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Abstract 

The Toarcian Oceanic Anoxic Event (T-OAE) of the Early Jurassic is one of several 

Mesozoic instances of expanded ocean anoxia, coupled with feedbacks and perturbations in 

Earth’s systems. The drivers for these feedbacks are debated, but the general consensus is that 

the event is initially rooted in the emplacement of the Karoo–Ferrar large igneous province. 

The T-OAE is also linked to a second-order mass extinction in the marine and terrestrial 

realms. Study of the T-OAE aims to provide insight into the causes and consequences of the 

environmental changes, which may be applicable at present given that some of the 

characteristics of the T-OAE (e.g. carbon inputs leading to global warming) are reflected in the 

modern environment. The purpose of this study, which focused on an Early Jurassic section 

containing the T-OAE in northeastern British Columbia, was to provide extensive insight into 

the local depositional environment, as well as a glimpse at the global ocean paleoredox 

conditions across the duration of the event.  

In northeastern British Columbia, the Early Jurassic is divided into the Gordondale 

Member and Poker Chip Shale of the lower Fernie Formation. The studied drill core contains 

both members; the Gordondale is the basal member composed of organic-rich, calcareous 

mudstone, whereas the overlying Poker Chip shale is a siliceous mudstone to siltstone unit. To 

provide context for the T-OAE in the study core, organic carbon isotope compositions were 

profiled in search of a telltale negative carbon isotope excursion (N-CIE) which signals the 

event zenith. The event was identified by an N-CIE in the uppermost 7 meters of the 

Gordondale Member below the contact with the Poker Chip Shale.  

Local paleoenvironmental reconstruction was accomplished using elemental redox 

sensitive trace metal geochemistry to determine the redox regimes (oxic, suboxic, anoxic or 

euxinic) and hydrography (open versus restricted) of the depositional basin. The Gordondale 

Member was characterised as anoxic to euxinic. Elevated Mo and V (up to 370 µg/g and 2757 

µg/g, respectively) suggested some intervals were deposited in an euxinic environment. The U 

and Re concentrations are also elevated in the euxinic intervals (up to 36 µg/g and 878 ng/g, 

respectively). Intervals with lower Mo and V concentrations (< 53 µg/g and < 289 µg/g, 

respectively) but elevated U and Re content (up to 33 µg/g and 287 ng/g, respectively) 

indicated anoxic (non-sulfidic) conditions. The Poker Chip Shale was characterised by suboxic 
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conditions (moderate Mo, V, U, and Re concentrations; < 21 µg/g, < 248 µg/g, < 6.3 µg/g, 86 

ng/g, respectively). The cored interval was characterised as having been deposited in an open 

marine upwelling zone environment. This interpretation is based on an Mo–U covariation trend 

similar to the modern North and South American Pacific coastal basins (e.g. California, 

Mexico, Peru), and a Cd–Mo covariation trend indicating substantial primary productivity as a 

result of upwelling nutrient-rich deep waters.  

The T-OAE was a period where seafloor anoxia and/or euxinia is thought to have 

expanded across the global oceans. An estimate of the global area of seafloor anoxia and 

euxinia can be obtained from recently-developed mass balance models for elemental Re and 

Mo. Samples deemed anoxic (enrichment factors of U > 3.6 and Re > 100) or euxinic (anoxic, 

and enrichment factor of V > 3, S/Fe > 1.15) were grouped stratigraphically by those which 

occurred before the N-CIE (“Pre-N-CIE”), and during the N-CIE (two groups, “lower N-CIE” 

and “upper N-CIE”). The results of the mass balance model illustrated an expansion of anoxic 

and euxinic seafloor areas at the onset of the N-CIE (Pre-N-CIE to lower N-CIE) from ~1% to 

6% of the total seafloor area. This was followed by a contraction of the anoxic and euxinic 

seafloor areas from ~6% to 4% of the total seafloor area from the lower to upper portion of the 

N-CIE.  

An attempt to link the expansion of anoxic and euxinic seafloor areas to Karoo–Ferrar 

large igneous province activity was made using a sedimentary Hg proxy. Previous study 

indicated that the utility of the proxy may decrease with increasingly distal (deeper waters, 

farther offshore) marine deposition. No distinctive Hg signature was associated with the N-CIE 

in the study core. As the study core was interpreted as having been deposited in a deep 

water/offshore environment, the lack of a Hg signal for volcanic activity was possibly affected 

by distal deposition. Thus, no conclusions were drawn from sedimentary evidence of enhanced 

volcanic activity. 

While no direct link to the Karoo–Ferrar province was made within the core, the mass 

balance models suggest that the T-OAE was indeed a period of expanded anoxic/euxinic 

seafloor area, at least in part. The maximum 6% total seafloor area covered by anoxia/euxinia 

was most likely located along the continental margins, thus the deep waters of the abyssal 

plains and central ocean likely remained oxygenated. These findings have demonstrated that 
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the T-OAE was a minor event relative to the well-known “Big 5” mass extinctions, yet it was 

still associated with biodiversity loss. By monitoring modern anoxic/euxinic seafloor area, it 

may become possible to track the changes in Earth’s systems through comparison with these 

ancient OAE events. 
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1. Introduction 

Transient episodes of expanded ocean anoxia (low to no oxygen) are observed in the 

Phanerozoic geological record as coeval, globally distributed organic-rich black shales 

(Sageman, 2009). Major Mesozoic instances of these conditions, termed “Oceanic Anoxic 

Events” (OAEs), are distinguished by high organic carbon (Corg) content, organic and inorganic 

carbon isotope excursions (CIEs), and enrichments of redox-sensitive trace metals in black 

shales (Jenkyns, 2010). Further study of OAEs is necessary to understand major changes in 

Earth’s climate, ocean and biological systems through time; many are accompanied by mass 

extinctions that decimated marine and/or terrestrial life (Pálfy & Smith, 2000). Current 

anthropogenic activities may be contributing to similar changes in these Earth systems, 

including a rise in atmospheric and ocean temperatures, ocean acidification, ocean 

deoxygenation, and aquatic nutrient loading (Breitburg, et al., 2018). Some of the scientific 

community postulates that these changes are leading to an Anthropocene extinction event (e.g. 

Keller, et al., 2018; Bacon & Swindles, 2016; Ceballos, et al., 2015), which may have similar 

features to past OAEs. 

Early Jurassic rocks host the globally-identified Toarcian OAE (T-OAE). The T-OAE 

is identified over an estimated 300 to 500 kyr period (Sell, et al., 2014; Boulila, et al., 2014) in 

Early Jurassic organic-rich black shales by negative CIEs (N-CIEs) in inorganic (up to –4‰ 

from baseline values; e.g. Hesselbo, et al., 2000) and organic (–4 to –8‰ from baseline values; 

e.g. Them II, et al., 2017a) carbon fractions, embedded within a broader positive CIE (P-CIE). 

Input of isotopically-light carbon (12C) causes the negative excursion in the carbon isotope 

signature (δ13C), and may be a result of one or all of the following mechanisms: methane 

hydrate destabilization and injection into the shallow ocean–atmosphere system (Hesselbo, et 

al., 2007), volcanic emissions (Kuroda, et al., 2007), thermogenic methane release during 

igneous intrusions interacting with coal or black shales (McElwain, et al., 2005), recycling of 

dissolved inorganic carbon from bottom waters to the upper water column during upwelling or 

seasonal overturn ('Küspert Model'; van de Schootbrugge, et al., 2005), or continental 

weathering of organic-rich soils and rocks (Higgins & Schrag, 2006). The P-CIE is driven by 

high primary productivity levels and subsequent organic carbon burial. The T-OAE was 
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accompanied by a marine extinction (5% fossil family loss) and continental extinction (2-12% 

fossil family loss) (Pálfy & Smith, 2000). 

To fulfil the definition of an OAE, the event must have occurred globally. Much 

evidence of the T-OAE is found in Europe (e.g. United Kingdom, Germany, Italy, Switzerland, 

Portugal) where Jurassic outcrop and subsurface sections are present and preserved (Jenkyns, 

2010). The European sections represent deposition along the margins of the Tethys sea 

(precursor to Atlantic and Indian oceans), thus sections from the Panthalassa (Proto-Pacific) 

ocean must also contain the T-OAE (N-CIE) for the event to be classified as an OAE (Figure 

1). The N-CIE has been documented in Panthalassan sections from Japan (Gröcke, et al., 

2011), Canada (Them, et al., 2017a; Caruthers, et al., 2011), Argentina (Al-Suwaidi, et al., 

2010) and Chile (Fantasia, et al., 2018).  

 

Figure 1. Global Early Jurassic paleogeography and locations with the T-OAE identified. The T-

OAE has been identified in sections by a negative carbon isotope excursion (CIE) embedded within a 

positive CIE (white dots). The study section (yellow star) is located in British Columbia and was 

deposited on the northeast margin of Panthalassa (Proto-Pacific). Modified from Them et al. (2017a). 

The Early Jurassic in North America is relatively unexplored with respect to the T-

OAE, with the N-CIE identified in three Alberta sections (Them II, et al., 2019; Them II, et al., 

2017a; Them II, 2016) and one coastal British Columbian (Haida Gwaii) section (Them II, et 



3 

 

al., 2017a; Caruthers, et al., 2011). In the Western Canada Sedimentary Basin (WCSB), the 

Early Jurassic is represented by the lower Fernie Formation; in northeastern British Columbia 

(NEBC) this includes the organic-rich black shales of the Gordondale Member and Poker Chip 

Shale (PCS). This study includes δ13Corg signatures of the Gordondale Member and PCS from a 

drill core located 75 km west of Fort St. John, NEBC to confirm the presence of the N-CIE and 

allow for further examination of the T-OAE in the North American context. 

With the T-OAE identified in the core, major element, redox-sensitive trace metal and 

carbon geochemistry were employed to observe depositional conditions and changes before, 

during, and after the event. Mercury (Hg) and sulfur (S) analysis were conducted to establish a 

possible link to volcanism (i.e. emplacement of the Karoo–Ferrar large igneous province and 

related activity; Pálfy & Smith, 2000) as the initial driver of the T-OAE. It has recently been 

demonstrated that with increasingly distal marine deposition, the Hg paleoproxy may be less 

effective (Them II, et al., 2019). Because the study core is more distal than the sections studied 

in Them II et al. (2019), a comparison can be made to confirm this trend. Rock-Eval pyrolysis 

provides kerogen type and thermal maturity—parameters for organic matter source (marine or 

terrestrial) and extent of post-depositional processes (e.g. diagenesis, burial, hydrocarbon 

production). X-ray diffraction depicts mineralogical trends, with implications for paleolatitude 

and detrital input (e.g. carbonate versus siliciclastic deposition). Major and minor element and 

redox-sensitive trace metal concentrations and covariations are used to identify local 

paleoredox (e.g. Mo, Re, V, U, Re/Mo) and paleohydrographic (e.g. Mo/U, Cd/Mo) conditions. 

If the depositional basin was open to water mass exchange with the global ocean, and reducing 

conditions are indicated through local redox proxy analysis (e.g. anoxia or euxinia by elevated 

Re or Mo concentrations, respectively) the cored section is a valid candidate to investigate 

global paleo-ocean conditions. This combination of redox-sensitive geochemical analyses has 

yet to be performed on any of the North American T-OAE sections. 

Recently developed mass balance models for rhenium (Re) and molybdenum (Mo) are 

used to approximate the relative area of ancient global seafloor covered by anoxic or euxinic 

conditions, respectively (Sheen, et al., 2018; Reinhard, et al., 2013). Mass balance models are 

used for the T-OAE section in the core to provide an estimated area of bottom water anoxia 

and euxinia before and during the event. Because these models were developed to observe 

long-term temporal changes in anoxia and/or euxinia (through the entire geological record), 
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rather than short temporal scales as discussed in the context of the T-OAE, the models are 

adjusted to the best-estimated local and temporal conditions. Other estimates of global seafloor 

anoxia and/or euxinia over the T-OAE have been made using stable Tl and Mo isotopes (Them 

II, et al., 2018; Pearce, et al., 2008), but the elemental Mo and Re mass balance models have 

not been applied to the T-OAE. The expansion of anoxic and/or euxinic bottom waters may 

have exacerbated changes to the climate system and/or promoted large-scale die-off of marine 

species. By quantifying the expansion, we can learn how even minor changes may affect the 

modern marine environment. 

1.1. Study Objectives 

This thesis is centred around two main objectives, and several subobjectives, which 

combine geochemical results obtained from the study core samples: 

(1) Characterise the local depositional environment over the period covered in the core; 

(1.1) Determine bottom-water paleoredox conditions using redox-sensitive trace metal 

concentrations and ratios; 

(1.2) Identify the paleohydrographic regime using Mo–U and Cd–Mo covariation 

diagrams, and answer the following questions: 

(1.2.1) Was the basin connected to, or restricted from global ocean water mass 

exchange? 

(1.2.2) Were organic-richness and trace metal enrichment controlled by enhanced 

productivity in an open ocean upwelling zone, or by enhanced preservation 

in a restricted, highly anoxic basin? 

(2) If the findings from subobjective 1.1 show deposition under anoxic/euxinic bottom-waters, 

and subobjective 1.2 implies open ocean conditions, then an estimation of the area of 

anoxic/euxinic seafloor will be attempted using Re and Mo mass balance models. This will 

answer the following questions regarding the T-OAE: 

(2.1) What was the extent of anoxic/euxinic seafloor expansion? 

(2.2) Did euxinic conditions prevail over non-sulfidic (ferruginous) conditions? 

(2.3) Within the T-OAE itself, was there an expansion, contraction or no change in the 

area of seafloor anoxia/euxinia? 
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From the completion of these objectives, a greater understanding of the temporal and 

spatial extent of anoxia and/or euxinia through the T-OAE will be accomplished. Additionally, 

because the study core is a new section containing the T-OAE in an underrepresented area 

(North America; versus Europe) the geochemical analyses and findings will allow for further 

verification of the T-OAE’s global nature. This will also allow for direct comparison to the 

sections studied in Alberta (Them II, et al., 2019; 2018; 2017b; 2017a). 
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2. Oceanic Anoxic Events 

2.1. Oceanic Anoxic Events 

Schlanger and Jenkyns (1976) first proposed the term “Oceanic Anoxic Events” 

(OAEs) to describe coeval, globally-distributed Cretaceous marine black shales. The term has 

since been extended to include multiple events through the Mesozoic stratigraphic record. 

Schlanger and Jenkyns (1976) suggested that an increase in the area of warm, shallow marine 

environments led to an increase in primary productivity and thus export of organic matter to 

bottom waters. As organic matter respiration and decomposition depletes the oxygen supply, 

bottom waters become more anoxic allowing preservation of organic matter to become more 

efficient. Therefore, a large quantity of organic matter is preserved in a laterally and vertically 

expansive oxygen-minimum zone from ocean depths ranging from less than 300 m to over 

1200 m.  

Strata deposited during OAEs share many similar geochemical characteristics. 

Typically, these strata are organic-rich, exhibit carbon isotope excursions (CIEs), and have 

high phosphorus (P) content at their onset which indicate enhanced burial and/or preservation 

of organic matter (Jenkyns, 2010). Additionally, redox-sensitive trace metal enrichments, shifts 

to lighter Mo and heavier thallium (Tl) isotope signatures, and photic zone sulfur-reducing 

bacteria biomarker signatures reflect expanded bottom-water anoxia and/or euxinia (Them II, 

et al., 2018; Jenkyns, 2010; Cohen, et al., 2008). Oxygen isotope minimums and Mg/Ca ratio 

maximums in bulk carbonates imply temperature increases and/or greenhouse-Earth periods 

(Jenkyns, 2010). Strontium (Sr), osmium (Os) and calcium (Ca) isotope signatures also reveal 

an increase in continental weathering leading up to, or during many OAEs (Them II, et al., 

2017b; Brazier, et al., 2015; Jenkyns, 2010; Jones & Jenkyns, 2001). 

Several OAEs have been identified, the most prominent events being the Toarcian (T-

OAE; Posidonienschiefer Event; Early Jurassic), Early Aptian (OAE 1a; Selli Event; Early 

Cretaceous), and the Cenomanian–Turonian (C/T OAE or OAE 2; Bonarelli Event; Late 

Cretaceous) (Jenkyns, 2010). Less significant OAEs include the Late Valanginian Weissert 

Event, Late Hauterivian Faraoni Event, Early Albian Paquier Event (OAE 1b), Late Albian 
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Breistroffer Event (OAE 1d), Coniacian–Santonian Event (OAE 3) of the Cretaceous, and the 

Paleocene–Eocene Thermal Maximum (PETM) of the Paleogene (Jenkyns, 2010). 

2.2. Potential Triggers of OAEs 

The main drivers increasing global anoxic bottom waters during OAEs may include 

climate feedback mechanisms such as warmer global temperatures (e.g. Suan, et al., 2008), 

increased nutrient availability from continental runoff (e.g. Them II, et al., 2017b), and reduced 

ocean circulation (Dera & Donnadieu, 2012). However, debate remains on the initiating 

mechanism behind the observed changes. One suggestion is the emplacement of large igneous 

provinces (LIPs), which have been synchronously linked with most major OAEs; e.g. the 

Karoo–Ferrar LIP and the T-OAE at ~183 Ma (Burgess, et al. 2015; Sell, et al., 2014; Pálfy & 

Smith, 2000). Elevated Hg concentrations and Hg/TOC ratios in T-OAE sediments suggest 

periods of enhanced atmospheric Hg input from volcanic outgassing during LIP events (Them 

II, et al., 2019; Percival, et al., 2015). Extrusive igneous (volcanic) activity emits greenhouse 

gases such as methane, carbon dioxide and water vapour during eruptions, as will interactions 

of intrusive igneous bodies with organic-rich strata (e.g. coal, black shales) (Wignall, et al., 

2009; Retallack & Jahren, 2008; Kuroda, et al., 2007; McElwain, et al., 2005). These emission 

processes result in global warming conditions akin to those anticipated during OAEs. 

Contributing factors to OAEs spurred by environmental changes may include decreasing 

oxygen solubility with increasing ocean temperatures (Meyer & Kump, 2008), destabilisation 

or decomposition of methane hydrates from sediments that exacerbate greenhouse warming 

effects (Them II, et al., 2017a; Hesselbo, et al., 2007; 2000) and increased continental 

weathering that elevates nutrients in runoff and thus primary productivity where nutrients 

become available (Pogge von Strandmann, et al., 2013; Jenkyns, 2010). 

2.3. Expansion of Anoxia/Euxinia during the T-OAE 

Redox sensitive trace metals (e.g. Mo, Re) are typically enriched in anoxic and/or 

euxinic sediments, but these types of sediments within the N-CIE of the T-OAE show muted 

enrichments (Them II, et al., 2017a; Them II, 2016; Jenkyns, 2010; Pearce, et al., 2008). The 

muted concentrations may be a result of enhanced global trace metal drawdown from seawater 
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into an increased area of anoxic/euxinic seafloor (Pearce, et al., 2008), rather than a shift to less 

anoxic conditions in the local depositional environment.  

Stable Tl isotope (ε205Tl) and Mo isotope (δ98Mo) compositions can also be used to 

infer expanded ocean anoxia and euxinia (Them II, et al., 2018; Pearce, et al., 2008). Thallium 

isotope fractionation occurs when Tl adsorbs to Mn particulates, where the particulate is 

enriched in heavier 205Tl (↑ε205Tl) and the surrounding seawater retains lighter 203Tl (↓ε205Tl). 

Fractionation does not occur when Tl is removed from seawater into euxinic sediments. Since 

Mn particulates are preserved under well-oxygenated bottom waters (where pore water is also 

oxic), a decrease in oxic conditions—and thus an increase in anoxic conditions—will lead to 

heavier seawater ε205Tl which is then recorded in organic-rich sediments. Them II et al. (2018) 

measured ε205Tl in the Bighorn Creek (Alberta) and Dotternhausen Quarry (Germany) T-OAE 

sections. They found that ε205Tl peaked at the N-CIE onset, followed by a minor decrease in 

the central N-CIE and a moderate increase towards the conclusion of the N-CIE in both 

sections. These signatures indicated two expansion events (at the onset and conclusion of the 

N-CIE) which they estimate to have required a decrease in oxic Mn burial area of ~25 to 50%, 

and therefore an equivalent increase in non-oxic (suboxic and/or anoxic) seafloor area to 

replace the lost oxic area.  

Euxinic sediments record seawater δ98Mo, which is controlled by preferential removal 

of the lighter Mo isotopes into oxic sediments and seawater enrichment of the heavier Mo 

isotopes. When areas of oxic seafloor decrease (and by inference the area of euxinic seafloor 

expands), the resulting seawater δ98Mo also decreases, thus euxinic sediment δ98Mo will 

decrease. Pearce et al. (2008) note pulsed δ98Mo excursions to lighter compositions through the 

N-CIE of the T-OAE, coupled with pulses of isotopically-light carbon injections. These are 

inferred to capture expansion of euxinic seafloor by a minimum tenfold areal increase. 
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3. Geological Setting 

The studied section (c-B6-A/94-B-8; 56°15ʹN, 122°04ʹW) is a 46 m drill core through 

Early Jurassic strata in the Western Canada Sedimentary Basin (WCSB), approximately 75 km 

west of Fort St John, British Columbia (Figure 2). The following section pertains to the local- 

to basin-scale geology of the stratigraphic units deposited during the Early Jurassic of the 

WCSB. 

 

Figure 2. Study Area. The cored section (c-B6-A/94-B-8; yellow star) cuts through Early Jurassic strata 

of the Western Canada Sedimentary Basin (WCSB) ~75 km west of Fort St John (FSJ), British Columbia. 

The Early Jurassic of the WCSB includes the Gordondale Member (Mb; blue shading), its southern 

Alberta equivalent (Nordegg Mb; grey shading) and the Poker Chip Shale (over most of the areas shaded 

blue or grey).  Known T-OAE studies (with N-CIE identified) are indicated by red stars. A selection of 

non-T-OAE focused sections are included (grey stars); these do not have carbon isotope data to identify 

the N-CIE of the T-OAE. Modified from Kunert et al. (2019). 
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3.1. Stratigraphy of the Lower Fernie Formation 

In the WCSB, the Fernie Formation comprises all Jurassic strata and is divided into 

several members across the basin. The lower Fernie Formation includes the Hettangian to 

Pliensbachian Gordondale Member and Toarcian Poker Chip Shale (PCS) in northeastern 

British Columbia (Figure 3), and the Sinemurian to Pliensbachian Nordegg and Red Deer 

members, and Toarcian Poker Chip Shale in central to southern Alberta.  

 

Figure 3. Jurassic Stratigraphy of the Western Canada Sedimentary Basin (WCSB). Upper Triassic, 

Jurassic and Lower (L) Cretaceous (K) stratigraphic units in northeastern British Columbia (NEBC), 

northwestern Alberta (NWAB), and west-central Alberta (WCAB) after Poulton et al. (1994; 1990) and 

Asgar-Deen et al. (2004). The Jurassic of the WCSB is complex owing to erosional or non-depositional 

hiatuses (grey areas). This study focuses on the Lower Jurassic Gordondale Member (Mb.) and Poker 

Chip Shale of the lower Fernie Formation (Fm.) in NEBC. The Poker Chip Shale extends into central and 

southern Alberta, however, the deeper-marine Gordondale Mb transitions to the shallower-marine facies 

of the Red Deer and Nordegg members in Alberta. 
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3.1.1. Gordondale Member 

The Gordondale Member of the Fernie Formation is the basal Jurassic unit extending 

from NEBC to west-central Alberta (57°N to 54°N) in the subsurface and from NEBC to 

southern Alberta (57°N to 51°N) in Rocky Mountain outcrops (Figure 2; after Asgar-Deen, et 

al., 2004). The Gordondale Member unconformably overlies the Upper Triassic Pardonet and 

Baldonnel formations in NEBC and progressively overlies older strata towards the eastern 

extent of the basin due to pre-Jurassic subaerial erosion (Poulton, et al., 1994). Overlying the 

Gordondale Member is the Early Jurassic PCS, also of the Fernie Formation, either 

conformably or unconformably depending on the area (Asgar-Deen, et al., 2004; Riediger, 

2002). The Gordondale Member varies in thickness and is a lens-shaped stratigraphic unit 

when viewed in a northeast–southwest cross-section. The member reaches a maximum 

thickness of 40 m along a north–northwest trending depocenter parallel to the Rocky 

Mountains (and paleo-shoreline) and thins both westward and eastward (Poulton, et al., 1994). 

To the west, the unit thins depositionally and is found outcropping with a thickness of ~15 m in 

NEBC (Asgar-Deen, et al., 2004), while eastward thinning and subcropping is related to 

subaerial erosion prior to Cretaceous deposition (Poulton, et al., 1994).  

The Gordondale Member is a fine-grained marine mudstone and is typically dark grey 

to black from its high Corg content (2–28%; Kondla, et al., 2017; Ross & Bustin, 2006; 

Riediger & Bloch, 1995; Riediger, 1991). The Gordondale Member is calcareous and variably 

phosphatic, exhibiting fibrous calcite veins (Riediger & Coniglio, 1992) and phosphate nodules 

(Riediger & Bloch, 1995). The type section is located in the subsurface in northwestern Alberta 

(7-31-79-10W6; 55°53ʹN, 119°33ʹW; Asgar-Deen, et al., 2004). 

Several informal subunits have been defined within the Gordondale Member in 

previous works; although nomenclature varies, these units are more-or-less equivalent. The 

Lower Unit—“Lower Radioactive Unit” (Kondla, et al., 2017; Asgar-Deen, et al., 2004), “Unit 

B” (Ross & Bustin, 2006), “Unit 1” (Asgar-Deen, et al., 2003), “lower unit” (Riediger & 

Bloch, 1995; Riediger & Coniglio, 1992), or “Lower Member” (Riediger, 1991) (see Table 

1)—is the most organic-rich interval with reported Corg values of up to 28% (Riediger, 1991). It 

is recognisable on gamma-ray petrophysical logs with values greater than 500 American 

Petroleum Institute (API) units (Kondla, et al., 2017). The Lower Unit ranges from 8 to 25 m in 
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thickness (Asgar-Deen, et al., 2004) and averages approximately 9 m (Riediger & Bloch, 

1995). Riediger and Bloch (1995) and Asgar-Deen et al. (2004) report interbedded green, non-

calcareous siltstones, shrinkage cracks, parallel laminations and barite nodules within this 

subunit. It hosts the highest carbonate (calcite and dolomite) and phosphate (fluorapatite) 

contents, intermediate pyrite and clay (illite and kaolinite) contents, and the lowest detrital 

content (proxied by quartz) of the three subunits (Table 2; Ross & Bustin, 2006; Riediger & 

Bloch, 1995). Correspondingly, this subunit has the highest elemental calcium (as CaO) and 

phosphorus (as P2O5) contents and intermediate contents of pyrite-forming elements iron (as 

FeO) and sulfur (STOT), and clay-forming aluminium (as Al2O3) (Ross & Bustin, 2006; 

Riediger & Bloch, 1995). Redox-sensitive trace metals vanadium (V) and chromium (Cr) have 

elevated concentrations compared to other subunits; however, barium (Ba) content is lowest in 

this subunit (Ross & Bustin, 2006). 

Table 1. Comparison of Lower Jurassic stratigraphic nomenclature from the literature. No 

consensus on subunit or member naming conventions has been reached for the Lower Fernie Fm. strata 

in the WCSB. Various names are applied to each subunit throughout the published history on the units 

(1990 to 2017 here).  
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Table 2. Select geochemical compositions of Gordondale Member subunits. Compilation means from 

several geochemical studies of the Gordondale Member which have reported values for the subunits. 

Reported with ± 1 standard deviation (1s). Abbreviations: Corg = organic carbon, ICP-MS = inductively 

coupled plasma mass spectrometry, NA = not available, PCS = Poker Chip Shale, STOT = total sulfur. 

The Middle Unit—“Middle Silty Unit” (Kondla, et al., 2017; Asgar-Deen, et al., 2004), 

“Unit C” (Ross & Bustin, 2006), “Unit 2” (Asgar-Deen, et al., 2003), “middle unit” (Riediger 

& Bloch, 1995; Riediger & Coniglio, 1992), or “Middle Member” (Riediger, 1991) (see Table 

1)—is the thinnest and least radioactive of the three subunits, with thicknesses from 2 to 12 m 

when present and gamma ray values from 75 to 135 API (Kondla, et al., 2017; Ross & Bustin, 

2006; Asgar-Deen, et al., 2004). The Middle Unit is light grey-beige to brown, and is similar to 

the Nordegg Member platformal cherty carbonates of central to southern Alberta (Asgar-Deen, 

et al., 2004). The organic content in the Middle Unit is less than the underlying Lower Unit. 

However, reported Corg of up to 20% occurs in intervals associated with fractured zones (Ross 

& Bustin, 2006) which may indicate hydrocarbon migration into this subunit rather than 

depositional organic matter. Mineralogy (Table 2) indicates a high detrital (quartz) component, 

and low phosphate, pyrite and clay contents for the Middle Unit (Ross & Bustin, 2006). 

