
Safety-Oriented Stability Biases for
Continual Learning

by

Ashish Gaurav

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Ashish Gaurav 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/322934473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Continual learning is often confounded by “catastrophic forgetting” that prevents neu-
ral networks from learning tasks sequentially. In the case of real world classification sys-
tems that are safety-validated prior to deployment, it is essential to ensure that validated
knowledge is retained. We propose methods that build on existing unconstrained continual
learning solutions, which increase the model variance or weaken the model bias to better
retain more of the existing knowledge.

We investigate multiple such strategies, both for continual classification as well as con-
tinual reinforcement learning. Finally, we demonstrate the improved performance of our
methods against popular continual learning approaches, using variants of standard image
classification datasets, as well as assess the effect of weaker biases in continual reinforcement
learning.
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Chapter 1

Introduction

Machine learning using neural networks has achieved considerable success in applications
such as image recognition, game-playing, content recommendation and health-care [30].
Most of these applications require large amounts of training data and careful selection
of architecture and parameters. More importantly, the learned systems often have to
adapt to changing real-world requirements, and therefore require re-training. Under these
circumstances, it is usually desired to retain performance on previous tasks while learning
to perform well on new tasks. This is what constitutes continual learning [41].

Any strategy used for continual learning has to balance plasticity (the ability to learn
new tasks) and stability (the ability to remember previous tasks). This is the well discussed
stability-plasticity dilemma [48]. This dilemma can be explained in terms of the bias-
variance tradeoff, another well known concept in statistical learning [11]. In this context,
(model) variance characterizes the span of solutions that can be realized with a neural
network. Adding bias reduces the variance of the model and can produce a better solution
than the unbiased case [12]. With no bias, the continual learning model is plastic (has high
variance); with strong bias, the model is stiff with respect to learning new tasks (has low
variance). In this work we investigate ways to improve the retention of previously learned
tasks by increasing the model variance.

We note that performance in previous work is often judged with respect to average
validation accuracy across tasks. While good average validation accuracy is the most com-
mon metric to judge forgetting, our principal concern is safety. In safety-critical systems,
it may not be acceptable to maintain an average validation accuracy at the cost of trading
previously certified decisions for possibly correct decisions that have not been checked.
Likewise, the calibration of a system may require that all classifier predictions, good or
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bad, remain the same. Therefore, we are motivated by the need to achieve alternative
continual learning solutions that prioritize stability over plasticity. In the present work, we
achieve this by considering exactly what has been forgotten and what has been learned.

This thesis is structured as follows. In Chapter 2, we provide the necessary background
for the rest of the work. In Chapter 3, we summarize the continual learning approaches
in existing literature and other related work. In Chapter 4, we propose simple continual
learning strategies for classification, motivated by safety and the need for stability over
plasticity. In Chapter 5, we extend the principle of increasing model variance to propose a
continual reinforcement learning strategy. In Chapter 6, we evaluate the proposed meth-
ods on various datasets and a curriculum of RL environments. Finally in Chapter 7, we
summarize and conclude the major points from the thesis.
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Chapter 2

Mathematical Background

In this chapter, we define the notions of classification, reinforcement learning and continual
learning as used in the rest of this work. We assume some familiarity with the basic
concepts of deep neural networks and reinforcement learning. For additional reading on
deep learning, we refer the reader to Goodfellow et al. [13]. For additional reading on
reinforcement learning, we refer the reader the Sutton et al. [64].

2.1 Notation

Some basic notation used throughout the rest of this work is as follows.

We denote by |x| a vector with the same dimensions as the vector x, such that each
element in |x| is the absolute of the corresponding element in x. By x · y we denote the
inner product of two vectors x and y. |x|2 denotes the element-wise square of vector x,
that is, |x|2 := x � x, with � referring to the Hadamard product. ‖x‖1 and ‖x‖2 denote
the standard L1 and L2 norms (scalars) of vector x.

For a matrix M, the operation diag(M) produces a vector that consists of the leading
diagonal of M. For a scalar x, sign(x) represents the signum function, which produces 1 if
x > 0, 0 if x = 0 and −1 otherwise.

We denote by 1 : i the sequence of indices 1, 2, . . . , i. The vector of weights θ after
training tasks 1 : i is denoted θ∗1:i. The j-th element of θ∗1:i is denoted θ∗1:i,j.
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2.2 Classification

Let a dataset be defined as a set of training examples P, training labels Q, validation
examples X and validation labels Y:

D := (P,Q,X,Y)

The examples in the dataset belong to one of M classes of data. By design, the
validation examples and labels are never to be seen during the training. In classification,
the goal is to produce a discriminative model that can best categorize unseen data for a
given dataset to one of M classes (that is, maximize validation accuracy).

Deep learning provides a powerful method to construct such discriminative models. The
typical setup involves using a ReLU feedforward network (neural network) with weights
θ, where the final layer is followed by softmax instead of ReLU. Given an input x, such a
network outputs a set of positive numbers ≤ 1 that approximate how likely x belongs to
class m:

{Pθ(y = m|x)}Mm=1 (2.1)

The softmax function ensures that the values sum to 1. For notational simplicity, we
denote Pθ(y = m|x) as Pm

θ (·|x). If the ground truth for x is y = g, where (1 ≤ g ≤ M),
then we use the shorthand Pθ(·|x) := P g

θ (·|x) for the predicted likelihood of label g. Note
that Pθ(y|x) is the output of a learned neural network which takes as input x. Pθ(y|x)
can be interpreted as the conditional probability of y given some x, but it is different from
the actual conditional probability of an event y given some event x, which is denoted as
p(y|x).

The optimization procedure typically starts with a neural network having random
weights, then changes these weights to eventually arrive at the desired classifier. To change
these weights, most optimization procedures use some type of gradient descent to minimize
a pre-defined loss over the training examples and labels.

Various loss functions have been previously proposed to train a neural network for
classification [20]. In this work we use the cross entropy loss aka the negative log likelihood
loss, L(θ), defined over an example (x, y) as:

L(θ) = − logPθ(·|x) (2.2)
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2.3 Continual Learning for Classification

Let there be n datasets D1,D2, . . . ,Dn such that dataset Di has Ki validation examples:

Di = (Pi,Qi,Xi,Yi) = (Pi,Qi, {x(k)
i }

Ki
k=1, {y

(k)
i }

Ki
k=1) (2.3)

Continual learning seeks to maximize performances on all these datasets. Most com-
monly, this is achieved by sequential training on the datasets, that is, training on datasets
1, 2, · · · , n, in order. For any task i, the weights achieved at the end of task i (θ∗1:i) should
thus retain performances on tasks 1, 2, . . . , i−1. Therefore, notionally, θ∗1:i should minimize
the cross entropy loss over datasets D1:i := D1,D2, . . . ,Di.

The continual learning objective can also be alternatively achieved by training on ex-
amples from all relevant datasets simultaneously (joint training). Joint training quickly
becomes expensive as the number of tasks grow, but typically has the best performance
across all tasks [34].

2.4 Reinforcement Learning (RL)

In reinforcement learning, an agent learns to behave in a given environment through trial-
and-error. In our setting, the environment and the reward represent a Markov Decision
Process (S,A, T , r, γ), where S is the state space, A is the action space, T : S ×A×S →
[0, 1] represents the transition probability for the transition s

a−→ s′ (s, s′ ∈ S, a ∈ A),
r : S×A×S → R represents the reward for the transition s

a−→ s′, and γ ∈ [0, 1] represents
the discount factor.

T (s, a, s′) := p(s
a−→ s′) = p(s′|s, a)

The agent interacts with the environment in episodes. Each episode starts with an
initial random state s0. The agent observes this state and chooses an action a0, thereby
receiving a reward r0 and transitioning into a new state s1. After observing s1, the agent
chooses an action a1, receives a reward r1 and this process continues until the agent reaches
a terminal state sT . An episode can be defined as a sequence of transitions:

s0
a0−→
r0

s1
a1−→
r1

s2
a2−→
r2
· · · sT
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If we assume that the agent follows a stochastic (control) policy π : S × A → [0, 1],
such that the probability of choosing an action a in state s is given by π(a|s), then the
objective of reinforcement learning is to find a policy π∗ (in the family of policies Π) that
maximizes the expected (infinite-horizon) long term episodic discounted reward:

π∗ = arg max
π∈Π

E at∼π(·|st)
st+1∼T (st,at,·)

[ ∞∑
t=0

γtrt

]
(2.4)

Here, the expectation is over the episodes sampled using the stochastic policy π(a|s)
and the transition function T (s, a, s′). If the episode terminates at state sT , then rT =
rT+1 = rT+2 = · · · = 0.

There are multiple strategies to achieve the objective in (2.4). Algorithms can be
model-based, where they learn and utilize the transition model T in action selection, or
model-free, where a transition model is not explicitly learned. Model-based methods are
known to be more sample efficient, while model-free methods are more practical for large
state and action spaces.

Reinforcement learning with neural networks (deep reinforcement learning) usually in-
volves learning a good parameterized approximation of certain functions which can lead to
good policies. Methods like DQN [45] and Double DQN [67] focus on learning the action
value function Qθ(s, a). Other methods like Dueling DQN [68], DRQN [16] and Rainbow
DQN [17] use alternative network architectures and learn either Qθ(s, a), or the value esti-
mate Vθ(s), or both. Both the action value estimate and the value estimate can be trained
through the Bellman loss [63].

