach. This process is designed to enable
grade-level interpretability and can also help in reducing inter-observer and intra-observer
variability while speeding up the overall diagnostic process.

5.0.4 Recent Developments

During the development of CLEAR, there was a lack of feature attribution approaches that
were end-to-end methods. Therefore, we had to primarily rely on the fully convolutional
neural network architectures. However, recently a few approaches (SHAP, Deep Taylor
Decomposition etc.) have been proposed that can provide feature attributions in an end-
to-end manner for networks with fully connected layers as well. This eliminates the need
to rely on fully convolutional network for providing end-to-end explanations and paving
the way for the use of CLEAR to be used with any type of network architecture via recent
back-propagation based feature attribution approaches.

The CLEAR article has gained a total of 29 citations to date (based on Google Scholar).
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5.1 Introduction

As noted in Chapters 2 and 3, much of the recent works have focused on understanding
the decision-making process of networks by leveraging heatmaps that provide information
about which areas of the image are used by the deep CNN (DCNN) to make a particu-
lar decision. These approaches have produced some promising results in revealing what
is important to a decision made by a DCNN. More details regarding the relevant works
are provided in Chapter 2. However, a common limitation with such heatmap-based ap-
proaches to understanding the decision-making process of DCNNs is that of decision
ambiguity, where one can gain insight into which regions of interest are important for
making decisions, but gives no insight as to why such regions of interest are important.
As a result, these methods leave the “thought process” of the DCNN largely ambiguous.
An example of this is shown in Fig. 5.1.

In this Chapter, we attempt to mitigate the problem of this particular decision ambi-
guity, and take a step towards “explaining the unexplained”, with regards to the decision-
making process of DCNNs, through the introduction of CLass-Enhanced Attentive Response
(CLEAR) maps that go beyond what existing heatmap-based approaches [5, 81, 135] can
provide. The proposed CLEAR maps allow for the visualization of not only the attentive
regions of interest and corresponding attentive levels of DCNNs during the decision-making
process, but also the corresponding dominant classes associated with these attentive re-
gions of interest. As such, compared to heatmaps, CLEAR maps are much more effective at
conveying where and why certain regions of interest influence the decision-making process.
An example of this is shown in Fig. 5.5. We further demonstrate the effectiveness of the
proposed CLEAR maps, both quantitatively and qualitatively, by conducting a number of
experiments using three different publicly available datasets.

This section explains the procedure for generating the proposed CLass-Enhanced Attentive
Response (CLEAR) maps. The main goal of CLEAR maps is to convey the following in-
formation:

• the attentive regions of interest in the image responsible for the decision made by
the CNN;

• the attention levels at these regions of interest so that we understand their level of
influence over the decision made by the CNN;

• the dominant class associated with these attentive regions of interest so that we can
better understand why a decision was made.
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Figure 5.1: Examples of handwritten digits from MNIST are shown, along with: 1) the
decision made by the CNN, 2) heatmaps used in existing visualization methods, and 3)
what can be interpreted based on the heatmaps. While the heatmaps used in existing
approaches show which information in the image works for (positive focus: hot regions)
or against (negative focus: green), it is evident that the heatmaps are insufficient to fully
interpret and explain the decision made by the CNN.

5.1.1 Methodology Overview - Class Enhanced Attentive Re-
sponse (CLEAR)

The procedure for generating CLEAR maps can be summarized as follows (see Fig. 5.2).
First, individual attentive response maps are computed for each kernel associated with a
class by back-projecting activations from the output layer of the DCNN. Based on this
set of attentive response maps, two different types of maps are computed: 1) a dominant
attentive response map, which shows the dominant attentive level for each location in the
image; and 2) a dominant class attentive map, which shows the dominant class involved in
the decision-making process at each location. Finally, the dominant attentive response map
and the dominant attentive class map are combined visually by using color and intensity

80



to produce the final CLEAR map for a given image.

Inspired by the effectiveness of the previously introduced architectural design in Chap-
ter 3 and ALL-CNN [112] on different datasets, we leveraged a similar network architecture
for building the DCNN used for classification in this part of the thesis. While, for clarity,
we describe the procedure for computing individual attentive response maps based on the
previously defined architecture, the procedure will generalize to other DCNNs provided
class-specific responses can be computed in input (pixel) space. The network is com-
posed primarily of convolutional, ReLU, and max-pooling layers. Towards the output of
the DCNN, the last convolutional layer contains a set of kernels equal to the number of
classes, and then global averaging is performed before passing these energy values to the
softmax output layer which represents categories. As such, each kernel can be thought of
as being associated with a particular class.

5.1.2 Formulation

The first step of CLEAR is to compute a set of individual attentive response maps, one
for each of the classes learned by the DCNN, which we will denote as {R(x|c)|1 ≤ c ≤ N},
where N is the number of classes. This is achieved in the current realization of CLEAR by
back-propagating the responses of each kernel in the last convolutional layer from feature
space to the input space to form each attentive response map, thus extending upon the
idea presented in Chapter 3. To explain the formulation for the formation of CLEAR
maps, first consider a single layer of a DCNN. Let ĥl be the deconvolved output response
of the single layer l with K kernel weights w. The deconvolution output response at layer
l then can be then obtained by convolving each of the feature maps zl with kernels wl and
summing them as:

ĥl =
K∑
k=1

zk,l ∗ wk,l. (5.1)

Here ∗ represents the convolution operation. For notational brevity, we can combine
the convolution and summation operation for layer l into a single convolution matrix Gl.
Hence the above equation can be denoted as: ĥl = Glzl.

