
A User-Centric Approach to Improve
the Quality of UML-like Modelling
Tools and Reduce the Efforts of

Modelling

by

Parsa Pourali

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

© Parsa Pourali 2019

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Silvia Abrahão
Associate Professor, Dept. of Computer Science,
Universitat Politècnica de València

Supervisors: Joanne M. Atlee
Professor, Dept. of Computer Science,
University of Waterloo
Krzysztof Czarnecki
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal Member: Derek Rayside
Associate Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal Member: Werner Dietl
Assistant Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal-External Member: Nancy Day
Associate Professor, Dept. of Computer Science,
University of Waterloo

ii

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

The body of this thesis is based on a combination of published works. Various sections
are adapted from the following list of publications:

• Chapter 4 draws on a technical report and a published conference paper. The paper
is co-authored by my supervisor (Dr. Atlee) and me. I developed the experimen-
tal methodology and design. I also carried out the lab experiments and collected
and analyzed the experimental data. Dr. Atlee provided feedback and comments
throughout this process. Dr. Atlee also assisted with the writing of the paper.

– Parsa Pourali and Joanne M. Atlee. “An Empirical Investigation to Understand
the Difficulties and Challenges of Software Modellers When Using Modelling
Tools.” Proceedings of the 21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, pages 224 - 234. ACM, 2018.

– Parsa Pourali and Joanne M. Atlee. An Experimental Investigation on Un-
derstanding the Difficulties and Challenges of Software Modellers When Us-
ing Modelling Tools. Technical Report CS-2018–03. David R. Cheriton School
of Computer Science, University of Waterloo. 44 pages. https://uwaterloo.
ca/computer-science/sites/ca. computer-science/files/uploads/files/cs-2018–03.
pdf, 2018.

• Chapter 5 of this thesis draws on three papers. One of the papers has been written
by me, and the other two papers were co-authored by me and my supervisor (Dr.
Atlee). I developed and implemented the tooling techniques. Dr. Atlee reviewed and
commented on the manuscript.

– Parsa Pourali. “Tooling advances inspired to address observed challenges of de-
veloping UML-like models when using modelling tools.” Proceedings of the 21st
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings, pages 168 - 173. ACM, 2018.

– Parsa Pourali and Joanne M. Atlee. “A Focus+Context Approach to Alleviate
Cognitive Challenges of Editing and Debugging UML Models.” Proceedings of
the 22nd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, pages 183 - 193. ACM, 2019.

– Parsa Pourali and Joanne M. Atlee. “UCAnDoModels: A Context-based Model
Editor for Editing and Debugging UML Class and State-Machine Diagrams.”
Proceedings of the 22nd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, pages 779 - 783. ACM, 2019.

iv

• Chapter 6 has been incorporated within a conference paper that is co-authored by
my supervisor (Dr. Atlee) and me. I developed the experimental methodology and
design, and Dr. Atlee reviewed the design. I also carried out the lab experiments
and collected and analyzed the experimental data. Dr. Atlee also assisted with the
writing of the paper.

– Parsa Pourali and Joanne M. Atlee. “A Focus+Context Approach to Alleviate
Cognitive Challenges of Editing and Debugging UML Models.” Proceedings of
the 22nd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, pages 183-193. ACM, 2019.

v

Abstract

As software systems grow in size and complexity, their development and maintenance are
becoming increasingly challenging. Model-Driven Engineering (MDE) has been proposed
as a means to increase the developer’s productivity of such large-scale complex software
systems. Despite its benefits, MDE has not been fully adopted in the software industry due
to several barriers. Research has shown that modelling tools are amongst the top barriers
for the industry’s reluctance to adopt MDE, mostly because there is a little investigation of
the modellers’ interactions with modelling tools when editing and debugging models, which
are cognitively difficult tasks. More specifically, MDE tool research has not considered 1)
a thorough analysis of modellers and their tasks, to understand their challenges of using
modelling tools, 2) the underlying human-cognitive factors, and 3) a systematic assessment
of the effectiveness of proposed solutions (i.e., tooling techniques) on human users.

This thesis argues that MDE tools can be enhanced to overcome (some of) the chal-
lenges of adoption by considering human-cognitive factors (i.e., user-centric) when design-
ing and proposing model-easing techniques for model editors. We advance our thesis in
three main steps. As a first step, we conducted an empirical study to identify the most-
severe cognitive difficulties of modellers when using UML model editors. In our study, we
asked the recruited subjects to perform several model-editing and model-debugging tasks.
We collected information during the sessions that could help us understand the subjects’
cognitive challenges. The results show that users face multiple challenges, amongst which
the most prominent challenges are remembering contextual information when performing
a particular modelling task; and locating, understanding, and fixing errors in the models.

In the second step, we identified the cognitive factors that drive the most prominent
challenges and subsequently devised several tooling advancements that provide enhanced
cognitive support and automation in the users’ interaction with a model editor. The
philosophy behind our tooling advancements is to provide the contextual information that
are relevant to performing a particular modelling task, thereby, alleviating the modellers’
cognitive challenges of recollecting information from different diagrams. We also proposed
an on-the-fly error-resolution technique that aims at resolving errors as they occur. We
implemented our Eclipse-based model-editor and embedded our tooling techniques in the
tool.

Lastly, we conducted two empirical studies to assess the effectiveness of our model-
editor on human users. The Context study aimed at evaluating our tool’s ability to reduce
the challenges of remembering contextual information, whereas the Debugging study aimed
at assessing our tool’s ability to improve the users’ experience of debugging models. Our

vi

results reveal that our interfaces help users 1) improve their ability to successfully fulfil their
tasks, 2) avoid unnecessary context switches among diagrams, 3) produce more error-free
models, 4) remember contextual information, and 5) reduce time on tasks.

vii

Acknowledgements

Undertaking a PhD is probably one of the most life-changing experiences that one can ever
have in their life. Without the support and guidance from the PhD advisors, this is almost
impossible. I would like to express my heartiest gratitude to Prof. Joanne M. Atlee, who
has always been a kind, friendly, and supportive PhD advisor for me. Her positive attitude
and smile have always encouraged me to move forward and to overcome frustrations during
my PhD. My achievements would not have been possible without her supportive, friendly,
and professional supervision. I have learned a lot from her.

I would like to thank Prof. Krzysztof Czarnecki as my PhD co-supervisor. His patience
and dedication to work helped me understand the significance of putting more efforts into
the work that I am doing and wait for better results. I am also grateful to have Profs.
Nancy Day, Derek Rayside, and Werner Dietl as my PhD committee members. I would like
to thank them for their participation and constructive feedback that they have provided
at different stages of my research.

Many thanks to the Faculty of Engineering of the University of Waterloo for providing
me with opportunities and facilities to achieve my PhD, as well as realizing my ideas
and developing my expertise. I would also like to acknowledge the support from the
funding sources Natural Science and Engineering Research Council of Canada (NSERC)
and University of Waterloo.

I think I will always remember the good days I had in Davis Center’s lounge room
discussing matters from research to politics with my friends. I am fortunate to have such
wonderful friends.

The support and joy I received from my sister and brother-in-law, Mahsa and Mahyar,
and their children, Hana and Hoonam, helped me to overcome the difficulties of a PhD
life! Thanks for being there for me.

Words cannot express my special and deepest gratitude to my parents, Mousa and
Marzieh. Their love and support is the most precious thing I have in my life. My dad is
probably the happiest person in the world after me for fulfilling this PhD. I dedicate this
thesis to my parents.

viii

dedicated to my parents, Mousa and Marzieh...

ix

Table of Contents

List of Tables xv

List of Figures xvii

1 Introduction 1

1.1 Thesis Context . 3

1.2 Thesis Contributions . 6

1.3 Overview of Dissertation Contents . 8

2 Background 10

2.1 Unified Modelling Language . 10

2.2 Feature-Oriented Requirements Modelling Language 12

2.2.1 Feature Model Diagram . 13

2.2.2 Feature Class Diagram . 14

2.2.3 Feature Module Diagram . 16

2.3 Modelling Frameworks and Tools . 17

2.3.1 Modelling Frameworks in Eclipse Platform 17

2.3.2 Xtext: The Grammar Language . 19

2.3.3 Sirius: A Tool to Create Graphical Modelling Workbenches 19

2.4 Cognitive Abilities and Theories . 20

2.4.1 Memory . 21

x

2.4.2 Memory-Related Failures . 21

2.4.3 Human Errors . 23

2.4.4 Conclusion . 24

3 Related Work 25

3.1 Model Observers . 27

3.2 Model Helpers . 28

3.3 Model Solvers . 30

3.4 Consistency Checkers . 30

3.4.1 Reactive Consistency Management 30

3.4.2 Consistent-by-Construction Consistency Management 32

3.5 User-based Interfaces . 33

3.5.1 Graphical Editors . 33

3.5.2 Textual Editors . 36

3.5.3 Vocal and Auditory Methods . 36

3.6 Discussion . 37

4 Understanding the Users 38

4.1 Experimental Context . 39

4.1.1 Pre-Study Phase . 41

4.2 Experimental Design . 43

4.2.1 Population and Sampling . 43

4.2.2 Recruitment Procedure . 43

4.2.3 The Screening Procedure . 44

4.2.4 Compensation . 44

4.2.5 The Application Domain . 44

4.2.6 Treatment Allocation . 45

4.2.7 Tasks . 46

xi

4.2.8 Data-Collection Techniques and Design 47

4.3 Execution and Practical Considerations . 53

4.3.1 Preparing the subject . 54

4.3.2 Collecting the Expectation Ratings 54

4.3.3 Performing the Tasks . 55

4.3.4 Collecting the Experience Ratings and CSUQ 56

4.4 Results . 56

4.4.1 Tools’ Effectiveness (RQ.1) . 57

4.4.2 Efficiency (RQ.2) . 57

4.4.3 Satisfiability of Users’ Expectations (RQ.3) 66

4.4.4 Users’ Satisfaction (RQ.4) . 67

4.4.5 The Most-Severe Challenges (RQ.5) 72

4.5 Threats to Validity . 80

4.5.1 Construct Validity . 80

4.5.2 Internal Validity . 82

4.5.3 External Validity . 82

4.6 Discussion . 82

4.7 Conclusion . 83

5 UCAnDoModels 85

5.1 Architecture . 86

5.2 Distance-Oriented Objects Indexer . 87

5.3 Type-Based and Distance-Oriented Content-Assist 88

5.4 Distance-Based Model Element Finder . 89

5.5 Model Observer . 90

5.5.1 Maintaining Consistency . 90

5.5.2 Auto-Completion . 95

5.6 Focus+Context Interfaces . 96

xii

5.6.1 Focus+Context Transition Editor (FC1) 98

5.6.2 Interactive Consistency Management Interface (FC2) 105

5.6.3 Other Focus+Context Interfaces . 108

5.7 Concluding Remarks . 115

6 Empirical Evaluation 117

6.1 Experimental Design . 117

6.1.1 Goals . 118

6.1.2 Population and Sampling . 119

6.1.3 Compensation . 120

6.1.4 Application Domain . 120

6.1.5 Treatment Allocation . 121

6.1.6 Task Design . 121

6.1.7 Data Collection Techniques and Design 122

6.2 Execution and Practical Considerations . 127

6.2.1 Preparation and Pre-session Activities 128

6.2.2 Collecting Pre-Task Expectations Ratings and Performing the Tasks 129

6.2.3 Post-session Activities . 130

6.2.4 Practical Considerations . 130

6.3 Results . 131

6.3.1 Results of the Context User Study 131

6.3.2 Results of the Debugging User Study 150

6.3.3 Statistical Significance . 173

6.4 Threats to Validity . 173

6.5 Discussion . 175

6.6 Conclusion . 176

xiii

7 Conclusion and Future Work 177

7.1 Summary of Thesis and Contributions . 177

7.1.1 Users and Tasks Analysis . 178

7.1.2 UCAnDoModels Model Editor . 179

7.1.3 Empirical Implications for Tool Researchers 179

7.2 Limitations . 179

7.3 Future Work . 180

References 182

Appendices 193

A FORML Grammar Defined in Xtext 194

B Assignment Used for the Pre-Study Phase 201

C Materials for the Formative User Study 204

D Materials for the User Studies Conducted to Evaluate Our Tool 230

xiv

List of Tables

1.1 List of UML features (for Class and State-Machine diagrams) that are not
supported by our model editor. 4

4.1 Goal of the study according to GQM template. 40

4.2 Summary of the results of the Pre-Study analysis. 42

4.3 Modelling challenges identified in the Pre-Study. 42

4.4 Subjects’ demographics, backgrounds, and UML familiarity. 45

4.5 Results of each subject’s success in completing each task. 58

4.6 Result of the subjects’ errors on each task. 60

4.7 Results of the subjects’ time on each task (in minutes). 62

4.8 Lostness results for the tasks for 18 subjects. 65

4.9 Pre-task expectation ratings. 68

4.10 Post-task experience ratings. 69

4.11 Results of the CSUQ questionnaire. 71

4.12 Pre-session expectation ratings. 75

4.13 Post-session experience ratings. 76

4.14 Results of the analysis and coding of the verbal expressions. 79

4.15 A list of statements coded for an exemplary subject. 81

5.1 List of consistency rules. 92

5.2 List of Head and Tail actions. 94

xv

5.3 List of focus elements with their contextual information. 97

5.4 List of Recall and Modify actions, and the relevant sections of the Fo-
cus+Context Transition Editor. 101

5.5 Summary of tooling enhancements and their relevant cognitive theories. . . 115

6.1 Goal of the Context user study according to GQM template. 118

6.2 Goal of the Debugging user study according to GQM template. 118

6.3 Subjects’ demographics and backgrounds. 120

6.4 Number of participants per tool. 121

6.5 Context Study: Results of each subject’s success in completing each task . 132

6.6 Context Study: Results of the subjects’ time on each task (in minutes). . . 134

6.7 Context Study: Lostness results for the tasks for 18 subjects. 136

6.8 Context Study: Result of the subjects’ errors on each task. 138

6.9 Context Study: Post-session experience ratings. 141

6.10 Context Study: Pre-task expectation ratings. 143

6.11 Context Study: Post-task experience ratings. 144

6.12 Summary of the results of verbal analysis for the Context study. 148

6.13 Statistics related to analysed metrics in the Context user study. 151

6.14 Debugging Study: Results of each subject’s success in completing each task. 152

6.15 Debugging Study: Result of the subjects’ errors on each task. 153

6.16 Debugging Study: Results of the subjects’ time on each task (in minutes). 156

6.17 Debugging Study: Lostness results for the tasks for 18 subjects. 157

6.18 Debugging Study: Post-session experience ratings. 160

6.19 Debugging Study: Pre-task expectation ratings. 163

6.20 Debugging Study: Post-task experience ratings. 164

6.21 Debugging Study: Results of the disruption-related questions. 166

6.22 Summary of the results of verbal analysis for the Debugging study (part 1). 169

6.23 Summary of the results of verbal analysis for the Debugging study (part 2). 170

6.24 Statistics related to analysed metrics in the Debugging user study. 173

xvi

List of Figures

1.1 The four steps of our approach. 5

1.2 Feature tree for model-easing techniques. 7

2.1 An example of a Class diagram. 12

2.2 An example of a State-Machine diagram. 13

2.3 An example of a Feature Model for the GatedLot SPL. 15

2.4 Partial Feature Class diagram for the GatedLot SPL. 16

2.5 Overview of the enabling technologies stack and how they interact. 18

2.6 The maintenance flow of information in memory (taken from [93]). 22

2.7 The categorization of human errors (taken from [87]). 24

3.1 Feature tree for existing model-easing techniques. 26

4.1 Number of subjects per tool. 46

4.2 Comparison of expectation vs. experience ratings (taken from [7]). 51

4.3 Experimental design. 53

4.4 Pre-session expectation rating questionnaire. 55

4.5 Task completion rate (error bars represent 95% confidence interval). 59

4.6 Average error rate made by the subjects per task. 61

4.7 The average time to perform each task. 63

4.8 Mean time per task vs. best achieved time per task. 63

4.9 The average lostness score for each task. 66

xvii

4.10 Pre- and post-task ratings for each pre-study challenge. 67

4.11 Box-plot based on the result from CSUQ. 72

4.12 Mean discrepancy between the pre- and post-session ratings for each pre-
study challenge. 73

4.13 Mean frequency of each challenge expressed verbally by each subject. . . . 77

5.1 The architecture of our UCAnDoModels editor and its components. 86

5.2 MO behaviour for different types of actions. 93

5.3 An overview of the eight sketches. 99

5.4 Our Focus+Context Transition Editor. 100

5.5 Creation of an attribute or operation using Section ContextC. 102

5.6 An example list of items as the result of user’s search. 103

5.7 An example of Drag-n-Drop in the transition editor. 105

5.8 Our Interactive Consistency Management interface. 106

5.9 An example view of the Class Elements Viewer. 109

5.10 An example view of the Fragmented State-Machine Viewer. 110

5.11 An example view of the State-Machine Viewer. 111

5.12 An example view of the Cross-Reference Viewer. 111

5.13 An example view of the Feature Model Viewer. 112

5.14 An example view of the Feature Class Viewer. 113

5.15 An example view of the State-Machine Duplicator. 114

6.1 Post-session experience ratings questions for the Context study. 125

6.2 Post-session experience ratings questions for the Debugging study. 126

6.3 The work-flow of a subject’s session. 128

6.4 Context Study: Mean success rate per task for users of our editor vs. users
of other editors. 133

6.5 Context Study: Average time per task for users of our editor vs. users of
other editors. 135

xviii

6.6 Context Study: Average lostness score per task for users of our editor vs.
users of other editors. 137

6.7 Context Study: Average number of errors per task made by users of our
editor vs. users of other editors. 140

6.8 Context Study: Average satisfaction scores for users of our editor vs. users
of other editors. 142

6.9 Context Study: Context-related challenges experienced on average by users
of our editor vs. users of other editors. 146

6.10 Debugging Study: Average success rate per task for users of our editor vs.
users of other editors. 154

6.11 Debugging Study: Average number of errors per task made by users of our
editor vs. users of other editors. 155

6.12 Debugging Study: Average time per task for users of our editor vs. users of
other editors. 158

6.13 Debugging Study: Average lostness score per task for users of our editor vs.
users of other editors. 159

6.14 Debugging Study: Box-plot for the level of confidence for subjects using our
editor vs. subjects using other editors. 161

6.15 Debugging Study: Box-plot for the level of satisfaction of subjects who used
our editor vs. subjects who used other editors. 162

6.16 Debugging Study: Subjects’ assessment of the intrusiveness of our Interac-
tive Consistency Management interface. 168

xix

Chapter 1

Introduction

“The power of the unaided mind is highly overrated. Without external aids,
memory, thought, and reasoning are all constrained. But human intelligence
is highly flexible and adaptive, superb at inventing procedures and objects that
overcome its own limits. The real powers come from devising external aids
that enhance cognitive abilities. How have we increased memory, thought, and
reasoning? By the inventions of external aids: It is things that make us smart.”

— – Donald Norman, “Things That Make Us Smart”

We have witnessed a significant increase in the size of software systems. These systems
typically involve many human labours and last for several years [29]. Developing and
maintaining such large-scale complex systems has always been challenging for software
engineers [29]. As a solution, Model-Driven Engineering (MDE) addresses complexity by
raising the level of abstraction in a software specification and facilitating the automation
of code generation and software verification [48][71]. More specifically, MDE is a software
design methodology that focuses on improving the productivity of software developers
by allowing the software engineers to test the important properties of the system before
coding begins. MDE involves several artefacts amongst which models are the core assets.
The engineer designs precise and analysable models to express the elements of a software
system and its properties (by means of graphical or textual notations) in order to enable
automated code generation and improve understanding and reasoning of the system.

Despite their benefits, models have not been well-adopted in industry because of various
barriers, amongst which the lack of proper tooling techniques is the most crucial [46][71].

1

The main reason that practitioners are reluctant to adopt models is that they often find
it cognitively difficult to create, edit, and debug precise and analysable models [42][77][88]
when using model editors. Researchers investigate proficient tools and methods to over-
come the practitioners’ cognitive challenges of using model editors [40][71][76], but the
editors are not fully adopted because they are not meeting the users’ expectations. More
specifically, tool researchers mostly focus on proposing heuristic artefact-centric techniques
that focus on language’s syntax and semantics, such as automated support for detecting
syntax- or semantic-related errors, or auto-completions that fulfill syntactic and seman-
tic expectations. The solutions proposed by these approaches take into account only the
meta-model, the state and properties of the model, and the constraints on them. Such
artefact-centric approaches neither employ human-cognitive theories nor conduct empir-
ical user studies (during the design process) to enhance the usability of their proposed
solutions.

Although artefact-centric approaches offer many capabilities to improve the editors’
usefulness, their effectiveness on human users is rarely assessed. Tool developers rarely in-
vestigate modellers’ prominent challenges (by performing a thorough analysis of the mod-
ellers and their tasks), and they do not evaluate the effectiveness of modellers in using their
tools. Thus, they miss opportunities to address usability concerns, leading to a chasm be-
tween how easy modellers expect a modelling task to be and how complex it is when using
model editors. We argue that a useful model editor should also meet the usability require-
ments, which is mainly related to the design decisions and cognitive supports that reduce
the cognitive load being imposed on the user as a consequence of using the editor.

To address the usability of MDE editors, MDE researchers have proposed new research
directions [1] that investigate users’ cognitive challenges and correlate the challenges with
the cognitive theories to understand users’ difficulties and improve users’ experience (UX)
of using model editors. They ask usability-related research questions such as: How effective
is the tool in alleviating users’ tasks? How difficult is the tool to learn? How easy is the
tool to use? They have proposed user-centric techniques, which provide cognitive support
to users by offering various features such as easy-to-use user interfaces (UIs), editors,
and navigation features, thus improving users’ visual and spatial capabilities, working
memory, task-specific design understanding, etc. Moreover, systematic evaluation of the
effectiveness of user-centric techniques has become a trend in recent years. It is important
to note that user-centric techniques do not conflict with artefact-centric techniques. In
fact, in most cases, they complement the artefact-centric techniques by addressing their
usability aspect.

Although both artefact-centric and user-centric techniques have made significant im-
provements to the quality of MDE tools with respect to usefulness and usability issues,

2

there is still a huge usability gap between what the tools offer and what the users expect.
The reasons are, in part,

1. Tool designers have not identified and understood the difficulties and challenges of
the users through empirical observations or field studies.

2. They have not taken into account modellers’ behavioural profiles or human-cognition
factors that can explain users’ difficulties and challenges.

3. They have conducted little in the way of empirical evaluation of the effectiveness of
modelling tools in supporting human users.

In this thesis, we aim to understand users’ difficulties and augment users’ cognitive abil-
ities by proposing a balanced set of artefact-centric and user-centric techniques that, com-
bined together, ease the tasks of editing and debugging models. Accordingly, our approach,
which we call User-Centric and Artefact-Centric Development of Models (UCAnDoMod-
els), employs and incorporates both user-centric and artefact-centric strategies to enhance
the model editors’ quality. The artefact-centric aspect of our approach includes backend-
related model-editing and model-debugging mechanisms such as automation and real-time
error resolution techniques, whereas the user-centric aspect of our work ensures that these
techniques are designed and embedded in the tool in such a manner that they conform to
human-cognition theories. Our approach consists of four important steps slightly adapted
from [10] and [49] (see Fig. 1.1): 1) understanding the foremost difficulties experienced
by model editor users, 2) correlating each of the difficulties to human-cognitive challenges,
3) proposing tooling solutions that address the cognitive challenges, and 4) assessing the
effectiveness of the proposed solutions on human users. We believe that such an approach
can enhance the quality of model editors and modellers’ experience of using the editors.

Thesis statement:
Current MDE tools can be enhanced by employing artefact- and user-centric techniques
to help reduce the effort of editing and debugging analysable models and improve users’
experience of using model editors.

1.1 Thesis Context

The scope of our work is enhancements to model editors for feature-oriented models ex-
pressed in the Feature-Oriented Requirements Modelling Language (FORML)[97], which

3

Table 1.1: List of UML features (for Class and State-Machine diagrams) that are not
supported by our model editor.

Diagram Unsupported Features

C
la
ss

D
ia
g
ra
m

Stereotypes (e.g., Interface, Abstract)
Association’s Navigability
N-ary Association
Visibility of a Named Element (i.e., Public, Package, Protected, Private)
Modifiers for Properties (e.g., readOnly, ordered)
Dependency and Realization Relationships

S
ta
te
-M

ac
h
in
e
D
ia
gr
am

Deep and Shallow History Pseudostates
Join Pseudostate
Fork Pseudostate
Junction Pseudostate
Choice Pseudostate
EntryPoint Pseudostate
ExitPoint Pseudostate
Terminate Pseudostate
State’s Internal Behaviours (e.g., entry)
Time Events (i.e., When, At)
Protocol State-Machines

4

3. Tool Design
and Development

4. Evaluation
with User Studies

2. Human-
Cognition Theories

1. User and
Task Analysis

Figure 1.1: The four steps of our approach.

is a formal language that is expressive and amenable to analyses. Specifically, we focus on
tooling techniques for creating and editing FORML diagrams: Feature Model diagrams,
Feature Class diagrams, and Feature Module diagrams (which are enhanced State-Machine
diagrams). Because FORML notations and diagrams are based on the Unified Modelling
Language (UML), the context of our proposed enhancements also includes UML model
editors, which have a broader user base. That is, our model editor allows UML modellers
to develop precise and analysable UML Class and State-Machine diagrams. However, for
the sake of this thesis, we implemented the most important and prevalent features of UML
Class and State-Machine diagrams (see Table 1.1 for a list of UML features that are not
supported by our tool). Although our enhancements are devised in the context of Feature-
Oriented Modelling, our model editor is only evaluated with respect to the capabilities and
usability of UML tools created by tool vendors and modelling researchers. More specifically,
the scope of the thesis can be considered as follows:

• The scopes of the empirical user studies conducted in the thesis discussed in Chap-
ters 4 and 6 are bounded to UML Class and State-Machine diagrams to extend the
generalizability of our findings. The target population of users for these user studies
are UML modellers who use model editors to edit and debug UML Class and State-
Machine diagrams. These users can be either novice or experienced modellers with
a level of competency in UML.

• The scope of the proposed solutions discussed in Chapter 5 is FORML diagrams.
However, the proposed solutions are also applicable to UML Class and State-Machine
diagrams because of the high similarity between FORML and UML syntax and se-

5

mantics. Moreover, the users of the proposed solutions are meant to be UML mod-
ellers who have a minimum level of knowledge about UML and UML tools. The
proficiency of a user (i.e., novice or experienced) is not deemed to affect the applica-
bility of the proposed solutions.

1.2 Thesis Contributions

Our research provides insight into how modellers interact with model editors and how
cognition psychology theories can be exploited to improve this interaction. The overall
contributions of our work include:

• Analysing modellers and their tasks to learn about the prominent difficulties and chal-
lenges that they face when using UML model editors. We conducted a two-phase user
study in which we investigated modellers’ usage of UML model editors, including
the tools’ effectiveness, users’ efficiency, users’ satisfaction, the gap between users’
expectations and experiences, and users’ cognitive difficulties. The subjects were
asked to perform four model-editing and three model-debugging tasks. The results
show a substantial gap between users’ expectations of tools’ abilities to alleviate the
challenges and the users’ actual experiences of using the tools. The results also re-
veal that remembering contextual information and identifying and fixing errors and
inconsistencies are the most-prevalent challenges and are most in need of considera-
tion from tool vendors. Tool researchers can learn from our work and redirect their
research to propose solutions that can alleviate the identified challenges.

• Devising tooling advancements such as Focus+Context [21] interfaces and increased
automation that aim to reduce the identified cognitive challenges of developing models.
Our techniques provide users with the information (Context) that are relevant to
performing a particular task (Focus). The outcome is a semi-formal (FORML-based)
UML model editor that facilitates many of the modellers’ tasks by employing our
proposed interfaces and automation features. Moreover, we propose on-the-fly error
resolution techniques that allow the modeller to locate, understand, and fix model
inconsistencies in real-time without being overly disrupted from their modelling task.

Fig. 1.2 shows a list of model-easing techniques and their corresponding categories.
Also, it shows an overview of our techniques and how they relate to existing tech-
niques in the literature. Some techniques ease model-debugging (boxes that are
connected by a filled-arc), whereas other techniques ease model-editing (boxes that

6

Figure 1.2: Feature tree for model-easing techniques.

7

are connected by regular lines). The feature tree differentiates between existing
techniques (non-filled boxes with solid line borders), techniques that we adapt (gray-
striped boxes), and novel techniques proposed by us (grey-filled boxes).

More specifically, we introduce new Focus+Context Editors that aim to reduce the
effort to remember contextual information when performing a particular modelling
task, by displaying the relevant contextual information in an integrated interface.
The Focus+Context interfaces [21] also allow the modeller to modify the contextual
information, if needed. We also propose tooling enhancements that alleviate the diffi-
culties of creating Correct-by-Construction models (which are precise and analysable)
by employing a User-Interactive Consistency Management interface. Moreover, we
adapt some of the existing tooling techniques and propose enhancements to them.
For instance, we employ a distance-oriented method to order and rank the model
elements to be presented to users when developing transition labels. Also, our model
editor embeds a novel filtering mechanism which takes a proactive approach and fil-
ters out those model elements that are not sound by type. We discuss the description
of the existing techniques and the details of our enhancements in Chapters 3 and 5,
respectively.

In addition, we provide an integrated environment for feature-oriented modelling;
currently, users must use different tools to develop different aspects of a feature-
oriented model (e.g., one tool to develop Feature Modules and another tool to develop
a Class diagram).

• Evaluating the effectiveness of our proposed tooling enhancements by conducting two
user studies. The results of the user studies show that our model editor is significantly
more effective than other model editors in alleviating modellers’ cognitive challenges.
More specifically, our results reveal that our interfaces help users to: 1) improve their
ability to successfully fulfil modelling tasks, 2) avoid unnecessary context switches
among diagrams, 3) produce more error-free models, 4) remember contextual infor-
mation, and 5) reduce time on tasks. We also provide empirical implications for tool
vendors and researchers to enhance and improve the quality of model editors, which
is crucial for a greater adoption of MDE by industry.

1.3 Overview of Dissertation Contents

The rest of the dissertation is structured as follows:

8

Chapter 2 describes the background information relevant to the thesis such as funda-
mentals of the used modelling paradigms (i.e., FORML and UML), the technologies that
were used to implement our tool, and the fundamentals of the cognitive theories that are
most-relevant to our thesis.

Chapter 3 surveys the related work that has been done and discusses how our approach
contributes to the state-of-the-art.

Chapter 4 explains the formative user studies that we conducted to identify and
understand the prominent challenges that modellers face when using model editors. It
presents the experimental design as well as the results obtained from the user studies.
This chapter draws on a technical report [83] and a published conference paper [80].

Chapter 5 presents our UCAnDoModels approach which includes our proposed tooling
advancements to alleviate the identified cognitive challenges. It also correlates our tooling
advancements to the relevant cognitive abilities. This chapter draws on three conference
papers [79][81][82].

Chapter 6 shows how we evaluated our UCAnDoModels techniques. We demonstrate
that our techniques can effectively reduce the challenges of modellers when using model
editors. It also presents the design of our empirical studies and their results. This chapter
has been incorporated within a conference paper [81].

Chapter 7 concludes the dissertation and highlights the future research directions.

9

Chapter 2

Background

“In debugging a program, in writing a paper, in doing financial analysis of
a firm, in attempting to reason about a machine, limitations on the number
of mental things that can be kept track of lay a strong constraint on human
cognitive capabilities.”

— – Card et al., “Window-based Computer Dialogues” [18]

This chapter covers the relevant background that is needed to understand the rest of this
thesis, including the Unified Modelling Language (UML), Feature-Oriented Requirements
Modelling Language (FORML), Eclipse modelling technologies and frameworks, and the
human-cognition theories that are important to understand the rationale of our tooling
techniques.

2.1 Unified Modelling Language

Among all the artefacts that Model-Driven Engineering (MDE) entails, models are the
primary ones, as opposed to other artefacts such as codes that are later generated from
models. Models can be developed in various modelling languages. Some companies use
their own Domain-Specific Language (DSL) whereas others prefer to use a more general-
purpose language such as the UML or Systems Modelling Language (SysML). However, the
majority of the models that are developed are based on the UML or UML-like notations

10

as the UML has become the de-facto standard for modelling software systems [54] and is
actively taught and used in academia.

The UML consists of several types of diagrams which can be classified into static and
dynamic diagrams [74]. Static diagrams (e.g., Class diagrams and Object diagrams) show
the structural constructs of a system and the relationships among the entities and objects,
whereas the dynamic diagrams (e.g., Sequence diagrams and State-Machine diagrams) are
used to model behavioural aspects of the system [74] The focus of our thesis is related to
the most prominent UML static and dynamic diagrams: Class diagrams and State-Machine
diagrams.

A Class diagram represents a system’s structure, entities, and their properties (i.e.,
attributes and operations) as well as the relationships among entities [104]. Real-world
entities such as physical objects and concepts are described in terms of classes [104]; and
the functionalities and persistent states of an entity are represented by the operations and
attributes of the corresponding class [104]. The relationships among classes can be specified
as Association, Aggregation, Composition, or Generalization. An association means that
there is a link among the instances of the associated classes. Composition and aggregation
relationships represent whole-part relationships, whereas generalization represents an is-a
or is-a-kind-of relationship (also known as inheritance) [104]. Fig. 2.1 shows an example
Class diagram consisting of a few classes. It shows the attributes and operations of the
classes (e.g., car at gate and isGateBlocked for the Sensor class) and illustrates how these
classes are related to each other through edges. An edge can represent an association (e.g.,
a Transponder can be sensed by a Sensor), a composition (e.g., a Gate includes Sensors),
or a generalization (e.g., GateA class inherits the properties of the Gate class).

For each class in the Class diagram, there can be a State-Machine diagram that rep-
resents its behaviour. The state that a new object will be in at the time of its creation
is referred to as its initial state, and states that the object will be in discrete segments of
time are called (simple) states [104]. Additionally, the UML defines composite states as
a state that contains one or more sequential (disjoint) or concurrent (orthogonal) regions,
each of which aggregates a set of sub-states [104].

A transition links one state to another succeeding state, and is stimulated by a trig-
gering event. The UML specification defines the standard format for writing a transition
expression as event[guard]/actions [104]. An event represents the operations that stim-
ulate the object to transit from one state to another state. Ideally, an event refers to the
operations that are defined in the current class or in the classes that have a relationship
to the current class [104]. A guard is a Boolean expression that can be used to strengthen
a triggering event: the guard must also hold for the transition to execute. The functional

11

Figure 2.1: An example of a Class diagram.

responses (e.g., changes to phenomena in the environment) of an object after executing a
transition are represented as the actions of the transition [104].

Fig. 2.2 shows an example State-Machine diagram for the class GateA from Fig. 2.1.
It consists of an initial pseudo-state and two simple states (i.e., Closed and Open states)
represented by a black filled circle and rectangles, respectively. The Closed and Open
states are connected by transition links. For instance, the transition from the Open state
to the Closed state expresses that after five seconds the entity (i.e., GateA) transitions to
its Open state if the gate is not blocked and that the gate’s position changes to Down.

2.2 Feature-Oriented Requirements Modelling Lan-

guage

A requirement is an objective, a capability, or a functionality of a software system that
needs to be maintained or achieved within the context of its environment (i.e., real-world)
[24]. Feature-Oriented Software Development (FOSD) is a development paradigm that

12

Figure 2.2: An example of a State-Machine diagram.

abstracts a software system’s requirements as a composition of coherent and identifiable
bundles of functionalities referred to as features (e.g., Cruise Control in an automobile)
[97]. FOSD increases the degree of modularity of a software system as well as improving
its construction and evolution by allowing the features to be developed in isolation and
by different vendors [97]. Feature orientation is more desirable also from the stakeholders’
(e.g., customers) point of view because a product can be better understood in terms of
their features [97]. It is mostly relevant in Software Product Lines (SPLs), which are
software-intensive systems that are constructed from a common set of features and share
similar functionalities [97].

A suitable (formal) language for designing feature-oriented models is the Feature-
Oriented Requirements Modelling Language (FORML), which expresses the requirements
in terms of the effects they have on the product’s environment [97]. It provides a formal
and precise syntax and semantics to enable formal analyses of the FORML models [96].
To promote adoption by practitioners, FORML offers Feature Class and Feature Module
diagrams based on the notations of UML Class and State-Machine diagrams, respectively.
In addition, FORML offers a Feature Model diagram to illustrate a system’s set of fea-
tures, the relationships among features, and the set of valid feature combinations (called
configurations) of a SPL product.

2.2.1 Feature Model Diagram

FORML offers a Feature Model that represents the hierarchical structure of a system’s set
of features and their relationships. The root node of the hierarchy represents the system
itself, and the child nodes represent the features that make up the system’s possible units
of functionality [97]. A feature can be mandatory (connected by a filled diamond) or

13

optional (connected by an empty diamond) if its parent feature is present in the system.
Moreover, there may be constraints among the child features of a parent feature [97]:

• AND () relationship: is attached to a feature and means that all of the child features
must be present in a system if the parent feature is present,

• OR () relationship: is attached to a feature and means that at least one of the child
features must be present in a system if the parent feature is present, and

• XOR relationship () relationship: is attached to a feature and means that exactly
one of the child features must be present in a system if the parent feature is present.

As a running example, we use a parking lot SPL. A possible configuration (i.e., com-
position of several features) of the parking lot SPL is GatedLot (product), which refers
to a gated parking lot. The GatedLot system can have two different types of gates: 1)
Payable Gates, which allow customers to enter and pay for surface-level parking, and 2)
Transponder-Enabled Gates, through which only authorized vehicles with a valid transpon-
der can enter into the underground parking lot. A payable gate also allows a customer to
pay in cash (i.e., coin, paper money, or tokens) or pay by card (i.e., a credit card or a pre-
paid membership card). For a transponder-enabled gate, a customer can be an employee
of the complex or an authorized customer who paid for a transponder to benefit from the
underground parking lot.

Fig. 2.3 shows a partial Feature Model for the GatedLot system. As can be seen,
the root of the Feature Model is the GatedLot system, which includes PayableGate and
TransponderEnabledGate features. The filled circles (or diamonds in our tool) for the
CoinPay and the PaperPay features denote that these features are mandatory for the
payable gates, meaning that the gate must accept coin and/or paper money as its payment
method, whereas the empty circle for the CardPay feature shows that a payable gate may
or may not accept cards to receive payments; however, if it is designed to accept a card
payment method, it must at least accept payment by Visa or Master cards. Moreover, if the
system includes the Transponder-Enabled Gate feature, then it must support mechanisms
to allow both employees and subscribed transponder holders.

2.2.2 Feature Class Diagram

Similar to UML Class diagram, a Feature Class diagram represents the classes (i.e., entities)
that exist in the environment of any product in the SPL, and the relationship among the

14

Figure 2.3: An example of a Feature Model for the GatedLot SPL.

entities. In addition, a Feature Class diagram includes feature classes that are mapped
to features in the Feature Model. Every feature class in the Feature Class diagram has a
set of attributes or messages (known as operations in UML). In particular, a feature can
communicate to the product’s environment (i.e., real-world entities) through its input and
output messages [96]. Through an input message, environment agents can communicate to
the feature, whereas through an output message a feature communicates to agents in the
environment [96]. Fig. 2.4 presents a partial Feature Class diagram for the GatedLot system
discussed above. It shows the real-world entities (e.g., employee) as well as the feature
classes, the latter distinguished by a dashed border and a light brown background (e.g.,
CardPay). It also shows the input and output messages for the feature classes. For instance,
the SubscribedTransponder feature, which is responsible for allowing customers who have
subscribed to transponders to access the underground lot, senses from the environment if
a car is approaching through a setCarApproaching input message. In the case that a car
has a valid transponder, the feature directs to the environment to open the gate by issuing
an openGate output message.

One can notice that a Feature Class diagram is an ontology of several concepts such
as classes, features, and messages, which are expressed in UML Class diagram notations
[96]. Moreover, a concept can be realized by one or more than one instances referred to as
objects [96].

15

Figure 2.4: Partial Feature Class diagram for the GatedLot SPL.

2.2.3 Feature Module Diagram

For each feature, there is a Feature Module diagram (similar to the UML State-Machine
diagram) that illustrates the behaviour of the feature [97]. The FORML Feature Mod-
ule slightly adapts the UML State-Machine. The following describes only the important
adaptations that are related to the context of our thesis:

• World Change Event (WCE): refers to a traditional event defined in UML. There
are three types of WCEs: 1) C+(o): triggers the transition when the object o of
type C is created (e.g., a message object has been created), 2) C-(o): triggers the
transition when the object o is removed from the world state (e.g., a message object
is removed), and 3) C.ã(o): stimulates the transition when the value of the attribute
a of the object o is changed [97].

16

• World Change Action (WCA): is an action from the system that affects the en-
vironment [97]. The important types of actions discussed in this thesis are 1)
+C(att1 = exp1...attn = expn) that creates a C object (e.g., an output message
object) with the given attributes atti whose values are expi, and 2) o.a := exp that
sets the value of the attribute a in the object o to value exp. Note that, a transition
may have zero or more actions.

• Fragment Feature Modules : enable the evolution of existing Feature Modules. In
many cases, a feature extends the behaviour of another feature by providing new ca-
pabilities [97]. In such a case, the two features share much of their behaviour, FORML
allows the modeller to create a Fragment Feature Module for a new feature based
on the Feature Module of an existing feature. For example, the SubscribedTranspon-
ders feature can extend the functionality of the EmployeeTransponder feature by
performing an extra validation step to ensure that the transponder subscription is
not expired. Specifically, the Feature Module of the SubscribedTransponders fea-
ture can be fragmented from EmployeeTransponder ’s Feature Module, allowing the
modeller to strengthen the guard of a particular transition to check the validity of
a subscribed transponder. The goal of a Fragment Feature Module is to focus the
modeller’s attention only on the requirements being introduced by the new feature
instead of modelling the whole Feature Module from scratch [97].

2.3 Modelling Frameworks and Tools

Fig. 2.5 illustrates an overview of the enabling technologies and model-editor frameworks
that were used to develop our tool. This section presents the technologies: Eclipse Mod-
elling Framework [11], Xtext [26], and Sirius [108].

2.3.1 Modelling Frameworks in Eclipse Platform

The foundational development environment that we used for our tool is Eclipse1 as it has
become one of the most widely used IDEs for the development of open-source integrated
applications. Eclipse provides a number of frameworks for defining Domain Specific Mod-
elling Languages (DSMLs) and developing graphical and textual editors for them. In the
course of developing our tool, we used some of these frameworks such as the Eclipse Mod-
elling Framework (EMF), the Graphical Editing Framework (GEF) [90], the Graphical

1see Eclipse website https://www.eclipse.org

17

Figure 2.5: Overview of the enabling technologies stack and how they interact.

Modelling Framework (GMF), Xtext, and Sirius. The following are brief descriptions of
these technologies.

• Eclipse Modelling Framework: The EMF2 is the primary framework for Eclipse’s
modelling eco-system and is widely regarded as the standard for modelling in Eclipse
[11]. In EMF, the developer can define a DSML’s metamodel using a standard
modelling notation, namely Ecore [11]. Furthermore, EMF provides facilitators for
different purposes such as automated Java code generation based on the Ecore meta-
model; and the EMF.Edit component, which is a basic editor for the defined language
[11].

• Eclipse Graphical Editing Framework: A graphical editor visually presents the
model elements and the relationships among them. The GEF provides the end-
user with the drawing and graphical features such as: a tool palette, figures for the
underlying model elements, the commands that a user can request (e.g., auto resize
of a figure), and how the editor should respond to the commands (e.g., running a
customized version of auto resize based on the selected figure in the diagram) [90].
We made little use of GEF as most of the functionalities are offered by the Sirius
framework that is explained later in this section.

2see EMF website https://www.eclipse.org/modeling/emf/

18

• Eclipse Graphical Modelling Framework: The Eclipse community has proposed
the GMF as their primary open-source framework for developing graphical editors
for DSMLs [41]. GMF acts as a bridge between EMF and GEF. It listens to user’s
actions on the graphical editor and modifies the semantic EMF model accordingly
(i.e., keeping the graphical and EMF models in sync). Moreover, it fetches the data
from the EMF model and uses GEF to represent it in the graphical editor. GMF
alleviates some of the efforts of developing a graphical editor imposed by GEF by
abstracting the low-level implementation details in GEF.

2.3.2 Xtext: The Grammar Language

Xtext3 is a widely used Eclipse framework for developing Domain-Specific Languages
(DSLs) and editors. We used Xtext for developing the textual editor for our modelling
language i.e., FORML. We fed the FORML grammar (see Appendix A) into Xtext and it
generated the textual editor with several features such as syntax highlighting, (syntactical)
error checking, and Content-Assist.

2.3.3 Sirius: A Tool to Create Graphical ModellingWorkbenches

As mentioned, GMF is the main framework for developing graphical modelling editors in
Eclipse. Although GMF reduces the efforts of designing graphical editors in GEF, it is still
very complex and requires many low-level implementations. To overcome the challenges
of working with GMF, we used the Sirius [108] framework instead. Sirius facilitates the
development of graphical editors for DSMLs by abstracting the GEF and GMF details. It
provides an easy-to-use user interface (e.g., wizards) which provides basic features to the
user such as assigning figures to model elements, creating palette tools, setting drag and
drop behaviours, defining right-click menus and the implementation for each menu item,
and setting on-delete and on-create listeners. Although Sirius eases many of the challenges
of using GEF and GMF, we were still engaged with the low-level implementations of GEF,
GMF, and EMF for some of the advanced features in our tool. For instance, Sirius only
supports the creation of basic figures (e.g., squares, rectangles, circles). Thus, when a user
wants to assign a self-designed figure to a model element, she would still need to deal with
the GMF implementation.

3see Xtext website https://eclipse.org/Xtext/

19

2.4 Cognitive Abilities and Theories

“Some may argue that HCI does not need theory. I disagree. Any discipline
that fails to make a principled explanation to justify its practice is building on
sand.”

— – Alistair Sutcliffe, “On the Effective Use and Reuse of HCI
Knowledge”[106]

Cognitive factors refer to one’s characteristics that may improve or decline his/her per-
formance and learning abilities (i.e., cognitive functions such as memory, decision-making,
attention, and reasoning) [23]. This section briefly explains the most-relevant human-
cognition theories that may affect the most-prominent challenges of modellers (as discussed
in Chapter 4) and can be the basis of tooling enhancements (discussed in Chapter 5).

Different factors and challenges have been identified that need to be taken into account
when designing software tools, especially in the field of Software Engineering (SE) [1], such
as studying the impacts of social and organizational factors [38], analyzing users’ mental
models and how the tools address them [37], consideration of users’ biases and preferences
[85], and business considerations [20]. To address these challenges, researchers have started
to employ a participatory design process [91], which takes into account all the stakeholders’
requirements and analyzed their tasks and specific challenges from the very begging stages
of the design [1]. Similarly, other techniques such as focus groups have been proposed that
address the same concerns.

Furthermore, cognitive science has proposed different frameworks and standardized
processes to address users’ cognitive challenges. For example, Physics of Notations [69]
proposes a set of techniques and theories to design and evaluate visual notations and repre-
sentations. Similarly, Cognitive Dimensions Framework [37] proposes design and evaluation
techniques and principles for visual coding environments.

However, tool vendors and researcher have barely employed cognitive theories to im-
prove their modelling tools, partly because creating or enhancing a tool taking into account
the aforementioned cognitive theories and knowledge is a significant challenge and is very
costly [1]. In our work, we target several cognitive factors and theories that have been
defined in [93] and [87], as explained below.

20

2.4.1 Memory

Users often face challenges when recalling contextual information from memory that is
relevant to performing a modelling task (see Chapter 4). Memory refers to the ability of
the brain to store and subsequently retrieve the information from our past experiences [93].
Memory storage and retrieval can be generally classified into the two main categories:

• Short-term memory: is a kind of memory storage that stores information for a
short amount of time (usually less than a minute) [93]. For example, in our formative
user study, we observed that the user often refers to the Class diagram, reads and
stores some desired information (e.g., name of a class’s attribute) in their memory,
and then refers back to the State-Machine and retrieves and uses the recently stored
information (e.g., using the attribute in a transition’s guard expression). However,
in many cases, we found that the subjects repeatedly stored (i.e., tried to memorize)
some or similar information over and over to keep information in their short-term
memory (referred to as rehearsal [93]).