An alternative strategy is to learn a parameterized approximation of the policy (πθ).
Policies can be updated through the policy gradient theorem, which provides a meaningful
update for πθ by optimizing (2.4) (≡ J (θ)):

∇θJ (θ) = E
[ ∞∑
t=0

Ψt∇θ log πθ(at|st)
]

(2.5)

Here Ψt represents the generalized advantage function at time t in the episode. The
advantage function is desired to be both low variance and low bias (controlled by λ), and
therefore constructing the advantage function is an active area of research [56]. In our
setting, Ψt is constructed as follows:
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Â
(n)
t := {rt + γrt+1 + γ2rt+2 + · · ·+ γnV (st+n)} − V (st)

Ψt := (1− λ)
(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + · · ·

)
Methods like DDPG [35] and TD3 [9] combine policy learning with learning value

estimates. The learned policy acts after observing a state (behaving like an actor) and
the value function is used in updating the policy (critic), and therefore such methods are
called actor-critic methods.

Actor-critic style methods have recently been adapted to optimize a surrogate objective,
instead of directly optimizing (2.4) which leads to the policy gradient theorem. Methods
like TRPO [55], PPO [57], and ACKTR [70] are based on this principle.

This thesis builds on PPO, which is a well known, efficient and easy-to-implement actor-
critic style algorithm that optimizes the surrogate objective. The surrogate objective was
first introduced in TRPO, also called the conservative policy iteration objective (CPI). It
can be obtained by changing the policy gradient update in (2.5) to use importance sampling.
Basically, many trajectories are sampled using the current policy, the advantages Ψt are
computed for states st in these trajectories and kept in a memory. Then, at a later stage,
the policy update is constructed by estimating the gradient of the CPI objective. The CPI
objective is as follows:

LCPI(θ) = Est
[
Ψt ·

πθ(at|st)
πθo(at|st)

]
≡ Et[Ψt · rt(θ)] (2.6)

Here Ψt and πθo(at|st) are sampled from the memory, and the latest policy πθ(at|st) is
used to compute the newest probability for action at in state st.

PPO further clips (2.6) to produce a clipped optimization objective. This is done by
clipping the ratio rt(θ) to be within [1− ε, 1 + ε]:

LCLIP (θ) = Et[min(rt(θ)Ψt, clip(rt(θ), 1− ε, 1 + ε)Ψt)] (2.7)

This clipping results in a stable optimization objective, unlike TRPO. The pseudocode
of the version of PPO used in Chapter 5 is described in Algorithm 1.

In our work, the policy neural network models a categorical distribution over the action
space. The probability of actions correspond to the softmax probabilities of the logit
outputs of the policy network. During training, actions are chosen by sampling from the
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categorical distribution according to the softmax probabilities. This sampling leads to
exploration of novel states, as is desired in an RL algorithm. During evaluation, the action
suggested by the policy corresponds to the highest softmax probability.

Algorithm 1 PPO, as described in [57]

1: for iteration = 1, 2, ... do
2: for actor = 1, 2, ..., N (parallel) do
3: Run policy πθo in environment for T timesteps
4: Compute advantage estimates Ψt, 1 ≤ t ≤ T
5: end for
6: for epoch = 1, 2, ..., K do
7: Optimize surrogate LCLIP (θ) on M samples, M ≤ NT
8: end for
9: end for

2.5 Continual RL

Similar to the classification case, we assume that there are n environments such that each
environment has a pre-specified reward function. Let the i-th environment be ei, with a
state space Si and an action space Ai.

The goal of continual reinforcement learning is to obtain a parameterized policy πθ
such that πθ is able to solve all the environments. However, in our setting, the learning
algorithm can only sequentially access the environments, that is, in the order e1, e2, · · · , en.
This order defines the training schedule of the continual RL algorithm.

Since a single policy is expected to learn state-action mappings for different environ-
ments, the parameterized policy πθ learns a mapping from S × A to [0, 1] such that
S = ∪ni=1Si and A = Ai;∀i. We assume that the dimensionality of the state space stays
the same between the environments.

8



Chapter 3

Related Work

In this chapter, we mention and categorize existing continual learning literature. In Sec-
tion 3.1, we discuss the stability plasticity dilemma. Following this, we broadly categorize
the continual learning approaches for classification into three approaches [48], that are dis-
cussed in Section 3.2, Section 3.3 and Section 3.4. Miscellaneous approaches are discussed
in Section 3.5. Since this thesis is more closely related to regularization approaches, we
additionally discuss some of these approaches in greater depth in Section 3.3.1 (Elastic
Weight Consolidation) and Section 3.3.2 (Synaptic Intelligence). Finally, we discuss the
continual reinforcement learning literature in Section 3.6.

3.1 The Stability-Plasticity Dilemma

Deep networks excel at individual tasks when large datasets are available and networks start
from random configurations. However, when trained sequentially across different datasets,
performance on the past tasks usually drops, which is otherwise known as catastrophic
forgetting [40, 42]. Catastrophic forgetting has been extensively studied previously [8, 14].

There is typically a tradeoff between the ability of a feedforward network to learn new
tasks (plasticity) and its ability to remember learned tasks (stability). This is the well
known stability-plasticity dilemma, which has been studied in the context of biological as
well as artificial networks [4, 43, 15].

Too much plasticity leads to catastrophic forgetting, but too much stability is also
not desirable. This is the other side of the stability-plasticity dilemma, also called the
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entrenchment effect. The most probable reason for too much stability is that age-of-
acquisition of data matters. For example, Ellis et al. [6] and Smith et al. [61] observed
that when patterns are entered into training early, the network structures itself into a
certain configuration and loses some of its plasticity. Even if the frequency of the late-
learned pattern is greater, it is difficult for the network to overcome this loss in plasticity.

3.2 Architectural Approaches

Architectural approaches incrementally grow the network to learn the new task through
the added capacity, that is, the untrained weight parameters. We discuss some popular
architectural strategies as follows.

Zhou et al. [74] propose an incremental algorithm to learn features from large scale
online data. Specifically, new nodes are added to the feature representation and similar
features are merged when suitable.

Xiao et al. [71] propose a training algorithm that grows a network both incrementally
and hierarchically, by grouping similar classes and organizing them into levels.

Progressive nets [54] instantiate a new column or parallel network to add capacity for
learning a new task. This parallel network is connected to the original column(s) through
a (non-linear) adapter function.

Yoon et al. [72] propose Dynamically Expandable Networks (DEN), which is an efficient
online strategy that can learn multiple tasks compactly, by dynamically changing (increas-
ing) the capacity of the network as needed. Learn to Grow [33] uses neural architectural
search to grow the network for new tasks.

iCARL [51] is a method for class-incremental learning that stores exemplars per output
class. For classification, it compares the input to mean of exemplars for each class. Further,
exemplars are maintained through a selection algorithm, combined with distillation and
rehearsal.

3.3 Regularization Approaches

Regularization approaches assume a fixed network architecture and regularize changes to
crucial weights, so that the network can learn to perform well on the new task by changing
less significant weights.

10



Less-forgetting learning [21], Learning without Forgetting (LwF) [34], Active Long Term
Memory Networks (A-LTMs) [10] are all regularization strategies based on fine-tuning ap-
proaches, where a part of the network is kept common between the tasks. More specificially,
LwF and A-LTMs use knowledge distillation [18] to preserve old knowledge and learn a
separate head per task. When training on a new dataset, the network outputs for the other
tasks (head outputs) are computed in advance, and an extra term is added to the training
loss such that the head outputs don’t change.

Another set of approaches consists of fixing the network structure and only changing
the parameters that are not significant to the past configurations. Elastic weight consoli-
dation [26, 19, 27] achieves this by formulating the CL problem from a Bayesian perspec-
tive and proposing a simple quadratic penalty that weighs the change in each parameter
by its Fisher importance, thereby preventing the network from changing too much from
previously learned configurations. EWC is further explained in Section 3.3.1. Synaptic
Intelligence [73] uses a similar loss; however, it computes the weight for change in each
parameter in an online manner. SI is further explained in Section 3.3.2. Liu et al. [36]
propose improvements to EWC through network reparametrization. Chaudhry et al. [3]
propose EWC++, which is a faster online version of EWC that combines the benefits of
both EWC and SI.

