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Abstract 

 The study of computational fluid dynamics (CFD) encompasses a variety of 

numerical methods. Some are dependent on macroscopic model representatives, 

which are solved using the finite volume, finite element, or finite difference method, 

while others rely on a microscopic description. The lattice Boltzmann method 

(LBM) is considered a mesoscopic particle method, with its scale lying between 

macroscopic and microscopic. LBM works well for solving incompressible flow 

problems, but limitations are associated with the solving of compressible flows, 

particularly at high Mach numbers. In the research conducted in this thesis, this 

limitation has been overcome with the use of a higher-order Taylor series expansion 

of the Maxwell equilibrium distribution function and the Kataoka and Tsutahara 

(KT) models of compressible flows [1], [2]. A multiple relaxation time (MRT) 

approach associated with the collision term of the lattice Boltzmann equation (LBE) 

was adopted in order to enhance the numerical stability of the code, while a large-

eddy simulation (LES) scale model was implemented in LBM as a means of 

simulating compressible jet flows at the high subsonic speeds pertinent to jet noise 

problems. A three-dimensional simulation was employed using 19- and 15-lattice 

velocities with D3Q19 and D3Q15 models, respectively. Compressible LBM was 

also applied for the simulation of both heated and unheated jets in order to 

demonstrate the ability of the nonadiabatic fifth-order equilibrium distribution 
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function to solve nonadiabatic compressible flows. The near-field flow physics and 

noise simulations were performed using the compressible LBM. The results from 

the LBM simulation were then employed in Kirchhoff’s surface integral approach 

in order to predict far-field jet noise. Because of the ability of the lattice Boltzmann 

technique to be used in parallel computing and with the goal of improving LBM 

computational efficiency with respect to the numerical simulations of turbulent 

flows in predicting far-field noise, the final step in this research was to use compute 

unified device architecture (CUDA) for implementing the LBM in a graphics 

processing unit (GPU), thus creating a hybrid code, LBM-MRT-LES, through the 

utilization of the Kirchhoff integral method, a powerful tool for simulating 

aeroacoustics problems. 



vi 
 

Acknowledgements 
 

First and foremost, I am honoured to take this opportunity to express my warmest gratitude to my 

supervisor, Fue-Sang Lien, for his continual support for my Ph.D. studies and research. Professor 

Lien’s patience, motivation, enthusiasm, and immense knowledge have been deeply appreciated. 

His careful guidance and thoughtful suggestions have been an enormous help throughout my thesis 

preparation, providing me with all the necessary support and scientific consultation to carry out 

my work, as well as inspiring me to improve and successfully implement my research. 

I would also like to thank the examining committee members for their efforts in reviewing my 

thesis and providing expert and helpful suggestions. 

Finally, I wish to thank my family for all their care and help, with special gratitude going to my 

wife for her sacrifice, understanding, patience, encouragement, and love. 

  



vii 
 

Dedication 

 

I dedicate my dissertation to my family – my dear and sweet wife, Kadria; my children, Farah, 

Seba, Idris, and Hala; my parents; and my brothers and sisters. 



viii 
 

Table of contents 

Examining Committee Membership ......................................................................................................... ii 

AUTHOR'S DECLARATION .................................................................................................................. iii 

Abstract ....................................................................................................................................................... iv 

Acknowledgements .................................................................................................................................... vi 

Dedication .................................................................................................................................................. vii 

List of Figures ............................................................................................................................................ xii 

List of Tables ............................................................................................................................................. xv 

Nomenclature ........................................................................................................................................... xvi 

Acronyms .................................................................................................................................................. xix 

Chapter 1 ..................................................................................................................................................... 1 

Introduction ............................................................................................................................................... 1 

1.1 Background ......................................................................................................................................... 1 

1.2 Motivation and objectives ................................................................................................................... 3 

1.3 Focus of this research .......................................................................................................................... 5 

1.4 Thesis outline ...................................................................................................................................... 7 

Chapter 2 ..................................................................................................................................................... 9 

Incompressible Lattice Boltzmann Method .............................................................................................. 9 

2.1 Introduction ......................................................................................................................................... 9 

2.2 Lattice Boltzmann method .................................................................................................................. 9 

2.3 Equilibrium distribution function ...................................................................................................... 12 

2.4 Single relaxation time ....................................................................................................................... 13 

2.6 Multiple relaxation times .................................................................................................................. 14 

2.6 Boundary and initial conditions ........................................................................................................ 20 

2.6.1 Bounce-back scheme ..................................................................................................................... 21 

2.6.2 Simple bounce-back scheme .......................................................................................................... 22 

2.6.3 Boundary condition with known velocity ...................................................................................... 23 



ix 
 

Chapter 3 ................................................................................................................................................... 26 

Compressible Lattice Boltzmann Method ............................................................................................... 26 

3.1 Introduction ....................................................................................................................................... 26 

3.2 Limitations of the LBM approach ..................................................................................................... 28 

3.3 Higher-order equilibrium distribution function ................................................................................ 31 

3.5 Kataoka and Tsutahara models ......................................................................................................... 34 

Chapter 4 ................................................................................................................................................... 38 

Large-Eddy Simulation Using the Lattice Boltzmann Method ............................................................... 38 

4.1 Introduction ....................................................................................................................................... 38 

4.2 Subgrid scale modelling of turbulent flows using the lattice-Boltzmann method ............................ 39 

4.3 Subgrid scale modelling for LBM-MRT .......................................................................................... 43 

Chapter 5 ................................................................................................................................................... 47 

Sound Propagation .................................................................................................................................. 47 

5.1 Introduction ....................................................................................................................................... 47 

5.2 Lighthill's acoustic analogy ............................................................................................................... 48 

5.3 Ffowcs Williams and Hawkings ....................................................................................................... 51 

5.4 Kirchhoff surface integration ............................................................................................................ 53 

Chapter 6 ................................................................................................................................................... 60 

Numerical Simulation of Turbulent Free Jets Using Lattice Boltzmann Method ................................... 60 

6.1 Introduction ....................................................................................................................................... 60 

6.2 Results and discussion ...................................................................................................................... 63 

Chapter 7 ................................................................................................................................................... 70 

Predicting Near-Field and Far-Field Jet Noise Using the Compressible Lattice Boltzmann Method .... 70 

7.1. Introduction ...................................................................................................................................... 70 

7.2 Predict jet flow variables .................................................................................................................. 73 

7.3 High-order equilibrium distribution function results ........................................................................ 76 

7.3.1 Isothermal compressible free jet flow ........................................................................................ 76 



x 
 

7.3.2 Non-isothermal compressible free jet flow ................................................................................ 80 

7.4 Kataoka and Tsutahara model ........................................................................................................... 83 

7.4.1 Isothermal compressible free jet flow ........................................................................................ 83 

7.4.2 Non-isothermal compressible free jet flow ................................................................................ 85 

7.5 Near-field noise predictions .............................................................................................................. 88 

7.5 Far-field noise predictions ................................................................................................................ 94 

7.6 Summary ........................................................................................................................................... 98 

Chapter 8 ................................................................................................................................................. 101 

Efficient Implementation of the Lattice Boltzmann Method on a GPU for Predicting Near-Field and 

Far-field Jet Noise ................................................................................................................................. 101 

8.1 Introduction ..................................................................................................................................... 101 

8.2 Literature review ............................................................................................................................. 104 

8.3 Jet-flow development ...................................................................................................................... 111 

8.4 Near-field jet noise .......................................................................................................................... 119 

8.5 Far-field jet noise ............................................................................................................................ 123 

8.6 Summary ......................................................................................................................................... 126 

Chapter 9 ................................................................................................................................................. 129 

Conclusion and Future Work ................................................................................................................ 129 

9.1 Conclusion ...................................................................................................................................... 129 

9.2 Future Work .................................................................................................................................... 131 

References ................................................................................................................................................. 133 

Appendices ................................................................................................................................................ 147 

Appendix A ........................................................................................................................................... 147 

Appendix B ........................................................................................................................................... 149 

Chapman-Enskog Expansion ............................................................................................................ 149 

Appendix C ............................................................................................................................................... 156 

Computer system information ................................................................................................................... 157 



xi 
 

PC1: ...................................................................................................................................................... 157 

PC 2: ..................................................................................................................................................... 157 

Sharcnet graham cluster ........................................................................................................................ 157 

Nods: 801-803: .................................................................................................................................. 157 

Nods: 828‑987: .................................................................................................................................. 157 

LBM-LES C++ Code ............................................................................................................................ 158 

Appendix D ........................................................................................................................................... 166 

Appendix E ........................................................................................................................................... 170 

Basic Concepts in Acoustics and Noise ................................................................................................ 170 

 



xii 
 

List of Figures 

Figure 2.1: D3Q15 lattice arrangement for 3D problems. -------------------------------------------------------- 16 

Figure 2.2: D3Q19 lattice arrangement for 3D problems. -------------------------------------------------------- 18 

Figure 2.3: Bounce-back scheme. ------------------------------------------------------------------------------------- 22 

Figure 2.4: Simple bounce-back scheme. ---------------------------------------------------------------------------- 23 

Figure 2.5: Distribution functions at the boundaries of a domain. ----------------------------------------------- 25 

Figure 3.1: D3Q19 lattice model. ------------------------------------------------------------------------------------- 33 

Figure 3.2: D3Q15 lattice model. ------------------------------------------------------------------------------------- 35 

Figure 5.1: Kirchhoff's control surface. ------------------------------------------------------------------------------ 58 

Figure 6.1: Schematic and reference system of a square jet nozzle. --------------------------------------------- 62 

Figure 6.2: (a) Spanwise distribution of the mean streamwise velocity 𝑢𝑥/𝑈𝑗; (b) streamwise turbulence 

intensity 𝑢𝑥𝑟𝑚𝑠𝑈𝑗. ----------------------------------------------------------------------------------------------------- 65 

Figure 6.3: Mean streamwise velocity profiles of the square jet at different locations along the jet X-axis: 

(a) 𝑥𝐷 = 1; (b) 𝑥𝐷= 2; (c) 𝑥𝐷= 3; (d) 𝑥𝐷= 4; (e)  𝑥𝐷 = 5. -------------------------------------------------------- 68 

Figure 7.1: Schematic and reference system of a circular jet nozzle. ------------------------------------------- 74 

Figure 7.2: Development of the mean streamwise velocity along the centerline of an isothermal round jet 

for a Mach number, 𝑀𝑗 = 0.5. ----------------------------------------------------------------------------------------- 77 

Figure 7.3: Development of the streamwise turbulence intensity along the centerline of an isothermal 

round jet for a Mach number, 𝑀𝑗 = 0.5. ----------------------------------------------------------------------------- 80 

Figure 7.4: Effect of temperature on the distribution of the mean velocity at the centerline, 𝑀𝑗= 0.5. ---- 81 

Figure 7.5: The effects of temperature on the downstream development of the normalized streamwise 

turbulence intensity along the centerline of a heated round jet for a Mach number, 𝑀𝑗 = 0.5. ------------- 82 



xiii 
 

Figure 7.6: Development of the mean streamwise velocity decay along the jet centerline axis obtained 

with the KT model, 𝑀𝑗 = 0.5. ----------------------------------------------------------------------------------------- 84 

Figure 7.7: Development of the streamwise turbulence intensity along the centerline of an isothermal 

circular jet obtained with the KT model, 𝑀𝑗 = 0.5. ---------------------------------------------------------------- 85 

Figure 7.8: The effects of temperature on the centerline distribution of the mean velocity with the KT 

model, 𝑀𝑗 = 0.5. --------------------------------------------------------------------------------------------------------- 87 

Figure 7.9: The effects of temperature on the downstream development of the normalized streamwise 

turbulence intensity along the centerline of a heated round jet obtained with the KT model, 𝑀𝑗 = 0.5. -- 87 

Figure 7.10: Cross-stream profiles of the normalized mean streamwise velocity 𝑈/𝑈𝑗 at various 

downstream locations 𝑥/𝐷𝑗 along the centerline of an isothermal round jet at a Mach number , 𝑀𝑗 = 0.5.

------------------------------------------------------------------------------------------------------------------------------ 90 

Figure 7.11: Axial time-averaged velocity contour, 𝑈/𝑈𝑗,𝑀𝑗 = 0.5. ------------------------------------------ 91 

Figure 7.12: Isocontour of the instantaneous streamwise velocity for an isothermal round jet at a Mach 

𝑀𝑗 = 0.5 obtained in a horizontal plane through the jet flow at a fixed instant in time. --------------------- 91 

Figure 7.13: Mach contour, 𝑀𝑗 = 0.5. -------------------------------------------------------------------------------- 92 

Figure 7. 14: Sound pressure level contour, 𝑀𝑗 = 0.5. ------------------------------------------------------------ 93 

Figure 7.15: Sound pressure level at jet centerline, lip line, and shear layer, ---------------------------------- 94 

Figure 7.16: Streamwise velocity spectra at 𝑥 = 20r0 located along the -------------------------------------- 95 

Figure 7.17: Directivity of the overall sound pressure level (OASPL) at 𝑅 = 72𝐷𝑗, with the observation 

angle 𝜃 measured relative to the jet centerline axis, 𝑀𝑗 = 0.5. -------------------------------------------------- 97 

Figure 7.18: Sound pressure spectra at 𝑥 = 0 and 𝑟 = 10𝐷𝑗, 𝑀𝑗 = 0.3 and 0.5. ---------------------------- 98 

Figure 8.1: Mean streamwise velocity decay along the jet centerline axis, ----------------------------------- 113 

Figure 8.2 (a): Mean axial velocity at the jet exit, x = 0, 𝑀𝑗 = 0.5. -------------------------------------------- 114 

Figure 8.2 (b): Mean axial velocity at the jet exit, x = 0, Mj = 0. 5..…………………………………………114 



xiv 
 

Figure 8.2 (c): Mean axial velocity at the jet exit, x = 0, Mj = 0. 5..…………………………………………115 

Figure 8.2 (d): Mean axial velocity at the jet exit, x = 0, Mj = 0. 5..…………………………………………115 

Figure 8.2 (e): Mean axial velocity at the jet exit, x = 0, Mj = 0. 5..…………………………………………116 

Figure 8.2 (f): Mean axial velocity at the jet exit, x = 0, Mj = 0.5……………………………………………117 

Figure 8.3: Mean jet turbulence intensity along the centerline, 𝑀𝑗 = 0.5. ------------------------------------- 118 

Figure 8.4: Overall sound pressure levels obtained along the horizontal line r = 7.5Dj for the subsonic jet 

at a Mach number of 𝑀𝑗 = 0.6 --------------------------------------------------------------------------------------- 120 

Figure 8.5: Sound pressure spectra at Mach number 𝑀𝑗 = 0.6 at (a) 𝑥 = 0, --------------------------------- 121 

Figure 8.6: Sound pressure spectra at Mach number 𝑀𝑗 = 0.6 obtained at  𝑟 = 7.5𝐷𝑗 at (c) 𝑥 = 10𝐷𝑗, 

(d) 𝑥 = 15𝐷𝑗, and (e) 𝑥 = 20𝐷𝑗. ------------------------------------------------------------------------------------ 123 

Figure 8.7: Overall sound pressure levels for jets at Mach numbers 𝑀𝑗 = 0.6 and 𝑀𝑗 = 0.75 obtained at a 

radial distance of 52𝐷𝑗 from the jet exit. --------------------------------------------------------------------------- 125 

Figure 8.8: Sound pressure spectra levels for a jet at a Mach number of 𝑀𝑗 = 0.6 obtained at a radial 

distance 52𝐷𝑗 from the jet exit. -------------------------------------------------------------------------------------- 126 

 



xv 
 

List of Tables 

Table 5.1: Typical Sound Pressure Levels (SPL) [38] ................................................................................ 48 

Table 6.1 Free square jet characteristics ..................................................................................................... 63 

Table 7.1: Free circular jet characteristics .................................................................................................. 75 

Table 8.1: Free circular jet characteristics ................................................................................................ 112 

 



xvi 
 

Nomenclature 

c Particle velocity 

𝐶  Smagorinsky constant 

𝐶𝑖 Discrete velocities 

𝑐𝑠 Speed of sound  

𝑐∞  Speed of sound in freestream/ambient conditions 

D Special diagonal matrix 

𝐷𝑗 Diameter of the jet exit 

𝐷𝑙𝑏𝑚 Diameter of the jet exit (LBM units) 

ƒ Distribution function 

𝑓𝑒𝑞   Local equilibrium distribution function 

G  Green function  

M Transformation matrix 

m Moment 

𝑚𝑒𝑞 Equilibrium moment 

𝑀𝑗 Jet Mach number = 
𝑈𝑗

𝑐𝑗
  

p Pressure 

𝑝́   Sound pressure  

𝑄𝑖𝑗 Non-equilibrium stress tensor  

R  Specific gas constants 



xvii 
 

r  Radial coordinate 

𝑅𝑒𝑑 Reynolds number 

𝑟𝑚𝑠 Root mean square 

S  Diagonal matrix 

𝑆0  Kirchhoff surface 

St Strouhal number 

|𝑆̅|  Magnitude of the large-scale strain-rate tensor 

𝑇∞  Freestream/ambient temperature  

𝑇𝑗 Jet static temperature at the jet exit 

𝑇𝑖𝑗  Lighthill’s stress tensor 

u Instantaneous streamwise velocity (m/s) 

𝑢𝑥 𝑈𝑗⁄  Fluctuating streamwise velocity (m/s) 

U  Mean velocity value 

𝑈𝑐 Local centerline velocity (m/s) 

𝑈∞ Freestream/ambient velocity  

𝑈𝑗  Jet velocity at the jet exit, assuming a fully expanded flow 

𝑢𝑥  Streamwise velocity 

ν  Kinematic viscosity 

x Streamwise coordinate 

y  Transverse coordinate 



xviii 
 

Φ  Flow field variable (acoustic variable) 

τ Relaxation time 

𝜏′ Retarded time 

𝜏𝑤 Effective relaxation time  

ρ  Fluid density 

𝛾  Specific heat ratio 

𝜆  Wavelength   

𝜂  Control parameter  

𝑣𝑡  Turbulent viscosity 

𝑣0  Laminar viscosity 

𝛿𝑖𝑗  Kronecker delta function 

Δ  Filter width 

∆𝑡  Time step 

∆𝑡𝑙𝑏𝑚 Time step (LBM units) 

∆𝑥𝑙𝑏𝑚 Grid spacing, x-direction (LBM units) 

∆𝑦𝑙𝑏𝑚 Grid spacing, y-direction (LBM units) 

∆𝑧𝑙𝑏𝑚 Grid spacing, z-direction (LBM units) 

𝜔   Collision frequency 

𝜔𝑖  Lattice weight factors 

Ω  Collision operator 



xix 
 

Acronyms 

BGK Bhatnagar, Gross, and Krook 

CAA Computational aeroacoustics 

CFD Computational fluid dynamics 

CFM Computational fluid mechanics  

CUDA Compute unified device architecture  

DNS Direct numerical simulation  

FDM Finite difference method 

FEM Finite element method 

FVM  Finite volume method 

FW-H Ffowcs Williams and Hawkings  

HO High-Order equilibrium distribution function 

GPU Graphics processing unit 

KSIM Kirchhoff's surface integral method 

KT Kataoka and Tsutahara  

LBE Lattice Boltzmann equation 

LBM Lattice Boltzmann method 

LES Large-eddy simulation  

LGA Lattice gas automata 

MRT Multiple relaxation time 



xx 
 

RANS Reynolds-averaged Navier-Stokes  

RLBE  Relaxation lattice Boltzmann equation  

SIMT Single instruction, multiple threads 

SRT Single relaxation time 

SPL Sound pressure level 

SGS Subgrid scale 

URANS Unsteady Reynolds-averaged Navier-Stokes  

 

 



1 
 

Chapter 1 

Introduction 

1.1 Background 

Fluid dynamics is one of two branches of fluid mechanics; it involves the 

study of flow behaviour and how it is affected by boundary forces. The other branch, 

called fluid statics, deals with fluids at rest. Historically, the ancient Greeks applied 

relatively simplistic methods for solving fluid mechanics algebraic equations, which 

were used until Claude-Louis Navier (1822) and George Gabriel Stokes (1842) 

derived the Navier-Stokes equations. These equations are nonlinear partial 

differential equations in the general case, enabling flow to be described in a real 

situation. To solve Navier-Stokes equations, a numerical method is used for 

approximating the solutions of equations when exact solutions cannot be determined 

via algebraic methods. This strategy has given birth to a new branch of fluid 

dynamics called computational fluid dynamics (CFD). 

Today, since computers have become powerful tools for simulating large-

domain flows within a satisfactory run time, CFD has become the main focus of 

fluid dynamics. The core of CFD is to numerically solve the governing equations 

that govern flows based on the use of initial and boundary conditions for identifying 
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the behaviour of the flow parameters (e.g., velocity, density, pressure) in flow fields. 

In computational fluid mechanics, either macroscopic or microscopic models are 

employed for solving problems related to fluid mechanics. For solving the Navier-

Stokes or the Euler equation, the governing equations must first be discretized 

through the application of techniques such as the finite volume method (FVM), the 

finite element method (FEM), or the finite difference method (FDM). In most CFD 

methods, they required the adoption of an advection scheme (e.g., central, upwind, 

hybrid) in order to solve the resulting discretized linearized system. The macroscopic 

model works well in many situations, but if complex geometry is involved, 

difficulties will arise with respect to solving the nonlinear differential equations [3]. 

A mesoscopic approach (e.g., the lattice Boltzmann equation (LBE)) provides 

an impressive bridge between the microscopic and macroscopic scales [4]. The LBE 

is a new methodology based on microscopic particle models and mesoscopic kinetic 

equations [5]. The basic idea behind LBM is to construct simplified kinetic models 

that incorporate only the essential physics principles underlying the microscopic or 

mesoscopic processes so that the averaged values of the macroscopic properties obey 

the desired macroscopic equations. Unlike other conventional CFD methods, 

kinetic-theory-based LBM simulates the flow domain by tracking the evolution of 

the particle distribution function and then accumulates the distribution in order to 
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obtain averaged values for the macroscopic properties, such as density, velocity, and 

pressure [6]. 

Over the past two decades, LBM has emerged as a competitive scheme for 

simulating a number of complex flows. It has also enabled other numerical 

limitations to be overcome [7], such as difficulties associated with running in a 

parallel computing environment. Since physical insight is clear, and it is a particle-

based method, LBM can be successfully implemented in a parallel computing 

environment [8] when an explicit time-stepping scheme is employed. LBM is 

effective for solving incompressible flow problems, but it is still in its infancy with 

respect to the solving of compressible turbulent flow problems, particularly at high 

Mach numbers involving shock waves. Over the last few years, much of LBM 

development has been directed toward solving compressible turbulent flows [9]. In 

the work presented in this thesis, priority has been given to research relevant to the 

case study that was conducted for this thesis, with the goal of solving a compressible 

flow at a high subsonic Mach number. 