• Long-term memory: refers to a type of memory storage that holds information
for a longer amount of time (hours, days, months, or years) [93]. In modelling, it is
possible that the modeller refers back to a partial model that she developed before
to make it more complete. An example of using long-term memory in modelling
domain is one of maintaining a model; that is, making extensions that fit with the
rational of modeling that are captured in the current model. Therefore, the ability
to recollect different pieces of information that were developed earlier can be very
crucial in improving or declining modeller’s performance in making new extensions.

Figure 2.6 shows how the information is maintained through the memory system. As
shown in the figure, the first stage is to store the information into the short-term memory
which can hold the information for less than a minute. After that, the information in the
short-term storage are moved to the long-term storage though the consolidation process
[93]. The consolidation process is usually boosted by recalling a memory over and over,
thinking about the information, or sharing the memory with others [93].

2.4.2 Memory-Related Failures

Failing to recall information can decline the user’s experience of performing a task, as
revealed in our formative user study. According to Schacter and Gilbert [93], there are

21

Figure 2.6: The maintenance flow of information in memory (taken from [93]).

several factors that can cause memory-related failures. The following explains a few of
them that are relevant to our thesis context:

• Transience: refers to the disappearance of the stored information in memory with
the passage of time [93]. That is, the quality of the stored information (e.g., details)
generally deteriorates over time. Transience can happen because of interference [93].
In the context of modelling, it is often the case that the modeller edits different parts
of the model and then needs to recollect the information related to each of these
model segments at a later time. For example, a modeller may edit different classes
in the Class diagram and then need to recall the details of these classes when she is
editing the State-Machines for the classes. In such cases, it becomes more challenging
(as time passes) for her to recall all the details of the model segments she previously
edited.

• Absentmindedness: is related to not paying sufficient attention when performing
a task [93]. In other words, a user should remember to remember. For example, a
modeller should remember that using an undefined variable in a transition should be
preceded by first defining the variable in the Class diagram, or it should be at least
shortly followed by the variable definition.

• Misattribution: refers to the association of memories to the wrong sources [93]. In
the context of modelling, it is possible that the modeller refers to a model segment
that she thinks is part of the contextual information associated with her current
editing task. However, the referred model segment may not belong to that contextual
information. Thus, it may become frustrating to locate the model segment that
contains the intended information. For example, a user may want to set the guard

22

expression of a new transition to the guard expression of an existing transition from
another State-Machine diagram. She may open the State-Machine that (she thinks)
contains the intended information, but discovers that she has opened the wrong
diagram. She may then need to search for the State-Machine diagram that contains
the transition that she is looking for.

• Lack of Context: is one of the causes for the poor retrievals of some memories.
It refers to insufficient amount of (relevant) contextual information or cues that are
available to the person’s focus of attention [17]. To understand context, we need
to understand Association, which refers to the connection between two pieces of
information [17]. For example, when editing a model element, it is important for the
modeller to know about the model segments that will be impacted by an edit, so
that she can check the impacted model segments against potential inconsistencies.

2.4.3 Human Errors

One of the major difficulties of modellers is to locate, understand, and resolve errors in
models (see Chapter 4). To avoid or resolve an error, we first need to understand the
types of human errors and their causes. According to the Generic Error-Modelling System
(GEMS) [87], human errors can be categorised as execution failures and planning failures
(see Fig. 2.7).

Execution failures occur when the user performs a task that deviates from the correct
execution plan. Common types of execution failures are slips and lapses. Slips refer to
commission errors where the user performs an incorrect or incomplete sequence of actions
(usually due to inattention or confusion). Lapses refer to when the user omits one or
more steps in a sequence of actions (usually because of memory failures). Planning failures
occur when the user correctly performs the tasks but based on an incorrect plan. There
are two causes of a planning failure: (1) application of an inappropriate rule (e.g., rules
against the relevant specifications) or misapplication of a relevant/appropriate rule in the
wrong situation (referred to as Rule-Based mistakes), or (2) planning based on uncertain
or incomplete information (referred to as Knowledge-Based mistakes).

To clarify the aforementioned types of human errors, assume that a modeller uses an
attribute in the State-Machine that is not defined in the Class diagram. According to
GEMS, the four possible root causes of this error are:

• Lapse: if the modeller forgot to define the attribute in the Class diagram before using
it.

23

Figure 2.7: The categorization of human errors (taken from [87]).

• Slip: if the modeller knows she should first define the attribute but she did not care,
or she misspelled an attribute name in a transition expression.

• Rule-Based: if the modeller preferred to use an undefined attribute at the moment
and then define it at a later time.

• Knowledge-Based: if the modeller mistakenly thought that the attribute is already
defined in the Class diagram.

2.4.4 Conclusion

In this section, we briefly described the important cognitive theories that can explain a
user’s cognitive difficulties that are relevant to our thesis. Moreover, knowing about the
causes to memory-related failures and the types of human errors can help us invent tooling
mechanisms that can improve a user’s experience of editing and debugging models.

24

Chapter 3

Related Work

“User-Centered Design is a product development approach that focuses on end
users. The philosophy is that the product should suit the user, rather than
making the user suit the product. This is accomplished by employing techniques,
processes, and methods throughout the product life cycle that focus on the user.”

— – C. Courage & K. Baxter, “Understanding Your Users”[10]

This chapter explores the related work on tooling techniques that have been devised to
reduce the efforts of modelling as well as improving the quality of modelling tools.

Investigating User eXperience (UX) in Software Engineering (SE) tools can be roughly
divided into two categories: 1) UX in software development IDEs and 2) UX in software
modelling IDEs. Although software-development communities appreciate the importance
of UX and employ UX-related solutions as part of their IDE development (e.g., [2], [22],
[30], and [49]), the software-modelling community is still in its infancy with respect to
UX. Existing MDE tools offer User Interfaces (UIs) that aim to address issues related to
usefulness of their editors, such as developing analysable models (e.g., [25], [34], [70], and
[77]); but they lack a systematic consideration of UX metrics such as users’ preferences
and cognitive efforts.

Furthermore, current approaches do not empirically evaluate their techniques to assess
their effectiveness (and usability) of their techniques on human users. Such ignorance of
modellers and their tasks is one reason why basic general-purpose drawing tools such as
Microsoft Visio or even Powerpoint are often preferred over the modelling tools for creating

25

Figure 3.1: Feature tree for existing model-easing techniques.

graphical models [14]. According to Mussbacher et al. [71], users still experience strenuous
efforts when using MDE tools, and many of them are reluctant to employ modelling mostly
because they had a bad experience with a modelling tool.

According to Hill [43], the modelling effort can be defined as:

M = (Z + U + T) (3.1)

where Z is the modeller’s think time for a modelling task, U denotes the time that it takes

26

a modeller to interact with the tool to realize the solution in their mind, and T denotes
the time that it takes the tool to automate the requested task.

Furthermore, Hill [43] classifies the techniques that can reduce the modelling efforts into
three categories: Model Observers, Model Solvers, and Model Decorators. We adapt and
extend his classification into one with five categories: Model Observers, Model Helpers,
Model Solvers, Consistency Checkers, and User-based Interfaces. Each of these techniques
can be considered as Artefact-Centric, User-Centric, or both. Artefact-centric approaches
mostly focus on reducing the user’s think time (Z) by proposing techniques that take
into account the model, the meta-model, and the properties of them. These techniques
focus on details about the notations, syntax, semantics, and the model’s conformance to
these details. An artefact-centric technique does not explicitly aim at reducing the user’s
interaction time with the tool (U); however, it may indirectly impact the user’s interaction
time with the tool as well. A user-centric approach, on the other hand, takes an artefact-
centric technique and makes it more human-friendly and usable. Unlike an artefact-centric
approach that focuses what to propose to address the requirements specifications (e.g., UML
specification), a user-centric approach focuses on how to propose a feature that optimizes
user’s experience of using the feature. Although, user-centric features manifest themselves
in reducing users’ interaction time with the tools (U), it is not the sole purpose of them.
Moreover, the greater purpose of user-centric techniques is to emphasize on factors such as
users’ cognitive abilities, feelings, and quality of experiences that may be more important
than users’ interaction time.

In the rest of this chapter, we explain in more detail the classifications and existing
techniques for reducing the effort of editing and debugging models and review the state-
of-the-art for each of them. A feature tree of the techniques and their classifications is
illustrated in Fig. 3.1.

3.1 Model Observers

A Model Observer (MO) continuously listens for model edits such as the creation,
deletion and modification of model elements and then automatically reacts to the model
edits according to the rules that have been specified in the language. The tool developer
defines and embeds the follow-up actions that need to be performed automatically after a
model edit. An MO can decrease a modeller’s think time Z as he/she does not need to
think about the actions that immediately follow a model edit.

Pati et al. [77] use MOs in their Proactive Modelling approach which proactively
assists modellers by executing the valid next edits automatically. If there are multiple valid

27

next edits, the tool prompts the modeller to select the appropriate one. For example, the
tool developer can specify that, whenever the modeller creates a region in a State-Machine
diagram, the tool should automatically create an initial pseudo-state for the region. They
have embedded their MO techniques in the Generic Modelling Environment (GME) [58]
as add-ons. Each add-on receives notifications of triggering edits and reacts according to
predefined macros specified by the developer.

An MO can indirectly reduce the tool interaction time U as it automatically performs
several tasks instead of waiting for the modeller to initiate every action manually. However,
it is difficult to design such techniques as it is important to ensure that the completions
are not disrupting the user’s normal activities [77]. To address this issue, we provide a
systematic approach for employing MOs in UML (and FORML), which interact with the
user before applying the next valid steps automatically.

3.2 Model Helpers

A Model Helper (MH) provides advice to the modeller. For instance, a MH can recom-
mend a list of model elements that can be used in a modelling task. Its primary goal is to
reduce the modeller’s think time (Z) by offering proposals of the next available edits. MH
can be divided into Model-Assistants and Content-Assists, as explained below.

Model-Assistant is a type of MH that helps the modeller by offering model elements
when needed. For example, Dyck et al. [25] propose a framework for command-enabled
editors that explores online repositories, libraries, or knowledge bases (e.g., ReMoDD [32],
MOOGLE [64]) to find some information, such as attributes of an entity, and then suggest
them to the user. DoMoRe [5] is another similar approach that assists in developing
Domain Models, which queries existing knowledge bases, ontologies, and natural language-
based resources to retrieve information about a model element (using the element’s name)
and propose it to the user in a structured format (e.g., in terms of a possible association
between classes). Although such MH techniques can reduce the modelling effort, it is overly
simplistic when there are many model elements that can match the criteria, or no accurate
information and resources are available for a domain. These types of approaches suffer
from the cold start problem; that is, they can only reuse the available information that
have already been gathered and converted into the repositories.

Another type of MH is known as Content-Assist that originated from programming
IDEs. For instance, Content-Assist in Java [94] (or Intellisense in Visual Studio [84]) is a
tooling feature that enables the developer to view a list of the possible next tokens that

28

the developer is expected to write (at a specific cursor position) when writing Java code.
The list is populated by the IDE and is based on the types of the elements declared in a
program (e.g., variables or functions) or on the programming language’s grammar. Model
editors are starting to adopt such techniques and allow modellers to use Content-Assist
when writing model expressions. Model editors such as Papyrus [34], Yakindu [70], and
EMF enrich their textual editors by providing a Content-Assist feature, which suggests
to the user a list of valid model elements (i.e., tokens or clauses) that can be referenced
in a specific position when writing in the textual editor. The user can push the Control
and Space keys in combination and the Content-Assist will provide a list of tokens that
can be selected by the user to edit the model incrementally (token by token). A Content-
Assist helps to reduce spelling errors and assists in recalling existing elements. Narrowing
down and prioritizing the extensive list of elements (tokens) in a Content-Assist has been
a research problem for several years [77]. To make the Content-Assists more clever, Bruch
et al. [16] proposed a code-based approach that analyses the existing code bases and tries
to predict the next command that the user may use. However, applying such approaches
to modelling tools remains difficult because 1) there are not enough repositories for models
to learn from, and 2) the level of details in modelling is a lot more abstract than coding,
which makes the prediction of the next command an inherently difficult problem.

Existing Content-Assists for modelling tools (e.g., the one used in Capella [89]) mostly
propose elements based on their type specified in the meta-model. For instance, the meta-
model may specify that only class operations can be used in a triggering event. The
Content-Assist will then only offer existing operations to the user when suggesting possible
transition triggering events. Many IDEs such as Eclipse, however, refine their Content-
Assist by enforcing semantic type soundness of elements when coding. For instance, if
the Left-Hand-Side (LHS) is an assignment of type T, then the Right-Hand-Side (RHS)
should also conform to type T. Similarly, existing Content-Assists place the elements of
the current class at the top of the list of suggestions, to help the programmer see more
quickly the elements that are more likely to be the intended element. The rationale behind
this choice is that the modeller is more likely to use the elements of the current class than
the elements of other classes.

In our thesis, we have devised an enhanced Content-Assist that filters out elements
that do not make a semantically sound model and ranks the remaining ones based on their
relevance to the element that is being edited. Although there are approaches that enhance
Content-Assists in code editors, we are not aware of such approaches in model editors.
Designing a Content-Assist for a model editor is more difficult than designing a Content-
Assist for a code editor mostly because of the limited information that is available. For
example, the absence of certain information such as types of elements in the model (due

29

to the abstraction) makes it harder to define Content-Assist in model editors.

3.3 Model Solvers

A Model Solver (MS) is a formal methods-based technique that allows users to provide
partial information (i.e., a partial model) and then invokes a solver, which tries to synthesize
the rest of the model. Its primary goal is to reduce the modeller’s think time (Z).

For instance, the partial model-completion techniques that are proposed in [95] and
[105] determine potential valid completions of a partial (incomplete) model (e.g., State-
Machine), based on a given meta-model and constraints on the model and the meta-model.
Similarly, in Clafer [68], a user can provide a partial configuration of a Feature Model, and
the tool provides the modeller with a list of all possible completions. However, a model-
completion technique has the following limitations [77]. Firstly, the number of possible
completed models can increase unmanageably for large models. Secondly, the inherent
difficulties of developing models (e.g., using a tool to create a partial model in the first
place) are not minimized.

3.4 Consistency Checkers

Software modellers face challenges to develop correct, consistent and complete models [39].
If errors go undetected and unfixed, it can lead to serious defects in a product. Model
consistency-checking is a widely proposed solution and a number of approaches are dis-
cussed in the literature. The approaches can be divided into Reactive (or Corrective) ver-
sus Consistent-by-Construction (or Preventive) consistency-management techniques.

3.4.1 Reactive Consistency Management

Reactive Consistency Management refers to identifying and/or locating inconsisten-
cies when the user demands or at different intervals. It is generally classified into two
approaches [44]: 1) consistency by analysis, and 2) consistency by monitoring. In the
following, we review major approaches that fall into this category.

1) Consistency by Analysis refers to techniques that detect inconsistencies through
automated analysis of a model (mostly on user’s demand). For example, in a model

30

transformation-based technique [57], a statechart is transformed into a more formal model
(e.g., a B formal specification) that is easier to check automatically. The consistency-
checking is then performed by using tools (e.g., AtelierB, B-Toolkit) that can formally
analyze the transformed model. Similarly, Xlinkit et al. [72] is a tool that manages
inconsistencies among different documents that are developed in XML. The user can define
constraints in first-order-logic and Xlinkit can check the model against the constraints.

As another form of consistency by analysis, Blanc et al. [12] propose operation-based
consistency-checking, an approach for detecting model inconsistencies by defining Struc-
tural Consistency and Methodological Consistency rules. In Methodological Consistency,
they record a modeller’s actions, and then use predicate logic to find inconsistency prob-
lems by checking the prescribed order of actions against the order of the modeller’s actual
actions (e.g., create attribute and then set its name). Structural Consistency rules are
used to find inconsistencies in the model itself, by looking at the structure of the model
and detecting violations of rules that express desired structural properties.

The consistency by analysis approaches look for inconsistencies mostly at the user’s
request. Such approaches lead to extra effort to fix inconsistencies after the model has
been developed [27].

2) Consistency by Monitoring refers to the techniques that locate the inconsisten-
cies while modelling at regular intervals. One prominent type of consistency by monitoring
is called immediate error detection, which refers to monitoring the model edits (using MO)
and responding to the edits that introduce inconsistencies to the model. These techniques
provide warnings to the modeller to make her aware of the existing errors. However, fixing
the inconsistencies at the time of the detection is not necessary.

For example, Egyed [27] proposes a consistency checker, named UML/Analyzer, that
detects model inconsistencies immediately as they are made. UML/Analyzer observes
model changes (using MO) and checks them against the consistency rules that are relevant
to the change. If any of the rules are violated, the UML/Analyzer warns the user with
the inconsistency and its type. While the approach detects inconsistencies instantly, it
does not require the modeller to fix errors right away. Therefore, this approach can be
considered as a relaxed Consistent-by-Construction approach (i.e., instant detection but
late resolution of errors), rather than a strict one.

The reactive consistency management approaches are promising, however they are not
optimal because they allow the user to develop an inconsistent model. Thus, a modeller
needs to expend extra effort to change the model and fix the inconsistencies at a later time
[27]. Moreover, the fixes might themselves introduce new inconsistencies to the model, lead-
ing to additional delayed effort [27]. As we are interested in creating precise and analysable

31

models, such reactive approaches do not fit our purpose. Instead, we use a Consistent-by-
Construction approach (on-the-fly error resolution) to ensure that the created models are
consistent at all times.

3.4.2 Consistent-by-Construction Consistency Management

Consistent-by-Construction modelling [102] either detects inconsistencies as they are
committed and asks the user to fix them before proceeding or prevents inconsistency errors
from being made in the first place. The key goal of Consistent-by-Construction modelling
is to ensure that a model is consistent and correct at all times [44][102]. The superiority
of this approach over the other consistency-checking approaches is that a modeller is not
allowed to save an inconsistent model [102]. The hypothesis that underlies this approach
is that correct-by-construction modelling mitigates the risk that inconsistencies can go
unresolved and be carried through to the final product.

Ramesh et al. [86] propose the Extensible Real Time Software Design Inconsistency
Checker (XRTSDIC) and argue that the XRTSDIC is capable of detecting model inconsis-
tencies immediately based on a set of predefined consistency rules. If the modeller deletes
an element from the Class diagram, the tool automatically deletes all the uses of the el-
ement. A similar approach is employed in most other proficient modelling tools such as
Capella [89] and Papyrus [34]. Instead of automatically propagating the change to the
model that may not be desirable to the modeller, we provide a user-interactive approach
that distinguishes possible changes that can be made and reacts accordingly.

The aforementioned reactive and preventive consistency-management approaches pro-
vide sufficient solutions to the problem of detecting model inconsistencies. However, there
are still many model editors that do not properly tackle the issue of resolving errors. Fur-
thermore, some of the most advanced editors (e.g., MagicDraw [45]) provide a more relaxed
environment that, in many cases, does not even detect inconsistencies in the model. Only
a few Eclipse-based model editors (e.g., Capella [89]) address this issue by providing sim-
plistic techniques that can detect errors immediately but they do not require the modeller
to fix the inconsistencies immediately mostly because they are afraid to interrupt the user.
On the contrary, we believe it takes less effort to fix the inconsistencies while they are being
made than to detect and fix them at a later time, because the error-inducing part of the
model is still fresh in the modeller’s mind [27]. Therefore, we aim to support on-the-fly er-
ror resolution in order to improve the model’s quality and reduce the efforts of consistency
management. We note that, it is widely believed that maintaining inconsistencies at all
times can reduce users’ performance and become intrusive to the users [39][73]. We aim

32

to mitigate the disruptive effects of on-the-fly error resolution by providing an interactive-
interface that helps a modeller 1) to deal with inconsistencies without interrupting their
work, 2) to collect information about the model elements that are affected, and 2) to avoid
switching back and forth among the relevant diagrams to fix an inconsistency.

3.5 User-based Interfaces

3.5.1 Graphical Editors

Graphical Editors employ advanced visualization techniques that are related to the visual
and spatial capabilities of a modeller, such as providing different graphical widgets and
notations (e.g., icons) that can manifest a model element’s internal state [43]. Graphical
Editors play a significant role in decreasing the modelling efforts (using only the textual
editors) [43] by reducing the modeller’s think time as well as her interaction time with the
tool (U).

3.5.1.1 Graphical Widgets

Graphical widgets refer to the graphical components that are used in Graphical Editors
such as an icon, a button, a text-box, a table, or a graphical wizard. More specifically,
a widget is a graphical element employed to construct a graphical UI or a view. For
example, Eles and Lawford [28] propose representing variable expressions (like conditions
or assignment expressions) in a tabular format that decomposes the expression into clauses
(separated into distinct table cells), which are easier to write and modify. The decomposed
clauses are easier to verify for correctness, completeness and disjointedness than it would
be to verify the whole expression, as well as being easier to write.

Furthermore, Hill has shown that graphical model decorators can also reduce the
effort of modelling [43]. A graphical model decorator is a visualization aspect of a model
element that manifests the element’s internal state [43]. Many domain-specific modelling
tools [70][77] provide graphical icons and figures that better represent domain elements.
For example, they represent a book entity in a library management system as a book figure.
As another example, Yakindu [70] decorates defective model elements with an error-like
icon to help the modeller understand the internal state of the erroneous model elements
only by looking at the icons. However, the set of rules they embedded for detecting errors
is limited and does not cover general and popular types of defects such as completeness
rules.

33

Among industrial tools, ArgoUML and MagicDraw are two of the most popular ones.
ArgoUML [88] is a UML graphical modelling tool that employs a combination of heuris-
tics, user-centric features, and graphical user interfaces to provide to-do lists, non-modal
wizards, search utilities, and tabular views. MagicDraw [45] is also a very powerful indus-
trial tool that aims at model consistency-management and model-easing techniques such as
handling cross-references among elements in a model, a well-designed UI, and support for
collaborative model development. Similarly, Capella [89], Papyrus [34], and Yakindu [70]
provide a well-designed modelling environment as well as some usability features and tech-
niques to improve user-tool interactions, which make them user-centric. However, these
tools do not make a concerted effort to aid all human-factor elements (e.g., user’s working
memory and learning style), which, if employed, would ease recollection of relevant (con-
textual) information, reduce context-switching among different diagrams of a model, and
be more informative in the case of model-debugging and model-editing.

3.5.1.2 Task-Oriented Interfaces

We use our memory to recall the detailed information about past phenomena [93]. However,
our memory can be overloaded when there are a lot of details [93]. For example, a modeller
may not remember all the specific details and information that are relevant to developing
a State-Machine. Most of the existing modelling environments provide users with features
to improve understandability and navigability of the model’s structure, but few features
to aid with navigation of the semantics of (or the relations among) the artefacts [49]. As a
result, modellers must rely on their memory to recollect the semantic information relevant
to the fulfillment of a task.

A Task-Oriented Interface helps users deal with the cognitive load of recalling details
by alleviating the user’s task of navigating among software artefacts (called contexts) rele-
vant to their present modelling task. Task-Oriented Interfaces can be categorized into three
basic categories [21]: Overview+Detail, Zooming Features, and Focus+Context. These
methods are explained below.

An Overview+Detail interface provides the user with two views of information,
namely an overview and a detailed view [21]. Each of these views are displayed in separate
display spaces [21]. Microsoft Word, PowerPoint, and Adobe Reader provide such an in-
terface. For example, in PowerPoint, the user can view the overall presentation (sequence
of slides) on the left side of the display and can click on any slide to view its detail in the
main part of the application. The user can also change the space ratio of the presentation
overview versus the slide detail in the middle of the screen. This interface style has become
a standard in many applications including MDE tools (e.g., overview of a very large Class

34

diagram as a side view). Moreover, the tools allow users to show or hide the overview,
which suggests that designers believe that not all users may benefit from the overview [21].
As far as our thesis is concerned, such Overview+Detail interface barely reduces the effort
of modelling as it does not help the modeller with the contextual information about the
task.

A tool that employs Zooming Features typically does not display both overview and
detailed information simultaneously. Rather, there is only one view and the user can zoom
in and out to see specific details versus see an overview [21]. As an example, Glinz et al. [36]
have proposed an integrated view for object-oriented modelling that focuses on Abstract
Objects (instead of classes) and their respective State-Machines. An abstract object can be
hierarchically viewed at different levels of abstraction such as views of collection of objects
versus views of individual objects’ behaviour. They provide zooming features that help
users to view any aspect of the system in a greater or lesser detail. The user is allowed
to navigate between two levels of hierarchy (structural and behavioural) by magnifying or
demagnifying an abstract object. However, the shortcoming of zooming features is that
the user cannot view the focus and the context(s) at the same time. Therefore, it still
relies on the user’s working memory.

An Overview+Detail interface views the same information separated in different views
that correlate to different levels of abstraction. Similarly, a Zooming interface allows the
user to switch among different abstractions of the same information by zooming in and out
[21]. Both of these views still display the same information, whereas a Focus+Context
interface allows the user to concurrently display and edit the focus and contextual infor-
mation (i.e., different sets of information) in a single view [21]. To alleviate users’ cognitive
load, modellers can actively view related diagrams (i.e., context) to a particular task (i.e.,
focus), while working on the task itself. FlexView, proposed by Ghazi et al. [35], is an
instance of the Focus+Context approach. Their method divides the screen into multiple
regions, each of which presents a part of the information. This way, the user does not
need to switch back and forth among different diagrams. As another example, Kagdi and
Maletic [47] propose Onion Graphs to visualize large UML Class diagrams. The user can
focus on a particular task (e.g., editing a class in the Class diagram) and view the con-
text (e.g., other classes in the diagram) at different abstraction levels. Onion Graphs can
be considered as a zooming feature for visualizing classes in a Class diagram; they have
not been applied to other types of models such as State-Machine diagrams. Finally, in
the Mylyn tool [49], Kersten proposes a Task-Focused UI that introduces an interface
to allow a programmer to view the parts of the code that he/she previously edited for a
particular programming task. Therefore, a programmer does not need to recall the details
of her edits or look for the parts of the code and information related to the edits. Mylyn,

35

however, focuses on code development rather than model development. We are interested
in further investigating and adapting such ideas to model development.

3.5.2 Textual Editors

Textual Editors allow to view and edit a model in a textual manner. Moreover, it can be
Feature-Rich and provide useful features to decrease the effort of writing complex models
of formal languages. For example, a feature-rich textual editor can help a modeller develop
a complex expression by providing syntax-checking, highlighting, and a Content-Assist.
A modeller can select a model element in a graphical editor, and then view and modify
its corresponding model text in a textual editor. The Content-Assist in a feature-rich
textual editor provides valid proposals (e.g., tokens specified in the language’s grammar)
to the user when writing expressions. For instance, when writing an expression involving a
navigation path, a Content-Assist ensures that the user navigates only to the next allowable
options (i.e., elements) when searching for a desired model element. There are a few works
that have implemented a textual editor in their tool [33][34][45][70]. Garzon et al. [33]
propose a framework for model-driven engineering called Umple that reduces modelling
effort by letting the user use either a textual or graphical editor, with edits in either
view automatically propagated to the other view. However, their textual editor is not a
feature-rich editor. RFSM [110] attempts to ease the development of regular expressions
for software behaviours. It provides two features for users to construct expressions, namely
a toolbar-based editor and a code-based editor. Similarly, Papyrus [34] and Yakindu [70]
allow modellers to edit model elements using feature-rich textual editors combined with
their graphical editor.

Most of the aforementioned tools are Eclipse-based, meaning that they are based on
GEF and GMF. These tools use the correct-by-construction methodology to conform with
the underlying GEF framework [14]; however, they do not address its largest disadvantage,
which is the disruptive effects imposed on the users by enforcing the correct-by-construction
methodology. That is, correct-by-construction is not desirable to some users as it may be
perceived as being intrusive to them [77]. Therefore, it is important that the proposing
editors are tested against their intrusiveness.

3.5.3 Vocal and Auditory Methods

Vocal and Auditory techniques allow users to perform modelling tasks by inputting
voice commands to the tool. Also, the tool can give modelling feedback to the modeller

36

via the system’s sound speakers. This can reduce the time of the user’s interaction time
U with the tool. VoCoTo [53] and VoiceToModel [103] are examples of such features.
This approach, however, may impose an overhead on the modeller to learn the underlying
grammar and voice commands. A user study shows that, although the language can be
designed to be simple and understandable to the users, some of the users find it difficult
to remember the vocabulary [53].

3.6 Discussion

Some of the existing techniques discussed above such as Model Observers, Model Helper,
Model Solvers, and Consistency Checkers alleviate the effort of editing and debugging mod-
els by focusing on reducing the user’s think time (Z). Some other techniques go further
and reduce (but not minimize) the user’s interaction time with the tools (U) by propos-
ing graphical and textual interfaces (i.e., they ease modelling through I/O). Apart from
the Task-Oriented Interfaces, the aforementioned techniques do not take into account the
users’ behavioural profiles and human-cognition factors when designing their tooling fea-
tures. Moreover, the majority of the existing techniques do not assess the effectiveness of
their tooling features on human users. Thus, there might be a gap between what the users
need and what the tools provide. This suggests research problems and opportunities in the
improvement of modelling tools by taking human-cognitive factors into account. We believe
that there are still opportunities to enhance the existing model-easing techniques, particu-
larly MOs, MHs, Consistency Checkers, and Task-Oriented Interfaces. This enhancement
can be done by taking two steps: 1) proposing enhancements based on the human-cognitive
factors that influence modeller’s cognitive efforts, and 2) conducting empirical studies to
evaluate the effectiveness of the proposed techniques on human users.

37

Chapter 4

Understanding the Users

“Much of what makes a developer effective is the knowledge in their mind, but
we know little about what this knowledge is, how developers acquire it, how to
measure and model it, and how to use these models to improve tools or enable
new categories of tools. There are many open opportunities in this space that
could lead to powerful new understandings about software engineering expertise
and powerful new tools to support software engineering.”

— – Ko et al., “Human-Centric Development of Software Tools”[51]

Before proposing tool enhancements, it is important to understand what aspects of
modelling and using model editors give users the most grief, and are most in need of
enhancements. For this purpose, formative user studies [7] are devised in the literature,
which aim at identifying the (negative or positive) issues with the tools by answering the
following key questions:

• What are the most important reasons that prevent users to fulfill their tasks when
using the product?

• What are the positive and negative aspects of the product?

• What are the challenges that users face when using the product?

• Can the product alleviate the users’ challenges?

38

• What types of errors do the users make? Does the product help users with recovering
from the errors?

• What is the users’ level of satisfaction with using the product?

Accordingly, we conducted a formative user study to identify the most-severe challenges
of users when using model editors. This chapter4 presents the first step of our approach
i.e., understanding the foremost difficulties experienced by model editor users. It includes
the details of the context of our formative study and its design, as well as the observed
results.

4.1 Experimental Context

According to the research, modelling tools are amongst the major barriers to the adoption
of Model-Driven Engineering (MDE) in industry [46][71]. Hence, the main objectives of
our formative study were to identify and learn about modellers’ difficulties and challenges
while performing modelling tasks and to provide an explanation for the challenges. Our
focus was to learn about any problematic task in modelling software systems and the
underlying causes of challenges. The result of the study can be used to direct our efforts
in improving software modelling tools towards enhancements most likely to alleviate the
difficulties of software modelling.

We conducted our formative user study on the UML model editors because the UML has
become the prominent standard for modelling software systems [54]. The UML consists of
several static and dynamic diagrams. It was not feasible to study all of the UML diagrams,
so we focused the context of our study on a subset of the diagrams and selected two of the
most-prominent UML diagrams: one static diagram and one dynamic diagram, namely
the Class and State-Machine diagrams. We designed our user study towards observing
the difficulties and challenges of modellers when developing the two mentioned diagrams.
However, we believe that the results of the study may be applicable to similar diagrams of
these types (e.g., Sequence Diagram or other variants of State-Machine models).

The goal of the study is summarized using the GQM template [107] (Table 4.1). The
objective of the study was to assess the effectiveness of human users on using existing model
editors. For this, we evaluated the tools with respect to five criteria: 1) Effectiveness :
whether the tools enhance users’ ability to successfully fulfill their modelling tasks, 2)

4This chapter is reprinted in adopted form from [80].

39

Analyze the tasks of Class diagram and state diagram modelling
For the purpose of understanding and learning about fundamental difficulties and challenges
With respect to the effort of modelling
From the perspective of software modellers
In the context of existing technologies and tools for UML Class and State-Machine diagrams modelling.

Table 4.1: Goal of the study according to GQM template.

Efficiency : whether the tools help in reducing modellers’ effort (e.g., time) to perform
modelling tasks, 3) Satisfiability of Users’ Expectations : how big the gap between users’
expectations of model editors and the model editors’ capabilities is, 4) Users’ Satisfaction:
the extent to which the users are satisfied with using the tools, and 5) Users’ Challenges :
the most-severe challenges experienced by users when using model editors. To address the
objectives of the study, we investigated the following research questions:

• RQ.1: How effective are tools in communicating with users to improve the experience
of performing modelling tasks and the correctness of models?

• RQ.2: How efficient are modellers when using modelling tools?

• RQ.3: How well do modelling tools meet users’ expectations?

• RQ.4: Overall, how satisfied are users with modelling tools?

• RQ.5: What are the most-severe challenges experienced by modellers employing mod-
elling tools?

The above research questions were investigated by means of a two-phase user study. In
the first phase (referred to as the pre-study), we conducted a lightweight analysis of a set
of existing models developed as part of a course assignment, and we looked for common
modelling errors made by the modellers as well as evidence of challenges that the modellers
faced. Then in the second phase, we used the results of the pre-study to limit the scope
of the user study to model-editing and model-debugging tasks that were most likely to be
problematic. For example, we asked nothing in the user study about the structure of a
State-Machine or about setting the names of the states because the results of our pre-study
showed that most of the subjects could successfully manage such tasks.

40

4.1.1 Pre-Study Phase

In the pre-study phase, we examined 30 models that had been submitted as solutions
to a modelling assignment (see Appendix B) in an upper-year undergraduate course on
Software Requirements: Specification and Analysis at the University of Waterloo. The
students were asked to design a State-Machine diagram for a parking-lot system based on
a given domain description and domain model. Students could develop their models using
a modelling tool or a drawing tool. There were no time constraints except the assignment
deadline. The course lectures and readings covered the necessary knowledge on the relevant
UML modelling, especially Class and State-Machine diagrams. Moreover, students could
seek help from the course instructor if they faced any problems understanding the course
materials, and they could consult UML resources and documentation.

We assessed the models based on the marking scheme set by the course instructor. The
marking scheme helped us evaluate the models from two aspects:

1. Information Content – detecting inconsistencies between the given textual descrip-
tion of the system and the submitted models. We used this as a guideline to es-
timate how much of the modellers’ difficulties were actually due to expressing the
domain/system description in the modelling notation.

2. Model Quality – detecting errors in the model. We grouped model-quality errors
into different categories, listed in Table 4.2. Category 1 errors refer to structural
inconsistencies (e.g., a Region in a State-Machine without any initial pseudo-state),
whereas Category 2 errors refer to semantic-related errors (e.g., using an element
without defining it). Category 3 errors refer to syntactical inconsistencies, and Cat-
egory 4 errors refer to the type-soundness of a model (e.g., type-mismatch in the
guard expression of a transition).

4.1.1.1 Pre-Study Results

Our evaluation of the models’ information content determined that only four students
submitted models that were incomplete with respect to the provided domain description.
This suggests that most students were able to represent the described problem as a basic
UML State-Machine that captured the essence of all the described behaviour.

However, our evaluation of the models’ quality suggested that students had difficulty
creating correct and consistent models at the expected level of detail and precision. Table
4.2 presents the number of subjects that committed errors of each error type, and how

41

Table 4.2: Summary of the results of the Pre-Study analysis.

Category
ID

Description No. of
Errors

No. of
Subjects

Category 1 Incorrect use of the structure of UML models (e.g., a
State-Machine without an initial pseudo-state).

7 4

Category 2 Referring to an undefined variable or entity. This includes
misspelling the name of an existing variable or entity, or
writing incorrect paths in navigation expressions.

248 24

Category 3 Wrong or inconsistent use of UML notation and syntax. 27 8

Category 4 Type mismatch between the left-hand-side (LHS) and
right-hand-side (RHS) of an assignment or condition.

42 9

many instances of each error type were made in the 30 models. In some cases, such as
Category 2, a large number of mistakes were made – often the same mistake was made
multiple times. For example, a student would refer to an undefined element over and over
without noticing that no such element existed in the Class diagram.

Table 4.3: Modelling challenges identified in the Pre-Study.

Name Description

Order Performing a sequence of actions in the right order.
Context Remembering contextual information (e.g., consulting related diagrams

to remember names and associations).
Navigation Writing navigation expressions (navigating correctly from one model el-

ement to a related model element).
Syntax Remembering the keywords and syntax of the language.
Type-
Matching

Matching the types of the LHS and RHS expressions in an assignment
(=) or a condition (==).

Debugging Locating, understanding, and resolving errors. This includes switching
back and forth among multiple diagrams to fix an inconsistency.

The outcome of the Pre-Study was a preliminary list of modelling challenges referred
to as pre-study challenges (see Table 4.3). Because students made few Category 1 errors
(structural errors), we did not consider these to be a significant modelling challenge. In
contrast, a quarter of the students or more made errors in Categories 2-4, thus we deemed
these to be significant enough to include in the pre-study’s outcome of the potential critical

42

challenges. In addition to these challenges, Reason [87] notes that some errors can be in
the form of slips or lapses, which result from failing to execute all steps in a sequence of
model edits (e.g., creation of a new state machine should be followed by creation of an
initial state, a pseudo-state that refers to the initial state, at least one transition from
the pseudo-state to the initial state, etc.). Accordingly, we include Order in our list of
challenges. We also added Debugging as a significant challenge because we observed that
some errors could be avoided if a student invoked a tool’s debugging feature. Subsequently,
we scoped the tasks in our main study to focus on these suspected challenges.

4.2 Experimental Design

To investigate the aforementioned research questions, we conducted a formative user study
to understand which aspects of performing modelling tasks using a model editor give mod-
ellers the most trouble. In the rest of this section, we explain the details of our experimental
design. The design of our experiments is aligned with the guidelines from different sources
[7],[52],[99].

4.2.1 Population and Sampling

The target population of the experiment was software modellers who develop models of
UML-like languages. However, it is always difficult to recruit industry-level modellers. We
used a mixture of convenience sampling and purposive sampling approaches to recruit par-
ticipants [7]. Convenience sampling means that we recruit participants from a convenient
subset of the larger population, whereas purposive sampling narrows down the recruited
participants based on predefined criteria to ensure that the capabilities and knowledge of
the sample reflects the larger population. Accordingly, we recruited students who have the
required knowledge and experience. After almost six months of recruiting, we enlisted 18
subjects which has been shown to be adequate [7],[52],[99].

4.2.2 Recruitment Procedure

We emailed a recruitment letter5 to invite interested subjects to fill out a questionnaire
using SurveyMonkey. The questionnaire asked subjects about their demographic, profes-
sional, and academic backgrounds. The letter went to all the students in the programs of

5Please refer to Appendix C to see all the materials used for the formative user study.

43

Software Engineering, Computer Science, and Electrical and Computer Engineering at the
University of Waterloo; we considered these students a good fit for our study because they
take modelling courses as part of their program. The letter also went to graduate students
with experience in software engineering research including modelling. Additionally, we
distributed flyers around campus to reach possible non-student subjects such as post-docs,
alumni, or even subjects from industry.

4.2.3 The Screening Procedure

To help ensure that our subjects were representative of the larger population of UML mod-
ellers, we designed a screening questionnaire to collect information about their knowledge
of the UML. This questionnaire included multiple-choice questions that asked subjects to
rank on a Likert scale [63] their familiarity with UML Class and State-Machine diagrams
as well as their competency and experience with the modelling tools.

In addition, the recruitment letter included 10 UML-specific questions selected and
adapted from online sample practice tests such as the Sun Certified Java Associate exams.
Only those respondents who expressed some familiarity with the UML and who passed
all 10 test questions were considered eligible for the study and were invited to schedule a
study session. The other respondents were contacted and informed of their ineligibility.

An overview of the subjects’ occupation, UML familiarity, and UML tool experience is
provided in Table 4.4. It shows that all of our subjects, except one, self-expressed adequate
familiarity with the UML. The table also shows that all of them had adequate experience
with using UML modelling tools. Therefore, the selected subjects could be considered as
a fair representation of the larger target population of the study.

4.2.4 Compensation

In appreciation of the subjects’ time and commitment, they received an honorarium of $20
and were given the chance to enter into a draw and win a prize of $200 gift card.

4.2.5 The Application Domain

To minimize the effects of domain knowledge on the subjects’ performance on tasks, we
designed the study around a fairly simple application domain: a gated parking-lot system.
Moreover, to familiarize the subjects with the application domain, we asked the subjects

44

Table 4.4: Subjects’ demographics, backgrounds, and UML familiarity.

Category Sub-Category Count

Occupation
Graduate Student 14
Post-Doc Researcher 2
Software Engineer (Industry) 2

UML Familiarity

Fairly Familiar (Novice) 1
Familiar 6
Very Familiar 8
Strongly Familiar (Experienced) 3

Class Diagram Familiarity

Fairly Familiar (Novice) 1
Familiar 3
Very Familiar 10
Strongly Familiar (Experienced) 4

State-Machine Diagram Familiarity

Fairly Familiar (Novice) 1
Familiar 9
Very Familiar 5
Strongly Familiar (Experienced) 3

Experience with Tools

One to six months 6
Seven to 12 months 4
One year to two years 2
More than two years 6

to study a textual description of the domain as well as the Class diagram of the system
before starting the study’s tasks. The subjects were allowed to refer back to the description
during the experiment whenever they needed.

4.2.6 Treatment Allocation

To guard against the threat to validity that poor performance could be due to unfamiliarity
with a specific modelling tool, we allowed the subjects to use the modelling tool of their
choice (e.g., MagicDraw, ArgoUML, Astah, Visual Paradigm, UMLet, Umple). Moreover,
we excluded those subjects who chose to work with a tool that was more of a drawing
tool than a modelling tool (e.g., Microsoft Visio). Figure 4.1 shows a summary of the
distribution of the tools amongst subjects. It is notable that most of the tools that were
chosen by our subjects are among the list of most-heavily used tools reported in a recent

45

survey by Anger and Lethbridge [4].

Figure 4.1: Number of subjects per tool.

4.2.7 Tasks

Each subject was given a textual description and a partial Class diagram of a parking lot
system and was asked to edit and debug variants of a State-Machine diagram. The names
used in all the diagrams (e.g., class attributes’ names) were chosen to ease comprehension
of the model. Also, the researcher was present during the study to answer the subject’s
questions about the domain description or clarify the tasks, if needed.

The experiment comprised seven tasks (see Appendix C). The first four tasks were de-
signed to gauge the effort of editing models (e.g., developing State-Machines and editing
transition expressions), whereas the last three tasks were designed to understand the chal-
lenges of users when debugging models (i.e., finding and fixing errors and inconsistencies
in the models). We designed simple tasks mainly for two reasons: 1) to increase the size
of the pool of potential eligible subjects, and 2) to ascertain whether challenges exist even
for such simple tasks, let alone for complicated tasks.

Model-Editing Tasks: In each of the first four tasks (i.e., Task 1, Task 2, Task 3,
and Task 4), the subjects were given a structured textual description of a transition and

46

were asked to use the modelling tool to set the triggering event, guard, and action of the
transition. Below is an example of a model-editing task.

Task 1: Please develop the transition that is labelled as T1 in the diagram (based on
the following description).

• Event: No triggering event is required for this transition.

• Guard: If the gate id is B.

• Action: The Gate will go to the closed state; that is, the gate position should be set
to down.

The above model-editing task asks the subject to set the guard and action segments of
the transition T1. The main goal of this task is to evaluate the level of difficulty that the
subject faces with respect to recollecting the Class diagram’s elements (e.g., id attribute
of the gate class), and gauge the amount of help that is provided by the tool to the subject
to implement the solution. For instance, whether the tool can help the modeller avoid
spelling mistakes (which are trivial to catch and report) when writing the elements’ names
or not.

Model-Debugging Tasks: For each of the three debugging tasks, we introduced a few
inconsistencies in the diagrams and asked the subjects to locate and fix them. They could
either examine the diagrams manually or use the tool’s diagnostic features. Specifically,
Task 5 asks the subjects to rename elements in the Class diagram, and then locate any
inconsistencies in the model that are introduced by that action. Task 6 and Task 7 ask
the subjects to locate inconsistency errors embedded in the model, such as model elements
that were used but not defined, and to detect incorrect navigation expressions. Following
is a sample model-debugging task (i.e., Task 5).

Task 5: Assume that you are supposed to change the name of the gates from A and
D to GA and GD respectively in the Class diagram. Please implement the change in the
model and report any inconsistencies that are caused by this change.

4.2.8 Data-Collection Techniques and Design

We evaluated the subjects’ performance along three different dimensions, as prescribed by
Tullis and Albert [7], namely performance, self-reported, and behavioural metrics. This
section precisely defines the variables and metrics measured in the study.

47

4.2.8.1 Performance Metrics

We measured three performance metrics as described below.

• Task Completeness (Success score): This is a universal metric that shows how
effective a subject was in completing a task [7]. It provides compelling evidence that
there is something wrong if a subject cannot successfully finish their task. We used
Level of Success (o, 0.5, 1) [7] to measure the degree to which a subject was effective
in completing a task. We defined four levels of success:

1. Complete(1.0): A subject completed a task without any assistance. Note that,
in model-editing tasks, a score of Complete does not mean that the task was
error free. A model-editing task is deemed Complete if no errors of omission are
performed (i.e., the requirement of a task is correctly addressed by the solution).
Errors of commission are possible. A model-debugging task is deemed Complete
only if all errors are found and fixed.

2. Partially Complete (0.5): A subject completed a task but received help during
the task, such as assistance with the language syntax or clarification about a
model element in the application domain.

3. Incomplete (0.0): A subject was unable to complete a task. For model-editing
tasks, a score of Incomplete means that a subject omitted some aspects of a
task’s requirement, whereas in model-debugging tasks it means a subject could
not locate all of the embedded errors in the model.

4. Generally Complete: This is a traditional metric in the usability literature [7]
that reports the mean average of the success scores for all of the subjects. More
specifically, it refers to the summation of the subjects’ score of completion for
a task (i.e., +1.0 for each subject with a Complete score and +0.5 for each
subject with a Partially Complete score). For instance, if 15 out of 20 subjects
successfully completed the Task 1 and 5 other subjects received help during the
task (i.e., partially completed), then the generally complete score for the task is
calculated as (15 ∗ 1.0) + (5 ∗ 0.5) = 17.5.

• Errors: We measured the number of errors as well. We classified the errors based on
a taxonomy of Well-formedness and Consistency types of errors presented by Lange
et al. [54]:

– Consistency errors are errors that can be temporarily tolerated but that should
be fixed before delivering the model. Consistency errors include: an element

48

is used but not defined, misspelled element names, incorrect navigation paths
(e.g., g.blockage instead of g.Sensor.blockage), and type-mismatches between
the LHS and RHS of an expression.

– Well-formedness rules are UML conventions that can help maximize the model’s
understandability. Well-formedness errors occurred mostly when a subject used
UML syntax incorrectly, or produced an ill-formed expression (e.g., putting
extra parentheses or quotations). Well-formedness errors can often be detected
through analysis of a single diagram.

For each subject, we counted the number of errors of each error type. Note that,
those errors where the subject failed to correctly model the requirement of a task are
considered as incomplete task.

• Efficiency: We also measured the level of efficiency of the subjects per task. In our
study, we used Lostness and Time-on-Task metrics, which are described below.

1. Lostness measures how “lost” a subject is when performing a task. The following
three factors contribute to an assessment of lostness: 1) R: the minimum number
of diagrams or dialogues that must be visited to accomplish a task, 2) S : the total
number of diagrams or dialogue-boxes visited while performing a task (counting
revisits), and 3) N : the number of different (unique) diagrams or dialogue-boxes
the subject visited while performing a task. Lostness, L, is then calculated using
the following formula [7][101].