3.3.1 Elastic Weight Consolidation (EWC)

In EWC [26, 19, 27], the continual learning problem is formulated from a Bayesian perspec-
tive. Learning a new task while retaining past performance is equivalent to maximizing a
posterior p(θ|D1:i) given a prior p(θ|D1:i−1) such that the posterior and prior are as similar
as possible, that is, the KL divergence between them is minimized. Here, the prior and the
posterior can be thought of as the weight likelihood distributions before and after seeing
the dataset Di. Through the optimization process, the network arrives at weights θ∗ which
represents the maximum likelihood estimate of the weight distribution. For the prior and
the posterior distributions, these estimates are θ∗1:i−1 and θ∗1:i. EWC arrives at θ∗1:i from
θ∗1:i−1 through simultaneous posterior maximization and KL minimization:

θ∗1:i = min
θ

{
Li(θ) + λKL

[
p(θ|D1:i−1) || p(θ|D1:i)

]}
≡ (≈) min

θ

{
Li(θ) +

λ

2

∑
j

Fjj · (θj − θ∗1:i−1,j)
2

}
(3.1)
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Here, Li(θ) refers to the likelihood loss on the i-th dataset, and Fjj refers to the j-th
diagonal element of the empirical Fisher information matrix F, evaluated at θ∗1:i−1 over
the datasets D1:i−1. The Fisher information measures the sensitivities of the predicted
probabilities for the correct labels with respect to the network parameters θ, and therefore
allows identifying the weights that have the most influence on these predictions. The
elements of F are defined as follows:

gij :=

{
∂

∂θi
logPθ(·|x)

}
·
{
∂

∂θj
logPθ(·|x)

}
Fij := E(x,y)∼D1:i−1

[
gij

∣∣∣∣
θ=θ∗1:i−1

]

This follows from the assumption that the difference between the two weight estimates
is small, which allows for a second order Taylor approximation of the KL-divergence. More
concretely, if we have seen a few more examples since D1:i−1 and the set of all seen examples
is D̃1:i−1, and our network’s parameters changed by ∆θ, then:

KL
[
p(θ|D1:i−1) || p(θ|D̃1:i−1)

]
= KL

[
Pθ∗1:i−1

(·|x) ||Pθ∗1:i−1+∆θ(·|x)
]

≈ 1

2
∆θTF ∆θ (3.2)

≈ 1

2
|∆θ|2 · diag(F); diagonal approximation

The interested reader may find a complete derivation of the relationship (3.2) between
the KL divergence and the Fisher information in Kullback et al. [29].

3.3.2 Synaptic Intelligence (SI)

SI [73] introduces a surrogate regularization loss that has similar form as EWC, but uses
a strength term Ωi

j for θj, task i (instead of Fjj) that can be maintained online:

12



ωij :=

∫ ti

ti−1

∂L
∂θj

∂θj
∂t
dt

∆i
j := θj(ti)− θj(ti−1)

Ωi
j :=

∑
k<i

ωkj
(∆k

j )
2 + ζ

θ∗1:i = min
θ

{
Li(θ) + c

∑
j

Ωi
j(θj − θ∗1:i−1,j)

2

}
(3.3)

The strength Ωi
j for parameter θj is proportional to how much it affects the loss in

previous tasks (ωkj ) and inversely proportional to how much it changed in previous tasks
((∆k

j )
2). If θj affects the loss too much or hasn’t been changed much previously, then it is

deemed important. c is another type of strength parameter (like λ in EWC) that can be
used to scale the regularization term.

3.4 Memory Approaches

Memory approaches store examples from each task being learned and then learn a new
task while simultaneously maximizing performance on each of the stored memories. Storing
memories is inspired from biological systems. The Complementary Learning Systems (CLS)
theory [52] states that intelligent animals typically have dual memory systems, one for
short term and one for long term. The other concept that memory approaches borrow
is rehearsal, wherein information has to be replayed to be assimilated long term [52]. To
rehearse data, continual learning approaches typically either store a subset of the data, or
learn a generative model of the data.

Shin et al. [60] propose Generative Replay as a method of rehearsal. This involves
learning a deep generative model (GAN) of previously seen data, alongside a classifier. The
classifier is trained on the new dataset, but is also fed generated data from the generative
model. Fearnet [23], inspired by CLS theory, similarly maintains multiple networks, but
uses a generative autoencoder for replay.

Gradient Episodic Memory (GEM) [37], maintains an episodic memory, or a subset of
every dataset (task) seen within an overall memory budget. While learning a new task,
GEM ensures that the change in weights does not increase the loss on a previous dataset
by solving a quadratic program.

13



3.5 Miscellaneous Approaches

Some approaches do not directly fall into any of the previously discussed categories, or fall
into more than one categories. We discuss such existing work in this section.

Neuroevolution PathNet [7] uses a genetic algorithm to evolve pathways in a network.
While the topology is fixed in many non-genetic approaches, PathNet models freeze task
relevant pathways to avoid catastrophic forgetting.

Combination of architectural and regularization approaches AR1 [39] - combines
an existing architectural approach (CWR+) with a regularization approach (SI). Similarly,
Progress & Compress [58] uses progressive networks to maintain two columns – one for
newest task, and one for the past tasks, and then consolidates the new information into
the past column using EWC, which is a regularization method.

Dropout Networks trained with dropout are also less prone to the catastrophic forgetting
problem [14]. Incremental Moment Matching [32] provides a few practical techniques for
continual learning using dropout networks.

Attention Masks Serra et al. [59] propose Hard Attention to the Task (HAT), in which
hard attention masks are learned for different tasks to preserve old knowledge without
affecting the learning for the newest task. Mallya et al. [38] propose PackNet, which uses
network pruning through binary masks to learn new tasks.

Variational Methods Variational Continual Learning (VCL) [46] combines methods in
online variational inference and Monte Carlo variational inference into a general framework
for continual learning. The proposed ideas are shown to work both in discriminative and
generative continual settings.

3.6 Approaches for Continual RL

This section aims to summarize some of the known continual strategies that work in the
RL setting. Unfortunately, there are relatively only few works in continual RL, compared
to continual learning literature for classification.
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Actor-Mimic [49] demonstrate that pretraining a Q network on one reinforcement learn-
ing task can lead to faster convergence on a different task. Berseth et al. [2] discuss curricu-
lum learning strategies for continual RL, and propose Progressive Learning and Integration
via Distillation (PLAID) as a strategy for combining multiple expert policies continually.

Progressive Nets [54] demonstrate the viability of constructive architectures for con-
tinual reinforcement learning on A3C, performing better than finetuning strategies. EWC
[26] show how a simple DQN can learn multiple games appearing in a random schedule
through the elastic criterion discussed in Section 3.3.1. Progress & Compress [58] combine
progressive networks with EWC to achieve a scalable strategy for continual RL. Distral [65]
is another approach similar to Progress & Compress that maintains a shared policy across
tasks, which is used to guide individual policies. After learning a policy, the knowledge is
re-distilled into the shared policy using policy distillation [53].

Tessler et al. [66] develop a hierarchical approach to lifelong learning using options,
where knowledge is accommodated as skills in a “deep skill network” using skill distillation,
a variation of policy distillation.

Kaplanis et al. [22] model neurons using a synaptic model that was devised to maximize
the signal-to-noise ratio of memories over time in a population of synapses, and apply the
idea to Q networks.
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Chapter 4

CL Strategies for Classification

In this chapter, we investigate the effect of the stability bias, and propose strategies that use
an alternative bias. The motivation is to achieve solutions that retain validated knowledge
more strongly, and therefore prioritize stability over plasticity.

In Section 4.1, we explain the decomposition of the regularized continual learning gradi-
ent update. In Section 4.2, we quantify the absolute amount of forgetting that occurs over
a dataset and use it to propose a weaker stability bias. In Section 4.3, we explain how this
quantification can be used to preserve the output labels in specific use cases, depending on
the requirement. Afterwards, we propose a few simple strategies for continual learning. In
Section 4.4, we propose direct minimization as a family of strategies to directly minimize
the absolute amount of forgetting. In Section 4.5, we extend direct minimization strategies
to achieve finer control over the amount of forgetting. In Section 4.6, we propose Fisher
freezing as an alternative way to achieve a larger span of solutions. The corresponding
experiments can be found in Section 6.1.

4.1 Components of Regularized CL Updates

Regularized approaches to continual learning assume a fixed capacity of the network and
jointly optimize two objectives per task through a combined loss L(θ) as follows (G is the
regularization loss):
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L(θ) := Li(θ) + λG1:i−1(θ,θ∗1:i−1) (4.1)

θ∗1:i = arg min
θ
L(θ) (4.2)

To incorporate the knowledge for an example (x, y), the optimization step computes a
gradient update:

∆θ ∝ −∇θL(θ) (4.3)

Note that many optimization methods use additional strategies to converge faster to a
solution, like momentum [62], adaptive gradients [5] and moment estimation [25]. However,
on their own they do not offer any particular advantage for continual learning. Hence, for
simplicity, we just discuss the first order gradient update on the regularized continual
learning objective, that is −∇θL(θ). This gradient update is sufficiently informative to
provide useful insights about how these methods preserve existing knowledge.

With the regularized loss, the gradient update breaks down into two components:
−∇θ{Li(θ)} and −∇θ{λG1:i−1(θ,θ∗1:i−1)}. The former can be interpreted as the plas-
ticity update, which tries to optimize the current task’s objective, while the latter can be
interpreted as the stability update, which tries to maintain existing knowledge.

Plasticity Update Throughout this work, we use the cross-entropy loss (2.2) to compute
the plasticity update. The cross-entropy objective is a suitable plasticity update, since it
produces exponentially strong updates as Pθ(·|x)→ 0.