For multi-layered DCNNs, we can extend the above formulation by adding an additional
un-pooling operation U as described in [130]. Thus, we can calculate the deconvolved
output response from feature space to input space for any layer l in a multi-layer network
as:
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DĈ(x )
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Figure 5.2: The procedure for generating CLass-Enhanced Attentive Response (CLEAR)
maps. First, individual attentive response maps are computed for each class based on the
last layer of the DCNN. Based on this set of attentive response maps, two different types
of maps are computed: 1) a dominant attentive response map, which shows the dominant
attentive level for each location in the image, and 2) a dominant class attentive map, which
shows the dominant class involved in the decision-making process at each location. Finally,
the dominant attentive response map and the dominant attentive class map are combined
to produce the final CLEAR map for a given image.

Rl = G1U1G2U2....Gl−1Ul−1Glzl. (5.2)
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For CLEAR maps, we specifically calculate the output responses from individual kernels
of the last layer of a network. Hence, given a network with last layer L containing K = N
kernels, we can calculate the attentive response map; R(x|c) (where x denotes the response
back-projected to the input layer, and thus an array the same size as the input) for any
class-specific kernel c (1 ≤ c ≤ N) in the last layer as:

R(x|c) = G1U1G2U2....GL−1UL−1G
c
LzL. (5.3)

Here Gc
L represents the convolution matrix operation in which the kernel weights wL

are all zero except that at the cth location.

Given the set of individual attentive response maps, we then compute the dominant
attentive class map, Ĉ(x), by finding the class at each pixel that maximizes the attentive
response level, R(x|c), across all classes:

Ĉ(x) = argmax
c

R(x|c). (5.4)

Given the dominant attentive class map, Ĉ(x), we can now compute the dominant attentive
response map, DĈ(x), by selecting the attentive response level at each pixel based on the
identified dominant class, which can be expressed as follows:

DĈ(x) = R(x|Ĉ). (5.5)

To form the final CLEAR map, we map the dominant class attentive map and the dominant
attentive response map in the HSV color space as follows, then transform back into the
RGB color space:

H = F (Ĉ(x)),

S = 1,

V = DĈ(x).

(5.6)

Here F (.) is the color map dictionary that assigns an individual color to each dominant
attentive class, c. Fig. 5.2 shows an example of the CLEAR map overlaid on the image.

In this Chapter we present results that illustrate the efficacy of CLEAR maps for
understanding and interpreting the decision-making of CNNs. For this, we used image
datasets from two different domains:

• Generic Image Domain

83



• Medical Image Domain

For the generic image domain experiments, we conducted qualitative and quantitative
experiments on three different datasets: the commonly used benchmarks MNIST and Street
View House Numbers (SVHN) dataset. Qualitative experiments on medical image domain
were conducted using the retinal fundus images from diabetic retinopathy dataset [53].
In the following section, we explain individually the experimental setup and the results
obtained for each domain.

5.2 Experiments- Generic Image datasets

5.2.1 Dataset Explanations - MNIST & SVHN

This section explains the two generic image datasets used in this part of the study.

MNIST

The Modified National Institute of Standards and Technology (MNIST) dataset is a col-
lection of handwritten digits that is commonly used is the training and testing of new
machine learning algorithms. The training and testing set for MNIST were formed by tak-
ing a larger NIST dataset and mixing its training & testing set in half and half proportion.
In total, MNIST dataset contains 60,000 images in the training set and 10,000 images in
testing set. In total, there are 10 classes, one for each digit 0 to 9. All images are grey
level of size 28×28.

SVHN

The Street View House Numbers (SVHN) dataset is a real world dataset of digits, similar to
MNIST. The dataset was collected from the house numbers via Google Street View images.
The images are cropped to a size of 32×32, slightly larger to MNIST and is significantly
harder as it the images come from real world problem i.e., recognizing digits and numbers
in natural scene images especially as it has cases where there are multiple digits in the same
image as shown in the first column of Fig. 5.4. In total, there are 10 classes of images for
numbers 0 to 9 i.e., one for each digit. Digit ‘1’ has label 1, ‘9’ has label 9 and ‘0’ has label
10. In total there are 73257 digits images for training, 26032 digits for testing, and 531131
additional, somewhat less difficult samples, to use as extra training data if required.
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Table 5.1: Architecture of our CNN used for MNIST Classification.

Conv Layer (3x3, 32x)
Conv Layer (3x3, 32x)
Conv Layer (3x3, 32x)
Conv Layer (3x3, 32x)

MaxPool Layer (2x2, 2x2 stride)
Conv Layer (3x3, 64x)
Conv Layer (1x1, 10x)

Global average pooling (10)
Softmax (10)

5.2.2 Experiments Design

Setup

To conduct experiments on three different datasets, we trained three different CNN ar-
chitectures with all convolutional layers. For training on MNIST and SVHN, we set our
network architecture similar to [112], as it has shown to perform very effectively for a variety
of datasets. To train these networks, we used the default train and test split. We achieved
an accuracy of 99.26% and 92.6% for the MNIST and SVHN datasets, respectively.

In both networks, as the last layer (convolutional layer) was linearly connected to the
softmax activation function, each kernel can be considered to represent one separate class.
It is important to note that the aim was to understand and interpret the decision of a
trained network; hence we did not strive to achieve the best architecture and state-of-
the art results for each dataset. Using the previously mentioned setup, we conducted the
following experiments.

5.2.3 Qualitative Results

In this set of experiments, we first create binary heatmaps and the proposed CLEAR maps
for individual images in the three different datasets. The binary heatmaps represent which
information in the image was used for or against the true class versus other image classes
during classification. The binary heatmaps were formed by overlaying the output response
from the kernel representing the true class as “hot” regions and response of the rest of
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Table 5.2: Architecture of our CNN used for SVHN Classification.

Conv Layer (3x3, 32x)
Conv Layer (3x3, 32x)
Conv Layer (3x3, 32x)

MaxPool Layer (2x2, 2x2 stride)
Conv Layer (3x3, 64x)
Conv Layer (3x3, 64x)
Conv Layer (3x3, 64x)

MaxPool Layer (2x2, 2x2 stride)
Conv Layer (3x3, 128x)
Conv Layer (1x1, 128x)
Conv Layer (1x1, 10x)

Global average pooling (10)
Softmax (10)

the kernels in the last layer, represented by green regions. The response for the rest of
the kernels is formed by performing max operation across the individual output responses.
Thus, in the binary heatmaps, the hot regions and green regions represent the information
for and against the actual class respectively, that was used for decision-making by the
network. The binary heatmaps are constructed similarly to [135] and [81]. The CLEAR
map formation is explained in Section 5.1.2 and Fig. 5.2.