1.2 Motivation and objectives 

Computational fluid dynamics software, such as ANSYS FLUENT and 

STAR-CCM+, has become a valuable tool for solving both compressible flows and 

aeroacoustics problems. At the same time, block-structured-grid and unstructured-

grid methods, together with specifications for compatible boundary conditions, have 
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been introduced to traditional CFD for solving flows in complex geometries. The 

goal of the research presented in this thesis was to use compressible LBM in order 

to develop a solution procedure for predicting the aeroacoustics related to turbulent 

jet flow. 

LBM has been gaining in popularity in recent years and is ideally suited for 

parallel computing [10]. However, it can present difficulties when applied at high 

Mach numbers. The root cause of these problems is that the Maxwellian distribution 

function in an exponential form for relative velocity cannot be easily integrated into 

the velocity space using the Gauss Hermite quadrature. This challenge can be 

addressed with the use of a truncated Taylor series expansion of the Maxwell 

function in terms of the Mach number in an equilibrium condition [11] and the 

application of the explicit form of the Hermite polynomials, at the second and third 

orders. 

In this research, Hermite polynomials at the sixth order were employed in 

order to avoid the LBM compressibility limitation. For turbulence flow simulation 

purposes, multiple relaxation times (MRT) were also implemented in the LBM, and 

the models developed by Kataoka and Tsutahara (KT) [1] in 2004 were applied for 

the compressible Euler equations. Kataoka and Tsutahara found that the use of their 

models prevented a free choice of specific heat ratio, so they developed new models 



5 
 

(D1Q5, D2Q9, D3Q15) of Euler equations and (D2Q16) of Navier-Stokes equations 

[1]. They also introduced a new constant related to the specific heat ratio [1]. 

Based on the above considerations, the research presented here involved the 

application of a large eddy simulation (LES) in the D3Q15 and D3Q19 models in 

order to simulate a jet flow and the far-field aeroacoustics around a jet in three 

dimensions (3D). The LES scale model was implemented in LBM as a means of 

simulating compressible jet flows at the high subsonic speeds associated with jet 

noise problems. The results obtained from the LBM-LES simulation were used for 

studying and analyzing near-field jet acoustics and the characterization of their 

properties. As well, the results obtained from simulating the near-field jet acoustics 

were also used for predicting far-field jet noise when LBM-LES is combined with 

the Kirchhoff surface integral method as a hybrid approach to assessing far-field 

noise. As a final element, because of LBM’s efficacy for use in parallel computing, 

it was implemented in a GPU, thus demonstrating the potential of LBM as a powerful 

technique for simulating aeroacoustics problems. 

1.3 Focus of this research 

 As reviewed and discussed in the body of this thesis, the existing literature 

related to LBM reveals its limitations with respect to the solving of compressible 

flows. These limitations arise from the use of the Maxwell distribution function, 

which is in the exponential form of particle velocity and cannot be directly applied 
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in the LBE, which forms the basis of the kinetic theory of gases and provides a 

simplified explanation of many fundamental gaseous properties, including diffusion 

and pressure.  

The specific objectives of the work conducted for this thesis and the new 

contributions arising from this research are as follows. 

• LBM works well for solving incompressible flow problems, but a number of 

limitations are associated with solving compressible flows, particularly at 

high Mach numbers. An improved lattice Boltzmann model for compressible 

flow problems is therefore presented here. A higher-order Taylor series 

expansion of the Maxwell equilibrium distribution function has been 

employed for overcoming the LBM limitations with respect to solving flows 

involving high Mach numbers. 

• The study presented here represents an integration of other research work, 

such as the KT models for compressible flows, in order to simulate the 

aeroacoustics of subsonic jets at high Reynolds numbers. 

• To obtain stability and increase LBM capability so that high Reynolds number 

flows can be simulated, this work also incorporated an MRT approach into 

the compressible LBM models. 

• In this thesis work, LBM was used for simulating turbulent jet flows using 

subgrid modelling for LBM based on LES, which is currently widely used in 
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the industry for simulating turbulent flows because of its relatively low 

computational needs compared to direct numerical simulation (DNS). 

• A further goal of the work was to solve the LBE in a 3D (D3Q19 and D3Q15) 

simulation in order to provide accurate results similar to those derived from 

the experimental method applied to the study of far-field jet noise. 

• One of the main contributions of our research was implementing the 

Kirchhoff’s integral method into compressible LBM models through the 

application of MRT combined with LES. The combined methods permit the 

prediction of propagated sound based on the pressure and its derivatives in 

time and space obtained on Kirchhoff’s control surface located in the linear 

flow region. 

• A final objective was to implement the lattice Boltzmann method on a GPU 

for Predicting Near-Field and Far-field Jet Noise, which is beneficial and 

reduces the time by 120X compared to employing a CPU. 

1.4 Thesis outline  

This thesis is divided into nine chapters. Following the introduction (Chapter 

1), Chapter 2 provides an overview of LBM. The chapter also presents a literature 

review of the fundamental conventional LBM for solving incompressible flows in 

3D for single and multiple relaxation times. Chapter 3 explains the LBM limitations 

with respect to solving high Mach number flows as well as techniques for 
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overcoming these limitations through the application of high-order distribution 

functions (HO) and the use of KT models. Chapter 4 describes the implementation 

of the LES method in LBM for single and multiple relaxation times. In Chapter 5, 

integral methods in computational aeroacoustics are introduced, with a focus on 

Kirchhoff's surface integral method (KSIM) and its use for predicting far-field noise, 

as detailed in Chapter 7 and Chapter 8. Chapter 6 presents the application of 

alternative methods (high-order equilibrium distribution function and KT model) for 

simulating free jet flows for a variety of conditions as well as a comparison of the 

results with the available experimental data. Chapter 7 is concentrated on an 

examination of the near-field and far-field jet acoustics using the lattice Boltzmann 

approach. Chapter 8 explains the application of the LBM results in KSIM for 

predicting far-field jet noise as well as the implementation of LBM in a graphics 

processing unit (GPU) in order to reduce the simulation time and create a new 

simulation technique for this research area. The final chapter offers a brief 

conclusion for the thesis and indicates possible directions for future research related 

to this topic. 
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Chapter 2 

Incompressible Lattice Boltzmann Method 

2.1 Introduction 

In the late 1980s, the lattice Boltzmann method (LBM) grew out of the lattice 

gas model. Both methods are based on the fundamental behaviour that gas molecules 

exhibit when they move forward and scatter as they collide with one another, but 

LBM avoids the major disadvantages of its predecessor while retaining its strengths. 

It also facilitated a stronger theoretical grounding in the physical theory of gases 

[12]. More recently, researchers have been attracted to LBM for a number of reasons, 

including its simplicity, its scalability on parallel computers, and its efficiency with 

respect to simulating complex geometries. LBM has thus become a new and 

promising computational fluid dynamics (CFD) method for solving computational 

fluid mechanics problems, such as those related to porous media, multiphase flow, 

and binary and ternary complex flows [13]. 

2.2 Lattice Boltzmann method 

LBM was developed from lattice gas automata (LGA), which are a type of 

cellular automaton used for simulating fluid flows [14]. Lattice Boltzmann is a 

promising method for solving nonlinear partial differential equations and is quite 

different from its traditional CFD counterpart. The motivation for the development 
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of the Boltzmann equation lies in a desire to deduce the macroscopic behaviour of a 

gas based on its microscopic properties [15]. 

The Boltzmann equation for a system without an external force can be 

expressed as 

 
𝜕𝑓𝑖
𝜕𝑡
+ 𝑐𝑖  . 𝛻𝑓𝑖 = 𝛺 (2.1) 

where Ω is the collision operator, 𝑓𝑖 is the distribution function,  𝑐𝑖 is the lattice 

velocity, and t is time. 

As is evident in Eq. (2.1), solving the lattice Boltzmann equation (LBE) is 

quite complicated due to the collision term. In 1954, Bhatnagar, Gross, and Krook 

(BGK) [16] proposed a simplification of the collision integral operator as a means 

of facilitating the calculation of the Boltzmann equation. The BGK model is based 

on the assumption that the net effect of collisions causes the distribution function to 

relax toward its local equilibrium distribution with a characteristic time equal to the 

mean free time, as expressed below: 

 Ω = 𝜔(𝑓𝑒𝑞 − 𝑓) =
∆𝑡

𝜏
(𝑓𝑒𝑞 − 𝑓) (2.2) 

where 𝜔 = ∆𝑡 𝜏⁄  is the collision frequency, 𝜏 is the relaxation factor, and 𝑓𝑒𝑞 is the 

local equilibrium distribution function. Substituting Eq. (2.2) into Eq. (2.1) gives 

 
𝜕𝑓

𝜕𝑡
+ 𝑐. ∇𝑓 =

∆𝑡

𝜏
(𝑓𝑒𝑞 − 𝑓) (2.3) 
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or, in a specific particle velocity direction, 

 
𝜕𝑓𝑖
𝜕𝑡
+ 𝑐𝑖 . ∇𝑓𝑖 =

∆𝑡

𝜏
(𝑓𝑖

𝑒𝑞
− 𝑓𝑖) (2.4) 

This equation can be discretized in time using the “streaming operator,” as in 

 𝑓𝑖(𝑥 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝑥, 𝑡) =
∆𝑡

𝜏
(𝑓𝑖

𝑒𝑞
(𝑥, 𝑡) − 𝑓𝑖(𝑥, 𝑡) (2.5) 

where 𝑓𝑖 is the distribution function; 𝑓𝑖
𝑒𝑞

is the equilibrium function; 𝑐𝑖 is the particle 

velocity; and ∆𝑡 and ∆𝑥 are time and space increments, respectively. 

As can be seen, the beauty of this equation lies in its simplicity, and it can be 

applied to many fluid mechanics problems. In LBM, the physical domain is different 

from the solution domain. Although the mapping between the two domains is an 

easy process, it is more intuitive to present results in physical dimensions. 

The Maxwell equilibrium distribution function 𝑓𝑒𝑞 is given as 

  (2.6) 

where D=3 and 𝜃 = 𝑅𝑇 

The discrete equilibrium distribution 𝑓𝑒𝑞 can be derived from an expansion of the 

Maxwell-Boltzmann distribution function 𝑓𝑒𝑞 in Hermite polynomials. Using the 

Gauss-Hermite quadrature, the following discrete equilibrium distribution 𝑓𝑒𝑞 can 

be obtained in terms of Mach numbers as follows: 

𝑓𝑒𝑞(𝜌, u, 𝜃) = 𝜌(2𝜋𝜃)−𝐷/2𝑒
[
(𝑐−u2)
2𝜃

]
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 𝑓𝑖
𝑒𝑞(𝑥, 𝑡) = 𝜔𝑖𝜌 ( 1 + 

3𝑐𝑖  . u

𝑐𝑠
2

+ 
9(𝑐𝑖  . u)

2

2𝑐𝑠
4

− 
3u2

2𝑐𝑠
2
 ) +  𝛰(u3) (2.7) 

where 𝑐𝑠 is the speed of sound =
𝑐𝑖

√3
 , 𝑐𝑖 is a unit vector along the streaming direction 

𝑐𝑖 =
Δ𝑥

Δ𝑡
𝑖 +

Δ𝑦

Δ𝑡
𝑗 = 1, lead to Δ𝑡 = Δ𝑥 = Δ𝑦 = 1 and u = 𝑢𝑖 + 𝑣𝑗, where 𝑖 and 𝑗 are 

unit vectors along the x and y directions, respectively. The final element, 𝜔𝑖, 

represents the lattice weight factors and must satisfy the relation 

 ∑ 𝜔𝑖 = 1
𝑖=𝑛−1

𝑖=0
 (2.8) 

where n is the total number of discrete particle velocities, which is dependent on the 

lattice model (e.g., in the case of D3Q19, n = 19). 

2.3 Equilibrium distribution function 

The Maxwell-Boltzmann distribution is a statistical probability distribution 

used for describing particle speeds for ideal gases when the particles move freely 

inside a stationary container [13]. The interaction between particles is neglected, 

except for very brief collisions that lead to minor changes in energy and momentum 

within the environment. A good choice of the equilibrium distribution function is a 

key factor in the successful application of LBM to a wide range of fluid flow 

problems in different conditions [17]. For this reason, it seemed necessary to choose 

equilibrium distribution functions for compressible LBM that differ from those used 
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in incompressible LBM. The 3D version of Maxwell’s distribution function can be 

written in a number of formulas as follows: 

 𝑓𝑒𝑞 =
𝜌

2𝜋
3⁄
𝑒−

3
2
(𝑐𝑖−u)

2

 (2.9) 

𝑓𝑒𝑞 can be written in terms of the macroscopic quantities of density 𝜌 and fluid 

velocity 𝑢 as 

 𝑓𝑒𝑞 =
𝜌

2𝜋
3⁄
𝑒
−
3
2
(𝑐𝑖

2
)
𝑒
3(𝑐𝑖.u−u

2)
2  (2.10) 

By Taylor series expansion the equilibrium distribution function along a discretized 

velocity direction is then given as follows: 

 𝑓𝑒𝑞 =
𝜌

2𝜋
3

𝑒
−
3
2
(𝑐𝑖

2
)
[1 + 3(𝑐𝑖 . u) −

3

2
u2 +  .  .  .  ] (2.11) 

2.4 Single relaxation time  

The collision operator can be approximated as in the BGK formulation, which 

is commonly referred to as the lattice BGK (LBGK) or the single relaxation time 

(SRT) model. This collision model is numerically the most effective, but not for 

highly advection-dominated transport phenomena [18]. In the case when the Peclet 

number is below 10,  = 1 could be selected. A BGK approximation for the collision 

operator can be expressed as follows: 
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 Ω𝑖 = −
∆𝑡

𝜏
[𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥, 𝑡)] (2.12) 

where  is the relaxation time. 

LBM with SRT in the collision operator is computationally efficient and 

algorithmically simple, but this approach tends to be less stable, particularly for 

high-Reynolds-number flows [19]. To alleviate the potential instability problems 

associated with LBM-SRT, other researchers introduced a multiple relaxation times 

(MRT) model, as described below.  

2.6 Multiple relaxation times  

The relaxation lattice Boltzmann equation (RLBE) was introduced by Higuera 

and Jimenez in 1989 [20]. The RLBE allowed some of the challenges associated 

with lattice gas automata (LGA) to be addressed and also permitted the resolution of 

3D problems. In 1986, d’Humières [21], [22] introduced a generalized LBM based 

on the concept of using MRT to overcome the shortcomings of the BGK model, i.e., 

the numerical instability caused by low viscosity when an SRT is adopted. 

As we know from the BGK approximation, the LBM formula is 

 𝑓𝑖(𝑥 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝑥, 𝑡) = −Ω[𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖
𝑒𝑞(𝑥, 𝑡)] (2.13) 

where  is the collision operator, which can be based on either a single or multiple 

relaxation times (i.e., SRT or MRT). In the case of MRT, the collision operator is a 
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matrix. The collision step will then be in the moment space rather than in the velocity 

space, as follows:  

 𝑓𝑖(𝑥 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝑥, 𝑡) = −𝑀
−1𝑆[𝑚(𝑥, 𝑡) − 𝑚𝑒𝑞(𝑥, 𝑡)] (2.14) 

Here, 𝑚 is a n-component moment vector,  

 𝑚 = (𝑚0,𝑚1, 𝑚2 , . . 𝑚𝑛−1)
𝑇 (2.15) 

and 𝑚𝑒𝑞  is its local equilibrium counterpart. A linear transformation between 

velocity and momentum spaces can be achieved by solving Eq. (2.16) below. The 

transformation should be carried out explicitly, mapping f to m and vice versa. 

 𝑚 = 𝑀𝑓  and 𝑓 = 𝑀−1𝑚 (2.16) 

There are many MRT models, such as D2Q9, D3Q15, and D3Q19. For the work 

presented in this thesis, D3Q15 and D3Q19 lattice models were employed. The 

lattice arrangement for a D3Q15 model is illustrated in Figure 2.1. 
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Figure 2.1: D3Q15 lattice arrangement for 3D problems. 

 

In the D3Q15 lattice model, the discrete velocities are  

 𝑐𝑖 = {

(0,0,0)                                                                 𝑖 = 0                      
(±1,0,0), (0,±1,0), (0,0,±1)                        𝑖 = 1, 2,… , 6       
(±1,±1,±1)                                                      𝑖 = 7, 8,… , 14    

 (2.17) 

The moment vectors correspond to Hermite polynomials of the LBM velocities 𝑐𝑖  

and can be derived from the conservation equations to get the corresponding 

moments components of the macroscopic density, momentum vector and stress. [23] 

 𝑚 = (𝜌, 𝑒, 𝜖, 𝑗𝑥, 𝑞𝑥, 𝑗𝑦 , 𝑞𝑦 , 𝑗𝑧, 𝑞𝑧, 3𝑝𝑥𝑥 , 𝑝𝑤𝑤 , 𝑝𝑥𝑦 , 𝑝𝑦𝑧 , 𝑝𝑧𝑥 , 𝑡𝑥𝑦𝑧)
𝑇
 (2.18) 

The corresponding equilibrium moments are as follows: 
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𝑚𝑒𝑞 = (1, u2 − 1,−1, 𝑢𝑥, −
7

3
𝑢𝑥, 𝑢𝑦 , −

7

3
𝑢𝑦 , 𝑢𝑧, −

7

3
𝑢𝑧 − 3𝑢𝑥

2

− u2, 𝑢𝑦
2 − 𝑢𝑧

2, 𝑢𝑥𝑢𝑦 , 𝑢𝑦𝑢𝑧, 𝑢𝑧𝑢𝑥, 0) 

(2.19) 

For the D3Q15 lattice model, the transformation matrix 𝑀 in Eq. (2.16) is as 

exemplified below: 

 

The diagonal matrix S in Eq. (2.14) is 

 𝑆 = (0, 𝑠𝑒 , 𝑠𝜀 , 0, 𝑠𝑞 , 0, 𝑠𝑞 , 0, 𝑠𝑞 , 𝑠𝑣, 𝑠𝑣, 𝑠𝑣, 𝑠𝑣, 𝑠𝑣, 𝑠𝑡) (2.20)  

The kinematic and the bulk viscosities in relation to 𝑠𝜈 and 𝑠𝑒 are 

 𝜈 =
1

3
(
1

𝑠𝜈
−
1

2
)Δ𝑡            ,     𝜁 =

2

9
(
1

𝑠𝑒
−
1

2
)Δ𝑡 (2.21) 

The lattice arrangement for the D3Q19 model is illustrated in Figure 2.2. 
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Figure 2.2: D3Q19 lattice arrangement for 3D problems. 

In the D3Q19 model, the discrete velocities are 

 𝑐 𝑖 = {

(0;  0;  0)                                                               𝑖 = 0                   
(±1;  0;  0);  (0; ±1;  0); (0;  0 ±  1)              𝑖 = 0,2, … , 6       
(±1;±1;  0); (±1;  0;±1); (0;±1;±1)           𝑖 = 7,8, … , 18     

 (2.22) 

The corresponding moments for this model are [23] 

𝑚 = (𝜌, 𝑒, 𝜖, 𝑗𝑥 , 𝑞𝑥 , 𝑗𝑦, 𝑞𝑦, 𝑗𝑧, 𝑞𝑧 , 3𝑝𝑥𝑥 , 3𝜋𝑥𝑥 ,  𝑝𝑤𝑤 , 𝜋𝑤𝑤,𝑝𝑥𝑦, 𝑝𝑦𝑧 , 𝑝𝑧𝑥 , 𝑡𝑥 , 𝑡𝑦, 𝑡𝑧)
𝑇
 (2.23) 

and the corresponding equilibrium moments are 
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𝑚𝑒𝑞 = 𝜌(−11 + 19u2, 𝛼 , 𝛽u2 , 𝑢𝑥, −
2

3
𝑢𝑥, 𝑢𝑦 , −

2

3
𝑢𝑦 , 𝑢𝑧, −

2

3
𝑢𝑧, 3𝑢𝑥

2

− u2,
𝛾𝑝𝑥𝑥

𝑒𝑞

𝜌
, 𝑢𝑦
2 − 𝑢𝑧

2,
𝛾𝑝𝑤𝑤

𝑒𝑞

𝜌
, 𝑢𝑥𝑢𝑦 , 𝑢𝑦𝑢𝑧, 𝑢𝑧𝑢𝑥, 0) 

(2.24)  

where the free parameters , , and  are 

 𝛼 = 3 , 𝛽 = −
11

2
,     and 𝛾 =  −

1

2
 (2.25) 

The transformation matrix M is as follows: 

 

The diagonal matrix S in Eq. (2.14) is 
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 𝑆 = (0, 𝑠𝑒 , 𝑠𝜀 , 0, 𝑠𝑞 , 0, 𝑠𝑞 , 0, 𝑠𝑞 , 𝑠𝑣, 𝑠𝜋𝑠𝑣, 𝑠𝜋 , 𝑠𝑣, 𝑠𝑣, 𝑠𝑣, 𝑠𝑡 , 𝑠𝑡 , 𝑠𝑡) (2.26) 

The kinematic and the bulk viscosities in relation to 𝑠𝜈 and 𝑠𝑒 are 

 𝜈 =
1

3
(
1

𝑠𝜈
−
1

2
)Δ𝑡            ,     𝜁 =

2

9
(
1

𝑠𝑒
−
1

2
)Δ𝑡 (2.27)  

2.6 Boundary and initial conditions 

A CFD methodology is highly dependent on the surrounding environment. 

This influence is delineated mathematically via the prescription of appropriate 

boundary conditions, which play a key role, since they determine the selection of 

solutions with external constraints. LBM has recently been proposed as an 

alternative numerical method for simulating fluid mechanics problems that are 

governed by the Euler equation or the Navier-Stokes equations. Unlike traditional 

CFD methods that solve for macroscopic variables such as velocity and density, 

LBM is a mesoscopic particle method based on a particle distribution function [6]. 

After the distribution function for the flow domain has been solved, the macroscopic 

quantities can be easily obtained through moment integrations of the distribution 

function. Unique values for fluid density, velocity, pressure, and temperature can be 

determined from the distribution function. The initial and boundary conditions have 

a significant influence on LBM accuracy, stability, and convergence. In LBM 

applications, the treatment of initial and boundary conditions is therefore crucial. 
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Several different LBM boundary condition schemes have been devised and 

adopted: the periodic scheme, the bounce-back scheme, the curved boundary 

scheme, etc. This section discusses only the boundary conditions employed for this 

research. For simplicity, the example of the implementation of the boundary 

condition for the D2Q9 model is explained.  