−∇θ{Lj(θ)} ∝ 1

Pθ(·|x)
(4.4)

Stability Update Regularization methods in the literature that use a second order
Taylor approximation on the KL divergence as the regularization loss, like (3.1), or a form
like (3.3) construct a stability update that resembles the form −a · (θ − θ∗). EWC [28]
constructs a regularization loss G1:i−1(θ) by multiplying each (θj − θ∗1:i−1,j)

2 by the corre-
sponding diagonal term Fjj in the Fisher information matrix. The squared displacement
of the weight θj from the previous weight θ∗1:i−1,j is scaled by the Fisher importance of the
weight. The stability update therefore has the form:
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−∇θ{λG1:i−1(θ,θ∗1:i−1)} = −λ
∑
j

Fjj(θj − θ∗1:i−1,j)

This update can be understood as an elastic constraint (much like a spring) which
forces θj to be close to θ1:i−1,j. The strength of this stability update for θj depends on λ,
the Fisher information term Fjj for θj and the magnitude of (θj − θ∗1:i−1,j). The direction
of this update is always towards θ∗1:i−1,j. SI [73] uses a similar form as EWC, but calculates
the per parameter importance Ωi

j in a different way as explained previously. However, the
form of the stability update remains similar to EWC:

−∇θ{λG1:i−1(θ,θ∗1:i−1)} = −2c
∑
j

Ωi
j(θj − θ∗1:i−1,j)

This is still the elastic constraint, except that the per-parameter importance is Ωi
j,

rather than the Fisher importance. There are other approaches that use a similar form of
update but use a different strategy to compute the constant of regularization, for example,
EWC++ [3].

We note that while the elastic constraint and its variants constitute a good stability bias
for continual learning, they may be stronger than is needed. Specifically, they minimize
the KL divergence between the posterior and prior but do not directly consider the amount
of forgetting, which affects the preservation of (validated) knowledge.

4.2 Absolute Amount of Forgetting

In this section, we quantify the amount of forgetting as a network learns new data. This
quantification provides a generic strategy to define the per-parameter importance in the
stability update. More concretely, we provide an approximate upper bound on the absolute
amount of forgetting over a dataset.

After learning a task i, the weights of the network are θ∗1:i. For simplicity, let θ∗1:i ≡ θ∗

and that afterwards, at any point in the sequential training process, the weights are at
θ∗ + ∆θ. Assuming ∆θ is small, we can apply a first order Taylor approximation of the
individual predicted likelihood Pm

θ∗+∆θ in the neighborhood of θ = θ∗:

Pm
θ∗+∆θ ≈ Pm

θ∗ + ∆θ · (∇θP
m
θ )|θ=θ∗ (4.5)
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The individual predicted likelihood Pm
θ on an example x ∈ Di changes by the magnitude

|∆Pm
θ∗| = |Pm

θ∗+∆θ(·|x)− Pm
θ∗(·|x)|. (4.6)

On average, the magnitude change in the individual predicted likelihood Pm
θ over the

dataset Di is given by the expectation:

E(x,y)∼Di

[∣∣∣Pm
θ∗+∆θ(·|x)− Pm

θ∗(·|x)
∣∣∣] = E(x,y)∼Di

[∣∣∣∆θ · (∇θP
m
θ )|θ=θ∗

∣∣∣]
(empirical averaging over N samples)

≈ 1

N

∑
(x,y)∈Di

∣∣∣∣∣
dim(θ)∑
j=1

∆θj
∂Pm

θ (·|x)

∂θj

∣∣∣
θ=θ∗

∣∣∣∣∣
≤ 1

N

∑
(x,y)∈Di

dim(θ)∑
j=1

∣∣∣∆θj∣∣∣
∣∣∣∣∣∂Pm

θ (·|x)

∂θj

∣∣∣
θ=θ∗

∣∣∣∣∣
=

dim(θ)∑
j=1

∣∣∣∆θj∣∣∣ 1

N

∑
(x,y)∈Di

∣∣∣∣∣∂Pm
θ (·|x)

∂θj

∣∣∣
θ=θ∗

∣∣∣∣∣
= |∆θ| · E(x,y)∼Di

[∣∣∣∇θP
m
θ (·|x)

∣∣
θ=θ∗

∣∣∣] (4.7)

≡
∑
j

Cm
j ‖θj − θ∗1:i,j‖1 ≡ um(Di,θ∗1:i,θ) (4.8)

At every task i, we can minimize um(Di′ ,θ∗1:i′ ,θ) directly for each of the previous
datasets i′, and this minimization should mitigate catastrophic forgetting (Cm

j is parameter
importance for θj) for the network’s outputs for label m (1 ≤ m ≤ M). This constitutes
our minimization criterion. We extend the notation to use um when computing this upper
bound on Pm, and u when computing it for the ground truth.

An approximate upper bound for the squared change in Pm
θ (aka the L2 variant) can

be similarly obtained:

E(x,y)∼Di

[(
Pm
θ∗+∆θ(·|x)− Pm

θ∗(·|x)
)2
]
/ |∆θ|2 · E(x,y)∼Di

[(
∇θP

m
θ (·|x)

∣∣
θ=θ∗

)2
]

(4.9)
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A Weaker Constraint If this absolute amount of forgetting is a part of the stability
update, then the stability update corresponds to a weaker constraint, compared to the
elastic constraint in EWC:

−∇θ{λG1:i(θ,θ
∗
1:i−1)} = −∇θ{λum(Di−1,θ

∗
1:i−1,θ)}

≡ −∇θ

{
λ
∑
j

Cm
j ‖θj − θ∗1:i−1,j‖1

}
(4.10)

= −λ
∑
j

Cm
j sign(θj − θ∗1:i−1,j) (4.11)

Unlike the elastic constraint, the strength of this stability update for θj depends on
λ and on Cm

j , but not on the magnitude of (θj − θ∗1:i−1,j); the direction of this update is
always towards θ∗1:i−1,j. This is therefore a weaker stability bias than the elastic constraint.

To understand the nature of the solutions obtained by this weaker update, we consider
a simple two task example (Sim-EMNIST, but for two tasks). Using the method described
in Section 4.4, we plot the task 1 and task 2 accuracies on the x and y axes and obtain a
figure as shown in Figure 4.1. We observe that as the strength of λ increases, more of the
task 1 accuracy is preserved, but at some point the performance on task 2 decreases. Of
the two variants, the L1 constraint obtains sparse solutions, which are almost always more
restrictive on forgetting task 1. This is by design, since the goal is to minimize forgetting
on previous task(s) more strongly, as explained later. The vertical dotted line corresponds
to the maximum accuracy achieved at the end of training task 1. The dashed diagonal line
represents the line across which the best equivalent overall accuracy will lie (x+ y = c for
some constant c).

The point at which the performance on task 2 decreases corresponds to the optimum
of the stability-plasticity curve. To understand this curve, in Figure 4.2 we plot the final
average validation accuracy for this two task example across a wide range of λ. As can be
observed, for both the L1 and L2 versions of absolute expected amount of forgetting, there
are different values of λ at which the approach achieves (joint) best stability and plasticity.
This is achieved with lower values of λ for the L1 variant than for the L2 variant.

Analogy with Regression Models The regularized continual learning objective has
a similar shape to the objective in biased regression models. Regression models typically
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Figure 4.1: The nature of solutions obtained with L2 vs L1 constraints on Sim-EMNIST
with 2 tasks, 5 seeds and different strengths (λ ∈ [1, 104]). L1 solutions are more spread
out (higher variance) and preserve the previous behavior more strongly than traditional
L2 strategies for the same strengths. See Section 4.2.

minimize an ordinary least-squares objective OLS(θ) but suffer from a high variance prob-
lem. The most popular ways to reduce this variance is through LASSO and ridge methods,
which introduce a bias onto the estimate of regression weights θ through a regularization
term. LASSO adds an L1 term ‖θ‖1 as the regularization term, while ridge adds an L2

term ‖θ‖2
2 as the regularization term. The effect of these biases is that the solution satisfies

‖θ‖1 ≤ t or ‖θ‖2
2 ≤ t, for some small t, with LASSO producing a sparse solution, that is, a

solution with fewer non-zero weights. From a Bayesian standpoint, this is because LASSO
shrinkage is equivalent to a Laplace prior, while ridge shrinkage is equivalent to a Gaussian
prior. Since a Laplace prior is more peaky towards its mean, the solution is more likely to
be the mean (and near the mean) than with a Gaussian prior.

Similarly, regularized continual learning minimizes the loss for the most recent task
Li(θ), while ensuring thatG1:i−1(θ,θ∗1:i−1) ≤ t. When using the approximate KL-divergence
for G, it yields the Bayesian interpretation (as explained in EWC) that the KL-divergence
between the prior p(θ|D1:i−1) and the posterior p(θ|D1:i) should be ≤ t while simultane-
ously minimizing the cross-entropy loss. When using the absolute amount of the forgetting,
it can be understood as trying to keep the absolute amount of forgetting from previous
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Figure 4.2: The effect of λ on the final average validation accuracy for DM-L1 (Case
III), DM-L2 (Case III) and EWC, for Sim-EMNIST, two tasks, 10 seeds. The different
approaches achieve the optimum joint stability and plasticity at different strengths of λ.

datasets within a certain t. With the L1 version of the constraint, more θj are likely to not
change than in the L2 version.