Carbonate content is also high (Ross & Bustin, 2006), but less than the carbonate content in the 

Lower Unit. As in the Lower Unit, major element contents correlate closely with XRD 

mineralogy: CaO in carbonates, P2O5 in phosphates, Fe2O3 and STOT in pyrite, and Al2O3 in 

clays are lowest in the Middle Unit (Ross & Bustin, 2006). The Middle Unit has intermediate 

V and Ba contents, and the lowest concentrations of Cr (Ross & Bustin, 2006). 

Component Lower1,3,5,6 Middle2,3,6 Upper1,2,3,4,5,6 PCS4,5 Analyses Source(s) 

Corg (%) 7.5 ± 3.6 7.7 ± 3.7 5.4 ± 2.3 0.3 ± 0.3 Rock-Eval 2,3,4,5,6,7 

STOT (%) 2.4 ± 1.0 1.7 ± 1.3 3.0 ± 1.8 5.0 ± 1.8 Combustion 

3,4,5 

Carbonates* (%) 36 ± 22 22 ± 17 23 ± 24 

NA 

X-ray 
diffraction 

or 
calculation 

Quartz (%) 26 ± 13 74 ± 22 31 ± 14 

Clays** (%) 11 ± 12 2.7 ± 3.2 27 ± 23 

Fluorapatite (%) 7.6 ± 9.2 0.1 ± 0.2 3.6 ± 5.9 

Pyrite (%) 3.1 ± 1.6 0.3 ± 0.2 5.5 ± 3.6 

CaO (%) 23 ± 12 16 ± 6.5 16 ± 15 1.6 ± 1.0 

X-ray 
fluorescence 

Al2O3 (%) 6.0 ± 3.0 4.4 ± 2.3 9.3 ± 4.2 15.2 ± 1.6 

P2O5 (%) 3.5 ± 4.1 0.9 ± 0.5 3.2 ± 4.3 0.5 ± 0.6 

Fe2O3 (%) 2.1 ± 0.9 1.7 ± 1.7 4.0 ± 2.0 6.4 ± 1.1 

V (µg/g) 2200 ± 560 300 ± 320 290 ± 170 66 ± 16 3 

Re (ng/g) 200 ± 91 NA 300 ± 69 130 ± 38 ICP-MS 1 
*calcite + dolomite 
**illite + kaolinite 

1Pană et al. (2018) 
2Kondla et al. (2017) 
3Ross and Bustin (2006) 

4Ross (2004) 
5Riediger (2002) 
6Riediger and Bloch (1995) 

 

7Riediger et al. (1994) 
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The Upper Unit—“Upper Moderately Radioactive Unit” (Kondla, et al., 2017; Asgar-

Deen, et al., 2004), “Unit D” (Ross & Bustin, 2006), “Unit 3A” (Asgar-Deen, et al., 2003), 

“Poker Chip Shale A” (Riediger, 2002), “upper unit” (Riediger & Bloch, 1995; Riediger & 

Coniglio, 1992), or “Upper Member” (Riediger, 1991) (see Table 1)—has gamma ray values 

ranging from approximately 150 to 250 API and thus is more radioactive than the underlying 

Middle Unit, but less radioactive than the Lower Unit (Asgar-Deen, et al., 2004). Maximum 

reported Corg in the Upper Unit is 20% (Riediger & Bloch, 1995), therefore it is organic-rich 

but not to the degree reported for the Lower Unit. The Upper Unit contains similar carbonate 

concentrations to the Middle Unit and similar quartz content to the Lower Unit. Clay and pyrite 

contents are much greater in this unit than in the Lower and Middle units, and the phosphate 

content is intermediate (Table 2; Ross & Bustin, 2006; Riediger & Bloch, 1995). Hence, the 

Upper Unit has similar CaO content to the Middle Unit, higher Fe2O3, STOT and Al2O3 than the 

Lower and Middle Units, and moderate P2O5 concentrations (Ross & Bustin, 2006; Riediger & 

Bloch, 1995). The Upper Unit has the lowest V, intermediate Cr and the highest Ba 

concentrations (Ross & Bustin, 2006). 

3.1.2. Red Deer and Nordegg members 

The Red Deer Member is a western- to southern-Alberta age-equivalent unit to the 

Gordondale Member and is similar in lithology—mainly black shales and platy limestones 

(Asgar-Deen, et al., 2003; Frebold, 1969). The type locality outcrops along Bighorn Creek in 

the Alberta foothills west of the city of Red Deer (Asgar-Deen, et al., 2003). Recent studies by 

Them II et al. (2019; 2018; 2017a; 2017b ) and Them II (2016) on the East Tributary of 

Bighorn Creek (Figure 2) correlated the Red Deer Member at this locality with the Gordondale 

Member in the subsurface to the northwest. 

Much of the lowermost Early Jurassic strata of the WCSB was originally assigned to 

the Nordegg Member of Spivak (1949). The true Nordegg Member of central to southern 

Alberta is composed of massive, platformal, cherty carbonates with blocky gamma ray 

signatures and is of hydrocarbon reservoir quality in some areas (e.g. Gilby and Pine Creek oil 

and gas fields; Poulton, et al., 1994). The chert/limestone facies grades into radioactive black 

shales to the north, and early studies of the shale facies in northwestern Alberta and NEBC 

began referring to them as “Nordegg Member” (in quotations; e.g. Riediger & Bloch, 1995; 
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Poulton, et al., 1994; Riediger, 1990). More recently, however, the black shale facies have been 

re-assigned to the Gordondale Member (Asgar-Deen, et al., 2004). 

3.1.3. Poker Chip Shale 

The Poker Chip Shale is found in central to southwestern Alberta overlying the 

Nordegg/Red Deer members, and in central to northwestern Alberta and NEBC overlying the 

Gordondale Member (Riediger, 2002). The type sections of the PCS are located in the 

subsurface from Turner Valley (50 km west-northwest of Calgary) to Wildcat Hills (50 km 

southwest of Calgary) and are composed of organic-rich (Corg > 1%), calcareous, black shales 

(Spivak, 1949). Riediger (2002) defines the type PCS interval as “Poker Chip Shale A” (PCS-

A); the interval has also been defined as “Gordondale Member Upper Moderately Radioactive 

Unit” (Kondla, et al., 2017; Asgar-Deen, et al., 2004), “Gordondale Member Unit D” (Ross & 

Bustin, 2006), and/or “ ‘Nordegg Member’ Unit 3A” (Asgar-Deen, et al., 2003) as described 

above. Riediger (2002) described a second PCS interval (“Poker Chip Shale B”, PCS-B) which 

unconformably overlies the Gordondale Member Upper Unit. Poker Chip Shale B is an 

organic-poor (Corg < 1%), non-calcareous, grey-green shale containing pyrite and several ash 

beds (Riediger, 2002). In this work, the PCS-A is called the “Gordondale Member Upper Unit” 

because its calcareous/carbonate geochemistry more closely resembles the Gordondale 

Member mudstones, versus the non-calcareous/pyritic PCS-B which is herein referred to 

simply as the “Poker Chip Shale” (PCS). 

3.2. Biostratigraphy and Geochronology 

Many of the original correlations and ages of the Early Jurassic in the WCSB are 

derived from ammonite biostratigraphy. Recent geochronology techniques such as uranium–

lead (U–Pb) dating of ash bed zircons and detrital zircons, and rhenium–osmium (Re–Os) 

dating of black shales provide absolute age constraints on Lower Jurassic strata that 

corroborate ages from biostratigraphy. 

3.2.1. Ammonite Ages 

The Gordondale Member, extending from the west-central Alberta (WCAB) subsurface 

to NEBC subsurface and outcrop, contains ammonite genera dating from the Hettangian to 

Toarcian stages. Hettangian Psiloceras, Discamphiceras, Waehneroceras, Kammerkarites, 
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Schlotheimia, Sunrisites, Laqueoceras, Badouxia, Pseudaetomoceras and Vermiceras are 

found in NEBC outcrop (Hall & Pitaru, 2004; Poulton, et al., 1990). Upper Hettangian 

Discamphiceras (Hall, et al., 2000) and Hettangian Alsatites (Lower Unit; Asgar-Deen, et al., 

2003) are found in subsurface sections in the WCAB subsurface. The Upper Hettangian 

Discamphiceras reported in the lower Gordondale Member in northwest Alberta was found 

with Upper Hettangian to Lower Sinemurian coccoliths, indicating an age as young as Lower 

Sinemurian in that section (Hall, et al., 2000). Lower Pliensbachian ammonite genera 

Prodactylioceras, Lytoceras, and acanthopleuroceratid are found in NEBC outcrops (Poulton, 

et al., 1990). The acanthopleuroceratid ammonites are known to occur regionally in the 

member (Pană, et al., 2018). Early Toarcian ammonite genus Orthodactylioceras and Middle 

Toarcian ammonite species Harpoceras cf. subplanatum were reported at the top of the Lower 

Unit (Unit 1b in their study) in one subsurface section (6-32-78-5W6; Asgar-Deen, et al., 

2003). This finding by Asgar-Deen et al. (2003) is problematic in that their “Unit 1b” is herein 

referred to as the Lower Unit, however it is possible that the nomenclature is mismatched. No 

other studies are known to report Toarcian ages for the Gordondale Member Lower Unit, 

however the Upper Unit may be of Toarcian age given that it is correlative with the Early to 

Late Toarcian PCS-A of Riediger (2002). Ammonite biostratigraphy has therefore placed the 

Gordondale Member in the Hettangian (outcrop strata and lowermost Lower Unit) to Toarcian 

stages (potentially Lower Unit [Asgar-Deen, et al., 2003], but most likely Upper Unit only).   

Through the WCAB foothills, the Gordondale Member grades into the Red Deer 

Member, which has recently reported biostratigraphy from the East Tributary of Bighorn 

Creek, Alberta (Them II, 2016). Ammonite species Amaltheus stokesi and Protogrammoceras 

kurrianum (Upper Pliensbachian), Tiltoniceras cf. antiquum and P. paltum (Pliensbachian to 

Toarcian), and Clericeras exaratum and Hildaites cf. murleyi (Lower Toarcian) are described, 

making the Red Deer Member age-correlative with portions of the Gordondale Member.  

The Nordegg Member contains the Pliensbachian ammonite genus Amaltheus at 

Limestone Mountain in WCAB (Asgar-Deen, et al., 2003). Additionally, the member contains 

Oxytoma bivalve beds dated generally from the Early Jurassic, similar to those found in the 

Gordondale Member (Asgar-Deen, et al., 2003). The presence of the Pliensbachian ammonite 

makes the Nordegg Member age-correlative with portions of the Gordondale and Red Deer 

members. 
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In addition to the Red Deer Member ammonites, Them II (2016) describes specimens 

from the PCS in the same section on the East Tributary of Bighorn Creek. The lowermost PCS 

at the East Tributary outcrop contains Lower Toarcian ammonite species Clericeras exaratum, 

Hildaites cf. murleyi, Dactylioceras cf. semicelatum, and Harpoceras cf. falciferum, Lower to 

Middle Toarcian ammonite species Dactylioceras commune and D. athleticum, and Middle 

Toarcian ammonite species Harpoceras cf. subplanatum, Pseudolioceras cf. lythense and 

genera Zugodactylites, Peronoceras, and Phymatoceras. Asgar-Deen et al. (2003) report the 

Upper Toarcian ammonite genus Yakounia in “‘Nordegg’ Member Unit 3B” (also called the 

PCS-B in Riediger, 2002; and PCS in this work) in northwestern Alberta, and Poulton et al. 

(1990) note Upper Pliensbachian or Toarcian to Aalenian palynomorph (pollen) assemblages, 

Lower Toarcian ammonite genera Harpoceras and Dactylioceras, and Aalenian dinocyst 

Jansonia jurassica in NEBC PCS outcrops. 

3.2.2. U–Pb and Re–Os Ages 

Uranium–lead (U–Pb) dating of zircons from ash beds interbedded in sedimentary 

successions is used to determine the absolute crystallization ages of those zircons and, by the 

law of superposition, the approximate depositional ages of the sedimentary units immediately 

overlying and underlying the ash beds.  

Some Jurassic units of the WCSB contain interbedded ash or weathered ash (bentonite) 

layers, which have provided U–Pb ages consistent with reported biostratigraphic ages. The Red 

Deer Member from the East Tributary of Bighorn Creek (Alberta) has a reported bentonite U–

Pb age of 188.3 +1.5/–1.0 million years (Ma; 2σ; n = 5) approximately 1 m above the sub-

Jurassic unconformity (Hall, et al., 2004). Them et al. (2017b) report ages for two bentonites in 

a 13.5 m section of the Red Deer Member on the East Tributary section. The first bentonite is 

situated approximately 1 m above the sub-Jurassic unconformity and has an age of 188.58 ± 

0.17 Ma (2σ; n = 5) that agrees with the age of Hall et al. (2004). The second bentonite is 

approximately 5 m above the unconformity and gave an age of 185.49 ± 0.16 Ma (2σ; n = 5). 

All three ages place the lower portion of the Red Deer Member within the Pliensbachian stage, 

consistent with the biostratigraphic age from Amaltheus ammonites found in the unit (Them II, 

2016).  



18 

 

Recent U–Pb dating of Nordegg Member ash beds in three sections (McLeod River, 

Prairie Creek Quarry, Shunda Creek bridge) of the western Alberta foothills by Pană et al. 

(2018b) yielded ages of 187.21 ± 0.48 Ma (2σ; n = 2), 185.25 ± 0.66 Ma (95% confidence 

interval, CI; n = 2) and 186.8 ± 1.5 Ma (95% CI; n = 23). These ages place the Nordegg 

Member in the Pliensbachian stage, and overlap the Red Deer Member ages of Them II (2016) 

and Hall et al. (2004) within analytical uncertainties. 

The PCS has incorporated detrital zircons with a U–Pb youngest peak age of 186.5 ± 

5.3 Ma (n = 10) and a youngest single-grain age of 176 ± 7 Ma, giving the member a maximum 

depositional age in the Pliensbachian to Toarcian stages (Pană, et al., 2017). 

No U–Pb ages for the Gordondale Member are known to have been reported; however, 

the rhenium–osmium (Re–Os) isochron method to directly date the deposition of organic-rich 

black shales has been applied to the member. Pană et al. (2018a) report a Re–Os isochron age 

near the base of a northwestern Alberta Gordondale Member subsurface section (13-28-73-

21W5; 55°21ʹN, 117°10ʹW) of 192.0 ± 1.4 Ma (2σ), placing it in the Sinemurian stage. The 

PCS has a Toarcian Re–Os isochron age of 182.0 ± 2.5 Ma (2σ; 13-28-73-21W5) at the contact 

between the Gordondale Member and PCS (Pană, et al., 2018a). These reported ages agree 

well with U–Pb zircon and biostratigraphic ammonite ages of equivalent members. The Re–Os 

isochron ages in the 13-28-73-21W5 section for the bases of the Gordondale Member and PCS 

provide an approximate Gordondale Member depositional period of at least 10.0 ± 3.9 million 

years (2σ). 

3.3. Paleotectonics 

The WCSB experienced a change in tectonic regime during the Jurassic Period, moving 

from a stable/passive margin to an orogenic/active subducting margin along the western coast 

of ancient North America. These changes resulted in the complex Cordilleran geology 

currently observed: easternmost Rocky Mountains (Alberta and British Columbia), multiple 

westerly-derived allochthonous magmatic terranes through British Columbia, and westernmost 

Coast Mountains (British Columbia). Upper Jurassic sedimentary units in western Alberta and 

NEBC contain western-sourced orogenic clastic material, making them the youngest, most 

obvious indication of orogenic initiation; however, much of the tectonic evidence for 

determining a more precise timeline of initiation has been lost to erosion (Poulton, et al., 1994). 
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Other lines of evidence have been used to argue for an earlier initiation of orogenic activity. 

Oxygen isotope signatures indicate meteoric water runoff from western terranes into the 

depositional basin of the Early to Middle Jurassic (Riediger & Coniglio, 1992). Detrital zircons 

found in Lower and Middle Jurassic WCSB strata are nearly euhedral (i.e. minimal transport) 

and produce U–Pb youngest peak ages similar to the ages of their host sedimentary units (Pană, 

et al., 2017). The findings in Pană et al. (2017) imply orogenic initiation by at least the Early 

Jurassic as the Cordilleran magmatic arc to the west of the depositional basin began to supply 

the syn-depositional zircons. 

3.4. Paleogeography and Paleohydrography 

Early Jurassic deposition in the WCSB occurred on the western edge of the rifting 

supercontinent Pangea in the northwestern corner of Laurasia (early North America) where it 

met the Panthalassa (Proto-Pacific) ocean (Scotese, 2013; Figure 4). At that time the region 

straddled ~36°N to 50°N latitude (van Hindsbergen, et al., 2015), as evidenced by the presence 

of a carbonate platform (Nordegg Member) which typically develops in tropical to sub-tropical 

regions (Wilson, 1975). Deeper-water, finer-grained marine units of the Early Jurassic in the 

basin (Gordondale Member, Red Deer Member, PCS) show characteristics of anoxic (oxygen-

free) deposition, e.g. high C35/C34 hopane (biomarker) ratios (Riediger & Coniglio, 1992) and 

abundant preserved organic matter (Riediger & Bloch, 1995). Oscillating laminations of 

apatite-bearing intervals (suboxic to oxic conditions) with pyrite-bearing intervals (anoxic) 

(Riediger & Bloch, 1995) suggest intermittent periods of less anoxic deposition or post-

depositional oxygenation. Riediger and Bloch (1995) also note the presence of excess sulfur 

associated with organic matter; this is likely the result of euxinic bottom water conditions 

(anoxic and sulfidic) caused by bacterial sulfate reduction. Anoxia is suggested to be a result of 

two mechanisms: (1) basin sills (submarine ridges oriented parallel to the shoreline) and (2) a 

hypersaline pycnocline limiting water mass exchange (Riediger & Bloch, 1995; Riediger & 

Coniglio, 1992).  

The Gordondale Member was likely deposited in an open ocean environment and may 

have been separated from the more restricted Red Deer and Nordegg members by a sill 

(Poulton, 1991). Thus, while all three members exhibit anoxic traits, the mechanism 

responsible for those anoxic conditions may be different for each member. 
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Figure 4. Early Jurassic Paleogeography. Paleogeography of the Early Jurassic Period approximately 

180 million years ago (Ma) of the area around and covered by modern North America; modified from 

Scotese (2013). The Western Canada Sedimentary Basin (WCSB) depositional area is highlighted (red), 

as is the study section (yellow star) within the basin. Paleolatitudes were approximated using the model 

of van Hinsbergen et al. (2015). Sea level is set at 0 m, with coloured areas representing altitudes above 

(greens and browns; assumed sub-aerial) and below (blues; assumed sub-marine) sea level. Sub-marine 

depths greater than –200 m are situated on the continental shelf, while those less than –200 m are 

continental slope and abyssal plain. 

3.5. Carbon Geochemistry and Thermal Maturity 

The Gordondale Member is an excellent source rock with up to 28 wt% Corg (Riediger, 

1991; Creaney & Allan, 1990). Riediger (2002) described the PCS-A (equivalent to the Upper 

Unit of the Gordondale Member) with excellent source potential from its elevated Corg of up to 

18.5 wt%, while the PCS-B (or simply “PCS”) is not a source rock (Corg < 1 wt%). Kerogen (a 
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precursor to hydrocarbons) in the Gordondale Member is Type II-S, indicating a marine origin 

(“Type II”) and incorporation of excess sulfur (“-S”) into the organic matter (Riediger & 

Bloch, 1995). Programmed pyrolysis Tmax values, a proxy for thermal maturity, increase from 

northeast to southwest across the basin; therefore, the overmature areas are closest to the 

Rocky Mountain deformation front, while the immature areas lie along the easternmost extent 

of the basin (Riediger, 2002; Riediger, 1990). 

Organic carbon isotope signatures (δ13Corg) of the Early Jurassic in the WCSB show 

baseline values averaging approximately –28‰ in outcrop (East Tributary, Bighorn Creek) and 

subsurface (northwestern Alberta) sections (Them II, et al., 2019), indicating a marine 

phytoplankton source (Boutton, 1991). The overall trend is that of a broad positive carbon 

isotope excursion (P-CIE) of approximately +2‰ beginning in the mid-Pliensbachian and 

ending in the Upper Toarcian (Them II, et al., 2019). However, in the earliest Toarcian, the 

uppermost Gordondale and Red Deer members, and lowermost PCS strata exhibit an abrupt 

negative carbon isotope excursion (N-CIE) of up to –4‰ from baseline values (Them II, et al., 

2019; 2017a). The N-CIE may be recording a global phenomenon rather than local variations, 

as the trend is reflected in coeval sections through North America, Europe and Japan (e.g. 

Them II, et al., 2017a; Gröcke, et al. 2011; Schouten, et al., 2000; Jenkyns, 1988). 
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4. Marine Geochemistry 

4.1. Carbon Geochemistry 

4.1.1. Global Carbon Cycle 

The global carbon cycle is an important biogeochemical cycle due to its major role in 

biological, geological, hydrological and atmospheric processes (Faure, 1991). These 

components of the Earth system outline the major reservoirs for carbon in its various forms. 

Biological components include terrestrial plants and animals, and aquatic (riverine or marine) 

plants, animals and plankton. Geological components include carbon-bearing rocks and 

sediments (e.g. carbonates), organic matter buried within sediments, and hydrocarbons (e.g. 

coal, oil, gas) stored in sedimentary basins. The hydrological domain is a transient reservoir; 

particulate or dissolved carbon transfer to and from the aqueous environment occurs quickly 

relative to other reservoirs. 

4.1.2. Forms of Carbon 

Earth’s carbon can be divided into Corg and inorganic carbon (Cinorg). Organic carbon is 

a product of biological processes and is therefore found in the biological reservoir as living 

biomass. However, the hydrological and geological reservoirs also contain the remains of past 

biomass as particulate organic matter, organic matter buried in sediments, and kerogen or 

hydrocarbons in rocks. “Organic carbon” is a catch-all term to describe a collection of complex 

carbon-bearing molecules which make up organic matter; these molecules also include other 

essential elements for life like phosphorus (P) and nitrogen (N). The Redfield Ratio (Redfield, 

1934) is the typical stoichiometry used to describe average organic matter composition where 

the ratio of C:N:P is 106:16:1 denoted by the chemical formula (CH2O)106(NH3)16H3PO4.  

Inorganic carbon is found in mineralogical, dissolved or gaseous compounds and is 

produced through abiotic processes. Carbon dioxide (CO2) is the most abundant gaseous form 

of carbon in Earth’s atmosphere, followed by methane (CH4); both gases are radiative and 

contribute to the greenhouse effect. In solid and dissolved forms, the carbonate anion (CO3
2-) is 

the main inorganic carbon phase, often precipitating to form the minerals calcite (CaCO3) and 

dolomite (CaMg(CO3)2). 
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4.1.3. Stable Carbon Isotopes 

Elemental carbon in the natural environment is composed predominantly of two stable 

isotopes (a third isotope, carbon-14, is radioactive and will not be discussed). The lighter 

carbon-12 (12C) isotope is the more abundant of the two, averaging 98.89% of stable carbon on 

Earth; the remaining 1.11% is represented by the heavier carbon-13 (13C) isotope (West, et al., 

2006). This ratio is not constant due to mass-dependent fractionation processes that vary the 

proportion of 12C and 13C by up to 10% (Faure, 1991). Fluctuations in the stable carbon isotope 

ratio (δ13C) of sedimentary material can be measured and reported using Equation 1.  

(1)    𝛿13𝐶(‰) = (
(

𝐶 
13

𝐶 
12 )

𝑠𝑎𝑚𝑝𝑙𝑒

(
𝐶 

13

𝐶 
12 )

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1) × 1000 

In Equation 1, the sample is the material for which the isotope composition is sought, 

the standard is an internationally accepted reference material with a known isotopic 

composition. For the stable carbon isotope system, Pee Dee Belemnite (PDB) was the original 

reference standard used in analysis. However, no PDB material remains so a new standard, 

Vienna PDB (VPBD), has been calibrated to the PDB reference scale and is used 

internationally (Werner & Brand, 2001). 

Mass-dependent fractionation of carbon isotopes in nature is controlled by kinetic and 

equilibrium fractionation effects (Faure, 1991). Kinetic fractionation effects are those which 

are controlled by the energy requirements of a reaction process (e.g. in biological processes, 

the lighter isotope is favoured due to lower energy requirements). Equilibrium fractionation 

effects are those which are controlled by the isotope bonding strength, where the heavier 

isotope typically forms a stronger bond which is thus less likely to break during reaction 

processes (Faure, 1991). Photosynthesis is the primary kinetic fractionation process for carbon 

isotopes in nature and occurs when carbon dioxide is converted to organic compounds in 

primary producers (plants, phytoplankton). Photosynthetic mechanisms (e.g. CO2 diffusion 

from atmosphere to cells, internal Calvin or Hatch–Slack cycles, organosynthesis) 

preferentially use the lighter 12C isotope, so primary producers are enriched in 12C and depleted 

in 13C resulting in a more-negative δ13C composition (Faure, 1991). Subsequent heterotrophic 
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consumption of primary producers transfers the isotopically-light carbon up the food chain, so 

all biological material has low-negative δ13C compositions.  

The 13C depletions are preserved in hydrocarbons (coal, oil, gas) due to their biological 

origins as organic matter buried in sediments. However, post-depositional processes like 

thermogenic hydrocarbon “cracking” (reduction of complex hydrocarbons to simpler 

compounds during burial and maturation) can redistribute the lighter and heavier isotopes 

between partitioned hydrocarbon phases. Thermogenic methane (CH4) attains the most 

negative δ13C composition (–60 to –40 ‰), whereas heavier gases (e.g. ethane, propane, 

butane), oils and coal range between –45 to –20 ‰ (Fuex, 1977). Biogenic methane produced 

during methanogenesis (disproportionation) of organic matter by decomposers in soils records 

the lowest δ13C compositions of known material to a minimum of –80‰ (Fuex, 1977). 

Equilibrium fractionation effects occur more often in abiotic processes, such as the 

carbonate buffer system. Precipitated carbonate minerals (e.g. calcite, CaCO3) are typically 

enriched in the heavier 13C isotope compared to atmospheric CO2 and aqueous H2CO3, HCO3
- 

and CO3
2- phases (Faure, 1991). Marine limestones typically have δ13C compositions near 0‰ 

because the PDB standard was itself a marine limestone, but this can vary by ± 4‰ (Fuex, 

1977). 

4.1.4. Carbon Isotope Excursions 

Global-scale carbon isotope excursions (CIEs) recorded in the carbonate and organic 

matter of marine sedimentary rocks represent major disturbances to the carbon cycle and are 

caused by global environmental perturbation(s). Positive CIEs (P-CIEs) are those where δ13C 

compositions increase to a maximum through a stratigraphic section, followed by a return to 

lower baseline levels. These types of CIEs capture globally elevated levels of organic carbon 

burial—i.e. where isotopically-light biological carbon is sequestered into the inaccessible 

sedimentary carbon bank (Jenkyns, 2010). Biological processes such as photosynthesis make 

preferential use of 12C, so inorganic carbon remaining in the environment shifts to heavier 

δ13C. As the removal of lighter 12C from the biosphere continues, photosynthetic organisms 

begin to incorporate more isotopically-heavy 13C, which is subsequently buried and records 

higher δ13C compositions. Once the external disturbance ceases and the rate of organic burial 

slows, the carbon system re-equilibrates and δ13C shifts back to lighter values. 
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In contrast, negative CIEs (N-CIEs) are those where δ13C compositions decrease 

(become more negative), followed by a return to higher baseline levels. These events are less 

straightforward to interpret as they are not controlled by the organic carbon burial rate, but 

rather by injections of lighter carbon attributed to a pulsed release of gas hydrates or methane 

clathrates (Them II et al., 2017; Hesselbo et al., 2007; Kemp et al., 2005; Jahren et al., 2001; 

Hesselbo et al., 2000), emission of light volcanic CO2 (Kuroda, et al., 2007), magmatic 

intrusion of coals and black shales (Wignall, et al., 2009; Retallack & Jahren, 2008; McElwain, 

et al., 2005), and/or upwelling of isotopically-light deep ocean waters (van de Schootbrugge, et 

al., 2005; Schouten, et al., 2000; Küspert, 1982). 