For the SVHN, we also create an additional binary map. This map replaces the varying
values in the binary heatmaps with a constant value. In the binary map, red and blue
regions represent the information used for and against the class, respectively. We create
these maps for visual clarity, as sometimes it is harder to visualize the green regions in the
binary heatmaps.

Some of the randomly chosen results for the MNIST dataset are shown in Fig. 5.3. This
figure shows examples of correctly classified and misclassified examples by the network.
From these results, observations that can be made are: 1) Looking at the example sets
for digit 0, although positive support is contributed by the same bottom curved features
in both examples, only in one case is the image correctly identified as zero. Looking at
the CLEAR maps, we can see the dominant activations for the correctly classified example
corresponds to class 0, whereas for the misclassified case they correspond to class 5. 2)
Similarly, for digit 7 and 8 it is difficult to interpret the decision output of the CNN, but
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looking at the CLEAR maps make them more interpretable.

5.2.4 SVHN

Presented similarly to the MNIST dataset, results obtained for the SVHN dataset are
shown in Fig. 5.4. Some interesting observations are as follows: 1) For the misclassified
0 digit, the heatmap overwhelmingly focuses on the correct curves; but the network still
misclassifies it. This is counter-intuitive to human interpretation. But when observing the
CLEAR maps, we see that almost all the strong activations are for classes other than 0.
2) For the digit 9, it is difficult to interpret the binary heatmaps, as the positive kernel
focuses on the digit 1, but it still correctly classifies the digit as 9 with high confidence.
Observing the CLEAR maps, we see that most of the dominant activation in the focus
areas belong to digit 9, including the ones for digit 1.

5.2.5 Quantitative Results

To re-validate our observations for the MNIST and SVHN datasets, we conducted two
different quantitative experiments. In the first experiment, we removed all parts of the
image, except for regions responsible for the activations of the kernel associated with the
class of the image (positive kernel). We call these regions strong features associated with
the class. For the MNIST dataset, we replace the digit with the background and for the
SVHN dataset, we replace the region with a gray patch.

Table 5.3: Evaluation to re-validate the effectiveness and contribution of identified strong
features on accuracy.

Accuracy(%) MNIST SVHN
Full image 99.26 92.60
with only strong features 79.89 69.12
without strong features 43.45 54.46

In the second experiment, we do the opposite: we remove the regions responsible for
the kernel associated with the true class of the input image and keep the rest of the image.
Results are shown in Table 5.3, and demonstrate that the identified strong features are
vital for correctly classifying a particular class. For the case where the network is still able
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Figure 5.3: Example images from the MNIST dataset. Each row represents two sets of
examples for digit 0-9: correctly classified example (left) and misclassified example (right).
Each example set consists of the (I) original image, (II) heatmap results (where hot regions
are focus of positive kernel and green represents dominant pixel results for the rest of kernels
in the last layer) and (III) CLEAR maps. The color map on top shows the associations of
different colors with their respective classes in the CLEAR map.
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Figure 5.4: Correctly classified (left) and misclassified (right) images from the SVHN
dataset. Each row represents two sets of examples for digit 0-9. Each example set consists of
the (I) original image, (II) heatmap results (where hot regions are focus of positive kernels,
and green regions for the rest of kernels), (III) binary map (red represents information
for and blue represents information against the given image class) and (IV) CLEAR map
respectively. The color map at the top shows the associations of different colors with their
respective classes in the CLEAR map.
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Figure 5.5: Examples of handwritten digits from MNIST are shown, along with: 1) the
decision made by the CNN, 2) heatmaps used in existing visualization methods, 3) the
proposed CLass-Enhanced Attentive Response (CLEAR) maps, and 4) what can be in-
terpreted based on the heatmaps and the proposed CLEAR maps. While the heatmaps
used in existing approaches show which information in the image works for (positive focus:
hot regions) or against (negative focus: green) a particular decision made, the proposed
CLEAR map allows for the visualization of the attentive regions of interest, the correspond-
ing attentive levels, as well as the dominant class for each attentive region of interest that
the CNN uses during the decision-making process. Each individual color in the CLEAR
map represents the corresponding dominant attentive class at that location. Correspon-
dence between colors and the dominant classes can be derived by the color map given at the
bottom. In these examples, it is evident that the heatmaps are insufficient to fully inter-
pret and explain the decision made by the CNN, whereas the proposed CLEAR maps can
explain the decision-making process more effectively through a multi-factor visualization
approach.
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to classify without the strong features, albeit with half of the accuracy in comparison to
the above case, an argument can be made that for these cases, the network focuses again
on similar or redundant features. An example is digit 3, where there are redundant strong
curve features.

5.2.6 Discussions

This section discusses some general points associated with the CLEAR maps approach: 1)
It is interesting to note that in Fig. 5.2, there is sparsity in the individual response maps
from the last layer kernels. We observed the same pattern for all datasets considered.
Evidence for classes tends to come from very specific localized regions. 2) In the current
realization of our approach, we use deconvolution responses with only fully convolutional
networks. We would like to point out that even though end-to-end learning in this case is
only possible with Fully Convolutional Nets (FCN), our approach can be extended to be
used with different network architectures with the use different response methods, such as
Layer-wise Relevance Propagation (LRP) [5], Deep Taylor decomposition [81], or prediction
differential analysis [135].

The above experiments proved the efficacy of the proposed CLEAR method in ex-
plaining cases which remain unexplained through other visualization based methods. In
the following sections, we present another study that uses CLEAR in the medical imaging
domain specifically for the diabetic retinopathy, the leading cause of blindness in the world.