Equivalence with KL Approaches If the classification behavior corresponding to the
ground truth label is desired to be preserved, the minimization criterion has a similar form
to KL approaches, which use a loss based on the KL-approximation as stated earlier. More
concretely, the squared L2 version of our upper bound is smaller than the second-order
approximate KL divergence (with the diagonal of the empirical Fisher). This means that
when using the expectation term instead of the Fisher, the stability updates are smaller in
magnitude, and thus, less strong. This interpretation of per-parameter updates achieves
a slightly higher model variance, which is aligned with our goal. The proof, which follows
from (4.9) is as follows:
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E(x,y)∼Di

[(
Pθ∗+∆θ(·|x)− Pθ∗(·|x)

)2
]
/ |∆θ|2 · E(x,y)∼Di

[∣∣∇θPθ(·|x)|θ=θ∗
∣∣2]

≤ |∆θ|2 · E(x,y)∼Di

[∣∣∇θ logPθ(·|x)|θ=θ∗
∣∣2]

=
∑
j

Fjj(θj − θ∗j )2

4.3 Extension to Different Use Cases

The formulation of the upper bound in terms of the output label allows for its adaptation to
different use cases. Specifically, real world systems have different motivations for continual
learning, which are dependent on the requirement specification. For example, in an outlier
detection system, it may be desired to preserve the reject class more strongly than the
rest of the classes, since retaining knowledge about the outlier examples is of the highest
priority. Therefore, more generally, depending on the requirement, it may be desired to
preserve the network behavior expressed by all or some of the output neurons. We identify
four such use cases, which we illustrate in Figure 4.3 and describe below.

Case I We can preserve the entire set of predicted likelihoods from θ∗ to θ∗ + ∆θ,
which penalizes changes to any individual predicted likelihood. This is the most restrictive
version of the criterion and can be achieved by regularizing a sum over 1 ≤ m ≤M of the
individual changes:

uI(Di,θ∗1:i,θ) :=
∑

1≤m≤M

um(Di,θ∗1:i,θ) (4.12)

Case II We can preserve the change in predicted likelihood for the confident label(s) at θ∗,
which typically corresponds to the highest individual probability in {Pm

θ∗(·|x)}Mm=1. This
may be desired in tasks related to safety-critical systems, where a network has been safety-
calibrated at deployment and now needs to add some more knowledge without violating
previously satisfied safety calibrations. To achieve this, we can first compute an expectation
over |(∆Pm

θ∗)P
m
θ∗ | rather than the formulation in (4.6):

E(x,y)∼Di

[∣∣∣(∇θP
m
θ |θ=θ∗1:i

)Pm
θ∗1:i

∣∣∣] ≡ ūm(Di,θ∗1:i,θ) (4.13)
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Since the network’s outputs represent the confidence of the x being a certain label,
highly confident Pm

θ∗ ends up contributing more to the expectation. Then, a sum over
1 ≤ m ≤M of the confidence weighted upper bound ūm can be used:

uII(Di,θ∗1:i,θ) :=
∑

1≤m≤M

ūm(Di,θ∗1:i,θ) (4.14)

Case III We can preserve the absolute change in predicted likelihood for the ground
truth by directly regularizing uIII(Di,θ∗1:i,θ) := u(Di,θ∗1:i,θ). This corresponds to the
typical motivation, which is to maintain a stable average validation accuracy.

Case IV We can partially preserve the change in predicted likelihood for the ground
truth, that is, penalize the change Pθ∗(·|x) = 1 → Pθ∗+∆θ(·|x) = 0, but allow the change
Pθ∗(·|x) = 0 → Pθ∗+∆θ(·|x) = 1 for the ground truth predicted likelihood. This applies
the penalty only when a correctly classified x at θ∗ (high confidence on the ground truth)
becomes incorrectly classified (lower confidence on the ground truth) at θ∗ + ∆θ. Using
previously defined notation, this yields:

uIV(Di,θ∗1:i,θ) := ū(Di,θ∗1:i,θ) (4.15)

= E(x,y)∼Di

[∣∣∣(∇θPθ|θ=θ∗1:i
)Pθ∗1:i

∣∣∣]

4.4 Algorithm: Regularizing Amount of Forgetting

The upper bound(s) on the amount of forgetting can be directly used in the stability
update. With the formulation now being understood in terms of the amount of forgetting,
we need to ensure that the sum of absolute amounts of forgetting is ≤ t from all previous
datasets. We can encode this objective by choosing a G1:i−1(θ) in (4.1) as follows:

G1:i−1(θ) :=
∑

1≤i′≤i−1

g(Di′ ,θ∗1:i′ ,θ) ≡
∑

1≤i′≤i−1

gi′
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Figure 4.3: Use cases I-IV. The intensity of the output neurons denote their contribution.
Case I preserves all the outputs. Case II preserves the outputs in proportion to their
confidence. Case III preserves only the ground truth output. Case IV preserves the ground
truth in proportion to its confidence.

Here, g can be either uI, uII, uIII, uIV for each of the previous datasets, depending on the
requirement. After finishing the training for a particular dataset Di, g(·) can be computed
and added toG1:i−1(θ) to produceG1:i(θ). With this definition, the objective can optimized
as expressed in (4.2).

To evaluate which version of the stability bias (L1 or L2) is appropriate for knowledge
preservation, we conduct experiments with the L1, L2 and the elastic-net variants of the
objective. The L1 and L2 variants are described in Section 4.2, and the elastic-net variant is
a weighted combination of these two variants [75]; we use an equally weighted combination,
which we refer to as E0.5. We refer to the family of these methods as direct minimization
(DM) strategies.

4.5 Algorithm: Finer Control over Forgetting

Minimization through the Lagrange method of multipliers produces a minimum for Li(θ),
such that the absolute amount of forgetting over datasets D1:i−1 is bounded by some t,
that is G1:i−1(θ) ≤ t. Without any additional assumptions on the solution, the value
of t is determined by the minimization procedure. However, it is possible to alter the
minimization procedure to achieve more control over the amount of forgetting t, and hence
the degree of preservation. While this introduces a stronger bias and thereby reduces the
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variance of the model, it also gives us a hyperparameter to find the precise t at which the
solution is optimal for a certain stability bias.

Specifically, let us assume that we do not want G1:i−1(θ) to exceed some c. We can
attach a scalar identity term I to the cross-entropy objective as follows:

Li(θ) · I(G1:i−1(θ) ≤ c) + λG1:i−1(θ) (4.16)

As long as G1:i−1(θ) ≤ c, this training objective is equivalent to the description in (4.1)
and (4.2). When G1:i−1(θ) > c, the training objective directly minimizes G1:i−1(θ) until
G1:i−1(θ) ≤ c. This forces the optimizer to re-focus on finding a solution that first satisfies
G1:i−1(θ) ≤ c, and thereby forces the optimization to not exceed a certain c (stability is
enforced). A stricter objective can be obtained by individually considering the different g
within G:

Li(θ) · I(g1(θ) ≤ c1, · · · , gi−1(θ) ≤ ci−1) + λG1:i−1(θ) (4.17)

In our experiments, we use this stricter objective, maintaining a forgetting threshold
(ci) per task i. We initialize ci ← c(1) and then incrementally increase this forgetting
threshold as we see more tasks, that is, ci ← ci + c(2) per new task seen. Through the
hyperparameter search, we can obtain a minimum c which produces the best solution for
a given stability bias.

4.6 Algorithm: Fisher Freezing

With any regularization strategy, all the weights are always updated, even if the changes
to some weights are very small. This can perturb sensitive weights, such as early layer
weights [50]. Even if this perturbation is only small, small perturbations can add up over
multiple tasks and eventually affect the classifier likelihood irreversibly.

The upper bound of change in classifier likelihood for a dataset Di is dependent on
two terms (see (4.7)), |∆θ| and the expectation of the absolute gradients. To minimize
the change in classifier likelihood, we may opt to minimize |∆θ| more conventionally, by
freezing the most important weights. This reduces the magnitude of |∆θ| and therefore
results in a smaller change in classifier predictions. Other strategies in the literature have
tried freezing weights [54], but our approach to freezing is a more principled way to choose
which weights to freeze, and directly enforces sparsity in |∆θ|.

26



Figure 4.4: Fisher freezing on EWC applied to Sim-EMNIST; average of 5 seeds with λ = 1.
As we freeze more weights, task 1 accuracy increases, while task 2 accuracy decreases. The
trend of solutions is similar to that obtained using L1.

Specifically, we compute the Fisher information matrix F (θ∗1:i) and choose the top p-
percentile parameters θp ⊆ θ. For these parameters, we ensure that the optimizer does
not update their values. To assess the effects of this kind of freezing separately from the
aforementioned L1 criterion, we freeze weights on EWC. In our experiments, we refer to
this method as EWC-p.

As an example, we plot the task 1 vs task 2 accuracy in Figure 4.4 for EWC with
freezing. The nature of solutions with increasing p is similar to that depicted in Figure 4.1.
An increase in p therefore reduces the plasticity of the model, which is expected. This
shows that a higher span of solutions (higher variance) can be achieved directly through
EWC, by introducing this hyperparameter p.
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Chapter 5

Extension to Continual RL

In this chapter, we propose a simple extension of the ideas presented in Chapter 4 to
reinforcement learning. In Section 5.1, we discuss the originally proposed application of
the EWC objective (Section 3.3.1) to continual reinforcement learning as presented in
Kirkpatrick et al. [26]. In Section 5.2, we explain the difference between the original
approach and our implementation, which uses PPO. In Section 5.3, we propose a strategy
to weaken the stability bias. The relevant experiments can be found in Section 6.2.