4.2. Marine Redox and Paleoredox Proxies 

Sediment trace metal concentrations are indicators of depositional pore water, bottom 

water, and/or water column redox conditions, and their use as redox proxies can be applied to 

both modern and past environments. Aqueous oxygen conditions are divided into oxic (O2 > 

2.0 ml/l), suboxic (O2 from 2.0 to 0.2 ml/l), and anoxic (O2 < 0.2 ml/l); anoxia is subdivided 

into ferruginous (dissolved Fe2+-rich) and euxinic (bottom-water H2S present; produced 

through bacterial sulfate reduction) (Tyson & Pearson, 1991). Some redox-sensitive trace 

metals are soluble under O2-rich conditions and insoluble under O2-poor conditions, therefore 

sediments deposited under increasingly anoxic waters should be enriched in these elements 

(Tribovillard, et al., 2006). Not all redox-sensitive trace metals are enriched equally for a 

specific redox state (e.g. euxinic versus ferruginous), therefore a multi-proxy approach for 

reconstruction of the ancient marine environment is taken for this work. 

Thermal maturation of organic-rich rocks has not been shown to disrupt trace metal 

isotope systematics or decrease trace metal content in the sediment phase (Yang, 2019). Yang 

(2019) compares immature, mature and overmature samples from multiple cores in the Exshaw 

Formation (Alberta). While no trend is observed between trace metal concentrations and 

maturity, spatial variation may have been induced by local environmental effects rendering 

comparison ineffective. Dickson et al. (2019) performed pyrolysis (timed heating) experiments 

on known immature organic-rich mudrocks of the Posidonia Shale (Germany) and Kimmeridge 

Clay (United Kingdom). Their results confirm those of Yang (2019) such that studied trace 

metals (Mo, Zn and Cd) are not mobilized during maturation based on minimal fractionation 
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into bitumen phases. However, it was suggested that the loss of organic mass during diagenesis 

and catagenesis artificially increases the relative concentration of the metals and may double 

the metal/Corg ratios in the bulk sample (Dickson, et al., 2019). This could be problematic when 

using these metals for paleoenvironmental reconstruction in comparison to modern sediments 

which have not undergone post-depositional maturation. With this consideration, Dickson et al. 

(2019) do state that inference of changes to paleoenvironmental conditions on small spatial and 

temporal scales (e.g. within a single section) with similar maturation histories are not adversely 

affected.  

4.2.1. Molybdenum 

Molybdenum (Mo) is present in the upper continental crust at relatively low 

concentrations (1.5 µg/g; McLennan, 2001), but has relatively high seawater concentration 

(107 nM ≈ 10 ng/g; Collier, 1985) therefore Mo enrichments in organic-rich marine sediments 

deposited from anoxic bottom-waters typically suffer minimal detrital influence. Most marine 

Mo is supplied through riverine input (Reinhard, et al., 2013) and Mo exhibits conservative 

behavior in oxic seawater (Emerson & Huested, 1991). Sediments deposited under oxic 

bottom-water retain crustal Mo concentrations, except when manganese particulates are present 

(Crusius, et al., 1996). Efficient Mo sequestration to sediments occurs in euxinic environments 

where oxidized Mo(VI) (typically as the molybdate oxyanion MoO4
2-) is reduced to Mo(IV) in 

Mo-polysulfides (Erickson & Helz, 2000), producing sediment enrichments commonly greater 

than 100 µg/g (Scott & Lyons, 2012). The necessity of free H2S in bottom waters to precipitate 

Mo-polysulfides makes Mo useful in distinguishing suboxic and/or ferruginous conditions 

from euxinic conditions. Scott and Lyons (2012) note that an enrichment greater than crustal 

concentrations and less than 25 µg/g represents an intermediate Mo sink between oxic and 

euxinic conditions. This could be an environment with suboxic or anoxic (ferruginous) bottom 

waters and an H2S chemocline within the sediment (pore water H2S); molybdenum diffuses 

through the sediment towards deeper H2S-rich pore water where it is then removed from 

solution.  

Manganese (Mn)-oxyhydroxide particulate activity can artificially enhance Mo 

enrichment in sediments where an oxic water column overlies anoxic bottom- or pore-waters 

(Crusius, et al., 1996). The particulate shuttling process generates an increasing Mo 
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concentration gradient from the upper water column to the bottom waters. Molybdenum 

oxyanions adsorb to Mn particulates in the oxic water column and are effectively shuttled 

through the water column as the particulates sink. The Mn particles dissolve in the anoxic 

bottom waters or when interacting with anoxic pore waters below the sediment–water 

interface. During Mn particulate dissolution, Mo is released into the anoxic environment where 

it is captured and incorporated into anoxic sediments (Crusius, et al., 1996). The dissolved Mn 

returns to the oxic water column where the cycling may continue.  

Sediment Mo concentrations between 25 and 100 µg/g may have been deposited in a 

euxinic environment involving one of several additional factors: (1) dilution due to rapid 

sedimentation; (2) alkaline waters causing reduced efficiency of Mo precipitation; (3) basin 

restriction with initially enhanced drawdown and depletion of aqueous Mo from the water 

column without repletion; and/or (4) seasonal redox variation (Hardisty, et al., 2018; Scott & 

Lyons, 2012; Helz, et al., 2011). Further study has illustrated additional factors that can 

complicate interpretation of Mo concentrations. Scholz et al. (2017) indicated that nitrogenous 

suboxic settings like those of the Peruvian margin upwelling zone can have Mo enrichments 

similar to those of euxinic deposition (~70 to 100 µg/g), while Hardisty et al. (2018) 

demonstrated significant overlap in sediment Mo concentrations in oxic environments with or 

without porewater H2S. 

4.2.2. Vanadium 

Upper continental crust vanadium (V) concentrations are relatively high (107 µg/g; 

McLennan, 2001) compared to other redox-sensitive trace metals like Mo, U and Re. Due to its 

high particle reactivity, riverine particulate V concentrations are high (170 µg/g) compared to 

its dissolved riverine concentration (15 nM ≈ 0.74 ng/g) (Martin & Meybeck, 1979). 

Vanadium’s seawater concentration is not fully conservative and is relatively low (40 nM ≈ 2.0 

ng/g; Collier, 1984) compared to other trace metals and to its riverine flux, therefore 

sedimentary V content is affected by riverine particulate (detrital) inputs which must be 

considered in the study of its authigenic enrichment (Emerson & Huested, 1991). 

Vanadium is unique in that it has three commonly occurring oxidation states in the 

marine environment. Under suboxic to weakly anoxic (ferruginous) bottom waters, V(V) as 

vanadate oxyanions (HVO4
2- or H2VO4

-) are reduced to V(IV) as the vanadyl oxyanion VO2- 
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which adsorbs to solid phases. Vanadium enrichment alludes to the presence of H2S in 

sediments and bottom waters (Scott, et al., 2017). In euxinic bottom waters, V(IV) is reduced 

to V(III) which forms a solitary precipitate phase (e.g. V2O3 or V(OH)3) (Tribovillard, et al., 

2006). Ancient euxinia can be inferred from sediment V concentrations > 320 µg/g based on a 

compilation of well-characterised Cambrian, Ordovician, Silurian, Carboniferous and Jurassic 

black shales (Quinby-Hunt & Wilde, 1994). 

While some modern sediments exhibit V enrichments up to 229 µg/g (e.g. Cariaco 

Basin; Calvert & Pedersen, 1993), many ancient organic-rich black shales feature V hyper-

enrichments (defined as V > 500 µg/g; Scott, et al., 2017) for which there are no modern 

analogues. This may indicate that V hyper-enrichments are linked to excess H2S in bottom 

waters beyond that which is observed in modern environments (i.e. H2S > 8 mM; Scott, et al., 

2017). Hyper-enrichment may also be linked to the particle reactivity of V; adsorption of V to 

iron (Fe)- and/or Mn-particulate shuttles is an effective means of transport through the water 

column to the seafloor (Emerson & Huested, 1991). Additionally, due the association of V with 

organic matter, hyper-enrichments may occur in environments with extensive organic matter 

deposition and anoxic to euxinic bottom waters where organic-bound V cannot be oxidized 

(Quinby-Hunt & Wilde, 1994). 

4.2.3. Uranium 

Uranium (U) is a redox-sensitive trace metal with a relatively low upper crustal 

concentration (2.8 µg/g; McLennan, 2001), but a relatively high seawater concentration (13.4 

nM ≈ 3.1 ng/g; Tribovillard, et al., 2006). Uranium is supplied to the oceans mainly via 

riverine input. Sediments deposited under oxic bottom waters retain crustal U concentrations, 

while authigenic enrichments occur in anoxic organic-rich sediments. Sediment enrichment 

occurs by diffusion across the sediment–water interface reducing U(VI) (as soluble uranyl 

oxycarbonate anions UO2(CO3)3
4-) to U(IV) (as solid uraninite UO2) (Klinkhammer & Palmer, 

1991), adsorption out of solution onto Fe-sulfide surfaces, or becomes complexed with organic 

matter as mediated by bacterial sulfate reduction processes (Brown, et al., 2018; McManus, et 

al., 2005; Klinkhammer & Palmer, 1991). Sediment U enrichments greater than 10 µg/g 

indicate deposition under anoxic conditions (Partin, et al., 2013). Unlike Mo and V, uranium 

enrichment is not dictated by the presence of H2S in pore or bottom waters (Partin, et al., 2013) 
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and U is not readily adsorbed to Fe- or Mn-oxyhydroxide particulates implying that it is not a 

valid proxy for the presence of H2S or enhanced particulate activity in the water column. Other 

factors that influence the enrichment and preservation of U and other trace metals in sediments 

are sedimentation rate, organic matter accumulation rate, O2 penetration depth and diagenetic 

processes or remobilisation under re-oxygenated conditions (Tribovillard, et al., 2006).  

4.2.4. Rhenium 

Rhenium (Re) is mainly incorporated into suboxic and anoxic sediments and is likely 

reduced later in the diagenetic sequence than U (Crusius, et al., 1996). Upper crustal Re 

concentrations are very low (0.4 ng/g; McLennan, 2001) and seawater concentrations are 

conservative and relatively high (40 pM ≈ 7.2 pg/g; Anbar, et al., 1992), therefore detrital input 

has minimal influence on Re content in organic-rich sediments. Soluble Re(VII) as a 

perrhenate oxyanion ReO4
- in seawater is removed to sediment in the Re(VII) state coupled 

with an Fe–Mo–S phase (Helz & Dolor, 2012) or reduced to Re(IV) and scavenged onto 

organic matter in sediments (Selby & Creaser, 2003). Rhenium enrichment is not controlled by 

the presence of H2S in pore or bottom waters to the same extent as Mo or V, so it is not a 

suitable proxy for euxinia (Calvert & Pedersen, 1993). Depositional settings with anoxic pore 

waters can be deduced by sediment Re concentrations above 5 ng/g (Sheen, et al., 2018). 

Suboxic sediments can reach concentrations from 25 to 42 ng/g even under nitrogenous (early) 

suboxia (> 0.2 μM NO2
-, < 2 μM O2), and anoxic sediments between 40 and 56 ng/g (Crusius, 

et al., 1996).  

4.2.5. Iron 

Iron (Fe) is a major element with average upper continental crust concentrations of 3.50 

wt% (McLennan, 2001) mainly in sedimentary and hydrothermal settings as oxide, 

oxyhydroxide and sulfide compounds (e.g. hematite, Fe2O3; goethite, FeOOH; pyrite, FeS2) 

and in mafic silicate minerals (e.g. hornblende, Ca2(Mg,Fe2+)4(Al,Fe3+)(Si7Al)O22(OH)2; 

biotite, K(Mg,Fe2+)3AlSi3O10(OH)2). Due to the crystal structures and chemical bonding, Fe in 

these silicate minerals are considered unreactive to H2S; Fe in solution, oxides, oxyhydroxides 

and sulfides are reactive to H2S (Lyons & Severmann, 2006; Raiswell & Canfield, 1996). Iron 

is redox-sensitive with two oxidation states: oxidized ferric iron (Fe3+) and reduced ferrous iron 

(Fe2+). Unlike other redox-sensitive metals discussed in this work which form soluble 



30 

 

oxyanions in oxidizing environments, Fe tends to precipitate solid phases in both oxidizing 

(e.g. as Fe-oxides) and sulfidic (e.g. as Fe-sulfides) environments; therefore, the modern 

seawater Fe concentration is very low and varies seasonally and spatially through location and 

water depth (230–640 pM = 12–35 pg/g; Tagliabue, et al., 2012).  

In an oxic water column, Fe(III)-oxyhydroxide particulate phases precipitate and sink 

from surface waters to the sediment–water interface. If bottom waters remain oxic, the 

particulates accumulate as a change in redox state is not encountered. If the particulates are 

transported below the redox chemocline, reductive dissolution of the Fe(III) particulates occurs 

and any adsorbed metal anions desorb from the particle surface and may be reduced to 

sediments. However, under reducing conditions, Fe(II) requires H2S to form solid sulfide 

phases so if ferruginous anoxia pervades in the sediments and bottom waters, dissolved Fe may 

return to oxic surface waters and continue to cycle (Poulton & Canfield, 2011). If euxinic 

conditions are present, H2S in bottom waters reacts with Fe to form pyrite and other solid Fe–S 

compounds (Canfield, et al., 1996). 

The complex redox cycling of Fe informs the use of the element as a paleoredox 

indicator. Sediment Fe/Al ratios and Corg–STOT–Fe relationships are used to infer oxic versus 

euxinic conditions (Lyons & Severmann, 2006; Arthur & Sageman, 1994; Dean & Arthur, 

1989). Aluminium is an indicator of local siliciclastic (detrital) sediment flux to a basin (Lyons 

& Severmann, 2006). In oxic environments, Fe/Al ratios are less than or similar to the average 

shale ratio of 0.55, while euxinic sediments typically have Fe/Al ratios > 0.55 (Lyons & 

Severmann, 2006). The increase in Fe/Al ratio from oxic to euxinic sediments stems from the 

higher siliciclastic input on the oxic shelf (closer to a detrital source; ↑Al) and low pyritization 

(limited to no H2S present for compounding with reactive Fe; ↓Fe) versus lower detrital input 

(↓Al) and increased pyritization (↑Fe) in deeper, more distal euxinic environments where 

reactive Fe interacts with bottom water H2S (Lyons & Severmann, 2006). A Corg–STOT–Fe 

ternary diagram is also employed to differentiate oxic marine sediments which trend along a 

constant STOT/Corg ratio of ~0.4, from sediments where Fe is bound in pyrite which trend along 

a constant stoichiometric pyrite STOT/Fe weight ratio of ~1.15 (Arthur & Sageman, 1994; Dean 

& Arthur, 1989). 
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4.2.6. Cadmium and Cd/Mo Covariations 

In seawater, Cadmium (Cd) has a low concentration of 0.6 nM (~0.07 ng/g; Boyle, 

1992) compared to a continental crust value of 98 ng/g (McLennan, 2001). Unlike previously-

discussed trace metals, Cd is not redox-sensitive as it exists in one oxidation state (Cd2+) in the 

marine environment. Cadmium is strongly associated with marine organic matter due to its role 

as a micronutrient in phytoplankton (Tribovillard, et al., 2006). In anoxic environments where 

organic matter is preserved, Cd content will be enriched. Cadmium also has an affinity for 

forming sulfide compounds (as CdS or coprecipitating with FeS) so in euxinic environments 

where organic matter is deposited, Cd may be found in association with organic matter or in 

sulfides (Tribovillard, et al., 2006). Additionally, Cd substitutes for calcium in the apatite 

structure, therefore phosphatic intervals may exhibit strong Cd enrichment (Tribovillard, et al., 

2006, and references therein). 

The Cd–Mo covariation (Figure 5) presented in Sweere et al. (2016) is used to 

distinguish upwelling environments from silled or strongly restricted environments recorded in 

organic-rich sediments or rocks. These “end-member” environments are thought to be 

distinguished by the relative importance of the productivity (↑Cd/Mo) versus preservation 

(↓Cd/Mo) enrichment mechanisms for organic matter and their influence on Cd/Mo ratios. 

Sweere et al. (2016) compiled geochemical data from several modern upwelling zones 

(Namibian and Peruvian margins, Gulf of California and the Arabian Sea) and restricted basins 

(the Black Sea, Cariaco Basin, Saanich Inlet and Mediterranean Sea). Cadmium was more 

enriched in the productive upwelling zones (~0.4 to 80 µg/g) than the restricted basins (~0.15 

to 15 µg/g). Molybdenum was slightly more enriched in the restricted environments (~1 to 300 

µg/g) than the upwelling zones (~1 to 100 µg/g), but there was significant overlap in 

concentrations between environments. These trends are reflected by higher Cd/Mo ratios in the 

upwelling zone than the restricted basins. From their study, Sweere et al. (2016) define an 

empirical Cd/Mo cut-off between these environments, where Cd/Mo ratios > 0.1 indicate 

upwelling, and < 0.1 indicate restriction. Recent paleoenvironmental application of the Cd/Mo 

covariation technique (McArthur, 2019) is used to argue that the Toarcian black shales of 

Europe were a response to restriction (low Cd/Mo trend) of the Cleveland Basin (Tethys 

Ocean), rather than global ocean anoxia. 
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Figure 5. Cd/Mo Covariation Diagram. Cadmium–Mo covariation modified from Sweere et al. (2016) 

indicating fields for upwelling zone and restricted basin “end-member” environments. Sweere et al. 

(2016) define an empirical cut-off for the Cd/Mo ratio of 0.1 to distinguish between the environments. 

Also noted are the seawater (SW) Cd/Mo weight ratio (~0.007; Tribovillard, et al., 2006) and mean 

plankton Cd/Mo ratio (6.0; Brumsack, 1986).  

4.2.7. Mo/U Covariation 

Covariation diagrams of enrichment factors (EF) for Mo versus U (MoEF/UEF; Figure 

6) can be used to determine the mechanism of trace metal enrichments within a depositional 

basin, and basin hydrography (Algeo & Tribovillard, 2009). Enrichment factors (Equation 2) 

correct for detrital content of the trace metal, X, in a sample versus a standard material like the 

upper continental crust or average shale. 

(2)     𝑋𝐸𝐹 =
(𝑋 𝐴𝑙⁄ )𝑠𝑎𝑚𝑝𝑙𝑒

(𝑋 𝐴𝑙⁄ )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 

Algeo and Tribovillard (2009) suggest three mechanisms that can cause variations in  

MoEF/UEF ratios of marine sediments: (1) redox variations from oxic→euxinic across a basin or 

depositional period; (2) Fe–Mn particulate shuttles delivering excess Mo, but not U to the 
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sediment–water interface; and (3) evolving aqueous chemistry from seawater depletion of trace 

metals during persistent anoxia or euxinia with limited repletion after trace metals are removed 

to sediments. The first mechanism is typical of open-ocean basins and upwelling zones (e.g. 

Eastern Tropical Pacific) whereas the second reflects weakly-restricted basins with euxinic 

bottom waters and relatively rapid deep-water mass replenishment (e.g. Cariaco Basin). The 

third mechanism is typical of strongly restricted basins (e.g. Black Sea), which have euxinic 

bottom waters resulting in an initially enhanced drawdown of trace metals into sediments, but 

with little repletion of the water mass resulting in diminished bottom water trace metal 

concentrations at steady-state conditions. Because the sequestration of Mo into euxinic 

sediments is more efficient than U, this leads to a gradual decrease in sediment Mo/U as the 

local deep waters become severely depleted in Mo, and moderately depleted in U. 

 

Figure 6. Mo/U Covariation Diagram. Covariation of Mo and U enrichment factors (EFs) modified 

from Algeo and Tribovillard (2009). Inference of basin hydrography (open ocean or restricted) and 

additional enrichment mechanisms (Fe–Mn particulate shuttling) can be made using the diagram. 

Seawater Mo/U weight ratio is noted (3.1; Tribovillard et al., 2006), as are the general EF fields which 

record euxinic, anoxic/non-sulfidic and suboxic conditions.  
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4.2.8. Re/Mo Covariation 

The Re/Mo ratio is a tool to determine depositional redox conditions as both Re and Mo 

are conservative and have high seawater-to-crust ratios (Crusius et al., 1996). This trace metal 

covariation is specifically useful in distinguishing between suboxic/ferruginous and euxinic 

environments (Turgeon & Brumsack, 2006; Crusius, et al., 1996). Crusius et al. (1996) report 

modern Re and Mo sediment concentrations at four sites (Japan margin, Pakistan oxygen 

minimum zone [Arabian Sea], Saanich Inlet [British Columbia], and the Black Sea), the results 

of which are summarized by a Re–Mo covariation diagram (Figure 7). Sediments deposited 

under euxinic bottom-waters are typically enriched with both Re and Mo (up to 50 ng/g and 

120 µg/g, respectively), and trend along the modern seawater Re/Mo ratio (0.73×10-3). Suboxic 

and anoxic (ferruginous) environments are less conducive to Mo removal, therefore enrichment 

in Re outweighs Mo, leading to Re/Mo ratios along a trend up to 15×10-3 (Turgeon and 

Brumsack, 2006). 

 

Figure 7. Re/Mo Covariation Diagram. Re/Mo covariation diagram with modern redox environment 

trends (Crusius, et al., 1996). Dashed line is suboxic Re/Mo ratio (~15) trend after Turgeon and Brumsack 

(2006). Solid black line is modern seawater (SW) Re/Mo ratio (0.73×10-3; Crusius, et al., 1996). Note 

that at elevated Mo content (here MoEF > ~100), the environment is assumed euxinic generally close to 

SW ratio. 
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4.2.9. Mercury 

In nature, mercury (Hg) is delivered to the atmosphere as gaseous elemental Hg0 (> 

95%), oxidized inorganic Hg2+ (< 5%) through quiescent volcanic outgassing (primary source; 

46 tonnes annually) and volatilization of biomass-Hg and Hg-bearing rocks and soils (e.g. 

forest fires, subaerial weathering; secondary sources; 1.1 kilotonnes annually1) (Fitzgerald & 

Lamborg, 2005; Pyle & Mather, 2003). The atmospheric residence time of Hg0 is from several 

months to 2 years (Lindqvist & Rodhe, 1985), allowing for distribution on a global scale. By 

contrast, reactive atmospheric Hg (particulates and compounds carrying Hg2+) have a much 

shorter residence time from a few days to weeks (Lindqvist & Rodhe, 1985). Elemental Hg is 

distributed evenly across the planet and can be converted to Hg2+ through oxidation processes, 

while reactive atmospheric Hg2+ expelled during volcanism is deposited at local scales. During 

periods of elevated volcanic activity, there is a ~100-fold increase in atmospheric Hg flux from 

the release of volcanic gases (up to 4.6 kilotonnes annually) based on modern eruptions 

(Fitzgerald & Lamborg, 2005). 

Mercury enters the ocean as Hg2+ and is reintroduced into the atmosphere as Hg0 

through exchange at the atmosphere–ocean interface (net Hg flux to oceans of 1000 tonnes 

annually; Driscoll, et al., 2013). Hydrothermal vents along submarine tectonic zones (260–360 

tonnes annually; Fitzgerald & Lamborg, 2005) and riverine input (60 tonnes annually1; Mason, 

et al., 1994) are additional pathways through which Hg enters the ocean. Removal of Hg2+ from 

the water column occurs through organic and inorganic mechanisms. When organic substrates 

are present in bottom waters or sediments, Hg2+ has a strong affinity to bind with organic thiols 

(e.g. Mishra, et al., 2017). Direct inorganic deposition of Hg into sediments occurs when the 

chalcophilic Hg2+ precipitates as HgS or coprecipitates with metal sulfides (e.g. pyrite) under 

anoxic conditions (Mishra, et al., 2017). Therefore, long term removal of Hg from the water 

column into sediments occurs via complexation with thiol groups on the cell surfaces of 

organic matter and precipitation of Hg–S phases.   

Post-depositional processes affect the Hg content and solid phases preserved in 

sediment. Encountering oxic conditions in sediments oxidizes Hg-sulfides, but the resulting 

 
1 Pre-anthropogenic flux 
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pore water Hg2+ likely re-complexes with insoluble humic substances in situ in organic-rich 

environments (Beldowski & Pempkowiak, 2009). Anoxic diagenesis transforms thiolated Hg 

associated with organic matter into the insoluble sulfide HgS; however, highly sulfidic 

conditions can dissolve HgS to form soluble polysulfides which may be recaptured by suitable 

organic compounds, migrate through the sediment column and reprecipitate under anoxic (non-

hyper-sulfidic) conditions, or reintroduced to the water column by diffusion at the sediment–

water interface (Beldowski & Pempkowiak, 2009; Paquette & Helz, 1995). 

Recently, sedimentary Hg from organic-rich black shales was suggested as a proxy for 

past intensified volcanic activity (e.g. Grasby, et al., 2019; Them II, et al., 2019; Percival, et 

al., 2015; Sanei, et al., 2012). Based on the modern 100-fold increase in Hg volcanic source 

flux from dormant to active periods (Fitzgerald & Lamborg, 2005), increased Hg 

concentrations in sediments are likely linked to increased volcanic activity. Ancient massive 

volcanism is associated with Large Igneous Province (LIP) emplacement, which has occurred 

episodically over periods in Earth’s history (Prokoph, et al., 2004). Periods of LIP 

emplacement last from 1 to 5 Myr with 10s to 100s of massive eruptions or intrusions 

occurring during that period (Bryan, et al., 2010), therefore these periods should be recorded 

by the preservation of elevated Hg concentrations in sediments. 

Because Hg integration into sediment is primarily controlled by the host phase, 

normalisation to that host phase must be completed to avoid false positives with respect to 

enhanced volcanogenic Hg fluxes. To avoid deceitfully high Hg concentrations due to 

increased organic matter deposition, Them II et al. (2019) and Percival et al. (2015) normalise 

Hg to Corg. Sanei et al. (2012) acknowledge the likely incorporation of large amounts of Hg in 

authigenic pyrite under euxinic conditions, but only normalised Hg to Corg. Shen et al. (2019) 

compare Hg to Corg and STOT and find they are poorly (r2 < 0.01) and well (r2
 > 0.80) 

correlated, respectively. Additionally, energy-dispersive x-ray spectroscopy was used to further 

verify that pyrite, and not organic matter, was the host phase for Hg in their samples. Sediment 

Hg may also be associated with clay or Fe-oxide phases, so an Al or Fe normalisation is 

suggested (Grasby, et al., 2019). Since sediment Hg retention is not fully understood, 

examination of all potential host phases may help to reduce the possibility of false positives. 
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4.3. Mass Balance Models 

Trace metal seawater concentrations are regulated by source fluxes from rivers and 

seafloor hydrothermal activity and sink fluxes to oxic, suboxic and anoxic/euxinic seafloor 

sediments. Trace metals like Re and Mo are removed most efficiently to the anoxic/euxinic 

sinks, as indicated by higher trace metal burial rates. Therefore, an expansion of anoxic/euxinic 

areas will result in a drawdown of metals from seawater, thereby depleting the global seawater 

metal reservoir over time. Mass balance models take advantage of the source–seawater–sink 

relationship to characterise ancient environments by their seafloor anoxic or euxinic sink areas. 

The redox sensitive trace metals Re and Mo are conservative in seawater with residence 

times of 130 and 440 thousand years (kyr), respectively (Miller, et al., 2011) for the modern 

ocean—greater than average ocean mixing times (1 to 2 kyr)—making them ideal candidates 

for modelling global ocean redox conditions. In non-restricted settings where ocean circulation 

is not inhibited, or is only weakly restricted, these trace metals can be used to determine the 

global areal extent of seafloor anoxia by mass balance models. Sheen et al. (2018) developed a 

model for general anoxic (ferruginous + euxinic) seafloor area using Re, and Reinhard et al. 

(2013) for euxinic seafloor area using Mo. The models are first-order in that sediment metal 

enrichments are assumed to scale directly with seawater metal reservoir size. These models are 

solved to determine the authigenic sediment enrichments at a given anoxic or euxinic seafloor 

area following Equations 3a to 3c, which are fully derived in Sheen et al. (2018) and Reinhard 

et al. (2013).  

(3a)    [𝑀𝑒]′ = [𝑀𝑒]𝑀
𝐹𝑖𝑛

∑𝐴𝑖𝑏𝑖
 

(3b)    𝑏𝑎𝑒
′ = 𝑏𝑎𝑒

[𝑀𝑒]′

[𝑀𝑒]𝑀
 

(3c)    [𝑀𝑒]𝑎𝑢𝑡ℎ =
𝑏𝑎𝑒

′

𝐵𝑀𝐴𝑅
 

Where: 

Me = metal (Re or Mo) 

[Me]’ = seawater metal concentration at a new steady state 

[Me]M  = modern seawater metal concentration 

Fin = input flux 
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Ai = area of seafloor covered by a given sink (i) 

bi = characteristic metal burial rate for a given sink (i) 

 bae’ = metal burial rate in the anoxic or euxinic sink at a new steady state 

 bae = metal burial rate in the modern anoxic or euxinic sink 

 [Me]auth = authigenic metal enrichment in anoxic or euxinic sediments 

 BMAR = bulk mass accumulation rate 

These models assume riverine input of each element as the dominant source to the 

ocean, as observed in modern oceans (Table 3, following page). Sinks included in the models 

are oxic, suboxic and anoxic sediments (for Re), or oxic, suboxic, and euxinic sediments (for 

Mo), with modern environments used in both cases to determine fluxes for sources and sinks 

(Table 3, following page). Additionally, scaling algorithms for bae’ were considered to account 

for decreasing burial rate due to lower mass accumulation rates as anoxic/euxinic seafloor area 

expands from continental margins into deeper waters farther from the continents. Reinhard et 

al. (2013) applied a fourth-order polynomial fit to approximate ocean bathymetry, and Sheen et 

al. (2018) expanded on this by calibrating burial rates to the eTOPO ocean bathymetry 

database (Amante & Eakins, 2009) which allowed for fine-tuning of burial rate with depth as 

anoxic expansion occurs. Bulk mass accumulation rates in the published models are those 

recorded in the Cariaco Basin (largest modern anoxic basin with only weak restriction from the 

open ocean) of 0.01 g cm-2 yr-1. In addition to scaling using the polynomial or bathymetric 

functions, bae’ scales proportionately to the global reservoir of Re or Mo by Equation 3b. 

