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Abstract

Cloud infrastructures are increasingly being adopted as a platform for high performance

computing (HPC) science and engineering applications. For HPC applications, the Message-

Passing Interface (MPI) is widely-used. Among MPI operations, collective operations are

the most I/O intensive and performance critical. However, classical MPI implementations

are inefficient on cloud infrastructures because they are implemented at the application

layer using network-oblivious communication patterns. These patterns do not differentiate

between local or cross-rack communication and hence do not exploit the inherent locality

between processes collocated on the same node or the same rack of nodes. Consequently,

they can suffer from high network overheads when communicating across racks.

In this thesis, we present COOL, a simple and generic approach for Message-Passing

Interface (MPI) collective operations. COOL enables highly efficient designs for collective

operations in the cloud. We then present a system design based on COOL that describes

how to implement frequently used collective operations. Our design efficiently uses the

intra-rack network while significantly reducing cross-rack communication, thus improving

application performance and scalability. We use software-defined networking capabilities

to build more efficient network paths for I/O intensive collective operations. Our analytic

evaluation shows that our design significantly reduces the network overhead across racks.

Furthermore, when compared with OpenMPI and MPICH, our design reduces the latency

of collective operations by a factor of logN , where N is the total number of processes,

decreases the number of exchanged messages by a factor of N and reduces the network

load by up to an order of magnitude. These significant improvements come at the cost of

a small increase in the computation load on a few processes.
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Chapter 1

Introduction

Cloud infrastructures are increasingly being adopted as a platform for high-performance

computing (HPC) science and engineering applications [40, 19, 37], with major research or-

ganizations embracing the new platform [44] and cloud providers offering clusters targeting

HPC applications [5]. For HPC applications, the Message-Passing Interface (MPI) [30, 16]

and its classical implementations (e.g., OpenMPI [15] and MPICH [17]) are popular com-

munication middleware. Among MPI operations, collective operations (e.g., broadcast,

reduce, scatter and gather) are the most I/O intensive and performance critical [36].

Although classical MPI implementations can be deployed in cloud data centers, they

are inefficient [44]. Historically, MPI applications use large-scale supercomputer machines

that are customized to support MPI collective operations (e.g., IBM BlueGene [21] and

Cray XC40 [11]). Supercomputers use over-provisioned special network topologies (e.g.,

3D torus [2], 5D torus [9] and Dragonfly [11]) and use interconnections optimized for

I/O-intensive operations. For instance, IBM’s BlueGene comes with a network dedicated

to collective operations and another one optimized for fast barriers [2]. Classical MPI

implementations are optimized to exploit these capabilities. On the other hand, data center

networks are drastically different from supercomputers’: they do not provide specialized

support for collective operations, and they adopt a tree topology [6] that is well provisioned

within racks, but is oversubscribed between racks. Oversubscription ratios, the ratio of the
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bandwidth within a rack to the bandwidth across racks, of 4 times and up to 10 times are

common [6]. Consequently, reducing the communication across racks is key to achieving

higher performance and scalability.

The fundamental reason for the poor performance of classical implementations of MPI

collective operations in the cloud is that they are implemented at the application layer using

network-oblivious communication patterns [15]. For instance, they propagate a broadcast

message between processes following a tree pattern, or perform a reduction by communi-

cating using a ring pattern. These patterns do not differentiate between local or cross-rack

communications and hence do not exploit the inherent locality between processes collo-

cated on the same node or the same rack of nodes. Consequently, they can suffer from

high network overheads when communicating across racks.

In this thesis, we present the C loud-Optimized cOLlective approach (COOL) for collec-

tive operations. COOL is a simple and generic approach, as it can implement all collective

operations. COOL divides the group of processes involved in a collective operation into a

three-level hierarchy of subgroups: node level, rack level and data center level. All pro-

cesses collocated on a node form a subgroup with one process being the subgroup leader

(or node leader). All node leaders in a rack form a subgroup with one of them acting as a

rack leader. Finally, all rack leaders are part of one data-center-wide subgroup. Collective

operations are composed of three parts with each part running at one of the three levels.

Each level can use the communication pattern that is best suited for that level. This ap-

proach provides the implementers of COOL with explicit control over the communication

performed within a node, within a rack and across racks.

Unlike the designs of classical MPI implementations (e.g., MPICH and OpenMPI),

COOL is flexible. Communication patterns typically present a trade-off between the num-

ber of steps needed, the number of messages sent, and the generated network and process

loads. COOL allows its implementers to explore this trade-off by combining more than

one pattern and allows them to select the best pattern for every level (i.e., node, rack and

data center levels) of the data center infrastructure.
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To demonstrate the feasibility of our approach, we present a system architecture that

embodies COOL and provide a detailed design for the most frequently used collective

operations. We focus on the following collective operations: MPI Bcast, MPI Reduce,

MPI Allreduce, MPI Gather, MPI Allgather and MPI Scatter. We select these operations

because they are the most complex, the most I/O intensive and the most frequently used.

Characterization studies of MPI applications [36] indicate that these operations consume

more than 65% of the total time of all collective operations. The proposed design dis-

covers the network topology and uses this information to create a subgroup per rack and

to select rack leaders. Furthermore, the design leverages the Software-Defined Networks

(SDN) [33] capabilities of modern switches to build a hierarchy of multicast trees to support

MPI Bcast, MPI Allreduce and MPI Allgather.

Our analysis shows that COOL-based collective operations significantly reduce the net-

work overhead across racks. Furthermore, we compare our design with OpenMPI and

MPICH in terms of the number of steps that each operation takes, the number of ex-

changed messages and the load imposed on the network and processes. Our evaluation

reveals that our COOL-based design provides significant performance gains: it completes

all operations in three steps, it greatly reduces the number of messages across racks, it

reduces the total number of messages by a factor of N in most cases, where N is the

number of processes, and it reduces the generated network overhead by up to an order

of magnitude. These improvements come at the cost of an increase in the load of leader

processes.

The rest of this thesis is organized as follows. In Chapter 2 we present the classical

designs of the most frequently used MPI collective operations. We present the COOL

structure and a system design that embodies it in Chapter 3. We present the analytic

evaluation in Chapter 4. We discuss related work in Chapter 5 and conclude in Chapter 6.
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Chapter 2

Background

In this section, we introduce the Message-Passing Interface and MPI collective operations.

Then, we present the frequently used collective operations, their communication patterns

and an overview of a typical modern data center architecture.

2.1 Message-Passing Interface

MPI (Message-Passing Interface) is an application programmable interface (API) speci-

fication for message-passing, proposed as a standard by a broad community of parallel

computing vendors, computer scientists and application developers. It primarily addresses

the message-passing parallel programming model, in which data is moved from the address

space of one process to that of another process through a cooperative mechanism (when two

processes communicate, one sends and the other receives) [30, 16]. MPI is a specification,

not an implementation or a language and it includes operations expressed as functions,

subroutines, or methods, according to the appropriate language bindings which, for C and

Fortran, are part of the MPI standard. The main goals of establishing the MPI standard

are portability and ease of use. For instance, MPI provides vendors with a clearly defined

base set of routines that they can implement efficiently, or in some cases for which they can

provide hardware support [21, 11], thereby enhancing scalability. In addition, code written
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for one MPI implementation can run on other MPI-compliant platforms with little or no

modifications to the source code. Implementations of MPI are widely-available, including

OpenMPI [15] and MPICH [17] which are both open source.

2.2 MPI Collective Operations

Collective operations are the most network-intensive operations in MPI; they involve com-

municating with all the processes in a communication group, typically requiring many

steps. Collective communication is defined as communication that involves a group or

groups of processes.

2.2.1 Most Frequently Used Collective Operations

The following list enumerates the most frequently used collective operations. Characteri-

zation studies of MPI applications [36, 38] indicate that the following operations consume

more than 65% of the CPU time that all of MPI collective operations use.

• MPI Reduce: applies an aggregation operation (e.g., summation, multiplication,

maximum or a user-defined function) to data items distributed across a group and

makes the result available in one process only.

• MPI Allreduce: similar to MPI Reduce, but the final result is available in all pro-

cesses in a group.

• MPI Gather: collects data items from all processes in a group and concatenates them

into an array in one process (Figure 2.1).

• MPI Allgather: similar to MPI Gather, but the final array is available in all processes

in a group (Figure 2.1).

• MPI Bcast: broadcasts a message from one process to all processes in a group (Fig-

ure 2.1).
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• MPI Scatter: is the inverse operation of MPI Gather. It divides an array in one pro-

cess into chuncks and distributes them between all processes in a group (Figure 2.1).

2.3 Common Communication Patterns

Classical MPI implementations implement collective operations at the application layer

using network-oblivious communication patterns. They typically have multiple designs for

the same operation, with each using a different communication pattern[15] based on the

data size and the number of processes. Nevertheless, all classical patterns are network

oblivious; they assume that the communication cost between any two processes is equal,

regardless of the network topology. This assumption leads to high inefficiency in the tree-

based topologies of modern data centers. Communication patterns use logical addresses

(a.k.a. ranks): consecutive integers that identify processes within a group. Typically, these

ranks range from 0 to N − 1, where N is the number of processes in the group.

Unfortunately, only a few of the communication patterns are documented in the litera-

ture. To understand the most common communication patterns and their implementation,

we dissected the implementation of two popular MPI frameworks: OpenMPI [15] and

MPICH [17]. For both of these frameworks, we studied the latest production version and

extracted the communication patterns used to implement the collective operations from

the source code and documentation. In addition to these patterns, we analyzed patterns

proposed in the literature [41, 7]. The following subsections describe the common commu-

nication patterns we found.

2.3.1 Recursive Doubling

A recursive doubling pattern is used in MPI Allreduce and MPI Allgather. It takes logN

steps and in every step i, every process exchanges values with the process 2i−1 ranks away

(Figure 2.2a). N messages are sent per step. The recursive doubling pattern uses N logN

messages to complete.
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Figure 2.1: Collective operations for a group of six processes. In each case, each row
represents data locations in one process. For example, in the broadcast, initially only the
first process contains the data item A0, but after the broadcast all processes contain it.
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(a) Recursive doubling (logN = 3 steps) (b) Ring (N − 1 = 7 steps)

(c) Binomial tree (logN = 3 steps) (d) Bruck’s pattern (logN = 3 steps)

(e) Rabenseifner’s pattern for MPI Reduce
(2 logN = 6 steps)

(f) Rabenseifner’s pattern for MPI Allreduce
(2 logN = 6 steps)

Figure 2.2: Collective communication patterns for a group of N = 8 processes. Circles
represent processes, numbers indicate the processes’ ranks, and arrows represent the direc-
tion of message communication. Double arrows indicate that the two processes exchange
messages in both directions.
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2.3.2 Ring

A ring pattern is used in MPI Allreduce and MPI Allgather. The ring pattern organizes

the processes in a ring. It takes N − 1 steps and in each step, every process receives a

message from its predecessor in the ring and sends a message to its successor (Figure 2.2b).