5.1 EWC: Original Implementation

Originally, Kirkpatrick et al. [26] extended EWC to a DQN setup [45, 67]. A random
schedule of 10 Atari environments was used, and the environments were visited multiple
times. The problem statement also involved learning which task is currently being seen.
This task determination was learned using the Forget Me Not (FMN) algorithm [44].

Automatic Task Determination The implementation of FMN used by Kirkpatrick et
al. [26] learns a Hidden Markov Model (HMM) to automatically determine the current
task during the training process. The hidden variable of the HMM is a categorical context
c which corresponds to one of the tasks (environments). The HMM evolves according to:

p(c, t+ 1) =
∑
c′

p(c′, t) · Γ(c, c′)

Here α is the probability of task switch, that is, Γ(c, c′) = α if c 6= c′, else Γ(c, c′) = 1− α.
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Each task is further associated with a generative model that can predict the probability
p(o|c, t) of an observation o. Since Kirkpatrick et al. [26] conduct experiments with Atari
environments, this generative model is based on factored multinomial distributions which
explain the probability of each pixel in the observation space, which leads to a Dirichlet
model. The value of α used is inversely proportional to time.

The training is divided into windows. In each window, the generative models corre-
sponding to all environments are updated with the evidence as proposed in FMN [44]. At
the end of the window, the best model that explains the current task is kept, while other
models are reverted to their state at the beginning of the window.

Given such a model per task, the current task can be inferred at time t as follows. If
the observations so far are o1, o2, · · · , ot, then

p(c|o1, o2, · · · , ot) ∝
∑
c′

p(c′, t− 1) · Γ(c, c′) · p(o|c, t)

The context c with the highest probability is inferred to be the current task label.

Computing the Fisher Matrix The Fisher Matrix is computed at every task switch,
and a quadratic penalty as explained in Section 3.3.1 is added to the training objective
per task after 20M frames of training (total training occurs for 50M frames). For every
inferred task, Kirkpatrick et al. [26] maintain a short-term memory buffer B. Then, when
the task switch happens, the empirical Fisher Matrix F is computed over 100 randomly
sampled experiences from the short-term buffer. Unfortunately, the authors don’t provide
any further details regarding the Fisher Matrix computation for the reinforcement learning
case, and it is not immediately clear what the likelihood function represents.

Learning without task determination Kirkpatrick et al. [26] also investigate the
effect of learning when the task sequence is known, that is, without automatic task de-
termination. The improvement was not found to be significant compared to the FMN
case.

5.2 PPO-EWC

In this section, we explain the differences in our implementation over the implementation
in Kirkpatrick et al. [26]. We chose to implement EWC with PPO instead of DQN, due
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to the lack of a reference implementation and preliminary experiments with DQN which
suggested orders of magnitude slower convergence than PPO. While EWC has been shown
to work with DQN in Kirkpatrick et al. [26], the authors do not investigate the effect of
the strength of the stability update, which is the focus of our work.

The pseudocode of our adaptation of EWC to PPO is given in Algorithm 3, and it
builds upon the baseline pseudocode given in Algorithm 2.

Efficient Convergence Our algorithm adopts EWC to the Clipped PPO algorithm [57],
explained in Section 2.4. PPO is an actor-critic style algorithm, that is easy to implement,
works with discrete action spaces, and is usually considered to be practically more efficient
in convergence than DQNs [45, 67].

Training Schedule The original EWC [26] is tested against multiple Atari games in a
randomized order, such the same game can be revisited. This interleaving of experiences
is very similar to joint training and does not demonstrate the viability of EWC in settings
where the same environment cannot be visited again.

In our implementation, we evaluate EWC on a curriculum of simple autonomous driv-
ing tasks, going from easy to difficult. We argue that this is a more natural use case
for continual learning, compared to the randomized schedule. We note that curriculum
learning has been previously investigated [1], although usually in the context of vision and
language tasks.

Categorical vs Gaussian Policy Autonomous driving tasks are usually modeled as
environments with continuous action spaces. Previous continual learning work(s) have
proposed methods for continuous action space environments [2]. With PPO, continuous
action space policies are typically modeled as (diagonal covariance) Gaussian policies,
implemented as neural networks which take in a state s and produce a mean µθ(s) and
variance σθ(s) for each continuous action parameter. During training, actions are sampled
from this distribution:

a ∼ N (µθ(s),σθ(s))

This sampling achieves an effect similar to exploration. During evaluation, the mode
µθ(s) of the distribution is directly used as the action (most likely action).
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While a Gaussian policy can act as the control policy for choosing actions in PPO, it
cannot be used to compute the Fisher Matrix. This is because the Fisher Matrix usually
requires the likelihood and the score function to be defined, and the Gaussian policy is a
generative model. Therefore, we chose to discretize our action space, and use a Categorical
policy, which is a discriminative model whose likelihood and score can be easily computed
through softmax. DQNs typically “correspond” to a Categorical policy.

Preserving Q functions Deep RL methods are typically either value function approx-
imation methods (no policy) or actor critic style algorithms (both policy and value). In
the case of value approximation methods, the policy is constructed from the learned Qθ

function as:
π(s) = arg max

a∈A
Qθ(s, a)

Continually preserving the Qθ function therefore also preserves the policy in these methods
[49, 26, 22].

In the case of actor critic style algorithms, previously proposed methods typically share
some initial layers between the policy function π and the Q network [54, 58]. In our
implementation, we do not share layers between π and Q, and instead opt to learn these
networks separately. With separate networks, Q just reflects the corresponding value
estimate for π, and therefore it is sufficient to just preserve π across multiple environments.
That is, we just remember ”how to act” across environments, and not the reasoning (value
estimate) behind the actions.

Computing the Fisher Matrix Since we are not working with a randomized continual
schedule, automatic task determination is not necessary. Also, since our experiments are
not on Atari, we do not learn a generative multinomial model for the observations. We
instead compute the Fisher Matrix over states from successful trajectories during training.
The set of successful trajectories should produce a distribution of states that can be used
to compute the likelihood.

31



Algorithm 2 PPO-Baseline

1: Given sequence of environments e1, e2, · · · , en
2: for environment = e1, e2, · · · , en do . Current environment is ei
3: Initialize critic Q
4: for iteration = 1, 2, ... do
5: for actor = 1, 2, ..., N (parallel) do
6: Run policy πθo in environment ei for T timesteps
7: Compute advantage estimates Ψt, 1 ≤ t ≤ T
8: end for
9: for epoch = 1, 2, ..., K do

10: Optimize surrogate LCLIP (θ) on M samples, M ≤ NT
11: end for
12: end for
13: end for

Algorithm 3 PPO-EWC

1: Given sequence of environments e1, e2, · · · , en
2: Initialize LEWC(θ) := 0
3: for environment = e1, e2, · · · , en do . Current environment is ei
4: Initialize critic Q
5: Initialize set of successful trajectories Mi := φ for ei
6: for iteration = 1, 2, ... do
7: for actor = 1, 2, ..., N (parallel) do
8: Run policy πθo in environment ei for T timesteps
9: Compute advantage estimates Ψt, 1 ≤ t ≤ T

10: Update Mi with successful trajectories seen so far
11: end for
12: for epoch = 1, 2, ..., K do
13: Optimize surrogate LCLIP (θ) + λ · LEWC(θ) on M samples, M ≤ NT
14: end for
15: end for
16: Compute Fisher Matrix Fi for states s ∈Mi

17: Snapshot the current set of weights θ as θ∗1:i

18: LEWC(θ)← LEWC(θ) + diag(Fi) · |θ − θ∗1:i|2
19: end for
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5.3 Weakening the Bias

To extend the principle of a weaker stability bias as discussed in Chapter 4, we note
how continual RL is different from continual learning for classification. Most importantly,
the procedure of optimization in RL involves changing the policy and choosing random
actions, which is a trial-and-error strategy. In fact, obtaining a policy through PPO-EWC
(Algorithm 3) is still difficult, mainly because the stability update due to LEWC(θ) changes
the policy and detracts from the usual exploration strategy.

A simple way to relax the stability bias is to do stability updates every δ epochs (δ ≥ 1).
As δ increases, the push towards θ∗1:i becomes weaker. A very high δ should correspond to
no stability update, that is PPO-Baseline (Algorithm 2). We investigate different values
of δ in our experiments.
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Chapter 6

Experiments

In this chapter, we evaluate the methods proposed in Chapter 4 and 5. The code is available
at github.com/ashishgaurav13/stability-biases.

6.1 Experiments for Classification

In this section, we evaluate the methods proposed in Chapter 4 and compare their per-
formance with other popular KL based approaches in continual learning. We evaluate the
following strategies:

Baseline The usual baseline involves training with just the likelihood loss, that is, no
regularization (no stability bias).