To perform these models, data is filtered to ensure only samples deposited under anoxic 

or euxinic settings are used. Sheen et al. (2018) apply filters of Fe/Al > 0.5 and Corg > 0.4 wt% 

to infer anoxic samples for Re; Reinhard et al. (2013) apply filters of Fe, Al and Corg > 1 wt%, 

Fe/Al > 0.5, and Fepy/FeHR (py = pyrite; HR = highly reactive) > 0.7 or degree of pyritization 

(DOP) > 0.6 to infer euxinic samples for Mo. 
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Table 3. Summary of sink parameters for Re and Mo mass balance models. Percent area of the 

modern seafloor (%ASF) for oxia and anoxia/euxinia are taken from best estimates, while suboxia is 

calculated based on the estimated areas of oxic and anoxic/euxinic seafloor to achieve mass balance. Note 

that the sum of oxic, suboxic and anoxic/euxinic seafloor sinks is not 100%, due to an ~11% area of the 

authigenically neutral seafloor (area with no drawdown of Re or Mo from seawater). The Re and Mo flux 

(F) is the quantity of mass flux into each sink from rivers. The percent source flux (%Fin) is the relative 

amount of the total riverine flux into a given sink. The ratio of percent source flux to the area of seafloor 

for a given sink (Fin/ASF, in %) illustrates that the smallest sink areas (anoxic/euxinic) incorporate the 

highest Re and Mo masses per unit area. Characteristic burial rates for each sink (bi) are noted. 

 %ASF
 

Re(1) Mo(2) 

F 
(× 105 
mol/yr) 

%Fin Fin/ASF 

bi
 

(ng/ 
cm2/yr) 

F 
(× 108 
mol/yr) 

%Fin Fin/ASF 

bi
 

(µg/ 
cm2/yr) 

Source 
(Rivers) 

 4.29  3.00  

S
in

k
s
 

Oxic 83.89 0.26 6.1 0.07 0.0016 0.87 29 0.3 0.00275 

Suboxic 
4.67(1), 
1.92(2) 3.75 87.4 18.7 0.415 1.94 64.7 33.7 0.27 

Anoxic 
0.11 0.28 6.5 59.1 1.339  

Euxinic  0.19 6.3 57.3 2 
(1) Sheen et al. (2018)   (2) Reinhard et al. (2013)    
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5. Methods 

Samples were taken from a core from northeastern British Columbia (c-B6-A/94-B-8) 

during three collection periods: February 2016, January 2018, and January 2019. The core 

measures 45.7 meters and covers stratigraphy from the uppermost Pardonet Formation, 

Gordondale Member, PCS, and lowermost upper Fernie Formation shales. Lithology varies 

through the core, including dolomites (Pardonet), turbidite and/or debris flow sequences 

(Gordondale), siltstones (Gordondale, PCS), volcanic ash beds (Gordondale, PCS), grey shales 

(upper Fernie Formation shales), and black shales (Gordondale, PCS). The Gordondale 

Member in its type section contains an upper, middle, and lower subunit. The middle unit is not 

represented in all sections or is very thin (< 2 m; Asgar-Deen, et al., 2004). The middle unit 

was not detected in the study core section; therefore, the Gordondale Member in the core is 

subdivided into Lower and Upper Subunits based on major and trace element geochemistry. 

The Gordondale–PCS boundary is defined by a sharp transition from calcareous (Gordondale) 

to non-calcareous (PCS) deposition. The PCS as described in the study core is analogous to the 

PCS-B of Riediger (2002), while the Gordondale Member Upper Subunit is equivalent to 

Riediger’s PCS-A. The primary target for geochemical analyses in this study are the black 

shales of the Gordondale Member and PCS. 

5.1. Sample Collection and Preparation 

5.1.1. 2016 Collection 

Samples from February 2016 were collected for corporate research (Progress Energy 

Canada Ltd., now Petronas Canada) at Weatherford Laboratories Canada Ltd. (Weatherford 

Labs; Calgary, AB) prior to this thesis project. Forty-five horizontal plugs were acquired at 

approximately 1 m intervals with geophysical, geochemical, and mineralogical analyses 

completed by Weatherford (spectral core gamma, source rock analysis) and Argile Analytica 

(X-ray diffraction; XRD). Sampling captured a wide range of lithologies including fissile upper 

Fernie Formation shales (n = 6), grey to black organic-rich shales with and without calcareous 

fossil material (PCS, n = 16; Gordondale, n = 13), turbidites (Gordondale, n = 7), displacive 

fibrous calcite fracture zones (e.g. Riediger and Coniglio, 1992; Gordondale, n = 1) and 

Pardonet Formation dolomites (n = 2). The samples of greatest interest in this project are the 
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grey to black organic-rich shales without fossils or veins to best interpret the depositional 

environment (authigenic mineral phases, sulfide minerals, and bulk organic matter), rather than 

the fossil, detrital (turbidite), or diagenetic (calcite vein) signatures. Before sampling, the core 

was subject to spectral gamma testing; following sampling the core was slabbed (one-third and 

two-thirds), surface cleaned and photographed under white light (Weatherford Laboratories 

Canada Ltd., 2017). 

5.1.2. 2018 and 2019 Collection 

Core sampling occurred over three days in January 2018 at Weatherford Labs in 

Calgary, Alberta. These samples were collected for multiple geochemical analyses at the Metal 

Isotope Geochemistry Laboratory (MIGL) and Environmental Isotope Laboratory (EIL) of the 

University of Waterloo (UW), the Agriculture and Food Laboratory (AFL) of the University of 

Guelph, the Geochemistry of Ancient and Modern Environmental Systems Laboratory 

(GAMES Lab) of the College of Charleston, and Activation Laboratories (Actlabs; Ancaster, 

ON). Previous core descriptions (Moslow, 2016) and direct observations were used as the basis 

for sampling. Forty-six samples were collected at an average of approximately one sample per 

1 m (“low stratigraphic resolution”), most of which were black shales from the Gordondale and 

PCS (n = 18 and 16, respectively). The remaining samples were volcanic ash beds (n = 1 and 2, 

respectively), siltstones (n = 1 and 1, respectively), and turbidites (n = 2 and 0, respectively) 

from the Gordondale and PCS, as well as dolomites from the Pardonet Formation (n = 3), and 

grey shales of the upper Fernie Formation (n = 2). Several features within the core were 

avoided to ensure that the primary geochemical signal was that of syn-depositional to earliest 

diagenetic processes, rather than those of secondary environmental processes; these included 

macroscopic pyrite nodules and calcite veins and/or veinlets (later-stage diagenesis), fossils, 

and bedding contacts (intermixing). Samples were removed by stainless steel chisel, 

photographed, bagged, catalogued, and transported to Waterloo. 

Another sample set for geochemical analyses was collected over two days in January 

2019 at the Alberta Energy Regulator Core Research Centre in Calgary, Alberta. These 

samples were collected from a portion of the core (26.3 m interval) based on the results of the 

2018 geochemical analyses at an average of approximately one sample per 40 cm (“high 
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stratigraphic resolution”). The sampling procedure from 2018 was followed, however, only 

black shale samples of the Gordondale and PCS were taken (n = 55 and 7, respectively). 

5.1.3. Physical Sample Preparation (2018/2019) 

Physical preparation of samples collected in January 2018 and 2019 occurred in the 

Hard Rock Laboratory at UW. Samples were trimmed by a diamond rock trim saw to remove 

unwanted material; i.e. chisel marks, core paint, or sedimentary features (e.g. fossils, calcite 

veins, macroscopic pyrite) that would interfere with efforts to infer depositional conditions 

from the black shale geochemistry. Trimmed samples were manually crushed with a rubber 

mallet, or, when necessary for samples with high physical competency, with a metal rock 

hammer wrapped in several layers of duct tape to avoid metal contact with the sample. Sample 

chips were powdered in a Retsch automated ball mill with agate grinding jars. Sample powder 

was stored in 20 ml low-density polyethylene (LDPE) vials.  

From each powdered sample, five subsamples were taken for analysis of (1) multi-

element concentrations (100 mg; MIGL), (2) total carbon, Corg, and Cinorg contents (1-5 g; 

AFL), (3) Corg isotope composition (1 g; EIL), (4) sediment mercury (Hg) content (1 g; 

GAMES Lab), and (5) total sulfur (STOT) content (1 g, Actlabs). Subsample sets 1 and 3 were 

retained for analysis at UW, while subsample sets 2, 4 and 5 were shipped to their respective 

laboratories for further preparation and analysis. 

5.2. Whole Rock Multi-Element Analysis 

5.2.1. Sample Digestion and Dilution 

Whole rock subsamples for multi-element analysis were weighed (mwr, grams), then 

ashed in ceramic crucibles within a muffle furnace at 550°C for 24 hours to oxidize organic 

matter. Ashed subsamples were chemically prepared for analysis at the MIGL in a class 10 000 

metal-free cleanroom. Fisher Scientific TraceMetal™ Grade nitric acid (HNO3) at 70% w/w, 

hydrochloric acid (HCl) at 35% w/w and hydrofluoric acid (HF) at 50% w/w were used. Acid 

concentrations are noted in the procedure only if they differ from the Fisher stocks. Digestions 

were completed under class 10 to 100 laminar-flow fume hoods within the cleanroom.  

In the balance room within the cleanroom, ashed material was transferred from the 

ceramic crucible to a 22 ml Teflon beaker and wet with 10 drops of Milli-Q ultrapure water to 
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avoid airborne sample powder within the main cleanroom. Wet sample material was digested 

in 2.5 ml HNO3 and 0.5 ml HF for 48 hours at 110°C. After the digestion period, the Teflon 

beaker lids were removed, and digestions were left on the hot plate at 110°C to evaporate 

through the day until just dry. A second acid digestion in 4 ml aqua regia solution—3 ml HCl 

and 1 ml HNO3—was prepared and set at 110°C for 48 hours. The evaporation process was 

completed following the aqua regia digestion period. A final digestion in 2 ml 35% w/w HCl 

at 110°C for 24 hours was completed, followed by evaporation. Dry residues were dissolved in 

6 ml of 6 mol/l HCl and 3 drops of 0.5% v/v HF, then transferred from the Teflon beakers to 

15 ml LDPE vials. Mass of the LDPE stock solutions (ms) were recorded in grams. 

Sample aliquots were produced from the stock solutions at dilution factors (DF) of 

approximately 6000 (for major and most trace elements) and 400 (for Cd, Re and heavy rare 

earth elements). The estimated aliquot volume (Va, ml) required for the desired DF (DFd) was 

calculated by Equation 4. 

(4)    𝑉𝑎 = (
10𝑔

1.11𝑔 𝑚𝑙⁄⁄ )
𝑚𝑠

𝑚𝑤𝑟×𝐷𝐹𝑑
 

The estimated volume is corrected by the anticipated mass of the final aliquot solution 

(10 g) and the approximate density of the sample solution (1.11 g/ml). The calculated Va was 

pipetted from the stock solution to a 7 ml Teflon beaker. The aliquots were weighed (ma, 

grams) and evaporated at 110°C to dryness. Dry residues were dissolved in 1 ml of 2% v/v 

HNO3, then evaporated to remove all traces of HCl. The final residues were transferred to 15 

ml centrifuge tubes in ~10 ml of 2% v/v HNO3 and 2 drops of 0.5% v/v HF. The final mass of 

the analyte solutions (mf, grams) were weighed and recorded. Analyte solutions were stored for 

up to 20 days before analysis. The true DF (DFt) for each analyte solution was calculated by 

Equation 5. 

(5)     𝐷𝐹𝑡 =
𝑚𝑠×𝑚𝑓

𝑚𝑤𝑟×𝑚𝑎
 

5.2.2. Sample Analysis 

Inorganic element concentrations of the diluted samples were measured at MIGL on an 

Agilent 8800 triple-quadrupole inductively coupled plasma mass spectrometer (QQQ-ICP-

MS). Two analytical runs were completed, one for each of the sample dilutions. The more 
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dilute digestions (DF = 6000) were run first for major and most trace elements (see Table 4). 

The more concentrated digestions (DF = 400) were run the following day for the heavy rare 

earth elements (HREE), Cd and Re (see Table 4). The order of the analyses from high to low 

DF is necessary to avoid element build up or memory effects in the QQQ-ICP-MS instrument 

during the high concentration run.  

 

Table 4. Elements analysed by QQQ-ICP-MS at the MIGL. Major elements are those with average 

upper continental crust concentrations (UCC; McLennan, 2001) > 1 wt%, minor elements are those with 

UCC between 0.1 and 1 wt%, and trace elements are those with UCC < 0.1 wt%. The elements discussed 

in this work are presented; none lie within the “minor element” category. Major elements in this thesis 

are recorded in weight percent (wt%) and trace elements in µg/g, except for Re (ng/g). The dilution factor 

(DF) that was used to make analytes for a given element analysis are listed, where 6000 is more dilute 

and 400 is more concentrated. 

 DF = 6000 DF = 400 

Major Al, P, Ca, Fe n/a 

Trace V, Mo, U Cd, Re 

 

These analyses were performed in helium (He) mode, meaning that He was the carrier 

gas introducing sample solutions into the QQQ-ICP-MS system. Internal standard elements 

scandium (45Sc), germanium (72Ge), indium (115In) and bismuth (209Bi) were continuously 

analysed to correct for instrument drift. These elements were chosen to bracket the entire range 

of element masses sought in the analysis. However, some of the major elements (27Al, 31P and 

44Ca) have masses lighter than Sc, while uranium (238U) is heavier than Bi. Calibration 

standards were diluted at factors of 10 to 200 000 from stock solutions containing ~20 to 200 

µg/g of the desired major elements, and ~1 to 2 µg/g of the desired trace metals. The 

calibration standards were analysed at the beginning of each analytical run and are used to 

correct for concentration offset between the known (calculated) and measured values for the 

calibration standards. 

Results of the QQQ-ICP-MS analysis were transmitted from the instrument to the 

accompanying workstation in the Agilent MassHunter software package. Measured element 

concentrations (Cm) are stated in parts-per-billion (ppb) w/w (ng/g) from the dilute solution. 

True whole rock element concentrations (Ct) were calculated by Equation 6.  
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(6)    𝐶𝑡 = 𝐶𝑚 × 𝐷𝐹𝑡 

Major element concentrations were converted from ppb to weight percent (wt%; 

Equation 7a), and trace elements (excluding Re) were converted from ppb (ng/g) to parts-per-

million (ppm, µg/g; Equation 7b). 

(7a)    𝐶𝑓 (wt%) = 𝐶𝑡 × 10−7 

(7b)    𝐶𝑓 (ppm) = 𝐶𝑡 × 10−3 

Where Cf is the final converted element concentration, and 10-7 and 10-3 are used to convert 

from ppb to percent and ppm, respectively. 

5.2.3. Quality Control 

From the analyses, element concentrations are reported with a percent relative standard 

deviation (RSD), based on three measurements taken during an analytical run. Most individual 

samples had RSDs less than 5% for all elements analysed. Some elements were analysed more 

precisely than others; of 108 samples, P, Ca, and Fe had 106 with RSDs less than 5%, Mo had 

93, U had 89, Al had 88, and V had 86, Re had 71, and Cd had 65. However, for those 

samples/elements which exceeded 5% RSD, the majority still remained below a 10% RSD. 

Along with core samples, three United States Geological Survey (USGS) black shale 

standards (SBC–1, SDO–1, and SGR–1b) were digested and diluted following the same 

procedure as core samples, and analysed at the beginning, midpoint and end of the analytical 

run. Certified standard values are reported by Wilson (2012; SBC-1), Smith (1991; SDO-1), 

and Wilson (2014; SGR-1b), except for Re concentrations which were reported by Yin et al. 

(2017; SGR-1b) and Li and Yin (2019; SBC-1). Results of the standard analysis were used to 

verify instrument accuracy based on the certified standard concentrations (Cc) for each element 

and monitor instrument drift by comparing reported concentrations from each standard value 

across the analytical run. Most elements gave standard percent recovery (Equation 8) within 

100 +9/–15% based on the Cm of the standard compared to the Cc.  

(8)    Standard % Recovery =
𝐶𝑚

𝐶𝑐
× 100% 

Several total procedural blanks were produced with the sample set. Blank analytes are 

used to monitor for contamination that could have occurred during the digestion, dilution, or 
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measurement phase of the procedure. Total procedural blank solutions should have element 

concentrations near or below the detection limit of the instrument (i.e. concentrations 

approaching zero), however a sample percent blank (% Blank; Equation 9) for each element in 

each sample of less than 10-3 was considered satisfactory. 

(9)    % Blank =
𝐶𝑚,𝑏𝑙𝑎𝑛𝑘𝑚𝑎,𝑏𝑙𝑎𝑛𝑘

𝐶𝑡𝑚𝑤𝑟
× 100% 

Where Cm,blank and ma,blank are the measured concentration and mass of the blank analyte 

solution. 

Replicates of several whole rock samples were prepared along with the main sample set 

using the same chemical and analytical procedures. These were used to verify the precision of 

the measurements based on the relative standard deviations (RSD) between the concentrations 

of each element from the main and replicate samples (Equation 10). 

(10)    Replicate RSD =
𝑠

𝑥̅
× 100%  

Where s and x̅ are the sample standard deviation and mean, respectively, between the main and 

replicate samples. Precision of the measurement was considered excellent when replicate RSDs 

were less than 5%, and satisfactory between 5% and 10%. Equation 10 was also applied to 

USGS standards, which were measured multiple times during analytical runs. Of all 

replications, 37% were considered excellent, while 18% were considered satisfactory, therefore 

most samples fell below a replicate RSD of 10%. 

5.3. Organic Carbon Isotope Analysis 

5.3.1. Sample Acid Washing 

Subsamples for Corg isotope analysis were chemically prepared in a general wet 

geochemistry laboratory at the EIL. These subsamples were bathed in approximately 5 ml of 

5% to 10% reagent grade HCl at 50°C for several hours to remove Cinorg (as carbonate, CO3
2-). 

Solutions were pH-tested to ensure that the alkaline carbonate had been sufficiently removed. 

Acid was siphoned from the sample vial with a pumping tube with glass tip, and four rinses 

with NanoPure water were completed across several hours to remove all acid. Note that due to 

their high Corg content, approximately half of the samples were hydrophobic (did not mix or 

settle within the vial) and required delicate siphoning. After the final water rinse and siphon, 
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the sample vials were placed on a warm surface for 48 hours to dry. Dried sample material 

formed a puck in the sample vials, which was re-powdered and re-mixed. Between 1 and 10 

mg of the acid-washed samples were weighed, placed in a foil cup and stored in a sampling 

tray until analysed.  

5.3.2. Sample Analysis 

Sample analysis for Corg isotope composition (δ13C) was completed at the EIL on a 

Costech Instruments 4010 Elemental Analyzer combustion chamber to volatilize sample 

material, coupled with a Thermo-Finnigan Delta Plus XL continuous-flow isotope ratio mass 

spectrometer to measure δ13C. Carbon isotope ratios are reported as per mil (‰) values against 

a standard reference material with precision of ± 0.2‰, calculated by Equation 1. The EIL 

uses several international and in-house standard reference materials that are calibrated to the 

primary carbon isotope scale anchored by Pee Dee Belemnite (PDB). 

5.4. External Laboratory Procedures 

Samples collected and analysed in 2016 by Weatherford and Argile Analytica, and 

subsamples of 2018 and 2019 samples that were sent to the AFL, Actlabs and GAMES 

Laboratory were not prepared or analysed by the author. 

5.4.1. Programmed Pyrolysis (Weatherford Labs) 

Weatherford Labs completed programmed pyrolysis on 45 horizontal plugs from the 

2016 sample set using their proprietary Source Rock Analyzer Plus TOC instrument to obtain 

Corg content, free hydrocarbon content (S1), source potential (S2), carbon dioxide yield (S3), and 

thermal maturity (Tmax). Whole rock samples are powdered and passed through a 250 µm 

mesh sieve prior to analysis. Programmed pyrolysis (stage temperature heating) of sample 

powders volatilizes hydrocarbon- and oxygen-bearing compounds which are directly measured 

in the instrument. Further calculations can be made from measured values, the most useful for 

this project being the hydrogen index (HI) and oxygen index (OI). The HI is used to determine 

organic matter source (marine or terrestrial) and a Van Krevelen diagram (HI versus OI) is 

used to determine kerogen type. The HI and OI are calculated by Equations 11 and Equation 

12, respectively (Weatherford Laboratories Canada Ltd., 2017). 
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(11)     𝐻𝐼 = 100 ×
𝑆2

𝐶𝑜𝑟𝑔
 

(12)     𝑂𝐼 = 100 ×
𝑆3

𝐶𝑜𝑟𝑔
 

5.4.2. X-ray Diffraction (Argile Analytica) 

Bulk and clay mineralogy were determined for 45 horizontal plug samples from the 

2016 sample set using XRD techniques at Argile Analytica’s laboratory on a Rigaku Miniflex 

XRD instrument with copper x-ray tube. For bulk mineralogy, 1.5 g of sample material was 

powdered in a Retsch ball mill for 3 minutes, and if necessary was further ground in an agate 

mortar to homogenize grain size. Sample powders were packed in the sample holders to avoid 

preferential orientation of mineral grains and scanned with angles of incidence from 2° to 30°. 

For clay mineralogy (particles < 2 µm), material was wet-ground in an agate mortar with 

aqueous sodium bicarbonate and transferred to a glass tube. The material in the glass tube was 

sonicated and centrifuged to separate clays from the bulk material by sedimentation. The 

supernatant containing the clay material was transferred to a plastic tube and rapidly 

centrifuged for 20 minutes to allow clays to settle. The supernatant was poured off and the 

remaining clay material packed into sample holders to air-dry at room temperature. Scans of 

dry mounts occurred at incident angles from 1.5° to 17.5°. Swelling clays (e.g. smectite group) 

require further treatment for analysis; the same samples were placed in a glycol chamber at 

75°C for 4 hours to expand the swelling clays. Finally, samples were heated at 550°C for 1 

hour to differentiate further between swelling and non-swelling clays, as this dehydrates 

(collapses) swelling clays while the structural integrity remains intact in non-swelling clays 

(e.g. illite group). This process will also destroy some clays (e.g. kaolinite). Method accuracy 

was validated through analysis of a sample with known weights of kaolinite (10 wt%), 

corundum (20 wt%), quartz (30 wt%) and calcite (40 wt%); measured values were 9.5 wt%, 

20.9 wt%, 30.3 wt% and 39.3 wt%, respectively (Stefani, 2017). 

5.4.3. Carbon Content (Agriculture and Food Laboratory) 

Carbon analysis was completed at the AFL on the 2018/2019 sample sets. TOC is 

measured indirectly by subtracting Cinorg from total carbon Ctot measured from two splits of the 

same sample. To determine Cinorg, samples are ashed at 475°C for 3 hours to oxidize organic 

matter. Ashed samples are processed on an Elementar Vario Macro Cube CN catalytic 



49 

 

combustor at 960°C and the resulting gases (carbon and nitrogen) are separated and measured 

with a thermal conductivity detector. Total C is determined using the same analytical 

procedure, excluding the ashing step (Wang, 2018). Shale standards USGS SBC–1 and SGR–

1b, and sample replicates were measured alongside the main samples to verify accuracy and 

precision, respectively. Standard recovery was 96% on average, and replicate RSDs were less 

than 3%. 

5.4.4. Sediment Mercury Concentrations (GAMES Laboratory) 

Mercury concentrations were measured at the GAMES Laboratory on splits of 2018 

and 2019 sample material. Approximately 50 mg of each subsample was placed in a Milestone 

DMA-80 evo and stage-heated to 750°C to volatilize Hg. Volatile Hg was collected by gold 

bead amalgamation, flushed from the beads, and then Hg concentrations were measured by 

atomic absorbance spectroscopy. The DMA-80 evo was calibrated using a liquid standard. 

National Research Council Canada certified reference materials TORT-3 (lobster 

hepatopancreas) and DORM-4 (fish protein) were analysed to ensure method accuracy. Mean 

percent recovery was 100.3 ± 1.5% (1s) for 21 measurements. Replicate RSDs were less than 

2.2% for 25 replicate pairs. 

5.4.5. Total Sulfur Content (Activation Labs) 

Total sulfur was measured at ActLabs in July 2019 through combustion analysis 

(ActLabs, 2019). Sample powders (~0.2 g) were combusted in ceramic boats at up to 1550°C 

in a resistance furnace with a 99.5% pure oxygen atmosphere (Eltra, 2019). Volatilized sulfur 

species react with oxygen gas to form sulfur dioxide (SO2). The SO2 gas is filtered for 

particulates with a ceramic filter and traces of water are removed in a glass tube containing 

magnesium perchlorate (Eltra, 2019). Sulfur dioxide gas is measured in an Eltra CS-2000 

infrared cell coupled to the furnace. The detection limit is 0.01%. Black shale standard USGS 

SGR-1b, a barium sulfate (BaSO4) standard, and Geostats PTY Ltd sulphide gold ore GS900-5 

and Pt-Pd-Au ore GS311-4 standards were used to ensure method accuracy. Mean percent 

recovery for all standards was 103.3 ± 3.0% (1s; n = 31). Seven replicate pairs were completed 

with replicate RSDs less than 3%. 
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6. Results 

This section presents the results of geochemical analyses performed on the study core. 

Compressed results (sample means and standard deviations of element concentrations for 

stratigraphic intervals in the core) are shown in Table 5. The main observations of these data 

are described in the following subsections. Complete data tables for elements (and carbon 

isotopes) discussed in this section are found in section 0. 

Table 5. Summary of geochemical results. Mean ± 1s for XRD mineralogy, major elements, trace 

metals and organic carbon parameters for all samples, members and subunits.  

Element / Unit All Samples 
Gordondale PCS 

Total Lower Upper  

Upper Depth 
m 

1560.06 1575.00 1584.95 1575.00 1560.06 

Lower Depth 1595.51 1595.51 1595.51 1584.58 1574.85 

C
o

rg
 Corg wt% 5.8 ± 2.2 6.3 ± 2.2 8.1 ± 2.2 5.2 ± 1.3 4.3 ± 0.8 

δ13Corg ‰ –29.5 ± 0.6 –29.7 ± 0.5 –29.7 ± 0.4 –29.6 ± 0.6 –29.1 ± 0.8 

Tmax °C 476 ± 3 477 ± 3 476 ± 4 477 ± 4 475 ± 3 

X
R

D
 

Qtz 

wt% 

41 ± 24 38 ± 27 33 ± 28 43 ± 26 45 ± 19 

Carb* 24 ± 26 40 ± 23 50 ± 27 30 ± 13 1.9 ± 3.0 

Clay** 26 ± 26 11 ± 19 6.5 ± 14 17 ± 23 45 ± 22 

Ap 4.8 ± 12 8.2 ± 15 8.6 ± 19 7.7 ± 12 0 ± 0 

Py 0.92 ± 1.5 0.35 ± 1.2 0.44 ± 1.4 0.26 ± 0.82 1.7 ± 1.6 

M
a
jo

r 
E

le
m

e
n

ts
 Al 2.6 ± 1.1 3.8 ± 2.2 2.1 ± 1.0 4.9 ± 2.1 7.2 ± 1.6 

Ca 8.7 ± 7.5 11 ± 7 17 ± 6 7.6 ± 5.2 0.9 ± 0.5 

Cinorg 2.4 ± 2.0 3.0 ± 1.9 4.7 ± 1.6 2.0 ± 1.2 0.4 ± 0.2 

P 0.8 ± 1.7 1.0 ± 1.9 0.7 ± 0.8 1.2 ± 2.4 0.09 ± 0.14 

Fe 2.1 ± 1.4 1.8 ± 1.3 1.0 ± 0.5 2.3 ± 1.4 2.8 ± 1.5 

STOT 2.6 ± 1.1 2.4 ± 1.1 2.0 ± 0.6 2.7 ± 1.2 3.1 ± 1.2 

T
ra

c
e

 M
e
ta

ls
 

Mo 

µg/g 

80 ± 87 99 ± 91 175 ± 95 50 ± 42 18 ± 12 

V 711 ± 586 838 ± 614 1163 ± 624 623 ± 510 309 ± 164 

U 13 ± 8 15 ± 8 19 ± 9 12 ± 6 5.4 ± 2.9 

Cd 15 ± 16 16 ± 14 24 ± 15 11 ± 12 9 ± 21 

Re 
ng/g 

188 ± 123 209 ± 120 202 ± 90 214 ± 137 121 ± 108 

Hg 154 ± 78 143 ± 68 138 ± 57 147 ± 75 185 ± 98 

Mo 

EF 

172 ± 244 221 ± 260 474 ± 249 55 ± 45 14 ± 11 

V 18 ± 22 23 ± 24 45 ± 24 8.9 ± 5.3 3.3 ± 1.9 

U 13 ± 13 16 ± 14 27 ± 14 8.5 ± 6.3 2.2 ± 1.1 

Cd 431 ± 550 530 ± 579 1050 ± 587 187 ± 187 117 ± 268 

Re 472 ± 393 575 ± 392 873 ± 429 379 ± 195 145 ± 139 

*Clays = illite + layered illite–smectite + kaolinite 
**Carbonates = calcite + dolomite 
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6.1. Organic Carbon Geochemistry 

6.1.1. Organic Carbon Content 

Organic carbon content (Corg) varies within black shale samples in the c-B6-A/94-B-8 

core from a minimum of 2.6 wt% to a maximum of 11.5 wt% (Figure 8, column 1). The mean 

Corg content for all black shales, the PCS, and the Gordondale Member are 5.8 ± 2.1 wt% (n = 

125), 4.4 ± 0.9 wt% (n = 39), and 6.5 ± 2.1 wt% (n = 86), respectively. The Gordondale 

Member Lower Unit exhibits the highest Corg values with a mean of 8.0 ± 2.1 wt% (n = 33) and 

contains four peak intervals where values from 9.6 wt% to 11.5 wt% are attained. The Upper 

Unit has a mean Corg content of 5.5 ± 1.5 wt% (n = 53); however, there are two peak intervals 

where Corg contents reach similar values (9.2 wt% and 10.7 wt%) as the Lower Unit peaks. 