The ring pattern requires N (N − 1) messages to complete.

2.3.3 Binomial Tree

A binomial tree pattern is used in MPI Bcast, MPI Gather, MPI Scatter and MPI Reduce.

It takes logN steps to complete. For instance, in every step of MPI Gather (Figure 2.2c),

processes are divided into two halves; one half sends the data it has gathered so far to the

other half. The receiving half repeats this procedure until a single process is left. That

process will have all data items from all processes. Similarly, MPI Scatter runs the same

steps in reverse order: in every step i, each process that has data divides its data in half,

keeps one half and sends the other half to a process 2i−1 ranks away until all processes

have a chunk of data. The binomial tree pattern requires N − 1 messages to complete.

2.3.4 Rabenseifner’s Pattern

Rabenseifner’s pattern [41] is used in MPI Reduce and MPI Allreduce. Rabenseifner’s

pattern uses two phases combining two patterns. In the first phase of both operations, it

uses the recursive halving pattern (analogous to the recursive doubling pattern) to perform

reduce-scatter, where the data array is divided to chunks and each chunk is reduced to a

different node (Figures 2.2e and 2.2f, steps A1-A3). In the second phase, it uses the bino-

mial tree pattern to gather the reduced chunks in one process for MPI Reduce (Figure 2.2e,

steps B1-B3), or the recursive doubling pattern to gather the reduced chunks in all pro-

cesses for MPI Allreduce (Figure 2.2f, steps B1-B3). Rabenseifner’s pattern takes 2 logN

steps to complete, and it exchanges N + N logN and 2N logN messages for MPI Reduce

and MPI Allreduce, respectively.

9



2.3.5 Bruck’s Pattern

Bruck’s pattern [7] is used in MPI Allgather. It takes logN steps, and in every step i, each

process p sends its data and all of the data it has received so far to the process with rank

(p− 2i−1) mod N (Figure 2.2d). Since N messages are sent in every step, this pattern

sends N logN messages in total.

2.4 Software-Defined Networks

The Software-Defined Networks (SDN) architecture divides the network into two planes:

data and control. The data plane is a traffic forwarding plane that uses the information in

the switch forwarding tables to forward messages. The control plane is an external software-

based logically-centralized component that controls one or more switches by altering the

entries in each switch’s forwarding tables. The communication API between the controller

and the switches is based on the widely adopted OpenFlow standard [33]. The OpenFlow

standard [29] facilitates external control of a single-switch forwarding table. It allows

inserting or deleting forwarding rules. Each forwarding entry includes a matching rule and

an action list. If a packet matches a rule, the actions in the actions list are performed

in order on the packet. OpenFlow has a rich set of matching rules including wild cards

for matching IP and MAC addresses, protocol or port numbers. The actions include

packet forwarding to a specific switch port, dropping the packet, sending the packet to

the controller, or modifying the packet. The possible modifications include changing the

source/destination MAC/IP addresses. To avoid the need for switches to contact the

controller on every packet, forwarding rules are stored on switches and have an expiry

period that is set by the controller. Controllers can update, delete, or extend the validity

of the existing rules at any time. These capabilities enable fine-grained control of network

operations and facilitate application-optimized traffic engineering.

10



2.5 Target Deployment

Modern data centers adopt a tree-based topology[6][10], in which nodes are organized

in racks (e.g., each rack has 48 nodes) and each rack is connected to the other racks

in the data center through a Top-of-Rack (ToR) switch. ToRs are connected via two-

tier switching fabric of aggregation and core switches. The inter-rack fabric is typically

oversubscribed (i.e., the bandwidth across racks is a fraction of the bandwidth available

within a rack). Oversubscription ratios of 4 to 10 times are common [6]. Consequently,

increasing communication locality within racks is key to achieving higher performance and

scalability.

Furthermore, many modern data centers adopt SDN-capable switches. This new net-

working paradigm facilitates the external control of network operations. The OpenFlow

standard API [33] provides per-packet control of network operations. Developers can use

this capability to build network-efficient multicasting trees for I/O intensive broadcast

operations.

Large-scale science applications utilize hundreds to thousands of nodes spanning tens of

racks. Unfortunately, classical collective implementations have not been designed with data

center network communication in mind, as they do not differentiate between communica-

tion within a rack or across racks, and they do not exploit SDN capabilities or information

about the network topology to optimize the data paths for collective operations.

COOL enables collective operation designs that better fit the data center infrastructure

than classical collective operation designs. In particular, it enables the utilization of the

access locality between processes collocated on a node, or on nodes on the same rack and

enables the exploitation of SDN capabilities to build efficient network paths for multicast-

based data transfers within and across racks.
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Chapter 3

System Design

In this section, we first introduce the COOL approach, then we present a communication

pattern that better fits COOL’s small subgroups, as well as a system architecture that

embodies COOL. Finally, we discuss the design of the most frequently used collective

operations.

3.1 COOL

The COOL approach is a hierarchical approach to perform collective operations. COOL

divides the communication group into a set of subgroups (Figure 3.1). Each subgroup has a

leader process. All processes collocated on a node form a subgroup with one process being

the subgroup leader (or node leader). All node leaders in a rack form a subgroup with one

of them acting as the subgroup leader (or rack leader). Finally, all rack leaders are part of

one data-center-wide subgroup. Subgroups are small, consisting of a few tens of processes.

During a collective operation, a process can exchange messages with only the processes in

its subgroup. Only a subgroup leader can exchange messages with other subgroup leaders

at its level.

Typically, a COOL collective operation proceeds in phases. Communication within a

phase is constrained to be between processes in the same subgroup at the same level. A
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phase may involve one or more steps depending on the communication pattern used in the

phase. The order of these phases depends on the collective operation. First, part of the

collective operation is performed in parallel in all node-level subgroups. Second, the node

leaders perform part of the operation per rack. Third, rack leaders complete the operation

across racks. Finally, the result is propagated down the hierarchy to a specific process

or to all processes. COOL does not dictate which communication pattern should be used

within a subgroup; an implementer of COOL can choose different communication patterns

within and across subgroups. This flexibility allows for the selection of the best pattern

for each subgroup. For instance, an implementer of COOL may choose, for the rack-level

subgroup, a pattern that completes in a few steps but imposes a high network overhead

and may choose a more network-conscious pattern for the cross-rack level even if it slightly

increases the number of steps.

As an example, consider the MPI Bcast operation. For simplicity, assume there is

one process per node. In a COOL MPI Bcast, the source process of the broadcast message

sends the message to its rack leader (Phase 1 in Figure 3.1). Then, the leader multicasts the

message to the other rack leaders (Phase 2). Finally, all leaders multicast the message to

the processes in their racks (Phase 3). Different communication patterns can be employed

to perform Phase 2 or 3.

The main advantage of COOL is that it provides explicit control of the communication

within and across racks and enables optimizing the communication at every level of the

operation. This approach facilitates tailoring communication patterns to minimize the

communication between racks. Implementations of the COOL approach must be compliant

with the MPI specification, so code written for any other MPI implementations can run on

a COOL implementation with little or no modifications to the source code. Implementers

of COOL are free to pre-define the patterns used within and across subgroups for each

collective operation, select these patterns dynamically or give the user an extra API to

configure which patterns are used.
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Figure 3.1: COOL with the parallel pattern. Circles represent processes, numbers indicate
the processes’ ranks and arrows represent the direction of communication. Numbers on
arrows represent the three steps of a COOL-based MPI Bcast.

3.2 Parallel Pattern

The COOL approach divides a large communication group into a set of smaller subgroups,

allowing for different communication patterns in each of these small subgroups. Since

subgroups in COOL are small, we present the parallel communication pattern, a simple

pattern that efficiently implements all collective operations for small groups. In the parallel

pattern, all processes exchange messages with a single process that does all of the necessary

computation. We refer to this process as the root process. For instance, in a parallel

MPI Reduce, all processes send their data to the root process, which performs the reduction

operation. Similarly, in a parallel MPI Bcast the root process sends a message to all

processes in its group. The parallel pattern completes any collective operation in one or

two steps, but it does not scale to large communication groups.

The parallel pattern can be efficiently implemented in small groups of a few tens of

processes, as is the case in COOL subgroups. For processes collocated on the same node,

the parallel pattern can be efficiently implemented using shared memory. For operations

that involve sending the same message to multiple recipients the parallel pattern can exploit
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SDN capabilities to construct network-efficient multicast trees for each subgroup when the

communication group is created, as explained in Section 2.5.

3.3 COOL Collective Operations

COOL is generic; it can be used to optimize all collective operations for cloud deployments.

The following subsections present a COOL design for each of the frequently used collective

operations discussed in Section 2.2.1. Although COOL can employ various communication

patterns at different levels, for simplicity, we present a design using the parallel pattern at

all levels. We also present a design using the binomial tree pattern within racks and the

recursive doubling pattern across racks to demonstrate COOL’s flexibility. We omit the

discussion about the communication between processes collocated on the same node, as it

can be efficiently implemented with the parallel pattern by using shared memory, and it

has a relatively negligible impact on performance. Hence, we assume a single process per

node.

Since we are using the parallel pattern or a single point to point message in each phase

of the following designs, we can see that all operations complete in only three steps and

use the network across racks only in step 2. The next chapter extends our analysis and

compares our design with OpenMPI and MPICH implementations.

In the descriptions below, the root process refers to the source process sending a broad-

cast message in MPI Bcast, or the destination process in MPI Reduce and MPI Gather.

The root leader refers to the leader of the rack that contains the operation’s root process.

We also present the number of messages exchanged for each operation. The system has

N nodes, with each running a single process. The nodes are organized in r racks, so r of

them are rack leaders.
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3.3.1 MPI Reduce

(1) Each process sends its value to its rack leader (using N − r messages). Each leader

reduces the values of its subgroup to an intermediate value. (2) All leaders send their

intermediate values to the root leader (using r − 1 messages). The root leader reduces

all the values it receives to a single final value. Finally, (3) the root leader forwards the

final value to the root process (in a single message). This approach requires a total of N

messages.

3.3.2 MPI Allreduce

(1) Each process sends its value to its rack leader (N−r messages). Each leader reduces the

values of its subgroup to an intermediate value. (2) All leaders multicast their intermediate

values to all other leaders (r multicast messages). Every leader reduces all of the values

it receives to a single final value. Finally, (3) every leader multicasts the final value to its

rack subgroup (r multicast messages). This approach requires a total of N − r messages

and 2r multicast messages.