EWC We use the version of EWC that accumulates Fisher information matrices as well
as adds a quadratic loss term per task, as described in [26, 19, 27]. We implemented
this method from scratch, following the description in the related papers. EWC has been
previously compared to the unweighted L2 regularization

∑
j(θj−θ∗1:i−1,j)

2. This is different
to the L2 variant described in this work, which has a per-parameter importance.

SI Synaptic Intelligence strategy was described in [73]. The original code released by the
authors was adapted to the various datasets.

DM-I, II, III, IV This was proposed in Section 4.4, a strategy that directly regularizes
the amount of forgetting, for L1, L2 and the elastic-net variant.
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DM-I, II, III, IV with fine control This was proposed in Section 4.5, similar to
the previous strategy but with additional hyperparameters that allow finer control over
forgetting; evaluated for L1, L2 and the elastic-net variant.

EWC-p The “Fisher freezing” strategy described in Section 4.6; implemented on EWC.

Note that we do not evaluate joint training for classification as it has been previously
investigated in the context of classification [34] and is known to be expensive as the number
of tasks grow.

Method P-MNIST S-MNIST Sim-EMNIST CIFAR100 Sim-CIFAR100

Baseline 55.6 (1.04) 63.4 (0.38) 75.4 (1.15) 37.5 (5.74) 76.2 (0.49)
EWC 93.9 (0.30) 70.8 (2.65) 89.6 (2.99) 61.7 (2.41) 83.8 (2.06)
SI 92.6 (0.75) 78.3 (2.65) 91.4 (1.21) 62.1 (1.34) 83.7 (0.88)

EWC-p 94.5 (0.26) 72.0 (2.80) 89.2 (2.95) 65.4 (3.36) 85.0 (1.35)

DM-L1 (best) 95.0 (0.30) 77.2 (1.96) 88.6 (2.97) 65.6 (4.88) 84.3 (1.64)
DM-E0.5 (best) 95.0 (0.23) 80.3 (2.09) 88.9 (1.93) 65.9 (2.15) 84.4 (0.97)
DM-L2 (best) 94.3 (0.32) 71.2 (3.43) 89.5 (2.64) 61.2 (2.07) 83.6 (0.60)

DM-L1 (best, fine) 95.1 (0.13) 80.0 (1.88) 93.0 (0.76) 65.8 (4.80) 83.9 (1.77)
DM-E0.5 (best, fine) 95.0 (0.19) 80.3 (2.10) 91.6 (1.06) 65.2 (1.81) 84.5 (0.97)
DM-L2 (best, fine) 94.4 (0.29) 69.0 (0.85) 89.4 (2.89) 61.2 (2.07) 83.9 (2.04)

Table 6.1: Mean and std final average validation accuracies (%) across 5 seeds for the best
hyperparameters for all methods described in Section 6.1 and for all the datasets mentioned
in Section 6.1.2. The details of the hyperparameter search are mentioned in Section 6.1.1.
Methods are ranked by their mean validation accuracy across 5 seeds. The best results
came from different cases (I-IV) with no conclusive trend, as reported in Section 6.1.3

6.1.1 Training Methodology

Training for each strategy is performed on feedforward ReLU networks with 2 hidden layers
(h = 128, η = 0.0001), for 20 epochs. For hyperparameter search, we evaluate all methods
on a single random seed, then choose a parameter that has the highest average validation
accuracy. The final results (mean and standard deviation) are averaged over 5 seeds, using
the best parameter. Table 6.1 shows the performance (final average validation accuracy)
of the proposed methods.
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We use the Adam optimizer for our experiments. Constants searched for EWC in-
clude λ ∈ {1, 101, 102, 103, 104}. For DM-I, II, III, IV (with and without finer con-
trol), we searched for λ ∈ {1, 101, 102, 103, 104}, c(1) ∈ {0.025, 0.05, · · · 0.10} and c(2) ∈
{0.0, 0.025, 0.05, · · · 0.10}. For the CIFAR100 datasets, we searched for λ ∈ {1, 101, 102, · · · 107}.
For EWC-p, we searched for p ∈ {0.1, 0.2, 0.3, · · · 0.9}. For SI, we searched for c ∈
{0.01, 0.1, 0.5, 1, 2} and ζ ∈ {0.001, 0.01, 0.1, 1}.

For the CIFAR100 experiments we use the embeddings from a pretrained Resnet-v1
model which achieves ≈ 70% accuracy on the 100-class classification.

6.1.2 Datasets

We evaluate on the following datasets:

Permuted MNIST 5 tasks; first task corresponds to classifying the MNIST dataset of
handwritten digits, and every other task corresponds to classifying images generated by
permuting the pixels of the first task according to a fixed random permutation (fixed for
the entire task); used in [28, 73, 47, 33].

Split MNIST 5 tasks, where every task is a 2-class classification. The tasks are labels
0/1, 2/3, 4/5, 6/7, and 8/9 from the MNIST dataset; used in [3, 69].

Similar EMNIST Hand-picked labels from the EMNIST dataset such that the classifica-
tion tasks look approximately similar; 4 tasks, 3-class classification, task labels are 2/O/U,
Z/8/V, 7/9/W, and T/Q/Y.

CIFAR100 Realistic image dataset with 5 tasks; 3-class classification; task labels are
0/1/2, 3/4/5, 6/7/8, 9/10/11, and 12/13/14.

Similar CIFAR100 As CIFAR100, but tasks are chosen from superclasses such that the
labels per task correspond to the coarse classes. We chose the coarse classes to be “aquatic
mammals”, “food containers” and “household furniture”. Since each coarse class contains
5 superclasses, this corresponds to 3-class classification spanning over 5 tasks.

Two of the datasets of our choice are similar continual datasets. The effect of task
similarity has been discussed previously [24], but these discussions consider permutated
data to be similar tasks. On the other hand, our investigation considers different datasets
to be similar if the labels draw from some common superclass distribution of data. This
is of practical significance since in real world classification systems, we usually desire our
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classification ability to persist when the newer classification tasks are label-wise similar
to the previous data. For example, we expect a classifier that classifies between cars and
motorbikes to easily (continually) learn the distinction between trucks and bikes.

Additionally, we note that a lot of the work in continual learning is evaluated on
incremental classes, but with incremental classes the network is expected to remember
just the labels that have been seen over multiple tasks. However, remembering multi-class
classification requires remembering the differences between all the classes in each task.
This is our rationale for the choice of few-class classification spanning over 4 or 5 tasks.

6.1.3 Results

Our numerical results are given in Table 6.1 and 6.2. We report the following insights.

Baselines and Existing Approaches As expected, the baselines for all the datasets
incur catastrophic forgetting. This forgetting is less for the similar datasets Sim-EMNIST
and Sim-CIFAR100, because the classification tasks are related, that is, learning the first
task is enough to perform decently on following tasks. EWC and SI significantly improve
upon the baseline accuracies.

DM-L1 vs DM-L2 We find that in almost all the datasets (an exception being Sim-
EMNIST) the L1 variant finds a better overall solution over multiple tasks, compared to
the L2 variant. In the case of fine control, this still holds on almost all the datasets, but the
exception is Sim-CIFAR100. Note that even in the exceptional cases, the mean accuracies
differ by a very small amount.

Fine Control We expect the fine-control version of DM-L1 and DM-L2 to perform the best
in all datasets, because with the correct hyperparameters it can find the optimum which
jointly maximizes both plasticity and stability. We indeed observe this for the grayscale
datasets, where the improvements are good, but this does not hold in the case of the
CIFAR100 datasets. We speculate that this is because of the relatively coarse granularity
of the hyperparameter search for c(1) and c(2). Since the λ search for the CIFAR100
datasets was already computationally expensive, we chose not to repeat the search with
finer granularity. Nevertheless, the best values for the fine methods are still better than
EWC and SI.

Relative Retention in Cases I–IV Given the variance in our results, we find no clear
empirical order of retention using DM-L1. While each case responds to λ in a different
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Figure 6.1: Average performance (smoothed) of Cases I–IV on Sim-EMNIST; 2 tasks with
DM-L1, 5 seeds (λ ∈ [1, 102]). Retention is defined as the percentage of classifier predictions
on task 1 that stay the same after task 2 has been trained.

way, we observe that at optimal λ, the cases have approximately equal retention across all
datasets. We illustrate this in Figure 6.1 for Sim-EMNIST, for two tasks.

The Effect of Freezing Important Weights Compared to EWC, EWC-p always
produces an improved solution, except in the case of Sim-EMNIST, where it remains close
to EWC. It outperforms the other methods for Sim-CIFAR100. As can be seen in Table
6.2, we note that for the grayscale datasets the best degree of preservation p is between
20%−40%, while for the realistic image datasets, the best degree of preservation is around
60%− 80%. This is in agreement with the strength of the stability bias λ for the realistic
image datasets for EWC, which are also high, meaning that the realistic images require
stronger preservation to register improvements.

6.2 Experiments for RL

In this section, we report our results for the Continual RL algorithms proposed in Chapter
5. Specifically, we evaluate PPO-EWC (Algorithm 3) for different stability biases δ against
PPO-Baseline (Algorithm 2) and joint training. Our environments are based on a version
of WiseMove [31], a hierarchical framework to investigate safe reinforcement learning,
using incremental learntime verification of temporal logic constraints.
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Dataset Degree of Preservation (p)

P-MNIST 40%
S-MNIST 40%

Sim-EMNIST 20%
CIFAR100 80%

Sim-CIFAR100 60%

Table 6.2: Optimal degree of preservation p for evaluated datasets, where p refers to the
percentage of weights that are frozen for all tasks after the first task.