2.6.1 Bounce-back scheme 

Bounce-back boundaries constitute a straightforward scheme whose 

simplicity has played a major role in making LBM popular among CFD researchers 

[24]. A bounce-back scheme can be used for simulating a fluid flow characterized 

by complex geometries such as those found in two-phase flow and porous media. 

The feature of this boundary scheme is that one needs only to designate a particular 

node as a solid obstacle by determining the boundary nodes required in the geometry, 

following which, the particle incoming toward the solid boundary is bounced back 

into the flow domain. 

As can be seen in Figure 2.3, the distribution function can be obtained in all 

directions except ones toward the domain. Thus, 𝑓0, 𝑓1,, 𝑓3, 𝑓4, 𝑓7, and 𝑓8 are known 

from the flow simulation, and 𝑓2, 𝑓5, and 𝑓6 are unknown but can be derived from the 

following equations. For example, 𝑓7 at node assume it (𝑖, 𝑗) is equal to 𝑓7 of node 

(𝑖 + 1, 𝑗 + 1), similarly for 𝑓8 which is came from node (𝑖 − 1, 𝑗 + 1) to be after 
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streaming equal to  𝑓8 at node (𝑖, 𝑗 + 1). In a bounce-back scheme, the boundary 

condition must be applied after the streaming process, as follows: 

 

 

𝑓7(𝑖, 𝑗) = 𝑓7(𝑖 + 1, 𝑗 + 1) 

𝑓8(𝑖 − 1, 𝑗 + 1) = 𝑓8(𝑖, 𝑗 + 1) 
(2.28)  

 

 

Figure 2.3: Bounce-back scheme. 

 

2.6.2 Simple bounce-back scheme 

For this research, a simple bounce-back scheme was also used by simply 

letting 𝑓5 = 𝑓7; 𝑓2 = 𝑓4, and 𝑓6 = 𝑓8, where 𝑓7, 𝑓4, and 𝑓8 are known from the streaming 

process. The main idea of the bounce-back scheme is to set these unknown 
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distribution functions to be equal to their opposite directions following the streaming 

process. As shown in Figure 2.4, the lattices are located directly at the solid surface 

rather than at the middle plane. 

 

Figure 2.4: Simple bounce-back scheme. 

 

2.6.3 Boundary condition with known velocity 

In CFD simulations, some flow properties are typically known, for example, 

the velocity, pressure, and density at the boundary domain, such as the inlet velocity 

or the outlet pressure. Zou and He [25] introduced a method for calculating three 

unknown distribution functions at the boundary based on mass and momentum 

conservation equations at the appropriate location according to the conservation of 

mass: 
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 𝜌 = 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓 + 𝑓7 + 𝑓8 (2.29) 

 

The momentum equation in the x-direction would be 

 𝜌𝑢 = 𝑓1 + 𝑓5 + 𝑓8 − 𝑓6 − 𝑓3 − 𝑓7 (2.30) 

and the momentum equation in the y-direction would be 

 𝜌𝑣 = 𝑓5 + 𝑓2 + 𝑓6 − 𝑓7 − 𝑓4 − 𝑓8 (2.31) 

Solving the above equation requires knowing which equilibrium condition will be 

normal to the boundary:  

 𝑓𝑛
(+)

− 𝑓𝑛
𝑒𝑞(+)

= 𝑓𝑛
(−)

− 𝑓𝑛
𝑒𝑞(−)

 (2.32) 

where n denotes the condition normal to the boundary, (+) means in the positive 

direction, and (-) indicates in the negative direction. For more detailed explanations 

see page 75 chapter 5 [18]. Figure 2.5 illustrates the distribution functions at the 

boundaries of a domain. 
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Figure 2.5: Distribution functions at the boundaries of a domain. 
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Chapter 3 

Compressible Lattice Boltzmann Method 

3.1 Introduction 

With the conventional lattice Boltzmann method (LBM), the low-Mach-

number limitation arises from the use of a truncated version (typically up to the 

second order) of the Maxwell equilibrium distribution function, as set out in Eq. 

(2.7). The goal is to facilitate the integration of the Boltzmann equation in a discrete 

velocity space using the Gauss-Hermite quadrature. However, the higher-order 

truncated terms in the Taylor series expansion of the Maxwell equilibrium 

distribution function 𝑓𝑒𝑞
𝑖
 become significant when the Mach number increases. 

The literature includes reports of several remedies developed for overcoming 

this limitation and finding a better equilibrium distribution function as a replacement 

for the truncated 𝑓𝑖
𝑒𝑞

 included in Eq. (2.7). The aim is to solve compressible flow 

problems at high Mach numbers using LBM. As can be seen in the equation, the 

higher-order terms can be neglected when the Mach number is small, and it can be 

applied directly to LBM models to solve incompressible flow problems. On the other 

hand, the truncated higher-order terms can become significant at high Mach 

numbers, resulting in numerical instability. LBM researchers have developed 
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models for high-Mach-number flows, in an attempt to overcome the limitation in 

two ways: (1) by solving the Maxwell equilibrium distribution function based on the 

inclusion of additional higher-order terms, or (2) by finding an alternative 

distribution function rather than using the Maxwell equilibrium distribution function 

to avoid the truncation errors. 

Recently published studies have reported several successful developments 

with respect to compressible LBM. In 1997, Shouxin et al. [26] introduced a new 

model for the density distribution function, with three energy levels. Their 2D model 

involves 13 or 17 lattice velocities. In the same year, Shan and He [27] presented a 

new model for use with compressible LBM based on a third-order equilibrium 

distribution function in conjunction with the Gauss-Hermite quadrature to determine 

the weight coefficients 𝜔𝑖 in Eq. (2.7). In 1999, Guangwu et al. [28] used standard 

D2Q9 lattice models with new coefficients in their equilibrium distribution 

functions. In 2004, Kataoka and Tsutahara [1], [2] introduced two compressible 

LBM models to solve the Euler and Navier-Stokes equations. They found that the 

specific heat ratio cannot be chosen freely, so they developed a new distribution 

function to overcome this deficiency and solve compressible flow problems. In 

2007, Qu et al. [29] proposed a new alternative method for constructing a circular 

equilibrium distribution function in order to use LBM to simulate an inviscid 

compressible flow at high Mach numbers. The circular function is a probability 
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distribution function on a unit circle, which is simple to integrate into the particle 

velocity space and, more importantly, applicable with respect to the Navier-Stokes 

equation. 

3.2 Limitations of the LBM approach 

As explained, LBM has wide applications for the simulation of a variety of 

incompressible flows. In contrast, the limitations with respect to simulating 

compressible flows become evident in the case of a high Mach number. The major 

source of this limitation is the equilibrium distribution functions used in LBM. The 

Chapman-Enskog expansion (Appendix A) provides a framework in which the 

hydrodynamics equations for a gas can be derived from the Boltzmann equation. 

This feature requires the equilibrium distribution functions to be in a polynomial 

form of particle velocity in order to recover the Navier-Stokes equations. The 

Maxwellian distribution function in the exponential form of particle velocity cannot 

be applied directly in the Boltzmann equation, so to discretize the equilibrium 

distribution function in the velocity space we have to use a polynomial form of the 

Maxwell Boltzmann distribution function, which can be expressed through the 

exponential weight function of Hermite polynomials, so then the moment integrals 

are in a form which lets us evaluate them exactly as a discrete sum over the 

polynomial integrand evaluated at specific points. The discrete equilibrium 
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distribution 𝑓𝑖
𝑒𝑞

was therefore derived via an expansion of the continuous Maxwell-

Boltzmann distribution 𝑓𝑖
𝑒𝑞

 in the truncated sum of Hermite polynomials in terms of 

the Mach number. The polynomial form of the distribution function inevitably limits 

the Mach number that can be applied in the equation, which must be less than 0.1 in 

order to reduce the error of simulation, which occurred because of the using a 

truncated form of the Maxwell Boltzmann distribution function. The Maxwell-

Boltzmann distribution is a statistical probability distribution that is used for 

describing particle speeds in ideal gases, where the particles move freely inside a 

stationary container.  

The equilibrium distribution can be written in terms of the macroscopic 

quantities of density 𝜌, fluid velocity u, and temperature T as 

 

where d is the number of spatial dimensions and R is the gas constant. 

The lattice Boltzmann method is based on kinetic theory of gases and operates 

on distribution functions in phase-space, thus requiring, in addition to a space and 

time discretization, a discretization of the velocity space as well. 

The discretization of the lattice Boltzmann equation is expressed as 

 𝑓𝑒𝑞(𝜌, u, 𝑇, 𝑐) =
𝜌

(2𝜋𝑅𝑇)
𝑑
2

𝑒−
(𝑐−u)2

2𝑅𝑇  (3.1) 
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 𝑓𝑖(𝑥 + 𝑐𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝑥, 𝑡) = −
1

𝜏
[𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥, 𝑡)] (3.2) 

The general form of the equilibrium distribution function can be expressed as 

 𝑓𝑖
𝑒𝑞
= Φ𝜔𝑖[𝐴 + 𝐵𝑐𝑖 . u + 𝐶(𝑐𝑖 . u)

2 + 𝐷u2] (3.3) 

where 𝑢 is the macroscopic velocity. A, B, C, and D are constants determined from 

the mass, momentum, and energy equations. The Φ scalar parameter is equal to the 

summation of all of the equilibrium distribution functions. 

 Φ =∑𝑓𝑖
𝑒𝑞

𝑖=𝑛

𝑖=0

 (3.4) 

where 𝑛 is the number of lattice sites. At a stagnation point, the fluid velocity is zero, 

and Eq. (3.3) can then be reduced to 

 𝑓𝑖
𝑒𝑞
= Φ𝐴𝜔𝑖 (3.5) 

It turns out that A is equal to unity, where ∑ 𝜔𝑖 = 1
𝑖=𝑛
𝑖=0 . The weighting factor for 

LBM models see page 88 chapter 3 [12]. 

Expanding Eq. (3.1) in a Taylor series and integrating the truncated version 

of Eq. (3.3) in the particle velocity space using the Gauss-Hermite quadrature 

enables the following 𝑓𝑖
𝑒𝑞

 to be obtained in terms of Mach numbers as 
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 𝑓𝑖
𝑒𝑞(𝑥, 𝑡) = 𝜔𝑖𝜌 ( 1 + 

3𝑐𝑖  . u

𝑐𝑠
2

+ 
9(𝑐𝑖  . u)

2

2𝑐𝑠
4

− 
3u2

2𝑐𝑠
2
 ) +  𝛰(u3) (3.6) 

where  

for D3Q15 and D3Q19 models 𝑐𝑠 =
1

√3
  in the lattice units Δ𝑥 = Δ𝑦 = Δ𝑡 = 1 

[23], and   u = 𝑢𝑖 + 𝑢𝑗  

As can be seen in Eq. (3.6), the higher-order terms can be neglected when the 

Mach number is small, and it can be applied directly to solve incompressible flows. 

Other the other hand, the truncated higher-order terms can become significant at high 

Mach numbers, resulting in numerical instability. LBM researchers have developed 

models for high-Mach-number flows, in an attempt to overcome the limitation in 

two ways: (1) by solving the Maxwell equilibrium distribution function based on the 

inclusion of additional higher-order terms, and (2) by finding a suitable alternative 

distribution function for compressible LBM. 

3.3 Higher-order equilibrium distribution function 

To solve incompressible flows in conventional LBM, the Maxwell-Boltzmann 

equilibrium distribution function is usually used for solving the Boltzmann equation, 

which is often expanded as a Taylor series in macroscopic velocity to the second 

order. In 1998, Shan and He [30] used a third-order expansion of the equilibrium 

distribution function together with the BGK collision term. They also proved that 

the discretization of the Boltzmann equation with a BGK collision term into values 
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at the nodes (or abscissas) of a quadrature formula is equivalent to the truncation of 

the third-order terms in the Hermite spectral space. To alleviate the compressibility 

limitations in conventional LBM, the sixth-order Hermite polynomials of the 

Maxwell equilibrium distribution function, as set out in Eq. (3.7), were adopted for 

solving the LBE with the D3Q19 lattice model, as depicted in Figure 3.1. 

𝑓𝑖
𝑒𝑞(𝑥, 𝑡) =  𝜔𝑖𝜌 { 1 +  𝑐𝑖𝛼 . 𝑢𝛼 +

1

2
  [(𝑐𝑖𝛼 . 𝑢𝛼)

2 − 𝑢𝛼
2] +

(𝑇 − 1)

2
(𝑐𝑖𝛼
2 − 𝐷)

+
𝑐𝑖𝛼 . 𝑢𝛼
6

[(𝑐𝑖𝛼 . 𝑢𝛼)
2 − 3𝑢𝛼

2] +
𝑇 − 1

2
(𝑐𝑖𝛼 . 𝑢𝛼)(𝑐𝑖𝛼

2 − 𝐷 − 2)

+
1

24
[(𝑐𝑖𝛼 . 𝑢𝛼)

4 − 6(𝑐𝑖𝛼 . 𝑢𝛼)
2𝑢𝛼

2 + 3𝑢𝛼
2]

+
𝑇 − 1

4
[(𝑐𝑖𝛼

2 − 𝐷 − 2)((𝑐𝑖𝛼 . 𝑢𝛼)
2 − 𝑢𝛼

2) − 2(𝑐𝑖𝛼 . 𝑢𝛼)
2]

+
(𝑇 − 1)2

8
[𝑐𝑖𝛼
4 − 2(𝐷 + 2)𝑐𝑖𝛼

2 + 𝐷(𝐷 + 2)]

+
𝑢𝛼
120

[(𝑐𝑖𝛼𝑢)
4 − 10(𝑐𝑖𝛼 . 𝑢𝛼)

2𝑢𝛼
2 + 15𝑢𝛼

5]

+
𝑇 − 1

12
𝑢𝛼[(𝑐𝑖𝛼

2 − 𝐷 − 4)(𝑐𝑖𝛼 . 𝑢𝛼)
2 − 𝑢𝛼

2) − 2(𝑐𝑖𝛼 . 𝑢𝛼)
2]

+
(𝑇 − 1)2

8
𝑢𝛼[𝑐𝑖𝛼

4 − 2(𝐷 + 2)𝑐𝑖𝛼
2 + (𝐷 + 2)(𝐷 + 4)]} 

 

(3.7) 

where 𝛼 denotes the spatial directions in Cartesian coordinates, D is the spatial 

dimension, T is the temperature, u is fluid velocity, and 𝜌 is the fluid density. 
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 The macroscopic variables are 

 𝜌 =∑𝑓𝑖
𝑖

 (3.8) 

 𝜌𝑢 =∑𝑓𝑖 𝑐𝑖
𝑖

 (3.9) 

 

 𝜌𝜖 =
1

2
∑𝑓𝑖|𝑐 − 𝑢|

2

𝑖

 (3.10) 

The discrete velocities are 

(𝑐 𝑖1, 𝑐 𝑖2, 𝑐 𝑖3) =  {

(0;  0;  0)                                                            𝑖 = 0                   
(±1;  0;  0);  (0; ±1;  0);  (0;  0 ±  1)           𝑖 = 0,… , 6         
(±1;±1;  0); (±1;  0; ±1); (0;±1; ±1)       𝑖 = 7,… , 18       

 (3.11) 

 

Figure 3.1: D3Q19 lattice model. 
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3.5 Kataoka and Tsutahara models 

In 2004, Kataoka and Tsutahara (KT) [1], [2] developed two models for 

solving compressible flows using the LBE. The first model was created for solving 

the compressible Navier-Stokes equation with a flexible specific heat ratio, and the 

second model was devised for solving the compressible Euler equation. Because the 

two models are equivalent for subjoining the internal degrees of freedom to achieve 

the goal of adjusting the specific heat ratio, a new variable 𝜂 is introduced for 

controlling the specific heat ratio at each point in the lattice structure. Both models 

are dependent on the specific heat ratio, which cannot be chosen freely. As well, the 

single relaxation time (SRT) is a given function of the density and the temperature. 

The goal is to apply a compressible LBM in a large-eddy simulation (LES) of a 

turbulent jet at high subsonic speeds in three dimensions. In this research, the KT 

LBM model was therefore implemented using the 3D D3Q15 lattice arrangement 

shown in Figure 3.2 for solving the compressible Navier-Stokes equation. 

Employing an LES subgrid scale (SGS) model enables the effects of turbulence to 

be taken into account. 
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Figure 3.2: D3Q15 lattice model. 

 

The macroscopic variables in the KT model are 

 𝜌 =  ∑𝑓𝑖

15

𝑖=1

 (3.12) 

 

 𝜌𝑢𝛼 = ∑𝑓𝑖

15

𝑖=1

𝑐𝑖𝛼 (3.13) 

 

 𝑃𝛿𝛼𝛽 + 𝜌𝑢𝛼𝑢𝛽 = ∑𝑓𝑖

15

𝑖=1

𝑐𝑖𝛼𝑐𝑖𝛽 (3.14) 
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 𝜌(𝑏𝑅𝑇 + 𝑢𝛼
2) =  ∑𝑓𝑖(𝑐𝑖𝛼

2 + 𝜂𝑖
2)

15

𝑖=1

 (3.15) 

 

where b is a given constant related to the specific heat ratio, expressed as  

 𝑏 =
2

𝛾 − 1
. (3.16) 

and 

  𝜂𝑖 = {
𝜂0            𝑖 = 1             
   0             𝑖 = 2,   . . . , 15

 (3.17) 

 

The 15 lattice velocities are as follows: 

(𝑐𝑖1, 𝑐𝑖2, 𝑐𝑖3) {

(0,0,0)                                                             𝑖 = 1              

𝑣1(±1,0,0), 𝑣1(0, ±1,0), 𝑣1(0,0, ±1)       𝑖 = 2,   . . . ,7
𝑣2

√3
(±1, ±1,±1)                                              𝑖 = 8,   . . . , 15 

 (3.18) 

 

The equilibrium distribution function is 

 𝑓𝑖
𝑒𝑞
=  𝜌(𝐴𝑖 + 𝐵𝑖𝑢𝛼𝑐𝑖𝛼 + 𝐷𝑖𝑢𝛼𝑐𝑖𝛼𝑢𝛽𝑐𝑖𝛼)       𝑖 = 1, . . . ,15 (3.19) 

where 𝐴𝑖, 𝐵𝑖, and 𝐷𝑖 are given as 
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𝐴𝑖 =

{
 
 
 

 
 
 
𝑏 − 3

𝜂0
2 𝑇                                                                                               𝑖 = 1            

1

6(𝑣1
2 − 𝑣2

2)
[ −𝑣2

2 + ((𝑏 − 3)
𝑣2
2

𝜂0
2 + 3)𝑇 +

𝑣2
2

𝑣1
2 𝑢𝛼

2]                𝑖 = 2, . . . ,7

1

8(𝑣2
2 − 𝑣1

2)
[− 𝑣1

2 + ((𝑏 − 3)
𝑣1
2

𝜂0
2 + 3)𝑇 +

3𝑣1
2 − 𝑣2

2

2𝑣2
2 𝑢𝛼

2]     𝑖 = 2, . . . ,7

 (3.20) 

 

 

The parameters included in Eqs. (3.14) to (3.22) were chosen to be 𝑣1 = 1, 𝑣2 = 3, 

and 𝜂0 = 2. 

 

 𝐵𝑖 =

{
 
 

 
 

         0                                            𝑖 = 1   
−𝑣2

2 + (𝑏 + 2)𝑇 + 𝑢𝛽
2

2𝑣1
2(𝑣1

2 − 𝑣2
2)

                      𝑖 = 2, . . . ,7

3[−𝑣1
2 + (𝑏 + 2)𝑇 + 𝑢𝛽

2

8𝑣2
2(𝑣2

2 − 𝑣1
2)

                  𝑖 = 8, . . . ,15

 (3.21) 

 𝐷𝑖 =

{
 
 

 
 

 0                    𝑖 = 1           
1

2𝑣1
4                   𝑖 = 2, . . . ,7

9

16𝑣2
4                   𝑖 = 8, . . . ,15

 (3.22) 
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Chapter 4 

Large-Eddy Simulation Using the Lattice 

Boltzmann Method  

4.1 Introduction  

The direct numerical simulation (DNS) of fluid is based on the solving of the 

governing equations such as the Navier–Stokes equations, the Euler equation, or the 

lattice Boltzmann equation (LBE) without the imposition of any additional physical 

assumptions or the incorporation of subgrid scale models. In DNS, all scales of the 

fluid motion are resolved explicitly in the simulation. As a consequence, the mesh 

grid and the time step must be chosen to be fine enough to capture the dynamics of 

the flow from the largest (integral) to the smallest (viscous) scales. Needless to say, 

DNS is prohibitively computationally expensive to conduct for high-Reynolds-

number flows over a large simulation domain. Owing to this fact, an alternative is 

provided by large-eddy simulation (LES) [31], which is intermediate in incurred 

computational cost between DNS and turbulence closure schemes that are 

representative of Reynolds-averaged Navier-Stokes (RANS) approaches. The basic 

idea behind LES is to ignore the solving of the smallest-length scales by means of a 

filtering model for the governing equation, which reduces the computational cost. 
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4.2 Subgrid scale modelling of turbulent flows using the lattice-Boltzmann method 

LBM has recently gained in popularity because of its simplicity, ability to 

handle complex geometries (as with the immersed boundary method widely used in 

the CFD community), and the fact that it can be executed efficiently on graphics 

processing units (GPUs) in parallel processing systems [32]. The concept behind 

LES models is to include the physical effects that unresolved motion has on the 

resolved fluid motion [13]. For modelling the unresolved scales of motion at high 

Reynolds numbers, subgrid-scale (SGS) models such as the Smagorinsky model [31] 

are typically employed. In LES, the SGS models are applied following the 

performance of a spatial filtering operation on the Navier-Stokes equations [33], 

which is used to model the residual (fictitious) stresses arising from the application 

of a spatial filtering operation on the Navier-Stokes equation. In the case of the 

Smagorinsky SGS model, the anisotropic part of the Reynolds stress term is 

modelled as follows: 

 𝜏𝛼𝛽 −
𝛿𝛼𝛽

3
𝜏𝑘𝑘 = −2𝑣𝑡𝑆𝛼̅𝛽 = −2𝐶

2Δ2|𝑆̅|𝑆𝛼̅𝛽 (4.1) 

where 𝛿𝑖𝑗 is the Kronecker delta function, 𝐶 is the Smagorinsky constant, Δ is the 

filter width, and |𝑆̅| is the magnitude of the large-scale strain rate tensor: 

 |𝑆̅| = √2𝑆𝛼̅𝛽  𝑆𝛼̅𝛽 (4.2) 
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  𝑆𝛼̅𝛽 =
1

2
(
𝜕𝑢𝛼

𝜕𝑥𝛽
+
𝜕𝑢𝛽

𝜕𝑥𝛼
) . (4.3) 

Furthermore,  𝑣𝑡 is the eddy viscosity of the residual fluid motion which is modeled 

as  𝑣𝑡 = 2𝐶
2Δ2|𝑆̅|. 