Often, trace metal concentrations are normalized to Corg due to their association with 

organic matter in the water column. However, in this core, metal concentration–Corg 

correlations are weak: Fe–, Mo–, V–, U–, Re–, Cd– and Hg–Corg have r2 < 0.24. Trace metal 

EF–Corg correlations are also weak: MoEF–, VEF–, UEF–, ReEF–, CdEF–Corg have r2 < 0.42. 

6.1.2. Stable Organic Carbon Isotopes 

The mean organic carbon isotope composition (δ13Corg) for all black shale samples in 

the core is –29.5 ± 0.6 ‰ (n = 96) (Figure 8, column 2). Gordondale Member samples average 

–29.7 ± 0.5 ‰ (n = 73), while the Poker Chip Shale averages –29.1 ± 0.8 ‰ (n = 23). The 

Gordondale and PCS δ13Corg means are significantly different based on p-values < 0.05 from an 

unpaired t-test assuming both sample sets are approximately normally distributed (p-value = 

0.006). The more-negative Gordondale mean is attributed to a ~7 m interval at the top of the 

member (1582.10 m to 1574.85 m, inclusive; interval marked by red lines in Figure 8) where a 

sharp excursion to δ13Corg values to a minimum of –30.5 ‰ is encountered (mean across the 

interval is –29.8 ± 0.3 ‰; n = 38). The negative excursion in the δ13Corg signature (or “negative 

carbon isotope excursion”; N-CIE) lies centred within an overall positive arc in the δ13Corg 

profile (or “positive carbon isotope excursion”; P-CIE; ~20 m; 1587.10 m to 1567.66 m). 

Samples before the P-CIE (1595.51 to 1587.64 m) have average δ13Corg values of –29.9 ± 0.5 

‰ (n = 19), followed by the onset of the broad P-CIE that, excluding the samples within the N-

CIE interval, averages –28.8 ± 0.4 ‰ (n = 30). The samples after the P-CIE (1566.37 to 
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1560.06 m) return to the more negative values similar to the pre-P-CIE values with a mean of –

30.0 ± 0.3 ‰ (n = 9). 

6.1.3. Programmed Pyrolysis Tmax, HI and OI 

The Tmax (maximum temperature at the S2 peak in the programmed pyrolysis process) 

values for organic matter in black shale samples in the core average 476 ± 3 °C (n = 35), and 

do not vary statistically (p-value = 0.19) between the PCS (475 ± 3 °C; n = 15) and the 

Gordondale Member (477 ± 3 °C; n = 20) (Figure 8, column 3). Tmax values less than 435°C 

are thermally immature, those between 435 and 470°C are thermally mature, and greater than 

470°C are thermally overmature (Peters, et al., 2005). The Gordondale Member and PCS Tmax 

values indicate that the core is thermally overmature. The hydrogen and oxygen indices (HI 

and OI, respectively) are plotted on a pseudo-van Krevelen diagram (Figure 9) and corroborate 

thermal overmaturity by their low values. Figure 9 also indicates that kerogen could be of 

Type I or II, as is observed by others (e.g. Riediger & Bloch, 1995; Riediger, 1991). However, 

due to overmaturity, kerogen type should not be interpreted from the pseudo-van Krevelen plot 

for these core samples. 
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Figure 8. Organic carbon geochemistry and thermal maturity indicator in the study core. Total 

organic carbon (Corg) content, organic stable carbon isotope (δ13Corg) composition and Tmax profiles for 

the studied core. See Figure 10 for stratigraphy. 
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Figure 9. Pseudo-van Krevelen diagram for kerogen type and thermal maturity. Plot of hydrogen 

index (HI) versus oxygen index (OI) from Rock-Eval pyrolysis on the PCS (orange markers) and 

Gordondale Member (blue markers) black shales. Trends depicted for types I to IV kerogens and their 

typical organic matter types after Peters et al. (2005). 
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6.2. X-ray Diffraction Mineralogy 

Quartz (Qtz) (Figure 10, column 1) is a major mineralogical component throughout the 

core at a mean of 41 ± 24 wt%. The Gordondale Member and PCS exhibit statistically similar 

Qtz content (p-value = 0.32), at means of 38 ± 27 wt% and 45 ± 19 wt%, respectively. The 

Gordondale Member Upper Unit is similar to the PCS (p-value = 0.81) with a mean Qtz 

content of 43 ± 26 wt%. The Lower Unit is not significantly different from the Upper Unit (p-

value = 0.38) at a mean of 33 ± 28 wt%. 

The Carbonate (Carb) fraction (Figure 10, column 2) is the sum of calcite (Cal) and 

dolomite (Dol) components. Carbonates are more abundant in the Gordondale Member at a 

mean of 40 ± 23 wt%, relative to the PCS at a mean of 1.9 ± 3.0 wt%. All PCS carbonates are 

dolomite (Dol = 1.9 ± 3.0 wt%; Cal = 0 ± 0 wt%), while calcite is the dominant carbonate 

phase in the Gordondale Member (Dol = 3.7 ± 5.9 wt%; Cal = 37 ± 26 wt%). The Gordondale 

Member Upper and Lower Unit carbonate contents are significantly different (p-value = 0.05), 

where the Lower Unit contains much more carbonate (50 ± 27 wt%) than the Upper Unit (30 ± 

13 wt%). Carbonate content is weakly inversely correlated with Qtz content (r = –0.45) and 

clay content (r = –0.60). 

The Clay fraction (Figure 10, column 3) is the sum of illite, layered illite–smectite, and 

kaolinite. The mean clay content in the core is 26 ± 26 wt%, indicating its variability. Illite is 

the most common clay mineral, found in 56% of the XRD samples. Layered illite–smectite and 

kaolinite are rarer in the core, found in 8% and 25% of the samples, respectively. Illite and 

layered illite–smectite occurrences are exclusive of one another, while kaolinite occurs with 

either illite or illite–smectite. Kaolinite only occurs in the PCS and is the most minor clay by 

its concentration, where samples containing the mineral have 1.7 ± 1.2 wt% (n = 9). While 

illite–smectite is found in only 3 samples, these contain 42 ± 10 wt%. In the 20 samples 

containing illite, the mean is 39 ± 24 wt%. Clay content is greater in the PCS than the 

Gordondale Member, with significantly different (p-value = 0.00003) means of 45 ± 22 wt% 

and 11 ± 19 wt%, respectively. The Gordondale Member Upper Unit has a higher mean clay 

content than the Lower Unit (17 ± 23 wt% and 6.5 ± 14 wt%, respectively), however these are 

not statistically different (p-value = 0.24). 
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Apatite (Ap) and Pyrite (Py) (Figure 10, columns 4 and 5) are minor mineralogical 

components in the core—compared to the Qtz, carbonate and clay contents—either because 

they do not occur frequently (Ap) or do not reach values > 5 wt% (Py). Only 7 of 45 of the 

XRD core samples contain measurable quantities of Ap, all of which are in the Gordondale 

Member. When Ap is present in the Gordondale Member, the mean sample content is 25 ± 19 

wt%. While the PCS does not contain measurable quantities of Ap, it has the most samples 

with measurable Py content (15 of 22 samples) compared to the Gordondale Member (2 of 23 

samples). Samples in the PCS which contain measurable Py have a mean concentration of 3.6 

± 2.2 wt%. The two samples in the Gordondale Member with measurable Py are not 

statistically different (p-value = 0.27) from the PCS; their mean is 3.7 ± 1.6 wt%. 



57 

 

 F
ig

u
re

 1
0

. 
X

-r
a

y
 d

if
fr

a
ct

io
n

 (
X

R
D

) 
m

in
er

a
lo

g
y
 f

o
r 

th
e 

st
u

d
y
 c

o
re

. 
F

ro
m

 l
ef

t 
to

 r
ig

h
t 
(c

o
lu

m
n
 1

 t
o

 5
),

 t
h

e 
m

in
er

al
s 

ar
e 

q
u
ar

tz
 (

Q
tz

),
 c

ar
b

o
n

at
es

 

(C
ar

b
; 

ca
lc

it
e 

+
 d

o
lo

m
it

e)
, 
cl

ay
s 

(i
ll

it
e 

+
 l

ay
er

ed
 i

ll
it

e–
sm

ec
ti

te
 +

 k
ao

li
n
it

e)
, 

ap
at

it
e 

(A
p
) 

an
d
 p

y
ri

te
 (

P
y
).

 C
o

lo
u

rs
 d

en
o

ti
n

g
 g

eo
lo

g
ic

al
 m

em
b

er
s 

an
d
 s

u
b
u
n
it

s 
ar

e 
la

b
el

ed
 o

n
 t

h
e 

ri
g

h
t.

 



58 

 

6.3. Elemental Geochemistry 

6.3.1. Major Element Concentrations 

Mean Aluminium (Al) (Figure 11, column 1) for the black shale samples is 4.6 ± 2.6 

weight percent (wt%). There is a steady increase in Al concentrations up-core, which can be 

observed through comparison of the Gordondale Member and PCS. Mean Al concentrations in 

the Gordondale Member and PCS are 3.8 ± 2.2 wt% (n = 73) and 7.2 ± 1.6 wt% (n = 23), 

respectively. The up-core increase corresponds most closely to the increasing XRD clay 

content (Figure 10, column 1), however a direct comparison cannot be made because these 

analyses were not completed on the same sample set (XRD samples not available for further 

geochemical analyses). Aluminium content exhibits very minor, statistically significant (p-

value < 0.0006) inverse correlations with Mo and U concentrations (r2 = 0.14 and 0.12, 

respectively), a minor statistically significant (p-value = 0.00009) positive correlation with Hg 

(r2 = 0.16) and no correlation with the other trace metals discussed in the following section 

6.3.2. 

Calcium (Ca) and Cinorg contents (Figure 11, columns 2 and 3) are strongly correlated 

in the core (r2 = 0.87), and both exhibit a sharp decrease at the Gordondale–PCS boundary. 

The mean Ca concentrations in the Gordondale and PCS are 11.1 ± 7.0 wt% (n = 73) and 0.9 ± 

0.5 wt% (n = 23), respectively; mean Cinorg contents are 3.0 ± 1.9 wt% (n = 73) and 0.4 ± 0.2 

wt% (n = 23), respectively. The Ca and Cinorg profiles most strongly correspond to the XRD 

carbonate profile (Figure 10, column 2). Calcium and Cinorg both exhibit moderate inverse 

correlations with Al (r = –0.70 and –0.67, respectively, n = 96), and poor positive correlation 

with organic carbon (r2 = 0.34 and 0.28, respectively; n = 96). 

Phosphorus (P) (Figure 11, column 4) is one of the most variable elements in the core; 

concentrations range from 0.02 to 14.9 wt%, with a mean of 0.8 ± 1.7 wt% (n = 96). All 

Gordondale Member samples give a mean P concentration of 1.0 ± 1.9 wt% (n = 73), but six of 

the included samples (at 1594.66, 1589.96, 1582.55, 1582.23, 1581.33 and 1580.94 m) with 

concentrations above the mean + 1s range between 3.0 and 15 wt%. The PCS mean P 

concentration is two orders of magnitude lower than the Gordondale Member at 0.09 ± 0.14 

wt% (n = 23). A single PCS sample (at 1574.85 m, just above the PCS–Gordondale Member 
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contact) has an outlying concentration (greater than the mean + 1s) of 0.71 wt% meaning it is 

likely more similar to the Gordondale Member.  

Iron (Fe) (Figure 11, column 5) increases slightly up-core with Gordondale and PCS 

means of 1.8 ± 1.3 wt% (n = 73) and 2.8 ± 1.5 wt% (n = 23), respectively; the mean for all 

samples is 2.1 ± 1.4 wt% (n = 96). Correlations between Fe and Al are slightly convoluted by 4 

samples with high Fe contents (> 4.5 wt%). With these outliers removed, there is a good 

correlation between Fe and Al contents (r2 = 0.76; n = 92). Iron shows a strong correlation with 

total sulfur content (STOT; Figure 11, column 6) (r2 = 0.84; n = 83). Like Fe and Al, STOT 

exhibits an up-core increase; Gordondale Member and PCS means are 2.4 ± 1.1 wt% (n = 61) 

and 3.1 ± 1.2 wt% (n = 22), respectively. Both Fe and STOT show good positive correlations 

with Hg (r2 = 0.56 and 0.71, respectively; nFe–Hg = 92, nS–Hg = 82), but do not correlate with any 

other trace metal concentrations discussed in section 6.3.2 (r2 < 0.02).  
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6.3.2. Trace Metal Concentrations 

Molybdenum (Mo) (Figure 12, column 1) is highly enriched in the Gordondale Member 

Lower Unit with a mean concentration of 175 ± 95 µg/g and enrichment factor (MoEF) of 474 ± 

249 (n = 29). The concentration and MoEF decrease up-core, as shown by comparing the 

elevated Lower Unit content with the Upper Unit and PCS means of 50 ± 42 µg/g (MoEF = 55 

± 45; n = 44) and 18 ± 12 µg/g (MoEF = 14 ± 11; n = 23), respectively. However, the 

Gordondale Member Upper Unit exhibits an initially low value of 22 ± 13 µg/g (MoEF = 31 ± 

19; n = 25) from 1584.58 to 1578.93 m, and increases to 87 ± 37 µg/g (MoEF = 87 ± 49; n = 

19) from 1578.34 to 1575.00 m. 

The Mo trends are mirrored by vanadium (V) (Figure 12, column 2); Mo and V 

concentrations and EFs are well correlated (r2 = 0.71) and strongly correlated (r2 = 0.87), 

respectively (n = 96). Vanadium concentrations and VEF in the Gordondale Member Lower and 

Upper Units, and PCS are 1163 ± 624 µg/g (VEF = 45 ± 24; n = 29), 623 ± 510 µg/g (VEF = 8.9 

± 5.3; n = 44) and 309 ± 164 µg/g (VEF = 3.3 ± 1.9; n = 23), respectively. For V, the Upper 

Unit is subdivided as it is for Mo from 1584.58 to 1578.93 m and 1578.34 to 1575.00 m, which 

have V concentrations (and VEF) of 262 ± 160 µg/g (VEF = 4.8 ± 2.1; n = 25) and 1099 ± 409 

µg/g (VEF = 14 ± 3; n = 19), respectively. 

There is an observable decrease in the uranium (U) (Figure 12, column 3) 

concentrations up-core from the Gordondale Member to the PCS, from 15 ± 8 µg/g (UEF = 16 ± 

14; n = 73) and 5.4 ± 2.9 µg/g (UEF = 2.2 ± 1.1; n = 23), respectively. Like the Mo and V 

content, the U concentrations are greater in the Gordondale Member Lower Unit (19 ± 9 µg/g; 

UEF = 27 ± 14; n = 29) than in the Upper Unit (12 ± 6 µg/g; UEF = 8.5 ± 6.3; n = 44). However, 

unlike the Mo and V contents, the Upper Unit does not show a statistically significant 

difference between the 1584.58–1578.93 m (12 ± 7 µg/g; UEF = 10 ± 8; n = 25) and 1578.34–

1575.00 m (13 ± 6 µg/g; UEF = 7 ± 3; n = 19) intervals.  

Rhenium (Re) (Figure 12, column 4) is highly enriched in the core with concentrations 

of 188 ± 123 ng/g (ReEF = 472 ± 393) in the black shales. The Re concentrations decrease up-

core, most notably from the Gordondale Member (209 ± 120 ng/g; ReEF = 575 ± 392; n = 73) 

to the PCS (121 ± 108 ng/g; ReEF = 145 ± 139; n = 23). A decrease in the mean Re 

concentration from Gordondale Member Lower Unit (202 ± 90 ng/g; ReEF = 873 ± 429; n = 29) 
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to Upper Unit (214 ± 137 ng/g; ReEF = 379 ± 195; n = 44) is also observed, however 

concentrations are statistically alike (p-value = 0.63) while ReEF values are significantly 

different (p-value = 1.3 × 10-6). 

Cadmium (Cd) (Figure 12, column 5) content varies strongly through the core, with 

concentrations averaging 15 ± 16 µg/g and CdEF of 431 ± 550 (n = 96). The Cd stratigraphic 

trend mirrors those of Mo and V, and CdEF correlates well with both MoEF (r2 = 0.73; n = 96) 

and VEF (r2 = 0.74; n = 96). As with Mo and V, Cd contents decrease up-core; the highest Cd 

concentrations are observed in the Gordondale Member at 16 ± 14 µg/g (CdEF = 530 ± 579; n = 

73) and the lowest and most variable Cd concentrations are found in the PCS at 9 ± 21 µg/g 

(CdEF = 117 ± 268; n = 23). The Lower Unit of the Gordondale Member has a mean Cd 

concentration of 24 ± 15 µg/g (CdEF = 1050 ± 587; n = 29) and the Upper Unit shows the 

switch from low (3.6 ± 3.5 µg/g; CdEF = 78 ± 74; n = 25) to high (21 ± 11 µg/g; CdEF = 330 ± 

195; n = 19) Cd content in the same intervals as for Mo and V.  

Mercury (Hg) (Figure 12, column 6) concentrations in the black shale samples yield an 

average of 154 ± 78 ng/g (n = 92) and is generally lower (but only by a minor statistical 

difference; p-value = 0.07) in the Gordondale Member (143 ± 68 ng/g; n = 69) than the PCS 

(185 ± 98 ng/g; n = 23). Mercury content is not statistically different (p-value = 0.57) between 

the Lower and Upper Units of the Gordondale Member (138 ± 57 ng/g and 147 ± 75 ng/g, 

respectively). Peaks in the Hg concentration (up to 566 ng/g) above the mean occur in several 

samples; the four most apparent peaks occur at 1581.33, 1574.85–1574.53, 1571.92 and 

1568.68 m. 
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7. Discussion 

7.1. Consideration of Thermal Maturity 

Tmax values for the Gordondale Member and PCS in the c-B6-A/94-B-8 core lie within 

a narrow range around 476°C (Figure 8, column 3) indicating that the organic-rich units 

through the entire section are overmature with respect to hydrocarbon generation (Tmax > 

470°C; Peters, et al., 2005). Yang (2019) demonstrated that trace metals remain largely 

immobile and are not lost from the sediment phase during maturation. The Re-Os 

geochronometer has produced precise and accurate depositional ages for overmature black 

shale intervals, which is only possible with limited post-depositional redistribution of the 

metals (Selby & Creaser, 2005; Creaser, et al., 2002). Dickson et al. (2019) also note trace 

metal immobility during maturation based on limited partitioning of the metals into fluid 

phases, but do suggest that significant amounts of the Corg phase may be lost, thereby 

artificially inflating trace metal concentrations. Expulsion of oil and gas compounds from the 

Gordondale Member and/or PCS to other stratigraphic units or geographical location is 

unlikely based on limited correlation between biomarker signatures in these source rocks and 

migrated hydrocarbons through the WCSB (Riediger, 1994). However, potential localized 

degradation or small-scale migration of hydrocarbons has resulted in decoupling of Corg from 

the elemental content of the surrounding sediments as observed by non-relation of Corg with all 

trace metals (very low linear regression r2 values). 

Carbon isotope systematics may be affected by compound partitioning during 

maturation, as demonstrated by the range of δ13Corg compositions of thermogenic methane (–60 

to –40 ‰) versus oils and heavier gases (–45 to –20 ‰) (Fuex, 1977). However, the δ13Corg 

values of these overmature samples represent the bulk organic matter δ13Corg composition 

because (1) the compounds inherit the C-isotope systematics of the same predecessor material, 

(2) reconfiguration of Corg is localized rather than whole-system loss, and (3) bulk rather than 

compound-specific Corg isotope compositions are measured. 

7.2. Identification of the T-OAE 

The T-OAE is identified in the c-b6-A/94-B-8 core by the telltale N-CIE embedded 

within an overall P-CIE in the δ13Corg profile (Figure 13). Due to the non-linear baseline, a 



65 

 

second-order polynomial function (r2 = 0.57) is fitted to the broad P-CIE with N-CIE samples 

removed and is used as the baseline to determine the extent of the N-CIE. The highest 

predicted δ13Corg during the P-CIE is –28.6‰ at 1576.80 m. The difference between the lowest 

measured δ13Corg value in the N-CIE interval (–30.5‰) and the highest predicted value 

provides a maximum excursion of –1.9‰ from the polynomial P-CIE baseline. Measured 

differences at the onset and conclusion of the N-CIE are –1.6‰ and –0.8‰, respectively. The 

onset of the P-CIE defines the Pl–To boundary and the onset of the mass extinction that 

accompanied the T-OAE, and the N-CIE marks the classically-defined OAE (Them II, et al., 

2018). Here, the T-OAE is defined between the onset and conclusion of the P-CIE, with its 

apex occurring through the N-CIE. The T-OAE was defined in comparison to other WCSB 

(Alberta) sections from Them II et al. (2019). 
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Figure 13. Study core organic carbon isotope profile. Stable bulk organic carbon isotope signature 

(δ13Corg) reported in permil relative to PeeDee Belemnite (‰PDB). The profile follows a broadly positive 

carbon isotope excursion (P-CIE; black dashed line) punctuated with an abrupt negative carbon isotope 

excursion (N-CIE) near the centre of the trend. The Toarcian Oceanic Anoxic Event (T-OAE) is identified 

by the N-CIE, however the event begins at the P-CIE onset and concludes at the end of the P-CIE. 

7.3. Local Paleoenvironment 

7.3.1. Sea Level Changes 

The entire Jurassic system encompasses a first-order eustatic sea level rise, with 

multiple embedded second- and third-order global transgressive–regressive (T-R) cycles 

(Ruban, 2015). The Early Jurassic contains the first of two Jurassic second-order T-R cycles 

(Ruban, 2015). Gordondale Member deposition occurred during a sea level transgression of 

several 10s of meters, with highstand at the top of the Falciferum Zone (early Toarcian) 
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(Asgar-Deen, 2003). The transgression is followed by second-order regression in which the 

PCS is deposited. The highstand is noted in the study core atop the N-CIE where trace metal 

content peaks followed by a sharp decline and mineralogy/major geochemistry switches from 

carbonate/Ca-rich/Al-poor to silicate/Ca-poor/Al-rich deposition. High trace metal contents in 

sediments at sea level highstands are a result of deeper water deposition combined with 

enhanced primary productivity (e.g. driven by upwelling of nutrient-rich waters), and organic 

matter remineralization, which creates conditions for lower-oxygen sea floors where redox-

sensitive metals are reduced and removed to sediments efficiently (LaGrange, et al., 2019). 

Temporal variability in carbonate–silicate sedimentation as observed in the study core 

may be controlled by sea level and/or sediment supply changes (Boggs, 2006). A sea level 

transgression may cause sediment deposition lower than the carbonate compensation depth 

(CCD), below which the rate of carbonate mineral dissolution outpaces the rate of supply. The 

CCD fluctuates from ~3000 to 5000 m water depth and in the Jurassic was located at 

approximately 4000 m water depth (van Andel, 1975). However, the Gordondale Member was 

unlikely to have been deposited below CCD (Asgar-Deen, 2003) and the PCS was deposited in 

a more-oxygenated, regressive environment (Riediger, 2002) therefore both units are assumed 

to have been deposited above CCD. Because carbonate sediment production is mainly an 

organic process (versus abiotic precipitation), sea level transgression can also affect the 

shallow water organic source flux to deeper waters. Carbonate platforms are drowned if 

transgression occurs too rapidly and outpaces shallow-water biological carbonate generation. 

Platform drownings are accompanied by elevated phosphogenesis due to increased P 

availability (Follmi, 1996). Gordondale Member deposition coincided with the presence of a 

carbonate platform to the southwest (Nordegg Member) and an elevated P content at the onset 

of the N-CIE, so transgressive platform drowning is a candidate for causing the transition from 

carbonate to silicate deposition. A subsequent sea level regression would have led to deposition 

in a proximal setting where continental siliciclastic (detrital) input was elevated. An increasing 

Al concentration up-core is likely reflective of this environmental change, as Al is a major 

component of aluminosilicate continental material. It is likely that both carbonate platform 

drowning during transgression and increasing detrital flux during regression led to the abrupt 

shift from carbonate (Gordondale) to silicate (PCS) composition. 
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7.3.2. Cordilleran Tectonics 

Initial study of Jurassic strata of the WCSB led to suggested tectonic margin activation 

and development of a foreland basin on the west coast of ancient North America by the Late 

Jurassic (Kimmeridgian–Oxfordian) when subsidence occurred (Price, 1994). More recently, 

the timing of initiation has been pushed into the Early Jurassic based on syn-genetic detrital 

zircon preservation from contemporaneous western igneous sources (Pana, et al., 2017).  

The Gordondale Member in the study core is punctuated by highly competent, light 

grey 20-60 cm intervals of silty normally-graded bedding, occasionally topped with inversely-

graded bedding. Moslow (2016) describes these as turbidite–debris flow couplets. Ross and 

Bustin (2006) describe 15-90 cm thick microcrystalline argillaceous marlstones interbedded in 

the Gordondale Member Lower Unit in a core (d-88-H-94-A-13) ~70 km NNE of the study 

core. Asgar-Deen et al. (2004) describe 10 cm thick erosion-resistant, quartzose calcilutites and 

calcarenites interbedded with the black shales of the Hettangian Black Bear Ridge outcrop 

strata (~65 km WSW of the study core) and within the Gordondale Member Lower Unit in the 

Gordondale Member type section (~160 km ESE of the study core). The normally-graded 

intervals (“turbidites”) in the core may be tectonic-induced flows in a developing foreland 

basin. Together with the interbedded fine-grained black shales this interval could constitute the 

pre- to syn-orogenic flysch tectofacies (after the Alpine Flysch of Europe; Homewood & 

Lateltin, 1988). Flysch sequences are deep-marine units interspersed with terrestrial turbidites 

developed on active margins (Homewood, 1982) and are typically overlain by a shallower, 

syn- to post-orogenic molasse shale and sandstone tectofacies (after the European Alpine 

Molasse; Homewood and Lateltin, 1988). In the WCSB, the mid-Jurassic interval of the Fernie 

Formation has been described as a molasse deposit (Eyles and Miall, 2007), therefore 

underlying sediments of the Early Jurassic can be reasonably classified as flysch. 

These turbidites are like the underlying Pardonet Formation dolostones based on the 

major element geochemical results from this core. The geochemical similarity means that flows 

could have originated on the eastward continental slope, rather than a westward allochthonous 

terrane along the subducting margin as invoked by western-sourced meteoric input to the basin 

(Riediger & Coniglio, 1992). However, slope destabilization triggering flows may still have be 

tectonic in nature—e.g. subduction-induced earthquakes. Additionally, ash bed frequency 
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increases from the Gordondale Member (n = 5) to the PCS (n = 13), indicating increased 

proximal active volcanism (subduction zone volcanic arc development?). 