L =

√︃
(
N

S
− 1)2 + (

R

N
− 1)2 (4.1)

Lostness scores range from Zero to One. The higher the score, the more trouble
the user had finding what they want. Smith [101] found that users with a
lostness score of less than 0.4 have no substantial difficulty to fulfill a task,
whereas users with a lostness score of greater than 0.5 are definitely lost. One
can also estimate relative lostness by comparing a subject’s lostness score to the
optimal score (e.g., to the smallest value of lostness among all the subjects) [7].

2. Time-on-Task is the most popular way of measuring efficiency. It refers to
the time that it takes a user to perform a particular task using a product.
In addition, it can also be thought of as the modelling effort based on Hill’s
definition of the modelling effort [43] shown in Chapter 2.

49

4.2.8.2 Self-Reported Metrics

Perhaps the most obvious way to learn about the usability of a tool is to ask users to tell
us about their expectation and experience with the tool [7]. We designed our experiment
to collect self-reported data from a user for gauging their level of satisfaction.

Expectation versus Experience ratings: Albert and Dixon [6] propose an approach
to assess users’ reactions after a task. More specifically, they argue that it is important
to collect data about how easy or difficult a task was compared to how easy or difficult
the user thought or expected it to be. Accordingly, we asked the subjects to provide two
ratings (using a 7-point rating scale of 1=Very easy to 7=Very difficult for both ratings).

1. their expectation rating; that is, their rating of how easy or difficult they expected
a task to be (based on their understanding of the task and the tool) before starting
the task, and

2. their experience rating after each task; that is, their rating of how easy or difficult
the task actually was.

For each task, we then calculate an average expectation rating and an average experience
rating of all the subjects. Comparing the two average ratings, we can then understand how
effective the tools are in satisfying the users’ expectations and needs (see Fig. 4.2 for a
depiction of the possible outcomes of such a comparison). For instance, if the user expects
a feature to be easy but he experienced it to be very difficult, then the feature is not
addressing users’ expectations and needs; thus, the improvement related to the feature
should be addressed immediately and marked as ”fix it fast”.

The expectation and experience ratings were collected in two different stages of the
study: 1) before and after each task, and 2) at the beginning and the end of the study.

• Pre-Session Expectation Rating: As mentioned in Section 4.1.1, we created a pre-
liminary list of challenges that a user might face when using a tool. Before starting
the session, we collected data about each subject’s overall expectation of a tool’s
proficiency with respect to each pre-study challenge.

• Post-Session Experience Rating: Once the session was completed, we gave the same
set of questions from the pre-session expectation rating to the subjects, asking their
opinions about how well the tool provided features that aided them and how well
the tool met their expectations to overcome the pre-study challenges. We use the
averages of the pre- and post-session ratings to get insight into opportunities for
improving the tools.

50

Figure 4.2: Comparison of expectation vs. experience ratings (taken from [7]).

• Pre-Task Expectation Rating: Before the start of all tasks, we asked the subject to
rate how easy or difficult they thought each task should be based on their expectations
of the tool and understanding of the task. The rating was a 7-point Likert-scale from
1=Very easy to 7=Very difficult.

• Post-Task Experience Rating: Once each task was finished, we asked the subject to
rate how easy or difficult the task was based on their actual experience of using the
tool. The main goal of the pre- and post-task ratings is to provide insight into the
gap between a subject’s expectation and what the tools actually provide.

Usability Questionnaire: In addition to the expectation and experience ratings, we
gave subjects a usability questionnaire to collect information on the subjects’ satisfaction
with the usability of their respective tools. Different usability questionnaires could be
employed for this assessment, such as System Usability Scale (SUS) [15], Computer System
Usability Questionnaire (CSUQ) [61], Questionnaire for User Interface Satisfaction (QUIS)
[19], and, Usefulness, Satisfaction, and Ease of Use Questionnaire (USE) [65]. Among these,
we decided to use CSUQ [60][61] because the questions listed in the CSUQ were more in
line with the goals of our study and needed less adaptation than the questions in the
other questionnaire types. The adaptation that we made in the CSUQ questions were to

51

replace the term “system” with the term “tool” in the questions. Our CSUQ consisted
of 19 statements to which the user rated their agreement on a 7-point scale of “Strongly
Disagree” to “Strongly Agree”, plus N/A. We allowed the user to select N/A wherever
they felt unsure about their answer because not all of the questions were applicable to all
of the tools.

4.2.8.3 Behavioural Metrics

In our study, we used the think-aloud protocol which is the best way to facilitate identifying
usability issues during an in-person study [10]. We asked the subjects to express their
thoughts loudly as soon as they occur when performing their tasks, so that we could
understand their cognitive difficulties. Moreover, for the purpose of later analysis, we
decided to screen-capture their tool use during the session as well as audio-record their
voice.

The think-aloud protocol allowed us to collect precious information from the subjects’
verbal expressions such as:

• Verbal expressions of confusion, frustration, dissatisfaction, pleasure, or surprise.

• Verbal expressions of confidence or indecision about a particular action that might
be right or wrong.

• Subjects not saying or doing something that they should have done or said.

To get the most out of the subjects, we prompted the subject if they did not express
their thoughts loudly. The prompts were based on the situation, but some examples are:
What are you thinking now? What are you trying to do? Why did you do that? Also,
to ensure that our timing data would be accurate, we tried to avoid having a discussion
during the performance of tasks, but in between tasks.

The recorded voice of the subject along with recorded video of the screen later helped
us to extract the behavioural metrics for the experiment. After each session, we analysed
the audio recording of the subject’s session to identify the most valuable verbal expressions,
and expanded the list of the significant verbal expressions from all subjects. We coded and
classified verbal expressions into different categories. By counting the number of times that
the subjects made verbal statements within each category, we could obtain useful results
about the prominent challenges that the subjects faced.

52

4.3 Execution and Practical Considerations

The study was conducted in 18 separate sessions, one for each subject. The subjects
performed their tasks using a PC machine in the researcher’s office. The duration of each
session ranged from one hour to nearly two hours with an average of about 80 minutes.
Also, to automate the process of data collection, we developed a tool that automatically
records the time on each task (as a measure of effort). The time on each task starts from
the time that the subject begins the task and ends when the subject acknowledges that
she is done with the task (i.e., presses the done button in the tool). Also, the tool stores
other data such as responses to all questionnaires.

The study consisted of five main segments: 1) Preparing the subject, 2) Collecting
the Expectation Ratings, 3) Performing the Tasks, 4) Collecting the Experience Ratings,
and 5) CSUQ. We describe these segments in more detail as follows. The design of the
experiment is shown in Fig. 6.3.

Figure 4.3: Experimental design.

53

4.3.1 Preparing the subject

After greetings and signing the consent form, each subject was given an introduction to the
experiment by viewing a preparation video. The subjects were asked to watch and listen
to the video carefully. The video included general information about the procedure and
methods of the study (e.g. think-out-load method). Appendix C contains the script of the
preparation video which was prepared based on the guidelines from [10]. The advantage
of using one video for all the subjects was that they all received the same information
with respect to getting prepared for the study. Moreover, in the video we emphasized that
subjects, in the course of the experiment, would not be evaluated in anyway; that it was
the modelling tools that were under scrutiny and not them. We needed the subjects to
understand this because it was important to create a relaxing and informal atmosphere to
make the session as effective as possible.

Once the general information about the study were given to the subjects, we asked them
to study the domain description of the Parking Lot system. The domain description was
important because the subjects needed to become familiar with the system and understand
the Class diagram and the model elements (e.g., classes, operations, attributes) in the Class
diagram. We also provided them with descriptions of all the model elements to give the
subjects a good understanding of the Parking Lot system, the Class diagram and the
entities inside it (See Appendix C). There was no time constraint on the subjects for
reading the description.

4.3.2 Collecting the Expectation Ratings

Before the subjects started the model-editing and model-debugging tasks, we collected
some data on pre-session expectation ratings and pre-tasks expectation ratings. In the pre-
session expectation ratings we asked the subject to rate their expectation of how difficult
a particular modelling challenge (identified in the pre-study described in 4.1.1) would be.
The list of the questions for the pre-session expectation ratings is shown in Fig. 4.4.

We also asked the subjects to read the description of each task and rate how easy or
difficult they thought the task would be. We did all the pre-task ratings at the beginning
of the session because we wanted to avoid the learning effect that performing a task could
have on the ratings of the next task.

54

Figure 4.4: Pre-session expectation rating questionnaire.

4.3.3 Performing the Tasks

After collecting the information on the expectation ratings, we asked the subject to perform
the tasks in the modelling tool that was open and prepared for them to work. Please
remember that each subject only used the tool that they chose for this study.

As mentioned, we used the think-aloud protocol to identify the subjects’ behavioural
challenges. We used Snagit software to screen-capture the sessions and used a recorder
application to record their voice. While some of the subjects were expressive enough, some
others had difficultly thinking aloud while working with the tool. In such cases, we tried to
motivate them to talk by asking questions regarding what is currently happening in their
mind.

We also found that there is a trade-off between keeping the quality of the task solutions
high and imposing a strict time constraint on a task. We tried not to impose any time
pressure on the tasks in order to keep the quality of the task solutions high. Rather,
we allowed subjects to announce when they completed a task. Although this could help
in coming up with a satisfactory level of the quality of the tasks’ solutions, the timing
results could become unrealistic and useless for analysing times on tasks. To overcome this
challenge we took the following strategies:

• If the subject insisted on continuing a task task but was not showing any signs of

55

progress, then the researcher stepped in and provided some hints to the subject. If
the subject subsequently completed the task, the task success would be 0.5. If after
giving the hints, the subject could not fulfil the task, then we asked them to move
on to the next task and the task success would be 0.

• We did not offer an hourly rate. Our offer was a fixed honorarium of $20 based on
an estimate of a maximum of 90 minutes of work for the study. Hence, the subjects
knew that they will get the same amount even if they fulfil their tasks sooner than
expected. This strategy could encourage the subjects to finish their tasks as quickly
as possible. It also avoided any incentive to play around with the tool to receive a
higher payment.

• The subjects could leave sooner if they finished their tasks. Therefore, the subjects
did have some motivation to finish their tasks as quickly as possible.

The subjects were asked to answer the post-task experience ratings for a task when
they were done with it. The post-task experience ratings were designed to understand the
subjects’ view of how easy or difficult a task was based on their actual experience.

4.3.4 Collecting the Experience Ratings and CSUQ

At the end of the session, we asked the subjects to respond to two questionnaires: a post-
session experience rating and a CSUQ. The post-session experience ratings consisted of the
same set of the questions that were shown in 4.4, but this time asking the questions based
on the subjects’ actual experience of using their chosen tool. The CSUQ collected useful
data about each subject’s level of satisfaction of using their chosen tool.

In addition, at the end of each session, we asked the subject to provide any additional
comment on the tool and their experience of using the tool. This could be any sort of
positive or negative feedback.

4.4 Results

This section presents the results of the study in terms of each metric.

56

4.4.1 Tools’ Effectiveness (RQ.1)

RQ.1: How effective are tools in communicating with users to improve the
experience of performing modelling tasks and the correctness of models?

We assessed the effectiveness of the tools in assisting subjects with model-editing and
model-debugging tasks by measuring the subjects’ success rates and numbers of errors in
their task solutions.

Task Success: The results of the subjects’ success in completing the tasks are pre-
sented in Table 4.5. A cell value of 1 indicates that a subject had full success on a task; a
cell value of 0.5 indicates that a subject completed a task with assistance; and a cell value
of 0 indicates that a subject failed to complete a task. Fig. 4.5 illustrates the subjects’
success rates on the tasks and shows that a significant number of subjects were not suc-
cessful in completing their tasks without assistance. More importantly, it shows that fewer
than 45 percent of the subjects successfully completed tasks 6 and 7, which were related
to the debugging of models. This suggests that the tools do not provide enough support
to help subjects resolve errors in the models.

Errors on Tasks: Table 4.6 lists the number of errors each subject made over the
course of the study. Different errors were made by different subjects but some of the com-
mon errors were: referring to an undefined element in a State-Machine diagram, misspelling
the name of an element when referring to it, wrong navigation paths (e.g., g.blockage in-
stead of g.Sensor.blockage), wrong guard syntax (e.g., using == instead of =). We found
that most of these error were due to the fact that the tool did not actively provide consis-
tency checking for the user and the user relied too much on the tool, assuming that the
tool would issue warnings.

As can be seen in the table, none of the subjects finished all of their tasks without error
(see also Fig. 4.6). More importantly, the error rate shows that almost half of the subjects
failed to spot the errors in tasks 6 and 7 where the subjects were asked to debug the
models. This is relatively salient taking into account the fact that the tasks were generally
easy and the model was very small. One can extrapolate the result to a complex model
and notice how severe it will be.

4.4.2 Efficiency (RQ.2)

RQ.2: How efficient are modellers when using modelling tools?

Efficiency was investigated by means of two metrics: time on task and lostness.

57

Table 4.5: Results of each subject’s success in completing each task.

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7

P1 0.5 0.5 1.0 1.0 1.0 0.0 1.0
P2 0.5 0.5 0.5 1.0 0.5 0.0 0.0
P3 1.0 1.0 1.0 0.5 1.0 0.0 1.0
P4 0.5 1.0 1.0 0.5 1.0 1.0 0.0
P5 0.5 0.5 0.5 0.5 1.0 1.0 0.0
P6 0.5 1.0 1.0 1.0 0.5 0.0 0.0
P7 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P8 1.0 1.0 1.0 1.0 1.0 0.0 0.0
P9 0.5 0.5 0.5 0.5 0.5 0.0 1.0
P10 0.5 1.0 1.0 1.0 0.5 1.0 1.0
P11 1.0 0.5 1.0 1.0 0.5 1.0 1.0
P12 1.0 1.0 1.0 1.0 1.0 0.0 0.0
P13 1.0 1.0 1.0 1.0 0.5 0.0 0.0
P14 1.0 1.0 1.0 1.0 1.0 0.5 1.0
P15 1.0 1.0 1.0 0.5 1.0 1.0 0.0
P16 1.0 1.0 1.0 1.0 1.0 0.0 0.0
P17 1.0 1.0 1.0 1.0 1.0 0.0 0.0
P18 1.0 0.5 0.5 1.0 0.0 0.0 1.0

mean 0.81 0.83 0.89 0.86 0.78 0.36 0.44
median 1.00 1.00 1.00 1.00 1.00 0.00 0.00
min 0.50 0.50 0.50 0.50 0.00 0.00 0.00
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00
stdev 0.25 0.24 0.21 0.23 0.31 0.48 0.51

Full Success Rate 61% 67% 78% 72% 61% 33% 44%
Partial Success Rate 39% 33% 22% 28% 33% 6% 0%
General Success Rate 81% 83% 89% 86% 78% 36% 44%
Failure Rate 0% 0% 0% 0% 6% 61% 56%

58

Figure 4.5: Task completion rate (error bars represent 95% confidence interval).

59

Table 4.6: Result of the subjects’ errors on each task.

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7

W
el
lf
or
m
ed

n
es
s

P1 1 1
P2 1
P3 1 1
P4 1
P5 1 1 1
P6 1 1
P7
P8 2
P9
P10 1 1
P11
P12 1 1 1
P13 1
P14 1
P15
P16
P17
P18 1

C
o
n
si
st
en

cy

P1 2 2 2 1
P2 1 1 1
P3 3 1 1 1 1
P4 1 1 1
P5 1 1 2 1 1
P6 1 1
P7 1 1 1
P8 1 1
P9 1 1 1 1 1
P10 2 1 1
P11 1 1
P12 1 1
P13 1 1 1 1
P14 3
P15 1 1 1 1
P16 2 1 1 1 1 1
P17 1 1 1 1 1 1
P18 1 1 1

mean 1.33 0.72 1.11 0.67 0.28 0.61 0.50

60

Figure 4.6: Average error rate made by the subjects per task.

Time on Task: Table 4.7 lists the results of the time that each subject took to
complete each task. The reason for choosing geometric mean rather than arithmetic mean
is the potential skewness that time data may have [7]. As shown in Table 4.7, we can say
with 95% confidence that the times on Task 1 will be between 12.58 and 16.20 minutes.

Fig. 4.7 graphically depicts the average time that subjects took to complete tasks. To
ensure that our results are meaningful, the times for incomplete tasks are not included in
our analysis. This is because an unsuccessful subject could take a very long time to give
up or to be asked to move on to the next task, thus it can dramatically raise the average
time on a task.

Tullis and Albert [7] suggest that one way to assess time on task is to compare the
average time it took all subjects to perform a particular task with the minimum time it
took to perform that task. Fig. 4.8 shows that the subjects’ average times on most tasks
were almost twice that of the best achieved times on tasks. Worse, even the most-efficient
subject was not as efficient as she could have been as evidenced by the lostness scores, as
described below.

Lostness: To estimate the level of lostness, we collected data about how many diagrams
or dialogues the subjects visited to perform a particular task. Table 4.8 lists the lostness
scores for the subjects on all tasks. It also shows the average lostness score per task. Please
note that the average lostness scores in the table refer to data from those subjects who were

61

Table 4.7: Results of the subjects’ time on each task (in minutes).

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7

P1 22:10 14:23 08:12 03:49 04:14 02:12 01:34
P2 14:16 07:44 06:17 04:01 04:43 02:10 02:04
P3 07:02 05:58 05:07 06:23 03:58 03:19 06:44
P4 19:43 10:15 10:46 08:03 05:16 02:58 03:03
P5 09:43 05:04 06:24 08:43 05:38 04:08 01:38
P6 16:21 06:40 05:44 08:51 06:04 08:01 07:20
P7 14:39 10:07 05:42 12:36 05:41 06:04 10:30
P8 17:32 08:56 09:57 14:29 06:03 11:48 03:13
P9 14:32 11:28 06:20 04:39 04:25 03:57 04:35
P10 14:18 07:29 09:10 04:10 04:01 04:05 02:29
P11 16:32 13:45 14:40 08:17 04:34 04:21 08:27
P12 14:19 04:43 06:21 08:31 07:30 08:56 05:55
P13 15:36 04:52 09:25 07:11 03:47 03:36 01:52
P14 16:44 06:13 06:02 06:01 06:01 06:13 03:40
P15 19:00 07:10 08:00 04:19 06:25 05:51 02:54
P16 16:46 07:25 04:32 06:36 04:23 04:35 02:23
P17 10:31 04:14 04:49 04:51 03:53 02:46 02:22
P18 12:37 10:28 05:48 06:39 03:31 07:20 01:58

geo-mean 14:39 07:40 07:03 06:37 04:54 04:36 03:23
median 15:08 07:27 06:20 06:37 04:39 04:15 02:59
max 22:10 14:23 14:40 14:29 07:30 11:48 10:30
min 07:02 04:14 04:32 03:49 03:31 02:10 01:34
stddev 03:38 03:02 02:35 02:55 01:07 02:34 02:39

confidence interval (95%) 01:41 01:24 01:12 01:21 00:31 01:11 01:13
upper bound with conf. int. 16:20 09:03 08:14 07:58 05:25 05:47 04:36
lower bound with conf. int. 12:58 06:16 05:51 05:17 04:23 03:25 02:10

62

Figure 4.7: The average time to perform each task.

Figure 4.8: Mean time per task vs. best achieved time per task.

63

completely or partially successful only as it is a more meaningful score than the average
of all the scores including unsuccessful tasks. Also, the R value (which is the minimum
number of diagrams that should be viewed to complete a task) differ among the subjects.
The reason is that, we set the R values based on the tool that was used by the subjects.
For example, in some tools the user should open a dialogue box by which they can edit the
transition, whereas in some tools the user can edit the transition’s label only by clicking
on the transition edge.

64

T
ab

le
4.

8:
L

os
tn

es
s

re
su

lt
s

fo
r

th
e

ta
sk

s
fo

r
18

su
b

je
ct

s.

P
a
rt
ic
ip
a
n
t

T
a
sk
1

T
a
sk
2

T
a
sk
3

T
a
sk
4

T
a
sk
5

T
a
sk
6

T
a
sk
7

R
,N

,S
L
o
st
n
es
s

R
,N

,S
L
o
st
n
es
s

R
,N

,S
L
o
st
n
es
s

R
,N

,S
L
o
st
n
es
s

R
,N

,S
L
o
st
n
es
s

R
,N

,S
L
o
st
n
es
s

R
,N

,S
L
o
st
n
es
s

P
1

2
,3
,6

0
.6
0

2
,3
,3

0
.3
3

2
,3
,5

0
.5
2

1
,2
,3

0
.6
0

3
,6
,6

0
.5
0

1
,1
,2

0
.5
0

2
,1
,1

1
.0
0

P
2

2
,3
,4

0
.4
2

2
,3
,5

0
.5
2

2
,4
,5

0
.5
4

1
,2
,4

0
.7
1

3
,4
,4

0
.2
5

1
,2
,2

0
.5
0

2
,1
,1

1
.0
0

P
3

1
,2
,2

0
.5
0

1
,2
,3

0
.6
0

1
,2
,2

0
.5
0

1
,2
,9

0
.9
2

3
,3
,5

0
.4
0

1
,1
,1

0
.0
0

2
,3
,6

0
.6
0

P
4

2
,3
,5

0
.5
2

2
,3
,5

0
.5
2

2
,3
,8

0
.7
1

1
,2
,3

0
.6
0

3
,4
,5

0
.3
2

1
,2
,3

0
.6
0

2
,2
,2

0
.0
0

P
5

1
,3
,4

0
.7
1

1
,2
,3

0
.6
0

2
,2
,2

0
.0
0

1
,2
,7

0
.8
7

3
,6
,6

0
.5
0

1
,1
,1

0
.0
0

2
,1
,1

1
.0
0

P
6

1
,3
,7

0
.8
8

1
,2
,2

0
.5
0

1
,2
,4

0
.7
1

1
,2
,5

0
.7
8

3
,5
,8

0
.5
5

1
,3
,6

0
.8
3

1
,3
,6

0
.8
3

P
7

1
,2
,2

0
.5
0

1
,3
,5

0
.7
8

1
,2
,4

0
.7
1

1
,3
,1
1

0
.9
9

3
,6
,7

0
.5
2

1
,2
,3

0
.6
0

1
,2
,8

0
.9
0

P
8

1
,2
,4

0
.7
1

1
,2
,3

0
.6
0

1
,2
,6

0
.8
3

1
,2
,6

0
.8
3

3
,5
,5

0
.4
0

1
,2
,2

0
.5
0

1
,2
,4

0
.7
1

P
9

1
,2
,4

0
.7
1

1
,2
,4

0
.7
1

1
,2
,3

0
.6
0

1
,2
,5

0
.7
8

3
,5
,5

0
.4
0

1
,1
,1

0
.0
0

1
,2
,2

0
.5
0

P
1
0

1
,2
,6

0
.8
3

1
,2
,5

0
.7
8

1
,2
,5

0
.7
8

1
,2
,3

0
.6
0

3
,4
,4

0
.2
5

1
,2
,2

0
.5
0

1
,2
,2

0
.5
0

P
1
1

1
,2
,4

0
.7
1

1
,2
,2

0
.5
0

1
,2
,6

0
.8
3

1
,2
,6

0
.8
3

3
,5
,5

0
.4
0

1
,2
,6

0
.8
3

1
,2
,1
0

0
.9
4

P
1
2

1
,2
,2

0
.5
0

1
,3
,3

0
.6
7

1
,2
,2

0
.5
0

1
,2
,5

0
.7
8

3
,6
,1
2

0
.7
1

1
,2
,1
1

0
.9
6

1
,2
,8

0
.9
0

P
1
3

1
,3
,8

0
.9
1

1
,2
,2

0
.5
0

1
,2
,6

0
.8
3

1
,2
,7

0
.8
7

3
,3
,3

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

P
1
4

1
,3
,1
2

1
.0
0

1
,3
,6

0
.8
3

1
,3
,7

0
.8
8

1
,3
,5

0
.7
8

3
,6
,6

0
.5
0

1
,3
,4

0
.7
1

1
,2
,3

0
.6
0

P
1
5

1
,3
,4

0
.7
1

1
,3
,4

0
.7
1

1
,3
,7

0
.8
8

1
,3
,4

0
.7
1

3
,6
,8

0
.5
6

1
,3
,4

0
.7
1

1
,1
,1

0
.0
0

P
1
6

1
,3
,1
0

0
.9
7

1
,3
,6

0
.8
3

1
,2
,4

0
.7
1

1
,2
,5

0
.7
8

3
,5
,6

0
.4
3

1
,2
,3

0
.6
0

1
,1
,1

0
.0
0

P
1
7

1
,3
,7

0
.7
1

1
,2
,4

0
.7
1

1
,2
,5

0
.8
8

1
,2
,5

0
.7
1

3
,5
,5

0
.5
6

1
,1
,1

0
.7
1

1
,2
,3

0
.0
0

P
1
8

1
,3
,6

0
.8
3

1
,3
,1
0

0
.9
7

1
,3
,7

0
.8
8

1
,3
,6

0
.8
3

3
,1
,1

2
.0
0

1
,2
,5

0
.7
8

1
,2
,2

0
.5
0

m
ea

n
(s
u
cc
es
sf
u
l
su

b
j.
)

0
.6
8

0
.6
2

0
.6
5

0
.7
8

0
.4
2

0
.5
7

0
.7
4

effi
ci
en

t
su

b
j.

(<
0
.5
)

6
.6
7
%

7
.1
4
%

6
.6
7
%

6
.6
7
%

4
0
.0
0
%

1
6
.6
7
%

0
.0
0
%

in
effi

ci
en

t
su

b
j.

(>
=

0
.5
)

9
3
.3
3
%

9
2
.8
6
%

9
3
.3
3
%

9
3
.3
3
%

6
0
.0
0
%

8
3
.3
3
%

1
0
0
.0
0
%

65

Figure 4.9: The average lostness score for each task.

Fig. 4.9 illustrates the average lostness scores for the subjects. The incomplete tasks
are not included in the lostness scores because subjects were not “lost” when they left
tasks incomplete. Using Smith’s [101] threshold for lostness scores of 0.4, we see that,
on average, the only task that the subjects on average performed with a fairly acceptable
lostness score was Task 5, which was related renaming an element in the Class diagram
and propagate the name change to the diagrams that are referring the renamed element,
if any. In all other tasks, the subjects on average exceeded the acceptable lostness score
which suggests the tools’ interfaces are inefficient.

4.4.3 Satisfiability of Users’ Expectations (RQ.3)

RQ.3: How well do modelling tools meet users’ expectations?

To answer RQ.3, we compared pre-task expectations (see Table 4.9) against post-task
experiences (see Table 4.10). The results indicate that the subjects expected the tasks to
be easy (based on their understanding of the task and the tools). However, their post-
task experience ratings show that the tools did not meet their expectations. Fig. 4.10
shows the gap between the subjects’ expectations and experiences in how difficult it was
to use the tools to perform the tasks. The subjects, on average, expected the tools to ease

66

Figure 4.10: Pre- and post-task ratings for each pre-study challenge.

modelling challenges (i.e., the mean Likert score was well below the neutral level of 4),
but the subjects’ experience ratings leaned towards dissatisfaction (i.e., the mean Likert
score was slightly above the neutral value). This suggests that tools are not meeting the
users’ expectations on alleviating modelling tasks. Note that although the subjects could
presumably learn from previously performed tasks, the subjects post-experience scores
suggest that the tasks became increasingly harder for them.

4.4.4 Users’ Satisfaction (RQ.4)

RQ.4: Overall, how satisfied are users with modelling tools?

We used CSUQ to measure the users’ satisfaction with respect to the usability of the
tools under test where subjects answered questions about: 1) Overall Satisfiability (OVER-
ALL), 2) System Usefulness (SYSUSE), 3) Information Quality (INFOQUAL), and 4) In-
terface Quality (INTERQUAL). Subjects specified their level of agreement based on the
Likert scale that ranged from 1 (Strongly Disagree) to 7 (Strongly Agree) with the neutral
value of 4 (see Table 4.11). Fig. 4.11 shows that subjects were slightly dissatisfied with
the tools’ usability (SYSUSE) and the interface quality (INTERQUAL) (approximately,
a mean value of 3), and were more strongly dissatisfied with the tools’ ability to provide

67

Table 4.9: Pre-task expectation ratings.

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7

P1 2 3 2 3 1 1 1
P2 2 2 2 1 1 2 1
P3 1 2 1 1 1 1 2
P7 1 1 1 1 1 1 2
P5 1 2 3 2 2 3 2
P4 2 2 2 2 1 2 2
P6 2 1 1 1 1 2 1
P8 1 1 1 1 1 2 2
P9 2 2 1 1 1 1 1
P10 1 2 2 1 1 1 1
P11 1 1 1 1 1 1 1
P12 1 2 2 2 1 2 1
P13 1 2 3 1 1 1 1
P14 2 2 2 1 1 1 1
P15 2 2 2 2 1 2 2
P16 2 2 2 2 1 2 2
P17 2 3 2 2 1 2 2
P18 1 1 2 1 1 1 1

mean 1.50 1.83 1.78 1.44 1.06 1.56 1.44
median 1.50 2.00 2.00 1.00 1.00 1.50 1.00
min 1.00 1.00 1.00 1.00 1.00 1.00 1.00
max 2.00 3.00 3.00 3.00 2.00 3.00 2.00
stdev 0.51 0.62 0.65 0.62 0.24 0.62 0.51

confidence interval (95%) 0.24 0.29 0.30 0.28 0.11 0.28 0.24
upper bound with conf. int. 1.74 2.12 2.08 1.73 1.16 1.84 1.68
lower bound with conf. int. 1.26 1.55 1.48 1.16 0.95 1.27 1.21

68

Table 4.10: Post-task experience ratings.

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7

P1 6 7 5 2 6 3 6
P2 4 3 4 5 4 3 3
P3 2 2 2 2 5 3 7
P7 5 5 3 3 1 4 3
P5 2 5 5 5 5 5 4
P4 3 3 2 3 2 6 6
P6 1 2 3 4 3 2 3
P8 4 4 4 5 7 7 7
P9 5 6 6 5 5 5 5
P10 6 6 7 6 7 7 7
P11 1 2 3 4 2 4 4
P12 1 2 3 4 2 3 3
P13 6 4 5 6 2 1 1
P14 5 4 5 6 5 4 5
P15 6 6 6 6 5 6 5
P16 6 6 5 6 6 5 6
P17 5 5 6 6 7 6 6
P18 2 4 3 3 5 3 3

mean 3.89 4.22 4.28 4.50 4.39 4.28 4.67
median 4.50 4.00 4.50 5.00 5.00 4.00 5.00
min 1.00 2.00 2.00 2.00 1.00 1.00 1.00
max 6.00 7.00 7.00 6.00 7.00 7.00 7.00
stdev 1.94 1.63 1.49 1.42 1.94 1.71 1.75

confidence interval (95%) 0.89 0.75 0.69 0.66 0.90 0.79 0.81
upper bound with conf. int. 4.78 4.97 4.96 5.16 5.29 5.07 5.47
lower bound with conf. int. 2.99 3.47 3.59 3.84 3.49 3.49 3.86

69

the relevant or the contextual information during the tasks (mean value of around 2.5 for
the information quality (INFOQUAL)). The box-plot shown in Fig. 4.11 also shows the
median of subjects’ ratings. For example, the median of the ratings for the OVERALL
category is equal to 2, which denotes that half of the subjects rated the overall quality of
the tools greater than or equal to 2 and half of the subjects rated less than 2. Moreover,
the short box-plots for SYSUSE, INFOQUAL, and OVERALL suggest that there was a
relatively high level of agreement among the subjects with respect to tools’ usefulness,
information quality, and overall Satisfiability, whereas the tall box-plot for INTERQUAL
indicates that the subjects had different opinions with respect to the interface quality of
the tools. The long upper whiskers for the box-plots indicate that the ratings were varied
amongst the most-satisfied subjects, whereas the short lower whiskers indicate more similar
opinions for the least-satisfied subjects.

70

T
ab

le
4.

11
:

R
es

u
lt

s
of

th
e

C
S

U
Q

q
u

es
ti

on
n

ai
re

.

P
ar
ti
ci
p
an

t
Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1
0

Q
1
1

Q
1
2

Q
1
3

Q
1
4

Q
1
5

Q
1
6

Q
1
7

Q
1
8

Q
1
9

P
1

1
2

1
1

1
2

4
4

1
1

1
1

1
1

3
1

1
1

1
P
3

6
7

4
4

4
5

7
6

1
1

5
6

6
5

6
6

6
6

6
P
2

2
2

3
1

2
5

5
3

1
1

1
1

2
2

5
5

4
2

2
P
7

2
2

2
1

2
1

1
1

3
1

4
3

4
4

2
3

4
4

2
P
5

2
4

3
6

3
5

7
5

1
2

2
3

5
4

7
3

3
2

4
P
4

4
5

6
4

5
4

7
7

3
3

2
5

N
/
A

3
5

6
7

5
6

P
6

5
3

3
4

3
5

2
3

6
3

6
6

6
5

6
6

6
6

6
P
8

2
2

2
3

2
4

7
4

1
N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

4
4

2
3

P
9

2
2

2
1

1
1

1
2

1
1

1
2

2
1

2
1

1
N
/
A

2
P
10

1
3

1
1

1
2

5
1

1
1

2
2

N
/
A

1
1

3
3

1
1

P
11

4
6

7
6

4
4

N
/
A

N
/
A

5
7

N
/
A

6
N
/
A

N
/
A

7
6

6
1

6
P
12

3
4

4
3

3
4

3
4

1
2

4
3

5
3

4
5

5
1

4
P
13

1
2

3
1

1
1

2
1

1
1

1
1

1
1

1
4

1
1

1
P
14

2
4

5
1

1
2

3
4

1
1

1
3

2
1

5
3

2
1

3
P
15

2
3

1
3

2
2

5
2

1
1

2
2

N
/
A

N
/
A

N
/
A

3
2

2
2

P
16

1
1

2
4

4
2

2
3

1
1

1
5

N
/
A

N
/
A

5
4

4
3

2
P
17

3
3

4
4

3
2

1
3

1
2

4
5

5
3

5
4

4
1

2
P
18

1
1

5
1

1
1

6
2

1
N
/
A

N
/
A

1
N
/
A

6
3

1
1

7
1

m
ea
n

2.
44

3.
11

3.
22

2
.7
2

2
.3
9

2
.8
9

4
.0
0

3
.2
4

1
.7
2

1
.8
1

2
.4
7

3
.2
4

3
.5
5

2.
8
6

4
.1
9

3
.7
8

3
.5
6

2
.7
1

3
.0
0

m
ed
ia
n

2.
00

3.
00

3.
00

3
.0
0

2
.0
0

2
.0
0

3
.5
0

3
.0
0

1
.0
0

1
.0
0

1
.5
0

3
.0
0

1
.5
0

1.
5
0

4
.5
0

4
.0
0

4
.0
0

2
.0
0

2
.0
0

m
in

1.
00

1.
00

1.
00

1
.0
0

1
.0
0

1
.0
0

0
.0
0

0
.0
0

1
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0.
0
0

0
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

m
ax

6.
00

7.
00

7.
00

6
.0
0

5
.0
0

5
.0
0

7
.0
0

7
.0
0

6
.0
0

7
.0
0

6
.0
0

6
.0
0

6
.0
0

6.
0
0

7
.0
0

6
.0
0

7
.0
0

7
.0
0

6
.0
0

O
V
E
R
A
L
L

2
.9
8

S
Y
S
U
S
E

2
.9
9

IN
F
O
Q
U
A
L

2
.7
9

IN
T
E
R
Q
U
A
L

3
.3
6

71

Figure 4.11: Box-plot based on the result from CSUQ.

4.4.5 The Most-Severe Challenges (RQ.5)

RQ.5: Which challenges are the most severe experienced by modellers employ-
ing modelling tools?

We investigated the users’ most-severe challenges by means of three different techniques:
1) pre- and post-session ratings, 2) behavioural metrics, and 3) analysing errors. The results
from the three analyses support one another.

4.4.5.1 Pre- and Post-Session Ratings

We used pre- and post-session ratings (see Tables 4.12 and 4.13, respectively) to identify
pre-study challenges that users expected the tools to alleviate, but that the tools did not.
Fig. 4.12 depicts the mean of the differences between pre-session expectation and post-
session experience ratings with respect to the pre-study challenges. The figure shows that
the subjects’ expectations and experiences had the greatest disparity with respect to the
Context and Debugging challenges. That is, the subjects expected to face the least difficulty
regarding the two challenges, but instead experienced the most difficulty. Moreover, the
short box plots for these two challenges indicate a high degree of agreement among the
subjects’ views. These results suggest that tool providers would improve their tools the

72

Figure 4.12: Mean discrepancy between the pre- and post-session ratings for each pre-study
challenge.

73

most by proposing tool advances that address these two prominent challenges over other
tool advances.

74

T
ab

le
4.

12
:

P
re

-s
es

si
on

ex
p

ec
ta

ti
on

ra
ti

n
gs

.

P
ar

ti
ci

p
an

t
O

rd
er

C
on

te
x
t

N
av

ig
at

io
n

S
y
n
ta

x
T

y
p

e-
M

at
ch

in
g

D
eb

u
gg

in
g

P
1

1
1

2
7

2
1

P
2

2
1

3
1

1
1

P
3

1
1

1
1

1
1

P
7

2
1

1
1

1
2

P
5

1
1

3
4

3
1

P
4

1
2

1
2

1
1

P
6

2
2

2
1

1
1

P
8

1
1

1
1

1
1

P
9

2
2

1
3

1
1

P
10

1
1

1
1

1
1

P
11

2
1

1
1

1
1

P
12

2
1

2
3

2
1

P
13

1
1

1
1

1
1

P
14

2
1

2
1

2
2

P
15

2
1

1
1

2
2

P
16

3
1

1
2

2
1

P
17

1
2

2
2

3
1

P
18

1
1

3
1

1
2

m
ea

n
1.

56
1.

22
1.

61
1.

89
1.

50
1.

22
m

ed
ia

n
1.

50
1.

00
1.

00
1.

00
1.

00
1.

00
m

in
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
m

ax
3.

00
2.

00
3.

00
7.

00
3.

00
2.

00
st

d
ev

0.
62

0.
43

0.
78

1.
57

0.
71

0.
43

co
n

fi
d

en
ce

in
te

rv
al

(9
5%

)
0.

28
0.

20
0.

36
0.

72
0.

33
0.

20
u

p
p

er
b

ou
n

d
w

it
h

co
n

f.
in

t.
2.

90
4.

92
4.

36
3.

95
4.

22
5.

48
lo

w
er

b
ou

n
d

w
it

h
co

n
f.

in
t.

2.
33

4.
52

3.
64

2.
50

3.
56

5.
08

75

T
ab

le
4.

13
:

P
os

t-
se

ss
io

n
ex

p
er

ie
n

ce
ra

ti
n

gs
.

P
ar

ti
ci

p
an

t
O

rd
er

C
on

te
x
t

N
av

ig
at

io
n

S
y
n
ta

x
T

y
p

e-
M

at
ch

in
g

D
eb

u
gg

in
g

P
1

6
7

7
3

7
7

P
2

5
7

5
7

7
7

P
3

2
6

7
7

7
7

P
7

4
3

5
6

6
6

P
5

4
7

5
5

2
6

P
4

6
6

4
4

6
5

P
6

2
6

3
5

4
7

P
8

7
7

7
7

7
7

P
9

7
6

7
7

7
7

P
10

7
7

7
7

7
7

P
11

1
4

3
1

2
6

P
12

1
5

6
5

4
5

P
13

1
5

5
7

6
7

P
14

4
7

6
4

4
7

P
15

4
4

4
5

5
6

P
16

6
7

7
5

6
7

P
17

6
6

7
6

6
7

P
18

2
7

6
1

4
6

m
ea

n
4.

17
5.

94
5.

61
5.

11
5.

39
6.

50
m

ed
ia

n
4.

00
6.

00
6.

00
5.

00
6.

00
7.

00
m

in
1.

00
3.

00
3.

00
1.

00
2.

00
5.

00
m

ax
7.

00
7.

00
7.

00
7.

00
7.

00
7.

00
st

d
ev

2.
20

1.
26

1.
42

1.
94

1.
69

0.
71

co
n

fi
d

en
ce

in
te

rv
al

(9
5%

)
1.

02
0.

58
0.

66
0.

89
0.

78
0.

33
u

p
p

er
b

ou
n

d
w

it
h

co
n

f.
in

t.
3.

63
5.

30
4.

66
4.

12
4.

67
5.

60
lo

w
er

b
ou

n
d

w
it

h
co

n
f.

in
t.

1.
59

4.
14

3.
34

2.
33

3.
11

4.
95

76

Figure 4.13: Mean frequency of each challenge expressed verbally by each subject.

4.4.5.2 Behavioural Metrics

The think-aloud protocol also helped us to identify the subjects’ cognitive difficulties and
challenges. We started with a list of the categories of challenges based on the six pre-study
challenges. This list was then extended by four more categories as we learned more from
the verbal analysis. The four new categories are:

1. Layout : issues related to the layout of the diagrams,

2. Views : issues related to the viewing mechanisms to combine different diagrams,

3. Reuse : issues faced when reusing (i.e., copy and pasting) model elements, and

4. Look : appearance-related dissatisfactions (e.g., shapes and colors).

By analysing the subjects’ verbal expressions, we were able to correlate each expression
to its pertinent category of challenge(s). Sometimes, a statement could fall in two or more
categories. In such a case, we correlated the statement to all of the applicable categories.
The results of our verbal analysis is shown in Table 4.14.

77

As shown in Fig. 4.13, the two major challenges for the users were Context and De-
bugging. Some of the statements that the subjects made for Context were: “[While trying
to remember the name of the elements] The tool should give me some recommendation.”,
“what was the name of the class!”, and “Oh! I forgot the name again...”. Table 4.15 shows
a complete list of statements that we coded for one of the subjects.

78

T
ab

le
4.

14
:

R
es

u
lt

s
of

th
e

an
al

y
si

s
an

d
co

d
in

g
of

th
e

ve
rb

al
ex

p
re

ss
io

n
s.

P
ar
ti
ci
p
an

t
O
rd
er

C
on

te
x
t

N
av

ig
a
ti
o
n

S
y
n
ta
x

T
y
p
e-
M
a
tc
h
in
g

D
eb
u
g
g
in
g

L
ay
o
u
t

V
ie
w
s

R
eu
se

L
o
o
k

P
1

0
2

0
5

1
5

0
0

0
0

P
3

0
5

1
1

0
4

0
0

0
0

P
2

0
4

1
1

0
6

0
0

0
0

P
7

0
5

0
2

0
5

0
0

0
0

P
5

0
4

1
0

2
5

1
0

0
0

P
4

0
5

0
2

0
0

0
1

0
0

P
6

0
14

2
5

1
8

0
0

1
0

P
8

0
11

3
0

5
6

3
0

1
0

P
9

1
9

1
3

1
6

0
0

0
1

P
10

1
9

0
2

0
2

0
0

0
1

P
11

0
17

4
1

0
2

0
0

0
0

P
12

0
8

0
3

1
1

1
0

0
0

P
13

0
9

1
1

0
2

1
0

0
0

P
14

0
12

0
1

0
1

0
0

0
0

P
15

0
11

0
0

0
2

0
0

0
0

P
16

0
13

2
2

0
1
0

0
0

0
0

P
17

0
17

2
2

0
5

1
0

0
4

P
18

0
10

1
3

0
0

0
0

1
2

su
m

2
16
5

1
9

3
4

1
1

7
0

7
1

3
8

m
ea
n

0.
11

9.
17

1
.0
6

1
.8
9

0
.6
1

3
.8
9

0
.3
9

0
.0
6

0
.1
7

0
.4
4

m
ed
ia
n

0.
00

9.
00

1
.0
0

2
.0
0

0
.0
0

4
.5
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

m
in

0.
00

2.
00

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

m
ax

1.
00

17
.0
0

4
.0
0

5
.0
0

5
.0
0

1
0
.0
0

3
.0
0

1
.0
0

1
.0
0

4
.0
0

st
d
ev

0.
32

4.
44

1
.1
6

1
.4
9

1
.2
4

2
.8
1

0
.7
8

0
.2
4

0.
3
8

1
.0
4

79

4.4.5.3 Analysing Errors

The error rates presented in Fig. 4.6 show that almost all of the subjects introduced
inconsistencies to the model during the four model-editing tasks. Further analysis showed
that the majority of these inconsistencies were related to referring to an incorrect or an
undefined element. We believe that this relates to the Context challenge and that the
subjects had difficulties recalling the intended model elements in the Class diagram. The
Tasks 5, 6, and 7 were designed to gauge the severity of the Debugging challenges, and
the results presented in Fig. 4.5 show a high degree of failure in the subjects’ average
performance for these tasks.

Based on the above results, we conclude that the Context and Debugging challenges
are the most-severe challenges. This conclusion is confirmed by other metrics such as the
frequency with which subjects switched to other diagrams during tasks, more specifically
the Class diagram, as a reference metric for the severity of the Context challenge.

4.5 Threats to Validity

In this section, we discuss the most important threats to the validity of the study and
provide suggestions for improvements in future studies of this type.

4.5.1 Construct Validity

As mentioned, we used instrumentation to collect data about the time spent on tasks. The
instrumentation improves the level of accuracy of the collected timings; however, because
we used the think-aloud protocol, it is probable that the thinking out load and our prompts
to the user increased the actual time to solve tasks.

It is possible that the worst performance in the last two tasks may be attributed to
fatigue or to the paying policy ($20 for about 90 minutes, leave as soon as you finish),
and not due to the task type. We tried to mitigate this threat by providing an informal
atmosphere and allowing the subjects to take a break whenever they felt uncomfortable. We
believe such fatigue cannot be avoided and is generalizable to a real working environment.
In our opinion, not being able to locate an error in a model after around three minutes
(see Fig. 4.8) suggests that the tools do not provide enough useful and usable features for
such debugging tasks.

80

Table 4.15: A list of statements coded for an exemplary subject.

Category Phrase

Context It hurts me that the tool does not tell me what is each object. For example, I see g as a variable,
but it would be naive if it gives me some message that g is an object of Gate when I hover on it.

Syntax Also, syntax highlighting would be really nice. It doesn’t highlight keywords.
Syntax I would love if I press control space and it brings me the syntax. This is a wasting time to write

after ! I would love to just write a and it filters after for me and show it to me. Some how it reduces
my performance.

Syntax Also, it would be nice if it gives me what’s the unit . But I know that it is in milliseconds. It would
be nice if I hover on after it tells me that ”OK, for after every 1000 is a one second”).

Syntax,Debugging Another problem that I have right now, is that my text editor doesn’t show that my syntax is wrong,
I need to compile. I don’t like this one. I want immediate actions from my IDE.

Context Right now , Sensor is in the class diagram and it is hard to manage. (referring to textual presenta-
tion), because the class diagram is huge.

Context Another problem is that this tool doesn’t allow me to see the graphical representation, so it is gonna
be really hard for me.

Reuse This is really lacking graphical representation
Context I would love to see the attribute coming up here. I don’t see the name of attributes or operations.
Context I don’t remember. I’m gonna go to class diagram , I’m gonna copy this one, the name of attribute

and come to this one (diagram) and put it here.
Context I’m loving this one because I’m just copying and pasting the model
Context Right now I don’t remember what is the attribute
Context,Navigation Right now, I don’t know how to get to the coin slot! Ahhh! Damn it! I wish I had the graphical

representation for this one.
Context It would be really nice that when I click on the name (of the variable) it find me to the class gate

and show me the properties of it. It would be really good, I’m missing that one here!
Context I can’t have a blueprint of the system. I don’t see any association.
Context I wish it would bring me the name here !
Debugging That’s an issue , it doesn’t do realtime checking of my model.
Context remembering the contextual information was hard to me
Context I had issue with switching between classes [to remember sth]
Navigation (C3) I have some issue with the exitfee, but probably I would have issue if I wanted to design from

the beginning.
Syntax (C4)The tool didn’t allow me to have that one in a fast way. E.g., writing half of the keyword and

the rest should be written automatically.
Debugging The tool didn’t allow me to find errors in the system. Actually it detected the error in the system,

that was accurate, but the hint for the location of the error was not accurate.
Debugging I know the tool is lacking this one (auto-propagating the change), that’s why I’m doing that (finding

manually).
Debugging I would like to see that when I’m changing that one it pops up options for me and ask that ”O1 do

you wanna apply it to whole model or do it manually?”. So it doesn’t do it. So I had to do tricks
based on my experience to solve the issue.