5.3 Experiments - Diabetic Retinopathy

To prove the efficacy of CLEAR in the medical imaging domain, we use CLEAR to cre-
ate a Computer Aided Diagnostic (CAD) system that helps clinicians detect and diagnos
diseases faster and more accurately. In particular, we apply the CLEAR approach for
diabetic retinopathy for which the motivation and detailed setup along with some results
are explained in the below subsections.

5.3.1 Diabetic Retinopathy: Motivation

Diabetic retinopathy is a medical condition that causes damage to the retina due to di-
abetes. It is the leading cause of blindness in the world. Traditionally, clinical diagno-
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sis for diseases such as diabetic retinopathy is highly subjective based purely on a clini-
cian’s experience. As such, these diagnoses have high inter- and intra-observer variability.
The prevalence of computer-aided diagnosis (CAD) systems to support clinicians in their
decision-making process has risen, enabling faster and more accurate diagnostic decisions
with lower variability. In particular, radiomics-driven CAD has become an increasingly
more prevalent area of research focus, where radiomic sequences consisting of a large num-
ber of image-based features are extracted and used to help clinicians make more informed
decisions, and provide a virtual second opinion [1]. However, traditional radiomic sequences
comprise largely of generic, hand-crafted features, which may be limiting in characterizing
unique disease traits.

More recently, the concept of Discovery Radiomics has been shown to be particularly
promising for oncology decision support by directly discovering radiomic sequencers based
on medical imaging data [63], resulting in radiomic sequences that are tailored to char-
acterizing unique disease traits. A particularly powerful use of Discovery Radiomics is
for the discovery of deep radiomic sequencers, which leverage deep neural network (DNN)
architectures to learn and extract subtle, latent features associated with key disease char-
acteristics. Although these CAD systems are largely uninterpretable, such DNN-based
approaches have shown considerable promise in detecting diabetic retinopathy [41, 122].
Though these CAD systems are largely uninterpretable as there is no mechanism in their
method to explain the predictions.

Motivated by the need for clinical interpretability, we implemented CLEAR for the
purpose of clinical decision support for diabetic retinopathy. CLEAR not only generates
discriminative radiomic sequences for making grading decisions for diabetic retinopathy as
a use case, but also visually interpret and understand these decisions via information back-
propagation. The back-propagation is done through the discovered radiomic sequencer
by embedding the CLEAR approach proposed by Kumar et. al. [67]. This process is
designed to enable grade-level interpretability. As shown in Fig. 5.6, CLEAR can also help
in reducing inter-observer variability and intra-observer variability while speeding up the
overall diagnostic process. The main contribution of the proposed CLEAR CAD system is
as follows:

• To the best of the authors’ knowledge, this is the first interpretable deep radiomic
sequencer-driven CAD system proposed that enables the visualization of multi-class
medical diagnosis grading processes.

• The study shows a direct qualitative correlation between the medically relevant land-
marks that human experts use for diabetic retinopathy grading and the landmarks
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used by CLEAR for classifying different grades of diabetics through retinopathy im-
ages.

This section presents the experimental setup and the qualitative experiments performed
to show the efficacy of the CLEAR maps via the discovery radiomics framework. We
conducted experiments on the Kaggle diabetic retinopathy dataset [53] using a CNN-based
deep radiomic sequencer. Details about the dataset and training are explained below.

5.3.2 Diabetic Retinopathy Dataset

The Kaggle diabetic retinopathy dataset [53] consists of high-resolution retinal fundus
images with varying degrees of illumination conditions captured using different types of
cameras. The retinal fundus images in the dataset were clinically annotated with five dif-
ferent grades related to the presence of diabetic retinopathy. The five grades of diabetic
retinopathy are as follows: 0: Negative, 1: Mild, 2: Moderate, 3: Severe, and 4: Prolifer-
ative. The dataset consists of images from both right and left eyes. Mild noise is present
in both the images and ground truth labels.
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N:32
F:3x3
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F:1x1
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GAP

softmax

Convolutional 
block

Max-pooling
S: 2x2, Pool:2x2

Deep Radiomic CNN sequencer

Figure 5.7: Architecture of the convolutional radiomic sequencer used in the deep radiomic
sequencer discovery process. The radiomic sequencer is embedded in the sequencer discov-
ery process, which augments a set of fully convolutional layers, a rectified linear unit layer,
max-pooling, global average pooling (GAP) and a loss layer at the end of the sequencer
for the learning process.

5.3.3 Experimental Setup: Training A Discovery Radiomics Se-
quencer

To create and train a deep radiomic sequencer for diabetic retinopathy, we use a CNN
as shown in Fig. 5.7. To train this deep radiomic sequencer, we selected retinal fundus
images for one eye (right) only and performed an automatic selective cropping to remove
the background information. The use of a single eye led to 53,354 images in total. For
evaluation purposes, we divided the dataset into 90% and 10% of the dataset for training
and testing respectively. We augment the dataset by performing horizontal and vertical
flipping along with channel-wise normalization. Using the above setup, we trained the deep
radiomic sequencer and achieved an accuracy of 73.2% overall. It is important to note here
that the goal of this study is to create an interpretable system for diabetic retinopathy,
and thus the focus is on interpretability of grading decisions made using the deep radiomic
sequencer. As such, the accuracy of the proposed CAD system can be improved further
by leveraging alternative DNN architectures and other optimization approaches.
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(a) Normal (b) Moderate DR (c) Severe DR (d) Proliferative DR.

Figure 5.8: Figure showing a normal fundus image (a) and different grades of diabetic
retinopathy ((b),(c) & (d)) identified by the presence of various types of abnormalities in
the retinal fundus image.