3.3.3 MPI Gather

(1) Each process sends its value to its rack leader (N − r messages). Each leader concate-

nates the values of its subgroup into a subarray. (2) All leaders send their subarrays to

the root leader (r− 1 messages). The root leader concatenates all the subarrays it receives

into a single final array. Finally, (3) the root leader forwards the final array to the root

process (in a single message). This approach requires N messages in total.

3.3.4 MPI Allgather

(1) Each process sends its value to its rack leader (N − r messages). Each leader concate-

nates all the values of its subgroup into a subarray. (2) All leaders multicast their subarrays
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to all other leaders (r multicast messages). Every leader concatenates all of the subarrays

it receives into a single final array. Finally, (3) every leader multicasts the final array to its

rack subgroup (r multicast messages). This approach requires the total of N − r messages

and 2r multicast messages.

3.3.5 MPI Bcast

(1) The root process sends its value to the root leader (one message). (2) The root leader

multicasts the value to all other rack leaders (one multicast message). Finally, (3) every

rack leader multicasts the value to its subgroup (r multicast messages). This approach

requires one message and r + 1 multicast messages.

3.3.6 MPI Scatter

(1) The root process sends its array to the root leader (one message). (2) The root leader

divides the array into r subarrays, keeps one subarray and send a subarray to every leader

(r − 1 messages). Finally, (3) every leader, including the root leader, sends the individual

data items from its subarray to every process in its subgroup (N − r messages). This

approach requires a total of N messages.

3.3.7 COOL-Binomial-Tree-Recursive-Doubling for

MPI Allreduce

COOL-Binomial-tree-Recursive-doubling (COOL-B-R) uses the binomial tree pattern within

a rack and the recursive doubling pattern between racks. In MPI Allreduce it works as

follows. (1) Each process sends its value to its rack leader using the binomial tree com-

munication pattern. In each step, processes in each rack are divided into two halves; one

half applies the reduce operation to its local data and the data it has gathered so far and

sends the result to the other half. The receiving half repeats this procedure until a single

process (the rack leader) is left. Each rack leader will then have the reduced result from
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Figure 3.2: System Architecture. Bold lines represent network connections. Solid arrows
represent communication messages. Dashed arrows represent OpenFlow control messages.

all processes in its rack. This phase requires N − r messages. (2) Each rack leader sends

its reduced result to all other rack leaders using the recursive doubling communication

pattern. In every step i (starting from 1), each pair of rack leaders with a distance of

2i−1 between their rack ids combine their data and the data they have received so far

and exchange that data with each other. They then apply the reduce operation to that

data. After logN steps all rack leaders will have the reduced result from all the other

processes. This phase requires r log r messages. Finally, (3) every rack leader multicasts

the final reduced result to the other k − 1 processes in its rack (r multicast message each

to k − 1 recipients). Therefore, the total number of messages exchanged in COOL-B-R is

N − r + r log r messages and r multicast messages.
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3.4 System Architecture

The goal of this section is to demonstrate the feasibility of building an MPI implementation

that embodies COOL. Our system architecture has four components (Figure 3.2): an

MPI manager, rack leaders, an SDN network controller and a COOL library. The MPI

manager controls the MPI application lifecycle from allocating resources from the cloud

resource manager, to bootstrapping the MPI processes and terminating the application.

All processes are divided into subgroups at the node, rack and data center levels during

the bootstrap process. The SDN network controller is an OpenFlow-based controller that

manages all the switches in the deployment. The SDN network controller installs packet-

forwarding rules to create a hierarchy of multicast trees for each communication group

and its constituent subgroups. The COOL library implements all collective operations as

discussed in the previous section.

3.4.1 Bootstrap Process

As depicted in Figure 3.2, when a client starts a new job, it sends the job parameters to

the MPI manager (step 1 in Figure 3.2). The manager allocates a number of nodes for that

client (2). Then, the SDN network controller configures the network for the MPI job (3).

The SDN network controller first discovers the network topology connecting the allocated

nodes using the Link Layer Discovery Protocol (LLDP) protocol[20]. The discovery step

identifies the racks, assigns them serial identification (ID) numbers and discovers which

nodes are in each rack (4). Then, the SDN network controller divides the group of MPI

processes into per-node and per-rack subgroups. Additionally, for each subgroup, it selects

as the leader the process with the smallest rank in the subgroup. Finally, (5) the manager

runs the MPI processes on the allocated nodes. The manager informs every MPI process

of its node and its rack leaders, as well as the rank and rack IDs of all the other processes

and all of the other subgroup leaders.
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3.4.2 Group Creation

When an MPI application creates a new communication group (step 6 in Figure 3.2) the

leader of the first rack (i.e., rack 0) informs the SDN network controller of the new group. As

in the bootstrap process, the SDN network controller divides the processes into subgroups,

with each one of them containing all the processes collocated in the same rack and chooses

a leader for each subgroup. The SDN network controller also creates, using OpenFlow, a

multicast tree in every rack and creates a multicast tree for rack leaders across racks.
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Chapter 4

Evaluation

In this chapter, we analytically compare collective operations in COOL with classical imple-

mentations (OpenMPI and MPICH). We focus our evaluation on four metrics: the number

of steps an operation requires, the number of messages exchanged in total and across

racks, the generated network load in total and across racks and the maximum generated

load on processes. We define these metrics in Section 4.2 and use them to analyze each

of the patterns used to classically implement MPI collective operations as well as COOL’s

implementations (Section 4.3). Section 4.4 summarizes the analysis for each metric and

compares classical implementations with COOL.

4.1 Assumptions

To simplify our analysis, we assume that all COOL subgroups are equal in size and that

the total number of nodes and the number of nodes in every rack is a power of two. We

assume that every node runs a single MPI process, as communication between collocated

processes on the same node adds a relatively negligible overhead.

The performance of the classical implementations of collective operations is affected

by how the processes are ranked, which affects the communication order. In our evalua-

tion, we select the best ranking that minimizes the number of cross-rack messages for each
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operation-pattern combination. We note that it is infeasible for classical MPI implemen-

tations to use these best rankings because a communication group typically uses multiple

collective operations, each of which has a different best ranking, yet processes in a group

have fixed ranks. Collective operations have different best rankings even if they use the

same pattern. For instance, the best ranking for the binomial tree pattern in MPI Bcast

is different than the best ranking used for the binomial tree in MPI Reduce.

For COOL, we analyze the COOL-Parallel-Parallel (COOL-P-P) pattern that uses the

parallel pattern within and across racks. Section 4.5 discusses a COOL-based design that

uses the binomial tree and the recursive doubling patterns, named COOL-Binomial-tree-

Recursive-doubling (COOL-B-R).

Table 4.1: Analytical model parameters.

Symbol Description

N Total number of processes. N = k · r
r Number of racks

k Number of nodes within each rack

xMy x multicast messages to y recipients.

4.2 Evaluation Metrics

In this section, we define the evaluation metrics we use in our analysis.

Operation latency. We analyze operation latency by examining the number of steps

each pattern takes to complete. Each step includes a parallel communication phase, which

consists of a concurrent exchange of data with one or more processes and a computa-

tion phase for data copying, segmentation or an aggregation operation (as in the case of

MPI Reduce and MPI Allreduce).

Exchanged messages. We analyze the number of messages exchanged in total be-

tween all processes and the number of transmissions across racks.
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Network load. We compare the total network load generated by the different com-

munication patterns required for each operation. The total network load metric aggregates

the load generated (i.e., number of messages) on every link in the topology. In our anal-

ysis, we assume a simple network topology with only one core switch connecting all racks

(Figure 4.1). For instance, a message from one node to another node in the same rack

uses two links: one link to the ToR switch and one from the ToR switch to the destination

node (shown with dashed arrows in Figure 4.1). A message sent across racks traverses four

links: one link to the source ToR switch, one to the core switch, one to the destination

ToR switch, and one to the destination node (shown with solid arrows in Figure 4.1).

Similarly, a multicast message within a rack (1Mk−1) uses k links: one to the ToR switch

and k − 1 to all other nodes in the rack. A multicast message across rack leaders (1Mr−1)

traverses 2r links: one from the source leader to the ToR switch in its rack, one to the

core switch, r − 1 to all other racks’ ToR switches and r − 1 from the ToR switches to

their respective rack leaders. Our analysis is conservative; a typical data center network

is more complex. Hence, a single message will traverse more core links in typical data

center networks than in our model, which amplifies the difference between COOL and the

classical implementations.

Process load. The process load is the number of messages each process sends or

receives during a single step. It is indicative of the amount of communication and compu-

tation required on each process per step.

4.3 Analysis

In this section, we analyze the costs of each collective operation using different communi-

cation patterns based on the evaluation metrics defined in Section 4.2. The results form

this section are summarized in Section 4.4. Table 4.2 summarizes the number of steps

each communication pattern takes for each collective operation, Table 4.3 contains the to-

tal number of exchanged messages and the number of messages exchanged between racks,

Table 4.4 contains the total network load and the network load across racks and Table 4.5
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Figure 4.1: Network model. Tree topology with one core switch. Solid arrows illustrate
the path for a message across racks, and dashed arrows illustrate the path for a message
within a rack.

summarizes the maximum load on processes at any step in the operation. Section 4.4 also

includes a discussion and a comparison between COOL and the other collective communi-

cation patterns.

4.3.1 Ring Pattern

The ring pattern organizes the processes in a ring. In each step of an operation (MPI

Allgather or MPI Allreduce), every process sends a message to its successor on the ring

and receives a message from its predecessor. For instance, to implement the MPI Allgather

operation using the ring pattern, each process receives a message from its predecessor, adds

its local value to the message and sends everything to its successor. After N − 1 steps,

all processes will have all the values from all the other processes (See the example in

Figure 2.2b). MPI Allreduce uses the ring pattern in a similar fashion as MPI Allgather.

Once every process gets all the values, it can perform the reduce operation.

Number of steps. For each process to receive all messages from all other processes,

the ring pattern takes N − 1 steps.
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Maximum process load. During every step, each process receives one message and

sends one message. Therefore, the maximum process load is 2.

Total number of messages. During every step each of the N processes sends exactly

one message. Since there are N − 1 steps, the total number of messages sent is N (N − 1).

Messages sent across racks. Each MPI process has a rank. The processes form a

ring following the ordering of the ranks, meaning that process p has process p− 1 mod N

as a predecessor and process p + 1 mod N as a successor. Unfortunately, process ranks

are traditionally assigned with no relation to the nodes’ locations in the network. The

assignment of ranks to nodes in the network has a significant impact on the number of

messages sent between racks and consequently on the total network load. To illustrate the

importance of this issue we present an example of the worst case assignment for the ring

pattern (Figure 4.2a). In this case, every neighboring processes in the ring could reside

on a different rack. Hence, all messages sent using the ring pattern will traverse the data

center’s core network.