Debugging It is critical if the model is big.
Context let me check the class diagram again.
Debugging System didn’t detect that we don’t have this attribute. It didn’t detect but I checked visually (by

my eyes).
Debugging I’m assuming that these are correct ! It doesn’t show me any errors.
Type-Matching I know the tool doesn’t check the validity of the LHS and RHS, I wanted to makes sure the position

is string or not.

81

4.5.2 Internal Validity

One threat to internal validity was the subjects’ familiarity with the UML. We tried to
mitigate against this risk by recruiting subjects who could pass our UML exercises. We
also made sure that the subjects had previously passed at least one course that included
UML modelling.

A related issue was that we asked the subjects to self-declare their expectation of the
tools’ abilities and their proficiency with using the tools. Their answers might be influenced
by how self-confident they are in general, and may not necessarily reflect their real UML
proficiency. As a result, their modelling errors and instances of lostness might be caused not
only by inadequate tool support, but also by their levels of competence in UML modelling.

4.5.3 External Validity

The main threat to external validity is that the subjects were students rather than experi-
enced modellers who work in industry. To mitigate against this threat we kept the scope of
the study and the size of the model quite small compared to industrial models of software
systems.

The size of the model was not comparable to the large-scale complex systems one would
expect to find in industry (e.g., see [56]). Moreover, the tasks were relatively small and
easy to do in terms of size, complexity and duration. Nevertheless, we cannot rule out the
possibility that the observed effects could have been different if the systems and tasks had
been larger.

One other threat was the subjects’ familiarity with the system being modeled. It is
possible that the results would differ if the users had dealt with the model for a longer
period of time. A related threat is that the modellers might have performed better if
they had created the Class diagram themselves as then the subjects would have been more
familiar with the model.

4.6 Discussion

Below are additional observations about the subjects’ behaviours and attitudes about the
tools collected during the subjects’ sessions with the tools or through an open-ended textual
feedback that was answered at the end of the study.

82

• Sometimes, the subjects were satisfied with how they fulfilled tasks and did not
realize when they had created an inconsistent or erroneous model. Subjects expected
to be warned about errors as they were being made but the tools report errors
only when the user proactively invokes error-checking features. It is important that
the tools have features that either prevent such inconsistencies and errors during
model editing or report them during commission. Please note that model correctness
pertains to whether a model expresses the same information as the experiment’s
textual description (i.e., correctness errors are not methodological errors).

• Some tools such as MagicDraw [45] or Visual Paradigm [75] allow users to cross-link
operations in the event/effects of a transition expression to related operations in the
Class diagram. However, users avoid creating these cross-links and instead just set
the name or label of the transition. It is unknown whether the subjects simply do not
care or if they think that it will be complicated for them to cross-link the operations
to the related attributes for every transition. Perhaps, the ideal would be if the tools
allowed the user to type a transition as a text, and the tool could automatically
cross-link.

• Some tools (e.g., UMLet) are very lightweight and easy to learn, and are useful for
creating simple models but are not suitable for editing complex models because of
the lack of features such as syntax-highlighting and auto-completion. In contrast,
tools with these features often feel very heavyweight and complicated. As a result,
the latter tools have a learning curve that intimidates users because of the many
views and features that it offers without proper organization.

In general, these modelling-tool challenges stem primarily from the separation of con-
cerns that are inherent in the distinct views captured in distinct UML diagrams. UML
modelling tools offer diagram-specific editors that do little to help users fetch and under-
stand the inter-related information that is expressed separately in other related diagrams
[47]. For example, developing a correct expression for a state-transition guard in a State-
Machine diagram can be cumbersome for the modeller because they need to refer to precise
details about names, types, attributes, parameters, and associations of model elements that
are defined in a separate Class diagram.

4.7 Conclusion

We conducted a formative user study to understand the difficulties and challenges of mod-
ellers when editing and debugging static and dynamic UML models as exemplified by Class

83

and State-Machine diagrams. Our analysis of the subjects’ performance, verbal expressions,
pre- and post-session ratings, and errors in the tasks determined that the most-prominent
challenges of modellers are: 1) remembering contextual information (Context) and 2) lo-
cating, understanding and resolving errors in models (Debugging).

Furthermore, the average discrepancy between the pre-task expectation and post-task
experience ratings showed that there is a notable gap between the users’ expectations and
the tools’ capability to satisfy the expectations. Similarly, the result of the CSUQ indicated
that the subjects’ opinion of the tools’ usability leaned towards dissatisfaction.

In the next chapter we propose enhancements to tools that address these most-critical
challenges. For each challenge, we identify relevant human-cognition factors that might
effectively reduce the challenge and devise enhancements to the tools that reinforce the
identified factors. In Chapter 6, we present the results of empirical user studies that assess
the impact of the tool enhancements on modellers’ effectiveness.

84

Chapter 5

UCAnDoModels

“...it is likely that you have purchased a variety of artifacts, such as calendars,
calculators, or computers, that were created primarily to support cognitive ac-
tivities... The vast majority of these cognitive artifacts were designed not by
the application of cognitive theory but instead by appeal to folk-psychological in-
tuitions, trial and error, and the forces of the marketplace. Only recently have
researchers begun to consider how theories and findings from cognitive science
can be systematically applied to the design of the cognitive environment.”

— – Alex Kirlik, “Everyday Life Environments”[50]

We propose User-Centric and Artefact-Centric Development of Models (UCAnDo-
Models), which employs both user-centric and artefact-centric strategies to overcome users’
foremost challenges with UML model editors and we built a model editor that incorpo-
rates the UCAnDoModels approach. The main philosophy behind our model editor is to
provide the modeller with sufficient contextual information that is relevant to performing
a task, by offering contextual interfaces, semi-automated and on-the-fly repairs, and auto-
completions. This chapter6 presents the core components of our editor and their underlying
capabilities.

The rest of this chapter is organized as follows. At first, we present the architecture of
our tool, its components and their interactions. Afterwards, we discuss each component

6This chapter is reprinted in adopted form from [81] and [82]

85

starting with some low-level features that are used in multiple places, namely Distance-
Oriented Object Indexer, Type-Based and Distance-Oriented Content-Assist, Distance-
Based Model Element Finder and Model Observer. Then, we present our auto-completion
technique followed by the interfaces that we proposed to reduce the Context and Debug-
ging challenges of modellers. We start the description of the interfaces by discussing the
Focus+Context Transition Editor and the Interactive Consistency Management Interface,
which are the most-important interfaces we proposed to reduce the efforts of editing transi-
tions and maintaining consistencies in a model. Then, we explain the rest of the interfaces.

Figure 5.1: The architecture of our UCAnDoModels editor and its components.

5.1 Architecture

The architecture of our tool is shown in Fig. 5.1. The Graphical and/or Textual
Editors embody the primary components that allow users to edit a model. It consists of
default diagramming features as well as our proposed Focus+Context Interfaces. To achieve
their goals, the Focus+Context Interfaces also communicate to the Context-Oriented Model
Analyzer component, which offers low-level backend-related features to filter, classify, and
rank model elements based on their relevance to the focus task. In fact, the Focus+Context
Interfaces execute these features to extract valid and relevant contextual information that
is relevant to a focus task.

86

The Graphical and Textual Editors share the state of the model with the Model
Observer (MO) component whose main task is to listen to the model edits from the
Graphical and/or Textual Editors and react accordingly. That is, the MO may perform
follow-up actions to a model edit or notify the User-Interactive Consistency Man-
ager about inconsistencies introduced to the model as the result of an edit. The User-
Interactive Consistency Manager is responsible for maintaining the model’s consistency by
first detecting the type of the inconsistency based on a pre-defined set of consistency rules
(embedded in the Inconsistency Type Detector module), and then offering proper solu-
tion(s) to resolve the inconsistency by executing the Solution Finder module. Moreover, if
resolving the inconsistency requires the user to intervene, then the Solution Handler passes
the inconsistency to the Graphical and Textual Editors, which pops up the corresponding
Focus+Context Interface that asks the user to fix the inconsistent element(s).

Our primary contributions are the Focus+Context Interfaces and the Context-Oriented
Model Analyzer which are highlighted in yellow in the figure. We implemented our tool
from scratch (i.e., not extending an existing open-source model-editor). The essential
diagramming features were built using Eclipse’s Ecore Modelling Framework (EMF) [11],
the Graphical Modeling Framework (GMF) [41], and the Xtext Textual Editor [26].

5.2 Distance-Oriented Objects Indexer

The goal of the Distance-Oriented Object Indexer is to rank the information such that
the most-relevant information is presented first to the user, which helps in decreasing the
modeller’s memory workload. This feature is adapted (with modifications) from existing
coding environments.

The Distance-Oriented Object Indexer is responsible for collecting information about
the relationships among the model elements declared in the Class diagram. Such infor-
mation is used in ranking the information (e.g., model elements) presented to the user
such that the information deemed most relevant is ranked first. Specifically, whenever the
editor’s focus changes to a different element, the indexer computes the Distance value be-
tween each model element and the specific element that is the current focus of an editing
task. For example, if we are writing a transition expression in a State-Machine diagram
for class C1, the Distance-Oriented Objects Indexer categorizes the model’s elements into
five categories as follows:
Category A: comprises the values or literals of the type of the model elements under focus
(i.e., basic types such as Boolean, Integer and user-defined types such as enumerations).
For instance, if the model element of current focus is of type Boolean, then values True

87

and False are included in this category. Basic-type values or literals have a Distance of
0.
Category B: comprises the object members (e.g., operations or attributes) that are de-
fined in class C1. The distance for an element in Category B is one (Distance = 1).
Category C: comprises the model elements that are defined in the ancestor classes of C1.
The elements in this category have a Distance of 2.
Category D: comprises the model elements that are defined in the classes with which
C1 has a direct relationship (association, composition or aggregation). The Distance for
a class related by composition or aggregation is equal to 3 and the Distance for a class
related by an association is 4. Thus, compositions have priority over associations.
Category E: comprises the model elements that are defined within the classes that
are indirectly related to C1. The Distance for an element in this category depends
on the number of links (edges) between the element and class C1; that is Distance =
4 + (NumberOfLinks− 1). Thus, the further the element, the less related it is.

The Indexer then ranks elements/relationships based on their respective Distance val-
ues and alphabetically sorts the elements/relationships that have the same Distance, which
reduces the user-tool interaction time (i.e., U).

5.3 Type-Based and Distance-Oriented Content-Assist

The Type-Based and Distance-Oriented Content-Assist aims at proposing the user a list
of model elements (or language keywords) that are syntactically and semantically valid.
The Content-Assist feature decreases the modeller’s short-term and long-term memory
workload and decreases number of errors due to lapses or knowledge-based mistakes. The
Type-Based portion of the feature is adopted from existing tools (e.g., Eclipse), whereas
the Distance-Oriented portion extends the existing Content-Assists. The following explains
our Type-Based and Distance-Oriented Content-Assist.

One of the challenges of designing a Content-Assist is proposing relevant and valid
options to the user [77]. The existing editors retrieve the list of available options from
the meta-model and its constraints. They essentially populate the Content-Assist list
based on the language syntax rather than analysing the model elements and filtering out
the ones that are not semantically sound. In contrast, our editor provides Type-Based
and Distance-Oriented Content-Assist to propose values or model elements that are
most likely to be the intended next token or clause in the expression currently under
edit, thereby reducing the effort of editing the expression. Our Content-Assist uses the

88

Distance-Oriented Objects Indexer component described above and embeds a Type-Based
Classifier that performs lightweight type checking to ensure that variable assignments
and conditional expressions (e.g., guard conditions) are semantically sound by type. For
instance, if an operand in a condition is an attribute of type T1, then the other operand
should be limited to attributes or operations with the return type of T1 or sub-type of
T1. Moreover, if T1 is from the type of Boolean, then the other operand itself can be
a conditional expression which can be evaluated to True or False. After filtering out
the elements that are not sound-by-type, the Distance-Oriented Objects Indexer ranks
and orders the elements. Please note that, this process of filtering out the elements is
performed based on the current expression that the Content-Assist is being populated.
For example, if there are nested expressions, we first identify the expression (also referred
to as scope) that the Content-Assist is being viewed for, and filter our only those elements
that violate the type soundness of the expression under edit (i.e., scope).

With our Content-Assist, the user will be given only options that are syntactically cor-
rect and semantically sound. Such assistance is expected to improve model correctness and
reduce modelling efforts (by reducing user’s think time Z and user-tool interaction time
U), because the modeller is offered a refined list of valid options rather than an exhaustive
list of all syntactically-related model elements, which can be lengthy and difficult to explore.

5.4 Distance-Based Model Element Finder

The Distance-Based Model Element Finder is a new feature that is proposed by us to ease
a modeller’s task of finding model elements when editing and debugging models. By using
the Distance-Based Model Element Finder the modeller does not require to remember the
exact name of the intended model element, which indeed reduces modeller’s short-term
and long-term memory workload.

This module allows users to search for an intended model element among all the existing
model elements. It first attempts to find the elements whose names exactly match what
the user typed. However, it is not always the case that the user remembers the exact
name of an element; a user usually remembers a part of a name or tries to “guess” a
similar name. Therefore, if no element with the exact name is found, this module uses
the Levenshtein edit distance [59] algorithm, an approximate string-matching algorithm,
to look for elements whose names are similar to what the user typed and list them in
increasing order of the computed edit distance. If multiple elements with the same edit
distance are found, the module uses the Distance-Oriented Object Indexer to rank and

89

order them before displaying them to the user. The search is online, which means that the
user can see the results as they type. That is, as soon as the user starts typing, the tool
looks for the elements that match the user’s typed text (i.e., sub-string), and displays the
results as a list of elements. The results list also shows the element’s abstract type (e.g.,
attribute, operation, class). For example, if there is a gateCounter attribute in the Gate
class in the Class diagram, and the users types “count” in the search box, the results list
will include the respective item displayed as “Gate.gateCounter :: Attribute”.

The Distance-Based Model Element Finder can reduce the modeller’s think time (i.e.,
Z) as the modeller does not have to remember the exact name of an element, and can
instead find an intended model element by only remembering a part of the element’s name,
leading to a reduced memory workload.

5.5 Model Observer

The Model Observer (MO) is a feature that is adapted from existing tools that con-
tinuously listens to model edits and reacts with consistency fixes or warnings, or with
auto-completions. In fact, together with the User-Interactive Consistency Manager com-
ponent, their main goals are to facilitate the tasks of maintaining model’s consistency
and offering auto-completions when editing and debugging models, which decrease execu-
tion, knowledge-based and planning-related failures, and reduce short-term and long-term
memory workload. Our MO is explained as follows.

5.5.1 Maintaining Consistency

Correct-by-Construction approaches are known to suffer from being intrusive and counter-
productive [27][39], which adversely affects users’ performance and satisfaction. The phi-
losophy behind our User-Interactive Consistency Management is to provide easier error-
resolution techniques for the modelling tools that adhere to Correct-by-Construction. We
hypothesize that a Correct-by-Construction approach would perform better if the tool
eased the debugging and error-correcting task by employing more interactive techniques
such as informative and timely error notifications, automated fixes (where possible), and
Focus+Context interfaces for non-automated fixes (see Section 5.6.2).

For consistency management, we use the MO to observe model edits and check that
each edit satisfies the editor’s consistency rules. The rules that our model editor enforces

90

(shown in Table 5.1) are adapted from Well-formedness, Consistency, and Completeness
rules proposed by Lange et al. [55]:

• Well-formedness : Rules in this category ensure the syntactic correctness of the model
with respect to the language’s meta-model. Rules in this category must be satisfied
in order to avoid creating diagrams that contain syntactic defects.

• Consistency : The rules in this category are used to check for contradictory informa-
tion among the diagrams or within a single diagram. If rules in this category are
not satisfied, the model is semantically defective. For instance, if a transition’s event
refers to an operation that is not defined in the Class diagram, then this usage of
operation would be flagged as an inconsistency.

• Completeness : The completeness rules check whether a model element is defined but
not used, or if a model element should exist to make the model more meaningful,
but it does not exist. If the rules in this category are not satisfied, the model is not
defective, but can be improved.

In Table 5.1, the WF1, WF3, WF4, WF5, WF6, WF7, and WF8 Well-formedness
rules should not be seen as Completeness violations, as these Well-formedness rules are
discouraged in the language’s specification, while the Completeness rules are mostly related
to providing more complete information to create a more meaningful model.

If any of the Well-formedness, Consistency, or Completeness rules are violated as a
result of a model edit, the MO notifies the User-Interactive Consistency Manager module,
described below.

The User-Interactive Consistency Manager component consists of two main mod-
ules: a Consistency Checker and a Consistency Solver. The Consistency Checker detects
the type of inconsistency based on Lange’s definition [55] (note that only the existence of
an inconsistency is detected by MO and not the type of the inconsistency) and finds a
proper solution using the Solution Finder and Solution Handler modules (embodied in the
Consistency Solver), respectively. A solution can be Auto-Fix, Quick-Fix, or Interactive-
Fix. Auto-Fix applies if the Solution Finder suggests that there is only one possible valid
fix for an inconsistency (e.g., renaming a model element should rename all its uses in the
model); the Solution Handler asks the user to confirm the fix before automatically fixing
the model. Quick-Fix applies if the Solution Finder identifies a finite number of valid fixes
for an inconsistency. The Solution Handler then proposes the list of possible fixes and
allows the user to choose one from the list. For example, if there is an initial pseudo state

91

Table 5.1: List of consistency rules.

ID Type Description

WF1 Well-formedness Elements without name
WF2 Well-formedness Duplicate element names
WF3 Well-formedness Classes without at least one operation or attribute
WF4 Well-formedness Transitions without triggering event or guards
WF5 Well-formedness States without transitions connected to them
WF6 Well-formedness Initial pseudo states that do not refer to a state
WF7 Well-formedness Regions without an initial state
WF8 Well-formedness State diagrams with no regions

CON1 Consistency Diagrams refer to undefined classes
CON2 Consistency Triggering events refer to undefined attributes and messages
CON3 Consistency Transition guards refer to undefined attributes and messages
CON4 Consistency Transition actions refer to undefined attributes and messages
CON5 Consistency A message that is used in the model has a wrong returning type

(type mismatch)
CON6 Consistency Mismatch between the nodes in the Feature Model and the feature

classes in the Class diagram
CON7 Consistency An AND/OR/XOR node in a Feature Model that has only one

child node (maybe because the other sibling nodes were deleted or
moved)

COM1 Completeness Class defined in class diagram is not used in the model
COM2 Completeness Operation defined in class diagram is not used in the model
COM3 Completeness Attribute defined in class diagram is not used in the model
COM4 Completeness Operation’s attributes defined in class diagram are not used in the

model
COM5 Completeness An AND, OR, and XOR node in the Feature Model that has no

more than one child node

92

in a region that is not connected to any other state, the Solution Handler provides the user
with a list of possible existing states to which the initial pseudo state can be connected.
If the Solution Finder decides that neither Auto-Fix nor Quick-Fix techniques are appli-
cable, it displays our Interactive-Fix dialogue and asks the user to intervene to resolve the
issue before proceeding with subsequent model edits (described in 5.6.2). Moreover, since
we are interested in Correct-by-Construction, the tool does not proceed with the model
edits unless the user resolves all the inconsistencies; that is, the user is required to fix the
inconsistencies before proceeding with subsequent model edits.

(a) Creating model elements.

(b) Deleting model elements. (c) Renaming model elements.

Figure 5.2: MO behaviour for different types of actions.

93

Table 5.2: List of Head and Tail actions.

Head Action Tail Action(s)

Create a new model element Generate/Set a unique name for it
Rename a model element Ensure the name remains unique and propagate the

new naming to all uses of the element
Create new State-Machine diagram sd1 Create new region r1 in sd1
Create new Region r1 Create new initial pseudo state in r1
Create new initial pseudo state si in r1 Create new state s1 in r1 and create a transition from

si to s1
Create state s2 inside basic state s1
that has no inner region

Create a region r1 in s1, create an initial pseudo state
si, move s2 to r1, and create a transition from si to
s2

Delete a class in Class diagram Delete the corresponding State-Machine diagram
(needs user’s confirmation)

Delete a feature class in Class diagram Delete corresponding State-Machine diagram (needs
user’s confirmation) and delete corresponding feature
node from Feature Model and bring the deleted fea-
ture’s children to the deleted feature’s parent node

Delete a model element in Class dia-
gram that is used in a State-Machine
diagram

Fix the inconsistency before proceeding

Use an undefined operation or at-
tribute in a State-Machine diagram

Define the missing operation or attribute in the Class
diagram

Move a Class attribute or element to
another Class

Update all navigation paths that include the moved
element (where possible)

Create a feature node in the Feature
Model

Create the corresponding feature class in the Class
diagram

Delete a feature node in the Feature
Model

Delete the corresponding feature class from the Class
diagram and its corresponding State-Machine dia-
gram (asks user’s confirmation if the feature is used in
other parts of the model), assign (move) its children
feature nodes to its parent feature node

Create a feature class in the Class dia-
gram

Create a feature node in the Feature Model and attach
it to the root SPL node

Create AND/OR/XOR nodes in Fea-
ture Model

Create minimum of two feature nodes underneath the
created node

94

5.5.2 Auto-Completion

Our MO not only helps to maintain model consistency but also performs a modeller’s
next edit when possible, either automatically or by offering a set of options to select from.
This limited form of auto-completion is performed based on our consistency and semantic-
correctness rules. For each auto-completion rule, we define an atomic Head action followed
by one or more Tail actions. The Head action is a change to the model that is initiated by
the modeller. The MO listens for Head actions; when one occurs, it automatically triggers
one or more corresponding Tail action(s). For example, if the modeller moves an operation
from a class to another class, the tool automatically updates all the navigation paths (e.g.,
guard expressions) that use the element’s new navigation path expression. However, there
must be a link (e.g., associations) between the classes in the Class diagram in order to
update the navigation expression to the new navigation path. Otherwise, the tool will
update the expression as the moved element preceded by its new parent class.

In Table 5.2, we present our rules. The Head actions are divided into three different
groups: creating, deleting, and renaming model elements. In Fig. 5.2, we model the
behaviours of our MO and auto-completion for each of the three types of Head actions
(create, delete, rename) as a State-Machine diagram. For example, Fig. 5.2a models the
cases that start with the modeller creating a model element. The MO listens to the model
changes in the state S0. If there is a change that creates a model element, then it creates
the element (S1) and automatically generates a unique name for it (S2). Then, depending
on the type of the newly created element, there may be automatic Tail actions associated
with it. For instance, if the newly created element is a State-Machine diagram, the MO
automatically creates a main region (S3) with a unique name (S4), and an initial pseudo
state for the main region (S5). Furthermore, it creates a new basic state in the region (S6)
with a unique name for it (S7). Next, it creates a transition (S8) that connects the initial
pseudo state and the new basic state (S9). Similarly, if the model change is a delete or
a rename action (see Fig. 5.2b and Fig. 5.2c, respectively), the MO first checks whether
the edited model element is used in any other diagram within the model. In case that it is
used, the MO updates all the references, if possible. If there is only one possible update,
the tool asks for the user’s confirmation before proceeding with the update. If there are
multiple possible updates, the tool asks the user to intervene by showing our Interactive
Consistency Management interface.

The Head and Tail actions defined in Table 5.2 can significantly ease the modelling
task by reducing the think time of the modeller (i.e., Z) as well as the time of the user’s
interaction with the tool (i.e., U). The automation provides several potential advantages
(to be confirmed by empirical study), such as reduced workload and fatigue, avoiding

95

(trivial) errors, machine utilization, increased precision in the performing of procedural
tasks, and increased user productivity [109].

5.6 Focus+Context Interfaces

A Focus+Context interface is intended to allow the user to concurrently perform a Focus
task while viewing and/or editing the relevant information to the task (i.e., Context) [21].
The main goal is to alleviate the user’s navigation through several diagrams to locate spe-
cific information relevant to their Focus task, which help in reducing the modeller’s memory
workload. This section discusses the new Focus+Context interfaces that are proposed by
us, which aim at alleviating the challenges of remembering contextual information when
editing and debugging UML Class and State-Machine models.

Table 5.3 shows a list of focus elements or tasks, the diagrams in which they exist
(denoted by ∗, † and • icons), the contextual information relevant to the focus elements, and
the types of actions that the user can perform on the contextual information. For instance,
FC1 refers to editing a transition expression, and the editor allows the user to view and
modify the model elements in the Class diagram, as these model elements are among the
vocabulary used to write precise transitions. Making this contextual information available
to modellers while they are editing a transition expression helps modeller to recollect the
elements that might be used in the transition expression without needing to switch back
and forth among the different diagrams. Also, when the modeller is viewing and using the
contextual information, it is the best time for them to detect errors or inadequacies in the
contextual diagram. It is also easier to fix those errors on the fly without changing the
editor’s Focus. The focus actions and their corresponding contextual elements and actions
are derived by 1) observing the subjects in our formative user study and the way they
looked for and recollected contextual information, and 2) analysing FORML’s meta-model
to identify the meta-classes (Context) that can be referenced in other meta-classes (Focus).

We believe that the Context-based modelling challenge is mostly due to two difficulties:
1) Recall : consulting multiple relevant diagrams to find contextual information (e.g., a
modeller may need to switch back to the Class diagram to recall an intended element
that she wants to use in a state-transition expression in a State-Machine diagram), and
2) Modify : performing the prerequisite steps to some modelling task (e.g., defining a
model element in the Class diagram before using it in a state-transition expression). In
the following, we explain our Focus+Context interfaces starting with the most-important
ones, namely the Focus+Context Transition Editor (related to FC1) and the Interactive

96

Table 5.3: List of focus elements with their contextual information.

ID Focus of User Action Contextual Elements Allowed Actions
on Contextual
Elements

FC1∗ Editing transition expressions Elements in the Class diagram,
Other Transitions in all of the
State-Machine diagrams

Search, View,
Modify, Reuse

FC2∗ † • Debugging an erroneous model Elements relevant to the erro-
neous model element

View, Modify

FC3∗ States and transitions in State-
Machine

Elements in the corresponding
Class diagram

Search, View,
Modify

FC4∗ States in State-Machine diagrams Sub State-Machine (Frag-
mented State-Machine) dia-
grams

View, Open

FC5† Editing classes in the Class diagram Corresponding State-Machine
diagram

View, Open

FC6† Editing elements in the Class dia-
gram

All the cross-references (i.e., us-
ages) in the model

View, Modify

FC7† Editing feature classes in the Class
diagram

Feature Model (feature-tree) View, Modify

FC8• Editing feature nodes in the Feature
Model

Corresponding State-Machine
diagram, Relevant elements in
the Class diagram

View, Open,
Modify

FC9∗ † • Creating a new State-Machine dia-
gram

Existing State-Machines View, Reuse

∗ Applicable to State-Machine Diagram
† Applicable to Feature Model Diagram
• Applicable to Class Diagram

97

Consistency Management Interface (related to FC2). Afterwards, we summarize other
Focus+Context interfaces (related to FC3 to FC9).

5.6.1 Focus+Context Transition Editor (FC1)

The Focus+Context Transition Editor is a novel techniques that is proposed by us to
reduces the efforts of remembering and modifying the contextual information when editing
a transition.

To design the Focus+Context Transition Editor we took a four-step design approach,
which includes the following steps:

1. Sketch: We created eight possible individual design sketches of the interface (inspired
by the Crazy 8’s method [67]). Fig. 5.3 shows the eight sketches.

2. Present and prioritize: We then presented the sketches to five of the students (since
five is usually accepted to be enough for usability testing [7]) who had modelling
experience and have participated in our formative user study. We asked them to
determine which sketches are more valuable then the others. Ultimately, they needed
to determine one of the sketches as the most valuable design.

3. Critique and converge: We gave them a chance to offer feedback and critique the
sketches by identifying the strengths and weaknesses of the sketches.

4. Choose and converge: We selected the sketch that gained more votes (i.e., Sketch
No. 8 as shown in Fig. 5.3h) than the other sketches. We converged the feedbacks
we received from the students on the strength and weaknesses of the sketches and
enhanced the design accordingly. We iterated the above steps over the enhanced
designs one more time to optimize the ultimate design.

We implemented the Focus+Context Transition Editor (see Fig. 5.4) to alleviate
the task of editing transition expressions. The Focus section (the upper right region of
the editor window) pertains to the editing task; in this case, the task of writing a state-
transition expression in a State-Machine diagram. Sections A, B, C, and D are used
to alleviate the challenges of Recall and Modify. Table 5.4 lists all the user’s possible
contextual actions (i.e., Recall and Modify activities) related to the editing of a transition
expression and shows which aspects of the editor’s interface is designed to tackle each of the
contextual actions (see the Section column). In the following, we introduce each section of
the interface and explain how it can help alleviate the difficulties of Recall and Modify.

98

(a) Sketch No. 1. (b) Sketch No. 2.

(c) Sketch No. 3. (d) Sketch No. 4.

(e) Sketch No. 5.

(f) Sketch No. 6.

(g) Sketch No. 7. (h) Sketch No. 8.

Figure 5.3: An overview of the eight sketches.

99

Figure 5.4: Our Focus+Context Transition Editor.

• Section ContextA: A major difficulty that a user may face when editing a transition
label is knowing about the classes, attributes, and operations declared in the Class
diagram (Rec.1). It is also important to understand the relationships between the
current class (whose State-Machine diagram is currently being edited) and other
classes in the Class diagram (Rec.2). A modeller is more likely to refer to an attribute
or operation of the current class or of an associated class, than to an attribute
or operation of an unrelated class. The purpose of Section ContextA is to display
the relationships among the classes based on the data collected from the Distance-
Oriented Object Indexer (Section 5.2). Specifically, modellers are informed about
the current class, the classes that have a Direct Relationship with the current class
(the type of relationship is illustrated by an icon), the classes that have an Indirect
Relationship (i.e., connecting through another class), and the classes that have No
Relationship with the current class. This categorisation of the classes allows the
modeller to focus on those classes to which they will most likely need to refer.

If a user needs to create an association between the classes (Mod.2), he/she can drag

100

Table 5.4: List of Recall and Modify actions, and the relevant sections of the Fo-
cus+Context Transition Editor.

ID Type Description Section(s)

Rec.1 Recall Remembering the elements in the Class diagram (i.e., Classes,
Attributes, Operations, Types)

A,B,C

Rec.2 Recall Remembering the relationships amongst the entities in the Class
diagram

A

Rec.3 Recall Remembering/reusing expressions (i.e., event, guard, actions) that
are used in other transitions

D

Rec.4 Recall Looking for an intended element based on the modeller’s recollec-
tion of its name

C

Mod.1 Modify Creating an intended element (e.g., classes, attributes, operations)
in the Class diagram

A,B,C

Mod.2 Modify Creating or modifying a relationship between entities in the Class
diagram

A

Mod.3 Modify Changing the type of an element (e.g., attribute) in the Class
diagram

B

the class from the list of Indirect Relationship or No Relationship classes and drop
it into the list of Direct Relationship classes. The editor will, by default, create a
direct association between the current class and the dragged class. The user can then
right click on the newly associated class and modify the type of the relationship from
association to composition, aggregation, or generalization. As another example, the
user can create a new class (Mod.1) by typing the name of the class in the text field
that is located at the bottom of the section. The editor will, by default, insert the
newly created class in the No Relationship category, but the user can use drag-n-drop
to move it to the Direct Relationship classes.

Lastly, using “Hide Unused Classes” check box, the user can view only those classes
whose elements have been previously used in the current State-Machine. The hypoth-
esis behind this feature is that modellers are more likely to use mostly the elements
of a subset of classes when developing a State-Machine. Thus, if a user needs to
update a State-Machine, she may not need to view all the classes that exist in the
Class diagram.

• Section ContextB: A modeller of a state-transition expression may continuously
refer to the Class diagram to look for the attributes and operations of classes (Rec.1)
as these elements are the most-likely candidates to be referenced in a transition label.

101

Section ContextB lists the attributes and operations from the class selected in Section
ContextA. In Fig. 5.4, ContextB lists the attributes and operations of the Sensor
class selected in ContextA. The user can then drag an attribute or an operation from
ContextB and drop it into one of the text fields in Section Focus. If the intended
attribute or operation does not exist in the selected class, the user can use the Create
buttons to create them (Mod.1). The user can right-click on an attribute or operation
to change its type (Mod.3).

• Section ContextC: To help users overcome the challenges of remembering an in-
tended element, Section ContextC enables the modeller to look for an element based
on what they remember of the element’s name. As the user types into the search text
field, the Distance-Based Model Element Finder (Section 5.4) displays in real-time
the list of elements in the model whose names most-closely match the typed name.
It first lists all elements whose names match exactly the typed word (Rec.1). If
there are more than one exact-matches, it orders them based on their distance to the
current class. If none of the exact-matches or similar-matches are the element the
modeller is looking for, then the modeller is invited to create a new element (only
class attributes or operations) with the name of the typed word (Mod.1). For this,
the tool pops up a new dialogue box (see Fig. 5.5) asking the user to confirm the new
element’s name, the containing class for the new element, and determine whether the
new element is an attribute or an operation.

Figure 5.5: Creation of an attribute or operation using Section ContextC.

Fig. 5.6 shows an example where the user types “cou”. As can be seen in the figure,
the first item invites the user to create the “cou” element (which displays Fig. 5.5, if
selected), and the second and the third elements refer to the gateCounter attribute (of
class Gate) and increaseCounter operation (of class Parking), which contain “cou” as
part of their names. Furthermore, the editor ranked the gateCounter attribute before
the increaseCounter operation because the distance between the current class (for
which we are developing State-Machine) and the Gate class is less than the distance
between the current class and the Parking class.

102

Figure 5.6: An example list of items as the result of user’s search.

• Section ContextD: The results of our prior user studies suggest that users often
look for a similar transition to reuse or learn from when editing another transition’s
expression [80]. This, however, can be cumbersome as it may not be easy to find
a specific transition in a large and complex model. In Section ContextD, we allow
the modeller to search among the State-Machine diagrams in the model for other
transitions based on their name, or elements in their labels (Rec.3). As the user types
in the ContextD search field, the editor continuously filters and lists all matching
transitions whose expression (label, event, guard, and actions) includes an exact-
match or similar-match to the typed expression. Results are listed by showing their
names and sub-expressions in the drop-down menu that is labelled Select a Transition.
Subsequently, when a transition is selected from the drop-down menu, its event,
guard, and action segments are inserted into the corresponding text fields in Section
ContextD, and the user can click on any of the Use buttons to reuse one of the
sub-expressions in Section Focus.

• Section Focus: This section provides aids that improve the modeller’s Focus on
the current editing task. It divides the task into three text fields which correspond
to the event, guard, and action segments of the transition expression that is being
edited and it supports two different ways of setting these segments: Feature-Rich
Text Fields and Drag-n-Drop.

Feature-Rich Text Fields provide various capabilities to the users such as syntax-
highlighting, displaying errors and warnings, and Content-Assist that together nudge
the modeller towards a correct model and warn the modeller when they violate a
consistency rule. Warnings and errors notifications are issued in realtime as rule
violations are committed. In contrast, the Content-Assist is user-activated and uses
Type-Based and Distance-Oriented Ranking module to list related model elements in

103

order of hypothesized relevance.

Drag-n-Drop: By using Drag-n-Drop, users can drag an intended operation or
attribute from Section ContextB and drop it into the event, guard or action text
fields of the Focus section. When editing the guard expression, it is possible that
the user wants to write a conditional expression (e.g., A==B) of which a dropped
attribute or operation is one operand. When the modeller drops one operand into
the text field, the editor will automatically create a conditional expression and assign
the dragged element to the LHS of the conditional expression. The editor then uses
Distance-Oriented Object Indexer (Section 5.2) to provide a prioritized list of possible
elements and values that can be assigned to the RHS of the conditional expression
based on the type of the dropped element (i.e., LHS). Moreover, the equality check
(==) is inserted as the default conditional operator but can be changed by the user.
The editor analogously assists the user when they drop an attribute or operation into
the action text field, to complete an assignment statement.

Given a Drag-n-Drop action, the editor, by default, will replace the old expression
with a new expression. Thus, if the user drops an operation into the event field,
the new triggering event will be automatically set to the dropped operation as there
can be only one operation assigned to an event. However, unlike an event, a guard
expression can be composed of multiple conditional statements (e.g., A==B OR
C==D); and an action expression can be composed of multiple actions. Therefore,
the editor supports a keyboard shortcut that cause a dropped element to extend rather
than replace a guard or action. By default the editor extends a guard expression
with an AND operand and then with a new conditional sub-expression whose first
operand is the dropped element. The user can replace the AND operand with an OR
or XOR operand. The editor only supports an AND operand between existing action
expressions and a newly dropped element that forms the LHS of a new assignment
action. For example, Fig. 5.7 shows that the user drags the pos attribute (of the
Gate class) and drops it into the transition’s action text box. The editor pops up the
Content-Assist once the user drops the element into the text box, and because the pos
attribute is from the GatePos enumeration type, the Content-Assist only contains
the constants of the GatePos enumeration class (which are DOWN and UP) and
other tokens that are valid based on the language’s grammar.

We hypothesize that: Providing editing facilitators for the Recall and Modify activ-
ities of modelling can reduce the efforts related to a Focused modelling task (i.e., editing
a transition).

104

Figure 5.7: An example of Drag-n-Drop in the transition editor.

5.6.2 Interactive Consistency Management Interface (FC2)

In this subsection, we propose a new interface, namely Interactive Consistency Man-
agement Interface, which aims at facilitating the modeller’s task of debugging models.
In addition to reducing the modeller’s memory workload, it helps in improving decision-
making and action planning abilities of modellers, avoiding rule-based and transience-
related errors, and reducing errors due to absentmindedness, lack of context, and lapses.

A typical large-scale system may be composed of hundreds of classes and correspond-
ing State-Machine diagrams [47][56]. Maintaining consistency in such large-scale systems
requires a lot of effort due to the number of inter-related elements among the different dia-
grams. In our opinion, for a consistency management approach to be successful, it should
take into account the following user-centric concerns: Recognizing the sources of inconsis-
tency, alerting the user of an inconsistency without being intrusive, ensuring that the user
can easily access all relevant information (Context) needed to resolve the inconsistency,
and supporting the users in their plans to resolve an inconsistency.

Recognition of Errors: The first step to resolve an inconsistency is to recognize
when a model edit has introduced an inconsistency in the model. The recognition process
can be influenced by two memory-related factors: 1) Transience: a measure of how easily
information can be retrieved from the modeller’s memory and the degree to which memory
deteriorates over time [93]; and 2) Absentmindedness : lapses in paying attention [93]. A

105

modeller can fail to recognize an occurred inconsistency, or they recognize the inconsistency
but they decide to resolve the inconsistency at a later time but they forget. To avoid such
failures to address inconsistencies, our tool attempts to locate and resolve inconsistencies
while they are being made.

Figure 5.8: Our Interactive Consistency Management interface.

We hypothesize that it is easier and faster to recognize and correct errors while they are
being made because the error-inducing part of the model is still fresh in the modeller’s mind
[27]. Our editor includes three error detection and resolution strategies: Auto-Fix, Quick-
Fix, and Interactive-Fix, all of which attract the user’s attention to a new error. Auto-Fix
and Quick-Fix approaches were described in Section 5.5. Our Interactive Consistency
Management Interface (also referred to as Interactive-Fix interface), shown in Fig. 5.8,
pops up a dialogue box during model-editing whenever a detected error is complex enough
to require greater user input.

Intrusiveness: It is often argued that resolving inconsistencies on-the-fly during mod-
elling is disruptive and counter-productive to users because of the memory overload im-
posed by the context switching among the different diagrams to locate an error [27][39]; and
because the interruption distracts the user from their original train of thought [3][8][9][13].
In contrast, we hypothesize that recovering errors in real-time need not adversely affect a

106

user’s performance and satisfaction. We devise a model editor that mitigates the disruptive
impacts of interruptions while enabling on-the-fly error resolution.

Make the Invisible Visible: One of the cognitive factors involved in the process
of maintaining model consistency is Association, which refers to cross-linking a piece of
information to related pieces of information. That is, the ability to remember and list the
cross-linked and out-of-sight (or out-of-mind) model elements that may become inconsistent
as a result of an edit. Relying on a user’s ability to locate and co-modify the associated
elements may lead to failure and model inconsistencies as the user may forget to check
(i.e., lapses) or miss (i.e., slips) some of the affected locations in the model.

To promote the Association (cognitive) ability, our User-Interactive-Fix interface (see
Fig. 5.8) provides a hierarchical view (bordered in red color in the figure) of all of the
inconsistent elements in the model that are affected by an original edit. The root node in
the hierarchy refers to the diagram that contains the erroneous elements (i.e., the elements
that become inconsistent as the result of a model edit). For example, Fig. 5.8 shows
that the id attribute of the Gate class has been deleted from the Class diagram, which
introduces errors in different guard expressions in the model. Accordingly, the root node
is the State-Machine diagram that contains the transition (parent node) of the erroneous
guards (leaf nodes) -e.g., guard expression of transition t1 in the FeatureModule: GateB
diagram.

Action Planning: An important step in problem-solving and decision-making is to
choose from the set of possible alternative actions. Most editors do not assist the modeller
in fixing an inconsistency when it occurs; a few editors suggest that the modeller undo the
edit or delete the inconsistent element (e.g., Capella [89]). Our tool allows the modeller to
select (using an Actions-To-Do menu) editing or deleting the newly inconsistent element,
or its parent element. For example, if a newly inconsistent element is a guard, then the
user can select to edit the guard expression (using the embedded textual editor), delete the
guard element, or delete the parent transition. Note that the edit action is not limited to
the guard expression: the user can easily access and edit the event or actions of the parent
transition by clicking on the parent node in the hierarchical view.

Context: Recall that Context [17] is another critical cognitive factor influencing the
process of resolving inconsistencies. It refers to remembering and integrating the essen-
tial pieces of related information that the user needs to edit (or delete) an inconsistent
element. This information may be spread across other diagrams than the Focus diagram,
thus requiring the user to switch amongst different diagrams, which can be cumbersome.
Insufficient access to and recall of a task’s Context may result in making Knowledge-Based
mistakes.

107

To support the Context ability, our User-Interactive Interface embeds a Feature-Rich
Textual Editor (the green-colored text box located at the right side of the interface in
Fig. 5.8) which presents the textual representation of a selected inconsistent element and
allows the modeller to edit the element. The textual editor uses our Type-Based and
Distance-Oriented Content-Assist module to facilitate the task of editing by proposing
and prioritizing relevant model elements. As an alternative, our tool provides a graphical
editor that allows the modeller to view and edit the containing diagram (automatically
navigates to the diagram segment that contains the element).

In summary, we hypothesize that: Our User-Interactive Consistency Management in-
terface improves the users’ effectiveness in creating more correct models and reduces users’
feelings of being disrupted when fixing an inconsistency by taking into account the relevant
human-cognition factors.

5.6.3 Other Focus+Context Interfaces

Table 5.3 lists nine Focus+Context interfaces that we implemented in our tool. The above
two subsections described the important interfaces (i.e., FC1 and FC2). The follow-
ing presents the rest of the new interfaces that we propose to alleviate the modeller’s
challenges of remembering the contextual information while performing several modelling
tasks. Similar to other Focus+Context interfaces, the following interfaces mainly decrease
the modeller’s memory workload.

Class Elements Viewer (FC3). Whenever the user selects an element (i.e., a state,
or a transition) in a State-Machine diagram, they should be able to view and modify the
corresponding classes. For example, the Focus+Context Transition Editor, the context of
a transition expression includes the classes whose elements (i.e., attributes or operation)
are used in the transition’s event, guard expression, or actions, plus the class for which
the current State-Machine is being edited. When selecting a state, the Context consists
of all the classes that are used in the state’s incoming and outgoing transitions. Fig. 5.9
shows an example of the Class Elements Viewer. As shown in the figure, the user has
selected the Closed state (Focus), which has one incoming transition and one outgoing
transition: t1 and t2. As the Context, the tool lists GateC, Gate, and Sensor classes as
well as their attributes and operations in the bottom view (Context), which correspond
to the class for the current State-Machine and the classes whose elements are used in t1
and t2, respectively. Moreover, the user can create new attributes or operations for each
of the classes. Additionally, if the user needs to view another class and its elements that
is not listed in the bottom view, she can use the “Search for Element” text field to look

108

Figure 5.9: An example view of the Class Elements Viewer.

for the desired class and add it to the list of classes in the bottom view. The editor uses
our Distance-Based Model Element Finder to suggest the classes based on their names’
similarity with what has been typed by the user (i.e., a modeller can find a class simply
by typing what they think is the class name). Moreover, they can also search for a class
by typing the name of the class’s attributes or operations in the text field. Thus, the
user does not need to remember the exact name of the element that they are looking for.
We believe such an interface can minimize the user’s switches between State-Machine and
Class diagrams.

Fragmented State-Machine Viewer (FC4). As mentioned in 2.2.3, a modeller
can create sub- (or fragmented) State-Machine from an existing State-Machine to reuse its
behaviour. When the user selects a state (s) in a State-Machine (SMp), the tool previews
the fragment (sub-) State-Machines (SMf) of the selected state (s), if any. Fig. 5.10
shows an example in which the tool previews a fragment State-Machine of the disengaged
state in the TokenPay State-Machine. If the user opens a State-Machine (SMf) that is
fragmented from a state (s) in another State-Machine (SMp), the tool previews the parent
State-Machine (SMp) in the bottom view.

109

Figure 5.10: An example view of the Fragmented State-Machine Viewer.

One can notice that, there are more than one contextual interfaces when selecting a
state, namely the Class Elements Viewer (FC3) and Fragmented State-Machine Viewer
(FC4). In this case, the tool lists all of the contextual interfaces and the user can select
the desired one. For example, in Fig. 5.10, the tool lists both State-Machine Preview and
the Class Preview in the left-side panel of the properties view which refer to FC3 and FC4,
respectively.

State-Machine Viewer (FC5). By selecting a class in the Class diagram, the user
can view its corresponding State-Machine diagram (see Fig. 5.11), if any. This helps
the user gain information about the dynamic aspect of an entity without switching to the
entity’s respective diagram. Moreover, the State-Machine Viewer also provides mechanisms
to open the diagram in a separate window if the user needs to edit the State-Machine in
its own window.

Cross-Reference Viewer (FC6). By selecting any element (i.e., attribute, operation,
or class) in the Class diagram, the tool shows a list of all the places where the selected
element is used. Fig. 5.12 shows an example of the Cross-Reference Viewer, where the
user has selected the blockage attribute of the Sensor class (Focus). In response, the tool
lists in the bottom view all of the places in the model where the blockage attribute is used
(Context). By selecting each of the references, the user can view a textual representation of
the selected reference and can edit its value using the Feature-Rich Textual Editor without

110

Figure 5.11: An example view of the State-Machine Viewer.

Figure 5.12: An example view of the Cross-Reference Viewer.

opening the referring diagram.

Feature Model Viewer (FC7). When the user selects a feature class in the Class

111

Figure 5.13: An example view of the Feature Model Viewer.

diagram, the editor displays its corresponding feature node in the SPL’s feature tree (i.e.,
Feature Model) within the Feature Model Viewer (see Fig. 5.13). The user can also modify
(e.g., reorganize) the features in the feature-tree by dragging and dropping the nodes. Also,
the modeller can edit the type of the feature OR, AND, and XOR nodes. For example,
the modeller can right-click on an OR node and change it to an AND node, provided that
the constraints are met (i.e., there should be minimum of two children feature nodes for
an AND node).

Feature Class Viewer (FC8). One of the sources of contextual information related
to editing a Feature Model is the information about the classes and their properties in
the Class diagram. We designed a Focus+Context interface to bring such contextual
information into the user’s view when editing the Feature Model. That is, the user can
double click on a feature node in the Feature Model to view the interface shown in Fig.
5.14. On the right-side panel of the interface, the user can re-organize the feature tree
(e.g., moving features around). When the user selects a feature from the right-side panel,

112

Figure 5.14: An example view of the Feature Class Viewer.

the interface displays its corresponding Feature Module in the bottom-side panel. Similar
to the Focus+Context Transition Editor, the user can also view and modify the elements
of the Class diagram using the left and center sections of the interface.