5.3.4 Qualitative Experiments: CLEAR for Interpretable CAD

To demonstrate the efficacy of interpretability with the CLEAR system for diabetic retinopa-
thy, we took the above discovered deep radiomic sequencer and created CLEAR maps using
the same procedure shown in Fig. 5.2 for all diabetic retinopathy grades for both scenarios
i.e., cases where the CLEAR CAD system correctly predicts a diabetic’s grade (Fig. 5.9(a))
and cases where it failed to identify the correct grade (Fig. 5.9(b)). Observing the indi-
vidual cases in Fig. 5.9, it is evident that CLEAR maps are able to explain both scenarios
i.e., where the grade was either correctly or mis-classified. For both scenarios, it provides
the attention areas that highlight the associated abnormalities as shown in Fig. 5.8. Thus,
giving a rationale in both cases for particular decisions that the clinician can reason with.

5.3.5 Discussions

Specific observations can be made from Fig. 5.9. For example, in the correctly classified
diabetic retinopathy case in Fig. 5.9(a), it can be observed that the deep radiomic sequencer
mainly focuses on the veins near the eye-balls in the retinal fundus image as there is an
absence of abnormalities. Hence, it only focuses on normal nerve near optic disc. A
similar observation about the abnormality and the extent of it can be made in other
correctly identified cases. Specifically, for proliferative case in Fig. 5.9(a), CLEAR-DR
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Negative Mild Moderate Severe Proliferative 
(a)

Prediction: Mild Prediction: Mild Prediction: Moderate Prediction: Prolf.  Prediction: Moderate

Negative Mild Moderate Severe Proliferative

Color Map

(b)

Figure 5.9: Correctly (a) and Mis-classified (b) examples for all diabetic retinopathy grades.
Each color represents a single grade, as identified by the color map at the bottom of the
figure. As well, the red box indicates the most attentive region used for grade prediction. It
can be observed that the attentive regions used by the deep radiomic sequencer for making
correct decisions corresponds to medically relevant landmarks, thus providing additional
evidence for the proposed prediction. Best viewed in color and zoomed in.
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system correctly identifies the exudates in the fundus image, which is usually associated
with proliferative diabetic retinopathy. Similarly, in the same image, macula is detected
for the moderate case. In the mis-classified case of mild diabetic retinopathy in Fig. 5.9
(b), it can be seen the deep radiomic sequencer fails to focus on the correct abnormalities.
For example, in the normal case, it identifies the nerves around the disc as abnormalities,
and considers it as proliferative case. If such an image is shown to clinician, they can see
the evidence and reject it right away.

Based on these results and observations, it is evident that CLEAR maps show a direct
correlation between the medically relevant landmarks for identifying the condition of di-
abetic retinopathy and the attentive areas used by the CLEAR CAD system for grading
diabetic retinopathy. Thus, we argue that the CLEAR maps are effective for understanding
and interpreting the classification decisions made by a CAD system and also for providing
a reason for their decision making process in clinical settings.

5.4 Summary

In this Chapter, a novel approach to better understanding and visualizing the decision-
making process of DNNs was introduced in the form of CLass-Enhanced Attentive Response
(CLEAR) maps. CLEAR maps are designed to enable the visualization of not only the
areas of interest that predominantly influence the decision-making process, but also the
degree of influence as well as the dominant class of influence in these areas. This multi-
faceted look at the decision-making process allows for a better understanding of not only
where but why certain decisions are made by DCNNs compared to existing heatmap-based
approaches.

Experiments using three different publicly available datasets (two generic image dataset
and one medical) were performed and show the efficacy of CLEAR maps both quantitatively
and qualitatively. For the generic image datasets, we demonstrated that strong areas of
interest identified with CLEAR maps play a pivotal role in the correct classification of the
class.

For the diabetic retinopathy sequencer via CLEAR-DR, we show a direct correlation
between the medically relevant landmarks used by human experts for grading and the visual
features identified and used by the CLEAR-DR system for diabetic retinopathy grading.
Thus in the medical domain, the proposed approach has great potential to reduce inter-
and intra-observer variability and to accelerate the overall screening and diagnosis process
while improving consistency and accuracy in clinical settings.
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In the last Chapter of this thesis (Chapter 6), we draw conclusions about the introduced
class based explanation strategies and discuss some interesting future directions, includ-
ing a formulation for class-based global explanation that can be used for discovering and
explaining the concepts identified by trained deep neural networks using human attribute
priors.
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Chapter 6

Conclusions & Future Work

“Call it the Hamlet strategy: lending a deep neural network the power of internal mono-
logue, so that it can narrate what’s going on inside. But do the concepts that a network has
taught itself align with the reality that humans are describing, when, for example, narrating
a baseball highlight? Is the network recognizing the Boston Red Sox by their logo or by some
other obscure signal, like “median facial-hair distribution,” that just happens to correlate
with the Red Sox? Does it actually have the concept of “Boston Red Sox” or just some
other strange thing that only the computer understands? It’s an ontological question: Is
the deep neural network really seeing a world that corresponds to our own?”

- Trevor Darrell, NY Times article
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The goal of this research was to study the effectiveness of the current interpretability
approaches for explaining the decision making process of deep neural networks and address
some of their shortcomings. In this regard, in Chapter 3, we address some of their short-
comings pertaining to absence of correlation between the obtained binary heatmaps and
human domain knowledge. We also propose to make the heatmap formation process end-
to-end in Chapter 4. In Chapter 5, we showed that using a multi-class enhanced approach
for forming attentive regions can produce more comprehensive explanations for scenarios
that remained explained using the previous heatmaps methods including attention response
maps as introduced in Chapter 3. As the previous chapters contributed towards local ex-
planation methods, in this final chapter, we also introduce a framework for producing
class level global explanations as potential interesting direction to explore. Therefore, this
Chapter first summarizes the main contributions presented in this thesis and offers some
promising directions for future research including a human attributes prior-based global
explanation framework.