6.2.1 Environments

We use a curriculum of four environments, relating to control in an autonomous driving
setting. These environments increase in difficulty. In all these environments, the vehicle
to be controlled (ego) starts from the left side and has to travel forward, without colliding
into any other vehicle and staying on the road, preferably within the lane. Other vehicles
are stopped (parked). More specific details are as follows.

OneStoppedCarOpposite (Figure 6.2) There is one stopped car on the opposite lane as
ego. The goal is to avoid any crashes with this car, and reach the rightmost end, in the
same lane.

OneStoppedCar (Figure 6.3) There is one stopped car on the same lane as ego. The goal
is to avoid any crashes with this car, preferably by changing lane and reach 10 metres
beyond this car.

TwoStoppedCars (Figure 6.4) There are two stopped cars on the same lane as ego. The
goal is to avoid any crashes with any of the cars, preferably by changing lane and reach 10
metres beyond the last car.

ThreeStoppedCars (Figure 6.5) There are two stopped cars on the same lane as ego,
followed by a car on the opposite lane. The goal is to avoid any crashes with any of the
cars, preferably by changing lanes (twice) and reach 10 metres beyond the last car.
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Figure 6.2: OneStoppedCarOpposite Figure 6.3: OneStoppedCar

Figure 6.4: TwoStoppedCars Figure 6.5: ThreeStoppedCars

Reward Specification The reward is specified as follows. A collision results in a −100
reward. Going out of the road boundaries also results in a −100 reward. Stopping results
in a −100 reward as well. Every timestep spent in the environment results in a −1 reward.
The agent is expected to terminate successfully within TE = 150 timesteps. Reaching the
target location successfully results in a 100 + TE reward.

State Space The state space for all the environments consists of 7 ego features and 6
propositional features, depending on the environment. The ego features are: x, y position
coordinates, speed of the car v, magnitude of acceleration a, car angle θ, steering rate ψ
and the change of steering rate ψ̇. The propositional features (Table 6.3, 6.4) consist of
boolean variables that encode specific details about the current state. Note that only the
ego features are normalized.

Action Space The action space for all the environments corresponds to 13 discrete
actions that can be used to control the car (Table 6.5). These discrete actions are various
combinations of acceleration a ∈ [−2, 2] and rate of change of steering angle ψ̇ ∈ [−1, 1].
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OneStoppedCarOpposite OneStoppedCar TwoStoppedCars ThreeStoppedCars

stopped stopped stopped stopped

out of bounds out of bounds out of bounds out of bounds

near goal - past car a past car a

collided - past car b past car b

- past car collided a collided a

- collided collided b collided b

Table 6.3: Boolean propositional features for the environments in curriculum, in the order
that they are appended to the feature vector. A blank proposition refers to a dummy
feature, added to ensure that the dimensionality of the state space is constant across the
environments.

Feature Description

stopped True when ego is stopped.
out of bounds True when ego goes outside the two horizontal lanes.
near goal True when ego reaches the rightmost end of the road.
collided* True when ego collides with another vehicle.
past car* True when ego goes 10 distance units beyond a specific other vehicle.

Table 6.4: Description of the boolean propositional features.

Simplifications In all the following graphs, x-axis denotes training progress. Different
seeds converge in different number of time-steps, so we try for 200k steps per environment
and obtain 100 time points per training procedure. Further, 10 seeds are tried, but the
algorithm halts when the algorithm is unable to learn an environment in the continual
sequence. Actual rewards are in the [-100, 100] range, but to understand how many
environments are remembered at any instant, we normalize these rewards to [0, 1].

6.2.2 Joint Training

We jointly train by interleaving environment evaluation in PPO (Algorithm 1), switching
between all the environments uniformly. Joint training is supposed to have the best per-
formance given enough training time. We try joint training with 2, 3, 4 environments for
400k, 600k and 800k time steps, which is equivalent training time for continual learning
with 2, 3 and 4 environments. We report the average and individual performance curves
during training in Figures 6.6 and 6.7.
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Action Description

[amax, psidotmax] Turn left (max steering intensity) with max acceleration.
[amax, 0.75*psidotmax] Turn left (75% steering intensity) with max acceleration.
[amax, 0.50*psidotmax] Turn left (50% steering intensity) with max acceleration.
[amax, 0.25*psidotmax] Turn left (25% steering intensity) with max acceleration.

[amax, 0] Move forward (no steering) with max acceleration.
[amax, -0.25*psidotmax] Turn right (25% steering intensity) with max acceleration.
[amax, -0.50*psidotmax] Turn right (50% steering intensity) with max acceleration.
[amax, -0.75*psidotmax] Turn right (75% steering intensity) with max acceleration.

[amax, -psidotmax] Turn right (max steering intensity) with max acceleration.
[0.50*amax, 0] Move forward (no steering) with 50% of max acceleration.

[0, 0] No acceleration or steering.
[-0.50*amax, 0] Decelerate; 50% of max deceleration.

[-amax, 0] Max deceleration.

Table 6.5: Description of discrete actions that make up the action space. Constants used
are amax = 2 and psidotmax = 1.

We observe that joint training is unable to reach configurations that solve all the envi-
ronments satisfactorily. With more training time, joint training should be able to achieve
successes across all environments.

6.2.3 PPO-Baseline vs PPO-EWC

Next, we compare the performance of PPO-Baseline (Algorithm 2) with PPO-EWC (Al-
gorithm 3). In PPO-EWC, the stability update is applied every 8 training epochs (δ = 8).
We report the average and individual performance curves during training in Figures 6.8,
6.9, 6.10, and 6.11.

We observe that the stability update interferes with the exploration strategy, which
corresponds to a dip in performance at the beginning of training a new task.

Interestingly, PPO-Baseline is able to (accidentally) find a configuration that solves
all the environments, although only for one seed. PPO-EWC is able to solve all the
environments across more number of seeds (not all seeds).

The optimal λ for our setting seems to be λ = 1. With higher λ, the stability up-
date interferes a lot with the training, and is sometimes even unable to solve beyond 2
environments.
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6.2.4 The Effect of δ

In Section 5.3, we proposed applying the stability update every δ number of training epochs,
to weaken the stability bias. To understand the effect of δ, we plot the average number of
environments solved across 20 seeds by PPO-EWC against different λ, for different values
of δ (Figure 6.12). We try δ = 1, 2, 4, 8.

We observe that sparsely applying the stability update results in a better performance
beyond the optimal λ. Specifically, δ = 8 performs better than applying the stability
update at every training epoch, that is δ = 1. There is also a downward trend showing
that the number of environments solved decreases with higher λ, but this trend only holds
beyond the stability plasticity optimum, which is observed to be near λ = 1. For λ less
than the optimum, there is no clear trend.

Additionally, we find that PPO-Baseline is only able to solve 1.4 environments on
average across 10 seeds, which is much lower than PPO-EWC.

43



Figure 6.6: Average performance for joint training with 2, 3, 4 environments.

Figure 6.7: Taskwise performance for joint training with 2, 3, 4 environments.
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Figure 6.8: Average performance for PPO-Baseline with 4 environments.

Figure 6.9: Taskwise performance for PPO-Baseline with 4 environments.

45



Figure 6.10: Average performance for PPO-EWC with 4 environments.

Figure 6.11: Taskwise performance for PPO-EWC with 4 environments.
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Figure 6.12: Number of environments solved against various values of λ, for δ = 1, 2, 4, 8.
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Chapter 7

Conclusions

In the context of real world classification systems, catastrophic forgetting may not just
cause performance deterioration, but also cause a loss of validated knowledge. Existing
(regularization) strategies to mitigate catastrophic forgetting typically minimize the elastic
criterion, but do not explicitly prioritize stability over plasticity.

In this thesis, we explored alternative strategies for continual learning and investigated
the effect of altering the stability bias.

• We formulated the continual learning problem to directly minimize an approximate
upper bound on the absolute amount of forgetting, which led to a weaker bias for
continual classification.

• We proposed three applications of this approximation (DM, DM-fine, EWC-p). We
further demonstrated different variants of network preservation corresponding to dif-
ferent system requirements (Cases I-IV).

• We evaluated the proposed methods for continual classification against popular ap-
proaches in continual learning (EWC, SI) on various grayscale and colored datasets.

• We adapted EWC to an actor-critic style algorithm (PPO), and investigated the
effect of sparsely applying the stability update, to weaken the bias. We compared
our method to a baseline and the joint training approach.

As evidenced by our experiments, we observe that weakening the stability bias can
lead to better preservation of past knowledge, and often produce solutions with better
performance.
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We see several possible directions for future research. First, this work considers only
informal notions of stability, plasticity and knowledge retention, so it would useful to quan-
tify these more formally. Second, despite its very slow convergence, it would be interesting
to pursue the comparison of DQN-EWC [26] with our proposed base RL algorithm, PPO-
EWC. Finally, the differential equations for the gradient descent dynamics using the L1

and the L2 updates can be better examined to concretely understand the nature of the
obtained solutions.
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