State-Machine Duplicator (FC9). Sometimes, the user prefers to reuse an existing

113

Figure 5.15: An example view of the State-Machine Duplicator.

State-Machine diagram when defining a new one because the two State-Machines have
similar structures. As shown in Fig. 5.15, our tool allows the user to create a new State-
Machine based on an existing State-Machine. The figure shows that the user can view a
list of available State-Machines and preview each one of them before moving forward with
reusing it.

The Focus+Context Interfaces described above can alleviate the modelling tasks by
reducing the think time of the modeller (i.e., Z) as well as the time of the user’s interaction
with the tool (i.e., U) as the user does not need to back and forth amongst different
diagrams to recollected the contextual information. The interfaces can introduces potential
benefits to the modellers, such as reducing memory workload and enhancing the user’s
experience of creating more correct an precise models.

114

Table 5.5: Summary of tooling enhancements and their relevant cognitive theories.

Feature Involved Cognitive Theory

Auto-completion Decreases execution and planning-related
failures.

Contextual information in Focus+Context
interfaces

Decreases short-term and long-term memory
workload.

Contextual information (in Focus+Context
interfaces or Content-Assist)

Decreases short-term and long-term memory;
decreases number of errors due to lapses or
knowledge-based mistakes; less misattribu-
tion.

Distance-based search boxes Reduces short-term and long-term memory
workload.

On-the-fly error resolution Avoids rule-based and transience-related er-
rors.

List of inconsistencies in a single interactive
view

Reduces errors due to absentmindedness,
lack of context, and lapses.

Feature-rich textual embedded editor Reduces memory workload and execution er-
rors.

Action-to-do list in the Interactive Consis-
tency Management interface

Improves decision-making and action-
planning.

5.7 Concluding Remarks

In this chapter, we described our tool which facilitates the development of Feature-Oriented
and UML-like models by employing and balancing user-centric and artefact-centric tech-
niques. The rationale behind our tool is to consider the human in the loop when designing
the enhancements rather than taking into account only the language specifications (e.g.,
UML’s specification). In particular, our goal is to alleviate the cognitive challenges of
modellers when remembering the contextual information that is relevant to performing a
particular task. Furthermore, our tool generally aims to reduce the cognitive efforts to de-
velop models of formal languages by applying semi-automated repairs and auto-completions
in the course of (formal) modelling. Table 5.5 lists a summary of our tool’s features and
the involved relevant cognitive theories.

Some of our tooling advances are borrowed and adapted from existing tools, and some
are invented:

• Focus+Context Transition Editor (FC1): We introduce a novel Focus+Context Tran-

115

sition Editor that displays all the contextual information in an integrated interface,
which helps users to avoid switching back and forth among different diagrams. In ad-
dition, users can modify the contextual information (e.g., adding new class elements)
if needed. The interface also allows the user to set different parts of a transition by
reusing parts of an already developed transition.

• Interactive Consistency Management (FC2): In our consistency management method,
we borrowed the Auto-Fix feature, which can be found in other tools (e.g., [34][70][89]).
We extended Eclipse’s Quick-Fix feature to provide users with Quick-Fixes (i.e., rec-
ommendations) on how to address most of the common errors (based on [54]) that can
occur when editing models. We introduce the User-Interactive Consistency Manage-
ment interface, which is a novel feature to help modellers with the task of resolving
complicated inconsistencies. Using XText [26] to implement our formal language [97]
enabled us to embed our customized Content-Assist [94] in our tool. We redesigned
the default Content-Assist to employ a distance-based method for ordering and rank-
ing the model elements to be presented to users when developing transition labels.
Additionally, our Content-Assist embeds a novel filtering mechanism which takes a
proactive approach and filters out those model elements that are not sound by type.
The only tool that we are aware of having a similar type-checking mechanism is
Yakindu [70], which takes a reactive approach and allows the modeller to write an
expression and then throws an error if the two sides of a condition or an assignment
are not from the same type.

• Other Focus+Context Interfaces (FC3 to FC9): None of these interfaces are naturally
supported in the underlying framework that we use. These interfaces are introduced
by us based on the observation of the users working with the UML-like model editors
and the analysis of the meta-model of the UML and the FORML.

We believe that the proposed techniques provide insight for tool vendors into how to
improve the usability and utility of model editors, by employing a human-centric approach
that reduces users’ cognitive challenges.

116

Chapter 6

Empirical Evaluation

“Computer scientists make broad claims for the simplicity, naturalness, or
ease-of-use of new computer languages or techniques, but do not take advantage
of the opportunity for experimental confirmation.”

— – Ben Shneiderman, “Software Psychology”[98]

This chapter7 presents the results of our empirical evaluation of our tooling techniques.
We designed two user studies (a Context study and a Debugging study) to evaluate the
effectiveness of our tooling advancements. We designed the experiments according to the
guidelines from Tullis and Albert [7] and Pietron et al. [78], with respect to the number
of subjects and data-collection techniques.

6.1 Experimental Design

In this section, we describe the design of these experiments in detail (see Appendix D for
the materials of the user studies.).

7This chapter is reprinted in adopted form from [81].

117

6.1.1 Goals

The goals of the Context and Debugging user studies are explained using the Goal-
Question-Metric (GQM) template in Table 6.1 and Table 6.2, respectively.

Analyze the Focus+Context Transition Editor (as an example of our Focus+Context editors)
For the purpose of understanding its effectiveness in alleviating the challenges in remembering
contextual information
With respect to the users’ performance, correctness, efficiency, frequency of experienced
Context-related challenges, and satisfaction
From the perspective of software modellers
In the context of model-editors for UML Class and State-Machine diagram modelling.

Table 6.1: Goal of the Context user study according to GQM template.

Analyze the Interactive Consistency Management interface
For the purpose of understanding its effectiveness in reducing the efforts of debugging models
With respect to the users’ performance, correctness, efficiency, feeling of being disrupted, and
satisfaction
From the perspective of software modellers
In the context of model-editors for UML Class and State-Machine diagram modelling.

Table 6.2: Goal of the Debugging user study according to GQM template.

Recall that, to address the goals of the studies, we proposed the following 10 research
questions in Chapter 5:

• RQ1: Are users of our Focus+Context Transition Editor more effective (i.e., have
higher task completeness score) when developing transitions versus users of other
editors?

• RQ2: Are users of our Focus+Context Transition Editor more efficient (i.e., spend
less time on tasks) when developing transitions versus users of other editors?

• RQ3: Do users of our Focus+Context Transition Editor deliver more correct solutions
when writing transition expressions (i.e., develop more precise transition expressions)
versus users of other editors?

• RQ4: Does our Focus+Context Transition Editor provide a better level of user satis-
faction when developing transition expressions versus other editors?

118

• RQ5: How well does our Focus+Context Transition Editor alleviate Context-related
challenges?

• RQ6: Are users of our Interactive Consistency Management interface more effective
(i.e., create more correct models successfully) versus users of other editors?

• RQ7: Are users of our Interactive Consistency Management interface more efficient
(i.e., spend less time on tasks) in creating precise models versus users of other edi-
tors?

• RQ8: Are users of our Interactive Consistency Management interface more confident
in the correctness of their models (i.e., solutions) versus users of other editors?

• RQ9: Does our Interactive Consistency Management interface provide a better level
of user satisfaction versus other editors?

• RQ10: Do modellers who use our Interactive Consistency Management interface
judge the interface as being too intrusive and disruptive to them given the increased
level of correctness that it provides?

6.1.2 Population and Sampling

The target population of the experiment was industry-level software modellers who develop
models of UML-like languages. However, recruiting such industry-level modellers is always
difficult. In our experiment, we used a mixture of convenience sampling and purposive
sampling approaches to recruit participants who are representative enough of the target
population [7].

We recruited participants by sending an email message to ECE, CS, and SE students at
the University of Waterloo. The email recipients were expected to have sufficient knowledge
of UML tools as well as UML Class and State-Machine diagrams. The following two steps
were taken to ensure that our subjects are as representative as possible of the target
population of UML modellers: 1) We asked prospective subjects about their competency
in creating UML Class and State-Machine diagrams; 2) We asked subjects to answer 10
UML-specific questions and proceeded only with those subjects who could answer all of
the 10 questions. During six months of advertisement, we recruited 18 participants who fit
our requirements. All the 18 subjects participated in both the Context and the Debugging
studies. A summary of the subjects’ occupations, familiarity with UML and experience
with UML modelling tools is provided in Table 6.3. Note that we allowed the participants to

119

Table 6.3: Subjects’ demographics and backgrounds.

Category Sub-Category Count

Occupation
Graduate Student 14
Post-Doc Researcher 1
Software Engineer (Industry) 3

UML Familiarity

Fairly Familiar (Novice) 1
Familiar 6
Very Familiar 8
Strongly Familiar (Experienced) 3

Experience with Model Editors

One to six months 6
Seven to 12 months 5
One year to two years 2
More than two years 5

be among the subjects who participated in our formative user study (described in Chapter
4) because of the small number of individuals who were interested in participating to the
user study. Although there were overlaps on the application domain, the Class diagram,
and the provided pieces of the State-Machine diagrams, we do not consider this an issue
since there was a one-year gap between the formative study and this user study. Moreover,
none of the questions were the same in the user studies.

6.1.3 Compensation

In appreciation of the subjects’ time and commitment, they received an honorarium of $25
per session ($50 for the two user studies) and were given the chance to enter into a draw
and win a prize of a $200 gift card.

6.1.4 Application Domain

We chose a fairly simple Gated Parking Lot system as the application domain in order
to mitigate against the effects of domain knowledge on the participants’ performance.
Moreover, the participants were given the Class diagram of the system in advance and
were asked to study textual descriptions of the Parking Lot domain, the classes, and their
properties (i.e., attributes and operations) to become familiar with the system before the
studies began.

120

Table 6.4: Number of participants per tool.

Our tool Capella VisualParadigm MagicDraw Papyrus

9 3 2 2 2

6.1.5 Treatment Allocation

We employed a randomized Between-Subjects [66] strategy to assign tools to participants.
We selected two participants from the list of our participants (to make a pair) and then
randomly selected one participant in the pair to work with a modelling tool of their own
choice. The other participant in the pair was then assigned to work with our tool. We chose
not to compare our tool against a single tool and instead decided to span over multiple
tools because: 1) selecting a most-fitting tool, if any, as the reference tool was not straight-
forward, 2) it would be difficult to find participants that have enough experience of using
the most-fitting tool, and 3) the resulting participant would be less reflective of the target
population where the users may choose their working tool based on their experience and
background knowledge.

The tool subjects’ choices made in the Context study applied also to the Debugging
study. Table 6.4 shows the distribution of tools used by subjects.

6.1.6 Task Design

We designed nine tasks for the Context user study and eight tasks for the Debugging user
study. Each participant was given structured descriptions of the tasks and was asked to
perform the tasks accordingly. The Context-related tasks included editing the Class and
State-Machine diagrams of a Parking Lot system. The model-editing tasks ask the subject
to set the event, guard or action segments of the transitions so that we can evaluate the
level of difficulty that the subject faces with respect to recollecting the Class diagram’s
elements and gauge the amount of help that is provided by the tool to the subject. For
example:
Task 3: Open the State Machine for Gate D. Find the transition that is labelled as Tran3.
Set the Event, Guard, or Action for Tran3 based on the following description.

• Event: After five seconds (recall that the time object notifies the system every five
seconds).

• Guard: The gate’s sensor does NOT sense blockage.

121

• Action: The gate should become closed; that is, the gate’s position should be set to
down.

The Debugging-related tasks involved editing parts of the model and resolving any
inconsistencies that may occur as a result of that edit. Each task was designed to introduce
a different type of inconsistency (e.g., type error, undefined element error), which could
help us gauge the level of aids that the tools provide to the users to resolve the errors. For
example:
Task 5: The Sensor class has a Blockage attribute with the type of int. Change the Blockage
attribute’s type from int to bool, and fix any inconsistencies that edit may cause.

Some of the debugging tasks were designed to target type-related errors, whereas some
other tasks were designed to cause use-of-undefined-elements errors. Moreover, while some
of the debugging tasks were related to finding pre-existing errors in the edited diagram,
other debugging tasks involved model edits that cause errors in diagrams other than the
one edited.

We designed the tasks to become more complex from the first to the last task in order
to support the users’ learning curve, as prescribed by Pietron et al. [78].

6.1.7 Data Collection Techniques and Design

We collected several metrics to answer our research questions listed in Chapter 5, as ex-
plained below.

6.1.7.1 Performance Metrics

We measured three performance metrics as described below.

• Task Completeness (Success score): It is a universal metric that shows how
effective a subject was in completing a task [7]. It provides compelling evidence
that there is something wrong if a subject cannot successfully finish their task. We
used Level of Success [7] to measure the degree to which a subject was effective in
completing a task. We defined three levels of success:

1. Complete(1.0): A subject completed a task without any assistance. Note that,
in model-editing tasks, a score of Complete does not mean that the task was
error free. A model-editing task is deemed Complete if no errors of omission

122

are performed. Errors of commission are possible. A model-debugging task is
deemed Complete only if all errors are found and fixed.

2. Partially Complete (0.5): A subject completed a task but received help during
the task, such as assistance with the language syntax or clarification about a
model element in the application domain.

3. Incomplete (0.0): A subject was unable to complete a task. For model-editing
tasks, a score of Incomplete means that a subject omitted some aspects of a
task’s requirement, whereas in model-debugging tasks it means a subject could
not locate all of the embedded errors in the model.

4. Generally Complete: This is a traditional metric in the usability literature [7]
that reports the mean average of the success scores for all of the subjects. More
specifically, it refers to the summation of the subjects’ score of completion for
a task (i.e., +1.0 for each subject with a Complete score and +0.5 for each
subject with a Partially Complete score). For instance, if 15 out of 20 subjects
successfully completed the Task 1 and 5 other subjects received help during the
task (i.e., partially completed), then the generally complete score for the task is
calculated as (15 ∗ 1.0) + (5 ∗ 0.5) = 17.5.

• Errors: We measured the number of errors as well. We classified the errors based on
a taxonomy of Well-formedness and Consistency types of errors presented by Lange
et al. [54]:

– Consistency errors are errors that can be temporarily tolerated but that should
be fixed before delivering the model. Consistency errors include: an element
is used but not defined, misspelled element names, incorrect navigation paths
(e.g., g.blockage instead of g.Sensor.blockage), and type-mismatches between
the LHS and RHS of an expression.

– Well-formedness rules are UML conventions that can help maximize the model’s
understandability. Well-formedness errors occurred mostly when a subject used
UML syntax incorrectly, or produced an ill-formed expression (e.g., putting
extra parentheses or quotations). Well-formedness errors can often be detected
through analysis of a single diagram.

For each subject, we counted the number of errors of each error type.

• Efficiency: We also measured the level of efficiency of the subjects per task. In our
study, we used Lostness and Time-on-Task metrics, which are described below.

123

1. Lostness measures how “lost” a subject is when performing a task. The following
three factors contribute to an assessment of lostness: 1) R: the minimum number
of diagrams or dialogues that must be visited to accomplish a task, 2) S : the total
number of diagrams or dialogue-boxes visited while performing a task (counting
revisits), and 3) N : the number of different (unique) diagrams or dialogue-boxes
the subject visited while performing a task. Lostness, L, is then calculated using
the following formula [7][101].

L =

√︃
(
N

S
− 1)2 + (

R

N
− 1)2 (6.1)

Lostness scores range from Zero to One. The higher the score, the more trouble
the user had finding what they want. Smith [101] found that users with a
lostness score of less than 0.4 have no substantial difficulty to fulfill a task,
whereas users with a lostness score of greater than 0.5 are definitely lost. One
can also estimate relative lostness by comparing a subject’s lostness score to the
optimal score (e.g., to the smallest value of lostness among all the subjects) [7].

2. Time-on-Task : is the most popular way of measuring efficiency. It refers to the
time that it takes a user to perform a particular task. In addition, it can also
be thought of as the modelling effort based on Hill’s definition of the modelling
effort [43] described in Chapter 2.

6.1.7.2 Self-Reported Metrics

We asked the subjects about their opinion of their anticipated and perceived actual per-
formance with respect to various aspects of using modelling tools. Specifically, we asked
the subjects to rate their satisfaction, experience with Context-related challenges, perceived
confidence, and perceived intrusiveness, based on the Likert scale ranging from 1 (Strongly
Disagree) to 7 (Strongly Agree):

1. Users’ Satisfaction: To measure users’ satisfaction with their modelling tool, we
used 1) the Usability Metric for User Experience (UMUX-Lite8) usability question-
naires, and 2) expectation and experience ratings.

8We used UMUX-Lite instead of the CSUQ (which we used in the formative study) because UMUX-Lite
is a much shorter questionnaire that measures perceived usability with a non-significant discrepancy from
the longer versions of usability questionnaires such as CSUQ, and is suggested by practitioners [62].

124

Figure 6.1: Post-session experience ratings questions for the Context study.

The UMUX-Lite includes two questions: 1) “[This system’s] capabilities met my
requirements.” and 2) “[This system] is easy to use.”. After each session, the subjects
were asked to answer the UMUX questions based on a 7-point Likert scale (see
questions UMUX.Q1 and UMUX.Q2 in Fig. 6.1 and Fig. 6.2).

Another traditional way of measuring the users’ satisfaction is to collect pre- and
post-study data about how a tool meets their expectations of using the tool. We
collected and analyzed pre-task expectation ratings and post-task experience ratings
and compared them against each other. Specifically, we asked the subjects to read
the descriptions of all the tasks in advance and rate their expectations of how easy
or difficult each task can be. These expectation ratings were later compared to
the subjects’ ratings of the level of difficulty that they actually experienced when
performing the task, to gauge the gap between their expectation and experience
ratings.

2. Experienced Context-Related Challenges: At the end of each session of the

125

Figure 6.2: Post-session experience ratings questions for the Debugging study.

Context study, we asked the subjects to what extent they experienced Context-
related challenges when performing tasks (see Q1, Q2, and Q3 in Fig. 6.1).

3. Perceived Confidence: For the Debugging study, we asked users’ to rate how
confident they were with their level of success in fulfilling the debugging tasks (i.e.,
to what extent they thought they had left any uncaught errors in the model).

4. Perceived Intrusiveness: To measure how intrusive our Consistency Management
interface is, we asked the subjects who used our tool, before the Debugging sessions.
The pre-session expectation questions asked the subjects to rank on a Likert scale
(from 1=Strongly Disagree to 7=Strongly Agree) the extent to which they agreed that
maintaining model consistency on-the-fly while model editing is counter-productive
(disruptive when performing modelling tasks). The questions were:

• 1) To what extent do you agree that inconsistencies should be prevented imme-
diately rather than allowing them to exist and fix them at a later time?

126

• 2) To what extent do you agree that maintaining inconsistencies at all time is
counter-productive and intrusive (disrupting the focus tasks)?

At the end of the Debugging study, we asked subjects to rank the extent to which they
felt that the interruptions by the Consistency Management editor were disruptive (see
Q3 and Q4 in Fig. 6.2).

6.2 Execution and Practical Considerations

We conducted the user studies in 36 separate sessions: 18 sessions per study (two sessions
per subject) and nearly 90 minutes per session. A subject could decide if they preferred to
participate in either of the Context study or the Debugging study, or both. All subjects
were eager to participate in both of the user studies. The order of the studies was not
deemed to be significant; however, we decided to conduct the Context user study before
the Debugging study because we wanted all the subjects to take the same procedure instead
of letting them decide about the order of the studies. Each session was scheduled separately
based on the availability of the researcher and the subject. A subject could choose if they
wanted to have their Debugging session right after their Context session, or if they preferred
to postpone their Debugging session to a later time but within two weeks of their Context
session. In our case, all the subjects preferred to perform the Debugging session right after
the Context session. However, they could have a 15-minutes break between the sessions to
refresh themselves.

The subjects were asked to perform their tasks using a Windows desktop in the re-
searcher’s office. We designed and used macro-based Microsoft Excel workbooks to au-
tomate the process of data-collection. Furthermore, we designed an individual sheet for
each task, which included the task’s description and the post-task rating questions related
to that task. For example, there were nine sheets corresponding to the nine tasks of the
Context study. For each task, the subject was supposed to open the corresponding sheet
of the task, read the task’s description, perform the task using the tool, and answer the
post-task ratings of the task. Once they were done with a task, they could move on to
the next sheet and perform the same procedure for the next task. The time on each task
was automatically recorded by a macro that started a timer when the subject opened the
task’s sheet and ended the timer when the subject switched to the next sheet (i.e., next
task). By doing so, we could collect and store all types of data, such as the subject’s times
on tasks and responses to the expectation and experience questionnaires, using the excel
files.

127

Figure 6.3: The work-flow of a subject’s session.

As shown in Fig. 6.3, the studies consisted of four main segments: Preparation and
Pre-session Activities, Collecting Pre-Task Expectation Ratings, Performing the Tasks,
and Post-Session Activities. We explain these segments as follows.

6.2.1 Preparation and Pre-session Activities

Each session started with a greeting to convey an informal atmosphere for the subject.
We wanted the subjects to be relaxed and comfortable, so that they would perform the
study tasks as effective as possible. We asked them to read and sign the consent form, and
ensured that they knew their rights during the session.

As a second step, each subject was asked to view a preparation video which aimed to

128

familiarize them with the goal and methods of the study (e.g., think-out-loud protocol).
The video made it clear that it was the tools that were under scrutiny and not them. The
main rationale for using a video rather than in-person preparation was to mitigate the risks
of providing different information and introductions to different subjects.

To gain knowledge about the application domain, the subjects were given a textual
description of the Gated Parking-Lot domain and were asked to read it carefully. Moreover,
the domain description included the Class diagram and descriptions of all of the diagram’s
model elements (e.g., classes, operations, attributes). Since we used the same application
domain for both of the Context and Debugging studies, we offered the description only
before the Context study to save some time during the Debugging sessions. However, the
subjects were able to refer to the description at any point during the study.

Before each Debugging session, we asked the subjects to answer (based on a Likert
scale) a few pre-session expectation questions about their views on whether it would be
disruptive to be warned about and required to resolve model errors as they occur during
model editing. These questions were:

• To what extent do you agree that inconsistencies should be resolved immediately rather
than allowing them to exist and fixing them at a later time?, and

• To what extent do you agree that maintaining model consistency at all times is
counter-productive and intrusive (disrupting the focus tasks)?

6.2.2 Collecting Pre-Task Expectations Ratings and Performing
the Tasks

Each task was preceded by a pre-task expectation rating. A pre-task expectation rating
asked the subject to read a task’s description and estimate how easy or difficult they
thought the task would be. We did all the pre-task ratings at the beginning of the session
because we wanted to avoid the learning effect that performing a task could have on the
ratings of the next task.

After collecting the pre-session ratings, all the subjects went through a “warm-up”
phase before each Context and Debugging session, in which the researcher and the subject
walked through the tool and practiced a mock exercise (in the Parking-Lot domain) in
order to help the subject recall the relevant tools’ features and become ready to use the
tool. During the session, the subject was required to use their assigned or chosen tool
(depending on whether they were assigned to use our tool or were assigned to use the

129

existing UML model editor of their choice) to perform the tasks. Moreover, the subject
was asked to express their thoughts out-loud during the session, to enable us capture and
understand their cognitive challenges. We recorded the subjects’ voice and screen-captured
their work with the tool for later analysis.

Furthermore, each task was followed by a post-task experience rating. Post-task expe-
rience rating asked the subject to rank the level of difficulty that they actually experienced
when performing the task.

6.2.3 Post-session Activities

At the end of each session, the subject was asked to answer the post-session experience
ratings and UMUX satisfaction questionnaires. While the UMUX questions were the same
between the Context and Debugging studies, the Post-Session Experience Ratings questions
varied between the two studies because the goals of the studies were different.

6.2.4 Practical Considerations

Motivating subjects to fulfil a task in a timely manner while performing at their best and
providing high-quality solutions is a delicate balancing act. If we were to impose time
constraints on the subjects, it can adversely impact the quality of their solutions. Thus,
we allowed the subjects to perform at their own pace and self-announce the completion of
a task. The downside of this approach is that a subject could spend an excessive amount
of time performing a task leading to unrealistically long and useless measurements of times
on the tasks. As an attempt to achieve balance between good performance on tasks and
completion of all tasks, we applied the following considerations:

• We allocated a no-progress limit of ten minutes for each task. That is, if a subject
did not show any sign of progress within ten minutes, they would be interrupted by
the researcher and asked if they needed any assistance (e.g., “Do you need any help
or do you have any question that I can help with?”). If the subject asked for the
help, then the researcher would provide a hint to fulfil the task and the subject’s task
success would subsequently be scored between Incomplete (0) or Partially Complete
(0.5). Such subjects were given another five minutes after the given hint to complete
the task. If a subject was still unable to complete the task after the five minutes,
then the researcher asked her to switch to the next task and the task success was
considered as Incomplete (0).

130

• Instead of offering an hourly rate, we offered a fixed honorarium of $25 in return
for each session. Hence, the subject knew that they would receive the same amount
of compensation even if they completed their tasks earlier than expected. This also
avoided the risk of subjects playing around with the tool to receive a higher payment.

• The subject was allowed to leave the experiment as soon as they completed the tasks.

6.3 Results

This section presents the results of the Context and Debugging user studies with respect
to the aforementioned research questions. For each study, we apply the Mann Whitney U
test to analyse the effects of using our tool versus using other tools. We use Mann-Whitney
U test for the quantitative analysis of our results over other tests such as two-sample t-
test because of its strength in producing more precise results in cases of small numbers of
participants and its nature of not requiring normally distributed samples [100]. All tests
were performed using Excel’s statistical package under the criteria of having a significance
level of 0.05 (i.e., 95% confidence interval). Based on the results of the statistical tests, we
can affirm that all effects were statistically significant at the α = 0.05 significance level.

6.3.1 Results of the Context User Study

The Context user study was designed to assess our Focus+Context Transition Editor
against five research questions, as described below.

6.3.1.1 RQ1: Are users of our Focus+Context Transition Editor more effective
(i.e., have higher task completeness score) when developing transitions
versus users of other editors?

Task Completeness (Success): For each task, we computed a mean score for all sub-
jects on that task. The mean success score for all the participants, shown in Fig. 6.4,
demonstrates that users of our tool scored higher success scores versus users of the other
editors for all the tasks. It also shows that the difference in the success scores of the two
groups of users is much higher when the task’s difficulty is higher (see tasks 8 and 9).
The users’ cognitive effort is higher when the task difficulty is higher; in these cases, the
extra tooling support might play a more important role in improving users’ performances.

131

Table 6.5: Context Study: Results of each subject’s success in completing each task

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9

P1 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0
P2 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.0
P3 0.5 1.0 0.5 0.5 1.0 0.0 0.5 0.0 0.0
P4 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.5 0.0
P5 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5
P6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P7 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P8 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5
P9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0
P10 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P11 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P12 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P13 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P14 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P15 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P16 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0
P17 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5
P18 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0

mean 0.89 1.00 0.89 0.89 1.00 0.83 0.94 0.78 0.39
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
stdev 0.22 0.00 0.22 0.22 0.00 0.35 0.17 0.36 0.49

mean* 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89
median* 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
stdev* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22

* Denotes the subjects who used our tool.

132

Figure 6.4: Context Study: Mean success rate per task for users of our editor vs. users of
other editors.

Another interesting observation from the results is that for Task 6, where the subjects
only needed to copy/reuse elements of an existing transition in another transition, there
are two subjects whose success score is not 1 (i.e., complete success). We found that the
user may forget what they just memorized (i.e., the original transition’s elements) and per-
form their task based on their incomplete memory. While this incomplete memory recall
can lead to some small (but important) errors such as misspelling an element’s name, it
can also lead to major errors such as writing wrong navigation expressions (e.g., writing
gate.transponder instead of gate.sensor.transponder). The results of the subjects’ success
scores in completing the tasks are presented in Table 6.5. Please note that the order of
participants shown in the table (and the following tables) does not reflect their order of
participation in the study. The order shown here is based on the order of analysis we have
done on the subjects.

6.3.1.2 RQ2: Are users of our Focus+Context Transition Editor more efficient
(i.e., spend less time on tasks) when developing transitions versus
users of other editors?

Time on Task: Fig. 6.5 shows the mean time on each task for users of our editor versus
the mean time on task for the users of other editors. For a more meaningful result, we

133

Table 6.6: Context Study: Results of the subjects’ time on each task (in minutes).

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9

P1 04:42 04:11 04:10 05:10 02:19 02:13 03:06 01:54 16:06
P2 08:43 07:39 03:14 02:07 00:44 02:16 02:57 02:36 18:40
P3 04:12 03:25 05:11 02:23 01:37 05:13 06:48 04:31 11:00
P4 06:40 02:59 06:21 01:57 00:23 04:07 02:50 08:41 12:48
P5 * 04:08 06:06 02:03 01:51 00:56 00:50 02:34 02:32 26:24
P6 02:59 02:47 03:27 01:43 01:44 02:19 02:46 02:22 15:09
P7 * 02:27 04:49 02:36 03:30 01:17 01:30 02:00 04:46 11:06
P8 * 02:41 02:40 03:02 02:21 00:57 01:47 02:38 02:05 11:45
P9 10:12 03:50 03:36 05:45 02:07 04:09 01:43 03:55 12:34
P10 * 02:54 01:55 05:08 02:52 00:50 01:58 03:19 02:34 13:30
P11 * 03:44 07:49 05:40 05:25 01:02 02:49 04:49 04:31 19:18
P12 * 02:14 04:55 02:24 02:09 00:47 01:27 02:29 02:32 09:41
P13 * 02:55 03:59 02:33 01:44 01:10 01:12 02:31 02:14 10:51
P14 * 01:55 03:08 01:25 01:38 00:45 00:49 02:30 01:57 09:46
P15 * 02:10 04:02 01:58 03:11 02:29 01:40 02:43 02:03 13:19
P16 09:37 07:06 06:21 04:21 01:36 05:36 04:48 04:19 14:20
P17 06:18 04:16 04:24 02:32 01:46 02:34 04:52 03:49 13:21
P18 08:04 04:23 04:46 02:34 01:53 03:11 04:50 02:56 17:36

geo-mean 06:22 04:16 04:29 02:54 01:24 03:18 03:34 03:32 14:26
median 06:40 04:06 03:32 02:27 01:13 02:15 02:48 02:35 13:20
stdev 02:31 01:43 01:32 01:20 00:36 01:25 01:19 01:40 04:10

geo-mean* 02:43 04:03 02:43 02:33 01:04 01:27 02:45 02:39 13:13
median* 02:41 04:02 02:33 02:21 00:57 01:30 02:34 02:32 11:45
stdev* 00:44 01:48 01:27 01:12 00:32 00:37 00:49 01:04 05:30

* Denotes the subjects who used our tool.

134

Figure 6.5: Context Study: Average time per task for users of our editor vs. users of other
editors.

included in the average only the times on completely successful and partially successful
tasks. As shown in the figure, the subjects who used our tool spent less time to perform
the tasks than the users of the other editors.

Table 6.6 presents the results of the times on tasks for all the subjects for the Context
study. As shown in the table, the time spent on Task 6 for the users who used our editor is
much less than the time spent on the task for the users of other editors. The only reason for
this average time difference is that users of other tools used the copy and paste feature of
the tools but the users of our tool took advantage of the reuse feature that we embedded in
our transition editor (recall that this task asked the users to reuse elements of an existing
transition). For the other tasks, we believe that the improvement in the times on the tasks
is because of the sliced view of the contextual information, the search capability, and the
drag-n-drop mechanism that are provided by our editor. Furthermore, it can be noticed
that among the users who used other tools, P6 performed better than others. We found
that P6 declared himself to be a Senior Software Engineer in the industry with a high level
of competency with UML and more than two years of experience with UML tools.

135

T
ab

le
6.

7:
C

on
te

x
t

S
tu

d
y
:

L
os

tn
es

s
re

su
lt

s
fo

r
th

e
ta

sk
s

fo
r

18
su

b
je

ct
s.

P
a
rt
ic
ip
a
n
t

T
a
sk
1

T
a
sk
2

T
a
sk
3

T
a
sk
4

T
a
sk
5

T
a
sk
6

T
a
sk
7

T
a
sk
8

T
a
sk
9

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

P
1

1
,2
,4

0
.7
1

1
,2
,5

0
.7
8

1
,2
,3

0
.6
0

1
,2
,9

0
.9
2

1
,1
,1

0
.0
0

1
,2
,7

0
.8
7

1
,2
,2

0
.5
0

2
,3
,4

0
.4
2

2
,2
,4

0
.5
0

P
2

1
,2
,1
1

0
.9
6

1
,3
,3

0
.6
7

1
,2
,3

0
.6
0

1
,2
,3

0
.6
0

1
,2
,3

0
.6
0

1
,3
,6

0
.8
3

1
,2
,3

0
.6
0

2
,3
,3

0
.3
3

2
,6
,3
3

1
.0
0

P
3

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,2
,4

0
.7
1

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,2
,5

0
.7
8

1
,1
,1

0
.0
0

2
,1
,1

0
.0
0

2
,2
,5

0
.6
0

P
4

1
,2
,2

0
.5
0

1
,3
,3

0
.6
7

1
,2
,2

0
.5
0

1
,2
,7

0
.8
7

1
,3
,3

0
.6
7

1
,3
,1
0

0
.9
7

1
,2
,5

0
.7
8

2
,2
,3

0
.3
3

2
,4
,1
2

0
.8
3

P
5
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

2
,1
,1

0
.0
0

2
,2
,4

0
.5
0

P
6

1
,2
,3

0
.6
0

1
,2
,5

0
.7
8

1
,2
,3

0
.6
0

1
,2
,3

0
.6
0

1
,2
,3

0
.6
0

1
,2
,3

0
.6
0

1
,2
,3

0
.6
0

2
,3
,4

0
.4
2

2
,4
,8

0
.7
1

P
7
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

2
,2
,2

0
.0
0

2
,2
,2

0
.0
0

P
8
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

2
,1
,1

0
.0
0

2
,2
,2

0
.0
0

P
9

1
,2
,5

0
.7
8

1
,1
,1

0
.0
0

1
,2
,5

0
.7
8

1
,2
,5

0
.7
8

1
,1
,1

0
.0
0

1
,2
,1
1

0
.9
6

1
,2
,3

0
.6
0

2
,3
,4

0
.4
2

2
,3
,6

0
.6
0

P
1
0
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

2
,2
,2

0
.0
0

2
,2
,2

0
.0
0

P
1
1
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

2
,2
,2

0
.0
0

2
,2
,2

0
.0
0

P
1
2
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

2
,2
,2

0
.0
0

2
,2
,2

0
.0
0

P
1
3
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

2
,2
,2

0
.0
0

2
,2
,4

0
.5
0

P
1
4
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

2
,2
,2

0
.0
0

2
,2
,2

0
.0
0

P
1
5
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

2
,2
,2

0
.0
0

2
,2
,2

0
.0
0

P
1
6

1
,2
,5

0
.7
8

1
,2
,7

0
.8
7

1
,2
,9

0
.9
2

1
,2
,3

0
.6
0

1
,2
,3

0
.6
0

1
,2
,7

0
.8
7

1
,2
,5

0
.7
8

2
,3
,3

0
.3
3

2
,1
,1

0
.0
0

P
1
7

1
,2
,7

0
.8
7

1
,2
,5

0
.7
8

1
,2
,5

0
.7
8

1
,2
,5

0
.7
8

1
,2
,3

0
.6
0

1
,2
,3

0
.6
0

1
,2
,3

0
.6
0

2
,3
,4

0
.4
2

2
,3
,8

0
.7
1

P
1
8

1
,2
,5

0
.7
8

1
,2
,5

0
.7
8

1
,1
,1

0
.0
0

1
,2
,5

0
.7
8

1
,1
,1

0
.0
0

1
,2
,2

0
.5
0

1
,2
,3

0
.6
0

2
,3
,4

0
.4
2

2
,3
,1
2

0
.8
2

m
ea

n
0
.6
6

0
.5
9

0
.6
1

0
.6
6

0
.3
4

0
.7
8

0
.5
6

0
.3
4

0
.6
4

m
ed

ia
n

0
.7
8

0
.7
8

0
.6
0

0
.7
8

0
.6
0

0
.8
3

0
.6
0

0
.4
2

0
.7
1

st
d
ev

0
.2
8

0
.3
4

0
.2
6

0
.2
7

0
.3
2

0
.1
7

0
.2
3

0
.1
3

0
.2
8

effi
ci
en

t
su

b
j.

(<
0
.5
)

1
1
.1
1
%

2
2
.2
2
%

1
1
.1
1
%

1
1
.1
1
%

4
4
.4
4
%

0
.0
0
%

1
1
.1
1
%

1
0
0
.0
0
%

1
1
.1
1
%

in
effi

ci
en

t
su

b
j.

(>
=

0
.5
)

8
8
.8
9
%

7
7
.7
8
%

8
8
.8
9
%

8
8
.8
9
%

5
5
.5
6
%

1
0
0
.0
0
%

8
8
.8
9
%

0
.0
0
%

8
8
.8
9
%

m
ea

n
*

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.1
1

m
ed

ia
n
*

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

st
d
ev

*
0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.2
2

effi
ci
en

t
su

b
j.

(<
0
.5
)
*

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

7
7
.7
8
%

in
effi

ci
en

t
su

b
j.

(>
=

0
.5
)
*

0
.0
0
%

0
.0
0
%

0
.0
0
%

0
.0
0
%

0
.0
0
%

0
.0
0
%

0
.0
0
%

0
.0
0
%

2
2
.2
2
%

*
D
en

o
te
s
th

e
su

b
je
ct
s
w
h
o
u
se
d
o
u
r
to
o
l.

136

Figure 6.6: Context Study: Average lostness score per task for users of our editor vs. users
of other editors.

Lostness: Fig. 6.6 shows the average of the subjects’ lostness scores broken down
by task. The participants who used other editors were “lost” in all of the tasks (except
for tasks 5 and 8), whereas the users of our editor showed almost no sign of being lost
(except for Task 9). This is mostly because of the contextual view that is provided by
our tool, which reduced the users’ need to switch back and forth among different diagrams
to recollect contextual information relevant to the tasks. For Task 9, which was a more
difficult task, users needed a more comprehensive view of the Class diagram rather than
just a minimal sliced view to make more reasonable and more thorough changes. Thus,
the lostness score (slightly) increased for the users of our editor compared to the previous
eight tasks. However, it is still much less than the average lostness score obtained from
the users of other editors. The result of the lostness scores is presented in Table 6.7. The
table shows the percentage of lost subjects (i.e., inefficient subjects) who used other tools
versus the percentage of lost subjects who used our tool. Moreover, one can notice that
for a more complex task (i.e., Task 9), the users of our tool also showed signs of lostness.
This suggests that our tool may need more thorough enhancements to cope with the task
complexity.

137

Table 6.8: Context Study: Result of the subjects’ errors on each task.

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9

P1 1 1 0 1 0 0 0 0 0
P2 3 1 2 1 1 0 0 0 3
P3 1 3 2 2 1 2 0 0 0
P4 2 1 1 2 1 0 1 0 0
P5 * 0 0 0 0 0 0 0 0 0
P6 2 2 1 1 0 0 0 0 4
P7 * 0 0 0 0 0 0 0 0 0
P8 * 0 0 0 0 0 0 0 0 0
P9 2 1 1 0 1 0 0 0 1
P10 * 0 0 0 0 0 0 0 0 0
P11 * 0 0 0 0 0 0 0 0 0
P12 * 0 0 0 0 0 0 0 0 0
P13 * 0 0 0 0 0 0 0 0 0
P14 * 0 0 0 0 0 0 0 0 0
P15 * 0 0 0 0 0 0 0 0 0
P16 1 0 1 0 0 0 0 0 0
P17 3 2 0 0 0 0 1 0 0
P18 2 2 1 0 2 0 0 0 2

mean 1.89 1.44 1.00 0.78 0.67 0.22 0.22 0.00 1.11
median 2.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
stdev 0.78 0.88 0.71 0.83 0.71 0.67 0.44 0.00 1.54

mean* 0 0 0 0 0 0 0 0 0
median* 0 0 0 0 0 0 0 0 0
stdev* 0 0 0 0 0 0 0 0 0

* Denotes the subjects who used our tool.

138

6.3.1.3 RQ3: Do users of our Focus+Context Transition Editor deliver more
correct solutions when writing transition expressions (i.e., develop
more precise transition expressions) versus users of other editors?

Task Errors: The results of our analysis on the subjects’ errors on the tasks (see Fig.
6.7 and Table 6.8) show that the subjects who used our tool made fewer errors (in fact
no errors at all) than the subjects who used other tools. The main reason to this is that
our tool employs a correct-by-construction approach (and a formal language). Our tool
also tries to automate most of the users’ tasks which reduce the chance of slips and lapse.
For instance, the users of our tool will never make a spelling error when writing the name
of an element in a guard condition, whereas the users of other editor might make such
mistakes because of writing their transition guards in plain text. We believe that, the
result of the errors on the tasks are meant to be incorporated with the results from other
research questions to become more meaningful. For instance, we will later show that the
correct-by-construction can improve the correctness and at the same time behave in a way
that it does not disrupt users from their tasks.

The results also show that the average number of errors made by subjects per task
decreased from Task 1 to Task 8. The main reason for this is that in the later tasks
we provided the subjects with more guidelines on how to create a correct model. For
instance, Task 8 mentions: “Use a function named Transponder. You may need to create
this function in the Sensor class before setting it in the Event.”. Therefore, the subjects
were made aware of the steps that they should take towards creating a correct transition
expression.

According to the results, the subjects who used Capella (i.e., P1, P2, and P16) delivered
more correct models (average of 0.59 errors for all of the tasks) versus the subjects who used
other tools. The reason to this is the Content-Assist feature that is embedded in Capella,
which helps in writing transition’s event, guard and actions. Although their Content-Assist
is a very basic one, but it showed to be effective in improving the correctness of subjects’
solutions. More specifically, using the Content-Assist feature, Capella users made fewer
basic errors such as spelling errors, wrong navigation expressions, or referencing to an
undefined element. Similarly, the subjects who used Visual Paradigm (i.e., P9 and P17)
delivered more correct solutions than the subjects who used MagicDraw and Papyrus.
The reason is that, Visual Paradigm also allows the user to refer to a model element when
developing transition’s events and actions. Although such a feature also exists for Papyrus,
it is considered to be complex using the tool (i.e., lack of usability). Therefore, users of
tools such as Papyrus prefer to write the transitions in plain text, which may introduce
more errors.

139

Figure 6.7: Context Study: Average number of errors per task made by users of our editor
vs. users of other editors.

140

T
ab

le
6.

9:
C

on
te

x
t

S
tu

d
y
:

P
os

t-
se

ss
io

n
ex

p
er

ie
n

ce
ra

ti
n

gs
.

P
ar
ti
ci
p
an

t
C
on

te
x
t
(Q

1)
S
w
it
ch

(Q
2)

R
el
at
io
n
s
(Q

3)
S
at
is
fa
ct
io
n
(Q

4)
C
ap

ab
il
it
y
(U

M
U
X
.Q

1
)

U
sa
b
il
it
y
(U

M
U
X
.Q

2
)

P
1

4
6

4
6

6
7

P
2

4
6

6
6

5
5

P
3

7
4

7
5

3
2

P
4

5
2

0
2

4
2

P
5
*

1
2

1
6

6
7

P
6

6
7

6
2

2
2

P
7
*

1
2

1
6

7
7

P
8
*

2
1

3
5

5
5

P
9

6
7

5
2

3
2

P
10

*
1

2
1

6
6

6
P
11

*
2

1
2

6
5

6
P
12

*
2

3
2

6
6

6
P
13

*
3

2
3

6
6

5
P
14

*
1

1
1

7
6

6
P
15

*
2

2
2

5
6

6
P
16

3
4

4
3

3
3

P
17

5
6

5
3

2
4

P
18

6
7

7
2

2
2

m
ea
n

5.
11

5.
44

4.
89

3.
44

3.
33

3
.2
2

m
ed

ia
n

5.
00

6.
00

5.
00

3.
00

3.
00

2
.0
0

st
d
ev

1.
27

1.
74

2.
15

1.
74

1.
41

1
.7
9

m
ea
n
*

1.
67

1.
78

1.
78

5.
89

5.
89

6
.0
0

m
ed

ia
n
*

2.
00

2.
00

2.
00

6.
00

6.
00

6
.0
0

st
d
ev
*

0.
71

0.
67

0.
83

0.
60

0.
60

0
.7
1

*
D
en

o
te
s
th

e
su

b
je
ct
s
w
h
o
u
se
d
o
u
r
to
o
l.

141

Figure 6.8: Context Study: Average satisfaction scores for users of our editor vs. users of
other editors.

6.3.1.4 RQ4: Does our Focus+Context Transition Editor provide a better
level of user satisfaction when developing transition expressions versus
other editors?

We measured the subjects’ opinions of their satisfaction by asking three post-session ques-
tions, i.e., Q4, UMUX.Q1, and UMUX.Q2 shown in Fig. 6.1. Recall that Q4 asked the
users to rate whether their experience of using the tool was beyond their initial expecta-
tion or below. The UMUX.Q1 and UMUX.Q2 also asked the users to rate how well the
tool capabilities met their requirements and how easy-to-use the tool was, respectively.
As shown in Fig. 6.8, while the subjects who used other tools expressed a neutral level
of satisfaction (i.e., mean value of 4) for the three questions, subjects who used our tool
declared to be satisfied with our tool (mean value of 6). See Table 6.1 for the results.

Also, we compared the pre-task expectation ratings (see Table 6.10) and post-task
experience ratings (see Table 6.11), comparing the ratings of subjects who used our tool
versus the ratings of subjects who used other tools. The difference between the ratings of
the two classes of subjects also show that our tool could better meet the users’ expectations.
One can notice that the users of other tools have lower expectation ratings of their tools
than the users of our tool. Based on our observations, the subjects who used our tool rated
more conservatively because they were not familiar with our tool. That is, they took into

142

Table 6.10: Context Study: Pre-task expectation ratings.

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9

P1 2 2 2 2 2 2 2 2 5
P2 3 4 3 3 2 2 2 2 6
P3 1 1 1 1 1 1 1 4 6
P4 1 2 2 1 1 1 4 2 5
P5 * 2 3 1 2 2 2 4 3 7
P6 3 3 3 3 2 2 3 3 4
P7 * 3 3 4 3 3 4 5 5 6
P8 * 3 3 3 3 3 4 4 4 5
P9 2 3 3 3 2 1 6 4 6
P10 * 2 3 4 4 2 3 5 6 7
P11 * 2 3 4 2 2 4 5 4 6
P12 * 3 5 5 2 2 2 5 3 6
P13 * 3 3 4 4 2 3 5 4 6
P14 * 3 4 3 3 2 2 4 3 6
P15 * 3 4 3 2 2 5 5 3 6
P16 2 2 3 3 2 2 3 4 6
P17 2 2 2 2 1 1 3 3 6
P18 1 1 2 2 1 1 2 2 5

mean 1.89 2.22 2.33 2.22 1.56 1.44 2.89 2.89 5.44
median 2.00 2.00 2.00 2.00 2.00 1.00 3.00 3.00 6.00
stdev 0.78 0.97 0.71 0.83 0.53 0.53 1.45 0.93 0.73

mean* 2.67 3.44 3.44 2.78 2.22 3.22 4.67 3.89 6.11
median* 3.00 3.00 4.00 3.00 2.00 3.00 5.00 4.00 6.00
stdev* 0.50 0.73 1.13 0.83 0.44 1.09 0.50 1.05 0.60

* Denotes the subjects who used our tool.

143

Table 6.11: Context Study: Post-task experience ratings.