In our analysis, we assign process ranks to MPI processes to minimize the communica-

tion between racks. Figure 4.2b shows such assignment. This assignment of process ranks

maximizes the communication within a rack. Only one message leaves each rack in every

step of the ring pattern. Consequently, while all of the N − 1 steps in the ring pattern use

the data center network, in each step only one message leaves each rack (i.e., r messages

per step). In total, the ring pattern generates r (N − 1) messages across racks and the rest

of the messages (i.e., (N − r) (N − 1)) are sent/received within a rack.

Network load. As explained in Section 4.2, each of the (N − r) (N − 1) messages sent

within a rack traverses two links, so they contribute 2 (N − r) (N − 1) to the total network

load. Additionally, each of the r (N − 1) messages sent across racks traverses four links,

so they contribute 4r (N − 1) to the total network load. The total generated network load

is therefore

2 (N − r) (N − 1) + 4r (N − 1) = 2 (N + r) (N − 1)

Each of the r (N − 1) messages sent between racks traverses 2 links, so the network load

across racks is 2r (N − 1).

25



P0
Pr
P2r
...

P(k-1)r

Rack 0

P1
Pr+1
P2r+1
...

P(k-1)r+1

Rack 1

P2
Pr+2
P2r+2
...

P(k-1)r+2

Rack 2

Pr-1
P2r-1
P3r-1
...

PN-1

Rack r-1

...

(a) Worst case rank assignment.

P0
P1
P2
...

Pk-1

Rack 0

Pk
Pk+1
Pk+2
...

P2k-1

Rack 1

P2k
P2k+1
P2k+2
...

P3k-1

Rack 2

P(r-1)k
P(r-1)k+1
P(r-1)k+2

...

PN-1

Rack r-1

...

(b) Optimal rank assignment.

Figure 4.2: Rank assignments for the ring pattern. The arrows represent the direction of
message communication at any step.
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4.3.2 Binomial Tree Pattern

A binomial tree pattern is used in MPI Gather, MPI Reduce, MPI Scatter and MPI Bcast.

To implement the MPI Gather operation using the binomial tree pattern, in each step,

processes are divided into two halves; one half sends its local data with the data it has

gathered so far to the other half. The receiving half repeats this procedure until a single

process is left. That process, called the root process, will have all data items from all

processes (See the example in Figure 2.2c). MPI Reduce uses the binomial tree pattern in

a similar fashion as MPI Gather. Once the root process gets all the values, it can perform

the reduce operation.

Similarly, to implement the MPI Scatter operation, the same steps are run in reverse

order: starting with one process (the root process), in every step i, each process that has

data divides its data in half, keeps one half and sends the other half to a process 2i−1 ranks

away until every process gets a chunk of data. MPI Bcast uses the binomial tree pattern

in a similar fashion as MPI Scatter, except that the complete data buffer is copied in each

step instead of being divided in half.

Number of steps. In MPI Gather and MPI Reduce the number of participating

processes starts at N and is divided by two in each step until we reach one process. In

MPI Scatter and MPI Bcast, the number of participating processes starts at one and is

multiplied by two until we reach N . Thus, the total number of steps required using the

binomial tree pattern is logN .

Maximum process load. During every step each process either receives one message,

sends one message, or does nothing. Therefore, the maximum process load is 1.

Total number of messages. In MPI Gather and MPI Reduce operations each pro-

cess (except the root process) sends exactly one message. Similarly, in MPI Scatter and

MPI Bcast each process (except the root process) receives a single message. Hence, the

total number of messages in any operation that uses the binomial tree pattern is N − 1.

Messages sent across racks. Each MPI process has a rank. Processes send messages

following the ordering of the ranks. For instance, in MPI Gather and MPI Reduce for
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every step i starting from 1 to logN , each process p where N/2i ≤ p < N/2i−1 sends a

message to process p−N/2i. In the case of MPI Scatter and MPI Bcast, for every step i

starting from 1 to logN , each process p where 0 ≤ p < 2i−1 sends a message to process

p + 2i−1. Unfortunately, process ranks are traditionally assigned with no relation to the

nodes’ locations in the network.

In our analysis, we assign process ranks to MPI processes to minimize the communica-

tion between racks. Figure 4.3a shows such an assignment for MPI Gather and MPI Reduce.

This assignment of process ranks maximizes the communication within a rack by doing the

steps that involve the most number of messages within racks and the rest across racks.

Only in the steps i where logN − log r < i ≤ logN do all exchanged messages leave the

racks. This implies that only log r steps in the binomial tree pattern use the data center

network. Since 2−iN messages are sent in each step i where logN − log r < i ≤ logN ,

the binomial tree pattern generates r − 1 messages in total across racks. The rest of the

messages (i.e., N − r) are sent/received within a rack.

For MPI Scatter and MPI Bcast the order of the steps is reversed compared with

MPI Gather and MPI Reduce. Therefore, the rank assignment using the binomial tree

pattern (Figure 4.3b) is different than that of MPI Gather and MPI Reduce. This as-

signment of process ranks maximizes the communication within a rack by doing the steps

that involve the most number of messages within racks and the rest across racks. Only in

the steps i where 1 ≤ i ≤ log r do all exchanged messages leave the racks. This implies

that only log r steps in the binomial tree pattern use the data center network. Since 2i−1

messages are sent in each step i where 1 ≤ i ≤ log r, the binomial tree pattern generates

r−1 messages in total across racks. The rest of the messages (i.e., N−r) are sent/received

within a rack.

Network load. As explained in Section 4.2, each of the N − r messages sent within a

rack traverses two links, so they contribute 2 (N − r) to the total network load. Addition-

ally, each of the r − 1 messages sent across racks traverses four links, so they contribute

4 (r − 1) to the total network load. The total generated network load is therefore

2 (N − r) + 4 (r − 1) = 2N + 2r − 4
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Figure 4.3: Rank assignments for the binomial tree pattern.
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Each of the r− 1 messages sent between racks traverses 2 links, so the network load across

racks is 2r − 2.

4.3.3 Recursive Doubling Pattern

The recursive doubling pattern is used in MPI Allreduce and MPI Allgather. The pattern

involves exchanging messages between pairs of processes that are initially a distance of 1

apart, then doubling that distance for each step until a distance of N/2 is reached (See

the example in Figure 2.2a). For instance, to implement MPI Allgather, in every step i

(starting from 1), each pair of processes 2i−1 ranks apart exchange local data and data

they received so far with each other. After logN steps, all processes will have all the

values from all the other processes. MPI Allreduce uses the recursive doubling pattern in

a similar fashion as MPI Allgather. Once every process gets all the values, it can perform

the reduce operation.

Number of steps. The distance between each pair of processes that exchange messages

is doubled in each step from 1 to N/2. Therefore, for each process to receive all messages

from all other processes, the recursive doubling pattern requires logN steps.

Maximum process load. During every step each process receives one message and

sends one message. Therefore, the maximum process load is 2.

Total number of messages. During every step each of the N processes sends exactly

one message. Since there are logN steps, the total number of messages sent is N logN .

Messages sent across racks. Each MPI process has a rank. The pairs of processes

that exchange messages are chosen following the ordering of the ranks. This means that

for each step i starting from 1 to logN , process p exchanges messages with process p±2i−1

(The operation is + or − depending on whether bp/2i−1c is even or odd, respectively).

In our analysis, we assign process ranks to MPI processes to minimize the communi-

cation between racks. Figure 4.4 shows such an assignment. This assignment of process

ranks maximizes the communication within a rack. Only in the steps where the distance

between pairs of processes is bigger than the size of the rack (2i−1 > k, so i > log k+ 1) do
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Figure 4.4: Rank assignments for the recursive doubling pattern. Solid lines represent step
1, while dashed lines represent step log k + 1.

all exchanged messages leave the racks. This implies that only log r steps in the recursive

doubling pattern use the data center network. Since N messages are sent in each step, the

recursive doubling pattern generates N log r messages in total across racks. The rest of the

messages (i.e., N logN −N log r) are sent/received within a rack.

Network load. As explained in Section 4.2, each of the N logN − N log r messages

sent within a rack traverses two links, so they contribute 2 (N logN −N log r) to the total

network load. Additionally, each of the N log r messages sent across racks traverses four

links, so they contribute 4 (N log r) to the total network load. The total generated network

load is therefore

2 (N logN −N log r) + 4N log r = 2N logN + 2N log r

Each of the N log r messages sent between racks traverses 2 links, so the network load

across racks is 2N log r.

4.3.4 Bruck’s Pattern

The Bruck’s pattern is used in MPI Allgather. The pattern involves sending messages

messages from each process to a process that is initially a distance of 1 away, then dou-
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Figure 4.5: Rank assignments for the Bruck’s pattern. Solid lines represent step 1, while
dashed lines represent step log k + 1

bling that distance for each step until a distance of N/2 is reached (See the example in

Figure 2.2a). For instance, to implement MPI Allgather, in every step i (starting from 1),

each process sends local data and data it received so far to the processes 2i−1 ranks away.

After logN steps, all processes will have all the values from all the other processes.

Number of steps. The distance between each pair of sending and receiving processes

is doubled in each step from 1 to N/2. Therefore, for each process to receive all messages

from all other processes, the Bruck’s pattern takes logN steps.

Maximum process load. During every step each process receives one message and

sends one message. Therefore, the maximum process load is 2.

Total number of messages. During every step each of the N processes sends exactly

one message. Since there are logN steps, the total number of messages sent is N logN .

Messages sent across racks. Each MPI process has a rank. The pairs of processes

that exchange messages are chosen following the ordering of the ranks. This means that

for each step i starting from 1 to logN , process p exchanges messages with process p+2i−1

mod N .

In our analysis, we assign process ranks to MPI processes to minimize the communi-

cation between racks. Figure 4.5 shows such an assignment. This assignment of process
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ranks maximizes the communication within a rack. In the steps where the distance be-

tween pairs of processes is bigger than the size of the rack (2i−1 > k, so i > log k + 1),

all exchanged messages leave the racks. Since N messages are sent in each of these steps,

and there are logN − log k = log r of these steps, then N log r messages are generated in

all steps i > log k + 1. In the other steps, where the distance between pairs of processes

is at most the size of the rack (2i−1 ≤ k, so i ≤ log k + 1), only 2i−1 leave each rack.