Employing LBM-LES to solve compressible turbulent flows using the higher-

order equilibrium distribution function and the Kataoka and Tsutahara (KT) model 

described in sections 3.5 and 3.2 requires that the (effective) relaxation time 𝜏 be 

adjusted locally. The basic goal of applying LES in the LBM framework is to define 

a space-filtered particle distribution, which is dependent on the relaxation process. 

This concept is equivalent to Prandtl’s mixing-length hypothesis, which suggests 

that a particle-free path is affected by the local strain intensity [34]. For this reason, 

the turbulent relaxation time 𝜏𝑡 is introduced into the effective relaxation time 𝜏𝑤 in 

order to take into account the effects of small-scale fluid motion. 

The application of the SGS models in the LBM framework is accomplished 

through the introduction of a filtered particle distribution 𝑓,̅ defined as 

 𝑓𝑖̅(𝑥 + 𝑐𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖̅(𝑥, 𝑡) =
1

𝜏𝑤
[𝑓𝑖̅(𝑥, 𝑡) − 𝑓̅𝑖

𝑒𝑞(𝑥, 𝑡)]  (4.4) 

where 𝜏𝑤 is the effective relaxation time and can be written as 

 𝜏𝑤 = 𝜏0 + 𝜏𝑡 (4.5) 

The total viscosity can then be given as 
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 𝑣𝑤 = 𝑣0 + 𝑣𝑡 (4.6) 

where 𝑣0 is the laminar viscosity and 𝑣𝑡 is the turbulent viscosity: 

 𝑣0 = (𝜏0 −
1

2
) 𝑐𝑠

2𝛿𝑡   (4.7) 

 𝑣𝑡 = 𝜏𝑡𝑐𝑠
2𝛿𝑡    (4.8) 

 

In LBM, 𝑣0 =
(2𝜏0−1)

6
, and 𝑣𝑡can be calculated using the following Smagorinsky 

model:  

 𝑣𝑡 = 𝐶
2∆2|𝑆| (4.9) 

 

The effective lattice relaxation time 𝜏𝑤 is related to the total viscosity 𝑣𝑤 according 

to the following relation: 

 𝜏𝑤 =
1

2
+
𝑣𝑤
𝑐𝑠
2𝛿𝑡

=
1

2
+

1

𝑐𝑠
2𝛿𝑡

(𝑣𝑡 + 𝑣0) =
1

2
+

1

𝑐𝑠
2𝛿𝑡

(𝑣0 + 𝐶
2∆2|𝑆̅|) (4.10) 

 

Substituting Eq. (4.7) into Eq. (4.11) enables 𝜏𝑤 to be obtained as a function of 

laminar relaxation time 𝜏0, as follows: 

 𝜏𝑤 = 𝜏0 +
𝐶2∆𝑠

𝑐𝑠
2𝛿𝑡

|𝑆̅| (4.11) 
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To proceed further, the resolved strain-rate tensor 𝑆𝛼̅𝛽 and the non-equilibrium stress 

tensor 𝑄𝑖𝑗 can be obtained as 

 𝑆𝛼̅𝛽 =
1

2𝜌0𝑐𝑠
2𝜏𝑤

𝑄̅𝑖𝑗 (4.12) 

 

The non-equilibrium stress tensor can be calculated locally as follows: 

 𝑄̅𝛼𝛽 =∑𝑐(𝑖,𝛼) 𝑐𝑖,𝛽[𝑓𝑖̅ − 𝑓̅𝑖
𝑒𝑞
]

𝑖

 (4.13) 

 

The magnitude of the non-equilibrium stress tensor |𝑄̅| defined in terms of 𝑄𝛼𝛽 

analogously to how the magnitude of the resolved strain-rate tensor |𝑆̅| is defined in 

terms of 𝑆𝛼𝛽) is related to |𝑆̅|  

 |𝑆̅| =
|𝑄̅|

2𝜌0𝑐𝑠
2𝜏𝑤

 (4.14) 

 

Substituting Eq. (4.14) in Eq. (4.10) results in quadratic equation for the 

determination of 𝜏𝑤 given by 

 𝜏𝑤
2 − 𝜏0𝜏𝑤 −

𝐶2∆2

2𝜌0𝑐𝑠
4𝛿𝑡

|𝑄̅| = 0 (4.15) 
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When the above equation is solved analytically for 𝜏𝑤, and after some 

simplifications, the total relaxation time can be expressed as 

 𝜏𝑤 =
1

2
(√𝜏0

2 +
2𝐶2∆2

𝜌0 𝑐𝑠
4 𝛿𝑡

|𝑄̅| − 𝜏0) (4.16) 

 

Using a uniform mesh grid, 𝑐(𝑖,𝛼) =
𝛿𝑥

𝛿𝑡
= 1, this leads to 𝑐𝑠

2 =
1

3
 [23] 

The effective relaxation time 𝜏𝑤 of Eq. (4.16) is used to define the BGK 

collision term in the LBE for the filtered discrete particle distribution function Eq. 

(4.4). 

4.3 Subgrid scale modelling for LBM-MRT 

This section explains the implementation of the LBE for LES in the context 

of the D3Q19 LBM-MRT model in conjunction with the Smagorinsky subgrid 

model. In 2006, Yu and others [35] were implementing an LES model for a multiple 

relaxation time (MRT) model of the D3Q19 model of a turbulent square jet. In the 

course of their research, they derived a transformation matrix M for LES, as shown 

below. 

The LBM with an MRT collision operator can be expressed as 
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𝑓(𝑥𝑖 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓(𝑥𝑖+, 𝑡) = Ω(𝑥𝑖+, 𝑡)

= −𝑀−1. 𝑆. [𝑚 −𝑚𝑒𝑞] 
(4.17) 

The mapping between the velocity and moment spaces can be performed using a 

linear transformation: 

  𝑚 = 𝑀. 𝑓 , 𝑓 = 𝑀−1. 𝑚 (4.18) 

where 𝑀 is a matrix:    

𝑓(𝑥𝑖 + 𝑐𝑖𝛿𝑡, 𝑡𝑛 + 𝛿𝑡) = (𝑓0(𝑥𝑖 , 𝑡 + 𝛿𝑡),… , 𝑓𝑄(𝑥𝑖 + 𝑐𝑄𝛿𝑡, 𝑡𝑛 + 𝛿𝑡))
𝑇
 (4.19) 

 

 𝑓(𝑥𝑖 , 𝑡𝑛) = (𝑓0(𝑥𝑖 , 𝑡𝑛), 𝑓1(𝑥𝑖 , 𝑡𝑛)… , 𝑓𝑄(𝑥𝑖 , 𝑡𝑛))
𝑇
 (4.20) 

 

 𝑚(𝑥𝑖 , 𝑡𝑛) = (𝑚0(𝑥𝑖 , 𝑡𝑛),𝑚1(𝑥𝑖 , 𝑡𝑛)… ,𝑚𝑄(𝑥𝑖 , 𝑡𝑛))
𝑇
 (4.21) 

 

 𝑚𝑒𝑞 = (𝑚0
𝑒𝑞(𝑥𝑖 , 𝑡𝑛),𝑚1

𝑒𝑞(𝑥𝑖, 𝑡𝑛)… ,𝑚𝑄
𝑒𝑞(𝑥𝑖, 𝑡𝑛))

𝑇
 (4.22) 

where T is the transpose operator. 

For the D3Q19 model, the moments are arranged in the following order [35]: 

 𝑚0 =  δρ,   𝑚1 = 𝑐,   𝑚2 = 𝜀,    𝑚3,5,7 = 𝑗𝑥,𝑦,𝑧,   𝑚4,6,8 = 𝑞𝑥,𝑦,𝑧 (4.23) 
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The equilibria of the moments 𝑚𝑒𝑞 are [35]: 

𝑚1
𝑒𝑞
= −11δρ +

19

𝜌0
j. j,    𝑚2

𝑒𝑞
= ω𝜀δρ +

𝜔𝜀𝑖
𝜌0
j. j   

𝑚4,6,8
𝑒𝑞

= −
2

3
𝑗𝑥,𝑦,𝑧 

𝑚9
𝑒𝑞
=
1

𝜌0
(3𝑗𝑥

2 − 𝑗. 𝑗), 𝑚11
𝑒𝑞
=
1

𝜌0
(𝑗𝑦
2 − 𝑗𝑧

2),   

𝑚10
𝑒𝑞
= 𝜔𝑥𝑥𝑚9

𝑒𝑞
, 𝑚12

𝑒𝑞
= 𝜔𝑥𝑥𝑚11

𝑒𝑞
,   

𝑚13
𝑒𝑞
=
1

𝜌0
𝑗𝑥𝑗𝑦 , 𝑚14

𝑒𝑞
=
1

𝜌0
𝑗𝑦𝑗𝑧, 𝑚15

𝑒𝑞
=
1

𝜌0
𝑗𝑧𝑗𝑥    

𝑚16
𝑒𝑞
= 𝑚17

𝑒𝑞
= 𝑚18

𝑒𝑞
= 0   

(4.24) 

The parameters of the equilibria are chosen as follows in order to optimize the linear 

stability of the model: 

𝜔𝜀 = 𝜔𝑥𝑥 = 0  and  𝜔𝜀𝑗 = −475 63⁄  

In LBM, the speed of sound 𝑐𝑠 = 𝑐𝑖 √3⁄ , where 𝛿𝑥 = 𝛿𝑡 = 1, so the viscosity is  

 𝜈 =
1

3
(
1

𝑠𝑣
−
1

2
) 𝑐2𝛿𝑡 ,     𝑐𝑖 =

𝛿𝑥
𝛿𝑡
= 1  (4.25) 
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For LES, the total viscosity = 𝑣0 + 𝑣𝑡 , where 𝑣0 is the molecular viscosity and 𝑣𝑡 

is the turbulent viscosity (eddy viscosity), with 𝑣𝑡 = (𝐶𝑠Δ𝑥)
2𝑆,̅ where 𝐶 is the 

Smagorinsky constant, Δ is the filter width, and 𝑆̅ is the magnitude of the large-scale 

strain rate tensor.  

If the above new paramours are used in the relaxation matrix, LBM can then 

simulate high Reynolds number flows. The MRT-LES model enhances numerical 

stability, accuracy, and the achievable Reynolds number. 
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Chapter 5 

Sound Propagation 

5.1 Introduction 

Over the last few decades, airplane travel has become increasingly popular 

due to its speed, affordability, and safety. Today’s new planes are quieter than older 

models because designers need to satisfy standards and regulations related to the 

reduction of noise emissions, but airport community noise continues to be an 

important environmental issue. Jet noise is one of the primary sources of noise 

produced by aircraft. It is of particular concern for people living near airports 

because the number of flights is increasing every day [36]. A greater understanding 

of jet noise and sound propagation will help researchers reduce noise pollution from 

aircraft. 

Computational aeroacoustics (CAA) is a branch of acoustics science that 

studies the sound generated by turbulent flow or the aerodynamic force interacting 

with a surface that generates sound around it. Currently, no complete theory has been 

developed for use in studying the noise generated by fluid flows, so most 

aeroacoustics theories rely on acoustic analogies. With this approach, aerodynamic 

flow equations are written as wave equations. Most flow noise problems require a 

hybrid solution involving two steps: first, the flow-governing equations for the near-
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field must be solved numerically, and second, a wave equation must be applied using 

the near-field flow properties in order to predict the far-field noise. Solving this kind 

of problem requires high-performance computing machines [37].  

Table 5.1 lists common sources of sound, together with their pressure and 

decibel levels.  

Table 5.1: Typical Sound Pressure Levels (SPL) [38] 

Sources at 1 m Sound Pressure (𝑝) SPL 

Rifle 200 Pa 140 dB 

Threshold of pain    20 Pa 120 dB 

2 Power Mowers  2 Pa 100 dB 

1 Power Mowers  1 Pa 94 dB 

Street traffic 0.2 Pa 80 dB 

Talking 0.02 Pa 60 dB 

Library 0.002 Pa 40 dB 

TV Studio 0.0002 Pa 20 dB 

Threshold of hearing  0.00002 Pa 0 dB 

 

5.2 Lighthill's acoustic analogy 

The derivation of aeroacoustics theory is dependent on the mass conservation 

equation and momentum equations for compressible flow as a basis for deriving a 

non-homogeneous wave equation that governs sound propagation in the far-field 

region. One of the earliest and most popular aeroacoustics theories was developed 
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in the early 1950s by Sir James Lighthill [39] [40]. Lighthill demonstrated how the 

problem of aerodynamic sound can be posed as an acoustic analogy for a turbulent 

jet in cases in which the noise source is surrounded by a quiescent fluid. This 

approach can be used for determining the equations that describe the generation of 

sound waves that propagate the sound to the far-field region. 

Lighthill’s formulation can be applied for calculating acoustic radiation from 

turbulent flow embedded in a homogeneous fluid. To derive the acoustic 

inhomogeneous wave equation, Lighthill begins with the summation of the 

equations for governing continuity and the momentum, which can be written as [37] 

 
𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0 (5.1) 

 

 𝜌 
𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕𝜌𝑢𝑖
𝜕𝑥𝑗

= −
𝜕𝑝

𝜕𝑥𝑖
−
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

 (5.2) 

where 𝜌 denotes fluid density, 𝑢 is the velocity vector, 𝑝 expresses the overall 

pressure, and 𝜏𝑖𝑗 is a component of the viscous stress tensor, which can be expressed 

in terms of the velocity gradients as  

 𝜏𝑖𝑗 = −𝜇 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

−
2

3
𝜇𝛿𝑖𝑗

𝜕𝑢𝑘
𝜕𝑥𝑘

)  (5.3) 

where 𝜇 is the fluid viscosity and 𝛿𝑖𝑗 is the Kronecker delta. 
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If Eq. (5.1) is next multiplied by 𝑢𝑖 and the resulting equation is then added 

to Eq. (5.2), the result is Eq. (5.4): 

 
𝜕𝜌𝑢𝑖
𝜕𝑡

=
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗 + 𝛿𝑖𝑗𝑝 + 𝜏𝑖𝑗) (5.4) 

Subtracting 𝑐0
2𝜕𝑥𝑗

2/𝜕𝑥𝑗
2  from each sides of Eq. (5.4) and combining the terms yields 

 
𝜕2𝜌

𝜕𝑡
− 𝑐0

2
𝜕2𝜌

𝜕𝑥𝑖
2 = −

𝜕2𝑇𝑖𝑗
𝜕𝑥𝑖𝜕𝑥𝑗

 (5.5) 

where 𝑐∞ is the speed of sound and 𝑇𝑖𝑗 is Lighthill’s stress tensor, given as 

 𝑇𝑖𝑗 = 𝜌𝑢𝑖𝑢𝑗 + 𝛿𝑖𝑗[(𝑝 − 𝑝0) − 𝑐0
2(𝜌 − 𝜌0)] − 𝜏𝑖𝑗 (5.6) 

where 𝜌0 is density and 𝑝0 is the pressure of the atmosphere.  

 
𝜕2𝜌′

𝜕𝑡2
= −𝑐0

2
𝜕2𝜌′

𝜕𝑥𝑖
2 =

𝜕2𝑇𝑖𝑗
𝜕𝑥𝑖𝜕𝑥𝑗

 (5.7) 

where 𝜌′ = 𝜌 − 𝜌0   and 𝑝′ = 𝑝 − 𝑝0   

With the use of some approximations, Lighthill’s tensor 𝑇𝑖𝑗 can be expressed as 

 𝑇𝑖𝑗 ≈ 𝜌𝑢𝑖𝑢𝑗 (5.8) 

Eq. (5.7) is known as Lighthill’s non-homogeneous acoustic wave equation because 

it treats the turbulent flow as if it contained sound waves propagating in the same 

manner as in the rest of the surrounding fluid. The left side of the equation (5.7) 

specifies the propagation of the sound in a uniform medium with sound speed 𝑐0 
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using density as the dependent variable. The right side of the equation is known as 

the source term, which contains all of the effects that generate acoustic sound waves 

[41]. 

5.3 Ffowcs Williams and Hawkings 

The Ffowcs Williams and Hawkings (FW-H) equation is an integral method 

based on Lighthill's acoustic analogy. The FW-H equation comprises five formal 

expressions for propagating the sound created by turbulent flow in the presence of 

arbitrarily moving surfaces [42]. The main goal of using the FW-H analogy is to 

handle solid surface interactions that are directly involved in the generation of flow 

sound. Thus far, it is the most appropriate theoretical support for understanding the 

mechanisms involved in the generation of aerodynamic sound from bodies in a 

complex motion, such as helicopter rotors and wind turbine wings. The FW-H 

formulation has been adopted extensively in a broad research area that examines 

solid surfaces and permeable control surfaces close to a solid body, and it has been 

widely employed for solving aeroacoustics problems. This section presents the FW-

H permeable formulation, which can be applied for predicting jet noise in the far-

field. The permeable surface formulation can be used as a control surface in the same 

way as with the Kirchhoff method [43]. 

The integral form of the FW-H equation is 
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 𝑝′(𝑥⃗, 𝑡) = 𝑝𝑇
′ (𝑥⃗, 𝑡) + 𝑝𝐿

′ (𝑥⃗, 𝑡) + 𝑝𝑄
′ (𝑥⃗, 𝑡) (5.9) 

where 𝑝′(𝑥⃗, 𝑡) the sound pressure at the far field, 𝑝𝑇
′ (𝑥⃗, 𝑡) is known as the thickness 

noise, 𝑝𝐿
′ (𝑥⃗, 𝑡)is the loading noise. 

𝑝𝑇
′ (𝑥⃗, 𝑡) =

1

4𝜋
 ∫ [

𝜌0(𝑈̇𝑛 + 𝑈𝑛)

𝑟(1 − 𝑀𝑟)
2
]
𝑟𝑒𝑡

𝑑𝑆
 

𝑠

+∫ [
𝜌0𝑈𝑛 (𝑟𝑀̇𝑟 + 𝑐0(𝑀𝑟 −𝑀

2))

𝑟2(1 − 𝑀𝑟)
3

]

𝑟𝑒𝑡

𝑑𝑆
 

𝑠

 

(5.10) 

and 

 

𝑝𝐿
′ (𝑥⃗, 𝑡) =

1

4𝜋𝑐0
 ∫ [

𝐿̇𝑟
𝑟(1 − 𝑀𝑟)

2
]
𝑟𝑒𝑡

𝑑𝑆
 

𝑠

+∫ [
𝐿𝑟 − 𝐿𝑀

𝑟2(1 − 𝑀𝑟)
2
]
𝑟𝑒𝑡

𝑑𝑆
 

𝑠

+
1

𝑐0
∫ [

𝐿𝑟 (𝑟𝑀̇𝑟 + 𝑐0(𝑀𝑟 −𝑀
2))

𝑟2(1 − 𝑀𝑟)
3

]

𝑟𝑒𝑡

𝑑𝑆
 

𝑠

 

(5.11) 

 

 𝑝𝑄
′ (𝑥⃗, 𝑡) =

1

4𝜋
∫ [

1

𝑟

𝜕2(𝑇𝑖𝑗𝛿)

𝜕𝑦𝑖𝜕𝑦𝑗
] 𝑑𝑉

 

𝑉

     (5.12) 

 

More information about these FW-H’s formula can be found in Brentner and 

Farassat paper [44] 
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Where 

 𝑈̇𝑛 = 𝑣𝑖 +
𝜌

𝜌𝑜
(𝑢𝑖 − 𝑣𝑖)     

  𝐿𝑖 = 𝑃𝑖𝑗 + 𝜌𝑢𝑖(𝑢𝑛 − 𝑣𝑛) 

𝑇𝑖𝑗 pressure-stress tensor, Lighthill tensor 

 𝑢𝑖 fluid velocity component in the 𝑥𝑖 direction 

 𝑣𝑛  fluid velocity component normal to the surface 

𝑢𝑛 local normal velocity of source surface 

𝑟    Distance between observer and source 

𝑀𝑟  Mach number of sources 

L = loading noise component 

o = fluid variable in a quiescent medium 

Q = quadrupole noise component   

ret = quantity evaluated at retarded time 

T = thickness noise component   

5.4 Kirchhoff surface integration 

The Kirchhoff integral theorem, which expresses a wave field in the 

surrounding region from a control surface of the field’s value, is well known and 

widely used in acoustics problems. The method was developed as a means of 
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studying light diffraction and electromagnetic waves but was later modified for 

aeroacoustics applications such as fan noise, wind turbines, and jet noise. 

In 1882, Kirchhoff developed an integral surface method using the Green’s 

function identities to derive a solution to a homogeneous wave equation [45]. In 

1930, Morgan extended Kirchhoff’s formula to be applied to moving surfaces [46]. 

Then, in 1988, Farassat and Myers [47] provided a modern derivation of Morgan’s 

formula, making Kirchhoff’s integral surface a powerful technique in the CAA field.  

In many aeroacoustics applications, however, some difficulties are associated 

with the use of Kirchhoff’s surface method. The integral surface must be placed in 

a region where the flow is completely governed by a homogeneous linear wave 

equation with constant coefficients and must enclose all of the nonlinear flow effects 

and noise sources in a region where the linear wave equation is valid [48]. 

In Kirchhoff's method, it is assumed that the flow is governed by the following 

homogeneous linear equation: 

 ∇2Φ−
1

c∞
2
(
∂

∂t
+ u∞

∂

∂x
)
2

Φ = 0 (5.13)  

 where Φ is the flow field variable (acoustic variable), 𝑐∞ is the speed of sound at 

ambient conditions, and u∞ is the uniform velocity of the control surface. Assuming 

that the stationary control surface u∞ = 0, the preceding equation reduces to a 

simple wave equation: 



55 
 

 ∇2Φ−
1

c∞
2

∂2Φ

∂t2
= 0 (5.14)  

The variable Φ and its first derivatives 𝜕Φ 𝜕𝑡⁄  and 𝜕Φ 𝜕𝑛⁄  should be continuous 

outside the control surface 𝑆 where 𝑛 is the normal direction.  