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9

P1 4 4 4 6 5 2 3 3 5
P2 4 4 4 5 4 4 4 4 7
P3 2 2 4 2 1 3 3 5 7
P4 1 2 2 2 1 2 3 5 3
P5 * 1 1 1 1 1 1 1 1 5
P6 2 3 4 3 2 5 4 5 7
P7 * 1 2 1 2 1 1 2 2 4
P8 * 1 2 3 2 1 2 3 1 4
P9 4 6 4 6 5 4 7 6 7
P10 * 1 2 4 3 1 1 3 2 6
P11 * 2 3 3 2 2 2 3 3 5
P12 * 1 3 2 1 1 1 2 2 4
P13 * 1 2 1 1 1 1 2 1 3
P14 * 1 2 1 1 1 1 1 1 3
P15 * 2 3 1 2 2 1 2 1 3
P16 3 3 4 4 3 4 5 5 7
P17 3 4 3 2 1 2 5 5 7
P18 3 3 4 3 2 3 4 3 7

mean 2.89 3.44 3.67 3.67 2.67 3.22 4.22 4.56 6.33
median 3.00 3.00 4.00 3.00 2.00 3.00 4.00 5.00 7.00
stdev 1.05 1.24 0.71 1.66 1.66 1.09 1.30 1.01 1.41

mean* 1.22 2.22 1.89 1.67 1.22 1.22 2.11 1.56 4.11
median* 1.00 2.00 1.00 2.00 1.00 1.00 2.00 1.00 4.00
stdev* 0.44 0.67 1.17 0.71 0.44 0.44 0.78 0.73 1.05

* Denotes the subjects who used our tool.

144

account the learning curve of the tool as well. However, this unfamiliarity was not true
because we performed a warm-up task afterwards. Also, we realized that a rating scale of
1 to 7 was too wide for our purpose. We can only draw a qualitative conclusion indicating
that whether the user’s experience were above their expectation or below. Thus, we can
conclude that, in a qualitative manner, the subjects who used our tool were more satisfied
based on their initial expectation of using the tool versus the subjects who used other tools.
However, we cannot conclude that the users of our tool were significantly more satisfied
versus the users of other tools.

Furthermore, when analysing the verbal expressions of the users, we found that having
distinguished input text-boxes for each of the event, guard, and action segments of a
transition could improve users’ experience of developing transitions. Additionally, many of
the users who used our editor expressed their satisfaction by saying “Nice” at the event of
the task. This could be because either they were satisfied with the editor or just because
of experiencing a new way of writing transitions (we do not know which one). What is
important to mention is that, the number of users who made negative expressions when
using our editor is less than the number of users who used other editors. This can also be
due to the fact that they were excited to experience a new tool or they just preferred to be
less harsh and provide more constructive feedback about the tool (because of the presence
of the researcher). In contrast, the users who used other editors showed signs of frustration
(e.g., sighs) at different points in their sessions. Moreover, one of the users (P18) of other
editors mentioned that: “Now that I know I am being tested for the usability of the tool,
I pay more attention to it and I wonder why it [the interface design] is like this. I feel no
one asked for users’ opinion when designing it.”.

6.3.1.5 RQ5: How well does our Focus+Context Transition Editor alleviate
Context-related challenges?

We used self-reported metrics to assess the Context-related challenges that the subjects
faced when using the model editors. As mentioned earlier, we used three questions to
measure the extent to which each subject experienced Context-related challenges (i.e., Q1,
Q2, and Q3 in Fig. 6.1). Recall that Q1 asked about the challenges of relying on memory,
Q2 asked about the challenges of switching focus diagrams, and Q3 asked about challenges
of knowing about the relationships between artifacts.

The results of the subjects’ answers to the Context-related challenges are presented in
Table 6.9. Also, the average of the answers to each question for the subjects who used
our editor versus the subjects who used other editors is depicted in Fig. 6.9. As can be

145

Figure 6.9: Context Study: Context-related challenges experienced on average by users of
our editor vs. users of other editors.

seen, Context-related challenges were deemed to be experienced more than twice as much
by users of other editors than by users of our editor.

The results of the lostness scores can also lead to the same conclusion about the users’
experienced level of Context-related challenges, because one of the indicators of expe-
riencing Context-related challenges is the number of switches to other diagrams. More
specifically, in all of the tasks, the user needed to switch to the Class diagram to recall
the contextual information that was relevant to performing a task. By dividing the total
number of Class diagram views for all the tasks by 9 (number of tasks in the study), we
can find that the average number of views for the Class diagram is equal to (126/9) = 14
for the users who used other editors and (13/9) = 1.44 for the users of our tool. This shows
a significant improvement in the number of context switches between diagrams, which can
indicate a significant improvement in alleviating the Context-related challenges.

The results of the analysis of the users’ verbal statements also confirm the above re-
sults. We found that most of the users who used other editors expressed their experience
of Context-related challenges during the sessions. For instance, one of the users (P18) ex-
pressed his Context-related challenges by saying: “I feel I am more busy with remembering
the elements than modelling itself.”. On the contrary, the users who used our editor did
not make such strong dissatisfaction statements. Rather, they made positive statements

146

about the Focus+Context Transition Editor. For example, a user (P11) said: “It’s good
we have search [feature] here”.

147

T
ab

le
6.

12
:

S
u

m
m

ar
y

of
th

e
re

su
lt

s
of

ve
rb

al
an

al
y
si

s
fo

r
th

e
C

on
te

x
t

st
u

d
y.

O
v
e
ra

ll
C
o
n
te
x
t

R
e
u
se

S
a
ti
sf
a
c
ti
o
n

S
y
n
ta

x
S
u
b
j.

N
e
g
a
ti
v
e

P
o
si
ti
v
e

N
e
g
.

P
o
s.

N
e
g
.

P
o
s.

N
e
g
.

P
o
s.

N
e
g
.

P
o
s.

P
1

7
1

4
0

1
1

0
0

2
0

P
2

4
1

4
0

0
1

0
0

0
0

P
3

2
0

2
0

0
0

0
0

0
0

P
4

7
0

2
0

5
0

0
0

0
0

P
5*

0
1

0
0

0
1

0
0

0
0

P
6

5
4

1
0

0
1

3
2

1
1

P
7*

4
5

1
1

0
1

1
3

2
0

P
8*

3
2

0
0

0
0

2
2

1
0

P
9

4
0

3
0

1
0

0
0

0
0

P
10
*

1
4

1
1

0
0

0
2

0
1

P
11
*

4
4

1
0

0
1

2
3

1
0

P
12
*

0
1

0
0

0
0

0
1

0
0

P
13
*

0
2

0
0

0
1

0
1

0
0

P
14
*

1
4

0
0

0
1

0
3

1
0

P
15
*

1
4

1
1

0
1

0
2

0
0

P
16

6
3

2
1

0
0

2
2

2
0

P
17

6
1

2
0

1
0

1
1

2
0

P
18

4
1

1
0

0
1

3
0

0
0

T
ot
al

N
o.

of
C
om

m
en
ts

on
O
u
r

T
o
ol

1
4

2
6

4
3

0
6

5
1
6

5
1

T
ot
al

N
o.

of
C
om

m
en
ts

on
O
th
er

T
o
ol
s

4
5

1
2

2
1

1
8

4
9

6
7

1

N
o.

of
S
u
b
je
ct
s
w
h
o
C
om

m
en
te
d

on
O
u
r
T
o
ol

6
8

4
3

0
6

3
7

4
1

N
o.

of
S
u
b
je
ct
s
w
h
o
C
om

m
en
te
d

on
O
th
er

T
o
ol
s

9
7

9
1

4
4

4
4

4
1

*
D
en

o
te
s
th

e
su

b
je
ct
s
w
h
o
u
se
d
o
u
r
to
o
l.

148

6.3.1.6 Summary of Verbal Expressions

Table 6.12 shows a summary of the results of the verbal analysis performed on the subjects’
verbal expressions for the Context study. As can be seen, we coded the expressions into
four categories:

• Context : Remembering contextual information. An example of a positive comment is
“isRestStartTime [referring to the element in the Class diagram]? What was that?”,
and an example of a negative comment is “[While the subject was saying:] What was
the name of . . . O! Yeah, here it is!”.

• Reuse: Reusing parts of the model (e.g., using parts of an existing transition in a
new transition). An example of a negative comment is “I’m trying to mimic the
behaviour of one of the gates ... [the subject is struggling to take the State-Machine
of one of the gates and reuse it for Gate E]” and an example of a positive comment
is “[on task 6 which is related to reusing transition segments] Yeah! That was pretty
easy!”.

• Satisfaction: A general statement about the quality of the tool or a user’s experience
of using the tool. A negative comment could be “Too complex...”, and positive
comment could be “It was pretty easy.” or “Nice”.

• Syntax : A comment on the challenges of remembering the syntax of the language.
An instance of a negative comment is “Was it double equal or [single equal] . . .
? [while writing the transition guard]” and an instance of a positive comments is
“It automatically started to add A1 [referring to the tool’s feature in automatically
inserting the grammar tokens in the text box]”.

The table also shows the total number of negative or positive comments in each category
and the number of users who made negative or positive comments for the tools.

Please note that the results of the subjects’ total number of negative and positive com-
ments on the tools should not be directly compared against each other because, in reality,
some subjects may make more comments only because they tend to talk more than other
subjects. Another reason to be cautious in drawing conclusions from the number of positive
comments is that it is possible that the subjects’ positive comments on our tool are biased
due to the presence of the researcher (who is the developer of the tool). However, from the
results we find that the number of subjects who made negative comments about our tool
is fewer than the number of subjects who made negative comments about other tools for

149

all the categories. In contrast, the number of subjects who made positive comments about
our tool is greater than the number of subjects who made positive comments about other
tools for all the categories.

Note also that the users of our tool made no negative comments with respect to Reuse,
whereas users of other tools made eight negative comments in this category. We believe
this is because of the reuse feature that we embedded in our Focus+Context Transition
Editor which helps the user in Task 6. Also, four users of our tool made negative comments
about Context, but there are nine users who made negative comments for the Context when
using other tools. These observations support the results obtained for RQ5.

To support the results shown for RQ4, Table 6.12 shows that three users of our tool
made negative comments about satisfaction, which is fewer than the number of users of
other tools who made negative comments about Satisfaction. Moreover, the users of our
tool expressed more positive comments about Satisfaction than the users of other tools.

6.3.1.7 Statistical Significance

The statistics related to Task Success, Errors on Tasks, Time on Tasks, Lostness, Users’
Expectation versus Experience Ratings, and UMUX (Usability Metric for User Experience)
questionnaire in the Context study are presented in Table 6.13. As shown by the p values
in the table, values for subjects who used our tool were significantly different (p values <=
0.05) from the values for the subjects who used other tools. That is, our tool significantly
outperformed other tools with respect to all the hypotheses in the Context study. We
also calculate the effect size r based on the guidelines given by Andy Field [31] for Mann-
Whitney’s U test. The r values suggest a high practical significance (r >= 0.5) between
the subjects who used our tool and the subjects who used other tools.

6.3.2 Results of the Debugging User Study

Our Interactive Consistency Management interface was evaluated with respect to its effec-
tiveness in reducing the number of errors in subjects’ models and in mitigating against the
disruptive impacts of real-time error resolution.

150

Table 6.13: Statistics related to analysed metrics in the Context user study.

Collected Metric Tool Mean Median Min Max Std. Dev. p-value r

Task Success
Our Tool 0.99 1.00 0.94 1.00 0.02

0.0032 0.70Other Tools 0.85 0.89 0.44 1.00 0.17

Task Errors
Our Tool 0.00 0.00 0.00 0.00 0.00

0.0001 0.90Other Tools 0.81 0.89 0.22 1.22 0.37

Task Time
Our Tool 3.91 3.73 2.65 6.12 1.10

0.0171 0.57Other Tools 5.17 5.20 3.92 6.45 0.68

Lostness
Our Tool 0.01 0.00 0.00 0.06 0.02

0.0003 0.85Other Tools 0.60 0.61 0.23 0.69 0.14

Expectation vs.
Experience Ratings

Our Tool -1.69 -1.78 -2.33 -0.78 0.48
0.0004 0.84Other Tools 1.31 1.33 0.22 2.11 0.53

UMUX
Our Tool 5.94 6.00 5.00 7.00 0.58

0.0022 0.68Other Tools 3.28 3.00 2.00 6.50 1.50

6.3.2.1 RQ6: Are users of our Interactive Consistency Management interface
more effective (i.e., create more correct models successfully) versus
users of other editors?

The main research question in developing the Interactive Consistency Management inter-
face was to assess its effectiveness in reducing the number of errors in subjects’ models.
To answer this question, we collected the task success scores and the number of errors in
subjects’ final models for each task and we compared the results for subjects using our
editor against the results for the subjects using other editors. Our analysis shows that
the subjects who used our editor were more successful in resolving inconsistencies and
delivering more precise solutions than the subjects who used our editor.

Task Success: As shown in Fig. 6.10, participants who used our editor were more
successful in locating and resolving inconsistencies than the participants who used other
editors. Furthermore, the average success score on Task 4 dramatically dropped for the
users who used other editors. This can be due to the fact that in Task 4 the subjects had
to deal with more details about an error in order to correctly fix it. Specifically, in addition
to detecting the error in the transition expression, the users needed to determine whether
there were errors in the event, guard, or action segments of the transition. Thus, further
investigations were required from the users to be able to resolve the error.

One can notice a significant difference in the task success scores between the two groups
of users. The main reason is that other editors sacrifice correctness-by-construction in
favour of usability or to avoid being intrusive. In our tool, we not only employed a correct-
by-construction approach, but also implemented user-centric interfaces that could improve
the users’ experience of developing precise models. This indicates that most of the users’
challenges can be alleviated with a well-designed and user-centered interface.

151

Table 6.14: Debugging Study: Results of each subject’s success in completing each task.

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8

P1 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0
P2 1.0 0.5 1.0 0.5 1.0 1.0 0.0 1.0
P3 1.0 0.5 1.0 0.5 0.5 1.0 0.5 0.0
P4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P5 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P7 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P8 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P10 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P11 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P12 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P13 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P14 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P15 * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P16 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0
P17 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0
P18 1.0 1.0 0.5 1.0 0.0 1.0 1.0 1.0

mean 1.00 0.83 0.94 0.61 0.83 1.00 0.83 0.89
median 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00
stdev 0.00 0.25 0.17 0.42 0.35 0.00 0.35 0.33

mean* 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median* 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
stdev* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

* Denotes the subjects who used our tool.

152

Table 6.15: Debugging Study: Result of the subjects’ errors on each task.

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8

P1 0 0 0 2 0 0 0 2
P2 0 1 0 0 1 0 2 0
P3 0 0 0 0 0 0 1 2
P4 1 0 0 0 0 1 0 0
P5 * 0 0 0 0 0 0 0 0
P6 0 0 0 0 0 0 0 1
P7 * 0 0 0 0 0 0 0 0
P8 * 0 0 0 0 0 0 0 0
P9 0 0 0 0 0 0 0 0
P10 * 0 0 0 0 0 0 0 0
P11 * 0 0 0 0 0 0 0 0
P12 * 0 0 0 0 0 0 0 0
P13 * 0 0 0 0 0 0 0 0
P14 * 0 0 0 0 0 0 0 0
P15 * 0 0 0 0 0 0 0 0
P16 0 0 0 0 5 2 0 0
P17 1 0 0 2 0 0 0 0
P18 0 0 1 0 8 0 0 1

mean 0.22 0.11 0.11 0.44 1.56 0.33 0.33 0.67
median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
stdev 0.44 0.33 0.33 0.88 2.92 0.71 0.71 0.87

mean* 0 0 0 0 0 0 0 0
median* 0 0 0 0 0 0 0 0
stdev* 0 0 0 0 0 0 0 0

* Denotes the subjects who used our tool.

153

Figure 6.10: Debugging Study: Average success rate per task for users of our editor vs.
users of other editors.

Errors on Tasks: As shown in Fig. 6.11, the subjects who used our editor submitted
debugged models that had no errors (in any task), which is a significant improvement
over the performance of the subjects who used other tools. The subjects who used other
tools showed a low error rate for the first three tasks because these tasks were mostly
related to renaming an element in the Class diagram and fixing the usages of the element
in other diagrams. Despite the fact that such modifications are meant to be extremely
easy, we can still observe that some users made errors especially when tasks involved larger
models. Subjects committed or missed the most number of errors when performing Task 5,
which involved type-mismatch errors. Most tools treat expressions (e.g., transitions’ guard
expression) as a plain-text field and perform no type-checking. Therefore, when a modeller
changes the type of an element, most model editors cannot detect and report the resulting
type error.

The zero number of errors for the subjects who used our tool is a side-effect of employing
a correct-by-construction approach. We also found that collecting all of the inconsistencies
into one interface, displaying the errors to the user, and allowing the users to resolve the
errors in the same interface saves the users a lot of time and effort. However, this means
that the user cannot move on with the task unless they fix the errors, which may not be
desirable for many modellers who prefer a more relaxed consistency management approach.
Also, most of our users discussed the necessity of tooling features (e.g., apply to all) that

154

Figure 6.11: Debugging Study: Average number of errors per task made by users of our
editor vs. users of other editors.

can handle the error-resolutions in larger models. Later, we show that the correct-by-
construction approaches can be enhanced to not only reduce the number of errors, but
also maintain the performance of the users. This is against current widely-spread claims
in the literature, which emphasize that correct-by-construction approaches may interrupt
and distract the user from their original tasks [3, 8, 9, 13, 27, 39].

155

Table 6.16: Debugging Study: Results of the subjects’ time on each task (in minutes).

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8

P1 02:30 02:25 01:20 06:04 03:30 02:49 03:57 03:54
P2 04:41 07:35 02:45 09:52 04:18 03:00 03:33 03:07
P3 03:32 04:40 05:38 03:18 02:47 02:24 03:41 03:40
P4 02:52 02:13 03:45 05:54 03:13 01:38 03:34 03:01
P5 * 01:44 01:38 00:40 02:35 04:11 01:06 03:14 01:38
P6 03:00 02:10 02:43 02:43 04:02 02:00 02:39 02:18
P7 * 01:35 02:42 00:49 02:15 06:13 01:59 01:59 01:50
P8 * 01:52 03:56 00:47 02:10 04:44 01:12 01:49 01:58
P9 02:50 02:37 03:57 03:05 02:35 01:10 02:22 02:18
P10 * 01:58 03:06 01:08 03:33 04:47 01:56 03:34 01:55
P11 * 01:35 03:12 01:19 02:11 05:48 01:34 03:08 02:40
P12 * 00:58 02:00 00:42 03:29 03:25 01:00 02:22 01:24
P13 * 01:49 03:28 00:44 02:47 04:29 01:21 03:07 02:01
P14 * 01:12 02:13 00:37 02:44 04:31 01:21 03:20 01:47
P15 * 00:56 02:36 00:37 03:09 03:39 01:11 01:56 02:21
P16 02:24 04:59 01:55 09:01 03:12 02:44 03:00 03:42
P17 03:52 03:02 04:08 03:53 03:19 03:14 02:30 02:38
P18 04:52 02:32 04:11 03:20 02:28 02:26 02:34 04:10

geo-mean 03:18 03:15 03:07 04:43 03:13 02:17 03:02 03:08
median 03:00 02:40 01:19 03:14 03:51 01:47 03:04 02:20
stdev 00:55 01:25 01:36 02:16 01:02 00:43 00:39 00:50

geo-mean* 01:28 02:40 00:48 02:43 04:34 01:22 02:38 01:55
median* 01:35 02:42 00:44 02:44 04:31 01:21 03:07 01:55
stdev* 00:23 00:44 00:15 00:32 00:54 00:21 00:41 00:22

* Denotes the subjects who used our tool.

156

T
ab

le
6.

17
:

D
eb

u
gg

in
g

S
tu

d
y
:

L
os

tn
es

s
re

su
lt

s
fo

r
th

e
ta

sk
s

fo
r

18
su

b
je

ct
s.

P
a
rt
ic
ip
a
n
t

T
a
sk
1

T
a
sk
2

T
a
sk
3

T
a
sk
4

T
a
sk
5

T
a
sk
6

T
a
sk
7

T
a
sk
8

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

R
,N

,S
L

P
1

1
,5
,5

0
.8
0

1
,2
,4

0
.7
1

1
,3
,3

0
.6
7

1
,2
,6

0
.8
3

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,1
0

0
.9
4

1
,5
,8

0
.8
8

P
2

1
,5
,5

0
.8
0

1
,4
,1
0

0
.9
6

1
,5
,1
0

0
.9
4

1
,5
,1
4

1
.0
3

1
,5
,1
4

1
.0
3

1
,5
,6

0
.8
2

1
,5
,6

0
.8
2

1
,5
,1
0

0
.9
4

P
3

1
,5
,6

0
.8
2

1
,5
,5

0
.8
0

1
,5
,7

0
.8
5

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

P
4

1
,5
,7

0
.8
5

1
,2
,2

0
.5
0

1
,5
,5

0
.8
0

1
,5
,1
4

1
.0
3

1
,5
,6

0
.8
2

1
,3
,3

0
.6
7

1
,3
,9

0
.9
4

1
,3
,3

0
.6
7

P
5
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

P
6

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,8

0
.8
8

1
,5
,5

0
.8
0

1
,5
,7

0
.8
5

1
,5
,5

0
.8
0

P
7
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

P
8
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

P
9

1
,5
,7

0
.8
5

1
,2
,2

0
.5
0

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,3
,3

0
.6
7

1
,2
,4

0
.7
1

1
,3
,3

0
.6
7

P
1
0
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,2
,2

0
.5
0

1
,2
,2

0
.5
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

P
1
1
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

P
1
2
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

P
1
3
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

P
1
4
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

P
1
5
*

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

1
,1
,1

0
.0
0

P
1
6

1
,1
,1

0
.0
0

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,4
,4

0
.7
5

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,6

0
.8
2

1
,5
,8

0
.8
8

P
1
7

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,4
,4

0
.7
5

1
,5
,8

0
.8
8

1
,5
,6

0
.8
2

1
,5
,7

0
.8
5

1
,5
,7

0
.8
5

P
1
8

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,7

0
.8
5

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,5

0
.8
0

1
,5
,8

0
.8
8

m
ea

n
0
.7
2

0
.7
4

0
.8
1

0
.8
5

0
.8
5

0
.7
7

0
.8
4

0
.8
2

m
ed

ia
n

0
.8
0

0
.8
0

0
.8
0

0
.8
0

0
.8
0

0
.8
0

0
.8
2

0
.8
5

st
d
ev

0
.2
7

0
.1
5

0
.0
7

0
.1
0

0
.0
7

0
.0
6

0
.0
7

0
.1
0

effi
ci
en

t
su

b
j.

(<
0
.5
)

1
1
.1
1
%

0
.0
0
%

0
.0
0
%

0
.0
0
%

0
.0
0
%

0
.0
0
%

0
.0
0
%

0
.0
0
%

in
effi

ci
en

t
su

b
j.

(>
=

0
.5
)

8
8
.8
9
%

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

m
ea

n
*

0
.0
0

0
.0
0

0
.0
6

0
.0
6

0
.0
0

0
.0
0

0
.0
0

0
.0
0

m
ed

ia
n
*

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

st
d
ev

*
0
.0
0

0
.0
0

0
.1
7

0
.1
7

0
.0
0

0
.0
0

0
.0
0

0
.0
0

effi
ci
en

t
su

b
j.

(<
0
.5
)*

1
0
0
.0
0
%

1
0
0
.0
0
%

8
8
.8
9
%

8
8
.8
9
%

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

1
0
0
.0
0
%

in
effi

ci
en

t
su

b
j.

(>
=

0
.5
)*

0
.0
0
%

0
.0
0
%

1
1
.1
1
%

1
1
.1
1
%

0
.0
0
%

0
.0
0
%

0
.0
0
%

0
.0
0
%

*
D
en

o
te
s
th

e
su

b
je
ct
s
w
h
o
u
se
d
o
u
r
to
o
l.

157

Figure 6.12: Debugging Study: Average time per task for users of our editor vs. users of
other editors.

6.3.2.2 RQ7: Are users of our Interactive Consistency Management interface
more efficient (i.e., spend less time on tasks) in creating precise models
versus users of other editors?

Time on Tasks: It is not enough to be effective, if users are not also efficient. As shown
in Fig. 6.12, subjects who used our editor completed all tasks, except Task 5, in less time
on average than the subjects who used other editors. After reviewing the recorded video
and audio files of the sessions, we noticed that the time on Task 5 was lengthened mostly
because the users found it necessary to pause and provide feedback on how to improve
the scalability of our interface. For instance, most of the subjects agreed that it would be
good if the tool could provide an “Apply to all” mechanism (to support scalability) that
could fix similar types of inconsistencies at once (e.g., writing a new guard expression for
the first inconsistency and apply it to the rest of the inconsistent guards).

Lostness: Fig. 6.13 shows the average “lostness” scores per task for each group of
subjects. As can be seen, all of the subjects who used other tools viewed many (irrelevant)
diagrams, whereas the subjects who used our tool viewed only the diagrams that were
specific to that particular task. The main reason was that our Interactive Consistency
Management interface incorporated all the inconsistent elements in one view, which al-

158

Figure 6.13: Debugging Study: Average lostness score per task for users of our editor vs.
users of other editors.

lowed the subjects to fix the inconsistencies on the fly without needing to switch among
diagrams. The results of the subjects’ lostness scores is shown in Table 6.17. The table
shows the percentage of lost subjects (i.e., inefficient subjects) who used other tools versus
the percentage of lost subjects who used our tool. We set the R value (i.e., minimum
number of diagrams to be viewed for a task) to 1 for all the tasks because in our opinion, a
user should only open the intended diagram (e.g., Class diagram) to edit the model (e.g.,
renaming an element). It is the tool’s responsibility to propagate the changes to the other
parts of the model and inform the modeller about the changes that were made. One can
oppose to our view and discuss that the R value should be 1+the number of diagrams
that referred to the edited element simply because the user may double check the affected
diagrams no matter what the tool does (e.g., because of scepticism).

6.3.2.3 RQ8: Are users of our Interactive Consistency Management inter-
face more confident in the correctness of their models (i.e., solutions)
versus users of other editors?

As shown in Fig. 6.14, the results of subjects’ self-declared level of confidence indicate
that the subjects who used our editor were more confident that they had addressed all

159

Table 6.18: Debugging Study: Post-session experience ratings.

Participant Satisfaction (Q1) Confidence Capability (UMUX.Q1) Usability (UMUX.Q2)

P1 5 5 5 5
P2 2 2 2 2
P3 2 2 2 1
P4 1 2 2 2
P5 * 6 6 7 7
P6 2 2 1 2
P7 * 7 7 7 6
P8 * 6 6 6 5
P9 1 5 2 3
P10 * 7 6 6 5
P11 * 6 6 6 7
P12 * 6 6 6 7
P13 * 6 7 6 6
P14 * 7 5 6 7
P15 * 6 7 6 6
P16 2 3 2 2
P17 2 2 1 2
P18 1 1 1 2

mean 2.00 2.67 2.00 2.33
median 2.00 2.00 2.00 2.00
stdev 1.22 1.41 1.22 1.12

mean* 6.33 6.22 6.22 6.22
median* 6.00 6.00 6.00 6.00
stdev* 0.50 0.67 0.44 0.83

* Denotes the subjects who used our tool.

160

Figure 6.14: Debugging Study: Box-plot for the level of confidence for subjects using our
editor vs. subjects using other editors.

the inconsistencies in the debugging tasks than the subjects who used other editors. One
reason might be the improved error-resolution techniques that are provided by our tool.
Most of the users who used our editor verbally expressed their satisfaction. For instance
one of the users (P14) mentioned that: “I do agree that it is nice that the tool tells me
everything.”. However, there was one user of our tool (P10) who doubted his answer when
we asked him whether he is confident with locating and fixing all the errors in the model.
In fact, he said: “I don’t have trust in tools.”. Another subject (P14) also mentioned that
“I never trust in automatic [bug fixing]”. Such a sceptical view from users about modelling
tools is perhaps affected by his previous experiences with using the tools, and may be one
of the obstacles to the adoption of MDE among practitioners. Such scepticism was also
observed by Mussbacher et al. [71]. They illustrate that one of the barriers to the adoption
of MDE is indeed the not-so-good past experiences of users with the tools: “Maybe, the
bad experience with CASE tools decades ago still casts a dark shadow on MDE”. [71].

Additionally, we found that using a formal language or frameworks such as Xtext [26]
that help in creating grammar-based models can also improve users’ confidence in the
correctness of their models, as stated by a user of our tool (P14): “At least it will show
errors related to syntax [because it uses a formal language].”. This might be because
of two reasons: 1) formal models are generally correct-by-construction models (at least
syntactically), and 2) Eclipse-based frameworks (e.g., Xtext, GEF) guide the user in the
process of model development by providing features such as Content-Assist that propose

161

Figure 6.15: Debugging Study: Box-plot for the level of satisfaction of subjects who used
our editor vs. subjects who used other editors.

the valid next steps to the user. This finding can also be confirmed by doing a comparison
between the average confidence (3.33) of the users (i.e., P1, P2, P16) who used Capella
(as a tool the also uses the Eclipse-based frameworks) and the average confidence (2.33)
of the users who used other tools.

According to analysis of the verbal expressions of the users, the users who used other
tools were less confident in their solutions, mostly because finding errors was a manual
activity. One of the users (P17) stated that: “I hope I got them [the errors], but how can
I be sure if no auto-checking is done by the tool.”. Even for the tools that provided error
detection, the users were not confident in their solutions. This is mostly because the tools
did not provide sufficient interaction with the users (e.g., vague error messages, and not
asking for acknowledgements from the user before or after applying a fix), which keeps the
users out of the loop and uninformed.

6.3.2.4 RQ9: Does our Interactive Consistency Management interface provide
a better level of user satisfaction versus other editors?

Users’ satisfaction scores were collected by asking three questions (see Q1, UMUX.Q1, and
UMUX.Q2 in Fig. 6.2). Q1 asked the users to rate whether their experience of using the
tool was beyond their initial expectation or below. The UMUX.Q1 and UMUX.Q2 also

162

Table 6.19: Debugging Study: Pre-task expectation ratings.

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8

P1 1 3 1 3 3 3 4 2
P2 1 2 1 2 2 2 3 3
P3 1 1 1 1 1 1 1 3
P4 1 1 1 1 1 1 2 2
P5 * 2 2 2 4 2 2 2 3
P6 1 2 1 2 2 2 2 2
P7 * 3 4 3 4 5 5 4 5
P8 * 4 4 4 4 4 4 4 5
P9 2 2 2 3 2 2 3 4
P10 * 4 3 4 6 4 4 7 5
P11 * 2 5 2 5 4 4 4 4
P12 * 5 5 4 5 6 6 6 6
P13 * 2 4 3 5 4 4 4 3
P14 * 3 2 3 6 3 2 4 4
P15 * 2 2 2 3 4 4 3 5
P16 1 2 1 3 2 2 2 4
P17 1 2 1 2 2 2 2 2
P18 1 2 1 2 2 2 2 2

mean 1.11 1.89 1.11 2.11 1.89 1.89 2.33 2.67
median 1.00 2.00 1.00 2.00 2.00 2.00 2.00 2.00
stdev 0.33 0.60 0.33 0.78 0.60 0.60 0.87 0.87

mean* 3.00 3.44 3.00 4.67 4.00 3.89 4.22 4.44
median* 3.00 4.00 3.00 5.00 4.00 4.00 4.00 5.00
stdev* 1.12 1.24 0.87 1.00 1.12 1.27 1.48 1.01

* Denotes the subjects who used our tool.

163

Table 6.20: Debugging Study: Post-task experience ratings.

Participant Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8

P1 1 5 1 5 6 6 5 4
P2 4 4 1 4 6 7 7 7
P3 5 6 7 4 3 2 2 6
P4 2 1 3 4 2 2 3 3
P5 * 1 1 1 1 1 1 1 1
P6 3 4 5 4 5 4 4 4
P7 * 1 2 1 1 3 2 1 1
P8 * 1 2 1 3 3 1 2 2
P9 5 5 7 6 5 4 6 6
P10 * 2 1 2 4 2 1 2 1
P11 * 2 2 2 2 2 2 2 2
P12 * 1 2 1 2 3 1 2 1
P13 * 1 2 1 2 1 1 1 2
P14 * 1 1 1 1 2 1 1 1
P15 * 1 2 1 1 3 2 2 2
P16 2 5 5 4 5 5 6 7
P17 3 4 5 5 5 4 4 4
P18 4 4 4 4 5 5 4 4

mean 3.22 4.22 4.22 4.44 4.67 4.33 4.56 5.00
median 3.00 4.00 5.00 4.00 5.00 4.00 4.00 4.00
stdev 1.39 1.39 2.22 0.73 1.32 1.66 1.59 1.50

mean* 1.22 1.67 1.22 1.89 2.22 1.33 1.56 1.44
median* 1.00 2.00 1.00 2.00 2.00 1.00 2.00 1.00
stdev* 0.44 0.50 0.44 1.05 0.83 0.50 0.53 0.53

* Denotes the subjects who used our tool.

164

asked the users to rate how well the tool capabilities met their requirements and how easy-
to-use the tool was, respectively. The results, shown in Fig. 6.15, demonstrate dramatically
higher levels in subjects’ satisfaction when using our editor. Furthermore, the results of the
pre-task expectation ratings and post-task experience ratings for the subjects are shown
in Tables 6.19 and 6.20, respectively. The tables show that while the users of other editors
were disappointed with the level of model-debugging aids that were provided by their tools,
the users of our editor were satisfied with the model-debugging support that they received
from our editor. Again, as mentioned for the Context study, the users of other tools have
lower pre-task assessments because the users of our tool took into account the effects of
the unfamiliarity with our tool’s debugging features. In fact, since learnability is one of
the criteria for users’ experience, we did not discourage them.

The results of the users’ satisfaction for the Debugging study can be further confirmed
by the analysis of the verbal statements expressed by the subjects. For example, one of
the subjects (P1) who used other editors, expressed his dissatisfaction when performing
Task 5 by saying: “It is very difficult, it is not showing me where it is referenced, I have to
do it manually, this is a pain ...”. There were a few other participants who also expressed
similar dissatisfaction statements during the tasks. Moreover, after finishing the task, we
asked him if he thinks that he spotted all the errors in the diagrams. “I wasn’t sure.
So, given more (larger) model I may need to look for everything . . . not confident.”, he
answered, and continued to the next task. This shows that most of the users expect and
rely on the tools to provide proper consistency or correctness management features.

More specifically, the users who used other editors were more satisfied when performing
tasks where changing an element in the Class diagram would affect the triggering event or
action segments of transitions (that use the element), because their tools are generally able
to trace the changed element to the transitions that use the element. However, the users
were extremely disappointed when performing tasks where changing an element in the
Class diagram would introduce an error in a guard segment of a transition, because guards
are written as plain-text expressions that do not refer to actual model elements. Moreover,
tools such as Capella that allow a guard expression to refer to actual model elements do not
provide error recovery techniques. For instance, when an element is deleted from the Class
diagram, Capella shows a dialogue box to the user indicating that the element is used in
a transition, and deleting the element would cause the transition to be deleted. However,
the user wanted only the affected segment (i.e., event, guard or action) of the transition
to be deleted and not the whole transition. Therefore, the user had to find the affected
transition, remove the segment that refers to the element to be deleted, and then return
back to the Class diagram to delete the element. This mismatch between tool support and
users’ needs can cause a huge dissatisfaction in the users’ view of the tools, and can lead

165

to higher levels of disruption (discussed in RQ10).

Furthermore, although the subjects who used our tool were generally satisfied with our
Interactive Consistency Management interface, they said that it would be good to have
some “apply to all” feature, which can apply a fix to all instances of the same error type.
In Task 5, a change in the model caused a number of type errors in the diagrams; one of
the subjects (P11) mentioned that “I wish there was a [auto apply] ”. Another user (P14)
expressed his dissatisfaction multiple times during the session by saying “It [the tool] could
auto-pull things...”. This indicates that, the subject were dissatisfied with the scalability
of our error recovery techniques. One can conclude that, error-recovery techniques are as
important as error-detection features when addressing inconsistencies.

Table 6.21: Debugging Study: Results of the disruption-related questions.

Participant Expecting Disruption Experienced Disruption (Q3) Disruption-Worth Value (Q4)

P5 6 2 7
P7 4 1 7
P8 5 3 6
P10 7 2 7
P11 6 1 7
P12 6 1 6
P13 6 4 7
P14 6 1 7
P15 2 2 7

mean 5.33 1.89 6.78
median 6.00 2.00 7.00
stdev 1.50 1.05 0.44

6.3.2.5 RQ10: Do modellers who use our Interactive Consistency Manage-
ment interface judge the interface as being too intrusive and disruptive
to them given the increased level of correctness that it provides?

One of the main hypotheses underlying the design of our Interactive Consistency Manage-
ment interface is that addressing inconsistencies in real-time while editing a model does
not have to be intrusive to the modeller (in contrast to what researchers believe) if tool
developers take human cognitive factors into account when designing interfaces. For the
users of our editor, the results of their self-reported expected disruption asked in a pre-
session questionnaire and their self-reported experienced disruption asked post-session is
depicted in the box plot shown in Fig. 6.16. It shows that the subjects strongly expected

166

that maintaining model consistency at all times would be intrusive. In fact, one of the
subjects (i.e., P10) mentioned that “Oh! Yeah! It will be very intrusive.”. However, after
using our editor, their experience ratings showed the opposite. That is, their mean expe-
rience rating indicates that they barely felt disrupted when asked by our editor to debug
inconsistencies during model editing. The subject P10 post-session rating shows that he
did not experience disruption during his tasks. This can also be confirmed by looking at
the times on tasks for the users who used our tool, as a user’s disruption would possibly
cause them to spend more time on the tasks but it was not the case for the users of our
tool.

Furthermore, we asked the subjects to rate their views of whether experiencing disrup-
tion was worth delivering more correct models. Table 6.21 demonstrates the results of the
disruption-related questions. It shows that subjects, on average, expected to be disrupted
by the tools (mean value of 5.33), they experienced much less than what they expected
(mean value of 1.89). However, the high mean value of their expectations might be because
they were going to experience a new tool (i.e., our tool) and the general negative belief
that the community has regarding the correct-by-construction approach. Also, the lower
mean value of experience ratings can be because of the size of the model. That is, the same
users might have rated differently if the model was larger and more complex. However, we
can at least conclude that employing correct-by-construction techniques does not have to
be intrusive to the user if proper tooling techniques are devised.

Moreover, for the tasks that required users’ action in resolving errors (e.g., Task 2 and
Task 4), the users who used our editor obtained better lostness scores and times on the
tasks versus the users who used other editors. These can be other indicators that users
of our editor have not experienced any unusual intrusiveness when performing their tasks
using our tool.

167

Figure 6.16: Debugging Study: Subjects’ assessment of the intrusiveness of our Interactive
Consistency Management interface.

168

T
ab

le
6.

22
:

S
u

m
m

ar
y

of
th

e
re

su
lt

s
of

ve
rb

al
an

al
y
si

s
fo

r
th

e
D

eb
u

gg
in

g
st

u
d

y
(p

ar
t

1)
.

O
v
e
ra

ll
C
o
n
te
x
t

S
a
ti
sf
a
c
ti
o
n

S
y
n
ta

x
R
e
c
o
g
n
it
io
n

In
tr
u
si
v
e
n
e
ss

S
u
b
j.

N
e
g
a
ti
v
e

P
o
si
ti
v
e

N
e
g
.

P
o
s.

N
e
g
.

P
o
s.

N
e
g
.

P
o
s.

N
e
g
.

P
o
s.

N
e
g
.

P
o
s.

P
1

3
1

5
4

0
0

0
0

0
6

1
0

0
P
2

9
6

0
1

0
0

0
0

1
0

0
0

P
3

3
0

0
0

0
0

0
0

0
0

0
0

P
4

5
0

1
0

1
0

0
0

0
0

0
0

P
5*

1
0

0
0

0
0

0
0

0
0

0
0

P
6

3
1

0
0

0
0

0
0

0
1

0
0

P
7*

5
6

1
0

0
3

1
0

0
0

0
2

P
8*

1
3

0
0

1
1

0
1

0
0

0
0

P
9

1
1

0
0

0
0

0
0

0
1

0
0

P
10
*

6
8

1
0

1
8

0
0

0
0

0
0

P
11
*

5
3

0
0

0
2

0
0

0
0

0
0

P
12
*

2
0

0
0

0
0

0
0

0
0

0
0

P
13
*

1
1

0
0

0
1

0
0

0
0

0
0

P
14
*

8
5

0
1

0
0

0
0

0
2

0
1

P
15
*

1
3

0
1

1
1

0
0

0
0

0
0

P
16

1
0

0
0

0
2

0
0

0
3

0
0

0
P
17

4
0

0
0

0
0

0
0

1
0

0
0

P
18

5
0

0
0

0
0

0
0

0
0

0
0

T
ot
al

N
o.

of
C
om

m
en
ts

on
O
u
r

T
o
ol

2
8

2
9

2
2

3
1
6

1
1

0
2

0
3

T
ot
al

N
o.

of
C
om

m
en
ts

on
O
th
er

T
o
ol
s

7
3

1
3

5
1

3
0

0
0

11
3

0
0

N
o.

of
S
u
b
je
ct
s
w
h
o
C
om

m
en
te
d

on
O
u
r
T
o
ol

8
7

2
2

3
6

1
1

0
1

0
2

N
o.

of
S
u
b
je
ct
s
w
h
o
C
om

m
en
te
d

on
O
th
er

T
o
ol
s

1
0

4
2

1
2

0
0

0
4

3
0

0

*
D
en

o
te
s
th

e
su

b
je
ct
s
w
h
o
u
se
d
o
u
r
to
o
l.

169

T
ab

le
6.

23
:

S
u

m
m

ar
y

of
th

e
re

su
lt

s
of

ve
rb

al
an

al
y
si

s
fo

r
th

e
D

eb
u

gg
in

g
st

u
d

y
(p

ar
t

2)
.

A
ss
o
c
ia
ti
o
n

A
c
ti
o
n

P
la
n
n
in
g

C
o
n
fi
d
e
n
c
e

S
c
a
la
b
il
it
y

S
u
b
j.

N
e
g
a
ti
v
e

P
o
si
ti
v
e

N
e
g
.

P
o
s.

N
e
g
.

P
o
s.

N
e
g
.

P
o
s.

P
1

1
1

2
4

1
6

1
0

0
P
2

3
2

4
3

1
0

0
0

P
3

0
0

2
0

1
0

0
0

P
4

1
0

1
0

1
0

0
0

P
5*

0
0

1
0

0
0

0
0

P
6

0
0

2
0

1
0

0
0

P
7*

0
0

1
1

0
0

2
0

P
8*

0
0

0
1

0
0

0
0

P
9

0
0

0
0

0
0

1
0

P
10
*

0
0

0
0

2
0

2
0

P
11
*

0
0

2
2

0
0

2
0

P
12
*

0
0

1
0

0
0

1
0

P
13
*

0
0

0
0

1
0

0
0

P
14
*

0
1

3
0

2
0

3
0

P
15
*

0
0

0
1

0
0

0
0

P
16

2
0

1
0

2
0

0
0

P
17

1
0

1
0

1
0

0
0

P
18

1
0

2
0

2
0

0
0

T
ot
al

N
o.

of
C
o
m
m
en
ts

on
O
u
r

T
o
ol

0
1

7
5

5
0

9
0

T
ot
al

N
o.

of
C
om

m
en
ts

on
O
th
er

T
o
ol
s

1
9

4
1
8

4
1
5

1
2

0

N
o.

of
S
u
b
je
ct
s
w
h
o
C
om

m
en
te
d

on
O
u
r
T
o
ol

0
1

4
4

3
0

4
0

N
o.

of
S
u
b
je
ct
s
w
h
o
C
om

m
en
te
d

on
O
th
er

T
o
ol
s

6
2

9
2

8
1

2
0

*
D
en

o
te
s
th

e
su

b
je
ct
s
w
h
o
u
se
d
o
u
r
to
o
l.

170

6.3.2.6 Summary of Verbal Expressions

Tables 6.22 and 6.23 show a summary of the results of the verbal analysis performed on
the subjects’ verbal expressions during the Debugging study. We coded the expressions
into the following categories.

• Context : Remembering contextual information.

• Satisfaction: A general statement about the quality of the tool or user’s experience
of using the tool.

• Syntax : Remembering the syntax of the language.

• Recognition: Recognizing whether there are errors in the model or not. A negative
comment could be “Again, it is not saying if there is any problem, if there is any
error.” and a positive comment could be “It is highlighted.”.

• Intrusiveness : A statement that shows a user’s opinion of feeling disrupted or not.
An instance of a positive comment is “Honestly, it was only for the necessary parts,
it was not disturbing”.

• Association: Locating errors that are introduced to the model as a result of editing
or deleting an element. An example of negative comment is “This is by no means an
efficient way that I have to go through all diagrams.”, and an example of a positive
comment is “I do agree that it is nice the tool tells me everything [referring to the
tool’s feature to show the inconsistencies and their locations.]”.

• Action Planning : Resolving an error (i.e., edit, delete, or delete parent element).
An example of a negative comment is “Didn’t change [surprised that the tool did not
automatically propagated the name change throughout the model]?”, and an example
of a positive comment is “So it was completely automatic [referring to the auto-fix].”.

• Confidence: A statement that indicates whether a user is confident with the correct-
ness of the model after resolving errors. An instance of a negative comment is “I’m
not sure, there should be somewhere that it tells me all deleted items are here . . . ”,
and an instance of a positive comment is “It changed everything, no problem there.”.

• Scalability : A statement about the lack of scalability in our User-Interactive Consis-
tency Management Interface or in other tools, in case there are too many inconsis-
tencies. An instance of a negative comments about Scalability is “Apply all or maybe
copy and paste [may be required]”.

171

The tables show the total number of negative or positive comments that fall in each
category, and the number of users who made negative or positive comments for the tools.
Again, because different users have different tendencies to speak their thoughts loud (i.e.,
think-out-loud), their total number of negative and positive comments on the tools may not
be directly compared against each other. However, it can be seen that the subjects were
more satisfied with our tool with respect to the four categories that our User-Interactive
Consistency Management interface claims to improve (see 5.6.2): Recognition, Association,
Action Planning, and Confidence. For Recognition and Association, the users of our tool
made no negative comments, perhaps because our tool pops-up a dialogue box that lists
all the errors and their location in the model (e.g., containing diagrams). For Confidence,
three users of our tool made negative comments, which is less than the number of users of
other tools who made negative comments (i.e., eight users). Two of the three subjects who
made negative comments on our tool expressed that they never trust any tool. With respect
to Action Planning, four users made negative comments when using our tool (which is still
fewer than the number of users who made negative comments when using other tools). We
found that these four users’ negative comments about Action Planning were due to the
lack of Scalability of our Action Planning techniques. As shown in Table 6.23, we received
many comments from users suggesting that our tool may require a better scalability-related
feature when there are many errors that need to be resolved. The subjects who used our
tool commented that an “Apply to all” type of functionality would be helpful when fixing
errors that need a common fix.

As shown in Table 6.22, the results of verbal statements regarding Intrusiveness sup-
ports our results for RQ10. That is, not only were there zero negative comments related to
Intrusiveness, but also there were positive comments from two of the users who used our
tool. The subjects who used other tools also made no negative comments, but this was
expected because most of the tools do not enforce correct-by-construction. Only Capella
shows a pop-up dialogue box that immediately notifies users about an error. Other tools
such as Papyrus decorate an erroneous element in the model with an icon showing that
the element is erroneous.

The results regarding Satisfaction indicate that subjects who used our tool made six-
teen positive comments and three negative comments about our tool, which in general
supports our results for RQ9. The three negative comments are mostly related to the fact
that our tool showed less robustness (sometimes because of limitations in the underlying
frameworks) compared to other tools which are designed for industrial uses.

172

6.3.3 Statistical Significance

The quantitative analysis of our results using Mann-Whitney U test [100] for the Debugging
study with respect to the Task Success, Errors on Tasks, Time on Tasks, Lostness, Users’
Expectation versus Experience Ratings, and UMUX (Usability Metric for User Experience)
are presented in Table 6.24. As shown by the p values in the table, values for subjects
who used our tool were significantly different (p values <= 0.05) from the values for the
subjects who used other tools. That is, our tool significantly outperformed other tools with
respect to all the hypotheses. Also, the effect size r indicates a high practical significance
(r >= 0.5) between the subjects who used our tool and the subjects who used other tools.

Table 6.24: Statistics related to analysed metrics in the Debugging user study.