Since 2i−1r messages are sent in each of these steps and there are log k of these steps, then

r (k − 1) = N − r messages are generated in all steps i ≤ log k+ 1. This implies that when

using the Bruck’s pattern all logN steps use the data center network and that the Bruck’s

pattern generates N log r +N − r messages in total across racks. The rest of the messages

(i.e., N logN −N log r −N + r) are sent/received within a rack.

Network load. As explained in Section 4.2, each of the N logN−N log r−N +r mes-

sages sent within a rack traverses two links, so they contribute 2 (N logN −N log r −N + r)

to the total network load. Additionally, each of the N log r + N − r messages sent across

racks traverses four links, so they contribute 4 (N log r + N − r) to the total network load.

The total generated network load is therefore

2 (N logN −N log r −N + r) + 4 (N log r + N − r) = 2N logN + 2N log r + 2N − 2r

Each of the N log r + N − r messages sent between racks traverses 2 links, so the network

load across racks is 2N log r + 2N − 2r.

4.3.5 Rabenseifner’s Pattern for MPI Reduce

Rabenseifner’s pattern [41] uses two phases combining two patterns to implement MPI Reduce.

In the first phase, it uses the recursive halving pattern (analogous to the recursive dou-

bling pattern) to perform reduce-scatter, where the data array is divided to chunks and each

chunk is reduced to a different node. This phase involves exchanging messages between

pairs of processes that are initially a distance of 1 apart, then doubling that distance for

each step until a distance of N/2 is reached (See the example in Figure 2.2e, steps A1-A3).
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This means that in every step i (starting from 1), each pair of processes 2i−1 ranks apart

combine the local data and data they received so far, divide the data in half, keep one half

and exchange the other half with each other. They then apply the reduce operation to

that data. After logN steps, each process will have a different chunk of data reduced from

all the other processes.

In the second phase, Rabenseifner’s Pattern for MPI Reduce uses the binomial tree

pattern to gather the reduced chunks from the previous phase at the root processes. In

each step of this phase, processes are divided into two halves; one half sends its local

data from the previous phase with the data it has gathered so far to the other half. The

receiving half repeats this procedure until a single process is left. That process, called the

root process, will have all reduced chunks from all processes (See the example in Figure 2.2e,

steps B1-B3).

Number of steps. In the first phase, the distance between each pair of processes that

exchange messages is doubled in each step from 1 to N/2. So for each process to receive

all messages from all other processes, the recursive halving phase requires logN steps. In

the second phase, the number of participating processes starts at N and is divided by two

in each step until we reach one process. Thus, the total number of steps required in the

binomial tree phase is logN . Therefore, Rabenseifner’s Pattern for MPI Reduce requires

2 logN steps in total.

Maximum process load. In the first phase each process receives one message and

sends one message during every step, so the maximum process load for that phase is 2.

During every step of the second phase each process either receives one message, sends one

message, or does nothing, so the maximum process load for that phase is 1. Therefore the

maximum process load is max (2, 1) = 2.

Total number of messages. In the first phase, during every step each of the N

processes sends exactly one message. Since there are logN steps in this phase, the number

of messages sent in the recursive halving phase is N logN . In the second phase, each process

(except the root process) sends exactly one message, so the total number of messages is
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N−1. Therefore, Rabenseifner’s Pattern for MPI Reduce requires N logN+N−1 messages

in total.

Messages sent across racks. Each MPI process has a rank. The pairs of processes

that exchange messages in either phase are chosen following the ordering of the ranks. This

means that in the first phase for each step i starting from 1 to logN , process p exchanges

messages with process p± 2i−1 (The operation is + or − depending on whether bp/2i−1c is

even or odd, respectively). In the second phase, for every step i starting from 1 to logN ,

each process p where N/2i ≤ p < N/2i−1 sends a message to process p−N/2i.

In our analysis, we assign process ranks to MPI processes to minimize the commu-

nication between racks. Figure 4.4 shows such an assignment for the first phase. This

assignment of process ranks maximizes the communication within a rack. Only in the

steps where the distance between pairs of processes is bigger than the size of the rack

(2i−1 > k, so i > log k + 1) do all exchanged messages leave the racks. This implies that

only log r steps in the recursive halving phase use the data center network. Since N mes-

sages are sent in each step of that phase, the recursive halving phase generates N log r

messages across racks. Figure 4.3a shows such an assignment for the second phase. This

assignment of process ranks maximizes the communication within a rack by doing the steps

that involve the most number of messages within racks and the rest across racks. Only

in the steps i where logN − log r < i ≤ logN do all exchanged messages leave the racks.

This implies that only log r steps in the binomial tree phase use the data center network.

Since 2−iN messages are sent in each step i where logN − log r < i ≤ logN , the binomial

tree phase generates r− 1 messages across racks. The rest of the messages (i.e., N − r) are

sent/received within a rack.

Therefore, Rabenseifner’s Pattern for MPI Reduce generates N log r+N−r messages in

total across racks. The rest of the messages (i.e., N logN−N log r+r−1) are sent/received

within a rack.

Network load. As explained in Section 4.2, each of the N logN −N log r+ r−1 mes-

sages sent within a rack traverses two links, so they contribute 2 (N logN −N log r + r − 1)

to the total network load. Additionally, each of the N log r + N − r messages sent across
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racks traverses four links, so they contribute 4 (N log r + N − r) to the total network load.

The total generated network load is therefore

2 (N logN −N log r + r − 1) + 4 (N log r + N − r) = 2N logN + 2N log r + 4N − 2r − 2

Each of the N log r + N − r messages sent between racks traverses 2 links, so the network

load across racks is 2N log r + 2N − 2r.

4.3.6 Rabenseifner’s Pattern for MPI Allreduce

Rabenseifner’s pattern [41] uses two phases combining two patterns to implement MPI Allreduce.

In the first phase, it uses the recursive halving pattern (analogous to the recursive dou-

bling pattern) to perform reduce-scatter, where the data array is divided to chunks and each

chunk is reduced to a different node. This phase involves exchanging messages between

pairs of processes that are initially a distance of 1 apart, then doubling that distance for

each step until a distance of N/2 is reached (See the example in Figure 2.2f, steps A1-A3).

This means that in every step i (starting from 1), each pair of processes 2i−1 ranks apart

combine the local data and data they received so far, divide the data in half, keep one half

and exchange the other half with each other. They then apply the reduce operation to

that data. After logN steps, each process will have a different chunk of data reduced from

all the other processes.

In the second phase, Rabenseifner’s Pattern for MPI Allreduce uses the recursive dou-

bling pattern to gather the reduced chunks from the previous phase in all processes. This

phase involves exchanging messages between pairs of processes that are initially a distance

of 1 apart, then doubling that distance for each step until a distance of N/2 is reached (See

the example in Figure 2.2f, steps B1-B3). This means that in every step i (starting from

1), each pair of processes 2i−1 ranks apart exchange local data and data they received so

far with each other. After logN steps, all processes will have all the reduced chunks from

all the other processes.

36



Number of steps. In the first phase, the distance between each pair of processes

that exchange messages is doubled in each step from 1 to N/2. So for each process to

receive all messages from all other processes, the recursive halving phase requires logN

steps. Similarly, in the second phase, the distance between each pair of processes that

exchange messages is doubled in each step from 1 to N/2. So for each process to receive

all messages from all other processes, the recursive doubling phase requires logN steps.

Therefore, Rabenseifner’s Pattern for MPI Allreduce requires 2 logN steps in total.

Maximum process load. In either phase each process receives one message and sends

one message during every step. Therefore, the maximum process load is 2.

Total number of messages. In the first phase, during every step each of the N

processes sends exactly one message. Since there are logN steps in this phase, the number

of messages sent in the recursive halving phase is N logN . In the second phase, during

every step each of the N processes sends exactly one message. Since there are logN steps

in this phase, the number of messages sent in the recursive doubling phase is N logN .

Therefore, Rabenseifner’s Pattern for MPI Allreduce requires 2N logN messages in total.

Messages sent across racks. Each MPI process has a rank. The pairs of processes

that exchange messages in either phase are chosen following the ordering of the ranks. This

means that in either phase for each step i starting from 1 to logN , process p exchanges

messages with process p ± 2i−1 (The operation is + or − depending on whether bp/2i−1c
is even or odd, respectively).

In our analysis, we assign process ranks to MPI processes to minimize the commu-

nication between racks. Figure 4.4 shows such an assignment for the first phase. This

assignment of process ranks maximizes the communication within a rack. Only in the

steps where the distance between pairs of processes is bigger than the size of the rack

(2i−1 > k, so i > log k + 1) do all exchanged messages leave the racks. This implies

that only log r steps in the recursive halving phase use the data center network. Since N

messages are sent in each step of that phase, the recursive halving phase generates N log r

messages across racks. The same argument is used for the recursive doubling phase. There-
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fore, Rabenseifner’s Pattern for MPI Allreduce generates 2N log r messages in total across

racks. The rest of the messages (i.e., 2N logN − 2N log r) are sent/received within a rack.

Network load. As explained in Section 4.2, each of the 2N logN − 2N log r messages

sent within a rack traverses two links, so they contribute 2 (2N logN − 2N log r) to the

total network load. Additionally, each of the 2N log r messages sent across racks traverses

four links, so they contribute 4 (2N log r) to the total network load. The total generated

network load is therefore

2 (2N logN − 2N log r) + 4 (2N log r) = 4N logN + 4N log r

Each of the 2N log r messages sent between racks traverses 2 links, so the network load

across racks is 4N log r.

4.3.7 COOL-Parallel-Parallel for MPI Gather, MPI Reduce and

MPI Scatter

COOL-P-P uses the parallel communication pattern within a rack and between racks. For

instance, in MPI Gather it works as follows. (1) Each process sends its data to its rack

leader. Each leader concatenates the data from its subgroup into a subarray. (2) All

leaders send their subarrays to the root leader (the rack leader of the root process). The

root leader concatenates all the subarrays it receives into a single final array. Finally, (3)

the root leader forwards the final array to the root process. To implement the MPI Reduce

operation, COOL-P-P runs in a similar fashion, except that at the end of step (1), once each

rack leader gets all the data from its rack, it performs the reduce operation. Additionally,

at the end of step (2), once the root leader receives all the data from all rack leaders it

performs the reduce operation.

Similarly, to implement the MPI Scatter operation, the same steps are run in reverse

order. (1) The root process sends its array to the root leader. (2) The root leader divides

the array into r subarrays, keeps one subarray and sends a subarray to all other rack leaders.
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Finally, (3) every rack leader, including the root leader, sends 1/kth of the remaining data

items from its subarray to every process in its rack.

Number of steps. Since there are three phases in COOL, and each phase uses the

single-step parallel pattern, then there are three steps in total.