6.1 Thesis Contribution Highlights

The main contribution of this thesis can be summarized as follows:

• Domain knowledge discovery via attention response maps (Chapter 3): We
proposed the concept of attention response maps. First, we showed how attention
maps can be used to relate the attentive region used by a deep neural network for
making decisions to human domain expertise. Along with this, we also conducted
experiments and presented specific evidence to show where in the training process of
such neural network’s learning process does the hierarchy of features emerge and at
which stage of training, deep neural networks start to use landmarks that correlate
with human domain knowledge.

• End-to-end architecture design for attention response maps (Chapter 4):
We introduced a novel end-to-end interpretable architectural design framework for
attentive response maps. This framework is enabled by the proposed radiomic se-
quencer: a deep stacked interpretable sequencing cell (SISC) architecture. Experi-
mental results show that the proposed SISC radiomic sequencer is able to not only
achieve state-of-the-art results, but also offers prediction interpretability in the form
of critical response maps generated through the stack of interpretable sequencing
cells. The critical response maps highlights the critical regions used by the sequencer
for making predictions. The critical response maps are useful for not only validating
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the predictions of the proposed SISC radiomic sequencer, but also provide improved
human expert-machine collaboration for improved decision support.

• Class-enhanced attentive response maps (CLEAR) (Chapter 5): We pro-
posed the CLass-Enhanced Attentive Response (CLEAR) maps for better under-
standing and visualizing the decision-making process of DNNs. CLEAR maps are
designed to enable the visualization of not only the areas of interest that predom-
inantly influence the decision-making process, but also the degree of influence as
well as the dominant class of influence in these areas. This multi-faceted look at
the decision-making process allows for a better understanding of not only where but
why certain decisions are made by CNNs compared to existing heatmap-based ap-
proaches. Thus, CLEAR is able to explain scenarios that remain unexplained by
binary attention maps.

6.1.1 Limitations

The qualitative and quantitative experimental results demonstrated that the proposed
methods produce quite interpretable results. However, there are some limitations accom-
panied with these methods which should be considered:

1. Attention Response Maps: One of the major limitations of the attentive response
maps is their inability to automatically compare to a human expert’s domain knowl-
edge. It still requires a human in the loop to compare the output prediction of these
maps and relate it to domain knowledge. Eliminating the human in the loop can
result in removing some of the subjectivity still involved in the analysis. We attempt
to resolve this situation to an extent in this chapter but we believe it can be explored
further.

2. CLEAR: One of the limitations of our proposed CLEAR framework is visualization
in scenarios with large number of classes (> 20). We did not strive to show the
CLEAR maps for all scenarios with that number of classes, as doing so would make
it extremely difficult to interpret the decision outputs. For such cases, perhaps show-
ing the top 10 most activated class or several different maps with N classes would be
a better approach. In the current realization of our approach, we use deconvolution
responses with only fully convolutional networks. We would like to point out that
even though end-to-end learning in this case is only possible with Fully Convolutional
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Nets (FCN), our approach can be extended to be used with different network archi-
tectures with the use of different response methods, that allows such representation
to be made for all kind of network architectures.

6.2 Future Work

The proposed methods in this thesis open several new directions for future work. Here we
describe the main topics.

6.2.1 Human Attributes Prior Based Concept Explanations

Most of the recent works (as discussed in Chapters 2-5) in the domain of explainability of
neural networks pertain to local explanations via feature importance methods. In particu-
lar, research in this sub-domain of XAI tends to depend on answering a particular question:
what evidence is present in a given instance or sample that justifies the prediction?. This
is an important question to answer to arrive at an explanation for a given input. However,
there are certain limitations attached with such an approach.

One of the prominent limitations of local feature importance based methods is the lack
of objectivity in their explanations. The end user (human domain expert) still needs to
look at the evidence presented in the form of group of pixels and make his or her own sub-
jective explanation. Another limitation of these method is the absence of human labelled
attributes. Providing such explicit attributes as concepts can in-part remove the problem
associated with the lack of objectivity and can also provide capabilities to measure expla-
nations in terms of human expert defined important and discriminate concepts. Hence,
there is a need to have methods that can provide global explanation in terms of human
defined concepts.

In this section of the thesis, we aim to propose a solution for the above mentioned limi-
tations of the local feature or attention based methods by providing a framework that can
generate class specific “global explanations” using human provided attributes as priors. We
believe it is an important and interesting research direction to pursue for obtaining a holis-
tic explanation framework. In particular, we propose to use human provided attributes as
exemplar priors for concepts instead of automatically discovering concepts as in Ghorbani
et. al. [34]. As discussed earlier, we do so because the end-user (human expert) is the final
authority in accepting and rejecting the provided explanations. Hence, it is advisable to
do this premortem than postmortem. Therefore, starting with human defined attributes
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{Tail, Ear, Face}  Attribute Set

Figure 6.1: Illustration of human defined attributes. In the given image, a human user
labels the critical attributes associated with identifying a cat. These attributes can be
collected to form a attribute set that can be later used as priors for the formation of class
specific global explanations.

(as shown in Fig. 6.1) allows us to remove the subjective analysis of discovered concepts
later on by the human expert and can also help in additional analysis such as providing
a quantifiable metric for comparing different attention based methods and different neural
network architectures (discussed later).

The overview and detailed formulation for our proposed human attributes prior based
concept explanation framework is explained below.

Methodology

An overview of the proposed framework is shown in Fig. 6.2. As shown in the figure, we
first need human experts to provide attributes as priors. The attributes are meant to be
defined as the most discriminative features or attributes that define a given class of objects
based on the domain knowledge of the human expert. Hence, to select these attributes
the human expert is shown few exemplar cases to select and define/label these attributes.
Once the human domain expert defines all the required n attributes, we move to the next
steps in the process.
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Model M Predictions
Images 
without
exemplar
cases

Attentive
Response
Maps

Model M

Feature Vectors

Attribute Set AClustering
with p+1
clusters

Exemplar case

Ears

Figure 6.2: Illustration of how class specific global explanations can be formed using human
defined attributes. The formed clusters can be used to identify which attentive response
maps align with which human expert defined attributes.
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For the given class of objects, we select all the examples of that particular class and
pass them through a trained neural network which is trained to identify/classify objects
including the given class. We then form attention maps for all the correctly identified
images for given classes in the dataset excluding the exemplar cases. In the next steps,
we take the exemplar attributes and labelled regions and cluster the obtained attentive
regions for the rest of the samples, with the attributes acting as the initial centroids. We
start with p+ 1 clusters for all the p attributes along with a cluster for other background
features. At the end, we apply a distance metric to quantify how a given trained network
makes decisions and whether decisions are based on the human expert defined attributes
or something else.