7.3.3. Bottom Water Redox Conditions 

Redox-sensitive trace metal concentrations and authigenic enrichments (as EFs) in 

ancient marine sediments are representative of bottom water redox conditions at the time of 

sediment deposition (Tribovillard et al., 2006). Single-element proxies provide some insight 

into general conditions; e.g. sediments with Mo > 100 μg/g were likely deposited under euxinic 

waters (Scott and Lyons, 2012). However, there are limitations with single-element proxies 

because contrasting environments may produce like-enrichment signatures; e.g. Mo from 25 to 

100 μg/g may have been deposited under euxinic conditions but clastic dilution decreased the 

relative concentration, or under suboxic conditions with an active particulate shuttle delivering 

excess Mo to bottom waters and shallow pore water H2S reducing Mo into sediments (Scott 

and Lyons, 2012). Combining trace metals through a multi-proxy approach enhances 

environmental interpretations. 

The core samples exhibit a range in concentrations for all redox-sensitive trace metals 

(Mo, V, U, Re) and their ratios (Re/Mo, Mo/U) signalling fluctuating bottom water redox 

and/or local environmental conditions over the depositional period (Figure 14). However, trace 

metal content remained enriched above upper continental crust content in most samples 

implying that well-oxygenated bottom-water conditions were generally not recorded. 

Macrofossils allude to oxic conditions at least periodically; bivalves and belemnites are the 

most abundant macro-organisms observed in the core. Bivalves are benthic organisms and due 

to their relative immobility would be unlikely to survive if oxygen levels decreased quickly, 

but thin (< 2 cm), discrete shell beds may indicate short periods of dysoxic to oxic bottom-

waters assuming that these were deposited in situ (Henderson, 2004). Belemnites were squid-

like pelagic organisms and are found sporadically through the core; unlike bivalves, due to 

belemnoid mobility both laterally and vertically through the water column, these organisms are 

less diagnostic of redox conditions in the water column directly overlying deposited sediments 

but do indicate that oxygen was present at some level within the column or geographical area. 

Evidence from the Cleveland Basin (northwestern Europe) suggests a shift from deeper-

dwelling belemnites before the T-OAE to surface-dwelling belemnites during the T-OAE as 
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bottom-water anoxia took hold (Ullmann, et al., 2014). If the bottom-to-surface shift happened 

in the northeast Panthalassan basin, then the occurrence of belemnites within the studied core 

suggest that surface oxygen levels were high enough to support their existence during the T-

OAE. 

 

Figure 14. Bottom water redox states based on trace metal concentrations and ratios for the study 

core. Redox states are indicated by vertical grey bars (labelled at base). Upper continental crust average 

concentrations (black dashed lines; McLennan, 2001) are noted for Mo (1.5 μg/g), V (107 μg/g) and U 

(2.8 μg/g). The Re scale does not extend to the crustal concentration of 0.4 ng/g. Enrichment factors for 

Re and Mo are used for the Re/Mo ratio. Gordondale Member Lower Unit (dark blue), Upper Unit 

(light blue), Poker Chip Shale (orange) and negative carbon isotope excursion interval (between red 

lines) are noted. 

Suboxic conditions are inferred mainly within the PCS, but also at the base of the 

Gordondale Member Upper Unit. Suboxia is diagnosed in these samples by high Re/MoEF 

ratios and plotting within the suboxic trend (approaches Re/MoEF ~15 ppb/ppm; Turgeon & 

Brumsack, 2006) on a ReEF–MoEF covariation diagram (Figure 15). An increasing Re/MoEF 

trend towards suboxia begins at the Gordondale Member Lower–Upper Unit contact, reaching 
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a maximum at the onset of the N-CIE where values lapse back to general anoxia. The Re/MoEF 

in the PCS does not follow a strict temporal trend as values fluctuate in the lower half of the 

PCS but appear to equilibrate somewhat in the upper half. Poker Chip Shale Re and U 

concentrations also dip into the suboxic ranges (Re 0.4–42 ng/g, Crusius, et al., 1996; U = 2.8–

10 μg/g, Partin, et al., 2013) and into the anoxic range; therefore, the PCS likely experienced 

suboxic to weakly anoxic bottom water conditions.  

 

Figure 15. ReEF–MoEF covariation plot for study core samples. Re and Mo covariation for samples of 

the Gordondale Member and Poker Chip Shale. Samples range from below sea water (SW) weight ratio 

(0.8 ppb/ppm) to beyond the suboxic weight ratio (15 ppb/ppm) interpreted by Turgeon and Brumsack 

(2006).  

Generally anoxic (ferruginous + euxinic) conditions are interpreted to have prevailed 

through much of the Gordondale Member. General anoxia is inferred from U > 10 μg/g (Partin 

et al., 2013) and Re > 42 ng/g (Crusius et al., 1996). Uranium content decreases slightly from 

the Gordondale Member Lower Unit to the Upper Unit, but both units are inferred as 

dominantly anoxic.  

Corrections for dilution of trace metal signals by detrital sedimentation can be made 

using enrichment factors (EFs), which are calculated by Equation 2. In Figure 16, trace metal 

EFs are depicted with redox trends. Because EFs are not typically given in the literature to 
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define redox state ranges and Al concentrations are not available for all studies, EF ranges for 

redox states are the concentration ranges from the literature (Mo: Scott & Lyons, 2012; V: 

Quinby-Hunt & Wilde, 1994; U: Partin, et al., 2013; Re: Crusius, et al., 1996) normalized to 

upper continental crust averages (McLennan, 2001). Enrichment factor profiles improve the 

ability to interpret the trace metal signals, especially for U and V in this core which must have 

been somewhat influenced by the increasing detrital input in the PCS. 

 

Figure 16. Redox states based on trace metal enrichment factors for the study core. Redox states are 

indicated by vertical grey bars (labelled at base) and are based on literature concentration ranges 

normalized to upper continental crust average concentrations (McLennan, 2001). Gordondale Member 

Lower Unit (dark blue), Upper Unit (light blue), Poker Chip Shale (orange) and negative carbon isotope 

excursion interval (between red lines) are noted. 
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Concentrations of Mo > 100 μg/g (Scott & Lyons, 2012; MoEF > 67) and V > 320 μg/g 

(Quinby-Hunt & Wilde, 1994; VEF > 3), strongly correlated STOT/Fe ≥ 1.15 (pyrite ratio) and 

Re/MoEF < 4 (Turgeon & Brumsack, 2006) distinguish euxinic from non-euxinic samples in 

anoxic intervals. The Gordondale Member Lower Unit is greatly enriched in all trace metals; 

mean Mo and V concentrations are 175 ± 95 μg/g and 1163 ± 624 μg/g, respectively, Re/MoEF 

ratios are 2.1 ± 0.9 and STOT/Fe are strongly correlated (r2 = 0.80) above the pyrite ratio at 2.0 

± 0.8 indicating that conditions were predominantly euxinic. The Upper Unit which contains 

the T-OAE as identified by a N-CIE, is less enriched in redox-sensitive trace metals than the 

Lower Unit but is still enriched above upper continental crust concentrations. The entire Upper 

Unit is generally anoxic, but there is a transition from low Mo and V content in the bottom 

portion of the unit (1584.58–1578.93 m), suggesting generally non-euxinic conditions, to high 

Mo and V content and low Re/MoEF ratios in the top portion (1578.34–1575.00 m), indicating 

a shift to strong euxinia within the N-CIE interval. 

The STOT/Fe ratio remains at or above the stoichiometric pyrite weight ratio in most 

Upper Unit samples, so sulfidic conditions remained in pore waters even during non-euxinic 

periods (corroborated by Mo concentrations between 1.5–25 µg/g; Scott & Lyons, 2012) 

allowing for pyrite formation within reactive Fe-rich sediment even when bottom waters were 

non-euxinic. This is likely the case for the suboxic to weakly-anoxic (non-euxinic) PCS, as Mo 

concentrations remain between 1.5–25 µg/g and the unit is often characterised as “pyritic” 

(Riediger, 2002), which is corroborated by increased XRD pyrite content. 

7.3.4. Basin Connection to the Global Ocean 

Relationships between trace metal content and hydrographic regimes of modern 

environments have been observed by Sweere et al. (2016) for Cd–Mo, Algeo and Tribovillard 

(2009) for MoEF–UEF
 and Algeo and Lyons (2006) for Mo–Corg. Using these relationships, 

trends on trace metal covariation plots have been used to infer paleohydrographic 

configurations for paleoredox reconstructions (e.g. McArthur, 2019; Algeo and Rowe, 2012; 

Tribovillard et al., 2012; Algeo and Tribovillard, 2009). These applications—except for Mo–

Corg—are used here for the Early Jurassic samples to determine if the Gordondale 

Member/PCS basin was open to or restricted from water mass exchange with the global ocean 

during the T-OAE. The Mo–Corg covariation of Algeo and Lyons (2006) is not applied to the 
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study core samples, as the overmature conditions have likely caused a decoupling of the trace 

metals from the organic content. Basin hydrography is an important paleoenvironmental factor 

to define for these samples because the T-OAE was by definition a global event, therefore any 

interpretations made on the global marine paleoredox environment can only be inferred if the 

basin was physically linked to that environment. If the basin was strongly restricted from 

exchange with the global ocean, only local paleoenvironmental characteristics can be inferred. 

The Mo–U covariation (Figure 17a) for the Gordondale Member and PCS core 

samples cover an open/unrestricted marine trend influenced by redox variation (Tribovillard, et 

al., 2012; Algeo & Tribovillard, 2009). The open marine trend occurs as an increasing Mo/U 

ratio from suboxic (Mo/U ≈ 1–3; below seawater weight ratio) to ferruginous (Mo/U ≈ 3–10; 

across the seawater weight ratio) and euxinic (Mo/U ≈ 10+; above the seawater weight ratio). 

A redox variation occurs up-core from strongly euxinic to euxinic in the Gordondale Member 

Lower Unit, from strongly ferruginous to euxinic in the Upper Unit, and from weakly 

ferruginous to strongly suboxic in the PCS. The N-CIE samples identifying the T-OAE all lie 

within the ferruginous to euxinic Gordondale Member Upper Unit. 



75 

 

 

Figure 17. Trace metal covariations for basin hydrography. (A) MoEF–UEF covariation (after Algeo 

& Tribovillard, 2009) within the open marine (red bar) and particulate shuttle (upper grey bar) trends 

(overlap identified by yellow oval). No samples lie within the restriction trend (lower grey arc); (B) Cd–

Mo covariation after Sweere et al. (2016) with most samples lying in the open marine upwelling zone 

trend (green). Lines indicate weight ratios of the trace metals in seawater (SW; Tribovillard, et al., 2006) 

and factors thereof, average modern plankton (Brumsack, 1986) and empirical sediment Cd/Mo ratio of 

0.1 based on the threshold between modern upwelling and restricted environments (Sweere, et al., 2016). 
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The Cd–Mo covariation plot for Gordondale Member and PCS samples (Figure 17b) 

corroborates the generally unrestricted trend observed in the MoEF–UEF covariation. A power 

regression through all samples yields good correlation (r2 = 0.75) along Cd = 0.14Mo1.03 which 

is approximated to a linear relationship where Cd/Mo = 0.14, indicating that most samples lie 

above the empirical Cd/Mo ratio of 0.1 as defined in Sweere et al. (2016) which distinguishes 

between a continental margin upwelling setting (Cd/Mo > 0.1) and a hydrographically 

restricted basin (Cd/Mo < 0.1). Phosphorus content in the Gordondale Member is substantially 

elevated (P up to 15 wt%), which also indicates the probability that upwelling was a significant 

process occurring at the time of the unit’s deposition (Follmi, 1996).  

Taken together, the MoEF–UEF and Cd–Mo covariations imply that the Gordondale 

Member and PCS were deposited in an open marine environment along a continental margin 

upwelling zone with a generally temporal (stratigraphic) bottom water redox variation from 

strongly euxinic in the lower Gordondale Member to suboxic in the PCS; bottom water redox 

interpretations agree with those based on other proxies (Mo, V, U, Re concentrations/EFs and 

Re/MoEF, STOT/Fe ratios). 

7.3.5. Consideration of a Particulate Shuttle 

A confounding factor in the interpretation of the Gordondale Member Lower Unit and 

euxinic Upper Unit samples on the MoEF–UEF covariation (Figure 17a) arises due to an 

overlap in the open/unrestricted marine trend and the particulate shuttle trend along the 3-times 

seawater weight ratio. High Mo and V concentrations also allude to the possibility of a 

particulate shuttle as both are particle-reactive. If a particulate shuttle operated during the 

deposition of the Gordondale Member and/or PCS, paleoredox conditions may be exaggerated 

by the enrichment of Mo and V, and high Mo/U ratios. 

The particulate trend on an MoEF–UEF covariation occurs due to the strong affinity for 

Mo (and V), but not U, to adsorb to Mn-(oxy)hydroxide particles in an oxic water column 

(Ostrander et al., 2019). Upon sinking across the redox chemocline and delivery to the 

sediment–water interface the Mn particulates undergo reductive dissolution, releasing adsorbed 

Mo thereby increasing its bottom water and/or pore water concentration with respect to the 

average seawater concentration. Due to the increased availability of Mo in bottom waters, 

reduction to sediments under weakly suboxic to anoxic-ferruginous conditions with shallow 
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pore water H2S may produce a false-euxinic (very high) Mo/U signature. However, true 

euxinic conditions in an open ocean setting where water mass exchange occurs continuously—

thereby providing a continuous replenishment of trace metals into reducing bottom water 

environments—also produces high Mo/U ratios when Mo reduction to sediments is more 

efficient than U reduction.  

Particulate Mn (and Fe) are not preserved in non-oxic environments and therefore 

directly accounting for their activity in ancient non-oxic sediment is not possible. To resolve if 

the elevated Mo/U ratios are a result of particulate activity or highly efficient Mo removal to 

sediments under euxinic conditions without a particulate shuttle, I propose the use of a V–Mo 

covariation plot. Molybdenum and V are alike in that they are particle-reactive and require H2S 

for reduction to sediments. Vanadium is much more efficiently adsorbed to both Mn and Fe 

(whereas Mo is only effectively adsorbed to Mn) particulates (Tribovillard et al., 2006), by 

more than a factor of 3 when normalized to dissolved concentrations (Ostrander et al., 2019), 

but Mo and V are both efficiently reduced to sediments under euxinic conditions. Therefore, if 

only weak particulate shuttle activity is occurring in a water column over euxinic bottom 

waters, the authigenic V/Mo ratio should approach the average seawater V/Mo ratio. If a 

particulate shuttle is active and H2S is present in bottom or pore waters, an enrichment of 

authigenic V with respect to Mo is anticipated as particulates deliver excess V, and to a lesser 

extent Mo to the bottom waters and sediments. 

To quantify particulate enrichment, particulate V and Mo concentrations from various 

locations, depths and dates in the Baltic Sea water column (Bauer, et al., 2017) are invoked. 

Bauer et al. (2017) also report particulate Mn and Fe concentrations. Two groups of samples 

were distinguished based on particulate Fe and Mn concentrations (Figure 18): (1) samples 

with low Fe content (0.52–8.3 ng/g), wide-ranging Mn concentrations (0.12–78 ng/g), poor Fe–

Mn correlation (r2 = 0.26) and low Fe/Mn weight ratios (< 6); and (2) samples with high Fe 

content (6.9–362 ng/g), low to moderate Mn content (0.22–8.0 ng/g) and good Fe–Mn 

correlation (r2 = 0.74) and high Fe/Mn weight ratios (> 16). Group 1 is interpreted to consist of 

Mn-(oxy)hydroxide particles with minimal Fe incorporation, and group 2 is interpreted as 

ferromanganese particles. 
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Figure 18. Fe–Mn covariation for Baltic Sea particulates. Particulate Fe and Mn data from Bauer et 

al. (2017) illustrate two groups of particulate samples: (1) those with low Fe and a wide range of Mn 

concentrations, interpreted as Mn-(oxy)hydroxides (green markers); and (2) those with correlated Fe and 

Mn concentrations with higher Fe and a smaller range of Mn concentrations, interpreted as Fe-Mn-

(oxy)hydroxides (red markers). 

Mean V/Moparticulate weight ratios are calculated for the two groups at 0.39 ± 0.29 (n = 

45) for group 1 and 10.3 ± 6.8 (n = 51) for group 2, which are represented as linear trends on a 

V–Mo covariation plot (Figure 19). Several group 1 samples deviate from their V/Mo average, 

climbing towards the group 2 trend and falling below the average seawater V/Mo ratio. On 

average, V is much less concentrated in seawater than Mo (V/Mo weight ratio of 0.2; 

Tribovillard, et al., 2006). The samples which climb towards higher V/Mo ratios are those that 

were collected from the upper water column (“Surface Zone”), where oxygen concentrations 

are elevated and there is no H2S present. These samples may have attained the higher V/Mo 

ratios if V(V) oxyanions were more efficiently adsorbed to particulates than Mo(VI) oxyanions 

under the fully oxic conditions. Samples which fall to lower V/Mo ratios were collected from 

the lower water column (“Bottom-water Zone”) approaching the sediment–water interface. In 

the Bottom-water Zone, euxinia is encountered (H2S; no O2) triggering reductive dissolution of 

the particulates and subsequent desorption of trace metal oxyanions. The Fe/Mn ratio is greater 

in these samples than in other manganese particulates, perhaps because reductive dissolution 

under euxinia renders Mn soluble, while Fe reacts with H2S to form pyrite. While sulfur 
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concentrations are not reported in Bauer et al. (2017), if Fe reacted to form pyrite it is possible 

that these are FeS2 particulates rather than Fe-Mn oxyhydroxides. Under euxinic conditions, 

Mo tends to form sulfides unaccompanied (MoS2) or in the presence of Fe (incorporated into 

pyrite) so if the particulates are pyritic, they would retain Mo more than V producing the 

decreased V/Mo ratios observed. Therefore, while some group 1 samples deviate from the 

mean, these are not representative of the true V/Mo ratios associated with Mn particulates. 

 

Figure 19. V–Mo covariation for Mn and Fe-Mn particulates from the Baltic Sea. V and Mo 

concentrations on Mn and Fe-Mn particulates from various locations, water depths and times in the Baltic 

Sea (data from Bauer, et al., 2017). Depicted V/Mo trends for Mn and Fe-Mn particulates are based on 

means for group 1 and group 2, respectively. “Surface Zone” and “Bottom-water Zone” are defined by 

depths above and below the water column redox zone (Bauer et al., 2017), where O2 is highest in the 

surface zone with no H2S, and no O2 and high H2S concentrations are reported in the Bottom-water Zone. 

SW = seawater (V/Mo weight ratio). 

In Figure 17a, the issue of possible particulate shuttle activity arises for the 

Gordondale Member Lower Unit and euxinic Upper Unit samples where their Mo/UEF ratios 

lie in both the open marine and particulate shuttle trends around the 3-times seawater weight 

ratio. A V–Mo covariation plot was constructed to confirm or eliminate the possibility of the 

particulate activity. The V/MoEF of the samples in question (approximated by yellow oval) 

demonstrate that the samples that experienced elevated Mo/UEF were not Mo-enriched by 

particulate activity because they fall at or below the seawater V/Mo weight ratio (V/MoSW), 
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indicating non-particulate euxinia. It is possible that non-euxinic Upper Unit and PCS samples 

may have been affected by particulate activity because V/MoEF lies above V/MoSW and 

approaches the mean Mn particulate V/Mo weight ratio from the Bauer et al. (2017) samples. 

These samples are interpreted as ferruginous to suboxic therefore if Mn-particulate shuttles 

were operating, H2S would have been present in pore waters at a shallow enough depth to 

capture V and Mo delivered by particulates. However, because interpretation of these samples 

by trace metal enrichments and Mo/UEF covariations indicated ferruginous to suboxic settings, 

there is no issue with false-euxinia caused by particulates, and if there was Mn particulate 

activity it was too weak to mask paleoredox conditions.  

 

Figure 20. V–Mo covariation with Gordondale Member and PCS samples. Gordondale Member 

Lower Unit (dark blue), Upper Unit (light blue) and PCS (orange) samples plotted in relation to modern 

seawater (SW) V/Mo weight ratio of 0.20, and Mn and Fe-Mn particulate trends from Bauer et al. (2017) 

particulate trace metal V/Mo weight ratios.  

To further understand and utilize the V/Mo ratio as a paleoredox proxy, validation of 

the trends suggested in this work should be completed on modern bottom-water sediments 

underlying regions of active particulate shuttling (e.g. Baltic Sea, Cariaco Basin) and sediment 

from areas with weak particulate activity to provide a baseline. 
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7.3.6. Local Environment Summary and Application of Global Mass Balance Models 

The local depositional redox and hydrographic conditions were inferred using a multi-

proxy approach. Paleoredox conditions were interpreted from concentrations of Mo, V, U, Re 

and ratios of Re/Mo and Stot/Fe. The Gordondale Member was subdivided into Lower and 

Upper subunits which were interpreted as mainly euxinic and ferruginous–euxinic, 

respectively. The PCS was observed as a single unit and interpreted as mainly suboxic to 

weakly ferruginous. Both the Gordondale Member and PCS were likely deposited in an 

environment which was open to global water mass circulation based on trends from the Mo–U 

and Cd–Mo covariation plots. 

The T-OAE, which occurred during the deposition of these units, was likely a period 

when bottom water anoxia and euxinia expanded to cover a greater area of the global seafloor. 

To quantify the hypothesised expansion, global mass balance models for Re (Sheen, et al., 

2018) and Mo (Reinhard, et al., 2013) can be applied to locally anoxic (for Re model) or 

euxinic (for Mo model) samples which were deposited in a basin connected to the global 

ocean. Thus, most samples from the Gordondale Member can be used in the mass balance 

model calculations to reconstruct the global area of anoxic or euxinic seafloor in the Early 

Jurassic. Due to its suboxic to weakly ferruginous deposition, the PCS is not a candidate for 

global ocean reconstruction using the Re or Mo models. 

7.4. Global Paleoredox Environment 

In the global oceans, trace metal seawater concentrations are regulated by input fluxes 

from rivers and seafloor hydrothermal activity and output fluxes to oxic, suboxic and 

anoxic/euxinic seafloor sediment sinks. The anoxic/euxinic sinks are where trace metals like 

Re and Mo are removed most efficiently, as indicated by higher trace metal burial rates. 

Therefore, an expansion of the anoxic/euxinic sink areas will result in an increased drawdown 

of the metals from the seawater, thereby reducing their global seawater concentrations over 

time. First-order trace metal mass balance models for Re and Mo take advantage of the source–

seawater–sink relationship to characterise ancient environments by their seafloor anoxic and 

euxinic sink areas (Aanoxic and Aeuxinic), respectively (Sheen et al., 2018; Reinhard et al., 2013). 

These mass balance models are used here to determine the possibility of an expansion of Aanoxic 

and Aeuxinic during the T-OAE recorded in the study core. 
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7.4.1. Data Filtering and Grouping 

Samples used in the mass balance models must have been deposited under locally 

anoxic (for Re) or euxinic (for Mo) conditions in an environment where global ocean water 

mass exchange occurred continuously to ensure that any changes in Re or Mo concentrations 

are not caused by basin restriction effects. Based on Mo–U and Cd–Mo covariations, the 

Gordondale Member/PCS basin was deposited in an open marine environment where water 

mass exchange with the global ocean could occur freely, therefore paleoredox interpretations 

of these strata reflect global ocean trace metal systematics. 

Sheen et al. (2018) applied a filter of Fe/Al > 0.5 for anoxia which is not used here. The 

Fe/Al filter suggested by Sheen et al. (2018) is based on the global average shale Fe/Al ratio 

(~0.5; Lyons & Severmann, 2006), but local oxic background can range from 0.3 to 0.8, so 

may not reflect the average ratio (Clarkson, et al., 2014). If the local oxic background is less 

than the average shale Fe/Al ratio, then using this global average will mask enrichments. Thus, 

the Fe/Al ratio is not used to filter for anoxia in the study core. Sheen et al. (2018) use a Corg 

filter (Corg > 0.4 wt%) that prevents spurious Re/Corg values in organic-poor rocks, but the 

Gordondale Member and PCS are both organic-rich (Corg > 2.6 wt%) so the filter does not 

eliminate samples. The filters that are applied to determine sample anoxia in this study are the 

same as those used to determine local anoxia as discussed in section 7.3.3; these are UEF > 3.6 

(after Partin, et al., 2013) and ReEF > 100 (after Crusius, et al., 1996). 

Reinhard et al. (2013) apply filters of Fe, Al and Corg > 1 wt%, Fe/Al > 0.5, and 

Fepy/FeHR > 0.7 or DOP > 0.6 to infer euxinic samples. The 1 wt% threshold for Fe and Al is 

not applied here as its original use in Reinhard et al. (2013) was to identify fine-grained 

siliciclastic sediments from a large (n > 3000) dataset. As discussed above, Clarkson et al. 

(2014) illustrate a wide range in Fe/Al at local levels (0.3 to 0.8), and thus using the average 

shale ratio of 0.5 may mask sample enrichments so the Fe/Al filter is not applied. The study 

core samples do not have Fe-speciation data available to determine Fepy/FeHR or DOP. In 

addition to the anoxic proxies discussed in the above paragraph, the local euxinic proxies 

discussed in section 7.3.3 are used here to filter samples; these are VEF > 3 (after Quinby-Hunt 

and Wilde, 1994) and STOT/Fe > 1.15 (stoichiometric pyrite weight ratio). 
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Sample filtering resulted in a subset of samples for Re (n = 69) and Mo (n = 56) mass 

balance models (Figure 21). Two PCS samples passed anoxic sample filters, and one passed 

euxinic filters, but these not discussed because while they represent short anoxic/euxinic 

periods, they are not representative of the entire interval (thus nRe = 67, nMo = 55). 

 

Figure 21. Filtered anoxic/euxinic sample profile. Samples which passed the filtering criteria for anoxia 

or euxinia are represented by black circles. Samples which failed to meet filtering criteria are represented 

by unfilled circles. One outlier sample in the Reauth profile is marked by an ‘X’ and is discussed in the 

text. Samples are grouped stratigraphically into those which were deposited before the N-CIE (“Pre-N-

CIE”) and during the N-CIE (“lower N-CIE” and “upper N-CIE”).  

One outlier sample is present in the filtered Re data (Reoutlier = 878 ng/g versus Refiltered 

= 233 ± 148 ng/g). The outlier was sampled from a black shale interval (1578.34 m) deposited 

closely between two turbidites (sampled at 1578.08 and 1578.53 m) (Figure 22). The 

enrichment of Re in the outlier compared to the background in the immediate core interval may 

be attributed to the deposition of the turbidites. The turbidites are substantially enriched in Mn 

(849 ± 181 µg/g) versus background levels (167 ± 121 µg/g). Manganese precipitates under 
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oxic conditions (Calvert & Pedersen, 1996), so Mn enrichment may be indicative of an oxic, 

Mn-rich turbidite source environment (McKay & Pedersen, 2014) or turbidity-induced bottom 

water oxygenation with post-turbidite accumulation of Mn-carbonate phases (Calvert & 

Pedersen, 1996). Turbidite deposition may have resulted in oxygenation of the top portion of 

underlying, previously-anoxic sediments. This may have led to oxidative mobilisation and 

redistribution of trace metals (e.g. Re, Mo, V, U) through diffusion into the newly emplaced 

turbidite sediment and further into the water column, or concentrated re-precipitation at the 

oxic–anoxic boundary within the underlying marine sediment. Initial oxic conditions would be 

replaced by anoxia as oxygen was exhausted by organic matter decomposition within the 

sediment, further immobilising trace metals (McKay & Pedersen, 2014). It is at the initial pore 

water oxic–anoxic boundary underlying the turbidite where the substantial Re enrichment in 

the outlier sample is postulated to have occurred. Thus, the outlier would have been a result of 

the upper turbidite (1578.08 m) deposition. No sample point was acquired within close enough 

proximity to the base of the lower turbidite (1578.53 m) to determine if this scenario occurred 

with every turbidite emplacement event. Therefore, Re enrichment in the outlier sample is 

likely a result of turbidite-induced Re redistribution and Reoutlier is not included in the Re mass 

balance model (n = 68). The Refiltered becomes 213 ± 91 ng/g. The Mo concentration of the 

outlier sample is also enriched; however, the sample was eliminated during euxinic data 

filtering due to a very low STOT/Fe ratio (0.38). 



85 

 

 

Figure 22. White light photograph of Reoutlier and turbidite interval. Photos on the right are ± 5 cm 

centred around sample location and magnified by a factor of 2 with respect to the continuous core photo 

on the left. The turbidite at 1578.53 m may represent a mixture of turbidite and black shale material. 
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The mass balance models are used to determine if Aanoxic and/or Aeuxinic expanded or 

contracted through the T-OAE. To observe changes, samples are grouped stratigraphically 

(Figure 21). The “Pre-N-CIE” group includes samples of the Gordondale Member Lower Unit 

and lower portion of the Upper Unit (deeper than 1582.10 m). The “N-CIE” group includes 

samples of the Upper Unit within the N-CIE interval (1582.10 to 1575.00 m). Rhenium and 

Mo variation from lower concentrations at the onset of the N-CIE (1581.85 to 1576.82 m) to 

higher concentrations in the latter portion of the N-CIE (1576.59 to 1575.00 m) is observed, so 

the interval is split into “lower N-CIE” and “upper N-CIE” sections. Table 6 denotes mean 

authigenic Re and Mo concentrations (Reauth, Moauth; Equation 13) of the filtered samples in 

the stratigraphic groups.  