Morino and others [49], [50] provided a solution to the convective wave 

equation using the Green function approach to derive a representation solution for 

the wave equation in terms of the surface pressure and its derivatives. As a solution 

for the equation, the Green function can be formulated as 

 ∇2G −
1

c∞
2

∂2𝐺

∂t2
= δ(𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑧 − 𝑧′, 𝑡 − 𝑡′) (5.15)  

where δ is the Dirac function, (𝑥′, 𝑦′, 𝑧′) indicates the source location at retarded 

time 𝑡′, and (𝑥, 𝑦, 𝑧, ) represents the observer’s location at observer or reception 

time 𝑡. 

The Green function G must satisfy the causality condition for hyperbolic 

equations: 

 G =
𝜕𝐺

𝜕𝑡
= 0    for  𝑡 < 𝑡′ (5.16)  

For a subsonic flow, the solution for Eq. (5. 15) is given by 

 G =
𝛿(𝑡′ − 𝑡 + 𝜏)

4𝜋𝑟0
 (5.17)  
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 where 𝜏 is the time delay between the sound source and the observer, given by 𝜏 =

𝑡 − 𝑡′ =
𝑟

𝑐∞
, where 𝑟 is the distance between the noise source and the detection. 

If the small perturbation theory is applied to aerodynamics, a similarity exists 

in space and time for which, in subsonic flow, the distance between the noise source 

and the observer, in Prandtl-Glauert coordinates, is expressed as follows: 

 

 𝑥0 = 𝑥, 𝑦0 = 𝑦𝛽,      𝑧0 = 𝑧𝛽 (5.18)  

 

 𝑟0 = √(𝑥 − 𝑥́)
2 + 𝛽2[(𝑦 − 𝑦́)2 + (𝑧 − 𝑧́)2] (5.19)  

 

 𝜏 =
[𝑟0 −𝑀∞(𝑥 − 𝑥́)]

𝑐∞𝛽
2

 (5.20)  

 

 𝛽 = √(1 −𝑀∞
2 ) (5.21)  

where the subscript o denotes the Prandtl-Glauert base value and 𝑀∞ is the free-

stream Mach number. 

Lyrintzis and Mankbadi [51] presented the following solution for the simple 

wave detailed in Eq. (5.13): 

 M∞𝐺 = −
𝛿

𝜏′
 (5.22)  

where 𝜏′ = 𝑡 − 𝜏 is the retarded time. 

Here, the potential function solution can be written as 
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4𝜋Φ(𝑥, 𝑡) = ∫ [
Φ

𝑟0
2

𝜕𝑟0
𝜕𝑛0

−
1

𝑟0

𝜕Φ

𝜕𝑛0
                                               

 

𝑆0

+
1

𝑐∞𝑟0(1 −𝑀∞
2 )

𝜕Φ

𝜕𝜏

𝜕𝑟0
𝜕𝑛0

−𝑀∞

𝜕𝑥0
𝜕𝑛0

]
𝜏

𝑑𝑆0 

(5.23)  

where 𝑆0 is Kirchhoff surface and 𝑛0 is the outward normal to the Kirchhoff surface. 

The pressure field can be expressed with the use of surface integrals [51], as 

in 

 

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = −
1

4𝜋
∫[

𝑝

𝑟0
2

𝜕𝑟0
𝜕𝑛0

+
1

𝑟0

𝜕𝑝

𝜕𝑛0
                                               

+
1

𝑐∞𝑟0𝛽
2

𝜕𝑝

𝜕𝑡
(
𝜕𝑟0
𝜕𝑛0

−𝑀∞

𝜕𝑥́0
𝜕𝑛0

)]
𝜏

𝑑𝑆0 

(5.24)  

An alternative approach to deriving the Kirchoff formula as a function of the 

frequency is a first Fourier analysis of the numerically calculated data, working then 

with the Kirchhoff formula in the frequency domain. In this case, the surface 

pressure is written as 

 𝑝[(𝑥, 𝑦, 𝑧), 𝑡] = ℛ{𝑝̂[(𝑥, 𝑦, 𝑧)]𝑒−𝜔𝑡} (5.25)  
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𝑝(𝑥, 𝑦, 𝑧, 𝑡) = (−
exp(−𝑖𝜔𝑡)

4𝜋
∫ [

𝑝̂

𝑟0
2

𝜕𝑟0
𝜕𝑛0

+
1

𝑟0

𝜕𝑝̂

𝜕𝑛0

 

𝑆0

+
−𝑖𝜔

𝑐∞𝑟0𝛽
2
𝑝̂ (
𝜕𝑟0
𝜕𝑛0

−𝑀∞

𝜕𝑥́0
𝜕𝑛0

)]

× 𝑒𝑥𝑝 {𝑖
𝜔

𝑐∞𝛽
2
[𝑟0 +𝑀∞(𝑥

′ − 𝑥)]} 𝑑𝑆0) 

(5.26)  

where (𝑥′, 𝑦′, 𝑧′) indicates the source location at retarded time 𝑡′, and (𝑥, 𝑦, 𝑧, ) 

represents the observer’s location at observer or reception time 𝑡. 

 

 

Figure 5.1: Kirchhoff's control surface. 

Using the information described on the Kirchhoff surface, which is taken from 

the compressible LBM solution, enables acoustics information to be obtained at any 
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observer location in the region outside the Kirchhoff surface. Pan and others [52] 

proved that, in Kirchhoff’s integral methods, the control surface shown in Figure 5.1 

must be surrounding the entire source region for the noise generated from the 

turbulent flow to be predicted efficiently and accurately, and that more nonlinearities 

can be added outside the control surface. Their methodology showed that the 

predictions of the far-field jet sound pressure levels within the cone of silence agreed 

with the experimental data. 
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Chapter 6 

Numerical Simulation of Turbulent Free Jets 

Using Lattice Boltzmann Method 

6.1 Introduction 

Computational fluid dynamics (CFD) features a variety of numerical methods, 

some of which are dependent on macroscopic model representatives. These models 

can be solved by finite-volume, finite-element or finite-difference methods based on 

a microscopic description. However, the lattice Boltzmann method (LBM) is 

considered to be a mesoscopic particle method lying between the macroscopic and 

microscopic scales. LBM is ideal for solving incompressible flow problems, but it 

is subject to some limitations with respect to solutions involving compressible flows, 

particularly at high Mach numbers. An improved lattice Boltzmann model for 

compressible flow problems is presented in this thesis. A higher-order Taylor series 

expansion of the Maxwell equilibrium distribution function has been used as a means 

of overcoming the LBM limitations associated with solving high-Mach-number 

flows. Large-eddy simulation (LES) is implemented in LBM for simulating 

turbulent jet flows. The results have been validated against available experimental 

data for turbulent compressible free jet flow at subsonic speeds. 
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As an alternative numerical method for modelling physical phenomena in 

fluid flows, LBM is a relatively new approach. It was originally developed from the 

lattice gas automata method (LGA) [53], which can be constructed as a simplified 

fictitious molecular dynamics model in which space, time, and particle velocities are 

all discrete [5]. LBM is known to be a powerful new tool for simulating a variety of 

incompressible flows. However, as mentioned above, it has also been found to have 

significant limitations with respect to solving high-Mach-number compressible 

flows. The major cause of these limitations is the contraction in the Maxwellian 

distribution function, which should be in the polynomial form of particle velocity 

[13]. The truncated equilibrium distribution function therefore inevitably limits the 

range of the applicable Mach number. 

The literature contains numerous reports of recent successful models for using 

LBM to solve compressible flow problems. Shouxin et al. [26] introduced two lattice 

models, D2Q13 and D3Q17, which are dependent on three energy levels for their 

density distribution function. The difficulty of using these two models is that many 

of the parameters in the models were chosen based on physical concepts. Shan and 

He [11] devised a new model for compressible LBM using a third-order Maxwell-

Boltzmann equilibrium distribution function to reduce the truncation error, 

demonstrating success in solving compressible flow problems with Mach numbers 

up to 𝑀∞ = 0.6. Other researchers proposed the development of alternative 
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equilibrium distribution functions rather than higher-order Maxwell-Boltzmann 

equilibrium distribution functions. 

  

 

Figure 6.1: Schematic and reference system of a square jet nozzle. 
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Table 6.1 Free square jet characteristics 

Test case characteristics 

Jet diameter 𝐷𝑗 = 0.056 𝑚 

Jet exit velocity 𝑈𝑗 = 100 𝑚/𝑠 

Kinematic viscosity 𝜈 = 1.516 ∗ 10−5  𝑚2/𝑠 

Reynolds number 
𝑅𝑒𝐷 =

𝑈𝑗𝐷𝑗
𝜈

= 3 ∗ 105 

Mach number 𝑀𝑗 = 𝑈𝑗 𝑐⁄ = 0.3 

Simulation dimension (LBM) 

LBM grid sizing unit =1 

Grid size (LBM units) 

𝐷𝑙𝑏𝑚 = 10 𝑢𝑛𝑖𝑡𝑠 

  𝑁𝑥 = 20𝐷𝑙𝑏𝑚 , 𝑁𝑦 = 5𝐷𝑙𝑏𝑚, 𝑁𝑧 =

5𝐷𝑙𝑏𝑚 

Total number of grid points # 500000 

𝛥𝑥=0.0028, 𝛥𝑦 = 0.00112, 

𝛥𝑧 = 0.00112, 

LBM (𝛥𝑥𝑙𝑏𝑚=𝛥𝑦𝑙𝑏𝑚=𝛥𝑧𝑙𝑏𝑚 =1) 

𝛥𝑡𝑙𝑏𝑚 = 1 

𝐶𝐹𝐿 =
𝑢∆𝑡

∆𝑥
=

1

√3
 𝑀𝑗 =0.1732 time step 

𝛥𝑡 = 0.485 ∗ 10−5 sec 

Total time steps 44000 

 

6.2 Results and discussion 

In this case study, characterized by a high Reynolds number and Mach number 

0.3, the results were validated against experimental data for a square jet at different 

locations along the centerline of the jet 0 < 𝑥 𝐷 < 4⁄ ,where the streamwise velocity 

is almost constant. The Reynolds number plays an important role in jet development. 

The mean velocity along the centerline of the jet and the cross-section velocity 
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profile at different distances from the jet exit 𝑈𝑗  were compared with experimental 

results. Figure 6.1 provides a schematic and reference system of the square jet 

nozzle, where 𝑈𝑐  is the local centerline velocity and 𝑢𝑥 is the instantaneous 

streamwise velocity at any (y, z) location. 

 The evolution of the mean velocity distributions and the streamwise 

turbulence intensity at 𝑥 𝐷 = 0.5⁄ , along with the experimental results from 

Ghasemi [54], are shown in Figure 6.2. The mean velocity of the jet and the 

turbulence intensity are normalized to the exit velocity of the jet at the centerline, 

which is the maximum mean velocity 𝑈𝑚𝑎𝑥(𝑥). The results indicated in Figure 6.2 

(a) reveal no effect from the free shear layer, which means that the mean velocity is 

constant and equal to the exit velocity of the jet. Figure 6.2 (b) details the turbulence 

intensity distributions, which are dependent primarily on the Reynolds number [35].  
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Figure 6.2: (a) Spanwise distribution of the mean streamwise velocity 𝑢𝑥 𝑈𝑗⁄ ; (b) 

streamwise turbulence intensity 𝑢𝑥(𝑟𝑚𝑠) 𝑈𝑗⁄ . 

These distributions appear to decrease with an increase in the Reynolds 

number. The turbulence intensity is confined to the centerline region of the jet, where 

no effects from the mixing shear layer are yet evident. The jet square exit shape and 
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the use of initial perturbation increase the turbulence intensity compared to 

Ghasemi's experimental results.  Figure 6.3 provides the spanwise velocity profiles 

of the mean streamwise velocity at different locations along the axial direction of 

the jet (𝑥 𝐷 =⁄  1, 2, 3, 4, and 5) in the near-field region of the square jet. In Figure 

6.3 (a) (𝑥 𝐷 = 1)⁄ , the flow is unaffected by the nearby free shear layer, and the 

velocity is almost constant between (𝑦 𝐷 = 0)⁄  and  (𝑦 𝐷 = 0.4)⁄ , which is equal to 

the exit velocity of the jet 𝑈𝑗. Figures 6.3 (b) and 6.3 (c) reveal that, a little farther 

from the jet exit (𝑥 𝐷 = 2⁄  and 𝑥 𝐷 = 3⁄ , respectively), the free shear layer has some 

effect on the core flow of the jet, and the velocity begins to resemble the Gaussian 

profile, but it still has a flat hat at (𝑦 𝐷 = 0 − 0.3)⁄ . As shown in Figures 6.3 (d) and 

6.3 (e), toward the end of the near-field flow region at 

(𝑥 𝐷 = 4 and 𝑥/𝐷 = 5, respectively)⁄ , the flow is fully developed, and the velocity 

exhibits a top-hat distribution. In general, the mean streamwise velocity profiles 

𝑢𝑥 𝑈⁄
𝑗
 decrease along the jet X-axis and in the radial direction away from the jet 

centerline, where free shear layers and mixing layers create a turbulent flow region. 

At all locations along the streamwise direction, these figures indicate good 

agreement between the experimental and LBM-LES results. 
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Figure 6.3: Mean streamwise velocity profiles of the square jet at different 

locations along the jet X-axis: (a) 𝑥 𝐷⁄  = 1; (b) 𝑥 𝐷⁄ = 2; (c) 𝑥 𝐷⁄ = 3; (d) 𝑥 𝐷⁄ = 4; 

(e)  𝑥 𝐷⁄  = 5.  

 In conclusion, a new version of LBM has been developed for solving 

compressible turbulent flow with the use of a higher-order distribution function, and 

LBM has been combined with a LES subgrid scale (SGS) model in order to simulate 

a free jet at a subsonic flow regime. The essential idea behind the application of LES 

in LBM is to define a space-filtered particle distribution and to allow the dynamics 
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of the filtered particle distribution to feature a space-dependent relaxation. The 

LBM-LES results compare well with the experimental data in terms of the mean 

streamwise velocity, the turbulence intensity at different downstream locations, and 

the spreading rate of the jet. The use of LBM for compressible flows is still under 

development and has proven an exciting research area with many possible 

applications. 
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Chapter 7 

Predicting Near-Field and Far-Field Jet Noise 

Using the Compressible Lattice Boltzmann 

Method  

7.1. Introduction 

Over the last few years, much of the attention given to LBM development has 

been directed at solving compressible turbulent flows [55]. Large-eddy simulation 

(LES), a powerful technique for simulate turbulent flow, has been successfully 

applied to a number of industrial problems because the LES computational time is 

significantly less than that required for direct numerical simulations (DNS). Thus 

far, LBM has been employed as a DNS method for solving relatively low Reynolds 

number flows [33]. However, LBM can be combined with LES (LBM-LES) as a 

means of predicting instantaneous flow characteristics and of handling large 

turbulent flow structures, in contrast to the traditional Reynolds-averaged Navier-

Stokes (RANS) approach, which provides only time-averaged flow quantities [56]. 

Researchers have been working with LBM in combination with other 

approaches to solving a variety of issues. To simulate a free surface flow in a wide 

rectangular duct, Fernandino et al. [57] integrated the Smagorinsky subgrid scale 
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(SGS) model into LBM. While discrepancies were evident in the mean flow 

structure due to the use of a coarse grid close to the wall, overall, a good qualitative 

agreement between the experimental and the simulation results were achieved. Dong 

et al. [58] proposed an inertial-range-consistent Smagorinsky model in LBM for the 

D3Q19 lattice model as a means of assessing the effectiveness of the LBM-LES 

technique for solving isotropic turbulent flow at low Mach numbers. In 2008, Dong 

and Sagaut [59] examined the effect of different subgrid models on time correlations 

of isotropic turbulence in order to investigate the performance of several 

Smagorinsky model variants and model coefficients with respect to their time 

correlation properties in turbulence within an LBM framework. Overall, their 

findings revealed that the LBM-LES model generally yielded results that were in 

good agreement with the experimental outcomes as well as with other numerical 

studies for low-Reynolds-number cases. 

In 2009, Chen [60] developed a novel and simple LES-based lattice 

Boltzmann model for simulating two-dimensional turbulent flows rather than 

solving the Navier-Stokes equations using the vorticity stream-function equations, 

and he reported encouraging results. Si and Shi [61] implemented an SGS LES 

model in LBM in order to demonstrate that LBM-LES can be employed to simulate 

fluid flow at high Reynolds numbers. To establish the ability of LBM-LES with 

respect to solving such high-Reynolds-number flows, they presented a detailed 
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quantitative comparison of the vortex position for turbulent flow inside a cavity. 

However, the limited ability of conventional LBM in regard to solving compressible 

flows, especially at Mach numbers higher than 0.1 is well known [15]. 

At about the same time, Buick and others [62] investigated the capability of 

the Bhatnagar, Gross, and Krook (BGK) model with respect to simulating sound 

waves at small density variations, while Lew and others [63] used a commercial code 

based on the LBM kernel PowerFLOW to predict near-field and far-field jet noise 

at a Mach number of 0.4. In addition to finding near-field statistics in agreement 

with other experimental results, the researchers also discovered that the behaviour 

of the simulated sound waves was in good agreement with analytic expressions. Yu 

and others [64] employed a multiple relaxation time (MRT) LBM to predict near-

field rectangular jet noise at low a Mach number around 0.17. They found the MRT-

LBM to be a potentially reliable computational tool for the LES of turbulence even 

at high Reynolds numbers. Based on this solid research foundation, the goals of the 

work presented in this thesis were 1) to adopt and extend other related work in order 

to use LBM-LES in subsonic flow regimes for an examination of compressible 

turbulent free jets, and 2) to investigate the near-field turbulent jet noise at subsonic 

speeds using LBM. In the final stage of this research, the LBM approach was 

combined with Kirchhoff's surface integral theorem in order to predict far-field jet 

noise. 
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7.2 Predict jet flow variables 

The work conducted in this study was validated via two test cases: isothermal 

and non-isothermal compressible free jet flow using two LBM models in 

conjunction with LES. The first model features a high-order equilibrium distribution 

function (HO) and an isothermal and a non-isothermal compressible flow, while the 

second employs the Kataoka and Tsutahara (KT) model for an isothermal and a non-

isothermal compressible free jet flow. The results were validated against 

experimental results for circular heated and unheated jets, which established the 

axial mean velocity profile 𝑈𝑐(𝑥) along the jet axis 𝑋 𝐷𝑗⁄  as well as the turbulence 

intensity 𝑢𝑥(𝑟𝑚𝑠). The compressible LBM was used for performing LES that 

involved the application of two models (the higher-order equilibrium distribution 

function and the KT model) in order to examine an isothermal and a thermal 

axisymmetric jet flow at a Mach number of 0.5. The numerical results were validated 

against the available experimental data from Bridge [34] and Laurendeau [65], and 

also against Lew's numerical results [63]. 

Figure 7.1 provides a schematic of the circular (axisymmetric) jet nozzle with 

reference to the coordinate system used to describe the geometry, where 𝑈𝑐 is the 

mean streamwise velocity along the centerline of the jet at (y = z = 0) and 𝑢𝑥 is the 

streamwise velocity at a cross-stream location. 
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Figure 7.1: Schematic and reference system of a circular jet nozzle. 
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Table 7.1: Free circular jet characteristics 

Test case characteristics 

Jet diameter 𝐷𝑗 = 0.0508 𝑚 

Jet exit velocity 𝑈𝑗 = 130,170, ,205 𝑚/𝑠 

Kinematic viscosity 𝜈 = 1.516 ∗ 10−5  𝑚2/𝑠 

Reynolds number 
𝑅𝑒𝐷 =

𝑈𝑗𝐷𝑗
𝜈𝑗

= 4.35 ∗ 105, 5.7 ∗ 105, 

Mach number 𝑀𝑗 = 𝑈𝑗 𝑐⁄ = 0.4, 0.5, 0.6 

Simulation dimension (LBM) 

LBM grid sizing unit =1 

𝐷𝑙𝑏𝑚 = 13 𝑢𝑛𝑖𝑡𝑠 

  𝑁𝑥 = 20, 30𝐷𝑙𝑏𝑚 , 𝑁𝑦 = 5, 6𝐷𝑙𝑏𝑚, 

𝑁𝑧 = 5, 6𝐷𝑙𝑏𝑚 

Total number of grid points # 1 ∗ 106,

1.5 ∗ 106, 1.6 ∗ 106, 1.37 ∗ 106  

𝐷𝑙𝑏𝑚18 𝑢𝑛𝑖𝑡𝑠 

  𝑁𝑥 = 20𝐷𝑙𝑏𝑚 , 𝑁𝑦 =  5𝐷𝑙𝑏𝑚, 𝑁𝑧 =

5𝐷𝑙𝑏𝑚 

Total number of grid points #   2.9 ∗ 106 

𝛥𝑥=0.0020833, 𝛥𝑦 = 0.00127, 

𝛥𝑧 = 0.00127, 

LBM (𝛥𝑥𝑙𝑏𝑚=𝛥𝑦𝑙𝑏𝑚=𝛥𝑧𝑙𝑏𝑚 =1) 

𝛥𝑡𝑙𝑏𝑚 = 1 

𝐶𝐹𝐿 =
𝑢∆𝑡

∆𝑥
=

1

√3
 𝑀𝑗 =0.23 time step 

𝛥𝑡 = 𝐶𝐹𝐿
∆𝑥

𝑈𝑗
= 0.5 ∗ 10−5 sec 

Total time steps 44000 
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7.3 High-order equilibrium distribution function results 

One of the first ideas for solving high-Mach-number flows using LBM was to 

use a high-order equilibrium distribution function (as described in section 3.4) to 

reduce the truncation error that occurs in the solving of the Maxwell-Boltzmann 

distribution function. In the work conducted for this thesis, the 6th-order term of the 

Hermite polynomial expansion of the equilibrium distribution function was applied 

as a means of alleviating this limitation that is associated with the use of 

conventional LBM for high-Mach-number flows. 

7.3.1 Isothermal compressible free jet flow 

Figure 7.2 indicates the decay in the mean streamwise velocity 𝑈𝑐(𝑥) 𝑈𝑗⁄  

along the jet centerline axis 𝑥 𝐷𝑗⁄ , where 𝑈𝑗 is the exit velocity at the jet nozzle and 

𝑈𝑐(𝑥) is the local mean streamwise velocity of the jet at its centreline. The case-

study LBM-LES results compare very well with Bridges' experimental findings [34] 

and with Lew's FDM-LES and PowerFLOW [www.exa.com] commercial code 

results [63]. With the exception of a plateau near the jet exit where the jet core has 

not yet been obliterated, the mean centerline velocity decays inversely with the jet 

X-axis. Near the jet exit, the mean velocity is almost constant, and no shear layer 

effects are yet apparent. 