Maximum process load. In the MPI Gather and MPI Reduce operations during the

first step, rack leaders receive k − 1 messages. In the second step, the root leader receives

r − 1 messages, while other rack leaders send one message. In the third step, the root

leader sends one message. On the other hand, in the MPI Scatter operation, during the

first step, the root leader receives one message. In the second step, the root leader sends

r−1 messages, while other rack leaders receive one message. In the third step, rack leaders

send k − 1 messages. Therefore, in all the three operations the maximum process load for

each leader process is max (r − 1, k − 1). During every step, each non-leader process sends

one message, receives one message, or does nothing. Therefore, the maximum process load

for other processes is 1.

Total number of messages. In the MPI Gather and MPI Reduce operations during

the first step, each process sends one message to its rack leader (r (k − 1) = N − r mes-

sages). In the second step, each rack leader sends one message to the root leader (r − 1

messages). Finally, the root leader sends one message to the root process (one message).

In MPI Scatter, during the first step, the root process sends one message to the root leader

(one message). In the second step, the root leader sends one message to each rack leader

(r − 1 messages). Finally, each rack leader, including the root leader, sends one message

to each process in its rack (r (k − 1) = N − r messages). This implies that COOL-P-P

requires N − r + r − 1 + 1 = N messages in total.

Messages sent across racks. Messages are only sent between racks in the second

step. Therefore, there are r − 1 messages that use the core network. The rest of the

messages (N − r + 1) are sent/received within a rack.

Network load. As explained in Section 4.2, each of the N − r + 1 messages sent

within a rack traverses two links, so they contribute 2 (N − r + 1) to the total network

load. Additionally, each of the r − 1 messages sent across racks traverses four links, so
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they contribute 4 (r − 1) to the total network load. The total generated network load is

therefore

2 (N − r + 1) + 4 (r − 1) = 2N + 2r − 2

Each of the r− 1 messages sent between racks traverses 2 links, so the network load across

racks is 2r − 2.

4.3.8 COOL-Parallel-Parallel for MPI Bcast

COOL-P-P uses the parallel comunication pattern within a rack and between racks. The

MPI Bcast operation works as follows. (1) The root process sends its value to the root

leader. (2) The root leader multicasts the value to all other rack leaders. Finally, (3) every

leader multicasts the value to all processes its rack.

Number of steps. Since there are three phases in COOL, and each phase uses the

single-step parallel pattern, then there are three steps in total.

Maximum process load. In MPI Bcast, during the first step, the root process sends

one message to the root leader. In the second step, the root leader sends one multicast

message to the other r − 1 rack leaders. In the third step, each rack leader, including the

root leader, sends one multicast message to the other k − 1 processes in its rack. Thus

the maximum process load for each leader process is 1. During every step, each non-leader

process sends one message, receives one message, or does nothing. Therefore, the maximum

process load for the other processes is 1.

Total number of messages. During the first step of MPI Bcast, the root process

sends one message to the root leader (one message). In the second step, the root leader

sends one message to the other r−1 rack leaders (1 multicast message to r−1 recipients, i.e.,

1Mr−1). Finally, each rack leader, including the root leader, sends one multicast message

to all the processes in its rack (r multicast messages to k− 1 recipients, i.e., rMk−1). This

implies that COOL-P-P requires 1 + 1Mr−1 + rMk−1 messages in total.
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Messages sent across racks. Messages are only sent between racks in the second

step. Therefore, there is only one multicast message to r − 1 recipients (1Mr−1) that uses

the core network. The rest of the messages (1 + rMk−1) are sent/received within a rack.

Network load. As explained in Section 4.2, the only message sent within a rack

traverses two links, so it contributes 2 (1) to the total network load. Additionally, each

of the rMk−1 multicast messages to k − 1 recipients within a rack uses k links, so they

contribute k (r) to the total network load. A multicast message across rack leaders (1Mr−1)

traverses 2r links, so it contributes 2r (1) to the total network load. The total generated

network load is therefore

2 (1) + k (r) + 2r (1) = N + 2r + 2

Each multicast message sent between racks traverses r links in the core network, so the

network load across racks is r.

4.3.9 COOL-Parallel-Parallel for MPI Allgather and

MPI Allreduce

COOL-P-P uses the parallel communication pattern within a rack and between racks. For

instance, the MPI Allgather operation works as follows. (1) Each process sends its value

to its rack leader. Each rack leader concatenates all the values of its subgroup into a

subarray. (2) All rack leaders multicast their subarrays to all other rack leaders. Every

leader concatenates all of the subarrays it receives into a single final array. Finally, (3) every

leader multicasts the final array to the other k−1 processes in its rack. The MPI Allreduce

operation is done in a similar fashion, except that at the end of step (1), once each rack

leader gets all the values from its rack, it performs the reduce operation on the data it

has so far. Additionally, at the end of step (2), once each rack leader receives all values

from all other rack leaders it performs the reduce operation. At the end of Step (3), all

processes receive the final reduced data.
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Number of steps. Since there are three phases in COOL, and each phase uses the

single-step parallel pattern, then there are three steps in total.

Maximum process load. In MPI Allgather and MPI Allreduce, during the first step,

rack leaders receive k−1 messages. In the second step, each rack leader sends one multicast

message to all other (r−1) rack leaders and receives r−1 messages. In the third step, each

rack leader sends one multicast message to the other k − 1 processes in its rack. Thus the

maximum process load for each leader process is max (r, k − 1). During every step, each

non-leader process sends one message, receives one message, or does nothing. Therefore,

the maximum process load for other processes is 1.

Total number of messages. In MPI Allgather and MPI Allreduce, during the first

step, each process sends one message to its rack leader (r (k − 1) = N − r messages). In

the second step, each rack leader sends one multicast message to all other (r − 1) rack

leaders (rMr−1 messages). Finally, each rack leader sends one multicast message to the

other k− 1 processes in its rack (rMk−1 messages). This implies that COOL-P-P requires

N − r + rMr−1 + rMk−1 messages in total.

Messages sent across racks. Messages are only sent between racks in the second

step. Therefore, there are r multicast message to r−1 recipients (rMr−1) that use the core

network. The rest of the messages (N − r + rMk−1) are sent/received within a rack.

Network load. As explained in Section 4.2, each of the N − r messages sent within a

rack traverses two links, so they contribute 2 (N − r) to the total network load. Addition-

ally, each of the rMk−1 multicast messages to k−1 recipients within a rack uses k links, so

they contribute k (r) to the total network load. Each of the rMr−1 multicast messages sent

from one rack leader to the other r − 1 rack leaders traverses 2r links, so they contribute

2r (r) to the total network load. The total generated network load is therefore

2 (N − r) + k (r) + 2r (r) = 3N + 2r2 − 2r

Each of the rMk−1 multicast messages sent between racks traverses r links in the core

network, so the network load across racks is r2.
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4.3.10 COOL-Binomial-Tree-Recursive-Doubling for

MPI Allreduce

COOL-Binomial-tree-Recursive-doubling (COOL-B-R) uses the binomial tree pattern within

a rack and the recursive doubling pattern between racks. In MPI Allreduce it works as

follows. In the first phase, each process sends its value to its rack leader using the binomial

tree communication pattern. In each step, processes in each rack are divided into two

halves; one half applies the reduce operation to its local data and the data it has gathered

so far and sends the result to the other half. The receiving half repeats this procedure until

a single process (the rack leader) is left. Each rack leader will then have the reduced result

from all processes in its rack. In the second phase, each rack leader sends its reduced result

to all other rack leaders using the recursive doubling communication pattern. In every step

i (starting from 1), each pair of rack leaders with a distance of 2i−1 between their rack ids

combine their data and the data they have received so far and exchange that data with

each other. They then apply the reduce operation to that data. After logN steps all rack

leaders will have the reduced result from all the other processes. Finally, in the third phase

every rack leader multicasts the final reduced result to the other k−1 processes in its rack.

Number of steps. In the first phase of COOL-B-R, the number of processes that are

involved in communication in each rack starts at k and is divided by two in each step until

the rack leader is reached. Thus, the number of steps required in the first phase using the

binomial tree pattern is log k. In the second phase, the distance between the rack ids of

each pair of rack leaders that exchange messages is increased exponentially from 1 to r/2.

So for each rack leader to receive all messages from all other rack leaders, the second phase

using the recursive doubling pattern requires log r steps. The third phase uses multicast

messages to send data from rack leaders to all processes in their respective racks. Since

these multicast messages happen simultaneously, that takes a single step. Therefore, the

total number of steps is log k + log r + 1 = log kr + 1 = logN + 1.

Maximum process load. In the first phase, each process sends one message or

receives one message in each step, so the maximum process load for each leader and non-

leader process is 1. In the second phase, rack leaders send one message and receive one
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message in each step, so the maximum process load for rack leaders is 2. The other

processes do nothing in this phase, so the maximum process load for the other processes

is 0. In the third phase, each rack leader sends one multicast message to the other k − 1

processes in its rack, so the maximum process load for each leader and non-leader process

is 1. Therefore, the maximum process load for each rack leader is max (1, 2, 1) = 2, and

the maximum process load for the other processes is max (1, 0, 1) = 1.

Total number of messages. During the first phase, each process in each rack (except

the rack leaders) sends exactly one message. Hence, the number of messages exchanged

in the first phase is N − r. During every step of the second phase, each rack leader

sends exactly one message. Since there are log r steps in the second phase, the number of

messages exchanged in this phase is r log r. Finally, in the third phase every rack leader

sends one multicast message to the other k − 1 processes in its rack, so there are rMk−1

messages in this phase. Therefore, the total number of messages exchanged in COOL-B-R

is N − r + r log r + rMk−1.

Messages sent across racks. Messages are only sent between racks in the second

step. Therefore, there are r log r messages that use the core network. The rest of the

messages (N − r + rMk−1) are sent/received within a rack.

Network load. As explained in Section 4.2, each of the N − r messages sent within a

rack traverses two links, so they contribute 2 (N − r) to the total network load. Addition-

ally, each of the rMk−1 multicast messages to k − 1 recipients within a rack uses k links,

so they contribute k (r) to the total network load. Each of the r log r messages sent across

racks traverses four links, so they contribute 4 (r log r) to the total network load. The total

generated network load is therefore

2 (N − r) + k (r) + 4 (r log r) = 3N + 4r log r − 2r

Each of the r log r messages sent between racks traverses 2 links, so the network load across

racks is 2r log r.
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4.4 Summary of Analysis and Discussion

This section summarizes the analysis presented in Section 4.3, discusses the results and

compares between COOL and the other collective communication patterns. The analysis

assumes the best ranking for classical implementations which achieves the least possible

cross-rack communication. In this section, COOL-P-P denotes a COOL pattern that uses

the parallel pattern for communication within and across racks and COOL-B-R denotes a

COOL pattern that uses the binomial tree pattern within a rack and recursive doubling

pattern across racks.

