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Abstract—We propose a new method for learning filters for
the 2D discrete wavelet transform. We extend our previous
work on the 1D wavelet transform in order to process images.
We show that the 2D wavelet transform can be represented as a
modified convolutional neural network (CNN). Doing so allows
us to learn wavelet filters from data by gradient descent. Our
learned wavelets are similar to traditional wavelets which are
typically derived using Fourier methods. For filter comparison,
we make use of a cosine measure under all filter rotations.
The learned wavelets are able to capture the structure of the
training data. Furthermore, we can generate images from our
model in order to evaluate the filters. The main findings of this
work is that wavelet functions can arise naturally from data,
without the need for Fourier methods. Our model requires
relatively few parameters compared to traditional CNNs, and
is easily incorporated into neural network frameworks.
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I. INTRODUCTION

The purpose of this work is to extend our previous 1D

wavelet transform model to 2D [1]. The wavelet transform

is a linear time-frequency transform that makes use of a

multiscale filter bank made up of self-similar wavelet filters.

We focus on orthogonal filters so that we can perfectly

reconstruct the input signal from its wavelet coefficients.

Generally, wavelet filters are designed using Fourier meth-

ods. We propose a new method of learning wavelet filters

directly from data. We accomplish this by framing the

wavelet transform as a variant of a convolutional neural

network (CNN). Our learning method makes use of an

autoencoder framework [2]. We impose a sparsity constraint

on the learned representation in order to learn wavelets that

exploit structure in the training data.

A motivation of our previous work was to construct a

model that was able to learn directly from raw 1D signals,

such as audio. Typical models first perform a fixed feature

transform (e.g. the Fourier transform) instead of dealing with

the raw data directly [3]. More recently, there has been

work showing impressive results on raw audio [4]. In [1]

we proposed a novel model based on the wavelet transform

that was able to learn useful filters from 1D data. The results

are summarized in Figure 1.

We extend our 1D model in order to learn wavelet

filters from 2D image data. This is in contrast to the more

Figure 1. Summary of results from [1]. Left column: Learned wavelet
(solid) and scaling (dashed) functions. Type of training data is shown above
the plots. Middle column: Closest traditional wavelet (solid) and scaling
(dashed) functions according to (17). Right column: Plots of the scaling
filters from the first two columns with corresponding distance measure.

traditional method of using a fixed feature representation

such as SIFT [5] or SURF [6]. One of the most notable

methods of learning directly from image data is the CNN

[7], which learns a set of 2D filters that are applied in

a cascade. Our model instead learns 1D filters that are

applied along each dimension of the image. Thus, the filters

still have a 2D receptive field, but fewer parameters are

required. Furthermore, we reuse the filters in each layer of

the network, unlike in a traditional CNN where separate

filters are used at each layer.

The wavelet transform has been used in neural networks

in the past, such as in the wavelet network [8] and the
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Figure 2. Frequency view of the wavelet functions.

scattering transform [9]. These models do not learn wavelet

filters, but instead use fixed filters. The scattering transform

computes coefficients similar to those of SIFT descriptors

[10]. Learning wavelet filters using neural networks has been

proposed before in [11]. However, the signals considered had

domains over the vertices of graphs. Furthermore, second

generation wavelets were considered [12]. In this work we

consider only first generation wavelets.

II. WAVELET TRANSFORM

A. 1D Wavelet Transform

We will begin our discussion with the 1D wavelet trans-

form. The wavelet transform is a linear time-frequency trans-

form that makes use of a dictionary of wavelets. Wavelets

are functions that are localized in time and frequency. In a

traditional wavelet transform, each wavelet is a shifted and

dilated version of a mother wavelet, ψ. We restrict ourselves

to the discrete case, where our wavelets are of the form

ψj [n] =
1

2j
ψ
( n
2j

)
(1)

for n, j ∈ Z. Let x be a 1D discrete signal of length N .