Near to the jet exit 𝑥 𝐷𝑗⁄ < 5, the mean streamwise velocity 𝑈𝑐(𝑥) at the jet 

centerline is equal to the jet nozzle exit velocity Uj and this feature of the mean flow 
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is captured well by all the predicted results (e.g., LBM-LES, FDM-LES, and 

PowerFlow). 

At a slight distance from the jet exit 𝑥 𝐷𝑗⁄  > 5, in an interaction region where 

shear layers from the surrounding and the development of turbulent flow 

downstream affects the centre velocity, the mean velocity at the jet centre decays 

rapidly with increasing 𝑥 𝐷𝑗⁄  . Generally speaking, compared to the experimental 

and numerical results, the new LBM-LES predictions agree much more closely with 

the experimental data than Lew’s CFD results [63]. 

 

Figure 7.2: Development of the mean streamwise velocity along the centerline of 

an isothermal round jet for a Mach number, 𝑀𝑗 = 0.5. 

 Figure 7.3 displays our LBM-LES predictions of the downstream 

development of the normalized streamwise turbulence intensity 𝑢𝑟𝑚𝑠(𝑥)  
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(normalized by the nozzle jet velocity 𝑈𝑗 ) along the centerline of the jet at a Mach 

number of 𝑀𝑗 = 0.5. These predictions have been compared to similar numerical 

results obtained by Lew et al. [63] using a finite difference LES code (FDM-LES) 

and the commercial LBM code PowerFlow. These numerical results are also 

compared with some experimental data for the streamwise turbulence intensity for 

an isothermal round jet obtained at a Mach number 𝑀𝑗 = 0.3. by Laurendeau et al. 

[65]. 

 For 𝑥 𝐷𝑗⁄ > 10, the predictions of the streamwise turbulence intensity 

provided by LBM-LES, FDM-LES, and PowerFlow are generally in good agreement 

with the experimental measurements, albeit the simulations are seen to slightly 

overestimate the streamwise turbulence intensity over this range of downstream 

fetches. For downstream fetches in the range 𝑥 𝐷𝑗⁄ < 10 the LBM-LES predictions 

of 𝑢𝑟𝑚𝑠(𝑥) are in better conformance with the experimental data than the predictions 

provided by FDM-LES and PowerFlow. All three numerical models predict that the 

normalized streamwise turbulence intensity attains a peak value at a normalized 

downstream distance 𝑥 𝐷𝑗⁄ of about 18 and decreases with increasing downstream 

fetch thereafter. Furthermore, all three numerical simulations predict a similar rate 

of decrease of the streamwise turbulence intensity with increasing downstream fetch 

for 𝑥 𝐷𝑗⁄ > 18. Finally, over the range of downstream fetches 𝑥 𝐷𝑗⁄  between about 
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5 and 18, the streamwise turbulence intensity is seen to increase with increasing 

downstream distance. In this regime of development, the entrainment of the ambient 

fluid into the jet (viz., the external irrotational fluid is engulfed into the core of the 

jet through its increasingly convoluted outer edge) results in the increase of the local 

intensity of the turbulent fluctuations in the jet. 

In conclusion, the LBM-LES results, the upper jet boundary is more unstable 

and exhibits a region of greater turbulence intensity 7 < 𝑥 𝐷𝑗⁄ < 18. As well, the 

shear layers of the jet actively participate in the entrainment of ambient fluid, and 

the growth of turbulent flow fluctuates rapidly. At the lower jet boundary 𝑥 𝐷𝑗⁄ >

18, the turbulence intensity starts to decrease slightly with an increase in the axial 

distance because the mean velocity decreases downstream. Although the results 

produced by the new LBM are slightly higher than the experimental findings, they 

compare well with Lew’s numerical conclusions [63] . 
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Figure 7.3: Development of the streamwise turbulence intensity along the 

centerline of an isothermal round jet for a Mach number, 𝑀𝑗 = 0.5. 

 

7.3.2 Non-isothermal compressible free jet flow 

This section describes the assessment of a non-isothermal free jet conducted 

with the goal of examining the effect of temperature on the mean centerline velocity 

and the turbulence intensity along the jet x-axis. For non-isothermal jet flow, the 

distribution function was applied in its full version, so any terms that have a relative 

temperature 𝑇𝑗 𝑇0⁄  in the equilibrium distribution function given in Eq. (3.7) do not 

vanish. The full version of the equilibrium distribution function was also used with 
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two relative temperatures: 𝑇𝑗 𝑇0⁄ = 0.95 and 𝑇𝑗 𝑇0⁄ = 1.76. where 𝑇0 is the ambient 

temperature and 𝑇𝑗 is the jet exit temperature. 

Figures 7.4 and 7.5 reveal that temperature has a significant effect on velocity 

and turbulence intensity distributions [34]. In the fully developed zone, the 

temperature has less effect on the flow, and the turbulence intensity reduces quickly, 

resulting in a slower mean velocity. Figure 7.4 demonstrates how the centerline 

mean velocity of a heated jet 𝑇𝑗 𝑇0⁄ = 1.76 decays at a faster rate downstream when 

the relative temperature 𝑇𝑗 𝑇0⁄  is increasing. The impact of relative temperature 

𝑇𝑗 𝑇0⁄  on the streamwise (or axial) turbulence intensity along the centerline of the jet 

is depicted in Figure 7.5.  

 
Figure 7.4: Effect of temperature on the distribution of the mean velocity at the 

centerline, 𝑀𝑗= 0.5. 
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Figure 7.5: The effects of temperature on the downstream development of the 

normalized streamwise turbulence intensity along the centerline of a heated round 

jet for a Mach number, 𝑀𝑗  = 0.5. 

 

It can be observed that, for a heated jet, the streamwise turbulence intensity at 

𝑇𝑗 𝑇0⁄ = 1.76 is greater than that at 𝑇𝑗 𝑇0⁄ = 0.95. The effect of heated jets on the 

mean velocity along the centerline is a reduction in the centerline velocity of the jet. 

Meanwhile, the turbulence intensity increases, especially in the region 𝑥 𝐷𝑗⁄ =

3 to 𝑥 𝐷𝑗⁄ =  10, where large local shear leads to high values of turbulence 

production. This trend is in agreement with both the experimental and numerical 

results.  
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7.4 Kataoka and Tsutahara model 

In the research for this thesis, the KT version of LBM [2] was used with the 

D3Q15 model in conjunction with LES in order to solve compressible unheated and 

heated jet flows. The new KT-LES model was implemented via the simulation of 

subsonic jet flow, and the predictions produced were compared with the available 

experimental and numerical results. 

7.4.1 Isothermal compressible free jet flow 

Figure 7.6 depicts the variations in the mean streamwise velocity 
𝑢𝑥

𝑈𝑗
⁄  along 

the centerline of the jet, as obtained with the KT model and compared with Bridges’ 

experimental data [34] and Lew’s PowerFLOW (www.exa.com) and FDM-LES 

results [63]. The 𝑢𝑥-velocity predicted by the KT model decays faster than the values 

from the experimental data along the centerline of the jet (i.e., in the 𝑥 𝐷𝑗⁄ -direction). 

However, the KT results agree well with those produced by the PowerFLOW 

commercial code.  
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Figure 7.6: Development of the mean streamwise velocity decay along the jet 

centerline axis obtained with the KT model, 𝑀𝑗 = 0.5. 

With respect to streamwise (or axial) turbulence intensity, Figure 7.7 shows 

that the KT model results exhibit some disagreement with the Laurendeau 

experiments [65] near the entrance region, where 𝑥 𝐷𝑗⁄ < 10. After that point, 

however, the KT model predictions compare well with the PowerFLOW and FDM-

LES results but not compared very well with the experimental results and this related 

to the KT model derivation, which has many assumptions and new variables to 

control the specific heat ration. 
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Figure 7.7: Development of the streamwise turbulence intensity along the 

centerline of an isothermal circular jet obtained with the KT model, 𝑀𝑗 = 0.5. 

 

7.4.2 Non-isothermal compressible free jet flow 

A re-examination of the same heated jet using the KT model rather than the 

high-order equilibrium distribution function approach, with two relative 

temperatures 𝑇 𝑇0
⁄ = 0.950 and 𝑇 𝑇0

⁄ = 1.76, revealed the major effect of 

temperature when the equilibrium distribution function is used. As the temperature 

increases, the molecules energize and move more quickly. These changes affect the 

flow properties of pressure, density, and velocity, which are dependent properties. 

When a fixed Prandtl number such as 1 is employed in the KT model, the KT-LES 
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results indicate a small deviation from the experimental results but within an 

acceptable range. 

The non-isothermal KT model results also show that the centerline velocity 

𝑈𝑐 decays slightly faster than is evident in either the experimental or numerical 

results because the viscosity has changed with the temperature. Subsequent changes 

are also evident in the relaxation time, which is a function of fluid viscosity. 

Compared with the experimental data, the results predicted by the KT model are 

generally good, as is clear from Figures 7.8 and 7.9. In contrast to the results 

produced using the high-order equilibrium distribution function approach, the mean 

velocity and the turbulence intensity along the centerline of the jet obtained with the 

KT model are slightly lower than the experimental data values due to the application 

of a different equilibrium distribution function. The type of equilibrium distribution 

function used plays a key role in the performance of compressible LBM models.  
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Figure 7.8: The effects of temperature on the centerline distribution of the mean 

velocity with the KT model, 𝑀𝑗 = 0.5. 

 
Figure 7.9: The effects of temperature on the downstream development of the 

normalized streamwise turbulence intensity along the centerline of a heated round 

jet obtained with the KT model, 𝑀𝑗 = 0.5. 
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With respect to the LES of turbulent jet flows, the results with both the 

experimental and numerical computations obtained with a 3D code based on D3Q19 

and those from the KT models match perfectly.  

7.5 Near-field noise predictions 

Over the past few decades, experimental and numerical studies have provided 

the best understanding of jet noise for both near-field and far-field predictions. All 

of these methods require accurate results for measuring or computing the flow of 

near-field properties. LBM is currently considered a precise CFD method that offers 

numerous advantages for predicting near-field and far-field jet acoustics, especially 

pressure distribution, as calculated in Eq. (3.14). The maximum resolvable Strouhal 

number for this type of simulation is expressed as 𝑆𝑡𝑚𝑎𝑥 = 𝑓𝑚𝑎𝑥 𝐷𝑗 𝑈𝑗⁄ = 2, where 

the maximum frequency is computed via 𝑓𝑚𝑎𝑥 = 𝑐∞ 𝜆⁄ = 4000𝐻𝑧, where 𝑐∞ is the 

speed of sound and 𝜆 is the wavelength 𝜆 = 12Δ, and where Δ is the grid spacing at 

the probe location Δ = 0.8 mm. This section discusses the near-field flow properties 

related to noise, such as velocity contour, pressure distribution, and sound pressure 

level. 

Figure 7.10 presents the cross-stream profiles of the normalized mean 

streamwise velocity at various downstream locations for the isothermal round jet at 

a Mach number 𝑀𝑗 = 0.5. As can be seen, the uniform mean streamwise velocity 

near the exit of the nozzle evolves with increasing downstream fetch 𝑥/𝐷𝑗 as the 
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shape of the velocity profiles transitions from the sharper square pulse shape near 

the nozzle to a more diffuse Gaussian shape further from the nozzle exit (as the jet 

evolves into the self-similar regime of development). This development is consistent 

with the entrainment of the ambient irrotational fluid into the jet core through the 

convoluted outer edge of the jet, leading to the flow towards the jet that feeds its 

increasing girth (local jet width). This can be seen more clearly in Figure 10.11, 

which shows the isocontours for the time-averaged velocity (normalized by the 

velocity at the jet nozzle) in a horizontal (x-y) plane through the jet at a fixed time. 

Here, it is evident that the outer edge of the jet is convoluted and corresponds to the 

interface between two regions of the fluid, representing a sudden transition from the 

turbulent vorticity field in the jet core to the external (ambient) irrotational fluid. In 

particular, the free shear layer between the high-vorticity flow in the jet core and the 

ambient fluid create the convoluted outer edge of the jet, particularly for downstream 

fetches 𝑥/𝐷𝑗 greater than about 8. 
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Figure 7.10: Cross-stream profiles of the normalized mean streamwise velocity 

𝑈/𝑈𝑗 at various downstream locations 𝑥/𝐷𝑗 along the centerline of an isothermal 

round jet at a Mach number , 𝑀𝑗 = 0.5. 

 

Figure 7.11 reveals the growth of time-averaged velocity as it moves 

downstream. The shear layer between the high-vorticity jet flow and the ambient 

stagnation air create a convoluted edge in the velocity profile and cause the 

development of turbulence after 𝑥 𝐷𝑗⁄ = 8, as illustrated in Figure 7.12.  



91 
 

 

Figure 7.11: Axial time-averaged velocity contour, 𝑈/𝑈𝑗 ,𝑀𝑗 = 0.5. 

 

 

Figure 7.12: Isocontour of the instantaneous streamwise velocity for an isothermal 

round jet at a Mach 𝑀𝑗 = 0.5 obtained in a horizontal plane through the jet flow at 

a fixed instant in time. 
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Figure 7.13 indicates that the Mach number decreases with increasing 𝑥 𝐷𝑗⁄ . 

When the mixing of the developing region occurs, the Mach number decreases in 

the radial direction, and an elliptic zone is created above the shear layer zone. This 

effect means that most of the sound propagation is generated from this area. 

 

Figure 7.13: Mach contour, 𝑀𝑗 = 0.5. 

  The downstream propagation of high-frequency sound waves from a subsonic 

jet creates what is called a cone of silence. Figure 7.14 shoes the sound pressure level 

distribution  𝑆𝑃𝐿 == 20 log10 (
𝑝𝑟𝑚𝑠

𝑝𝑟𝑒𝑓
)  in the flow domain, where is  𝑝𝑟𝑒𝑓 =

20 × 10−5𝑃𝑎 (threshold of hearing). The cone of silence can be seen outside of the 

shear layer in the developing region.  
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Figure 7. 14: Sound pressure level contour, 𝑀𝑗 = 0.5. 

To obtain the results plotted in Figure 7.15, sound pressure signals were 

monitored along the jet x-axis. For subsonic jets, at the radial positions 𝑦 = 0, 𝑦 =

0.5𝐷𝑗 , 𝑦 = 1𝐷𝑗, the lines extend from the jet exit 𝑥 = 0 up to 𝑥 = 30𝐷𝑗. At the 

centerline of the jet 𝑦 = 0, the sound pressure level decreases linearly to the 

developing zone, which compares very well with Mancinelli’s experimental results 

at Mach 0.6 [66]. When moving radially from the centerline of the jet, the sound 

pressure from the jet exit 𝑥 = 0 begins to increase to the maximum local value of 

the sound pressure level in the potential core. It then starts to decrease until it reaches 

the middle of the jet x-axis 𝑥 = 15𝐷𝑗, where the cone of silence is generated. 
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Figure 7.15: Sound pressure level at jet centerline, lip line, and shear layer, 

 𝑀𝑗 = 0.5 

7.5 Far-field noise predictions 

The work in this thesis included a sequential and comprehensive study of the 

use of compressible LBM for simulating a subsonic free stream jet. After the LBM 

limitations had been overcome and a free jet flow had been simulated, the next step 

was to examine near-field jet noise as described in the previous section. This section 

explains how the Kirchhoff integral approach was applied for predicting noise in the 

far-field. The sound pressure levels will predict at observer distance 𝑟 = 72𝐷𝑗 in a 

range of angles θ = 20º to θ = 90º 

The properties of the initial jet disturbances were investigated based on 

calculations of the spectra of the fluctuating axial velocity at an axial distance 
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𝑥 = 10𝐷𝑗  downstream along the centerline of the jet, as shown in Figure 7.16. Good 

agreement exists with other numerical results reported by Lew [63] using two 

different methods: PowerFLOW commercial software and the LES method. The 

LBM spectra can be seen to fall within a reasonable range compared with Lew’s 

LES calculations. 

 
 

Figure 7.16: Streamwise velocity spectra at 𝑥 = 20r0 located along the  

centerline of the jet, 𝑀𝑗 = 0.5. 

 The maximum Strouhal number is 𝑆𝑡𝑚𝑎𝑥 = 𝑓𝑚𝑎𝑥𝐷𝑗 𝑈𝑗⁄ , whereas the 

maximum LBM frequency is 𝑓𝑚𝑎𝑥 = 𝑢 𝜆⁄ , where 𝑢 is the jet mean velocity and 𝜆 =

12Δ𝑥, Δ𝑥 is the LBM grid spacing at the probe location, at least 12 voxels are needed 

to resolve one acoustic wavelength [67]. Because LBM-LES can capture smaller 
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eddies than LES from Lew results due to the coarse grid used in the LES method, 

LBM-LES is thus more valuable for simulating turbulent flows than other numerical 

methods. LBM can hence be used with an aeroacoustics hybrid approach for 

predicting noise generated from turbulence flows in both near- and far-field 

locations. 

The sound pressure levels in the far-field locations shown in Figure 7.18 were 

obtained from LBM-LES-Kirchhoff and validated against the experimental and 

numerical results obtained from Tanna [68]. 

The predicted noise levels are for angles of 𝜃 = 15º to 𝜃 = 90º from the 

centerline of the jet within less than 3 dB of deviation from Tanna's [68] 

experimental measurements (indicated by the dotted lines in the figure). In the 

aeroacoustics field, the numerical prediction deviation +-3 dB considered in good 

agreement with the experimental data. The results show that the sound pressure 

levels increase gradually with rising elevation angles, reaching a peak between 𝜃 = 

30º and 𝜃 = 60º, where the flow exhibits a high-turbulence-intensity velocity, as 

shown in Figure 7.17. 
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Figure 7.17: Directivity of the overall sound pressure level (OASPL) at 𝑅 = 72𝐷𝑗, 

with the observation angle 𝜃 measured relative to the jet centerline axis, 𝑀𝑗 = 0.5. 

Figure 7.18 indicates the sound pressure spectrum in the upstream area at x = 

0 for a fixed radial location (r = 10Dj). As the numerical results predict, the sound 

pressure spectra show distinct peaks at low frequencies because pressure fluctuations 

are steadier at smaller amplitudes. At high frequencies, however, pressure 

fluctuations are characterized by high amplitudes, thus generating large sound 

pressure spectra variations as the pressure frequency increases. 
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Figure 7.18: Sound pressure spectra at 𝑥 = 0 and 𝑟 = 10𝐷𝑗, 𝑀𝑗 = 0.3 and 0.5. 

The high-pressure spectra at low frequencies are attributable to the strong 

tones in the flow field. In general, the pressure spectra are in good agreement with 

the experimental results introduced at the same location and for a similar flow 

simulation. 

7.6 Summary 

This chapter has presented a compressible lattice Boltzmann subgrid model 

for simulating fluid flows at subsonic flows. The essential concept of applying the 

subgrid model in a compressible LBM (CLBM) is based on the assumption that all 

of the physical effects that the unresolved motion has on the resolved fluid motion 

are included [61]. The results obtained through the application of LES with CLBM 
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for solving subsonic jet flows show good agreement with the experimental findings. 

The numerical results indicate a top-hat shape for the streamwise mean velocity 

distribution at a given axial location, which is well represented by the new 

compressible LBM for assessing compressible heated and unheated jets using either 

the high-order equilibrium distribution function approach presented in section 3.4 or 

the KT model introduced in section 3.5. The agreement between the predictions 

obtained with the new LBM (in terms of mean velocity and turbulence intensity) and 

those produced by other numerical and experimental methods is also notably 

excellent, suggesting that LES models work well for solving compressible lattice 

Boltzmann problems. 

As well, the agreement between the predictions from the new LBM (in terms 

of mean velocity and turbulence intensity) and the other numerical and experimental 

results is also excellent, suggesting that the newly developed in-house LBM-LES 

code has been properly validated. The good agreement between the LBM-LES 

technique and the experimental data with respect to measuring the velocity field 

reinforces the relevance of the results presented as a new accurate method for solving 

compressible flows using traditional compressible LBM models that employ LES 

for solving compressible turbulence flows. The near-field properties of jet noise have 

been described in terms of sound pressure distribution, sound pressure levels, and 

spectra. Their variations from the jet X-axis and radial direction [69], as well as the 
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sound source distributions, were found to be in good agreement with well-known 

features of jet noise.  

Section 7.5 described the inclusion of the LBM simulation code using the 

Kirchhoff surface integral approach for predicting far-field jet noise. This innovation 

was accomplished through the generation of the Kirchhoff control surface around 

the jet in a radial distance above the jet shear layer in order to include all 

nonlinearities. The directivity of the overall sound pressure levels observed along 

arc r = 72Dj in the range of angles 𝜃 = 20º to 𝜃 = 90º were simulated and compared 

with the findings from available experimental studies. The sound pressure spectra 

near the jet exit were also presented in radial distance running at r = 10Dj. 

After multiple relaxation times have been applied and the LES approach 

implemented in LBM, the C++ code can become very cumbersome for execution in 

CPUs; combining the Kirchhoff approach with all of the other methods [70] likewise 

causes the computer to run very slowly. To counter this effect, parallel computing, 

such as with a GPU, was employed because it is faster and easy to install inside a 

CPU in one chip or more, and the program was then run in single or parallel GPUs. 

This approach is the focus of the next chapter. 
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Chapter 8 

Efficient Implementation of the Lattice 

Boltzmann Method on a GPU for Predicting 

Near-Field and Far-field Jet Noise 

8.1 Introduction 

Today’s new airplanes are generally quieter than older models because the 

designers must satisfy standards and regulations for reducing noise emissions, and 

they also wish to please customers who prefer a quieter flight. However, airport 

community noise still continues to be an important environmental issue because the 

number of models and sizes of aircraft being manufactured is increasing every day, 

which means that the additional noise pollution being generated is likely disturbing 

people who live and work in the vicinity of airports. 

One of the primary sources of noise produced by an aircraft is jet noise, which 

is an important environmental issue for people living or working near airports 

because of the close proximity of the noise source and the continual increase in the 

number of flights [71]. The first attempts to characterize sources of aerodynamic jet 

noise were reported by Sir James Lighthill in 1952 [40]. He based his theory on a 

rearrangement of the Navier-Stokes equations as wave equations and used the 
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emission or propagation theory to study the sound radiated in a uniform medium at 

rest. Whenever a high-speed fluid flow moves from a nozzle, aperture, or orifice into 

the surrounding region, the velocity shear generates turbulence in the ambient air. 