Formulation

Consider a set of images I for a particular class c in a given database. Hence, the set of
all the images of class c will be:

Ic = {ic1, ic2, ic3, . . . , icn}. (6.1)

Using some random number of images from Ic we form an exemplar set, Ie where
Ie ⊂ Ic. The images from set Ie are shown to the human expert one by one to extract
the domain specific attributes ai where ai is ith attribute. The images are shown until the
human expert is satisfied that all the discriminative features associated with a given class
c are identified. Hence, we then collect all attributes, to form the attribute set Ah, where
it is defined as:

Ah = {ah1 , ah2 , ah3 , . . . , ahp}. (6.2)

The length of set Ah of the above defined set is p We then take the set of images for the
given class from the database other than the images contained in the exemplar set Ie, i.e.,
images in Ic \ Ie. These images are then sent to a trained neural network M , to extract
the spatial attentive regions using a instance based local explanation method. Let us call
the collected set of spatial attentive regions for N images of class c as Sc:

Sc = {si1 , si2 , si3 . . . , siN}; i ⊂ Ic \ Ie. (6.3)

The attentive regions set Sc is then passed through M to obtain attentive regions feature
vectors, thus obtaining the vectorized set Sc. In the next step, we attempt to form p + 1
clusters to classify the spatial attentive region identified in Sc. We use the p plus one more
random defined attribute as the initial cluster cluster for our spectral clustering process to
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cluster Sc. At the end, we calculate the Euclidean distance of each image in a given cluster
p, with the initial cluster centroid as obtained from Ah. For the p + 1th cluster, we don’t
calculate the score. Thus, we can obtain a quantitative metric how all the defined local
explanations for images in a given class c pertains to the human expert defined attributes.

The above defined quantitative metric then can be used to compare different neural
networks architectures as well as different visualization methods. Thus, the proposed
framework can act as a comparative tool for XAI methods, which is sorely lacking currently.

6.2.2 Multi-modal Data Explanations

Humans do most of their learning and recognition tasks through multi dimensional data
and multi-modal data. For example, to understand a cat, we look at how it moves, what
sounds it makes, what it looks like in three dimensions etc. Therefore, building explainable
neural network models with just 2D images and trying to relate it to human learning is
quite restrictive. Hence, in future it would be interesting to look at the XAI methods
through a multi-modal perspective.

6.2.3 Beyond Explainability

One of the major questions that still needs to be explored is in the direction of where else
these interpretability methods can be used? Is there a possibility of using these methods
for tasks other than the interpretability such as improving the learning process of deep net-
works or creating adversarial examples. We propose to explore in the following directions
as future work in this domain:

Improved Adversarial Learning

There has been some attention in exploring the use of gradient-based interpretability for
purposes other than purely explainability. For example, Zhou et. al. [132] proposed the use
of gradient-based interpretability to improve the localization performance of deep neural
networks. A number of research studies [42, 70] have leveraged sensitivity maps produced
via gradient-based interpretability as initialization for the task of segmentation. How-
ever, leveraging gradient-based interpretability for tasks beyond explainability is still not
well explored outside of these few examples, making further investigations into alternative
directions for leveraging insights gained through interpretability ripe for exploration.
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Figure 6.3: The illustration shows an example how explainable methods can be used to
first obtain attention maps which in turn can be used with generative methods to obtain
annotations or at-least as initial seed for segmentation algorithm.

It would be an interesting avenue to leverage gradient-based interpretability in the
realm of adversarial examples, where the goal is to produce delicately perturbed inputs de-
signed to mislead machine learning models towards incorrect predictions. More specifically,
it would be important to look at the concept of spatially constrained one-pixel adversarial
perturbations, guided by gradient-based interpretability such that insights gained via in-
terpretability is used to aid adversarial attacks. One-pixel adversarial perturbations [116]
is an extreme case of adversarial examples where only one pixel is modified to fool a
model into providing the wrong prediction. This pixel is found through Differential Evo-
lution [19], where a population of candidate pixels is randomly modified to create children
that compete with its parents for fitness in the next iteration; this fitness criterion being
the probabilistic predicted label. The optimal pixels for one-pixel adversarial perturbations
usually lie in positions of interest. This observation motivates us to leverage gradient-based
interpretability to constrain the differential evolution initialization; we posit that, by en-
suring that the initial population of pixels lie in positions of interest as given by generated
sensitivity maps, the optimization algorithm for generating one-pixel adversarial pertur-
bations can converge faster with fewer iterations. Furthermore, by guiding it towards
areas of interest, the produced attacks may also be more visually difficult to perceive. It
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would be an interesting approach to test out our initial hypothesis further with elaborate
experimentation.

Generating Annotations

Another potential use of the explainability methods can be in automatically generating
annotations for segmentation, especially in the cases where getting annotations can be
difficult both in terms of time and cost (An illustration of this is shown in Fig. 6.3). For
example, getting an experienced radiologist to provide large number of annotations of
cancerous regions that can be then used to train deep neural networks involves a large
amount of cost and time. Also, there are certain times where intra or even inter observer
variability is introduced in such a process. Using an approach, where you train a model for a
classification task, and then use an interpretability method to identify or label annotations
(Fig. 6.3) can prove to remove such observer related variability while saving time and
reducing cost.
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Appendix A

Interpretabel Crystal Structure
Classification

A.1 How To Represent A Material

In the case of crystal-structure recognition, it is essential that the descriptor captures
system’s symmetries in a compact way, while being size-invariant in order to reflect the
infinite nature of crystals. Periodicity and prevailing symmetries are evident - and more
compact - in reciprocal space, and therefore we introduce an approach based on this space.
For every system, we first simulate the scattering of an incident plane wave through the
crystal, and then we compute the diffraction pattern in the detector plane orthogonal to
that incident wave. This is schematically depicted in Fig. 3.2a. For completeness, the
formulation behind this procedure is explained in appendix A.2.