The discrete wavelet transform is computed by convolving

x with the wavelet functions:

Wx[n, 2j ] =
N−1∑
m=0

x[m]ψj [m− n]. (2)

The wavelet functions are constrained to have zero mean

and unit norm. For a fixed shift n, the wavelets form an

overlapping bandpass filter bank illustrated in Figure 2. In

order to cover the entire frequency axis, we require the

notion of a scaling function, φ. The scaling function can be

thought of as the sum of all wavelet functions above a fixed

scale. Formally, it is defined such that its Fourier transform

has the following property [13]:

|φ̂(ω)|2 =

∫ +∞

1

|ψ̂(sω)|2
s

ds (3)

In order to compute the discrete wavelet transform effi-

ciently, we will make use of an iterative algorithm. Let us

first define two filters:

h[n] =

〈
1√
2
φ

(
t

2

)
, φ(t− n)

〉
(4)

g[n] =

〈
1√
2
ψ

(
t

2

)
, φ(t− n)

〉
(5)

We call h the scaling (lowpass) filter, and g the wavelet

(highpass) filter. We will use k to denote the length of the

filters. The discrete wavelet transform can then be computed

with the following iterative steps:

aj+1[p] =
+∞∑

n=−∞
h[n− 2p]aj [n] (6)

dj+1[p] =
+∞∑

n=−∞
g[n− 2p]aj [n] (7)

with a0 = x (i.e. the input signal). We call aj and dj the

approximation and detail coefficients respectively. Note that

the detail coefficients are exactly the wavelet coefficients

from (2). The discrete wavelet transform algorithm makes

use of a cascade of convolutions, each followed by down-

sampling. At each iteration, the signal is split into high and

low frequency components. The high frequency components

correspond to the wavelet coefficients. The low frequency

coefficients are then used in the next iteration.

The original signal can be recovered from the approxima-

tion and detail coefficients using:

aj [p] =
+∞∑

n=−∞
h[p− 2n]aj+1[n]

+

+∞∑
n=−∞

g[p− 2n]dj+1[n]

(8)

Note that the coefficients are upsampled by a factor of two

at each iteration by inserting zeros at even indices.

B. 2D Wavelet Transform

The discrete wavelet transform can be extended to two

dimensions by computing the convolutions along each axis

separately [14]. In the 1D case, we computed two com-

ponents at each iteration of the algorithm (highpass and

lowpass). In the 2D case, we will compute four components.

Let LR and LC correspond to convolving the scaling

(lowpass) filter along the rows and columns respectively.

We can similarly define HR and HC for the wavelet (high-

pass) filter. At every iteration of the 2D wavelet transform

algorithm, we compute the four components as illustrated in

Figure 3:

approximation: LR(LC(x)) (9)

detail horizontal: LR(HC(x)) (10)

detail vertical: HR(LC(x)) (11)

detail diagonal: HR(HC(x)) (12)

where x is now a 2D discrete signal. The three components

computed using at least one wavelet filter are kept as

the detail coefficients. The single approximation component

computed by convolving the scaling filter along both axes is

passed to the next iteration of the algorithm. The output of
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Figure 3. One iteration of the 2D discrete wavelet transform.

Figure 4. One iteration of the 2D discrete wavelet transform applied
to a circular image. Not that the different coefficient components pick up
different edge orientations.

the transform is structured as in Figure 5a. Note that after

each convolution, the image is downsampled by a factor

of two along the direction of the convolution. Computing

the 2D wavelet transform in this fashion is used in the

JPEG2000 standard [15].

The three components containing the detail coefficients

each correspond to a different orientation: horizontal, ver-

tical, and diagonal. Each component responds to changes

along its corresponding direction. Figure 4 shows one level

of the wavelet transform applied to an image. Note that the

three detail coefficient components highlight different edge

orientations.

As in the 1D case, we subsample by a factor of two

after each convolution. Thus, the total number of coefficients

is equal to the number of pixels in our original image.

Figure 5 shows how the coefficients are typically represented

graphically. Note that we can discard the approximation

coefficients after each iteration as they can be reconstructed

by the coefficients at the next level.

To get an idea of how the 1D wavelet filters behave in

2D, we can compute the impulse responses associated with

each orientation. The impulse responses are computed by an

inverse wavelet transform on wavelet coefficients that have

a single nonzero value in each of the three detail coefficient

components. The impulse responses are thus the images
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Figure 5. (a) Wavelet coefficient matrix after three iterations of the wavelet
transform algorithm. (b) The wavelet coefficients are computed from the
scaling coefficients of the previous iteration.

Figure 6. Impulse responses of a typical wavelet filter.

that each filter orientation maximally responds to. Figure

6 shows the impulse responses for a typical wavelet filter.

The first two impulse responses correspond to the horizontal

and vertical components. The third impulse response has a

checkerboard appearance since it is effectively the product

of the first two. The 2D wavelet transform thus suffers from

poor directional selectivity, which can be addressed by using

a dual-tree version of the transform [16]. We leave this for

future work.
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approximation
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Figure 7. The wavelet transform as a neural network. Each layer of the network computes the three detail components and single approximation component.
The approximation coefficients are passed to the next layer, while the detail coefficients are passed to the final layer. The number of layers corresponds to
the number of iterations of the wavelet transform algorithm.