The very high velocity and the associated turbulent fluctuations generate noise 

across long distances from the jet [40]. Sound is a vibration or a sequence of waves 

of pressure that propagate through compressible media, such as air, water, or solids 

[72]. The sound wave frequency that is perceptible by humans is about 20 Hz to 

20,000 Hz [73]. The velocity, pressure, and density properties of the air determine 

the speed of the sound, so solving the compressible Navier-Stokes equation provides 

complete information about sound pressure at observers’ locations in near-field and 

far-field regions. 

However, the direct simulation of far-field jet noise can be extremely 

expensive due to the very large computational domain involved [74]. The term 

aeroacoustics refers to the noise created by gases flowing at high speed and pressure, 

which create sound waves that travel through the surrounding media to the observer 

[75]. The numerical solution of aeroacoustics problems falls within the area of 

computational aeroacoustics (CAA), which constitutes the most comprehensive 

method for simulating aeroacoustics problems. CAA simulations involve the 

computation of pressure disturbances in the flow stream. 
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For the research presented in this thesis, a lattice Boltzmann method (LBM) 

was employed for simulating near-field jet flow properties, and Kirchhoff’s surface 

integral method was then applied for predicting sound emissions for the far-field 

region. Capturing turbulence in the near-field region is essential for the accurate 

prediction of fluctuations in the source pressure, which is the primary factor in the 

propagation of the generated sound to the far-field region. A near-field sound region 

denotes the area closest to the noise source in which the sound pressure decreases 

by no more than 6 dB when the distance from the source is increased [73]. In this 

region, the acoustic particle velocity and sound pressure are not in phase. In other 

words, the near-field region is limited to a distance from the source that is equal to 

about a wavelength of sound or to three times the largest dimension of the sound 

source [76].  

A far-field noise region begins at the end of the near-field region and extends 

either to the point at which the sound effect disappears or to infinity. Between the 

near-field and far-field regions is a small transition region [77], so care should be 

taken to start the aeroacoustics calculations at the end of the near-field region. In the 

far-field region, the direct field radiated by most machinery sources decays at the 

rate of 6 dB each time the distance from the source is doubled [78]. For line sources, 

such as traffic noise, the decay rate varies between 3 dB and 4 dB each time the 

distance from the source is doubled [79]. 
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8.2 Literature review 

Commercial and fighter aircraft can be subject to new regulations concerning 

noise emissions due to the noise pollution they create, especially at take-off. Over 

the past few decades, a number of research programs have been undertaken with the 

goal of studying the problems associated with the noise pollution from several noise 

sources, such as vehicles, wind farms, and jet engines because of their detrimental 

effects on the surrounding environment. Most researchers considered supersonic jets 

as a primary noise source in airport areas due to the very substantial noise emissions 

emanating from supersonic aircraft. The numerical prediction of the noise produced 

from supersonic jets is quite easy because the acoustic source is intense and can be 

easily captured in a near-field simulation domain. However, the airplane take-off 

phase, which is the main cause of noise pollution near airports, occurs when the 

flight is subsonic. 

The most valuable experimental studies of jet characteristics and near- and 

far-field noise were presented by Tanna and others in 1973 [80] with respect to 

turbulent mixing noise from jets. These researchers investigated the characteristics 

of the spectra and directivity of turbulent jet mixing noise in the far-field at the 

subsonic range. They then expanded their study to include supersonic flows over 

intensive conditions, such as jet exit velocity and temperature effects. Their work 
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contributed to the body of knowledge about the flow acoustics of jets under a variety 

of conditions, and they also recommended that further theoretical research be 

conducted to improve on the experimental results obtained and to apply different 

conditions of practical interest in order to provide a greater physical understanding.  

In 1977, Tanna [68] presented a second paper based on work conducted at a 

Lockheed-Georgia Company laboratory. His experimental study was centred on 

shock-free supersonic jet noise and demonstrated the far-field noise of turbulent jets 

over an extensive set of jet operating conditions. His work included the separate 

assessment of changes in detailed jet noise caused by varying velocities and exhaust 

temperatures. Differences were evident between his model and the measurements 

because of the mean velocity and temperature gradients surrounding the sources.  

In related research, in 2002, Harper-Bourne [81] developed practical methods 

for predicting near-field military jet noise from high-speed jet engine exhaust. He 

worked from a semi-empirical basis that married aeroacoustics theory with source 

location data in order to predict the near-field jet mixing noise of both supersonic 

and subsonic jets. The overall acoustic measurements appeared to be well predicted 

by the mathematical model, with any discrepancies between the experimental 

measurements and those of the mathematical model being attributable mainly to the 

test environment. 
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More recently, Bogey and others [82] conducted a 2007 experimental study 

directed at determining the characteristics of noise radiated by both cold and 

isothermal high-speed round jets. The researchers described this noise in terms of 

levels and spectra without resorting to extrapolation methods, which might lead to 

uncertainties in the far pressure fields. The goal of the research was to obtain highly 

accurate results in order to form a database that can be used for the validation of 

aeroacoustics prediction methods. One year later, in 2008, Loh and others [83] 

simulated a subsonic co-annular jet at a high Reynolds number using the finite 

volume large-eddy simulation (LES) method in three dimensions in order to predict 

the noise generated in near-field flows. Their simulation proved that the low-order 

(2nd order) finite-volume LES method can be trusted to capture subsonic co-annular 

jet properties, but far-field noise was still not accurately characterized in this study. 

In the same year, Bodony and Lele [84] employed LES for examining the 

current status of jet noise predictions. They introduced a computational fluid 

dynamics (CFD) simulation of compressible jet flow based on a subgrid scale (SGS) 

model for a wide range of Mach numbers. The study was focussed specifically on 

the manner in which LES results affect jet noise prediction. The authors concluded 

that the capability of LES with respect to the accurate prediction of both near-field 

and far-field turbulent jet noise was significantly increased. They also raised the 
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issue of the limitation associated with LES for low-Reynolds-number flows, 

especially when the jets are heated. 

In 2015, Mille [85] reported his development of a method for predicting a 

compressible turbulent jet flow based on an acoustic analogy of the cross-power 

spectral density in the near-field region of compressible fluid turbulence. In this 

method, equivalent sources are modelled with a single equation based on steady 

Reynolds-averaged Navier-Stokes (RANS) equations in relation to predictions of 

radiation intensity for the near-field and far-field across a wide range of jet Mach 

numbers and temperature ratios. The method is marred by difficulties related to the 

prediction of the near-field jet noise intensity, which could impact the accuracy of 

far-field predictions. 

In 2008, Kumar and others [86] published an experimental investigation of 

axisymmetric jet pulse and steady jet characteristics for Mach numbers from 0.3 to 

0.8 with respect to near-field noise. They found that, within the range of parameters 

studied, the sound pressure level was increased by about 32 dB compared to a steady 

jet flow at the same flow conditions. The noise measurements for their study were 

confined to a radial distance less than 10𝐷𝑗 from the jet centreline. A few years later, 

in 2012, Saxena and Morrisy [87] introduced a numerical study for predicting jet 

noise from single- and dual-stream of high subsonic flow. The researchers employed 

a parallel unsteady Reynolds-averaged Navier-Stokes (URANS) LES for 
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performing the turbulent flow simulation, using a modified detached eddy 

simulation (DES) for generating the turbulence flow. They also applied the Ffowcs 

Williams and Hawkings (FW-H) equation for measuring the noise spectra at 

observer locations. 

At about the same time, in 2010, Lew and others [63] presented a numerical 

study for which they used both the LES method and the PowerFLOW commercial 

code based on the LBM kernel for predicting noise from an unheated turbulent 

axisymmetric jet. The far-field sound pressure levels were within 3 dB of other 

experimental results. This study actually provided motivation for the research 

presented in this thesis, which was conducted with the goals of overcoming the LBM 

limitations related to the simulation of high-subsonic jets and of applying 

aeroacoustics theory to an investigation of the sound propagated in far-field 

surroundings. In Lew and others [63] simulation, the flow intensities in the shear 

layer region were in poor agreement with the experimental results due to the laminar 

nature of the exiting boundary layer, since the Reynolds number was very low and 

the mesh grid insufficiently fine for solving this major problem. 

A few years earlier, in 2005, Yu and Girimaji [88] had implemented LES in 

an LBM D3Q19 lattice model for a study of the near-field flow properties of a 

rectangular turbulent jet. Their research involved an investigation and explanation 

of the underlying flow physics without increases in the Mach numbers up to 0.1. It 
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should be noted that near- or far-field noise can be generated from a high-speed flow 

and turbulent perturbation. In aeroacoustics, to avoid a large simulation domain, it 

is useful to employ a hybrid approach that will lower simulation costs. 

In 2010, Bres and others [89] developed two formulations of a far-field noise 

prediction code using the near-field values from LBM results as input to the acoustic 

analogy solver, based on the FW-H equation. They determined that the control 

surface around the noise source can be defined either as an impenetrable control 

surface for solid bodies or as a permeable surface for porous media and free-flow 

applications. Then, in 2014, Casalino and Lele [90] looked at coaxial jet noise 

generation using PowerFLOW commercial code to predict the far-field. In their 

work, they used the FW-H analogy, which is a far-field noise solver coupled with 

PowerFLOW applied to a fluid surface encompassing the plume. Some deficiencies 

in this simulation setup have been pointed out and include a premature turbulent 

breakdown in the shear layer. This failing is actually related to the mesh resolution 

and the turbulence model used in the simulation. 

Several decades earlier, in 1988, Farassat and Myers [47] rederived the 

Kirchhoff equation using generalized derivatives for evaluating the solution around 

a subsonically moving surface when the observer is stationary. Their equation can 

be modified for a moving observer, and it will be used in this research as a hybrid 

approach with the CLBM models to predict the far-field noise from jets. LBM has 
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shown significant potential in fluid flow simulations, but performance issues have 

hindered wider applications due to the large amounts of memory required. In 2015, 

a parallel direct numerical simulation based on lattice Boltzmann was carried out on 

a multiple graphics processing unit (GPU) cluster. Developers Lei and others [91] 

used the single instruction multiple threads (SIMT) characteristics of the GPU 

cluster. The downside of employing SIMT execution is that thread-specific control 

flow is performed using masking, which leads to poor utilization when the threads 

of a processor follow different control-flow paths. 

In 2015, Yusuke and Lien [92] developed a compute unified device 

architecture (CUDA) code for investigating the validity of LBM in GPU processing 

for turbulent flow simulations using LES. The GPU code was validated with respect 

to the assessment of a flow over a square cylinder confined in a channel. The 

researchers mentioned that two parallel GPUs accelerated the running time by 150X 

compared to a serial run on CPUs. A few years later, in 2018, Markesteijn and 

Karabasov [93] developed a GPU solver that would accelerate LES calculations for 

simulating subsonic coaxial jet noise at three different operation points. The GPU 

solver was combined with the penetrable integral surface formulation of the FW-H 

method. However, this GPU code was unable to capture low-frequency noise 

downstream because of the grid resolution beyond the nozzle exit. 
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8.3 Jet-flow development 

When high-speed jet flow enters a quiescent ambient environment of the same 

fluid, a velocity shear layer is created between the entering and surrounding fluids, 

generating an envelope of high-speed flow. The envelope containing the turbulence 

caused by the jet adopts a nearly conical shape. An investigation of the jet 

development, the velocity profiles, and the turbulence intensity of a three-

dimensional compressible turbulent jet is described in this section. Velocity, 

pressure, and density distribution are the major flow properties required for 

predicting near- and far-field noise. 

 

 

 

 

 

 

 

 

 

 

 



112 
 

Table 8.1: Free circular jet characteristics 

Test case characteristics 

Jet diameter 𝐷𝑗 = 0.0508 𝑚 

Jet exit velocity 𝑈𝑗 = 130,170, ,205 𝑎𝑛𝑑 256 𝑚/𝑠 

Kinematic viscosity 𝜈 = 1.516 ∗ 10−5  𝑚2/𝑠 

Reynolds number 
𝑅𝑒𝐷 =

𝑈𝑗𝐷𝑗
𝜈𝑗

= 4.35 ∗ 105, 5.7

∗ 105, 6.87 ∗ 105 𝑎𝑛𝑑 8.6

∗ 105 

Mach number 𝑀𝑗 = 𝑈𝑗 𝑐⁄ = 0.4, 0.5, 0.6, 0.75 

Simulation dimension (LBM) 

LBM grid sizing unit =1 

𝐷𝑙𝑏𝑚 = 18 𝑢𝑛𝑖𝑡𝑠 

  𝑁𝑥 = 120𝐷𝑙𝑏𝑚 , 𝑁𝑦 = 16𝐷𝑙𝑏𝑚, 𝑁𝑧 =

16𝐷𝑙𝑏𝑚 

Total number of grid points # 180 ∗ 106, 

𝛥𝑥=0.0020833 

 𝛥𝑦 = 0.00127 

𝛥𝑧 = 0.00127 

LBM (𝛥𝑥𝑙𝑏𝑚=𝛥𝑦𝑙𝑏𝑚=𝛥𝑧𝑙𝑏𝑚 =1) 

𝛥𝑡𝑙𝑏𝑚 = 1 

𝐶𝐹𝐿 =
𝑢∆𝑡

∆𝑥
=

1

√3
 𝑀𝑗 =0.23, 0.288, 

0.34, and 0.433 

time step 

𝛥𝑡 = 𝐶𝐹𝐿
∆𝑥

𝑈𝑗
= 0.5 ∗ 10−5 

Total time steps 44000 

 

Experimental and numerical observations of the mean turbulent velocity of 

the jet field show that, in the axial direction of the jet, the axial jet flow can be divided 

into two main distinct regions. The first region is close to the jet exit (𝑥 = 0 to 𝑥 =
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5𝐷𝑗), where the axial velocity is almost constant and equal to the jet exit velocity 𝑈𝑗, 

and the turbulence penetrates inward toward the axis or centerline of the jet. As 

shown in Figure 8.1 and Figures 8.2 (a)-8.2 (b), a wedge-like region of undiminished 

mean velocity is apparent. This region is commonly known as the flow development 

region, or potential core region. 

 

Figure 8.1: Mean streamwise velocity decay along the jet centerline axis, 

 𝑀𝑗 = 0.5. 
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Figure 8.2 (a): Mean axial velocity at the jet exit, x = 0, 𝑀𝑗 = 0.5. 

 

Figure 8.2 (b): Mean axial velocity at, 𝑥 = 5𝐷𝑗, 𝑀𝑗 = 0.5. 

The second region is known as the fully developed flow region from X = 5D 

to x = 20D. Here, the turbulence has penetrated to the jet axis flow, so the potential 

core has disappeared and the axial velocity profile of the jet has changed from a 

semi-uniform one to one with a turbulent velocity. This shift indicates a more 
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flattened profile than the parabolic profile in a laminar flow, as illustrated in Figures 

8.1, 8.2 (c), and 8.2 (d). As a result, the potential core has disappeared, and a new 

flow region has been generated in which the flow is fully developed. 

 

Figure 8.2 (c): Mean axial velocity at, 𝑥 = 10𝐷𝑗, 𝑀𝑗 = 0.5. 

 

Figure 8.2 (d): Mean axial velocity at, 𝑥 = 13𝐷𝑗, 𝑀𝑗 = 0.5. 
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After the axial distance 𝑥 > 10𝐷𝑗, the shear layer grows downstream with 

increasing 𝑥 𝐷𝑗⁄ and more flow entering the stream from the surrounding regions, 

thus decreasing the velocity of the jet. As shown in Figure 8.2 (e), the velocity profile 

has expanded in the radial direction up to 4𝐷𝑗. As well, the three-dimensional surface 

velocity profile indicates that the velocity cone has become thicker and the time-

average velocity has been reduced to 0.5𝑈𝑗. 

 

Figure 8.2 (e): Mean axial velocity at, 𝑥 = 16𝐷𝑗, 𝑀𝑗 = 0.5. 

The simulation results for the investigation of jets penetrating the same 

quiescent fluid (Figure 8.2) consistently reveal that the envelope containing the 

turbulence caused by the jet adopts a nearly conical shape. In other words, the jet 

flow cone radius 𝑅 is proportional to the distance 𝑥 downstream from the discharge 
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location, as shown in the three-dimensional velocity surface profile in Figures 8.2 

(a) to 8.2 (f). 

At the end of the simulation domain in the axial direction, 𝑥 = 20𝐷𝑗 in Figure 

8.2 (f), the velocity has lost its high entrance value and has begun a gradual decrease. 

The surrounding regions and the streaming-generated shear layer in the contact area 

lose the high energy of the flow, thus reducing the velocity of the jet flow at the end. 

As a consequence, the velocity profile flattens to a value of 0.4𝑈𝑗 and a cone-

diameter of 8𝐷𝑗. 

 

 

Figure 8.2 (f): Mean axial velocity at, 𝑥 = 20𝐷𝑗, 𝑀𝑗 = 0.5. 

Studying the turbulence is essential for an understanding of the mixing 

processes and noise-generating mechanisms. In free jet flow, the high turbulence 

intensity and shear stress occur in the outer mixing region, where the free jet interacts 
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with the surrounding quiescent air. Consideration of this area is very important for 

predicting free far-field jet noise and for identifying where the control surface should 

be placed. 

Figure 8.3 illustrates the turbulence intensity of the jet along the centreline. 

The turbulence intensity increases beyond the jet exit due to the merging of the jet 

layers until it reaches its maximum at 𝑥 = 11𝐷𝑗, before decaying downstream, at 

which point the axial velocity gradually declines. Because of using initial 

perturbation at the jet exit simulation, the turbulence intensity near to the jet exit 

does not follow the experimental results and shown higher than Lyu's results.

 

Figure 8.3: Mean jet turbulence intensity along the centerline, 𝑀𝑗 = 0.5. 
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The turbulence intensity decays more slowly than with RANS and faster than 

in the experimental data from Lyu [94]. The high turbulence intensity values at the 

peak with LBM could be due to the use of different governing equations or to 

differences in the shape of the jet exit; they might also be caused by the application 

of different numerical methods, all of which can affect the results. Studying the jet-

flow development and the turbulence structure is essential for an understanding of 

the mixing processes and the noise-generating mechanisms. Once this understanding 

has been acquired, near-field jet noise can be easily predicted, as explained in the 

next section. 

8.4 Near-field jet noise 

The overall sound pressure levels obtained at a radial distance 𝑟 = 7.5𝐷𝑗 

parallel to the centerline of the jet from 𝑥 = 0 to 𝑥 = 20𝐷𝑗  are plotted in Figure 8.4 

for Mach number 𝑀 = 0.6 and Reynolds number 𝑅𝑒𝐷𝑗 = 5 ∗ 10
5. The LBM results 

compare very well with the Barré [95] experimental data (dotted line) and show good 

agreement with the structure of the jet flow. The overall sound pressure begins to 

increase beyond the potential core of the jet, 𝑥 = 5𝐷𝑗, where the stream exhibits the 

highest shear flow with the surrounding air. This increase elevates the turbulent 

perturbation in the interaction region (𝑥 = 6𝐷𝑗- 𝑥 = 15𝐷𝑗). Compared to conditions 
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at the jet exit after 𝑥 > 15𝐷𝑗, the jet noise starts to decrease when the velocity 

gradually becomes evanescent. 

 

Figure 8.4: Overall sound pressure levels obtained along the horizontal line r =

7.5Dj for the subsonic jet at a Mach number of 𝑀𝑗 = 0.6 

The sound pressure fluctuation spectra of near-field jet noise were 

investigated as functions of the Strouhal number 0.05 < 𝑆𝑡 < 6.4 along the 

horizontal line 𝑟 = 7.5𝐷𝑗 from the centerline of the jet at the axial locations 𝑥 =

0, 5𝐷𝑗 , 𝑥 = 10𝐷𝑗 , 𝑥 = 15𝐷𝑗, and 𝑥 = 20𝐷𝑗. These are depicted in Figure 8.5. The 

radiation patterns compare well overall with experimental data provided by, for 

example, Barré [95]. 
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In Figure 8.5 (a), the sound pressure spectrum is shown at point  𝑥 = 0 and 

𝑟 = 7.5 at the side of the potential core region in the radial direction. At 𝑥 = 0, the 

sound pressure begins to rise with increases in the Strouhal number until a peak of 

101 dB/St is reached, when the Strouhal number is about 0.5. At that point, the sound 

spectra slow down to 91dB/St at a Strouhal number of 6.4. At 𝑥 = 5𝐷𝑗, as shown in 

Figure 8.5 (b), the pressure spectra slow their decrease from 104 dB/St at 𝑆𝑡 = 0.2 

and then start to increase until reaching a peak at 𝑆𝑡 = 0.6, when the pressure spectra 

decrease slightly again, to 94 dB/St at 𝑆𝑡 = 4.6. The sound pressure spectra are 

affected mainly by the destiny spectra and the velocity fluctuation, which is the 

source of the sound generated by fluctuations in the turbulence [96]. 

  

Figure 8.5: Sound pressure spectra at Mach number 𝑀𝑗 = 0.6 at (a) 𝑥 = 0, 

 𝑟 = 7.5𝐷𝑗 and (b) 𝑥 = 5𝐷𝑗 , 𝑟 = 7.5𝐷𝑗 
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Figures 8.5 (b), 8.5 (c), and 8.5 (d) identify the study points located outside 

the fully developed region but on the same side. The fluctuations in turbulence in 

the interaction between the streamflow and the surrounding quiescent air generate 

the peak sound pressure. The simulation results show that the sound pressure spectra 

decrease slightly with increasing Strouhal numbers. In general, at the same radial 

distance as the axial distance increases, the sound pressure spectra levels are higher, 

whereas the sound spectra decrease with higher Strouhal numbers at the same 

position in the simulation domain.  
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Figure 8.6: Sound pressure spectra at Mach number 𝑀𝑗 = 0.6 obtained at  𝑟 =

7.5𝐷𝑗 at (c) 𝑥 = 10𝐷𝑗, (d) 𝑥 = 15𝐷𝑗, and (e) 𝑥 = 20𝐷𝑗. 

8.5 Far-field jet noise 

The numerical prediction of far-field jet noise has received significantly more 

attention during the past few decades. One of the main reasons for the increase in 

research interest is that numerical simulations have become faster due to high-
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performance computing and the use of parallel computing for the simultaneous 

processing of simulation codes. For the work presented here, the LBM code was 

applied in a CUDA parallel computing platform in the Graham-SHARCNET 

supercomputer system. After the near-field noise prediction had been obtained as set 

out in section 8.4, the Kirchhoff surface integral method could be applied for 

predicting the far-field jet noise. 