For each structure we first construct the standard conventional cell. Then, we rotate
the structure 45◦ clockwise and counterclockwise about a given crystal axis (e.g. x), cal-
culate the diffraction pattern for each rotation, and superimpose the two patterns. Any
other choice of rotation angle is in principle valid, provided that the diffraction patterns
corresponding to different crystal classes do not accidentally become degenerate. This pro-
cedure is then repeated for all three crystal axes. The final result is represented as one
RGB image for crystal structure, where each color channel shows the diffraction patterns
obtained by rotating about a given axis (i.e. red (R) for x-axis, green (G) for y-axis,
and blue (B) for z-axis). Each system is thus described as an image, and we term this
descriptor two-dimensional diffraction fingerprint (DF). We point out that this procedure
does not require to already know the crystal symmetry, and x, y, and z are arbitrary, e.g.
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determined ordering the lattice vectors by length(or whatever the chosen criterion). For
additional computational details on the descriptor DF, please refer to the section Methods.

Moreover, its dimension is independent of the number of atoms and the number of
chemical species in the system being represented. This is an important property because
machine learning models trained using this descriptor generalize to systems of different
size by construction. This is not valid for most descriptors: for example, the Coulomb
matrix dimension scales as the square of atoms in the largest molecule considered [96],
while in symmetry functions-based approaches [9] the required number of functions (and
thus model complexity) increases rapidly with the number of chemical species and system
size. Being based on the process of diffraction, the diffraction fingerprint mainly focuses on
atomic positions and crystal symmetries; the information on the atomic species - encoded
in the form factor fλa in Eq. A.1 - plays a less prominent role in the descriptor. As a
result, materials with different atomic composition but similar crystal structure have similar
representations. This is the ideal scenario for crystals classification: a descriptor which is
similar for materials within the same class, and very different for materials belonging to
different classes. Finally, the diffraction fingerprint is straightforward to compute, easily
interpretable by a human (it is an image, see Fig. 3.2c), has a clear physical meaning
(Eqs. A.1 and A.2), and is very robust to defects. This last fact can be traced back
to a well-known property of the Fourier transform: the field at one point in reciprocal
space (the image space in our case) depends on all points in real space. In particular,
from Eq. A.1 we notice that the field Ψ at point q is given by the sum of the scattering
contributions from all the atoms in the system. If for example, some atoms are removed,
this change will be smoothen out by the sum over all atoms and spread over - in principle -
all points in reciprocal space. Practically, with increasing disorder new low-intensity peaks
will gradually appear in the diffraction fingerprint due to the now imperfect destructive
interference between the atoms in the crystal. Examples of highly defected structures and
their corresponding diffraction fingerprint are shown in Fig. 3.2e-3.2f. It is evident that
the diffraction fingerprint is indeed robust to defects. This property is crucial in enabling
the classification model to obtain a perfect classification even in the presence of highly
defective structures (see below).
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A.2 Crystal Formation Formulation

The amplitude Ψ, which originates from the scattering of a plane wave with wave-vector
k0 by Na atoms of species a at positions {x(a)

j } in the material can be written as:

Ψ (q) = r−1
∑
a

fλa (θ)

[
Na∑
j=1

r0 exp
(
−iq · x(a)

j

)]
. (A.1)

where r0 is the Thomson scattering length, q = k1 − k0 is the scattering wave-vector, x′

the corresponding position in the detector plane, and r = |x′| (see Fig.3.2a). Assuming
elastic scattering, we have that |k0| = |k1| = 2π/λ, where λ is the wavelength of the
incident radiation. The quantity fλa (θ) is the so-called x-ray form factor; it describes how
an isolated atom of species a scatters incident radiation with wavelength λ and scattering
angle θ. Since x-rays are scattered by the electronic cloud of an atom, its amplitude
increases with the atomic number Z of the element [?]. Following the successful application
of scattering concepts in determining atomic structures, we propose the diffraction pattern
intensity as the central quantity to describe crystal structures:

I (q) = A · Ω (θ) |Ψ (q)|2. (A.2)

where Ω (θ) is the solid angle covered by our (theoretical) detector, and A is a (inessen-
tial) constant determined by normalization with respect to the brightest peak (see section
Methods).

Despite its rather complicated functional form (see Eqs. A.1 and A.2), the descriptorDF

is one image for each system being represented (data point); the eight crystal classes consid-
ered in this work (see below) and examples of their calculated two-dimensional diffraction
fingerprints are shown in Fig. 3.2b and Fig. 3.2c, respectively. This descriptor compactly
encodes detailed structural information (through Eq. A.1) and - in accordance with scat-
tering theory - has several desirable properties for crystal-structure classification, as we
outline below.

It is invariant with respect to system size: changing the number of periodic replicas
of the system will leave the diffraction peak locations unaffected. This allows to treat
extended and finite systems on equal footing, making our procedure able to recognize global
and local order, respectively. We exploit this property, and instead of using periodically
repeated crystals, we calculate DF using clusters of approximately 250 atoms. These
clusters are constructed replicating the crystal unit cell (see Methods). By using finite
samples, we explicitly demonstrate the local structure recognition ability of our procedure.
The diffraction fingerprint is also invariant under atomic permutations: re-ordering the list
of atoms in the system leads to the same DF due to the sum over all atoms in Eq. A.1.
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