Inverse

Wavelet

Transform

Network

Wavelet

Transform

Network

Minimize reconstruction error

Prefer sparse transform

x
W (x)
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Figure 8. The autoencoder framework used in our experiments. An L1 penalty is put on the wavelet coefficients so that the learned wavelets must exploit
the structure in the data.

III. THE WAVELET TRANSFORM AS A NEURAL

NETWORK

The wavelet transform is computed by a cascade of

convolutions. This computation is similar in structure to

that of CNNs. As such, we propose a modified CNN that

directly computes the wavelet transform. By doing so, we are

able to leverage the mathematical properties of the wavelet

transform into the successful deep learning architectures. In

simplest terms, our model is an unrolling of the discrete

wavelet transform algorithm. Figure 7 shows an overview of

our wavelet transform network. Each layer of the network

computes one iteration of the discrete wavelet transform.

The detail coefficients are passed directly to the final output

layer. The approximation coefficients are passed as input to

the next layer. The parameters of the network are the wavelet

and scaling filters. These filters are reused at each layer of

the network, and hence the model is only required to learn a

single filter pair. This property is similar to that of recurrent

neural networks, where weights are reused at each time step

[17]. In our network, however, weights are reused at each

scale.

In this work we consider quadrature mirror filters. Hence,

we restrict the filters such that

g[n] = (−1)nh[−n]. (13)

Figure 9. Impulse responses of two random filters satisfying (14). Each
filter has a length of ten.

In other words, the wavelet filter is derived from the scaling

filter by reversing it and negating the odd indices. Thus,

we must only learn the scaling filter in order to define the

network parameters.

In order for our learned filters to compute a valid wavelet
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transform, we introduce the following constraints on the

filters [1]:

Lw(h, g) = (||h||2 − 1)2 + (μh −
√
2/k)2 + μ2

g (14)

where μh and μg are the filter means. The first two terms

prefer a scaling function with unit L2 norm and finite L1

norm respectively [18], [13]. The last term prefers a wavelet

filter with zero mean. These constraints define a family of

filters. See Figure 9 for a selection of random filters that

minimize (14). We can see that the constraints by themselves

are not sufficient for learning meaningful filters. The space

of filters that minimize (14) may share similarities to the

space of parameterized wavelet families [19].

We make use of an autoencoder framework in order to

demonstrate that our model is able to learn useful wavelet

functions [2]. Figure 8 shows an overview of the framework.

The goal is to reconstruct an input image by first computing

the forward wavelet transform, imposing sparsity constraints

on the coefficients, and then performing an inverse wavelet

transform. We choose to use an L1 sparsity constraint in

order to prefer mostly zero coefficients.

We argue that a wavelet that gives a sparse representation

of an image must exploit inherent structure present in the

data. Thus, the model must learn something useful about

the images used for training. In experiments we make use

of images of faces [20] and synthetic images containing

harmonic waves of different shapes. We extend the synthetic

generation process for 1D data from [1]:

x(t) =

K−1∑
k=0

ak · s(2kt+ φk) (15)

where φk is a phase offset chosen uniformly at random

from [0, 2π], and ak is the kth harmonic indicator which

takes the value of 1 with probability p and zero otherwise.

In our experiments we set p = 1/2. In order to generate

images, we first choose a random orientation angle for each

harmonic wave. In the case of axis-aligned waves, the angle

is 0 or π/2. The waves are then added to the image along

the chosen orientation and extended orthogonally to fill the

image. Three base waves are considered: square waves,

sawtooth waves, and sine waves. See Figure 10 for samples

of synthetic images

In order to learn the parameters of the network, we must

first define a loss function over a dataset of images X =
{x1, x2, . . . xM}:
L(X; g, h) =

1

M

M∑
i=1

||xi − x̂i||22 + λ1
1

M

M∑
i=1

||W (xi)||1 + λ2Lw(h, g)

(16)

We use mean squared error for our reconstruction loss and

the L1 norm for the sparsity penalty. The parameters λ1

(a)

(b)

Figure 10. Samples of our synthetic images with harmonics that are
(a) axis-aligned and (b) randomly oriented. Base waves from left to right:
square, sawtooth, and sine

and λ2 control the trade-off between the three loss terms.

In our experiments we set λ1 = λ2 = 1/2 and used

a filter length of ten. Our model was implemented using

Google’s Tensorflow library and makes use of automatic

differentiation [21]. We trained using the Adam gradient

descent algorithm with a batch size of four [22].