(13)   𝑋𝑎𝑢𝑡ℎ = 𝑋𝑠𝑎𝑚𝑝𝑙𝑒 − (
𝑋

𝐴𝑙
)

𝑈𝐶𝐶
× 𝐴𝑙𝑠𝑎𝑚𝑝𝑙𝑒 

Where Xauth is the authigenic enrichment of the metal (X), Xsample is the measured concentration 

of X in the sample, the X/AlUCC ratio is the trace metal to aluminium ratio in the Upper 

Continental Crust (McLennan, 2001), and Alsample is the aluminium concentration measured in 

the sample. 

Table 6. Mean Reauth and Moauth of filtered sample data for mass balance models. Pre-N-CIE group 

includes samples from 1594.66–1583.89 m, lower N-CIE from 1582.10–1580.27 m and upper N-CIE 

from 1576.41–1575.00 m. Means reported to 1 standard deviation. 

 Pre-N-CIE 
N-CIE 

Lower Upper 

Reauth (ng/g) 
192 ± 86 
(n = 35) 

187 ± 74 
(n = 21) 

278 ± 70 
(n = 10) 

Moauth (µg/g) 
156 ± 104 
(n = 32) 

32 ± 14 
(n = 15) 

104 ± 9 
(n = 8) 

 

Unpaired t-tests assuming equal variance for Re (i.e. standard deviations between 

groups lie within a narrow range between 70 and 86 ng/g) and unequal variance for Mo (i.e. 

standard deviations between groups lie within a wide range between 9 and 104 µg/g) were 

performed on the sample groups to resolve statistical distinctiveness. Significant difference 

between the group means are inferred from p-values < 0.05, whereas p-values > 0.05 imply no 

statistical difference between the groups. Resulting p-values (Table 7) indicate that Reauth 

concentrations are not significantly different between the Pre-N-CIE and lower N-CIE groups 

(p-value = 0.83), while the upper N-CIE group differs from both the Pre-N-CIE and lower N-
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CIE groups (p-values < 0.006). All groupings of Moauth show significant difference (p-values < 

0.009). 

Table 7. p-values between groups of filtered Reauth and Moauth data. Results for Re are listed in the 

upper right (blue shading) and Mo in the bottom left (red shading). The Reauth means between the Pre-N-

CIE and lower N-CIE are the only pair which are statistically similar. 

p-values Pre-N-CIE Lower N-CIE Upper N-CIE 

Pre-N-CIE  0.83 0.006 

Lower N-CIE 1.42 × 10-7  0.003 

Upper N-CIE 0.009 2.6 × 10-12  

 

7.4.2. Use of Published Models 

Rhenium concentrations > 187 ng/g for the sample groups do not plot on the Reauth axis 

as presented in Sheen et al. (2018), so the axis is extended to include enrichments up to 200 

ng/g (Figure 23). The Pre-N-CIE Aanoxic of 0.12% is followed by a 1.3× increase to the lower 

N-CIE where Aanoxic is 0.16%; this is not likely a significant change given that the group means 

are not statistically different (p-value = 0.83). There is a contraction from lower to upper N-

CIE, as inferred from an increase in the Reauth, however, because the model as presented in 

Sheen et al. (2018) only captures values up to 205 ng/g (as Aanoxic → 0), the Aanoxic for the 

upper N-CIE cannot be quantified. 
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The Mo mass balance model as presented in Reinhard et al. (2013) (Figure 24) does 

better to express the range and variation of Aeuxinic for the current study’s sample group mean 

Mo values than did the Re model (Figure 23). The Pre-N-CIE group is the only one with a 

substantial enough Mo enrichment to extend beyond the scope of the presented model. An 

extension of the Moauth axis indicates the 156 µg/g Mo corresponds to an Aeuxinic of 0.18%. The 

decrease in Moauth in the lower N-CIE group corresponds to an Aeuxinic of 3.2% at Cariaco Basin 

BMAR. This represents an increase by a factor of ~18 from Pre-N-CIE Aeuxinic. The upper N-

CIE group corresponds to an Aeuxinic of 0.55% and a decrease to ~⅟6 lower N-CIE Aeuxinic. 
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7.4.3. Addressing Model Parameters 1: Bulk Mass Accumulation Rate 

Sheen et al. (2018) and Reinhard et al. (2013) illustrate their models using a Cariaco 

Basin bulk mass accumulation rate (BMAR) of 1.0 × 10-2 g cm-2 yr-1 and factors of 1.5 above 

and below. While this provides an ample range for possible Aanoxic and Aeuxinic, a closer 

approximation of the local depositional BMAR can be calculated for an interval by Equation 

14 assuming continuous sedimentation, where ρb is mean bulk density (g cm-3), Δz is vertical 

interval length (cm) and Δt is the interval duration (yr). 

(14)     𝐵𝑀𝐴𝑅 =
𝜌𝑏Δ𝑧

Δ𝑡
 

The ρb for samples within the N-CIE interval is 2.42 ± 0.16 g cm-3 which is recorded in 

the study core between depths of 1575.00 m and 1582.10 m, or Δz of 710 cm. Bulk densities 

were determined at Weatherford Labs in 2016 during routine core analysis by determining 

sample weight (g) and using a mercury pump to determine bulk volume (cm3). The N-CIE has 

an estimated Δt of 300 to 500 kyr (Sell et al., 2014; Boulila et al., 2014). By Equation 14 with 

the standard deviation (1s) propagated from ρb and averaged between Δt endmembers, the N-

CIE interval BMAR is 4.6 ± 0.2 × 10-3 g cm-2 yr-1 (~½ Cariaco Basin BMAR). The ρb for 

samples within the entire Gordondale Member interval including the N-CIE is 2.45 ± 0.14 g 

cm-3 which lies in the study core between depths of 1575.00 m and 1595.51 m or Δz of 2051 

cm. Gordondale Member Δt is estimated as 10 ± 3.9 Myr (Pana et al., 2018a). By Equation 14 

with 1s propagated from ρb and Δt, the BMAR of the Gordondale Member interval is 5.0 ± 2.0 

× 10-4 g cm-2 yr-1 (~⅟20 Cariaco Basin BMAR). It is unlikely that the very low BMAR 

calculated over the entire Gordondale Member is representative, as discontinuities and 

sediment starvation (Asgar-Deen, 2003) would not have recorded the entire time interval. 

Thus, the Sheen et al. (2018) and Reinhard et al. (2013) models are modified to reflect the 

BMAR range of the N-CIE interval in Figure 25 and Figure 26, respectively. 

Additionally, Reinhard et al. (2013) suggest that BMAR and authigenic burial rate (b) 

should not be decoupled arbitrarily. However, because the model burial rates are a global 

average at a given depth (calculated from an initial state and varying with eTOPO ocean 

bathymetry) and the BMAR is a local property, the burial rates are not varied from the values 

used in the published models.  
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Lowering BMAR from Cariaco Basin to local values results in the models shifting to 

include higher Reauth and Moauth. A minor variation exists between Reauth in the Pre-N-CIE and 

lower N-CIE sample groups, where Aanoxic of the former is 0.89% and the latter is 0.98% 

(Figure 25); ~1.1× increase in Aanoxic. This expansion is not likely significant, given that the 

two groups have mean Reauth that are not statistically different (p-value = 0.83). A contraction 

of –0.86% Aanoxic from the lower N-CIE (0.98%) to upper N-CIE (0.12%) is observed. Using 

Mo, a similar trend of Aeuxinic expansion from Pre-N-CIE to lower N-CIE, and contraction from 

lower to upper N-CIE is noted in Figure 26. Pre-N-CIE Aeuxinic is 0.89% and lower N-CIE 

Aeuxinic is 7%; a 7.8× increase. The contraction from the lower to upper N-CIE interval is 

observed as Aeuxinic in the upper N-CIE diminishes to 1.6%, which is ⅟4.4 the Aeuxinic of the 

lower N-CIE. 

7.4.4. Addressing Model Parameters 2: Input Flux 

In Sheen et al. (2018) and Reinhard et al. (2013), riverine input is the major trace metal 

source flux (Fin) to the modern oceans supplying 4.29 × 105 mol Re and 3.00 × 108 mol Mo per 

year. Both models consider hydrothermal inputs but infer that modern high temperature (T) 

hydrothermal–seawater interactions constitute < 0.1% and < 1%, and low T hydrothermal 

inputs comprise < 1% and < 10% of the Re and Mo modern riverine fluxes, respectively. 

Therefore, total hydrothermal fluxes for Re and Mo constitute 1.1% and 11% of the modern 

riverine fluxes, respectively. The hydrothermal fluxes are poorly constrained and based on 

their minor contribution to source flux compared to riverine input are not a component of Fin 

within the published models. 

A seawater Sr isotope (87Sr/86Sr) excursion to less radiogenic values is reported from 

the Pliensbachian–Toarcian (Pl–To) boundary to the onset of the T-OAE (Jones & Jenkyns, 

2001). The shift to less radiogenic 87Sr/86Sr suggests decreased continental granitic or 

carbonate (more radiogenic) weathering, increased continental flood basalt (less radiogenic) 

eruption and weathering, and/or increased submarine hydrothermal activity (less radiogenic) 

(Jones & Jenkyns, 2001). Jones and Jenkyns (2001) discuss the relative importance of each 

process to the Early Jurassic 87Sr/86Sr excursion. They suggest that a global sea level rise could 

decrease land area and as a result, produce lower continental weathering rates. However, a sea 

level transgression (Toarcian) post-dates the excursion, thus, decreased continental weathering 
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was likely not an important factor in producing the excursion (Jones & Jenkyns, 2001). The 

emplacement of the Karoo–Ferrar LIP flood basalts (~183 Ma) also postdates the 87Sr/86Sr 

excursion (191–187 Ma), so increased Sr flux from subaerial basalt weathering and runoff is 

also unlikely (Jones & Jenkyns, 2001). Jones and Jenkyn’s (2001) numerical models 

demonstrated that the 87Sr/86Sr excursion could be caused solely by an 8% to 86% increase of 

ocean ridge hydrothermal activity. Their model assumes that riverine flux and 87Sr/86Sr 

remained constant through the excursion. The wide range in the model results are mainly due 

to the dependence on initial high T hydrothermal Sr flux and the ratio of low T to high T 

hydrothermal Sr input. 

If the Re and Mo hydrothermal fluxes respond similarly to the Sr flux during enhanced 

seafloor hydrothermal fluxes, then their total hydrothermal fluxes for the modern ocean 

underestimate the fluxes leading up to the T-OAE. If the hydrothermal components are 

doubled (rounded up from a maximum hydrothermal Sr flux increase of +86%), then the 

hydrothermal fluxes for Re and Mo become 2.2% (9.44 × 103 mol Re yr-1) and 22% (6.79 × 

107 mol Mo yr-1) of their riverine input flux. If riverine flux in the Early Jurassic is assumed to 

be the same as modern, the new total Fin becomes 4.38 × 105 mol Re yr-1 and 3.77 × 108 mol 

Mo yr-1. For Re, the change in flux is minor (figure not shown; Aanoxic is the same as no 

hydrothermal increase as in Figure 25) but for Mo the flux increases enough that a new model 

provides slightly modified results (Figure 27). The local depositional BMAR calculated in 

section 7.4.3 was applied in this model.  
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The Aeuxinic attained by the sample groups in the hydrothermal model in Figure 27 

(1.1–10% Aeuxinic) are greater than those attained with the assumed modern riverine flux alone 

(as in Figure 26; 0.89–7% Aeuxinic). The trend of increasing Aeuxinic between the Pre-N-CIE and 

lower N-CIE and decrease from the upper to lower N-CIE is still observed. 

Others have suggested that the switch to radiogenic seawater 87Sr/86Sr ratios coinciding 

with the N-CIE is indicative of higher (or greater relative proportion of) riverine flux to the 

oceans during the T-OAE (Jenkyns, 2010). This is matched by a positive sedimentary Os 

isotope (187Os/188Os) excursion from low background (~0.4) to a peak (~1.0) at the onset of the 

N-CIE (Them II, et al., 2017b; Percival, et al., 2016; Cohen, et al., 2004), and a negative Ca 

isotope (δ44/40Ca) excursion in foraminifera shells from background (~0‰) to low values (~ –

1.6‰) at the onset of the N-CIE (Brazier, et al., 2015). Both Sr and Ca have long seawater 

residence times (5.1 Myr and 1.1 Myr, respectively; Broecker & Peng, 1982), so are slower to 

respond to environmental perturbations compared to Os which has a shorter residence time (1 

to 10 kyr; Rooney, et al., 2016). Numerical models of the 187Os/188Os and δ44/40Ca excursions 

have yielded estimated continental weathering rate increases of 3× to 6× (Them II, et al., 

2017b), 5× to 9× (Cohen, et al., 2004) and 5× (Brazier, et al., 2015). The upper ranges of the 

estimated weathering rate increases are extreme scenarios (Cohen, et al., 2004) or an effect of 

local environmental changes (Jenkyns, 2010), so the moderate 3× continental input from the 

187Os/188Os model by Them et al. (2017b) is applied to the Fin term in the Re and Mo mass 

balance models (Figure 28 and Figure 29). 

The increased continental weathering event occurred over 100 to 200 kyr (Them II, et 

al., 2017b), less than the assumed residence times of Mo (440 kyr; Miller, et al., 2011), 

meaning that the seawater Mo reservoir (and thus recorded sedimentary Moauth) may not be 

fully equilibrated in the study core section with respect to the new input. The Re residence time 

is shorter (128 kyr; Miller, et al., 2011), so it is likely that the seawater Re reservoir 

equilibrated by the end of the weathering event. It is assumed that an increase in weathering 

rate corresponds to an equivalent increase in riverine sediment mass flux to the oceans. 

Additionally, it is also assumed that trace metal riverine mass flux increased proportionally to 

sediment mass flux so the new Re and Mo Fin are 1.29 × 106
 mol and 9.26 × 109 mol per year, 

respectively. 
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An increased riverine flux boosts the authigenic enrichments attainable in the models. 

The trend of increasing Aanoxic from Pre-N-CIE to lower N-CIE (+0.2%), and a decreasing 

Aanoxic from lower N-CIE to upper N-CIE (–2.7%) is observed in Figure 28. This trend is only 

partially observed in Figure 29, as lower N-CIE mean Moauth does not plot on the euxinic 

model because it is below the minimum Moauth of 52 µg/g. A relative increase in Aeuxinic from 

Pre-N-CIE to lower N-CIE and relative decrease in Aeuxinic from lower to upper N-CIE can be 

inferred from the relative decrease and increase in group mean Moauth, respectively. 

7.4.5. Addressing Model Parameters 3: Sink Areas 

In Sheen et al. (2018) and Reinhard et al. (2013), a constant, modern Asuboxic of 4.67% 

and 1.92%, respectively, was used to simplify modelling with three unknown sink areas. A 

constant Asuboxic has been assumed through the previous sections. With Asuboxic held constant, 

Aanoxic increases only at the expense (a loss) of Aoxic. In this section, an alternative scenario is 

presented to address the intermediate suboxic sink. This scenario assumes an expansion of 

suboxia proportionally to an expansion of anoxia/euxinia until the point where Aoxic (and the 

neutral bottom water area) is 0%, after which Asuboxia contracts relative to the continued 

expansion of Aanoxic/euxinic (i.e. as the difference between global seafloor area and Aanoxic/euxinic) 

(Figure 30 and Figure 31, green line).  
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The scenario where Asuboxia initially increases proportionally to Aanoxic and Aeuxinic 

creates a steeper initial drawdown of Re and Mo because the burial rate of the suboxic seafloor 

(bsuboxic) is more efficient than oxic seafloor (less than banoxic or beuxinic, but more than boxic). 

Thus, as both Aanoxic or Aeuxinic and  Asuboxic increase, the overall burial of Re and Mo increases 

and seawater becomes depleted more rapidly, resulting in lower authigenic enrichments with 

each model iteration. No statistical change in Aanoxic is observed between the Pre-N-CIE 

(0.16%) and lower N-CIE (0.17%), which is anticipated based on minimal variation of Reauth 

between sample groups. However, a minor contraction from lower to upper N-CIE groups is 

inferred as the upper N-CIE Aanoxic decreases to 0.10% from the lower N-CIE Aanoxic of 0.17%. 

For Aeuxinic, an increase from Pre-N-CIE to lower N-CIE (+1.7%) and decrease from lower to 

upper N-CIE (–1.5%) is observed here as it has been in previous model cycles.  

7.4.6. Addressing Model Assumptions: Steady-state versus Non-steady-state 

In the section 7.4.4, the hypothesis was presented that a Pliensbachian hydrothermal 

flux increase (based on a negative Sr isotope excursion) was followed by an increase in 

continental weathering flux (based on positive Sr and Os, and negative Ca isotope excursions) 

during the Toarcian. The models in that section treated each situation independently, i.e. model 

scenarios with a hydrothermal or riverine flux increase were applied to all intervals (Pre-N-

CIE, lower and upper N-CIE) and comparisons were made within each scenario. However, 

based on the Sr (plus Os and Ca) isotope excursions, the hydrothermal and continental 

weathering flux increases are temporally-exclusive phenomena in the Early Jurassic. The 

switch from increased hydrothermal flux to increased weathering flux occurs broadly across 

the onset of the N-CIE. Therefore, it is more fitting to compare the Pre-N-CIE increased 

hydrothermal model scenario (Figure 25 and Figure 27) with the lower N-CIE increased 

riverine model scenario (Figure 28 and Figure 29). The lower and upper N-CIE intervals are 

compared within the increased riverine flux model (Figure 28 and Figure 29) because they 

both occurred within the N-CIE and continental weathering Sr, Os and Ca isotope excursions. 

This model therefore mimics an instantaneous increase in riverine flux at the N-CIE boundary, 

rather than a gradual onset over 100–200 kyr (Them et al., 2017b). 

The same trends observed in the previous model cycles are observed here, however the 

changes are more dramatic due to the larger Aanoxic and Aeuxinic attained from the increased 
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continental weathering/riverine input scenario. The Aanoxic increases by ~7× from Pre-N-CIE 

(0.89%) to lower N-CIE (6.4%) and decreases by ~½ in the upper N-CIE (3.7%). The Aeuxinic 

from Pre-N-CIE to lower N-CIE and lower to upper N-CIE is not quantified because the Moauth 

of the lower N-CIE fell below plottable values, but a relative increase followed by a relative 

decrease are inferred from a relative decrease and increase of Moauth, respectively. 

7.4.7. Discussion of Mass Balance Modelling Results 

Several models with parameter variations have been presented in the previous sections, 

the results of which are summarized in Table 8. Sensitivity testing in the previous sections has 

illustrated the qualitative competence of the models through consistent interpretation of 

expansion or contraction between intervals in all model scenarios. An expansion of Aanoxic and 

Aeuxinic is observed between the Pre-N-CIE and lower N-CIE, followed by a contraction from 

the lower to upper N-CIE. This trend is supported by Tl isotope work on another WCSB 

section suggesting that the greatest Aanoxic occurred at the onset of the N-CIE, although 

development of anoxia likely began before the N-CIE (Them II, et al., 2018). From the results 

of the Re mass balance modelling in this study, the expansions and contractions of Aanoxic are 

limited. The exception to the minor increases from Pre-N-CIE to lower N-CIE is in the non-

steady state model scenario (#4), where a large Aanoxic increase between the intervals is 

observed due to the modelled influx of weathered continental material in the lower N-CIE, but 

not the Pre-N-CIE. Much greater expansions and contractions of Aeuxinic are observed from the 

Mo mass balance models. 
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Table 8. Variations in Aanoxic and Aeuxinic from Pre-N-CIE to lower N-CIE, and lower to upper N-CIE 

intervals during several model cycles. Model scenarios are those presented in sections 7.4.2 to 7.4.6 

where model components are altered. From scenarios 1 to 4, model parameters are listed if they vary from 

the published model. Round-bracketed values are the modelled Aanoxic or Aeuxinic in % total seafloor area. 

Square-bracketed +/– are inferred from relative authigenic enrichment changes when Mo concentrations 

fell below model solutions. 

The sensitivity testing completed on the models examined the effect of parameter 

variation on the general results of the model. Using the local BMAR from model scenarios #1 

to #4 should increase the accuracy of the modelled Aanoxic and Aeuxinic for the sample intervals. 

Model scenarios #2a and #2b assume increases in hydrothermal and riverine inputs, 

respectively, which are likely to have occurred based on variations in Sr, Os and Ca isotope 

profiles of coeval sections (Them II, et al., 2017b; Percival, et al., 2016; Brazier, et al., 2015; 

Cohen, et al., 2004; Jones & Jenkyns, 2001). Model scenario #4 addresses the asynchrony 

between the hydrothermal versus riverine flux increases by observing a hydrothermal increase 

during the Pre-N-CIE interval, followed by the instantaneous application of a riverine increase 

for the lower and upper N-CIE intervals. A caveat of quantifying the Aanoxic and Aeuxinic from 

the model scenarios where input fluxes increase is that they are based on increases from an 

initial input equivalent to modern riverine flux, which may be an overestimate based on 

generally lower 87Sr/86Sr and 187Os/188Os Jurassic seawater ratios compared to modern (Them 

II, et al., 2017b; Jones & Jenkyns, 2001; Burton, et al., 1999). The accuracy of the Aanoxic and 

Scenario Model Parameters 
Pre-N-CIE → 
lower N-CIE 

lower N-CIE → 
upper N-CIE 

Aanoxic Aeuxinic Aanoxic Aeuxinic 

Published models 
after Sheen et al. 

(2018) and 
Reinhard et al. 

(2013) 

Fin = modern riverine (RivM) 
Asuboxic = constant modern 
Aoxic = Atotal – Aanoxic – Asuboxic 
boxic,suboxic = modern 
banoxic,euxinic = modern, scaled 
BMAR = ± 1.5 × Cariaco 

×1.3 

(0.12→0.16) 

×18 

(0.18→3.2) 

[–] 

(0.16→“0”) 

×5.8-1 

(3.2→0.55) 

1) Local BMAR BMAR = Calculated local 
×1.1 

(0.89→0.98) 

×7.8 

(0.89→7) 

×8.2-1 

(0.98→0.12) 

×4.4-1 

(7.0→1.6) 

2a) Increasing Fin 
(Hydrothermal) 

Fin =  RivM + 2× modern 
hydrothermal  

BMAR = Calculated local 

×1.1 

(0.89→0.98) 

×9.1 

(1.1→10) 

×8.2-1 

(0.98→0.12) 

×5.6-1 

(10→1.8) 

2b) Increasing Fin 
(Riverine) 

Fin = 3×RivM 
BMAR = Calculated local 

×1.03 

(6.2→6.4) 

[+] 

(3.8→“100”) 

×1.7-1 

(6.4→3.7) 

[–] 

(“100”→6.8) 

3) Increasing 
Asuboxic 

Asuboxic = ↑ ∝ ↑Aanoxic/euxinic, ↓Asuboxic 
when Asuboxic + Aanoxic ≥ 100%  

BMAR = Calculated local 

×1.1 

(0.16→0.17) 

×6.3 

(0.32→2) 

×1.7-1 

(0.17→0.10) 

×3.9-1 

(2.0→0.51) 

4) Non-steady 
state Fin 

Fin (Pre-N-CIE) =  RivM + 2× 
hydrothermal 

Fin (N-CIE, lower & upper) = 3×RivM 
BMAR = Calculated local 

×7.2 

(0.89→6.4) 

[+] 

(1.1→“100”) 

×1.7-1 

(6.4→3.7) 

[–] 

(“100”→6.8) 

General Variation in Aanoxic  and Aeuxinic Expansion Contraction 
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Aeuxinic derived from model scenario #3 are difficult to assess as it is not documented how the 

suboxic sink reacts during anoxic/euxinic expansion and contraction. 

An issue arises in the quantitative comparison of the anoxic and euxinic sinks, where 

the estimated Aeuxinic typically exceeds Aanoxic, especially in the lower N-CIE interval. This is 

problematic because the anoxic sink area is the sum of the ferruginous (Aferruginous) and euxinic 

sinks, therefore Aeuxinic > Aanoxic is not possible. For example, in model scenario #2a, Aeuxinic > 

Aanoxic by ~9% in the lower N-CIE. Mathematically Aferruginous is therefore –9% to fulfill the 

summation, however a negative area is not physically possible. It is still likely that the extent 

of Aferruginous was limited during the T-OAE because reducing ocean conditions have produced 

euxinia, rather than ferruginous anoxic, since the mid-Paleozoic (Lenton, et al., 2018). 

However, minor episode of ferruginous anoxia in mid-depth waters is inferred in some 

locations by marine red bed deposition in association with OAEs, including in the European 

Middle Toarcian sequences following the T-OAE (Song, et al., 2017; Cecca, et al. 1992). 

The extreme inferred expansion of Aeuxinic is a function of low Moauth in the lower N-

CIE interval (32 ± 14 µg/g). While the lower N-CIE Moauth is representative of samples that 

passed filters for euxinia, it is possible that the relatively low values do not equate to an 

extreme global Aeuxinic expansion. I suggest that because the Mo residence time (τMo) is longer 

than the continental weathering event occurring at the onset of the T-OAE, the Moauth is not 

responding as quickly to the influx of Mo from rivers and remains at non-steady state longer 

than Reauth with a shorter residence time. 

The τMo of 440 kyr is longer than the estimated 100–200 kyr increase in continental 

weathering rate, therefore the initially low Moauth in the lower N-CIE may represent a non-

equilibration of the Mo reservoir with respect to an influx of weathered continental material. 

The shorter τRe of 128 kyr (Miller, et al., 2011) may have allowed Re to respond more rapidly 

to a perturbation such as an influx of weathered continental material. This imbalance between 

the equilibration of the Mo and Re seawater reservoirs would ultimately affect the authigenic 

enrichments recorded in the sediments. The Moauth would be initially slow to respond to the 

influx and would record the more drawn-down seawater reservoir, producing an artificially-

high Aeuxinic until the increased riverine flux could equilibrate with the sediment sink. The 

Reauth may respond within the time frame of the continental weathering influx, so should be 
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recording near-equilibrium conditions, at least towards the latter half of the rate increase. It 

should be noted that residence time varies as a function of the seawater metal reservoir and its 

input fluxes, thus the modern Mo and Re may not be representative of those during the T-

OAE. However, if Re and Mo seawater reservoirs and input fluxes change proportionally to 

each other (as they do within the models used here), then Re will remain shorter than Mo. 

A second factor which may have affected the outcome of the mass balance models is 

that the samples are thermally overmature. In overmature environments, loss of organic carbon 

and retention of trace metals in the sediment phase may exaggerate the trace metal 

concentrations, and thus Reauth and Moauth may have been artificially elevated. If this is the 

case, then the resulting Aanoxic and Aeuxinic from the modeled authigenic enrichments are 

underestimates. Riediger (1991) documented Corg up to 28 wt% in immature Gordondale 

Member cores, while the overmature samples in the study core contain maximum Corg content 

of 12 wt%. Thus, a potential organic matter loss of up to 60% is approximated. Using 

Equation 15 (where Re and Mo are measured in ng/g and µg/g, respectively, and Corg is 

measured in wt% or g per 100 g), estimated pre-maturation Re and Mo concentrations can be 

calculated for each sample. 

(15)  [𝑅𝑒 𝑜𝑟 𝑀𝑜]𝑝𝑟𝑒−𝑚𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
[𝑅𝑒 𝑜𝑟 𝑀𝑜]𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑×1𝑔

1𝑔+
([𝐶𝑜𝑟𝑔]

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
×

1

100𝑔
)(0.60)

0.40
⁄

 

New mean Re and Mo concentrations for each model interval are calculated as follows: Pre-N-

CIE, 162 ng/g Re and 140 µg/g Mo; Lower N-CIE, 166 ng/g Re and 30 µg/g Mo; Upper N-

CIE, 247 ng/g Re and 97 µg/g Mo. These new values represent concentrations ~8% lower than 

measured concentrations and correspond to Aanoxic or Aeuxinic ~1 to 4% greater than those 

derived from measured values.  