4.4.1 Operation Latency

We analyze operation latency by examining the number of steps each pattern takes to

complete. Table 4.2 summarizes our results showing the total number of steps that various

implementations of the collective operations require and the number of steps that use

the inter-rack links (Table 4.1 describes the parameters used in Table 4.2). Classical

implementations take from logN to N steps to complete with log r to N of the steps using

the network between racks, while all COOL-P-P operations complete in three steps, with

only one step using the network across racks. This is a byproduct of using the parallel

pattern (as it can complete its part in a single step) and the hierarchical design (which

confines the cross-rack communication to a single step).

Obviously, a step in the parallel pattern has a higher computation and communication

overhead than a step in the other patterns. A process in the classical patterns exchanges

messages with one or two processes in every step, whereas the leader in the parallel pattern

may concurrently communicate with up to k processes in a rack, or r leaders across racks.

We study this factor in Section 4.4.4. Nevertheless, if the amount of communication and

computation that leaders perform becomes a concern, implementers of COOL can reduce

this overhead by choosing a different pattern (e.g., binomial tree) for communication within

or across racks (Section 4.5 presents one example).
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Table 4.2: Number of steps. This table presents the number of steps that a pattern takes
to finish and the number of steps requiring communication between racks.

Operation Pattern
# of steps

Section
Total Across racks

Reduce

COOL-P-P 3 1 4.3.7

Binomial tree logN log r 4.3.2

Rabenseifner 2 logN 2 log r 4.3.5

Allreduce

COOL-P-P 3 1 4.3.9

COOL-B-R logN + 1 log r 4.3.10

Ring N − 1 N − 1 4.3.1

Recursive doubling logN log r 4.3.3

Rabenseifner 2 logN 2 log r 4.3.6

Gather
COOL-P-P 3 1 4.3.7

Binomial tree logN log r 4.3.2

Allgather

COOL-P-P 3 1 4.3.9

Ring N − 1 N − 1 4.3.1

Recursive doubling logN log r 4.3.3

Bruck logN logN 4.3.4

Bcast
COOL-P-P 3 1 4.3.8

Binomial tree logN log r 4.3.2

Scatter
COOL-P-P 3 1 4.3.7

Binomial tree logN log r 4.3.2

4.4.2 Exchanged Messages

Table 4.3 shows the number of messages exchanged in total and across racks. Our results

show that COOL-P-P achieves the minimal number of messages of N for MPI Reduce,

MPI Gather, MPI Bcast and MPI Scatter. Furthermore, COOL-P-P achieves the optimal

number of messages across racks for all operations, as it generates no more than r − 1

messages, which is the absolute minimum required for exchanging data from one rack to

the remaining r − 1 racks. This result is due to two design decisions. First, the cross-

rack communication is only done between r rack leaders. Second, IP-level multicasting

is used for all multicast phases in MPI Bcast, MPI Allreduce and MPI Allgather (which
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classical implementations do not support), leading to a significant reduction in the number

of messages sent. Here, we count a multicast message as a single sent message, although

its network load is higher than that of a single message. Section 4.4.3 addresses this issue.

Compared with other patterns, COOL-P-P reduces the number of exchanged messages

by a factor of logN to N for all patterns except for the binomial tree pattern. If process

ranks are ordered in a rack-aware fashion (which, as noted in Section 4.3, is something

classical MPI implementations cannot do) the binomial tree pattern can minimize cross-

rack communication. On the other hand, the binomial tree pattern significantly increases

the number of steps to logN steps.

Table 4.3: Number of messages. This table presents the total number of exchanged mes-
sages and the number of messages requiring communication across racks.

Operation Pattern
Number of messages

Section
Total Across racks

Reduce

COOL-P-P N r − 1 4.3.7

Binomial tree N − 1 r − 1 4.3.2

Rabenseifner N logN + N − 1 N log r + r − 1 4.3.5

Allreduce

COOL-P-P N − r + rMr−1 + rMk−1 rMr−1 4.3.9

COOL-B-R N − r + r log r + rMk−1 r log r 4.3.10

Ring N (N − 1) r (N − 1) 4.3.1

Recursive doubling N logN N log r 4.3.3

Rabenseifner 2N logN 2N log r 4.3.6

Gather
COOL-P-P N r − 1 4.3.7

Binomial tree N − 1 r − 1 4.3.2

Allgather

COOL-P-P N − r + rMr−1 + rMk−1 rMr−1 4.3.9

Ring N (N − 1) r (N − 1) 4.3.1

Recursive doubling N logN N log r 4.3.3

Bruck N logN N log r + N − r 4.3.4

Bcast
COOL-P-P 1 + 1Mr−1 + rMk−1 1Mr−1 4.3.8

Binomial tree N − 1 r − 1 4.3.2

Scatter
COOL-P-P N r − 1 4.3.7

Binomial tree N − 1 r − 1 4.3.2
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4.4.3 Network Load

We compare the total network load generated by the different operation-pattern combi-

nations. Table 4.4 presents the total load generated and the load on the network across

racks. It suffices to compare the various entries in Table 4.4 asymptotically. The results

indicate that COOL-P-P reduces the network load by a factor of 2 to k in most cases for

both the total network load and the load across racks. This significant reduction in the

network load is a result of three factors: the explicit control of communication across racks,

the use of the parallel pattern (which is highly efficient for small groups) and the use of

network-optimal paths for multicast messages. Multicasting is used in three operations:

MPI Bcast, MPI Allreduce and MPI Allgather.

The binomial tree pattern performance is comparable to COOL-P-P performance for

the MPI Reduce, MPI Scatter and MPI Gather operations, whereas it doubles the network

load in MPI Bcast. Nevertheless, the binomial tree pattern takes O (logN) more steps

to complete. Because the binomial tree pattern has different best rankings for different

operations, achieving the best binomial tree performance for all operations is infeasible in

classical implementations.

4.4.4 Process Load

The process load is the number of messages each process sends or receives during a single

step. It is indicative of the amount of communication and computation required on each

process per step. The parallel pattern (Section 3.2) completes a collective operation in a

single step at the cost of an increased load on the leader processes. Hence, the parallel

pattern does not scale well for large groups because of the high process load on the root

process. Table 4.5 shows the maximum load generated on a process at any given step of

the operation. Since not all processes have the same role in COOL, rack leaders see a

higher load than other processes. Table 4.5 indicates that the maximum load on a leader

does not exceed r (the number of racks) or k (the number of nodes in a rack) messages

in any step. We argue that this amount of concurrent communication and computation
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Table 4.4: Network load analysis. This table presents the total network load and the
network load across racks.

Operation Pattern
Network Load

Section
Total Across racks

Reduce

COOL-P-P 2N + 2r − 2 2r − 1 4.3.7

Binomial tree 2N + 2r − 4 2r − 2 4.3.2

Rabenseifner
2N logN + 2N log r +

2N + 2r − 4
2N log r +

2r − 2
4.3.5

Allreduce

COOL-P-P 3N + 2r2 − 2r r2 4.3.9

COOL-B-R 3N + 4r log r − 2r 2r log r 4.3.10

Ring 2 (N + r) (N − 1) 2r (N − 1) 4.3.1

Recursive doubling 2N logN + 2N log r 2N log r 4.3.3

Rabenseifner 4N logN + 4N log r 4N log r 4.3.6

Gather
COOL-P-P 2N + 2r − 2 2r − 1 4.3.7

Binomial tree 2N + 2r − 4 2r − 2 4.3.2

Allgather

COOL-P-P 3N + 2r2 − 2r r2 4.3.9

Ring 2 (N + r) (N − 1) 2r (N − 1) 4.3.1

Recursive doubling 2N logN + 2N log r 2N log r 4.3.3

Bruck
2N logN + 2N log r +

2N − 2r
2N log r +
2N − 2r

4.3.4

Bcast
COOL-P-P N + 2r + 2 r 4.3.8

Binomial tree 2N + 2r − 4 2r − 2 4.3.2

Scatter
COOL-P-P 2N + 2r − 2 2r − 2 4.3.7

Binomial tree 2N + 2r − 4 2r − 2 4.3.2

can still be effectively performed in modern cloud environments since k and r are typically

small (a few tens). For instance, a configuration of k = 32, r = 32 and 32 processes per

node can support an MPI application with 32K processes, yet any collective operation

will finish in three steps with a maximum load on rack leaders not exceeding 32 messages.

Nevertheless, if the amount of communication and computation that leaders perform in the

parallel pattern becomes a concern, implementers of COOL can choose a different pattern

(e.g., binomial tree) for communication within a rack or across rack leaders (discussed in

Section 4.5).
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Table 4.5: Process load analysis. This table presents the maximum load on processes at
any step in the operation.

Operation Pattern
Max. Proc. Load

Section
Leader Other

Reduce

COOL-P-P max (r − 1, k − 1) 1 4.3.7

Binomial tree 1 4.3.2

Rabenseifner 2 4.3.5

Allreduce

COOL-P-P max (r, k − 1) 1 4.3.9

COOL-B-R 2 1 4.3.10

Ring 2 4.3.1

Recursive doubling 2 4.3.3

Rabenseifner 2 4.3.6

Gather
COOL-P-P max (r − 1, k − 1) 1 4.3.7

Binomial tree 1 4.3.2

Allgather

COOL-P-P max (r, k − 1) 1 4.3.9

Ring 2 4.3.1

Recursive doubling 2 4.3.3

Bruck 2 4.3.4

Bcast
COOL-P-P 1 1 4.3.8

Binomial tree 1 4.3.2

Scatter
COOL-P-P max (r − 1, k − 1) 1 4.3.7

Binomial tree 1 4.3.2

4.5 COOL’s Flexibility

To demonstrate COOL’s flexibility, we explore a design for the MPI Allreduce operation

that has lower network and process load than COOL-P-P . If we exclude the parallel pat-

tern, because it increases the load on leader processes, Table 4.3 shows that the binomial

tree pattern is the best pattern for the MPI Reduce operation and recursive doubling is

the best pattern for MPI Allreduce. We combine these two patterns to create the COOL-

Binomial-tree-Recursive-doubling (COOL-B-R) pattern. COOL-B-R uses the binomial

tree pattern to reduce the values in a rack and recursive doubling to reduce the values
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across rack leaders. Finally, the rack leaders multicast the final result to all processes in

their rack.