A sample of the learned wavelet functions can be found in

Figure 11. These functions were learned from axis-aligned

data where applicable. The wavelets learned form the ran-

domly oriented data had similar structure. The wavelet and

scaling functions are computed from the filter coefficients

using the cascade algorithm [23]. Note that the learned

wavelet functions are able to capture the structure of the

different base waves present in the data. We compared the

learned filters to traditional wavelets from the following

families: Haar, Daubechies, Symlets, and Coiflets. The most

similar traditional wavelets are included in Figure 11. The

distance measure used was the cosine distance under all

rotations of the filters. It is defined below:

dist(h1, h2) = min
0≤i<k

1− 〈h1, shift(h2, i)〉
||h1||2 · ||h2||2 (17)

where shift(h, i) is the circular shift of h by i samples. If

the two filters are of different lengths, the shorter filter is

zero-padded.

We can also consider the impulse responses of the filters.

Figure 14 shows the impulse responses of the learned filters

from Figure 11. Surface plots of the impulse responses are

also included. Note that the first two impulse responses

are axis-aligned. The shape of each impulse response is

similar in structure to its corresponding training data. Square

data yields rectangular filters, sawtooth data yields triangular

filters, and sine data yields filters that appear Gabor-like.

One way to determine how well the learned wavelets

capture the structure of the data is to generate images from

the model. Image generation has a long history in computer

science [24]. We make use of two different generative
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Figure 11. Summary of learned filters. Left column: Learned wavelet
(solid) and scaling (dashed) functions. Type of training data is shown above
the plots. Middle column: Closest traditional wavelet (solid) and scaling
(dashed) functions according to (17). Right column: Plots of the scaling
filters from the first two columns with corresponding distance measure.

(a)

(b)

(c)

Figure 12. Generated image data using process one with (a) square
wavelet, (b) sawtooth wavelet, and (c) sine wavelet. Left column: equal
power at each scale. Middle column: equal power at each scale with three
highest scales removed. Right column: coefficients scaled so that lower
frequencies are more pronounced.

(a)

(b)

(c)

Figure 13. Generated image data using process two with (a) axis-aligned
data, (b) random harmonic orientations, and (c) faces. (a-b) Wavelets from
left to right: square wavelet, sawtooth wavelet, and sine wavelet.

processes. Our first generative process consists of sparsely

populating random wavelet coefficients, and then computing

an inverse transform using one of the learned wavelets. The

density of coefficients is equal across all wavelet scales.

Figure 12 shows examples of generated images using various

learned wavelets. The first column uses coefficients of equal

magnitude and includes coefficients at each scale. It is

difficult to see any structure in this data as it appears

similar to white noise. The second column is similar, but

excludes the three highest frequency scales. We can see that

different wavelets generate different structured images. The

third column scales the magnitudes of the coefficients so that

low frequency scales are more pronounced (similar to pink

noise). We again see the different structure of the wavelets.

The second generative process treats each band of wavelet

coefficients at each scale as a multivariate normal distribu-

tion. We estimate the means and covariances of the distribu-

tions by computing the wavelet coefficients of a sample of

32 images from our synthetic training data. We then sample

wavelet coefficients from the multivariate distributions and

perform an inverse wavelet transform to obtain our final

image. Figures 13a and 13b show some sample images.

Note the similarity to the training samples in Figure 10.

We repeated this process for the face dataset by sampling
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(a)

(b)

(c)

(d)

Figure 14. Impulse responses of the learned filters from Figure 11. The training data was (a) square waves, (b) sawtooth waves, (c) sine waves, and (d)
faces. Surface plots of the horizontal and diagonal orientations are also shown shown.

32 images of a single subject. For efficiency, we set the

coefficients in the highest two wavelet scales to zero since

much of this high frequency data is noise. Sample generated

face images are shown in Figure 13c.

IV. CONCLUSION

We have proposed a new model for learning wavelet

filters directly from image data. We have shown that useful

wavelets can be learned using an autoencoder framework

with sparsity constraints. The autoencoder is comprised of a

2D discrete wavelet transform followed by an inverse trans-

form. Preferring a sparse representation forces the model to

learn wavelets that exploit structure in the training data. A

reconstruction constraint means that the learned filters are

(nearly) orthogonal, and so can be used for both analysis

and synthesis. We frame our model as a modified CNN,

making it easy to incorporate into existing neural network

architectures. A benefit of this model over traditional CNNs

is that we require very few parameters. This is due to two

properties: the filters used are one-dimensional, and the

filters are reused at each layer of the network.
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