Collected Metric Tool Mean Median Min Max Std. Dev. p-value r

Task Success
Our Tool 1.00 1.00 1.00 1.00 0.00

0.0051 0.68Other Tools 0.87 0.88 0.63 1.00 0.13

Task Errors
Our Tool 0.00 0.00 0.00 0.00 0.00

0.0005 0.82Other Tools 0.47 0.38 0.00 1.25 0.38

Task Time
Our Tool 2.32 2.31 1.92 2.74 0.28

0.0010 0.78Other Tools 3.42 3.27 2.61 5.04 0.74

Lostness
Our Tool 0.01 0.00 0.00 0.13 0.04

0.0002 0.88Other Tools 0.80 0.81 0.71 0.92 0.06

Expectation vs.
Experience Ratings

Our Tool -2.26 -2.25 -3.75 -1.38 0.74
0.0003 0.84Other Tools 2.46 2.50 1.25 3.13 0.64

UMUX
Our Tool 6.22 6.50 5.50 7.00 0.51

0.0003 0.88Other Tools 2.17 2.00 1.50 5.00 1.12

6.4 Threats to Validity

The main threat to validity is the participants’ competency with the UML and UML
editors. We tried to mitigate against this threat by asking the subjects to self-declare their
familiarity with the UML and editors. In addition, we embedded a UML exercise in our
recruitment questionnaire and only recruited those subjects who could pass the exercise.

Another threat to external validity is the participants’ familiarity with the application
domain and the system’s complexity. To address this threat, we chose a simple and familiar
application domain. The size of the model in our studies is not comparable to the large-
scale complex systems (e.g., see [56]), and it is possible that the performance improvements
that the subjects demonstrated in the studies would not scale to much larger models. To
cope with this threat, we designed the task to be simple enough so that the subjects

173

could perform their tasks without a complete understanding of the system. Moreover, we
designed Task 9 in the Context study and Tasks 4 and 5 in the Debugging study to be
more difficult than other tasks, so that we can observe how the users’ performance would
be affected when performing more difficult tasks. The results show that there is still an
improvement for the subjects who used our tool versus the subjects who used other tools.

The small number of subjects can also be another threat to validity, but the number is
recognized as adequate by various sources [7][92]. Also, some of the subjects were repeated
from the formative study. This might affect their familiarity with the application domain
because they used the same application domain and Class diagram in the previous formative
study. However, we believe that the effects of the repeated subjects is minimal because
there was a one-year gap between the two studies, so it is unlikely that they could recall
the details from the previous formative study. Also, we designed different sets of questions
in the Context and Debugging studies than those that were used in the formative study
to mitigate against the effects of the repeated subjects on the results. Furthermore, it
is possible that the pre-task expectation ratings of the subjects who participated in our
formative study were biased towards higher expectation ratings because the experienced
related challenges in the formative study.

One of the threats to the construct validity of our studies is related to the design of
pre-task and post-tasks ratings. We believe that a 7-scale rating is too wide and may
produce results that are not quantitatively meaningful. That is, subjects may know that
their expectation of a tool is high, but they may not know if it is e.g., 5, 6, or 7. We
counter-attacked this threat during the interpretation of our results.

One can argue that the order of the tasks should be randomized. However, we designed
the tasks such that they become more and more difficult from the first task to the last task
to support the users’ learning curve [14][78].

Another threat that may impact the validity of the conclusions drawn from users’ verbal
expressions is the possibility of subjects biases on making more positive comments and less
negative comments on our tool due to the presence of the researcher (who is the developer
of the tool). Also, we found that, in general, users tend to make negative comments rather
than positive comments. That is, users spot weak points of the tools more than strengths
of the tools.

174

6.5 Discussion

In this section, we suggest additional implications (conjectures) inferred from the subjects’
behaviours and attitudes about the tools that were collected during the subjects’ sessions
with the tools. We think tool researchers and vendors can benefit from these implications
and can undertake further investigations on these implications.

• The results suggest that modellers benefit from a sliced view (from related diagrams)
of the context of their modelling task. Developing such interfaces should be encour-
aged among the tool vendors for all types of diagrams to minimize the users’ memory
load. Moreover, the significant gap between the experienced cognitive difficulties of
the two groups of users suggests that Focus+Context editors can play a critical role in
alleviating users’ cognitive load- especially in reducing the challenges of remembering
and editing contextual information.

• A user might be negligent in creating correct and precise models unless they are
constrained by explicit guidelines and directions. It is the tool’s responsibility to
offer useful hints and notifications to refresh a modeller’s memory about the explicit
guidelines and best practices for improving the model’s quality. One can also notice
the necessity of collecting and developing a standardized and comprehensive list of
such guidelines for modelling, which can be implemented and embedded in the model
editors.

• We found that most of the users who used other tools complained about developing
expressions in plain text or in text boxes that do not provide sufficient aids. Thus,
the modelling tools should devise easy-to-use expression editors (as opposed to plain-
text editors) that enable users to develop expressions that can be parsed and verified
as being semantically sound. These expression editors should employ a rich grammar
to cover all types of expressions.

• Auto-fixing errors is not enough. Users prefer to know about the steps that are being
taken in the background. For instance, we found that users may want to be notified if
a tool has automatically propagated a change (e.g., renaming an element). Therefore,
the tools should seek for users acknowledgement before applying any auto-fixes (even
though it might be clear to the user). Perhaps, a proficient tool can allow the user
to modify such preferences in the tool’s settings to accommodate different users’
preferences. Moreover, users feel more confident when a tool warns them explicitly
about errors in the model, even when the error is trivial and easy to locate.

175

• Resolving errors as they occur may or may not be intrusive and disruptive to users.
The results suggest that users with sufficient tooling support do not feel disrupted by
on-the-fly error resolution. Undertaking on-the-fly error resolution with extra tooling
support, such as error recovery techniques, results in improving quality of models and
reducing the impacts of disruption on users’ performance.

6.6 Conclusion

In the previous chapter, we proposed tooling techniques and enhancements (i.e., automa-
tion and Focus+Context user interfaces) that aim to reduce efforts of Context and Debug-
ging challenges when designing UML Class and State-Machine diagrams. In this chapter,
we presented the results of the empirical user studies that we conducted to assess the ef-
fectiveness of our proposed tooling techniques on human users. The results of our studies
indicate that employing a Focus+Context approach can significantly improve users’ satis-
faction of using model editors and can increase their effectiveness and efficiency in editing
and debugging models. Our results have implications for tool vendors to enhance and
improve the quality of UML model editors, which is crucial for a greater adoption of MDE
by industry.

176

Chapter 7

Conclusion and Future Work

This chapter briefly reviews the thesis and its contributions, and suggests directions for
future work.

7.1 Summary of Thesis and Contributions

In this thesis, we introduced our approach, referred to as User-Centric and Artefact-
Centric Development of Models (UCAnDoModels), which employs and incorporates a
balanced set of user-centric and artefact-centric techniques that, combined together, ease
the tasks of editing and debugging models. We proposed that applying such user-centric
techniques to the design and development of modelling tools would enhance the quality
of UML-like modelling tools. Our approach consists of the following steps: 1) Analysing
users and their tasks to identify the greatest challenges of using tools, 2) Identifying the
cognitive factors that underlie each challenge, 3) Using standard practices or devising
techniques to alleviate the identified challenges by addressing the underlying cognitive
factors, and 4) Assessing the effectiveness of the proposed techniques on human users.
This thesis provides valuable insights into how modellers interact with model editors and
how cognition psychology theories can improve this interaction. The remainder of this
section provides brief descriptions of the main contributions of the thesis.

177

7.1.1 Users and Tasks Analysis

As the first step of our thesis, we conducted a formative user study to understand mod-
ellers’ challenges of using modelling tools. By observing the subjects in our user study, we
identified ten tooling difficulties:

• Order : Performing tasks in the right order,

• Context : Remembering the relevant contextual information when performing a task,

• Navigation: Writing correct and precise navigation expressions,

• Syntax : Knowing the correct syntax of the language,

• Type-Matching : Writing expressions that are free of type errors,

• Debugging : Locating, understanding, and fixing errors in the model,

• Layout : Organizing the diagrams’ layout,

• Views : Arranging different diagrams besides each other for a better view,

• Reuse: Reusing (i.e., copy and pasting) model elements, and

• Look : Setting appearance-related properties (e.g., shapes and colors).

Our analysis revealed that among all the identified difficulties, Context and Debug-
ging challenges are the most severe. This may be because existing modelling tools take
a language specification-based approach and implement their tools based mostly on the
specification of the language. For instance, current tools provide separate diagrams for the
structural diagrams (i.e., Class diagram) and the behavioural diagram (e.g., State-Machine
diagram) because the UML specification supports separation of concerns, including the
separation of the behavioural diagrams from their corresponding structural diagram (or
elements). However, this separation puts a burden on the user to recollect the information
that is separated within different diagrams. The results of our formative user study indi-
cate that tool researchers and tool vendors should pay more heed to proposing interfaces
and techniques that can mitigate or eliminate such difficulties.

178

7.1.2 UCAnDoModels Model Editor

We identified the underlying cognitive factors for the two aforementioned most-severe
challenges: Short-term and Long-term Memory, Transience, Absentmindedness, Misat-
tribution, Lack of Context, Execution Failures, and Planning Failures. Accordingly, we
proposed automation features and several Focus+Context solutions that can alleviate the
overall cognitive load of modellers by providing the contextual information that is relevant
to performing a particular modelling task. We implemented a semi-formal (FORML-based)
UML-like model editor as an Eclipse plugin.

7.1.3 Empirical Implications for Tool Researchers

We conducted two user studies to assess the impacts that user-centric interfaces, such as
our Focus+Context interfaces, have on improving the users’ experience of using model ed-
itors (and tools in general) with respect to the users’ effectiveness, efficiency, satisfaction,
etc. According to the results, employing user-centric interfaces can significantly contribute
to enhancing the productivity and satisfaction of modellers and improving the quality of
models, such as: 1) improving the users’ ability to successfully fulfil their tasks, 2) avoiding
unnecessary context switches among diagrams, 3) producing more error-free models, 4) re-
membering contextual information, and 5) reducing time on tasks. Moreover, we provided
observation-based implications for the tool researchers that may eliminate many of the
existing tooling challenges. However, further studies may be required to investigate some
of these implications.

In summary, we have shown that: current MDE tools can be enhanced by employing
artefact- and user-centric techniques; the resulting tools help reduce the effort of editing
and debugging analysable models and improve users’ experience of using model editors by
incorporating techniques that take into account human-cognitive factors.

7.2 Limitations

Our dissertation has potential limitations, which are listed below.

• Narrow formulation of research objectives: We acknowledge that the research objec-
tives (i.e., investigating in the context of Class and State-Machine diagrams) might
not be broad enough to enable a complete generalization of the results. We think
this can be considered as a potential future work of our thesis.

179

• Sample sizes of the user studies: One can argue that the sample sizes used in our
user studies is small, which may prevent to identify significant relationships within
the results. However, the number of 18 participants are determined to be sufficient
when performing usability testing [7], even though conducting the studies with larger
sample sizes could generate more accurate results.

• Subjects’ incompetency: It is arguable that recruiting students may weaken the ap-
plicability of the results to outer population (i.e., industrial modellers in our case).
However, we set several eligibility requirements to ensure that the subjects are com-
petent enough to participate in the studies.

• Insufficient previous studies in the literature: We could find a little amount of re-
search related to evaluating user experience in the context of UML modelling tools.
This makes it difficult to 1) design studies that are perhaps more directed towards
modelling tools (versus the general tools) and 2) compare our findings to the finding
from other researchers.

• Imperfect design of the contextual interfaces: We believe that there is room for en-
hancing the proposed interfaces by performing more in-depth analysis on the design
of the interfaces. Certainly several design decisions could be improved. For instance,
different users (e.g., novice modeller or experienced modeller) have different prefer-
ences about the design of the interfaces and what should be viewed as the context.
Thus, while a design may be desirable for a user, it might be rejected by another
user. Overcoming this limitation requires further investigations that was beyond the
scope of this thesis.

7.3 Future Work

As a possible future work, one can conduct a formative study to investigate the critical
challenges of developing other types of models (e.g., UML Sequence diagrams, Simulink
models). If the same challenges are identified (i.e., Context and Debugging), then it would
be desirable to accept our tooling techniques to address the challenges and assess their
generalizability on other types of models. Similarly, exploring the applicability of our
proposed techniques to other model editors or even programming IDEs can be seen as a
future work. By doing so, most of the burden that is put on the modellers or programmers
will be alleviated by the modelling or programming tools.

180

Furthermore, our proposed solutions may be useful in the context of collaborative mod-
elling, where the awareness of modellers about the model (i.e., contextual information) is
reduced mostly because a model is developed by different modellers who may not have par-
ticipated in the collaboration due to various reasons (e.g., geographical distances). Thus,
one can extend the context of our work and investigate the effectiveness of our user-centric
interfaces in the context of collaborative modelling.

As another future direction, a more thorough analysis of UML models and meta-model
can be performed to exploit a more general, model-driven, and automatic approach for
extracting contextual information relevant to any modelling task. Currently, we identified
the sources of contextual information by observing the users in our formative user study,
as well as analysing the meta-model of the FORML language. However, pulling all of
the cross-cutting information into one interface may not work well due to the issues of
scalability. A more intelligent approach would be to prioritize the contextual elements and
display those information that are more likely to be what the user needs for completing
their current modelling task.

Last but not least, it is possible that different results would be drawn in more so-
phisticated evaluations, such as recruiting industrial modellers as subjects, designing more
complex tasks and larger models, and assessing more complex application domains. There-
fore, a possible future work can be to reevaluate the interfaces in larger models and improve
them to perform better in more sophisticated contexts.

181

References

[1] Silvia Abrahão, Francis Bourdeleau, Betty Cheng, Sahar Kokaly, Richard Paige,
Harald Stöerrle, and Jon Whittle. User experience for model-driven engineering:
Challenges and future directions. In 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS), pages 229–236. IEEE, 2017.

[2] Silvia Abrahão, Kasper Hornbæk, Effie Law, and Jan Stage. Interplay between
Usability Evaluation and Software Development (I-USED 2009). pages 969–970.
Springer, Berlin, Heidelberg, 2009.

[3] Piotr D Adamczyk and Brian P Bailey. If not now, when?: the effects of interruption
at different moments within task execution. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 271–278. ACM, 2004.

[4] Luciane TW Agner and Timothy C. Lethbridge. A survey of tool use in modeling
education. In 20th International Conference on Model Driven Engineering Languages
and Systems (MODELS), pages 303–311. IEEE, 2017.

[5] Henning Agt-Rickauer, Ralf-Detlef Kutsche, and Harald Sack. Domore-a recom-
mender system for domain modeling. In MODELSWARD, pages 71–82, 2018.

[6] William Albert and E. Dixon. Is this what you expected? the use of expectation mea-
sures in usability testing. In Proceedings of the Usability Professionals Association
2003 Conference, Scottsdale, AZ, 2003.

[7] William Albert and Thomas Tullis. Measuring the user experience: collecting, ana-
lyzing, and presenting usability metrics. Newnes, 2013.

[8] Anja Baethge and Thomas Rigotti. Interruptions to workflow: Their relationship
with irritation and satisfaction with performance, and the mediating roles of time
pressure and mental demands. Work & Stress, 27(1):43–63, 2013.

182

[9] Brian P Bailey and Joseph A Konstan. On the need for attention-aware systems:
Measuring effects of interruption on task performance, error rate, and affective state.
Computers in human behavior, 22(4):685–708, 2006.

[10] Kathy Baxter, Catherine Courage, and Kelly Caine. Understanding your users: a
practical guide to user research methods. Morgan Kaufmann, 2015.

[11] Stefan Berlik. Eclipse Modeling Framework. Addison-Wesley, 2007.

[12] Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. Detecting model
inconsistency through operation-based model construction. In 30th International
Conference on Software Engineering, pages 511–520. IEEE, 2008.

[13] Deborah A Boehm-Davis and Roger Remington. Reducing the disruptive effects of
interruption: A cognitive framework for analysing the costs and benefits of interven-
tion strategies. Accident Analysis & Prevention, 41(5):1124–1129, 2009.

[14] Francis Bordeleau, Grischa Liebel, Alexander Raschke, Gerald Stieglbauer, and
Matthias Tichy. Challenges and research directions for successfully applying mbe
tools in practice. In MODELS (Satellite Events), pages 338–343, 2017.

[15] John Brooke. SUS: A quick and dirty usability scale. Usability evaluation in industry,
189, 1996.

[16] Marcel Bruch, Thorsten Schäfer, and Mira Mezini. On evaluating recommender
systems for API usages. In Proceedings of the 2008 International Workshop on Rec-
ommendation Systems for Software Engineering, RSSE ’08, pages 16–20, New York,
NY, USA, 2008. ACM.

[17] Raluca Budiu. Memory recognition and recall in user interfaces. Nielsen Norman
Group, 2014.

[18] Stuart K Card, M Pavel, and JE Farrell. Window-based computer dialogues. In
Proc. Interact, volume 4, pages 239–243, 1984.

[19] J. P. Chin, V. A. Diehl, and L. K. Norman. Development of an instrument measuring
user satisfaction of the human-computer interface. In Proceedings of the Special
Interest Group on Computer-Human Interaction (SIGCHI) conference on Human
factors in computing systems - CHI ’88, pages 213–218, New York, New York, USA,
1988. ACM Press.

183

[20] Tony Clark and Pierre-Alain Muller. Exploiting model driven technology: a tale of
two startups. Software & Systems Modeling, 11(4):481–493, 2012.

[21] Andy Cockburn, Amy Karlson, and Benjamin B Bederson. A review of overview+
detail, zooming, and focus+context interfaces. ACM Computing Surveys (CSUR),
41(1):2, 2009.

[22] Gilbert Cockton, Marta Lárusdóttir, Peggy Gregory, and Åsa Cajander. Integrating
User-Centred Design in Agile Development. pages 1–46. Springer, 2016.

[23] Eleni Danili and Norman Reid. Cognitive factors that can potentially affect pupils’
test performance. Chemistry Education Research and Practice, 7(2):64–83, 2006.

[24] David Dietrich and Joanne M. Atlee. A mode-based pattern for feature requirements,
and a generic feature interface. In 21st IEEE International Requirements Engineering
Conference, RE 2013 - Proceedings, pages 82–91. IEEE, jul 2013.

[25] Andrej Dyck, Andreas Ganser, and Horst Lichter. Model recommenders for
command-enabled editors. In International Workshop on Model-driven Engineering
By Example (MDEBE), pages 12–21, 2013.

[26] Sven Efftinge and Markus Völter. oAW xText: A framework for textual DSLs. In
Workshop on Modeling Symposium at Eclipse Summit, volume 32, page 118, 2006.

[27] Alexander Egyed. Instant consistency checking for the uml. In Proceedings of the
28th international conference on Software engineering, pages 381–390. ACM, 2006.

[28] Colin Eles and Mark Lawford. A tabular expression toolbox for Matlab/Simulink.
In NASA Formal Methods Symposium, volume 6617 of Lecture Notes in Computer
Science (LNCS), pages 494–499. 2011.

[29] Christian F. J. Lange. Assessing and Improving the Quality of Modeling. Ph.d.,
Technische Universiteit Eindhoven, Netherlands, 2007.

[30] Adrian Fernandez, Silvia Abrahão, Emilio Insfran, and Maristella Matera. Usability
Inspection in Model-Driven Web Development: Empirical Validation in WebML.
pages 740–756. Springer, Berlin, Heidelberg, 2013.

[31] Andy Field. Discovering statistics using IBM SPSS statistics. sage, 2013.

184

[32] Robert France, Jim Bieman, and Betty HC Cheng. Repository for model driven
development (remodd). In International Conference on Model Driven Engineering
Languages and Systems, pages 311–317. Springer, 2006.

[33] Miguel a. Garzon, Hamoud Aljamaan, and Timothy C. Lethbridge. Umple: A frame-
work for Model Driven Development of Object-Oriented Systems. In 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 494–498, 2015.

[34] Sébastien Gérard, Cédric Dumoulin, Patrick Tessier, and Bran Selic. Papyrus: A
UML2 tool for domain-specific language modeling. In Proceedings of the International
Dagstuhl Conference on Model-Based Engineering of Embedded Real-Time Systems
(MBEERTS’07), pages 361–368. Springer-Verlag, 2007.

[35] Parisa Ghazi, Norbert Seyff, and Martin Glinz. FlexiView: A Magnet-Based Ap-
proach for Visualizing Requirements Artifacts. In International Working Conference
on Requirements Engineering: Foundation for Software Quality, volume 9013 of Lec-
ture Notes in Computer Science (LNCS), pages 262–269. 2015.

[36] Martin Glinz, Stefan Berner, and Stefan Joos. Object-oriented modeling with adora.
volume 27, pages 425–444. Elsevier, 2002.

[37] T.R.G. Green and M. Petre. Usability analysis of visual programming environ-
ments: A ‘cognitive dimensions’ framework. Journal of Visual Languages Com-
puting, 7(2):131 – 174, 1996.

[38] Jonathan Grudin. Why CSCW applications fail: Problems in the design and evalu-
ation of organizational interfaces. Microelectronics and Computer Technology Cor-
poration, 1988.

[39] Irit Hadar and Anna Zamansky. Cognitive factors in inconsistency management. In
23rd International Conference on Requirements Engineering(RE’15), pages 226–229.
IEEE, 2015.

[40] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Automated con-
sistency checking of requirements specifications. ACM Transactions on Software
Engineering and Methodology (TOSEM), 5(3):231–261, 1996.

[41] Markus Herrmannsdoerfer, Daniel Ratiu, and Guido Wachsmuth. Language evo-
lution in practice: The history of GMF. In International Conference on Software
Language Engineering, pages 3–22. Springer, 2009.

185

[42] Anders Hessellund, Krzysztof Czarnecki, and Andrzej Wasowski. Guided develop-
ment with multiple domain-specific languages. In International Conference on Model
Driven Engineering Languages and Systems (MODELS), pages 46–60. 2007.

[43] James H Hill. Measuring and reducing modeling effort in domain-specific model-
ing languages with examples. In 18th International Conference and Workshops on
Engineering of Computer Based Systems (ECBS), pages 120–129. IEEE, 2011.

[44] Zbigniew Huzar, Ludwik Kuzniarz, Gianna Reggio, and Jean Louis Sourrouille. Con-
sistency Problems in UML-Based Software Development. In UML Modeling Lan-
guages and Applications, volume 3297, pages 1–12. Springer Berlin Heidelberg, 2004.

[45] No Magic Inc. Magicdraw, uml. 2013.

[46] Rodi Jolak, Truong Ho-Quang, Michel RV Chaudron, and Ramon RH Schiffelers.
Model-based software engineering: A multiple-case study on challenges and devel-
opment efforts. In Proceedings of the 21th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, pages 213–223. ACM, 2018.

[47] Huzefa Kagdi and Jonathan I Maletic. Onion graphs for focus+ context views of
uml class diagrams. In 4th International Workshop on Visualizing Software for Un-
derstanding and Analysis, pages 80–87. IEEE, 2007.

[48] Stuart Kent. Model driven engineering. In International Conference on Integrated
Formal Methods, pages 286–298. Springer, 2002.

[49] Mik Kersten. Focusing knowledge work with task context. PhD thesis, University of
British Columbia, 2007.

[50] Alex Kirlik. Everyday life environments. A companion to cognitive science, pages
702–712, 2017.

[51] Andrew J Ko, Shriram Krishnamurthi, Gail Murphy, and Janet Siegmund. Human-
Centric Development of Software Tools (Dagstuhl Seminar 15222). Dagstuhl Reports,
5(5):115–132, 2016.

[52] Andrew J. Ko, Thomas D. Latoza, and Margaret M. Burnett. A practical guide
to controlled experiments of software engineering tools with human participants.
Empirical Software Engineering, 20(1):110–141, 2015.

186

[53] Samuel Lahtinen and Jari Peltonen. Adding speech recognition support to uml tools.
Journal of Visual Languages Computing, 16(1):85 – 118, 2005. 2003 IEEE Sympo-
sium on Human Centric Computing Languages and Environments.

[54] Christian F. J. Lange and Michel R. V. Chaudron. An empirical assessment of
completeness in uml designs. In Proceedings of the 8th International Conference on
Empirical Assessment in Software Engineering (EASE ’04), pages 111–121. IET,
2004.

[55] Christian F J Lange and Michel R V Chaudron. Effects of Defects in UML Models:
An Experimental Investigation. In Proceedings of the 28th International Conference
on Software Engineering, pages 401–411, 2006.

[56] Christian F. J. Lange, Michel R. V. Chaudron, and Johan Muskens. In practice:
Uml software architecture and design description. IEEE software, 23(2):40–46, 2006.

[57] Hung Ledang and Jeanine Souquières. Contributions for modelling uml state-charts
in b. In International Conference on Integrated Formal Methods, pages 109–127.
Springer, 2002.

[58] A. Lédeczi, A. Bakay, M. Maróti, P. Völgyesi, G. Nordstrom, J. Sprinkle, and G. Kar-
sai. Composing domain-specific design environments. Computer, 34(11):44–51, 2001.

[59] V. Levenshtein. Binary codes capable of correcting spurious insertions and deletions
of ones. Problems of Information Transmission, 1:8–17, 1965.

[60] James R. Lewis. Psychometric evaluation of the post-study system usability ques-
tionnaire: The pssuq. 36(16):1259–1260, 1992.

[61] James R. Lewis. Ibm computer usability satisfaction questionnaires: psychomet-
ric evaluation and instructions for use. International Journal of Human-Computer
Interaction, 7(1):57–78, 1995.

[62] James R Lewis. Measuring perceived usability: The csuq, sus, and umux. Interna-
tional Journal of Human–Computer Interaction, 34(12):1148–1156, 2018.

[63] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology,
1932.

[64] Daniel Lucrédio, Renata P de M Fortes, and Jon Whittle. Moogle: A model search
engine. In International Conference on Model Driven Engineering Languages and
Systems, pages 296–310. Springer, 2008.

187

[65] Arnold M. Lund. Measuring Usability with the USE Questionnaire 12 General Back-
ground. Usability interface, 8(2):3–6, 2001.

[66] I Scott MacKenzie. Human-computer interaction: An empirical research perspective.
Newnes, 2012.

[67] David McNeish and Martin Maguire. A participatory approach to helicopter user
interface design. 2019.

[68] Antkiewicz Michaland, Kacper Bak, Alexandr Murashkin, Rafael Olaechea, Jia
Hui (Jimmy) Liang, Krzysztof Czarnecki, Michal Antkiewicz, Kacper Ba̧k, Alexandr
Murashkin, Rafael Olaechea, Jia Hui (Jimmy) Liang, and Krzysztof Czarnecki. Clafer
tools for product line engineering. In Proceedings of the 17th International Software
Product Line Conference co-located workshops on - SPLC ’13 Workshops, page 130,
New York, New York, USA, 2013. ACM Press.

[69] Daniel Moody. The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Transactions on software engineering,
35(6):756–779, 2009.

[70] Andreas Muelder. Yakindu Statechart Modeling Tools, 2011.

[71] Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty HC Cheng,
Philippe Collet, Benoit Combemale, Robert B. France, Rogardt Heldal, James Hill,
et al. The relevance of model-driven engineering thirty years from now. pages 183–
200, 2014.

[72] Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein, and Ernst Ellmer.
Flexible consistency checking. ACM Transactions on Software Engineering and
Methodology (TOSEM), 12(1):28–63, jan 2003.

[73] Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Making inconsistency
respectable in software development. Journal of Systems and Software, 58(2):171–
180, 2001.

[74] Object Management Group. OMG unified modeling language TM (OMG UML),
superstructure v.2.3. InformatikSpektrum, (March):758.

[75] Visual Paradigm. Visual paradigm for uml. Visual Paradigm for UML-UML tool for
software application development, page 72, 2013.

188

[76] Tanumoy Pati, Dennis C. Feiock, and James H. Hill. Proactive modeling: auto-
generating models from their semantics and constraints. In Proceedings of the 2012
workshop on Domain-specific modeling, pages 7–12. ACM, 2012.

[77] Tanumoy Pati, Sowmya Kolli, and James H. Hill. Proactive modeling: a new model
intelligence technique. Software & Systems Modeling, 16(2):499–521, 2017.

[78] Jakob Pietron, Alexander Raschke, Michael Stegmaier, Matthias Tichy, and Enrico
Rukzio. A Study Design Template for Identifying Usability Issues in Graphical Mod-
eling Tools. Technical report.

[79] Parsa Pourali. Tooling advances inspired to address observed challenges of de-
veloping uml-like models when using modelling tools. In Proceedings of the 21st
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings, pages 168–173. ACM, 2018.

[80] Parsa Pourali and Joanne M Atlee. An empirical investigation to understand the dif-
ficulties and challenges of software modellers when using modelling tools. In Proceed-
ings of the 21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, pages 224–234. ACM, 2018.

[81] Parsa Pourali and Joanne M Atlee. A focus+context approach to alleviate cogni-
tive challenges of editing and debugging uml models. In Proceedings of the 22th
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems. IEEE, 2019.

[82] Parsa Pourali and Joanne M Atlee. UCAnDoModels: A context-based model editor
for editing and debugging UML class and state-machine diagrams. In Proceedings of
the 22th ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems. IEEE, 2019.

[83] Parsa Pourali and Joanne M. Atlee. An experimental investigation on understanding
the difficulties and challenges of software modellers when using modelling tools. Tech-
nical Report CS-2018-03, David R. Cheriton School of Computer Science, University
of Waterloo, 2018.

[84] Microsoft Press. Microsoft Visual InterDev 6.0 Programmer’s Guide. Microsoft Press,
1998.

[85] Paul Ralph. Toward a theory of debiasing software development. In EuroSymposium
on Systems Analysis and Design, pages 92–105. Springer, 2011.

189

[86] G Ramesh, TV Rajini Kanth, and A Ananda Rao. Extensible real time software
design inconsistency checker: A model driven approach. In Proceedings of the Inter-
national MultiConference of Engineers and Computer Scientists (IMECS), volume 1,
2016.

[87] James Reason. Human error. Cambridge university press, 1990.

[88] Jason E. Robbins and David F. Redmiles. Cognitive support, UML adherence, and
XMI interchange in Argo/UML. Information and Software Technology, 42(2):79–89,
2000.

[89] Pascal Roques. MBSE with the ARCADIA Method and the Capella Tool. In 8th
European Congress on Embedded Real Time Software and Systems (ERTS 2016),
Toulouse, France, January 2016.

[90] Dan Rubel, Jaime Wren, and Eric Clayberg. The Eclipse Graphical Editing Frame-
work (GEF). Addison-Wesley Professional, 2011.

[91] Elizabeth B-N Sanders and Pieter Jan Stappers. Co-creation and the new landscapes
of design. Co-design, 4(1):5–18, 2008.

[92] Jeff Sauro and James R Lewis. Quantifying the user experience: Practical statistics
for user research. Morgan Kaufmann, 2016.

[93] D.L. Schacter, D. T. Gilbert, and D. M. Wegner. Psychology (2nd Edition). Worth,
New York, 2011.

[94] Markus Scheidgen. Integrating Content Assist into Textual Modelling Editors. Mod-
ellierung 2008, 12.-14. März 2008, Berlin, 127:121–131, 2008.

[95] S. Sen, B. Baudry, and H. Vangheluwe. Towards Domain-specific Model Editors with
Automatic Model Completion. Simulation, 86(2):109–126, feb 2010.

[96] Pourya Shaker. A feature-oriented modelling language and a feature-interaction tax-
onomy for product-line requirements. PhD thesis, University of Waterloo, 2013.

[97] Pourya Shaker, Joanne M. Atlee, and Shige Wang. A feature-oriented requirements
modelling language. In 20th IEEE International Requirements Engineering Confer-
ence, RE 2012, pages 151–160. IEEE, September 2012.

[98] Ben Shneiderman. Software psychology. Winthrop, Cambridge, Mass, 48:161–172,
1980.

190

[99] Forrest Shull, Janice Singer, and Dag IK Sjøberg. Guide to advanced empirical
software engineering, volume 93. Springer, 2008.

[100] Neil R. Smalheiser. Chapter 12 - nonparametric tests. In Neil R. Smalheiser, editor,
Data Literacy, pages 157 – 167. Academic Press, 2017.

[101] Pauline A. Smith. Towards a practical measure of hypertext usability. Interacting
with computers, 8(4):365–381, 1996.

[102] Monique Snoeck, Cindy Michiels, and Guido Dedene. Consistency by construction:
the case of merode. In International Conference on Conceptual Modeling, pages
105–117. Springer, 2003.

[103] Fábio Soares, João Araújo, and Fernando Wanderley. VoiceToModel. In Proceedings
of the 30th Annual ACM Symposium on Applied Computing - SAC ’15, pages 1350–
1357, New York, New York, USA, 2015. ACM Press.

[104] OMG Available Specification. Omg unified modeling language (omg uml), super-
structure, v2. 1.2. Object Management Group, 70, 2007.

[105] Friedrich Steimann and Bastian Ulke. Generic model assist. In Ana Moreira, Bern-
hard Schätz, Jeff Gray, Antonio Vallecillo, and Peter Clarke, editors, International
Conference on Model Driven Engineering Languages and Systems (MODELS), vol-
ume 8107 of Lecture Notes in Computer Science (LNCS), pages 18–34. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[106] Alistair Sutcliffe. On the effective use and reuse of HCI knowledge. ACM Transactions
on Computer-Human Interaction (TOCHI), 7(2):197–221, 2000.

[107] Rini van Solingen, Vic Basili, Gianluigi Caldiera, H. Dieter Rombach, Rini van Solin-
gen (Revision), Vic Basili (Original article, 1994 ed.), Gianluigi Caldiera (Original
article, 1994 ed.), and H. Dieter Rombach (Original article, 1994 ed.). Goal Question
Metric (GQM) Approach. In Encyclopedia of Software Engineering. John Wiley &
Sons, Inc., Hoboken, NJ, USA, jan 2002.

[108] Vladimir Viyović, Mirjam Maksimović, and Branko Perišić. Sirius: A rapid develop-
ment of DSM graphical editor. In INES 2014 - IEEE 18th International Conference
on Intelligent Engineering Systems, Proceedings, pages 233–238. IEEE, jul 2014.

[109] Earl L Wiener and Renwick E Curry. Flight-deck automation: Promises and prob-
lems. Ergonomics, 23(10):995–1011, 1980.

191

[110] Min Zeng, Pan Liu, and Huaikou Miao. The Design and Implementation of a Mod-
eling Tool for Regular Expressions. In 3rd International Conference on Advanced
Applied Informatics (IIAI), pages 726–731. IEEE, 2014.

192

Appendices

193

Appendix A

FORML Grammar Defined in Xtext

194

Forml.xtext

1 grammar uw.cs.watform.forml.Forml with org.eclipse.xtext.common.Terminals
2
3 generate forml "http://www.cs.uw/watform/forml/Forml"
4 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
5
6 System:
7 {System}
8 ((worldmodel=WorldModel)? & (behaviourmodel=BehaviourModel)?);
9

10 /**
11 * World Model
12 */
13 WorldModel:
14 {WorldModel} ('World' '{'
15 (concepts+=Concept*
16 constraints=Constraint?)
17 '}');
18
19 Constraint:
20 {Constraint} 'Constraints' '{' (predicates+=Predicate* &
21 macro+=Macro*) '}';
22
23 ExprRef:
24 Concept|Attribute
25 ;
26
27 Concept returns ExprRef:
28 Entity | Relationship | SPL | Message | Feature | Enumeration |
29 UndefinedType;
30
31 Relationship returns Concept:
32 Association | Aggregation | Composition;
33
34 Roleable returns Concept:
35 Entity | Feature;
36
37 Entity returns Roleable:
38 {Entity} 'abstract'? (ctrl?='ctrl')? 'entity' name=ID ('extends' superType=[Entity])? ('{'

attributes+=Attribute*
39 functions+=Function* '}')?;
40
41 Association returns Relationship:
42 {Association} (ctrl?='ctrl')? 'association' name=ID '{' (attributes+=Attribute* &

(srcRole=Role & desRole=Role)) '}';
43
44 Attribute returns ExprRef:
45 {Attribute} (ctrl?='ctrl')? 'attribute' name=ID ('[' multiplicity=Multiplicity ']')? ':'

type=AttributeType?;
46
47 AttributeType:
48 ReferenceType | IntType | BoolType |StringType| UndefinedType;
49
50 StringType:
51 {StringType} "string" | "String";
52
53
54 Function returns ExprRef:

Page 1
195

Forml.xtext

55 {Function} 'function' name=ID ':' (type=AttributeType)?;
56
57 IntType:
58 {IntType} "int" | "Integer";
59
60 BoolType:
61 {BoolType} "bool" | "Boolean";
62
63 ReferenceType:
64 ref=[Concept];
65
66 UndefinedType returns Concept:
67 {UndefinedType} 'undefined_type' name=ID;
68
69 Multiplicity:
70 (value=INT | many='*') | cardinality=Cardinality;
71
72 Cardinality:
73 (lower=INT '..' (upper=INT | many='*'));
74
75
76 Role returns Role:
77 'role' {Role} name=ID ('[' multiplicity=Multiplicity ']')? ':' type=[Roleable];
78
79 Aggregation returns Relationship:
80 {Aggregation} (ctrl?='ctrl')? 'aggregation' name=ID '{' ('whole' whole=Decl & 'part'

part=Decl) '}';
81
82 Composition returns Relationship:
83 {Composition} (ctrl?='ctrl')? 'composition' name=ID '{' ('whole' whole=Decl & 'part'

part=Decl) '}';
84
85 Decl:
86 {Decl} name=ID ('[' multiplicity=Multiplicity ']')? ':' type=[Entity];
87
88 CompDecl returns Decl:
89 {CompDecl} name=ID ':' type=[Entity];
90
91 IdList:
92 ID (',' ID)*;
93
94
95 Message returns Concept:
96 (Input | Output);
97
98 Input returns Message:
99 {Input} 'input' name=ID '{' ('type' type=AttributeType)? attributes+=Attribute* ('to'

(tos+=[Feature])*)? '}';
100
101 Output returns Message:
102 {Output} 'output' name=ID '{' ('type' type=AttributeType)? attributes+=Attribute* ('from'

(froms+=[Feature])*)? '}';
103
104 InputList:
105 {InputList} 'inputs' '{' (inputs+=RefMessage (',' inputs+=RefMessage)*)? '}';
106
107 OutputList:

Page 2
196

Forml.xtext

108 {OutputList} 'outputs' '{' (outputs+=RefMessage (',' outputs+=RefMessage)*)? '}';
109
110 RefMessage:
111 {RefMessage} refMsg=[Message];
112
113
114 Feature returns Roleable:
115 {Feature} 'feature' name=ID ('{' (attributes+=Attribute* (inputlist=InputList)?

(outputlist=OutputList)?) '}')?;
116
117 SPL returns Node:
118 {SPL} 'SPL' name=ID '{' (featureNodes+=FeatureNode* xors+=XORNode* ands+=AndNode*

ors+=OrNode*) '}';
119
120 XORNode returns Node:
121 {XORNode} 'XOR' '{' featureNodes+=FeatureNode featureNodes+=(FeatureNode)+ '}';
122
123 AndNode returns Node:
124 {AndNode} 'AND' '{' featureNodes+=FeatureNode featureNodes+=(FeatureNode)+ '}';
125
126 OrNode returns Node:
127 {OrNode} 'OR' '{' featureNodes+=FeatureNode featureNodes+=(FeatureNode)+ '}';
128
129
130 FeatureNode returns Node:
131 {FeatureNode} 'FeatureNode' feature=[Feature] ('[' multiplicity=Multiplicity ']')? ('{'

(featureNodes+=FeatureNode*
132 xors+=XORNode* ands+=AndNode* ors+=OrNode*) '}')?;
133
134 Enumeration returns Concept:
135 {Enumeration} 'enum' name=ID '{' (constant+=EnumConst (',' constant+=EnumConst)*) '}';
136
137 EnumConst returns ExprRef:
138 {EnumConst} name=ID;
139
140
141 BehaviourModel:
142 {BehaviourModel} 'Behaviour' '{' featuremodules+=FeatureModule* '}';
143
144 FeatureModule:
145 'FeatureModule' featureref=[Roleable] '{' (constraints=Constraint? &

statemachine+=StateMachine* &
146 fragments+=Fragment*) '}';
147
148 StateMachine:
149 'statemachine' name=ID '{' (regions+=Region+ & transitions+=Transition*) '}';
150
151 InitState:
152 {InitState} 'init' '=' stateref=[State]?;
153
154 State returns Component:
155 {State} 'state' name=ID '{' regions+=Region* '}';
156
157 Region returns Component:
158 {Region} 'region' name=ID '{' init=InitState? states+=State* '}';
159
160 Transition:

Page 3
197

Forml.xtext

161 {Transition} 'transition' name=ID priority=Priority? ':' src=[State|QualifiedName] '->'
dst=[State|QualifiedName] '{'

162 trig=Trigger? guard=Guard? (list=WCAList)? '}';
163
164
165 Priority:
166 '>' translist=TransList;
167
168 TransList:
169 transitions+=[Transition] (',' transitions+=[Transition])*;
170
171 Guard:
172 {Guard} ('[' predicate=Predicate? ']' | '[]');
173
174
175 Trigger:
176 {Trigger} 'event:' (override=Override | wce=WCE)?
177 ;
178
179 Override:
180 'override' '(' transition=[Transition] ')';
181
182
183 WCE:
184 (addobj=[ExprRef|QualifiedName] '+') | (attr=[Attribute|QualifiedName]) | (remobj=

[ExprRef|QualifiedName] '-');
185
186 WCAList:
187 {WCAList} '/' (actions+=WCA (',' actions+=WCA)*)?;
188
189 WCA:
190 {WCA} name=ID '{' action=Action?
191
192 '}';
193
194 Action:
195 {Action} '+' type=[ExprRef|QualifiedName]
196 // Bang is for outputting message?
197 | '!' out=[Output] '(' list+=AssignList ')' | '-' minexpr=setExpr | (lvalue=setExpr)? ':='

(rvalue=setExpr)? | (lvalue=intExpr)
198 ':=' (rvalue=intExpr);
199
200 AssignList:
201 list+=Assign (',' list+=Assign)*;
202
203 Assign:
204 ref=[ExprRef] '=' sexpr=(setExpr | intExpr);
205
206 /**
207 * Expressions
208 */
209 Macro:
210 'let' name=ID '=' expr=(setExpr | intExpr);
211
212 Predicate:
213 (logicop=('no' | 'lone' | 'one' | 'some' | 'all') var=Variable ':' sexpr=setExpr '|')?

quantPred=notPred;

Page 4
198

Forml.xtext

214
215 notPred:
216 'not' pred=Predicate | pred=andPred;
217
218 andPred:
219 preds+=impPred ('and' preds+=impPred)*;
220
221 impPred:
222 preds+=orPred (logicop+=('implies' | 'iff') preds+=orPred)*;
223
224 orPred:
225 preds+=basePred ('or' preds+=basePred)*;
226
227 basePred:
228 logicop=('no' | 'lone' | 'one' | 'some' | 'all') cardpred=setExpr | setlhs=predExpr

logicop=('in' | '=')
229 setrhs=predExpr? | setlhs=predExpr logicop=('in' | '=') boolrhs=boolExpr | intlhs=intExpr

op=('=' | '<>' | '>' | '<'
230 | '>=' | '=>' | '<=' | '=<') intrhs=intExpr? | '(' parenPred=Predicate ')';
231
232 boolExpr:
233 isTrue='true' | isFalse='false';
234
235 predExpr:
236 expr+=predExpr2 ('&' expr+=predExpr2)*;
237
238 predExpr2:
239 expr+=predExpr3 (op+=('-' | '+') expr+=predExpr3)*;
240
241 predExpr3:
242 base=setExprBase;
243
244 setExpr:
245 expr+=setExpr2 ('&' expr+=setExpr2)*;
246
247 setExpr2:
248 expr+=setExpr3 (op+=('-' | '+') expr+=setExpr3)*;
249
250 setExpr3:
251 '(' paren=setExprBase ')' | base=setExprBase;
252
253 setExprBase:
254 (atom=atomic) | unspec=unspecified;
255
256 intExpr:
257 lhs=multExpr (op+=('+' | '-') rhs+=multExpr)*;
258
259 multExpr:
260 lhs=intBase (op+=('*' | '/') rhs+=intBase)*;
261
262 intBase:
263 '#'(atom=atomic)| num=INT;
264
265 atomic:
266 none='none' |
267 ref=[ExprRef|QualifiedName] '@pre'? | refs=[ExprRef|QualifiedName] 's' '@pre'?;
268

Page 5
199

Forml.xtext

269 unspecified:
270 ref=[ExprRef] '()' '@pre'?;
271
272 setOper:
273 '+' | '-' | '&';
274
275 Variable returns ExprRef:
276 {Variable} name=ID;
277
278 /**
279 * FRAGMENTS
280 */
281 Fragment:
282 {Fragment} 'fragment' name=ID '{' fragmentType+=FragmentType* '}';
283
284 FragmentType:
285 (state=StateContext | region=RegionContext | frag=TranFragment |

statemachine=StateMachineContext) &
286 transitions+=Transition*;
287
288 StateContext:
289 {StateContext} 'StateFragment' '{' 'state' ref=[State|QualifiedName] regions+=Region* '}';
290
291 RegionContext:
292 {RegionContext} 'RegionFragment' '{' 'region' ref=[Region|QualifiedName] states+=State*

'}';
293
294 StateMachineContext:
295 {StateMachineContext} 'SMFragment' '{' 'statemachine' ref=[StateMachine|QualifiedName]

state+=State*;
296
297 TranFragment:
298 'TransitionFragment' '{' ref=[Transition|QualifiedName] ':' trig=Trigger? fragType=(Guard)
299 ('/' list=WCAList? fragList=WCAFragmentList?)? '}';
300
301 WCAFragmentList:
302 frag+=WCAFragment (',' frag+=WCAFragment)*;
303
304 WCAFragment:
305 {WCAFragment} ref=[WCA|QualifiedName] ':' fragType=(Guard);
306
307 QualifiedName:
308 ID ('.' ID)*;
309

Page 6
200

Appendix B

Assignment Used for the Pre-Study
Phase

201

Submission
Combine your models and answers in a single PDF file and email it to cs445@student.cs.uwaterloo.ca.

1) State Machine Model
You are to create a UML State-Machine model of the proposed system to enforce the parking policies at
the Bauer complex. Bauer provides parking for two types of users: customers and employees. There are
two levels of parking: surface-level parking and underground parking. Surface-level parking is for
customers only. They pay a $2 flat fee for parking. Employees park for free, but only if they park
underground. Underground parking is also open to customers in the evenings and on weekends, but of
course customers must still pay ($2) to use it.

Gates control access to both levels of parking. Each gate controls traffic flowing in a single direction (e.g.,
traffic entering the complex), and it opens only for cars that approach the gate from the appropriate
direction. Employees' cars have transponders that the gates can sense. Some gates open only for cars
that have transponders. In addition, the system uses transponder data (IDs) to keep track of where
employees' cars park. There are four gates that are controlled independently:

- Gate A controls entry into the Bauer complex. It opens whenever it senses a car approaching from
outside the Bauer complex. Cars that pass through gate A enter the surface-level parking lot.

- Gate B controls access from surface-level parking to underground parking. Normally, it opens only if
an approaching car has a transponder. But during evenings (18:00-6:00) and weekends (Friday
18:00 - Monday 6:00), it remains open to all cars.

- Gate C opens whenever it senses a car approaching from the underground parking lot.
- Gate D controls exits from the Bauer complex and collects parking fees. The gate opens whenever a

$2 fee is paid (no change is provided). In addition, if an approaching car has a transponder, the gate
opens if the car had parked underground (i.e., if the transponder triggered gate B since the car
entered the complex).

Each of the gates closes 5 seconds after it opens — unless a blockage is detected, in which case it
remains open and tries to close again after another 5 seconds. (Don't worry about modelling the delay of
the gate opening and closing.)

On the next page is a domain model for the system based on the interface choices already made. The
events, conditions, and actions in your state-machine model should be expressed in terms of elements in
the domain model. You can declare events and abbreviations based on these elements, to simplify the
expressions in your model.

For full credit, your model should make the most effective use of UML state-machine modelling constructs.
You must use a software modelling tool or drawing tool to create the state machine model that you include
in your submission.