Our analysis of COOL-B-R (Section 4.3.10) indicates that this composition is a middle

ground between the classical recursive doubling and COOL-P-P pattern. Compared with

COOL-P-P , COOL-B-R increases the number of steps to logN +1 total steps with log r of

them using the core network (Table 4.2) and increases the number of messages exchanged

across racks by a factor of log r (Table 4.3). On the other hand, COOL-B-R reduces the

network load across racks by a factor of r/2 log r (Table 4.4) and the load on the leader

processes to only two messages (Table 4.5).

This example demonstrates COOL’s flexibility. This flexibility facilitates the selection

of various communication patterns that better fit each step of the collective operation. For

instance, COOL-B-R trades more steps for lighter network and process load.

4.6 Summary

COOL’s small subgroups (of processes within a node, nodes within a rack and rack leaders

in the data center) allow the usage of the parallel pattern. Our evaluation shows that

the parallel pattern can provide significant benefits: COOL-Parallel-Parallel composition

completes any collective operation in three steps, reduces the cross-rack communication

and also reduces the network load. These improvements come at the cost of an increase in

load on leader processes.

Furthermore, our evaluation demonstrates that COOL is flexible. This flexibility al-

lows implementers of COOL the ability to explore the performance/overhead trade-offs

present in different communication patterns. For instance, the COOL implementation for

MPI Allreduce with the parallel pattern within and across racks (COOL-P-P) reduces the

number of steps and the number of messages but increases the load on leader processes.

Alternatively, combining binomial tree and recursive doubling patterns (COOL-B-R) re-

duces the load on the leader processes and the network load but increases the number of

steps and the number of messages. Unlike COOL, classical communication patterns do
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not provide the opportunity to explore these trade-offs or select the best pattern for every

level of the data center infrastructure.
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Chapter 5

Related Work

5.1 Optimizing MPI

Many previous efforts have focused on optimizing MPI collective operations. MPICH [17],

Nemesis [8] and hierarchical collectives [45] optimize collective operations between processes

collocated on the same node using node-local cache and shared memory. COOL uses similar

optimizations to optimize communication between processes on the same node. Addition-

ally, Thakur et al. [41] present Rabenseifner’s pattern which is one of the early examples

that combined multiple collective communication patterns to optimize MPI Reduce and

MPI Allreduce for large data sizes. We discuss this in more detail in Section 2.3.4. COOL

aims to reduce cross-rack communication overhead by combining multiple collective com-

munication patterns between and within racks. Furthermore, Mirsadeghi et al. [1] propose

a heuristic to dynamically reorder process ranks to match the operation’s communication

patterns with the supercomputer’s network architecture. Our evaluation indicates that

this approach is insufficient, by showing that COOL brings significant performance gains

compared to the classical communication patterns even if they use the best ranking.

The closest efforts to our work [3] explores a hierarchical design of MPI Reduce and

MPI Allreduce, where processes are divided into equal-sized subgroups based on their pro-

cess ranks. Then the reduce operation is performed in each of these subgroups, then
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across subgroups. While this previous work offers an improvement in performance over

the ring pattern, it has a performance comparable with the binomial tree pattern and

Rabenseifner’s pattern and they only cover a small subset of collective operations. In addi-

tion, their method for constructing subgroups does not take into account the data center’s

network architecture since process ranks are assigned to processes randomly [30], which

results in a large amount of cross-rack traffic. Another close effort is the recent preliminary

exploration proposing the use of SDN capabilities to optimize specific collective operations

on fat-tree interconnects [39]. In that work, for each call of the MPI Bcast operation, the

SDN controller builds a shortest-path delivery tree from the root process to all receiving

processes then sets up the required flow entries on each SDN switch. In contrast with

COOL, this effort focuses on optimizing a single collective operation (MPI Bcast) without

considering a general approach for MPI collective operations in the cloud. In addition,

their approach requires setting up delivery trees for each call of the MPI Bcast operation,

which is an unnecessary cost in comparison to COOL’s approach of setting up multicast

delivery trees for each subgroup (within and across racks) that can be reused for further

invocations of the MPI Bcast operation or other collective operations.

In summary, most previous efforts are not optimized for data center network architec-

tures or just focus on optimizing a small subset of the collective operations (e.g., MPI Bcast,

MPI Reduce or MPI Allreduce) without considering a generic approach for MPI collectives

in the cloud, which results in a high cross-rack traffic. COOL on the other hand is a generic

approach for data centers’ network architectures that fits a larger set of collective opera-

tions.

5.2 Rack Awareness

Several studies explore building rack-aware systems. For example, location-awareness have

been suggested in the context of distributed file systems [14], data processing engines [34],

big data applications [24] and message oriented middleware [42]. For instance, HDFS [14],

a distributed file system, uses information about network topology to place block replicas
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on different racks. This provides data availability in the event of a network switch failure or

partition within the cluster. Additionally, read and write requests are directed to replicas

on the same or nearest rack in order to improve the network traffic while reading/writing

an HDFS file.

Moreover, Purlieus [34], a MapReduce resource allocation system, allows MapReduce

virtual machines to access input data and intermediate data from local or close-by physical

machines by carefully placing nodes close to the input data and intermediate nodes. This

allows jobs to run faster and reduces network overhead. Purlieus discovers the network

topology by analyzing network flows. Similarly, Tashi [24] is a cluster management system

designed particularly for enabling cloud computing applications to operate on repositories

of big data. It allows for the placement of virtual machines closer to the data they use,

improving performance.

In Kafka [42], an example of Message Oriented Middleware (MOM), replicas of the same

stream can be configured to be replicated to brokers on different racks in order to tolerate

failures of entire racks and to minimize data loss. Another advantage of rack awareness

in Kafka is that it ensures balanced throughput across racks, since the algorithm used to

assign replicas to brokers ensures that the number of leaders per broker will be constant,

regardless of how brokers are distributed across racks.

In summary, several applications use rack-awareness for fault tolerance and to improve

system performance by balancing load between racks and minimizing inter-rack network

traffic, or by placing nodes closer to the data they use. COOL also aims to minimize

inter-rack network traffic, but it achieves that by grouping processes based on their place-

ment within nodes, within racks and across racks, then choosing adequate communication

patterns at each level. To the best of our knowledge, this is the first effort to consider a

rack-aware MPI design.
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5.3 Network-accelerated Systems

Recent projects have used SDN capabilities to provide load balancing [12, 18, 43], seamless

virtual machine migration [28] and access control [32] and to improve system security,

virtualization and network efficiency [25]. NetCache [23] implements a caching service in

a single switch. The controller tracks the most popular objects and updates the cached

objects. SwitchKV [27] uses SDN’s capabilities to route client requests to the caching

node serving the key. A central controller fills the forwarding rules to invalidate routes for

objects that are being modified and installs routes for newly cached objects.

A number of recent efforts use SDN’s capabilities to optimize data replication protocols.

Speculative Paxos [35] builds a mostly ordered multicast primitive and uses it to optimize

the multi-Paxos consensus protocol. Network-ordered Paxos (NOPaxos) [26] utilizes mod-

ern network capabilities to order multicast messages and add a unique sequence number

to every client request. NOPaxos uses these sequence numbers to serialize operations and

to detect packet loss. NetPaxos [13] and NetChain [22] implement replication protocols

on a group of switches. These protocols are suitable for systems that store only a few

megabytes of data (e.g., 8 MB in the NetChain prototype).

COOL enables collective operation designs that better fit the data center infrastructure

than classical collective operation designs. In particular, it enables the exploitation of SDN

capabilities to explore the network and to build efficient network paths for multicast-based

data transfers within and across racks in a similar manner to how the aforementioned

efforts construct efficient multicast network paths.
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Chapter 6

Conclusions and Future Work

Many science and engineering applications have turned to cloud infrastructures as a plat-

form to perform high-performance computing (HPC) [40, 19, 37]. For HPC applications

MPI is the de-facto standard, and MPI collective operations are the most I/O intensive and

performance critical among MPI operations [36]. Classical MPI implementations, however,

are inefficient on cloud infrastructures because they are implemented at the application

layer using network-oblivious communication patterns [15] which do not differentiate be-

tween local or cross-rack communication. Hence, they do not exploit the inherent locality

between processes collocated on the same node or the same rack of nodes. Consequently,

they can suffer from high network overheads when communicating across racks.

In this thesis, we present COOL, a simple and generic approach for MPI collective

operations in the cloud. COOL exploits the inherent locality between collocated MPI

processes on the same node or in the same rack and reduces cross-rack communication when

compared to existing widely-used systems like OpenMPI and MPICH. To demonstrate the

feasibility of our approach, we present a system design that embodies COOL and describes

how to implement frequently used collective operations. When compared with classical

implementations (OpenMPI and MPICH), our design reduces cross-rack communication

by a factor of from logN up to N (the total number of processes) for most operations and

it reduces the total network load by a factor of from two up to k (the number of processes
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in a rack) in most cases. The cost for this performance improvement is a small increase

in the communication load on leader processes. Furthermore, our evaluation demonstrates

that COOL is flexible. This flexibility allows implementers of COOL the ability to explore

the performance/overhead trade-offs present in different communication patterns.

6.1 Future Work

Extending MPICH. We hope to extend MPICH to provide an implementation for col-

lective operations using COOL. This would include extending MPICH with a network con-

troller, extending the Hydra [31] management components and adding new COOL-based

implementations to the MPI collective library.

Remaining collective operations. We would like to expand our work to include the

remaining collective operations, including collective operations that exchange different sizes

of data for each process and non-commutative MPI Reduce and MPI Allreduce operations.

These operations offer new challenges that we hope to address in future work.

Exploring possible communication pattern combinations. This thesis presented

a design for COOL-B-R which explored a trade-off between reducing the process load on

leader processes and increasing the total network load. We hope to explore more of the

possible collective communication pattern combinations for each phase of COOL and the

trade-offs they incur in each collective operation.

Dynamic algorithms for choosing communication pattern combinations. We

would like to explore algorithms that dynamically choose the best communication pattern

combinations for each phase of COOL by utilizing some heuristics. For example, a different

combination could be used depending on the exchanged data size, the number of processes,

the number of racks, the distribution of processes across racks, the differences in latency

and throughput between inter-rack and intra-rack networks and user-defined constraints

or preferences.
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6.2 Concluding Remarks

We believe that cloud infrastructures are attractive for HPC applications, which usually

use MPI as a standard communication interface. Existing MPI implementations are not

optimized for cloud data centers because they are implemented at the application layer

using network-oblivious communication patterns. We believe that designing MPI imple-

mentations to take into account the network infrastructure is important, so in this thesis

we have presented the COOL approach for MPI collective operations. Our analysis shows

that COOL offers significant improvements in performance compared to classical MPI im-

plementations. We expect that implementations of COOL will significantly benefit the

execution of MPI applications in these environments.
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