The correct placement of the Kirchhoff surface around the jet is essential for 

accurate predictions. The first step was to generate the control surface around the jet 

at radial direction 5𝐷𝑗 because the velocity becomes negligible near a radial distance 

of 5𝐷𝑗. As a case study in experimental research, the far-field noise was predicted 

for an observer located at arc 52𝐷𝑗 from the jet exit center and at a range of angles 

from 𝜃 = 15 to 𝜃 = 90. 

Figure 8.7 presents the overall sound pressure levels evaluated in the far-field 

for two Mach numbers, 𝑀𝑗 = 0.5 and 𝑀𝑗 = 0.75, as functions of the polar angle 

measured to the jet axis. According to the characteristics of the experimental study, 

the jet sound pressure level is radiated predominantly in the downstream direction 

and reaches a peak at angles of 𝜃 = 20 to 𝜃 = 30. At Mach number 0.6, the sound 

pressure levels decrease slightly for the peak at an angle 𝜃 = 30, which compares 

well with the experimental data, with overpredictions of 1dB, which denotes 

excellence in aeroacoustics studies. The prediction results for Mach number 0.75 
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show a peak sound pressure between 𝜃 = 30 and 𝜃 = 40, but 𝜃 = 25 in the 

experimental results, with an overprediction of about 3dB, which is acceptable. The 

LBM overpredicts at high Mach numbers due to the LBM limitations related to 

solving high Mach number flows. 

 

Figure 8.7: Overall sound pressure levels for jets at Mach numbers 𝑀𝑗 = 0.6 and 

𝑀𝑗 = 0.75 obtained at a radial distance of 52𝐷𝑗 from the jet exit. 

The results of the investigation of the far-field sound spectra for a subsonic jet 

with 𝑀𝑗 = 0.6 are set out in Figure 8.8 as a function of the Strouhal numbers at 𝜃 =

25° , 𝜃 = 40 and 𝜃 = 60°, with peaks that are collapsed using appropriate level 

scaling similar to the scales employed in the experimental studies. The LBM-

Kirchhoff predictions are slightly higher than Barré’s [95] experiment results, but 

with acceptable deviations: the worst case is 3dB higher. The amplitude of the sound 
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pressure spectrum appears higher than the experimental data due to the high 

frequency produced by the kinetic energy in the shear layer region. Some variations 

in the sound radiation angles between the experimental results and the LBM-

Kirchhoff numerical predictions are due to the use of different measurement 

techniques for the sound radiation angle and the sound source distributions. 

 

Figure 8.8: Sound pressure spectra levels for a jet at a Mach number of 𝑀𝑗 = 0.6 

obtained at a radial distance 52𝐷𝑗 from the jet exit. 

 

8.6 Summary 

The numerical simulation of a subsonic jet at Mach 0.5 and 0.75 was 

performed using LBM in combination with Kirchhoff's surface integral method. The 
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LES was implemented in LBM with multiple relaxation times (MRT) to simulate a 

highly turbulent flow using CUDA programming in a Graham heterogeneous 

cluster. The results show that the jet simulation was in good agreement with the 

experimental data and with the jet characteristics theory published in the literature. 

The mean axial velocity and the turbulence intensity were in good agreement with 

the results of Lyu’s [94] recent numerical experiments. The overall sound pressure 

level (integrate SPL over all resolved frequencies) along a line parallel to the jet axis 

at a radial distance 𝑟 = 7.5𝐷𝑗 agrees reasonably well with Barré’s experimental 

findings. 

The sound spectra in the near-field were also studied at five different points 

in the domain. Here as well, the results were in very good agreement with other 

experimental findings but with higher and lower predictions at some frequencies. In 

the far-field jet noise predicted using the Kirchhoff method at an observer distance 

𝑟 = 52𝐷𝑗, the centerline of the jet was compared with the Barré [95] experiment at 

𝑀𝑗 = 0.6. At a high subsonic value of 𝑀𝑗 = 0.75 the results were overpredicted due 

to the LBM limitation with respect to solving high Mach number flows. 

A powerful CFD tool for simulating most kinds of fluid flows, LBM can be 

merged with other CFD methods such as LED. High-performance computing is 

required for the in-depth study of three-dimensional flows. When MRT is used in 
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3D LBM models, the code run time becomes a critical aspect of the research, 

especially for large simulation domains. LBM implementation on a GPU is therefore 

beneficial and reduces the time by 120X compared to employing a CPU. 
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Chapter 9 

Conclusion and Future Work 

9.1 Conclusion 

The lattice Boltzmann method (LBM) is a powerful numerical method that is 

fast increasing in popularity and has also become serious competition for traditional 

computational fluid dynamics methods such as finite difference, finite element, and 

finite volume. LBM is based on the kinetic theory method, in which the behaviour 

of a system is described at the kinetic level through the lattice Boltzmann discrete 

equation. This technique means that the method offers numerous advantages and 

also enables the efficient and accurate modelling of complex multi-physics 

phenomena [97].  

LBM originated from the lattice gas automata (LGA) and operates based on 

distribution functions in space and time, which requires velocity space discretization. 

A limitation has been associated with solving high Mach number flows when using 

low-order Maxwell distribution functions in a polynomial form. In the research 

conducted for this thesis, this limitation has been overcome through the use of a 

high-order equilibrium distribution function along with an alternative equilibrium 

function introduced by Kataoka and Tsutahara [1]. Subsonic flows have been solved 

for different models under a number of boundary conditions. Simulated turbulent 
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subsonic jet flows provided excellent test cases for studying the ability of the LBM 

to solve high Mach number flows, which encouraged the use of the properties of the 

resulting near-field flows for the study of far-field jet aeroacoustics. 

This research also involved the development of an in-house compressible 

LBM code in conjunction with large-eddy simulation (LES) and the Kirchhoff 

surface integral method as a means of predicting turbulent jet noise in the far-field. 

When the Kirchhoff surface integral approach is applied, the correct placement of 

the control surface around the jet is essential for accurate predictions. In addition, it 

might be difficult or even impossible to enclose all nonlinearities in the axial 

direction. That is, the control surface end might cut off some of the noise-producing 

portions of the downstream flow. To ensure that all nonlinearities are captured, the 

control surface end in the axial direction can be moved farther downstream, but then 

the study domain becomes so large that more memory might be needed for the 

computer to run the simulation code. 

According to the results obtained, combining LBM with Kirchhoff's surface 

method produces a reasonable numerical technique, which gives highly accurate 

results compared to the corresponding experimental data available in the literature. 

A final component of the research was the implementation of the LBM-LES code 

on the CUDA program and its execution on graphics processing units (GPUs) in 
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order to further enhance its computational efficiency, particularly for 3D 

calculations. 

9.2 Future Work 

 The findings from this research point to several directions in which the newly 

developed methods can be further extended and applied. Recommendations for 

future work include the following: 

• Extend the D3Q19 lattice model to the D3Q27 lattice model using a higher-

order equilibrium distribution function in a GPU, which can increase accuracy 

and enhance the simulation results. 

• Simulate supersonic jet flows by using another alternative equilibrium 

distribution function, such as the circular distribution function, which is a 

probability distribution function on a unit circle. This technique would be 

simple to integrate into the particle velocity space and could be used for 

simulations involving high Mach numbers [29]. 

• Implement another hybrid acoustics approach such as that of Ffowcs Williams 

and Hawkings (FW-H) in LBM for solving rotor applications such as fan 

turbines. This work would require a surface and a volume integral, but it often 

produces good solutions through the use of the surface integral part in the 

equation alone [98], [99]. 
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• Extend the C++ CUDA code capabilities to enable the use of GPUs on 

multiple compute nodes in a parallel computing process in the GPUs, which 

allows hundreds of GPUs to be employed in parallel. 



133 
 

References 

 

[1]  T. Kataoka and M. Tsutahara, "Lattice Boltzmann method for the 

compressible Euler equations," Physical Review E, vol. 69, no. 5, pp. 

056702-1 -056702-14, 2004.  

[2]  T. Kataoka and M. Tsutahara, "Lattice Boltzmann model for the 

compressible Navier-Stokes equations with flexible specific-heat ratio," 

Physical Review, vol. 69, no. 3, pp. 035701-1 -035701-4, 2004.  

[3]  D. A. Perumal and A. K. Dass, "A Review on the development of lattice 

Boltzmann computation of macro fluid flows and heat transfer," Alexandria 

Engineering Journal, vol. 54, no. 4, pp. 955-971, 2015.  

[4]  K. Mattila, Implementation techniques for the lattice Boltzmann method, 

University of Jyväskylä, 2010.  

[5]  J. Tu, G. H. Yeoh and C. Liu, Computational fluid dynamics: a practical 

approach, Oxford: Butterworth-Heinemann, 2018.  

[6]  Y. He, Q. Li, Y. Wang and G. Tang, "Lattice Boltzmann method and its 

applications in engineering thermophysics," Chinese Science Bulletin, vol. 

54, no. 22, pp. 4117-4134, 2009.  

[7]  Y. B. Bao and J. Meskas, "Lattice Boltzmann Method for Fluid 

Simulations," 2011. 

[8]  W. Feng, B. He, A. Song, Y. Wang, M. Zhang and W. Zhang, 

"Compressible Lattice Boltzmann Method and Applications," International 



134 
 

Journal of Numerical Analysis and Modeling, vol. 9, no. 2, p. 410–418, 

2012.  

[9]  S. R. Rao, R. Deshmukh and S. Kotnala, "A Lattice Boltzmann Relaxation 

Scheme for Inviscid Compressible Flows," Bangalore, 2015. 

[10]  V. Malyshkin, Parallel computing technologies, 10, Ed., Berlin: Springer-

Verlag Berlin and Heidelberg GmbH & Co. K, 2009.  

[11]  X. Shan and X. He, "Discretization of the velocity space in the solution of 

the Boltzmann equation," Physical Review Letters, vol. 80, no. 1, pp. 65-68, 

1 1998.  
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Appendices 
 

Appendix A 

Maxwell distribution function 

 𝑓𝑒𝑞(𝜌, 𝑢, 𝜃) = 𝜌(2𝜋𝜃)(−𝐷/2)𝑒
[−
(𝑐−𝑢)2

2𝜃
]
 (A. 1a) 

 

The special dimension 𝐷 = 3, and 𝜃 = 𝑅𝑇 

 𝑓𝑖
𝑒𝑞(𝜌, 𝑢, 𝜃) = 𝜌 (

1

2𝜋𝜃
)
3/2

𝑒
[−
(𝑐𝑖−𝑢)

2

2𝜃 ]
 (A. 1b) 

The Taylor series for the exponential term  𝑒
[−
(𝑐−𝑢)2

2𝜃
]
 using Maple 

Software: 

  

 

Third-order
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Fourth-order 

 

 

Fifth-order 

 

Sixth-order 
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Seventh-order 

 

 

Appendix B 

Chapman-Enskog Expansion  

The Chapman-Enskog expansion can be used for recovering the Navier-

Stokes equations from the LBE. For simplicity, the SRT-LBE with the BGK 

collision operator is used. 

 𝑓𝑖(𝑥⃗ + 𝑐𝑖 , 𝑡 + 1) + 𝑓𝑖(𝑥⃗, 𝑡) −
1

𝜏
(𝑓𝑖 − 𝑓𝑖

𝑒𝑞
) (B. 1) 

 

The incompressible Navier-Stokes equations can be recovered from this equation 

through the Chapman-Enskog analysis, which is essentially a formal multiple 

scaling expansion: 
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 𝑓𝑖 = 𝑓𝑖
(0)
+ 𝜖𝑓𝑖

(1)
+ 𝜖2𝑓𝑖

(2)
+⋯ (B. 2a) 

 

 
𝜕

𝜕𝑡
= 𝐾𝑛

𝜕

𝜕𝑡1
+ 𝐾𝑛2

𝜕

𝜕𝑡2
, (B. 2b) 

 

 
𝜕

𝜕𝑥
= 𝐾𝑛

𝜕

𝜕𝑥1
, (B. 2c) 

 

The expansion parameter 𝜖, is the Knudsen number, defined as the ratio between the 

mean free path of a gas molecule and a macroscopic length scale. 

 𝐾𝑛 =
𝜆

𝐿
 (B. 3a) 

where 𝜆 is the mean free path and L is the representative physical length scale. 

For the Boltzmann gas, the mean free path is calculated through 

 𝐾𝑛 =
𝑘𝐵𝑇

√2𝜋𝑑2𝑝𝐿
 (B. 3b) 

 

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, 𝑑 is the particle 

diameter, and 𝑝 is the total pressure. 
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For particle dynamics in the atmosphere, at a temperature of 25 °C and a pressure 

of 1 atm, 

𝜆 ≈ 8 × 10−8𝑚 

The non-dimensional relaxation time  𝜆 has the same scaling as the Knudsen 

number. 

 

 𝜏̂ =
𝜏

Δ𝑡
~

𝑙
𝑐0
𝐿
𝑐0

=
𝑙

𝐿
= 𝐾𝑛 (B. 3c) 

From Eq. (B.1) the lattice Boltzmann equation can be written as 

∆𝑡 (
𝜕

𝜕𝑡
+ 𝜉𝑖𝛼

𝜕

𝜕𝑥𝛼
) 𝑓𝑖 +

Δ𝑡2

2
(
𝜕

𝜕𝑡
+ 𝜉𝑖𝛼

𝜕

𝜕𝑥𝛼
)
2

𝑓𝑖 +
1

𝜏̂
(𝑓𝑖 − 𝑓𝑖

𝑒𝑞
)

+ 𝑂(Δ𝑡3) = 0 

(B. 4) 

Using this technique, the particle distribution function 𝑓𝑖 can be expanded about 

the local equilibrium function 𝑓𝑖
𝑒𝑞

 as 

 𝑓𝑖 = 𝑓𝑖
𝑒𝑞
+ 𝐾𝑛𝑓𝑖

𝑛𝑒𝑞
 (B. 5) 

where 𝑓𝑖
𝑒𝑞

 is defined from the Maxwell equilibrium function as 
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 𝑓𝑖
𝑒𝑞
= 𝜌𝜔𝑖 (1 +

1

𝑐𝑠
2
𝑐𝑖 . 𝑢⃗⃗ +

1

2𝑐𝑠
2
𝑄𝑖: 𝑢⃗⃗𝑢⃗⃗) (B. 6) 

and this equation must satisfy 

 ∑𝑓𝑖
𝑒𝑞

𝑞−1

𝑖=0

= 𝜌 (B. 7a) 

 

 
1

𝜌
∑𝑐𝑖𝑓𝑖

𝑒𝑞

𝑞−1

𝑖=0

= 𝑢⃗⃗ (B. 7b) 

The non-equilibrium distribution function 

 𝑓𝑖
𝑛𝑒𝑞

= 𝑓𝑖
1 + 𝐾𝑛𝑓𝑖

2 + 𝒪(𝐾𝑛2) (B. 8) 

has the following constraints to ensure conservation of mass and momentum in the 

collision operator: 

 ∑𝑓𝑖
𝑛𝑒𝑞

𝑞−1

𝑖=0

= 0 (B. 9a) 

 

 ∑𝑐𝑖𝑓𝑖
𝑛𝑒𝑞

𝑞−1

𝑖=0

= 0 (B. 9b) 
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The collision operator for the BGK model is 

 Ω𝑖 =
1

𝜏
(𝑓𝑖 − 𝑓𝑖

𝑒𝑞
) (B. 10) 

The Taylor series is expanded and rewritten in the consecutive order of 𝐾𝑛 as 

 𝑓𝑖
0 = 𝑓𝑖

𝑒𝑞
:      𝒪(𝐾𝑛0) (B. 11) 

 

 (𝜕𝑡0 + 𝑐𝑖 . ∇)𝑓𝑖
0 = −

1

𝜏
𝑓𝑖
1:      𝒪(𝐾𝑛1) (B. 12) 

 

 𝜕𝑡1𝑓𝑖
0 + (

2𝜏 − 1

2𝜏
) (𝜕𝑡0 + 𝑐𝑖 . ∇)𝑓𝑖

1 = −
1

𝜏
𝑓𝑖
2:      𝒪(𝐾𝑛2) (B. 13) 

Using the constraints shown in Eq. (B. 6) to (B. 9), and summing the first-order 

expansion (Eq. (B. 12)) for all i, the continuity equation can be obtained as 

 
𝜕𝜌

𝜕𝑡
+ ∇. 𝜌𝑢⃗⃗ = 0 (B. 14) 

 

Multiplying by 𝑐 on both sides of Eq. (B. 12) and (B. 13) and combining them 

enables the momentum equation to be derived as 

 
𝜕(𝜌𝑢⃗⃗)

𝜕𝑡
+ ∇. (Π0 +

2𝜏 − 1

2𝜏
Π1) = 0 (B. 15) 
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Multiplying Eq. (B. 12) by 𝑐𝑖 gives 

 𝑐𝑖(𝜕𝑡0 + 𝑐𝑖 . ∇)𝑓𝑖
0 = 𝑐𝑖 ∗

−1

𝜏
𝑓𝑖
1:      (B. 16) 

 

 

 

𝜕(𝜌𝑢⃗⃗)

𝜕𝑡
+ ∇. (𝑝𝛿𝛼𝛽 + 𝜌𝑢𝛼𝑢𝛽 +

2𝜏 − 1

2𝜏
𝜈(∇𝛼(𝜌𝑢𝛽) + (∇𝛽𝜌𝑢𝛼))) = 0 (B. 17) 

where Π0 and Π1 are momentum flux tensors defined as 

 Π0 =∑𝑐𝑖𝑐𝑖𝑓𝑖
0 = 𝑝𝛿𝛼𝛽 + 𝜌𝑢𝛼𝑢𝛽

𝑞−1

𝑖=0

 (B. 18a) 

 

 Π1 =∑𝑐𝑖𝑐𝑖𝑓𝑖
1 = 𝜈 (∇𝛼(𝜌𝑢𝛽) + ∇𝛽(𝜌𝑢𝛼))

𝑞−1

𝑖=0

 (B. 18b) 

where 𝑝 is the pressure and is related to the speed of sound and density as follows: 

 𝑝 = 𝑐𝑠
2𝜌 =

1

3
𝜌 (B. 18c) 

The resulting momentum equation becomes 
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𝜌 (
𝜕𝑢⃗⃗

𝜕𝑡
+ 𝑢⃗⃗. ∇𝑢⃗⃗) = −∇𝑝 + 𝜌𝜈∇2𝑢⃗⃗ (B. 19) 

which is identical to the Navier-Stokes equations. 

 



156 
 

Appendix C 

 

Simulation flowchart for the LBM-LES model 
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Computer system information 

PC1: 

Processor: Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, 2592 Mhz, 4 

Core(s), 8 Logical Processor(s). 

Installed Physical Memory: random access memory (RAM) 12.0 GB. 

GPU: NVIDIA GeForce 940M, 4GB(DDR3). 

PC 2: 

Processor: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 3408 Mhz, 8 Cores, 8 

Logical Processors. 

Installed Physical Memory: random access memory (RAM) 16.0 GB. 

GPU: Radeon R7 360 / R9 360 OEM, 2GB(DDR3). 

Sharcnet graham cluster 

Nods: 801-803: 

56 cores 

4 sockets x 14 cores per socket 

Intel E7-4850 v3 (Haswell) @ 2.2 GHz 

Memory: 3072.0 GB 

Local storage: 1.2 TB 

Nods: 828‑987:  

32 cores 

2 sockets x 16 cores per socket 

Intel E5-2683 v4 (Broadwell) @ 2.1 GHz 

Notes: Accelerated compute nodes with 2 × NVIDIA Pascal P100 GPUs (12GB 

HBM2) 

Memory: 128.0 GB 

Local storage: 800 TB 
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LBM-LES C++ Code 

Input subroutines 
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Multidimensional Pointer Arithmetic in C++ for building the 3D dimensions 
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The monitoring parameters (while the code is running) 
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Calculations of the flow parameters 

 

LBM-LES  
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Time-averaged velocity 

 

Turbulence time-averaged velocity
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Near-field noise 
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Building the Kirchhoff surface around the jet 
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Far-field noise 
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Appendix D 
 

GPU code 

Set CUDA parameters 
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Input the flow parameters 
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The flow domain 
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Initialization 
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Appendix E 

 

Basic Concepts in Acoustics and Noise 

A propagating sound wave can be described as a pressure disturbance 

(fluctuation) in a fluid superposed to its mean pressure:  

 𝑝′ = 𝑝̅ + 𝑝 (E. 1) 

where 𝑝 is the fluid pressure, 𝑝̅ represents the fluid mean pressure, and 𝑝′denotes 

the fluid fluctuation pressure. 

The wavelength 𝜆 of the periodic pressure signal is defined as 

 𝜆 =
𝑐

𝑓
  

(E. 2) 

where 𝑐 is the speed of sound and 𝑓 is the pressure frequency. 

The sound pressure level (SPL) in dB is a logarithmic function that measures 

the fluid sound pressure relative to a reference pressure. 

𝑆𝑃𝐿 = 10 log10 (
𝑝

𝑝𝑟𝑒𝑓
)

2

= 20 log10 (
𝑝

𝑝𝑟𝑒𝑓
) 

   (E. 3) 

where 𝑝𝑟𝑚𝑠 is the root-mean-square sound pressure, and the reference sound 

pressure 𝑝𝑟𝑒𝑓 is typically the threshold of human hearing ( 𝑝𝑟𝑒𝑓 = 2 × 10
−5 pa).  
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The overall sound pressure level (SPL) in dB 

 𝑂𝐿𝑆𝑃𝐿 = 10 log10 (
𝑝𝑟𝑚𝑠
𝑝𝑟𝑒𝑓

)

2

= 20 log10 (
𝑝𝑟𝑚𝑠
𝑝𝑟𝑒𝑓

) 
 

(E. 4) 

were 𝑝𝑟𝑚𝑠 is root mean square velocity: 

𝑝𝑟𝑚𝑠 = √
∑ (𝑝)2𝑁
𝑛

𝑁
 

The power spectral density per Strouhal number is 

 𝑃𝑆𝐷 = 10 log10 (
𝑝2

𝑟𝑚𝑠
𝑈𝑗

𝑝2
𝑟𝑒𝑓
𝐷
) 

 
(E. 5) 

 

The sound pressure in a frequency band is 

 

 𝑆𝑃𝐿(𝑓𝑐) = 20 𝑙𝑜𝑔 [
𝑃rms( 𝑓𝑐)

𝑃ref

] 
 

(E. 6) 

where   𝑓𝑐 is the band center frequency. 

 