CS 445 / ECE 451 / CS 645 / SE 463
Software Requirements Specification and Analysis

Assignment 3: State-Machine Modelling, Temporal Logic
Due Date: Tuesday, March 11 at 12:00pm

(Late Date: Thursday, March 13 at 12:00pm)

202

CS445 / ECE451 / CS645 / SE643 -- Winter 2014 Assignment 3

can be
sensed by

unrestricted start time = 18:00
restricted start time = 6:00

<<domain>>
Underground Lot1*

1

11 provides admission to ➤

➤

<<interface>>
Exit Gate

payment: Money

<<interface>>
Coin Slot

car at gate: boolean
transponder : boolean
transponderID : ID
blockage: boolean

<<interface>>
Sensor 1

Customer

Employee id

<<interface>>
Transponder

exit fee = $2

<<domain>>
Surface Lot

id: {A, B, C, D}
position: {up, down}

<<interface>>
Gate

1

1

1
1

11

1
1

1 exit

exit
entry

entry

4

*

1) State Machine Model (cont.)
Below is a domain model for the system that enforces the Bauer parking policies.

2) Temporal Logic
This question tests your proficiency at writing temporal logic expressions. Below are four constraints
that apply to the state-machine model that you created for Question 1. For each of these constraints,
write an equivalent temporal logic formula. Your formulae must be expressions over your state-
machine's events, states, abbreviations, and variables.

a. Whenever gate A senses an approaching car, it opens immediately.
b. None of the gates stay open indefinitely.
c. At 18:00, gate B is opened and remains open until the next weekday morning at 6:00.
d. Gate D remains closed unless a fee is paid or the approaching car was parked underground (i.e.,

the transponder triggered gate B to open).

203

Appendix C

Materials for the Formative User
Study

204

1

Recruitment Letter

Hello,

My name is Parsa Pourali, a PhD student in the department of Electrical and Computer
Engineering working under the supervision of Prof. Joanne M. Atlee, a professor in the
Cheriton School of Computer Science at the University of Waterloo. I am writing to ask
for your participation in conducting a study that aims at understanding how to reduce the
effort of creating and editing software models, through novel enhancements to software
modelling tools.

Participation in this study involves coming into the laboratory and performing a few
software modelling tasks. The tasks include developing class diagrams and state machines,
such as setting the triggering events, guards and actions for transitions. Your activities will
be audio-recorded as well as video-captured from the computer screen. We will measure
the time that it takes you to fulfill each task and gauge your success or failure on a task.
However, this study is meant to help us gauge the effectiveness of current modelling tools;
it is not intended to test your individual performance in any way. Participation in this
study would take approximately 60 to 90 minutes of your time. In appreciation of your
time commitment, you will receive an honorarium of $20 and will be given the chance to
enter into a draw and win a prize of $200 gift card. Odds for the draw are equal for all the
participants which is approximately 1 in 30. I would like to assure you that the study has
been reviewed and received ethics clearance through the University of Waterloo Research
Ethics Committee.

If you are interested in participating, please perform the recruitment screening procedure
by filling the screening form at: [SURVEY MONKEY LINK]. We will then take your
information to see whether you fit the study, and will contact you by email to schedule
your laboratory session. You can cancel your appointment by sending me an email at
ppourali@uwaterloo.ca. Please note that, the honorarium amount of $20 will be paid to you
only if you pass the screening questions and attend to the study. All screening data will be
stored securely, if you do not fit the study or decide not to participate your screening data
will be deleted. We will also notify you by email.

Please note that, you will be completing the screening by an online survey operated
by SurveyMonkey. When information is transmitted over the internet privacy cannot be
guaranteed. There is always a risk your responses may be intercepted by a third party
(e.g., government agencies, hackers). SurveyMonkey temporarily collects your computer IP
address to avoid duplicate responses in the dataset but will not collect information that
could identify you personally.

If you have any questions regarding this study, or would like additional information to
assist you in reaching a decision about participation, please contact Parsa Pourali by email
at ppourali@uwaterloo.ca.

Sincerely,

Parsa Pourali

205

2

A Research Study on Understanding and Learning About the Efforts and Challenges
of using UML Modelling tools

Recruitment Screener

Hello,

This is a recruitment screener for a study on observing modellers and understanding
their difficulties and challenges to improve the quality of modelling tools. It is important to
note that you will not be evaluated in any way and it is the tool that is under scrutiny, not
you. The activity takes place in the University of Waterloo, room DC2551B. Participation is
on a paid basis.

Are you interested in participating?
• Yes.
• No. (Will thank the person and end the recruitment.)
We have a few questions to ask you to see whether you fit the profile of the individuals

we need for this study. After you answer the questions, we will take your information for
review, and then we will contact you by email to let you know whether your background
is a good fit, and to schedule your laboratory session.

A. Background and Demographic Information
Name: Your name will not be associated with your data.
Email:

1. Are you currently enrolled as a student at the University of Waterloo?
—Graduate —Undergraduate —No

2. Department/Major? ————————————————–

3. Have you taken a software engineering course that includes UML modelling?
—Yes —No

4. How would you rate your familiarity with UML?
(0)Unfamiliar
(1)Fairly Familiar (Novice)
(2)Familiar
(3)Very Familiar
(4)Strongly Familiar (Experienced)

5. How would you rate your familiarity with UML Class Diagrams?
(0)Unfamiliar
(1)Fairly Familiar (Novice)
(2)Familiar
(3)Very Familiar
(4)Strongly Familiar (Experienced)

6. How would you rate your familiarity with UML State Diagrams?
(0)Unfamiliar

206

3

(1)Fairly Familiar (Novice)
(2)Familiar
(3)Very Familiar
(4)Strongly Familiar (Experienced)

7. Do you have any experience with using modelling tools?
—Yes —No ;

8. (If Yes on Q7, survey monkey will show this question) In total, for how long
have you had the experience i.e. how old is your experience (in month) ——

9. (If Yes on Q7, survey monkey will show this question) How frequently did you
use the tools?
– Several times a day
– 3-5 days a week
– 1-2 days a week
– Every few weeks
– Less often

10. (If Yes on Q7, survey monkey will show this question) Please list the name of
the tools with which you have experience: ——————

11. (If Yes on Q7, survey monkey will show this question) How much of your experience
with the modelling tools was in an industrial setting (in month)? ——

12. In this study, you will be asked to use one of the modelling tools of your choice. What
modelling tool do you want us to prepare for you to use (e.g., MagicDraw, VisualParadigm,
Papyrus, ArgoUML, etc.)? —————-

B. Confidentiality agreement, and permission to record audio and screen-capture
We also have some questions to make sure you understand and are comfortable with our
procedure before you come in:

1. Are you willing to sign a standard consent form, which acknowledges that you
agree to participate?
—Yes —No

2. Are you willing to be audio-recorded and your activities with the tool be screen-
captured? (The purpose is so we can go back and capture more detailed notes. Videos are
seen internally only by members of the research team - mainly the research student - who
are interested in what you have to say.)
—Yes —No

3. The compensation is 20.00 CAD and the chance to enter into a draw to win a
prize of $200 gift card. Are you willing to participate based on the compensation?
—Yes —No

C. Screening Exercise: UML Knowledge Assessment

207

4

We would like to ask you a few questionsa to assess if you are a good match with our study.

Question 1
What type of relationship is needed to represent the relationship between students and the
courses they are enrolled in a university?

1) A one-to-one association.
2) A one-to-one composition.
3) A one-to-many association.
4) A one-to-many composition.
5) A many-to-many association.
6) A many-to-many composition

Question 2
Exhibit:

Which of the following is true?
1) Juku is a subclass of Hara.
2) This is NOT a valid UML class diagram.
3) Every Juku has a reference to at least one Hara.
4) Juku is a subclass of Hara and at least one other class

Question 3
You can model the following situations with a state machine diagram:

1) Activities that are executed while the object is in a certain state or while a transition
is occurring.

2) Events that trigger transitions.
3) The states that the object of a class can have.
4) Possible transitions from one state to another.
5) All of the above items.

Question 4
Which of the following statements are true?

208

5

1) Every class in a class diagram may or may not have attributes and operations.
2) An attribute can have a type.
3) Operations may have parameters and return values.
4) All of the above items.

Question 5
Exhibit:

You are given the above state machine diagram. Which of the following statements about
allowable state order is true?

1) money is an event.
2) money is a state.
3) When money occurs, the system will go to its Vending state.
4) None of the above.

Question 6
Exhibit:

209

6

Which class has a superclass relationship?
1) W
2) X
3) Y
4) Z

Question 7
What does the syntax for labelling a transition look like?

1) event [guard] / action
2) [guard] action / event
3) action [guard] / event
4) [action] guard / event
5) [action] event / guard

Question 8
You want to model the following situation: A home delivery service has the two states Wait
and Deliver. At the beginning, state Wait is active. As soon as a customer has ordered a
product, a transition to state Deliver takes place. During the transition from state Wait to
state Deliver, the order is processed. State Deliver stays active until the product has been
delivered to the customer, triggering a transition to state Wait. Which transition expression
would you select from the list below for the transition from state Wait to state Deliver?

1) order received / process order.
2) / process order
3) order received [process order]
4) [order received] / order is processed
5) [order] / process order
6) [order received] / process order

aThe questions are originally taken from UML knowledge assessment exercise from the online sample practice tests
for the Sun Certified Java Associate exams and the UML quiz website: http://elearning.uml.ac.at.

210

7

Statement of Informed Consent

By signing this consent form, you are not waiving your legal rights or releasing the
investigator(s) or involved institution(s) from their legal and professional responsibilities.

Title of the study: A research study on Understanding and Learning About the Efforts and
Challenges of Using UML Modelling Tools.

Purpose: You have been asked to participate in a research study for understanding UML
modellers and identifying the difficulties that they face when using UML modelling tools.
By participating in this activity, you will help us enhance modelling tools and improve their
usability, usefulness, and quality. This activity is meant to help us gauge the effectiveness of
current modelling tools; it is not intended to test your individual performance in any way.

Procedure: You will be asked to perform a few modelling tasks related to developing UML
class and state diagrams such as creating a transition expression in a state diagram. Also,
you will be asked to think-aloud your thoughts when you are performing the given tasks.
While you work, I will video-capture the computer screen, record your voice, and record
some comments such as your time on tasks and task success or failure. It is expected that
the study will take 60 to 90 minutes of your time. In appreciation of your time commitment,
you will receive an honorarium of $20 and will be given the chance to enter into a draw
and win a prize of $200 gift card. Odds for the draw are equal for all the participants which
is approximately 1 in 30. The amount received is taxable. It is your responsibility to report
this amount for income tax purposes.

Confidentiality: We will use the data you give us, along with the information we collect
from other participants, to determine the difficulties that the modellers face while performing
modelling tasks. To ensure confidentiality, we will not associate your name with your data.
This session will be audio-record.

Benefits: Although the research may provide no direct personal benefit to you (as a
participant), it will provide benefits to the academic community/society in a way that it
will improve the quality of UML modelling tools and therefore alleviate the task of software
modelling.

Risks: Generally, there are no known or anticipated risks associated with participation in
this study. However, we think that because of the nature of the think-aloud protocol, you
might feel that you are under the scrutiny and may feel nervous about your performance.
We would like to re-emphasize that you will not be evaluated in any ways. It is the tool
that is under scrutiny, not you.

Breaks: There will not be a scheduled break. However, you may take a break at any time.

Your Rights as a Participant: Your participation in this study is voluntary. You also have
the right of freedom to withdraw. You may withdraw from the activity at any time without
penalty. You will still receive the $20 if you withdraw during the session. However, you will
not be eligible to enter into the draw. Moreover, you can request your data to be removed
from the study up until 2018/02/28 as it is not possible to withdraw your data once papers
and publications have been submitted to publishers.

I have read the information presented in the information letter about a study being

211

8

conducted by Parsa Pourali, a PhD student of the Department of Electrical and Computer
Engineering at the University of Waterloo. I have had the opportunity to ask any questions
related to this study, and to receive satisfactory answers to my questions and any additional
details I wanted. I am aware that I may withdraw from the study without penalty at any time
by advising the researchers of this decision. I understand my work during the study will
be observed and Parsa Pourali will be measuring the time that it takes me to fulfil my tasks.

� I agree to my interview being audio recorded to ensure accurate transcription and
analysis.
� I agree to my working computer screen being video captured for the purpose of analysing
my performance with the tools.

This study is funded under the grant of ORF-RE (Model-Based Software Engineering), and
has been reviewed and received ethics clearance through a University of Waterloo Research
Ethics Committee (ORE#22498). If you have questions for the Committee contact the Chief
Ethics Officer, Office of Research Ethics, at 1-519-888-4567 ext. 36005 or oreceo@uwaterloo.ca.

If you have any questions regarding this study, or would like additional information
to assist you in reaching a decision about participation, please contact Parsa Pourali by
email at ppourali@uwaterloo.ca.

With full knowledge of all the foregoing, I agree, of my own free will, to participate in
this study.

Print Name: −−−−−−−−−−−−−−−−−

Signature of Participant: −−−−−−−−−−−−− Date: −−−−−−−−

212

9

Appreciation and Feedback Letter

University of Waterloo

Date

Dear (Name of Participant),
I would like to thank you for your participation in this study entitled as ”A Formative
Study on Understanding and Learning About the Efforts and Challenges of using UML Modelling
tools”. As a reminder, the purpose of the study is to provide insights into the problems
and challenges that modellers face when developing UML class and state diagrams. The
data collected during the study will contribute to a better understanding of the appropriate
future direction for improving the quality of modelling tools and alleviate the tasks of
UML modelling.

Please remember that any data pertaining to you as an individual participant will be
kept confidential. Once all the data are collected and analyzed for this project, I plan on
sharing the study results with the research community through seminars, conferences,
presentations, and journal articles. If you are interested in receiving more information
regarding the results of this study, or would like a summary of the results, please provide
your email address, and when the study is completed, anticipated by [date], I will send
you the information. In the meantime, if you have any questions about the study, please do
not hesitate to contact me by email or telephone as noted below. As with all University of
Waterloo projects involving human participants, this project was reviewed by and received
ethics clearance through a University of Waterloo Research Ethics Committee. Should you
have any comments or concerns resulting from your participation in this study, please
contact Julie Joza, the Director, Office of Research Ethics, at 519-888-4567, Ext. 38535 or
jajoza@uwaterloo.ca.

Thanks for your participation,
Best Regards,

Parsa Pourali
University of Waterloo
Electrical and Computer Engineering Department
ppourali@uwaterloo.ca

213

10

Study Execution Protocol

Before participant arrives:
• Keep the pen, payment forms and consent form ready (make sure there are extra ones

as well).
• Put a note on the door showing that the study will be held in this office, so that when

the participant arrives, he/she knows which room to enter or which door to knock
on.

• Open and prepare the introduction video on the PC.
• Open and prepare the tools that the participant asked for, and set up the experiment

models.
• Open the mouse highlighting tool and make sure it works properly.
• Assign a participant ID to the participant.
• Prepare the screen-capturing and voice-recording applications (also test them to make

sure they work properly).

After participant arrives:
1) Explain who we are and the purpose of the study.

Facilitator says: ”Hello, my name is Parsa. I am a PhD student who is doing research on
Model-Easing and Reducing the Effort of Software Modelling for Modellers. As part of my
research work, I need to understand users (who are software modellers) to reduce the effort
of creating and editing software models, through novel enhancements to software modelling
tools. Today, you are here to help me identify some of the difficulties that a modeller may face
when working with modelling tools.”

2) Give and explain the forms (e.g., consent form).

Facilitator says: ”Before we go further, I would like to ask you to kindly read these
forms which are letting you know about your rights as a participant. We will continue when
you sign the forms. Thanks.”

3) Open and show the modelling tool to the participant.

Facilitator says: ”Great! This is the modelling tool that you requested to work with.
It is prepared and set up for the study and you will be working with it today.”

4) Explain the introduction video.

Facilitator says: ”Now, I will play a video for you which explains the study in more
detail. If necessary, please feel free to pause the video and ask your questions about the video.”

5) Once the video has ended:

Facilitator says: ”Okay, you can now start your tasks. The tasks descriptions is prepared for
you in a pdf file that you can find on the taskbar as well as the modelling tool that is also
minimized and is prepared for you to work with.”

214

11

Finishing Up:
1) As the participant finishes, thank them for their time, give them their payment and

ask them to fill the letter of Acknowledgement of Receipt of Remuneration, and escort
them out of the office.

2) Save all the works that have been done by the participant and put the forms in a safe
place.

3) Backup the databases.
4) Save the video and audio files with the participant ID.

215

12

Preparation Script

Hello,
Thank you for accepting our invitation and for your participation in the study. The goal

of the study is to observe and analyse modellers when they are performing their modelling
tasks, and try to understand the most pressing difficulties and challenges that they might
face when using modelling tools.

During the study, you will be given a set of modelling tasks to perform. You will perform
the tasks given to you in the modelling tool that is prepared and is open for you to work. In
the meantime, we will be capturing the computer screen for further analysis. Also, as you
work on the tasks, I will ask you to do what we call ’think out loud’. What that means is
that I want you to say out loud what you are thinking as you work. You might speak about
the steps in the task as you complete them, as well as your expectations and evaluation
statements. Let us show you what we mean by showing you a demo:

(playing a video about think aloud protocol)
Do you see what I mean about think out loud? I would like to remind you to please

speak loudly since we will be recording your voice. Your voice remains confidential, and
the researcher is the only person who will listen to it during later analysis.

The main task of the observer is to jot down what happens. In addition, we might
prompt you by asking a few questions to make the session more effective. Such questions
may include:
What are you thinking now?
Why did you do that?
please keep talking ...

Now, before we start the experiment, I would like to emphasize a few important notes
to you:
1- In the course of the study, you are the expert.
2- Remember that you will not be evaluated in any way. It is the tool that is under scrutiny,
not you.
3- You should at all times comment liberally on your actions, intentions and thoughts.
4- You should be at ease and relaxed. Please keep in mind that, the think-aloud method
is informal, and the most effective single way to maximise its effectiveness is to create an
informal atmosphere. That’s why we want you to be relaxed. Again, it is the tool that is
under scrutiny, not you.
5- You should try to find your own way as much as possible. You may ask questions at
any point in the process, but I may not answer them or only answer those questions that
are related to clarifying and understanding the application domain. I will only be able to
give you the bare minimum of help. We apologise in advance for this.
6- You can stop a task at any time if it becomes uncomfortable.
7- I will not tell you when you have completed task; you must determine this on your
own.
8- If a task is taking longer than what is expected, I might ask you to ignore the current
task and move on to the next task.

Now, if you have any remaining questions, please ask them, otherwise, let’s begin
the tasks.
Thank you.

216

13

Task Description

A modeller is responsible for editing several types of models such as Class Diagram,
Sequence Diagram, State Diagram, Activity Diagram, and Use-Case Diagram. Assume that
as a modeller, you are given a description of a system to enforce the parking policies at the
Bauer complex, and your task is to update the State Diagram. Although your task is only to
update/complete the State Diagram, you may find it necessary to also update the existing
Class Diagram (i.e. adding a few model elements). You need to set the different parts of the
transitions, namely, Triggering Event, Guard or Action, based on the description that is given
to you for each part. Please remember to say your thoughts (especially your challenges and
difficulties, as well as your expectations from the tool) loudly so that we can record them
clearly.

217

14

System Description: You are to create a UML State-Machine model of the proposed system
to enforce the parking policies at the Bauer complex. Bauer provides parking for two types
of users: customers and employees. There are two levels of parking: surface-level parking
and underground parking. Surface-level parking is for customers only. They pay a $2 flat
fee for parking. Employees park for free, but only if they park underground. Underground
parking is also open to customers in the evenings, but of course customers must still pay
($2) to use it.

Gates control access to both levels of parking. Each gate controls traffic flowing in a single
direction (e.g., traffic entering the complex), and it opens only for cars that approach the
gate from the appropriate direction. Employees’ cars have transponders that the gates can
sense. Some gates open only for cars that have transponders. In addition, the system uses
transponder data (IDs) to keep track of where employees’ cars park. There are four gates
that are controlled independently:

1) Gate A controls entry into the Bauer complex. It opens whenever it senses a car
approaching from outside the Bauer complex. Cars that pass through gate A enter
the surface-level parking lot.

2) Gate B controls access from surface-level parking to underground parking. Normally,
it opens only if an approaching car has a transponder. But during evenings (18:00-
6:00), it remains open to all cars.

3) Gate C opens whenever it senses a car approaching from the underground parking
lot.

4) Gate D controls exits from the Bauer complex and collects parking fees. The gate opens
whenever a $2 fee is paid (no change is provided). In addition, if an approaching car
has a transponder, the gate opens if the car had parked underground (i.e., if the
transponder triggered gate B since the car entered the complex).

Each of the gates closes 5 seconds after it opens, unless a blockage is detected, in which
case it remains open and tries to close again after another 5 seconds. (Don’t worry about
modelling the delay of the gate opening and closing.)

Fig. 1: Class Diagram for the Parking Lot application

Fig. 1 is the partial domain model for the system based on the interface choices already

218

15

made. The events, conditions, and actions in your state-machine model should be expressed
in terms of elements in the domain model. Moreover, the description of the domain model
is given below. It helps you understand the domain, classes, attributes and the messages
(operations) that you may need to know during the study. It is suggested that you take a
brief look at the description before starting the tasks.

UndergroundLot: Represents the Underground parking of the parking lot.
• restStartTime: The Underground Lot has a restricted time for customers starting at

6:00am.
• unrestStartTime: The Underground Lot becomes unrestricted for customers starting at

18:00pm.

SurfaceLot: Represents the Surface-Level parking of the parking lot.
• exitFee: Represents the $2 parking fee that each customer must pay when exiting the

lot.

GateID: Each Gate has an ID of either A, B, C, or D. GateID is an enum variable (class)
that represents the id of each gate. Please note that, since the class diagram is not fully
complete (intentionally), the id of B is not defined in this class.

GatePos: Gates can be either open or close, that is the gates’ position can be either
up or down. This enum class represents the allowable values for the gates’ position.

Gate: Represents the Gates for both underground and surface-level parking lots.
• id: Each Gate has an id of the type GateID, that is a Gate can have an id of A, B, C,

or D.
• position: Each Gate has a position attribute that is from the type of the class GatePos,

and can have a value of up or down.

ExitGate: It shows the exit gate of the surface-level parking where the customer needs to
put money in the coin slot.

CoinSlot: When exiting from the exit gate of the surface-level parking, the customer
needs to pay the exit fee through a coin slot. The CoinSlot class represents the coin slot
entity of the domain.
• payment: The amount that the customer has already inserted to the coin slot.

Sensor: Each Gate has a sensor the senses if a car is approaching the gate.
• car at gate: This is a boolean attribute that returns true if there is a car at the gate, and

returns false if there is no car at the gate.
• transponder: Returns true if an approaching care has a transponder. Otherwise, returns

false.
• transponderID: If an approaching care has a transponder, this attribute returns the ID

of the transponder.
• blockage: Returns true in a case that a car has come through the gate, so that the gate

does not close.
• Transponder (g, id): Returns true if a transponder (with id=id) is approaching gate g

from the sensed direction.

219

16

Transponder: Each employee has a Transponder installed on their car. that provides
admission to the underground parking and can be sensed by the sensors on the gates.
• id: Each Transponder has an ID.

Parking: This is a singleton class which records the states of cars with the transponder.
Moreover, if a car enters to the parking, its transponder id should be recorded and be added
to the collection of the parked cars’ transponder ids. Also, when it leaves the parking, the
car’s transponder id must be removed from the list.
• enteringParkingLot (id): When a car is entering to the parking lot, this operation adds

the transponder id of the car to the list of the transponder ids of the existing cars in
the parking.

• isCurrentlyParked (id): This is a boolean operation which checks if a car with a
transponder id had parked in the parking.

• leavingParkingLot (id): When a car is leaving the parking, the system uses this operation
to remove the transponder id of the leaving car from the list of the transponder ids
of the parked cars.

� I have read the system description carefully.

220

17

Fig. 2 shows a partial state machine for the system. As can be seen in the state machine,
the diagram is complete for the gates A and C, whereas the gates B and D still need to be
developed more completely.

Fig. 2: Partial State Diagram for the Parking Lot application

221

18

Part 1: In this part, your task is to set the transition expressions for the transitions shown
in the gates B and D. For each transition, we provide you with the description of it and you
only need to develop the transition using the tool accordingly.

Task1: Please develop the transition that is labelled as T1 in the diagram. Take the
following steps one by one.

1) Please first Read the following description of the transition.
• Triggering Event: No triggering event is required for this transition.
• Guard: If the gate id is B.
• Action: The Gate will initially go to the close state, that is the gate position should

be set to down.

� I have read the transition’s description carefully.

2) Please answer before starting the task:

3) Perform the task and develop the Guard and Action parts of the transition expression.

� I am done with developing the transition.

4) Please answer once you have finished the task:

5) During the task, did you get any warning or error message indicating that the model
is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

222

19

Task2: Please develop the transition that is labelled as T2 in the diagram. Take the
following steps one by one.

1) Please first Read the following description of the transition (this is a timed transition).
• Triggering Event: After 5 seconds trigger the transition to check if the gate can

be closed.
• Guard: If the gate is not blocked, that is the gate’s sensor does not sense any

blockage.
• Action: Set the gate’s position to be closed.

� I have read the transition’s description carefully.

2) Please answer before starting the task:

3) Perform the task and develop the Event, Guard and Action parts of the transition
expression.

� I am done with developing the transition.

4) Please answer once you have finished the task:

5) During the task, did you get any warning or error message indicating that the model
is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

223

20

Task3: Please develop the transition that is labelled as T3 in the diagram. Take the
following steps one by one.

1) Please first Read the following description of the transition.
• Triggering Event: At the start of the underground lot’s restricted time.
• Guard: If the gate’s sensor senses blockage.
• Action: Set the gate’s position to be open.

� I have read the transition’s description carefully.

2) Please answer before starting the task:

3) Perform the task and develop the Event, Guard and Action parts of the transition
expression.

� I am done with developing the transition.

4) Please answer once you have finished the task:

5) During the task, did you get any warning or error message indicating that the model
is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

224

21

Task4: Please develop the transition that is labelled as T4 in the diagram. Take the
following steps one by one.

1) Please first Read the following description of the transition.
• Triggering Event: No triggering event is required for this transition.
• Guard: The payment received at the gate’s Coin Slot is greater than or equal to

the gate’s Exit Fee.
• Action: Set the position of the gate to be open.

� I have read the transition’s description carefully.

2) Please answer before starting the task:

3) Perform the task and develop the Guard part of the transition expression.

� I am done with developing the transition.

4) Please answer once you have finished the task:

5) During the task, did you get any warning or error message indicating that the model
is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

225

22

Part 2: Sometimes it is possible that a modeller does not create well-formed, correct and
consistent diagrams. It can be because of either not caring about these errors, or not even
knowing about their existence. In this part, your task is to modify or observe the model to
find inconsistency or error in the model, if any, and fix them.

Task5: Assume that you are supposed to change the name of the gates from A
and D to GA and GD respectively.

1) Please answer before starting the task:

2) Realize the change on the model. Please note that, this change may or may not
cause inconsistencies in the model. If you believe that there are inconsistencies, please
resolve them appropriately.

� I am done with changing the model.

3) Please answer once you have finished the task:

4) During the task, did you get any warning or error message indicating that the model
is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

226

23

Task6: Assume that you are supposed to observe the state diagram and see if you can
find any issue within the region of Gate A.

1) Please answer before starting the task:

2) Please observe the state diagram and report if you find any issue within the region
of Gate A in the following comment box.

3) Please answer once you have finished the task:

4) During the task, did you get any warning or error message from the tool indicating
that the model is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

227

24

Task7: Assume that you are supposed to observe the state diagram and see if you can
find any issue within the region of Gate C.

1) Please answer before starting the task:

2) Please observe the state diagram and report if you find any issue within the region
of Gate C in the following comment box.

3) Please answer once you have finished the task:

4) During the task, did you get any warning or error message from the tool indicating
that the model is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

228

25

� I am done with performing all the tasks.

If you are done with all the tasks, please fill the following task satisfaction form.

Fig. 3: The CSUQ developed by Lewis.

Thank you for your time and participation in the study.

229

Appendix D

Materials for the User Studies
Conducted to Evaluate Our Tool

230

1

Task Description

A modeller is responsible for editing several types of models such as Class Diagram, Sequence
Diagram, State Diagram, Activity Diagram, and Use-Case Diagram. Assume that as a modeller,
you are given a description of a system to enforce the parking policies at the Bauer complex, and
your task is to update the State Diagram. Although your task is only to update/complete the
State Diagram, you may find it necessary to also update the existing Class Diagram (i.e. adding
a few model elements). You need to set the different parts of the transitions, namely, Triggering
Event, Guard or Action, based on the description that is given to you for each part.

(See Next Page)

231

2

System Description: You are to create a UML State-Machine model of the proposed system to
enforce the parking policies at the Bauer complex. Bauer provides parking for two types of users:
customers and employees. There are two levels of parking: surface-level parking and underground
parking. Surface-level parking is for customers only. They pay a $2 flat fee for parking. Employees
park for free, but only if they park underground. Underground parking is also open to customers
in the evenings, but of course customers must still pay ($2) to use it.

Gates control access to both levels of parking. Each gate controls traffic flowing in a single
direction (e.g., traffic entering the complex), and it opens only for cars that approach the gate from
the appropriate direction. Employees’ cars have transponders that the gates can sense. Some gates
open only for cars that have transponders. In addition, the system uses transponder data (IDs) to
keep track of where employees’ cars park. There are four gates that are controlled independently:

1) Gate A controls entry into the Bauer complex. It opens whenever it senses a car approaching
from outside the Bauer complex. Cars that pass through gate A enter the surface-level
parking lot.

2) Gate B controls access from surface-level parking to underground parking. Normally, it
opens only if an approaching car has a transponder. But during evenings (18:00-6:00), it
remains open to all cars.

3) Gate C opens whenever it senses a car approaching from the underground parking lot.
4) Gate D controls exits from the Bauer complex and collects parking fees. The gate opens

whenever a $2 fee is paid (no change is provided). In addition, if an approaching car has
a transponder, the gate opens if the car had parked underground (i.e., if the transponder
triggered gate B since the car entered the complex).

Each of the gates closes 5 seconds after it opens, unless a blockage is detected, in which case it
remains open and tries to close again after another 5 seconds. (Don’t worry about modelling the
delay of the gate opening and closing.)

232

3

Fig. 1: Class Diagram for the Parking Lot application

Fig. 1 is the partial domain model for the system based on the interface choices already made.
The events, conditions, and actions in your state-machine model should be expressed in terms of
elements in the domain model. Moreover, the description of the domain model is given below.
It helps you understand the domain, classes, attributes and the messages (operations) that you
may need to know during the study. It is suggested that you take a brief look at the description
before starting the tasks.

Lot: A general class representing the Lot concept.
• checkIfRestStartTime: Checks if a lot is in its restricted time period.

Time: Represents the time(er) concept.
• FiveSecondsPushNotif: Notifies the lots every five seconds to close the gate.

UndergroundLot: Represents the Underground parking of the parking lot.
• restStartTime: The Underground Lot has a restricted time for customers starting at 6:00am.
• unrestStartTime: The Underground Lot becomes unrestricted for customers starting at 18:00pm.
• isRestStartTime: Checks if the Underground Lot is in its restricted time period.

SurfaceLot: Represents the Surface-Level parking of the parking lot.
• exitFee: Represents the $2 parking fee that each customer must pay when exiting the lot.

GateID: Each Gate should have an ID of either A, B, C, or D. GateID is an enum variable (class)
that represents the id of each gate.

233

4

GatePos: Gates can be either open or close, that is the gates’ position can be either up or down.
This enum class represents the allowable values for the gates’ position.

Gate: Represents the Gates for both underground and surface-level parking lots.
• id: Each Gate has an id of the type GateID, that is a Gate can have an id of A, B, C, or D.
• position: Each Gate has a position attribute that is from the type of the class GatePos, and

can have a value of up or down.

ExitGate: It shows the exit gate of the surface-level parking where the customer needs to put
money in the coin slot.

CoinSlot: When exiting from the exit gate of the surface-level parking, the customer needs to
pay the exit fee through a coin slot. The CoinSlot class represents the coin slot entity of the
domain.

• payment: The amount that the customer has already inserted to the coin slot.

Sensor: Each Gate has a sensor the senses if a car is approaching the gate.
• car at gate: This is a boolean attribute that returns true if there is a car at the gate, and

returns false if there is no car at the gate.
• transponder: Returns true if an approaching car has a transponder. Otherwise, returns false.
• transponderID: If an approaching car has a transponder, this attribute returns the ID of the

transponder.
• blockage: Returns true in a case that a car has come through the gate, so that the gate does

not close.
• Transponder (g, id): Returns true if a transponder (with id=id) is approaching gate g from the

sensed direction.
• isGateBlocked: Returns true if the Gate is blocked.

Transponder: Each employee has a Transponder installed on their car. that provides admission to
the underground parking and can be sensed by the sensors on the gates.

• id: Each Transponder has an ID.

Parking: This is a singleton class which records the states of cars with the transponder. Moreover,
if a car enters to the parking, its transponder id should be recorded and be added to the collection
of the parked cars’ transponder ids. Also, when it leaves the parking, the car’s transponder id
must be removed from the list.

• enteringParkingLot (id): When a car is entering to the parking lot, this operation adds the
transponder id of the car to the list of the transponder ids of the existing cars in the parking.

• isCurrentlyParked (id): This is a boolean operation which checks if a car with a transponder
id had parked in the parking.

• leavingParkingLot (id): When a car is leaving the parking, the system uses this operation to
remove the transponder id of the leaving car from the list of the transponder ids of the
parked cars.

• goingThroughTheGate (id): Same as the enteringParkingLot operation.

234

1

1 TASKS FOR CONTEXT STUDY

Task1: Open the State Machine for the Gate B. Find the transition that is labelled as
Tran1.

1) Please first Read the following description of the transition.
• Event: No triggering event is required for this transition.
• Guard: If the gate id is B.
• Action: The gate should initially become closed; that is, the gate’s position

should be set to down.

� I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task and develop the Guard and Action parts of the transition expres-
sion.

� I am done with developing the transition.
4) Please answer once you have finished the task:

Task2: Open the State Machine for the Gate B. Find the transition that is labelled as
Tran2.

1) Please first Read the following description of the transition.
• Event: No triggering event is required for this transition.
• Guard: If the time is NOT during the underground lots restricted time and the

gate’s sensor senses blockage.
• Action: The gate should become open; that is, the gates position should be set

to up.

� I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task and develop the Guard and Action parts of the transition expres-
sion.

� I am done with developing the transition.
4) Please answer once you have finished the task:

235

2

Task3: Open the State Machine for the Gate D. Find the transition that is labelled as
Tran3.

1) Please first Read the following description of the transition.
• Event: After five seconds (recall that the time object notifies the system every

five seconds).
• Guard: The gates sensor does NOT sense blockage.
• Action: The gate should become closed; that is, the gates position should be

set to down.

� I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task and develop the Guard and Action parts of the transition expres-
sion.

� I am done with developing the transition.
4) Please answer once you have finished the task:

Task4: Open the State Machine for the Gate D. Find the transition that is labelled as
Tran4.

1) Please first Read the following description of the transition.
• Event: No triggering event is required for this transition.
• Guard: The payment received at the gates Coin Slot is equal to the gates Exit

Fee.
• Action: The gate should become open; that is, the gates position should be set

to up.

� I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task and develop the Guard and Action parts of the transition expres-
sion.

� I am done with developing the transition.
4) Please answer once you have finished the task:

236

3

Task5: Open the State Machine for the Gate D. Find the transition that is labelled as
Tran5.

1) Please first Read the following description of the transition.
• Event: No triggering event is required for this transition.
• Guard: if the gate is blocked.
• Action: No action is required for this transition.

� I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task and develop the Guard and Action parts of the transition expres-
sion.

� I am done with developing the transition.
4) Please answer once you have finished the task:

Task6: Open the State Machine for the Gate C. Find the transition that is labelled as
Tran6.

1) Please first Read the following description of the transition.
• Event: Similar as T6Copy in GateA..
• Guard: Similar as T6Copy in GateA.
• Action: Similar as T6Copy in GateA.

� I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task and develop the Guard and Action parts of the transition expres-
sion.

� I am done with developing the transition.
4) Please answer once you have finished the task:

237

4

Task7: Open the State Machine for the Gate B. Find the transition that is labelled as
Tran7.

1) Please first Read the following description of the transition.
• Event: No triggering event is required for this transition.
• Guard: No guard is required for this transition.
• Action: Create a new class named GateCounter with a new function named

as increaseCounter and then use it. Also, create an association between the
GateCounter class and GateB class.

� I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task and develop the Guard and Action parts of the transition expres-
sion.

� I am done with developing the transition.
4) Please answer once you have finished the task:

Task8: Find the transition that is labelled as Tran7 in Gate B and the transition that is
labelled as Tran8 in Gate D.

1) Please first Read the following description of the transition.
• Event: Use a function named as Transponder. You may need to create this

function in the Sensor class before setting it in the Event.
• Guard: No guard is required for this transition.
• Action: No action is required for this transition.

� I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task and develop the Guard and Action parts of the transition expres-
sion.

� I am done with developing the transition.
4) Please answer once you have finished the task:

238

5

Task9: In this task, you need to extend the Class diagram to cover a new gate, namely
Gate E, which controls the second entry into the Bauer complex for persons with
disabilities and who have access to dedicated accessible-parking spots. You also need
to develop a new State-Machine diagram for the gate E. Please edit the Class diagram
and the State-Machine diagram based on the description given below.

1) Please first Read the following description of the transition.
A disability-car that has an occupant with disabilities must have a valid permit
card with an id and expiry date on it). When approaching the Gate E, the card
scanner machine asks him/her to tap the permit card. The card scanner machine
checks the card’s validity (i.e., the card’s id is registered in the parking lot’s
database, and the expiry date of the card is greater than or equal to the current
date) and opens the gate if the card is valid. After 5 seconds, the system attempts
to close the gate only if the gate is not blocked.

� I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task and develop the Guard and Action parts of the transition expres-
sion.

� I am done with developing the transition.
4) Please answer once you have finished the task:

239

6

2 POST-SESSION EXPERIENCE RATINGS FOR CONTEXT STUDY

Please answer to the following questions based on your actual experience using the
tool in the study.

1) Compared to your initial expectation, To what extent did the tool was close to
satisfy your expectation?

Below My Expectation � 1 � 2 � 3 � 4 � 5 � 6 � 7 Above My Expecta-
tion

2) The Contextual User Interfaces capabilities meet my requirements.

Strongly Disagree � 1 � 2 � 3 � 4 � 5 � 6 � 7 Strongly Agree

3) The Contextual User Interface is easy to use.

Strongly Disagree � 1 � 2 � 3 � 4 � 5 � 6 � 7 Strongly Agree

4) During performing the tasks, to what extent did you experience the following
challenges?
• Relying on memory (Remembering the contextual information relevant to

performing the tasks).

Strongly Disagree � 1 � 2 � 3 � 4 � 5 � 6 � 7 Strongly Agree

• Switching between artifacts (Searching for information) and changing the
focus.

Strongly Disagree � 1 � 2 � 3 � 4 � 5 � 6 � 7 Strongly Agree

• Maintaining the overview of the diagrams.

Strongly Disagree � 1 � 2 � 3 � 4 � 5 � 6 � 7 Strongly Agree

• Too much scrolling and zooming.

• Knowing the relations between artifacts.

Strongly Disagree � 1 � 2 � 3 � 4 � 5 � 6 � 7 Strongly Agree

• Arranging windows or Finding the right window.

Strongly Disagree � 1 � 2 � 3 � 4 � 5 � 6 � 7 Strongly Agree

Thank you for your time and participation in the study.

240

7

3 PRE-SESSION EXPECTATION RATINGS FOR DEBUGGING STUDY

Please answer to the following questions based on your overall expectations of using
modelling tools.

1) To what extent do you agree that inconsistencies should be prevented immediately
rather than allowing them to exist and fix them at a later time?

Very Easy � 1 � 2 � 3 � 4 � 5 � 6 � 7 Very Difficult

2) To what extent do you agree that maintaining inconsistencies at all time is counter-
productive and intrusive (disrupting the focus tasks)?

Very Easy � 1 � 2 � 3 � 4 � 5 � 6 � 7 Very Difficult

241

8

4 TASKS FOR DEBUGGING STUDY

Task1: Find the GateID enumeration class. Rename the class name from GateID to
GateIDs. If you believe that this change will introduce inconsistencies, please find
them and fix them accordingly.

1) � I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task.
� I am done with developing the transition.

4) Please answer once you have finished the task:

5) During the task, did you get any warning or error message from the tool indicating
that the model is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

Task2: The class Gate is a superclass of ExitGateD class. Gate and ExitGateD both
have an attribute named as id. You, as a modeller find that the id attribute in Exit-
GateD is redundant and should be removed from the ExitGateD class. Remove it and
also fix the inconsistencies that this task may introduce to the model, if any.

1) � I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task.
� I am done with developing the transition.

4) Please answer once you have finished the task:

242

9

5) During the task, did you get any warning or error message from the tool indicating
that the model is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

Task3: Find class Gate and rename the position attribute to pos. Fix the inconsisten-
cies, if any, that this task may introduce to the model.

1) � I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task.
� I am done with developing the transition.

4) Please answer once you have finished the task:

5) During the task, did you get any warning or error message from the tool indicating
that the model is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

Task4: The Parking class has an operation named as enteringParkingLot. You, as a
modeller find that the enteringParkingLot is a redundant operation and should be

243

10

removed from the Parking class. Remove it and also fix all the transitions that are
referring to the enteringParkingLot as explained below:
• Event: If enteringParkingLot is used in the event, change the event to goingTh-

roughTheGate.
• Guard: If enteringParkingLot is used in the guard, delete the guard. Consequently,

if the containing transition will have no event, guard, or action after deleting the
guard, then delete the whole transition.

• Action: If enteringParkingLot is used in the action/effect, delete the action. Con-
sequently, if the containing transition will have no event, guard, or action after
deleting the action, then delete the whole transition.

1) � I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task.
� I am done with developing the transition.

4) Please answer once you have finished the task:

5) During the task, did you get any warning or error message from the tool indicating
that the model is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

Task5: The Sensor class has the Blockage attribute with the type of int. Change the
Blockage attributes type from int to bool and find any inconsistencies it may occur.

1) � I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task.

244

11

� I am done with developing the transition.
4) Please answer once you have finished the task:

5) During the task, did you get any warning or error message from the tool indicating
that the model is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

Task6: The Sensor class has the car at gate attribute with the type of bool. Change
the car at gate attributes type from bool to int and find any inconsistencies it may
occur.

1) � I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task.
� I am done with developing the transition.

4) Please answer once you have finished the task:

5) During the task, did you get any warning or error message from the tool indicating
that the model is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

245

12

Task7: The Lot class is a superclass of undergroundLot class. The Lot class has an
operation named as checkIfRestStartTime and undergroundLot class has an operation
named as isRestStartTime. You, as a modeler find that the two operations in the two
classes are equivalent and only one of them should be used. Thus, you decide to
remove isRestStartTime in the subclass undergroundLot. Remove it and also fix the
inconsistencies, if any, that this task may introduce to the model.

1) � I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task.
� I am done with developing the transition.

4) Please answer once you have finished the task:

5) During the task, did you get any warning or error message from the tool indicating
that the model is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

Task8: Delete the isGateBlocked operation from the Sensor class. Find the referent
elements of this element. If the referent is a Guard element, then change it to check
if the blockage attribute is true. If the referent element is an Event or an Action, then
delete the the Event or the Action.

246

13

1) � I have read the task’s description carefully.
2) Please answer before starting the task:

3) Perform the task.
� I am done with developing the transition.

4) Please answer once you have finished the task:

5) During the task, did you get any warning or error message from the tool indicating
that the model is erroneous or problematic?
�Yes �No

If Yes, please answer the following questions:

247

14

5 POST-SESSION EXPERIENCE RATINGS FOR DEBUGGING STUDY

Please answer to the following questions based on your actual experience using the
tool in the study.

1) Compared to your initial expectation, To what extent did the tool was close to
satisfy your expectation?

Below My Expectation � 1 � 2 � 3 � 4 � 5 � 6 � 7 Above My Expecta-
tion

2) The Interactive Consistency Management Interfaces capabilities meet my require-
ments.

Strongly Disagree � 1 � 2 � 3 � 4 � 5 � 6 � 7 Strongly Agree

3) The Interactive Consistency Management Interface is easy to use.

Strongly Disagree � 1 � 2 � 3 � 4 � 5 � 6 � 7 Strongly Agree

4) How confident you are with your level of success in fulfilling the tasks (do you
think you might have left some uncaught errors in the model)?

Strongly Unconfident � 1 � 2 � 3 � 4 � 5 � 6 � 7 Strongly Confident

5) Based on your experience, to what extent do you feel being disrupted by the tool?

Strongly Disagree � 1 � 2 � 3 � 4 � 5 � 6 � 7 Strongly Agree

6) Based on your experience, to what extent do you agree that being disrupted was
worth of delivering more correct models and being more confident in the solution?

Strongly Disagree � 1 � 2 � 3 � 4 � 5 � 6 � 7 Strongly Agree

Thank you for your time and participation in the study.

248

	List of Tables
	List of Figures
	Introduction
	Thesis Context
	Thesis Contributions
	Overview of Dissertation Contents

	Background
	Unified Modelling Language
	Feature-Oriented Requirements Modelling Language
	Feature Model Diagram
	Feature Class Diagram
	Feature Module Diagram

	Modelling Frameworks and Tools
	Modelling Frameworks in Eclipse Platform
	Xtext: The Grammar Language
	Sirius: A Tool to Create Graphical Modelling Workbenches

	Cognitive Abilities and Theories
	Memory
	Memory-Related Failures
	Human Errors
	Conclusion

	Related Work
	Model Observers
	Model Helpers
	Model Solvers
	Consistency Checkers
	Reactive Consistency Management
	Consistent-by-Construction Consistency Management

	User-based Interfaces
	Graphical Editors
	Textual Editors
	Vocal and Auditory Methods

	Discussion

	Understanding the Users
	Experimental Context
	Pre-Study Phase

	Experimental Design
	Population and Sampling
	Recruitment Procedure
	The Screening Procedure
	Compensation
	The Application Domain
	Treatment Allocation
	Tasks
	Data-Collection Techniques and Design

	Execution and Practical Considerations
	Preparing the subject
	Collecting the Expectation Ratings
	Performing the Tasks
	Collecting the Experience Ratings and CSUQ

	Results
	Tools' Effectiveness (RQ.1)
	Efficiency (RQ.2)
	Satisfiability of Users' Expectations (RQ.3)
	Users' Satisfaction (RQ.4)
	The Most-Severe Challenges (RQ.5)

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Discussion
	Conclusion

	UCAnDoModels
	Architecture
	Distance-Oriented Objects Indexer
	Type-Based and Distance-Oriented Content-Assist
	Distance-Based Model Element Finder
	Model Observer
	Maintaining Consistency
	Auto-Completion

	Focus+Context Interfaces
	Focus+Context Transition Editor (FC1)
	Interactive Consistency Management Interface (FC2)
	Other Focus+Context Interfaces

	Concluding Remarks

	Empirical Evaluation
	Experimental Design
	Goals
	Population and Sampling
	Compensation
	Application Domain
	Treatment Allocation
	Task Design
	Data Collection Techniques and Design

	Execution and Practical Considerations
	Preparation and Pre-session Activities
	Collecting Pre-Task Expectations Ratings and Performing the Tasks
	Post-session Activities
	Practical Considerations

	Results
	Results of the Context User Study
	Results of the Debugging User Study
	Statistical Significance

	Threats to Validity
	Discussion
	Conclusion

	Conclusion and Future Work
	Summary of Thesis and Contributions
	Users and Tasks Analysis
	UCAnDoModels Model Editor
	Empirical Implications for Tool Researchers

	Limitations
	Future Work

	References
	Appendices
	FORML Grammar Defined in Xtext
	Assignment Used for the Pre-Study Phase
	Materials for the Formative User Study
	Materials for the User Studies Conducted to Evaluate Our Tool