Finally, based on the assumption that low Moauth and therefore high Aeuxinic were 

exaggerated within the lower N-CIE, when Aeuxinic > Aanoxic for a given interval in a model 

scenario, the Aanoxic replaces the Aeuxinic because Aanoxic represents a maximum for Aeuxinic. A 

new summary for model scenarios #2a, #2b and #4 is listed in Table 9, which highlights the 

more conservative estimates of changes in Aeuxinic versus the non-corrected values in Table 8. 
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Table 9. Seafloor anoxic and euxinic areas updated to reflect Aanoxic ≥ Aeuxinic. The original results 

presented in Table 8 indicate Aeuxinic > Aanoxic in some cases, which is physically impossible. Based on 

the arguments discussed in the text, it is more suitable to assume that in the case where Aeuxinic was 

reported as greater than Aanoxic, the Aanoxic can be used in lieu. Bolded values are the new Aeuxinic for given 

intervals based on the Aanoxic for that interval. 

In summary, the results of the mass balance models have illustrated that the T-OAE 

likely contained a period of moderate expansion of Aanoxic and Aeuxinic at the onset of the N-CIE 

interval, followed by a moderate contraction of these sink areas near the end of the N-CIE. 

Scenario #4 is the most probable, based on the changes to weathering rate inferred from Sr, Os, 

and Ca isotope studies. The anoxic sink area, which is a combination of the ferruginous and 

euxinic sinks was likely dominated by euxinia based on similar Aanoxic and Aeuxinic from the 

models. Therefore, seafloor Aanoxic and Aeuxinic ranged from less than 1% to a maximum of ~6% 

across the T-OAE.  

The modern continental shelf and slope account for ~3.6% and ~5.6% of the global 

ocean area, a total of ~9.2% of the ocean floor area (Drake & Burk, 1974). If the area of the 

Toarcian continental shelf and slope were not substantially different than today, then the 

models suggest that expansion of anoxia and euxinia did not extend into the deep ocean but 

remained within the shallow continental margins, intracontinental basins and epicontinental 

seas. The deep oceans likely remained predominantly oxygenated. 

The results of the Re and Mo mass balance models in this study are broadly consistent 

with estimations of an increase in euxinic seafloor area from ~0.6% (Early Toarcian ‘Normal’ 

conditions) to ~4% (T-OAE globally reducing conditions) based on Mo isotope variations 

(Pearce, et al., 2008). Thallium isotope variations have also been used to estimate the global 

area of bottom water anoxia based on a relative decrease in well-oxygenated bottom waters 

where Mn oxides are buried (Them II, et al., 2018). The Tl isotope model deviates from the Re 

and Mo models by the indication of a two-step deoxygenation through the T-OAE, with the 

Scenario 
Pre-N-CIE → 
lower N-CIE 

lower N-CIE → 
upper N-CIE 

Aanoxic Aeuxinic Aanoxic Aeuxinic 

2a) Increasing Fin (Hydrothermal) 
×1.1 

(0.89→0.98) 

×1.1 

(0.89→0.98) 

×8.2-1 

(0.98→0.12) 

×8.2-1 

(0.98→0.12) 

2b) Increasing Fin (Riverine) 
×1.03 

(6.2→6.4) 

×1.7 

(3.8→6.4) 

×1.7-1 

(6.4→3.7) 

×1.7-1 

(6.4→3.7) 

4) Non-steady state Fin 
×7.2 

(0.89→6.4) 

×7.2 

(0.89→6.4) 

×1.7-1 

(6.4→3.7) 

×1.7-1 

(6.4→3.7) 

General Variation in Aanoxic /Aeuxinic Expansion Contraction 
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first instance requiring a 50% decrease in well-oxygenated seafloor area, and the second 

instance a further 25% decrease in well-oxygenated seafloor area. This variation between a 

single deoxygenation (Re and Mo models) and the two-step deoxygenation is likely caused by 

the different residence times of Re and Mo (both > 100 kyr) versus Tl (~ 20 kyr; Them II, et 

al., 2018). In Sheen et al. (2018) and Reinhard et al. (2013), the oxic seafloor sink (~84% of 

global seafloor area) is defined as the seafloor area where Mn oxides are permanently buried 

and O2 penetration reaches sediment depths > 1 cm. The modern oxic sink includes both 

continental margin and abyssal plain areas of the ocean, while the modern suboxic (4.67%, 

Sheen, et al., 2018; 1.92%, Reinhard, et al., 2013) and anoxic (0.11%; Sheen, et al., 2018; 

Reinhard, et al., 2013) sinks are limited to the continental margins. It is unlikely that the 50% 

and 25% decrease in well-oxygenated seafloor occurred across the entire oxic sink area as 

classified by the Sheen et al. (2018) and Reinhard et al. (2013) models. Owens et al. (2018) 

describe a similar reduction of well-oxygenated seafloor (65-75%) from Tl isotopes during 

OAE2 (Cretaceous), which they infer to coincide with an increase of poorly-oxygenated to 

anoxic bottom waters across ~2× the continental margin area during OAE2. If it is assumed 

that the continental margin area during the T-OAE was equivalent to the modern (~9%), and 

the estimate of 2× continental margin is used to infer the expanded area of suboxia + 

anoxia/euxinia, this may correspond to an area of ~18%. With suboxia held constant as it was 

in the Re and Mo models, this equates to an anoxic/euxinic expansion between ~13–16%. The 

estimate from Them II et al. (2018) is greater than the estimate from the Re and Mo models, 

however, this may be linked to the shorter Tl which can respond to anoxic expansion more 

rapidly. 

7.5. Cause of Global Anoxic/Euxinic Expansion 

The T-OAE is defined by abundant organic-rich black shale hosting a N-CIE embedded 

in a broader P-CIE (Jenkyns, 2010). The event is typically accompanied by redox-sensitive 

metal enrichments, featuring a drawn-down (less enriched) segment indicating potential 

expansion of anoxic or euxinic bottom waters (e.g. Them II, et al., 2018). In the previous 

section, mass balance models were applied to the study core hosting the T-OAE to determine 

if, and to what extent, ocean anoxia/euxinia expanded, contracted or remained constant. The 

model revealed a moderate expansion of anoxia and euxinia at the onset of the N-CIE, 
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followed by a minor contraction during the later part of the N-CIE. While the models illustrate 

the occurrence of the variations in bottom water anoxia and euxinia, they do not point to the 

cause of the event.  

Many authors have used the synchrony of the Karoo–Ferrar LIP (~183–181 Ma; 

Burgess, et al., 2015; Sell, et al., 2014) with the onset of the T-OAE (~183 Ma) as evidence for 

its role in triggering the event. Geochronological overlap between the LIP and OAE events is 

enough to demonstrate their relationship, but some authors have suggested the use of a 

sedimentary Hg paleoproxy as direct evidence for volcanogenic input to the ocean water–

sediment system at the global scale during the T-OAE (Them II, et al., 2019; Percival, et al., 

2015; Sanei, et al., 2012). These studies have provided evidence that enhanced Hg deposition 

may have coincided with pulses of LIP activity or periods when LIP emplacement interacted 

with coals or organic-rich rocks (Percival, et al., 2015). Interaction with coals and organic-rich 

rocks would not only release Hg necessary for ocean sediment enrichment but would also 

inject thermogenic methane into the atmosphere, which is thought to be a factor producing the 

N-CIE signature of the T-OAE (Percival, et al., 2015; Kemp, et al., 2005; Hesselbo, et al., 

2000). The first pulse of Hg enrichment occurred as early as the Pl–To boundary, which also 

coincides with a relatively negative δ13C signature (Percival, et al., 2015).  

In the study core, sediment Hg concentrations are normalised to Corg and STOT to 

account for host phase control on Hg deposition (Figure 32). Mercury deposition is typically 

mediated by organic matter so given a similar seawater Hg concentration, sediments in 

organic-rich environments will be more enriched versus organic-poor environments (Sanei, et 

al., 2012); thus, a Corg normalisation is warranted. Sanei et al. (2012) note a decoupling of Hg–

Corg in their Permian section when euxinia is prevalent. Additionally, because Hg is often 

associated with thiol groups in organic matter as well as sulfide minerals, the sediment Hg 

concentration here is also normalised to STOT.  
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Figure 32. Sediment Hg profiles. The approximate Pliensbachian–Toarcian (Pl–To) boundary and N-

CIE are assigned based on the δ13Corg profile. Sediment Hg is normalised to Corg and STOT to account for 

host phase abundance. Based on the good Hg–STOT and poor Hg–Corg correlation, Hg deposition was 

most likely controlled by sulfides, not organic matter. X-ray diffraction evidence for pyrite is shown to 

demonstrate occurrence of pyrite with spikes in STOT (and Hg). An outlier resulting from turbidite 

deposition (see section 7.4.1) is marked by an ‘X’ and represents a low STOT, not a peak in Hg. 

 

The Hg–Corg correlation is negligible (r2 = 0.06), while the Hg–STOT correlation is good (r2 = 

0.71). As discussed in section 7.1, most metal–Corg correlations in the study core are poor 

likely from loss of organic mass during thermal maturation (Dickson, et al., 2019). It is 

probable that thermal maturation has affected the Hg–Corg correlation. Study of chemical 

equilibrium of Hg in solution with sulfide have shown that increasing dissolved sulfide content 

reduces Hg bioavailability, and thus in these environments Hg tends to complex with sulfides 

(Benoit, et al., 1999). The study core is greatly enriched in STOT (1 to 9 wt%), indicating that 
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there was likely an abundance of dissolved sulfide in the water column or pore water inhibiting 

Hg complexation with organic matter. Thus, the Hg–STOT normalisation is the best option in 

considering sediment Hg variations in response to volcanic activity. 

Intervals of elevated Hg/STOT with respect to the mean for the core (62 ppb/wt%; n = 

82) are observed below the Pl–To boundary and between the Pl–To boundary and the onset of 

the N-CIE. The outlier sample (1578.34 m) was likely affected by turbidite deposition—as was 

discussed for Re and Mo in section 7.4.1—and shows an elevated Hg/STOT, however no 

variation in Hg concentration from the surrounding samples is observed and both STOT and Corg 

are lower than the surrounding samples, so it is neglected as an indication of volcanic activity. 

The peak in sediment Hg and Hg/STOT near the Pl–To boundary is similar to observations in 

Them II et al. (2019) and Percival et al. (2015), however those studies typically observe greater 

enrichments within the N-CIE interval, rather than leading up to it.  

Them II et al. (2019) link proximity of the study site to the ancient coast line as a 

control on sediment Hg enrichment. Of five distal cores examined in their compilation, none 

exhibited Hg/Corg anomalies. This study core is more seaward in relation to two “distal” 

Alberta cores studied in Them II et al. (2019), and along with overmaturity and complication in 

determining what phase the Hg resides (organic, sulfidic, or neither), the sediment Hg proxy 

for volcanic activity is deemed inconclusive for the study core. However, based on the 

synchrony of the Karoo–Ferrar LIP and the T-OAE supported by sediment Hg enrichments in 

proximal settings, and no other extreme perturbation (e.g. meteorite impact) recorded at the 

time, volcanic activity likely played a role in producing the T-OAE. 
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8. Conclusions 

The Early Jurassic study core from northeastern British Columbia contains the 

Gordondale Member, overlain by the Poker Chip Shale (PCS). Both members are organic-rich 

(Corg up to 11.5 wt%) and overmature (Tmax > 470°C) in the study core. The Gordondale 

Member was divided into a Lower Unit which was euxinic (Mo and V up to 370 µg/g and 2237 

µg/g, respectively), and an Upper Unit which had variably anoxic (non-sulfidic) and euxinic 

intervals (Mo and V up to 165 µg/g and 2166 µg/g, respectively; U and Re up to 33 µg/g and 

878 ng/g, respectively). The Upper Unit contained the N-CIE of the T-OAE, exhibiting a –2‰ 

shift in the δ13Corg signature. The PCS was mainly suboxic (U and Re up to 13 µg/g and 456 

ng/g, respectively), however, pore waters may have remained sulfidic given moderate Mo and 

V enrichments (up to 40 µg/g and 606 µg/g, respectively) and its pyritic mineralogy. 

Covariations of Mo–U and Cd–Mo indicated that the Gordondale and PCS were 

deposited in an open-marine environment where deep water mass exchange could occur 

regularly, and upwelling was a likely feature of this environment. Given this hydrographic 

configuration, the basin is suitable for trace metal mass balance modelling to determine the 

global extent of seafloor anoxia and euxinia. The Re and Mo mass balance models focused on 

anoxic and euxinic samples from the Gordondale Member, as the PCS was deemed suboxic. 

The Gordondale samples were divided into three groups relative to the occurrence of the N-

CIE: (1) Pre-N-CIE, (2) lower N-CIE, and (3) upper N-CIE. The Pre-N-CIE group exhibited 

moderate authigenic Re and the highest Mo enrichments (192 ± 86 ng/g and 156 ± 104 µg/g, 

respectively). The lower N-CIE group had the lowest Re and Mo authigenic enrichments (187 

± 74 ng/g and 32 ± 14 µg/g, respectively), however, the Re content was not statistically 

different from the Pre-N-CIE group (p-value = 0.83). The upper N-CIE group had the highest 

Re and moderate Mo authigenic enrichments (278 ± 70 ng/g and 104 ± 9 µg/g, respectively).  

Based solely on these enrichments, a minor expansion in the anoxic and euxinic 

seafloor areas between the Pre-N-CIE and lower N-CIE (from ~0.9% to ~1% total seafloor 

area), and a contraction from the lower to upper N-CIE (from ~1% to ~0.1% total seafloor 

area) are inferred. However, that is assuming that the trace metal ocean reservoir (and thus the 

authigenic enrichments) are responding only to changes in the anoxic and euxinic sediment 

sinks. The T-OAE was accompanied by > 3× increase in continental weathering rate which 
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occurred over the first 100 to 200 kyr of the 300 to 500 kyr N-CIE (Them II, et al., 2017b). 

This meant that a variation of the riverine input flux accompanied the expansion of the 

anoxic/euxinic seafloor sinks, thus a perturbation to the input flux by a factor-of-3 increase was 

applied to the lower and upper N-CIE intervals. This resulted in a corresponding increase in the 

anoxic/euxinic seafloor area necessary to produce the Re and Mo enrichments in the lower N-

CIE (~6% total seafloor area) and upper N-CIE (~4% total seafloor area) sediments.  

The scenario with the input flux increase was assumed to be the most representative of 

the Early Jurassic system, however, one issue arose due to the residence times of Re and Mo 

with respect to the timing of the weathering rate increase. Mo and Re have modern oceanic 

residence times of ~440 kyr and ~130 kyr, respectively (Miller, et al., 2011), while the 

weathering rate increase occurred over 100 to 200 kyr. The longer residence times of the trace 

metals means that they likely exhibit a delayed response to the perturbation, and thus may not 

have fully equilibrated during the event. This is most apparent for Mo, as the very low 

authigenic enrichments in the lower N-CIE interval are likely lagging relative to the new 

riverine Mo input. Still, the results of the mass balance models led to the conclusion that the T-

OAE was a period of expanded anoxic/euxinic seafloor area, at least in part. The maximum 6% 

total seafloor area covered by anoxia/euxinia was most likely located along the continental 

margins, thus oceanic deep waters likely remained oxygenated. 

Finally, an attempt to link the expansion of anoxic and euxinic seafloor areas to Karoo–

Ferrar large igneous province activity was made using a sedimentary Hg proxy. No significant 

trends or peak were observed using the typical Hg/Corg normalisation (e.g. Them II, et al., 

2019), and an attempted Hg/STOT normalisation was also inconclusive. A previous study 

indicated that the utility of the proxy may decrease with increasingly distal (deeper waters, 

farther offshore) marine deposition (Them II, et al., 2019). The study core is located more 

distally than the “distal” cores of the Them II, et al. (2019) study, which may be the reason 

why a clear trend was not observed. 

The findings of this study have demonstrated that while the T-OAE was a minor  

anoxic expansion (maximum ~6% total seafloor area) relative to the well-known “Big 5” mass 

extinctions (e.g. Permian–Triassic: 70-95% species loss and anoxia expanded across ~20% of 

the seafloor; Lau, et al., 2016), it still produced a minor mass extinction. Continuing to study 
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oceanic anoxia during past OAEs may help put modern climate changes into context. Future 

study should include monitoring changes to the modern areal extents of seafloor anoxia and 

euxinia to compare to anoxic/euxinic expansions during mass extinctions associated with LIP-

driven OAE events (Clapham & Renne, 2019; Bond & Wignall, 2014).  
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Appendices 

Appendix 1: Carbon Geochemistry and Pyrolysis Data 

Depth (m) Corg (wt%) δ13C (‰) Tmax (°C) Oxygen Index Hydrogen Index 

1560.06 2.59 -30.1       

1560.51       3 67 

1561.36 3.47 -30.3       

1561.60     472 2 84 

1561.91 3.94 -30.2       

1562.27 4.04 -30.3       

1562.40     476 2 90 

1562.93 4.77 -30.1       

1563.32     478 4 54 

1563.90 4.42 -29.9       

1564.28 6.06 -29.9       

1564.67     478 2 85 

1565.46     477 3 87 

1565.61 4.39 -29.7       

1566.37 4.38 -29.4       

1566.68     476 3 60 

1567.47     469 4 101 

1567.66 3.78 -28.7       

1568.01 4.18 -28.9       

1568.41     479 4 65 

1568.60 3.84 -28.9       

1568.68 2.80 -28.6       

1569.47     478 4 74 

1569.77 4.59 -28.4       

1570.15 3.75 -28.1       

1570.48     474 2 96 

1570.76 5.07 -28.0       

1571.33 5.04 -28.1       

1571.66     473 2 93 

1571.92 4.2 -28.3       

1572.31     475 2 104 

1572.58 5.64 -28.5       

1573.31 5.27 -28.4 478 3 77 

1574.17 4.43 -28.6       

1574.29     474 4 80 

1574.53 3.99 -28.9       

1574.85 3.20 -29.7       

1575.00 9.18 -29.7       

1575.25 4.24 -29.6       
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1575.35 4.51 -29.4       

1575.46 4.78 -29.5       

1575.50     479 5 70 

1575.61 4.24 -29.6       

1575.82 4.57 -29.7       

1575.93 3.91 -29.7       

1576.11 5.60 -29.7       

1576.29     475 4 70 

1576.37 4.76 -29.6       

1576.41 4.93 -29.7       

1576.59 5.03 -29.5       

1576.82 5.24 -29.6       

1576.91 6.31 -29.7       

1577.11 4.97 -29.4       

1577.24 5.14 -29.8       

1577.36 4.93 -29.6       

1577.61 4.63 -29.9       

1577.65     473 5 62 

1577.84 4.31 -29.2       

1578.34 3.53 -29.9       

1578.50     471 20 24 

1578.93 4.14 -29.8       

1579.06 4.15 -29.8       

1579.10 4.12 -29.8       

1579.32 5.35 -29.9       

1579.57     483 4 88 

1579.61 3.79 -29.9       

1579.93 4.99 -30.1       

1580.09 3.61 -29.8       

1580.27 4.53 -30.0       

1580.41     481 3 99 

1580.51 4.69 -29.9       

1580.62 6.96 -30.1       

1580.76 7.05 -30.0       

1580.94 9.995 -30.5       

1581.17 3.79 -29.8       

1581.26     478 2 105 

1581.33 5.31 -29.9       

1581.52 4.38 -29.9       

1581.71 5.02 -30.0       

1581.85 6.49 -30.4       

1582.10 6.52 -30.1       

1582.23 6.35 -28.5       

1582.42     478 6 95 

1582.55 5.1 -29.3       

1583.08 5.73 -29.5       

1583.08 5.87 -29.6       
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1583.25     476 5 108 

1583.89 4.99 -29.5       

1584.23 5.5 -28.9       

1584.38     475 4 103 

1584.58 5.42 -28.9       

1584.95 11.05 -28.9       

1585.28 7.54 -29.1 476 3 101 

1585.35 9.63 -29.0       

1585.46 9.92 -29.0       

1585.97     476 3 95 

1586.05 10.60 -29.5       

1586.36 9.56 -29.3       

1586.47 9.81 -29.1       

1586.60 10.45 -28.5       

1586.84 11.5 -29.2       

1587.10 5.74 -28.7       

1587.64 7.91 -29.5       

1587.99 6.60 -29.9       

1588.30     469 5 45 

1588.47 4.67 -30.0       

1589.25     474 3 125 

1589.32 9.44 -30.3       

1589.33 9.74 -30.3       

1589.34 10.2 -29.5       

1589.35 9.57 -30.0       

1589.52 4.11 -28.5       

1589.96 6.05 -30.0       

1590.05     477 6 57 

1590.38 10 -30.3       

1591.05 4.88 -29.1       

1591.32     474 5 78 

1591.74 6.01 -30.0       

1592.29     479 8 78 

1592.37 6.77 -29.8       

1593.14     480 7 82 

1593.27 9.57 -30.4       

1593.44 7.66 -30.3       

1594.00 5.64 -30.1       

1594.30     478 6 81 

1594.66 6.81 -30.0       

1595.17 7.63 -30.6       

1595.35     481 10 61 

1595.51 5.52 -29.5       
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Appendix 2: X-ray Diffraction Data 

ND = Not Detected (reported as 0) 

Depth (m) Qtz (wt%) Carb (wt%) Clay (wt%) Ap (wt%) Py (wt%) 

1560.51 9.4 ND 87 ND 3.8 

1561.60 14 0.50 69 ND 3.9 

1562.40 55 1.9 40 ND 2.9 

1563.32 59 11 25 ND ND 

1564.67 50 ND 48 ND ND 

1565.46 27 ND 69 ND 2.4 

1566.68 28 ND 66 ND 4.2 

1567.47 61 ND 34 ND ND 

1568.41 76 6.2 11 ND ND 

1569.47 38 ND 54 ND 1.2 

1570.48 54 1.6 37 ND 2.1 

1571.66 57 3.3 32 ND 2.5 

1572.31 62 0.80 8.9 ND 0.30 

1573.31 36 ND 63 ND ND 

1574.30 54 2.8 37 ND 2.4 

1575.51 70 30 ND ND ND 

1576.30 6.7 24 69 ND ND 

1577.66 34 29 37 ND ND 

1578.52 32 34 35 ND ND 

1579.57 39 32 ND 26 ND 

1580.42 44 42 6.9 ND 2.6 

1581.50 74 16 ND ND ND 

1582.67 19 31 22 28 ND 

1583.50 24 56 ND 20 ND 

1584.63 87 7.0 ND 4 ND 

1585.53 81 16 ND ND ND 

1586.22 40 43 16 ND ND 

1587.65 11 31 ND 59 ND 

1588.56 12 23 46 ND 4.8 

1589.51 87 13 ND ND ND 

1590.33 44 43 9.2 ND ND 

1591.58 22 75 ND ND ND 

1592.54 17 83 ND ND ND 

1593.40 15 85 ND ND ND 

1594.55 14 58 ND 28 ND 

1595.64 16 76 ND 8.3 ND 
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Appendix 3: Major Element Data 

NA = Not Analysed 

Depth (m) Al (wt%) Ca (wt%) Cinorg (wt%) P (wt%) Fe (wt%) S (wt%) 

1560.06 8.1 1.9 0.78 0.04 3.0 3.1 

1561.36 6.9 1.2 0.54 0.06 2.5 2.7 

1561.91 8.9 1.7 0.32 0.04 2.7 3.1 

1562.27 8.9 0.92 0.31 0.03 2.5 2.9 

1562.93 6.1 1.2 0.50 0.05 2.1 2.5 

1563.90 7.9 1.2 0.28 0.21 2.7 3.0 

1564.28 6.4 0.93 0.23 0.11 1.9 2.4 

1565.61 5.8 0.50 0.20 0.07 2.1 2.5 

1566.37 7.2 0.67 0.29 0.04 2.6 3.2 

1567.66 6.9 0.49 0.15 0.04 2.0 2.4 

1568.01 8.5 0.57 0.19 0.06 2.3 2.7 

1568.60 6.1 0.66 0.21 0.03 2.5 NA 

1568.68 12.3 0.39 0.17 0.07 7.5 6.8 

1569.77 5.4 1.9 1.0 0.07 1.7 2.5 

1570.15 8.6 0.34 0.28 0.04 2.5 3.0 

1570.76 5.3 0.78 0.36 0.04 2.0 2.3 

1571.33 6.2 0.71 0.22 0.09 2.5 3.0 

1571.92 7.8 0.48 0.15 0.05 3.6 4.7 

1572.58 4.9 1.4 0.67 0.07 1.8 2.4 

1573.31 5.6 0.72 0.24 0.07 1.6 2.3 

1574.17 6.7 0.34 0.18 0.04 2.5 2.7 

1574.53 7.0 1.0 0.69 0.05 2.5 2.9 

1574.85 8.4 1.0 0.31 0.71 7.2 6.2 

1575.00 2.7 1.2 0.56 0.04 2.2 3.2 

1575.25 5.3 1.2 0.48 0.06 2.4 3.1 

1575.35 6.8 1.3 0.60 0.07 2.7 3.1 

1575.46 6.2 2.7 1.1 0.08 2.4 2.9 

1575.61 7.9 3.8 1.3 0.13 3.4 2.1 

1575.82 4.4 4.6 1.6 0.09 1.9 2.5 

1575.93 10.1 3.1 1.2 0.10 3.1 3.1 

1576.11 3.4 4.9 1.6 0.11 1.7 NA 

1576.37 10.6 2.7 1.0 0.16 4.1 3.7 

1576.41 4.7 6.7 2.3 0.18 2.6 3.5 

1576.59 6.1 3.9 1.3 0.12 2.5 2.9 

1576.82 4.5 5.5 1.8 0.12 1.9 NA 

1576.91 4.3 8.2 1.9 1.2 1.8 2.3 

1577.11 6.2 4.4 1.4 0.36 2.1 2.3 

1577.24 4.3 6.4 2.2 0.08 1.8 2.6 

1577.36 5.1 6.5 2.3 0.13 2.1 2.7 

1577.61 4.0 10 4.4 0.04 1.7 2.1 

1577.84 8.5 2.8 1.1 0.14 3.3 2.5 

1578.34 7.3 10 3.7 0.22 3.8 1.5 
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1578.93 4.9 3.4 1.2 0.32 1.7 1.9 

1579.06 4.0 6.4 2.0 0.15 1.7 2.1 

1579.10 4.6 6.8 2.5 0.31 1.8 2.2 

1579.32 4.6 4.0 1.2 0.24 1.7 1.9 

1579.61 6.7 5.5 1.5 1.8 2.3 2.0 

1579.93 3.5 8.0 1.4 2.0 1.3 1.7 

1580.09 5.6 5.0 1.4 0.83 2.0 2.2 

1580.27 4.1 7.9 2.8 0.17 2.1 2.6 

1580.51 5.0 7.9 1.3 2.2 2.4 3.0 

1580.62 2.8 8.2 1.2 1.8 1.1 1.8 

1580.76 3.4 5.3 1.2 1.3 1.4 2.3 

1580.94 2.6 19 0.21 14.9 2.6 3.0 

1581.17 9.9 1.7 0.36 0.58 2.8 3.0 

1581.33 4.6 8.7 1.3 4.0 9.3 8.9 

1581.52 3.4 8.5 2.2 0.87 2.0 2.4 

1581.71 6.1 4.3 1.3 0.73 2.9 3.0 

1581.85 2.1 15 3.3 2.5 1.6 2.4 

1582.10 2.1 8.3 2.1 1.2 4.9 NA 

1582.23 2.8 16 2.0 4.3 1.0 NA 

1582.55 4.3 14 2.7 3.2 1.3 1.6 

1583.08 2.5 18 4.6 1.3 1.0 NA 

1583.08 2.6 23 4.7 2.5 1.0 1.6 

1583.89 2.8 18 5.8 0.02 2.0 2.5 

1584.23 5.1 14 3.4 0.40 2.4 2.9 

1584.58 2.1 10 3.1 0.26 0.70 NA 

1584.95 3.6 19 5.6 0.53 2.0 3.3 

1585.28 3.6 11 2.7 1.1 2.6 3.3 

1585.35 3.4 17 4.5 1.0 1.6 2.7 

1585.46 2.6 19 5.7 0.51 1.4 2.5 

1586.05 1.9 17 4.8 0.31 1.2 2.6 

1586.36 2.6 23 6.0 0.55 1.5 2.4 

1586.47 2.2 18 5.5 0.14 1.4 2.5 

1586.60 3.6 22 5.5 1.2 1.6 2.3 

1586.84 1.5 20 5.9 0.49 0.92 2.3 

1587.10 4.2 14 4.1 0.59 1.1 1.7 

1587.64 1.0 7.8 2.5 0.20 0.29 1.0 

1587.99 1.9 12 3.5 0.22 0.73 NA 

1588.47 1.8 18 4.8 0.55 0.69 NA 

1589.32 0.91 8.1 2.2 0.66 0.41 NA 

1589.33 0.86 7.3 2.3 0.08 0.37 NA 

1589.34 1.0 8.3 2.4 0.64 0.41 1.3 

1589.35 1.1 8.8 2.7 0.29 0.46 NA 

1589.52 3.5 15 4.9 0.38 1.8 2.4 

1589.96 2.3 20 4.1 3.0 1.0 2.2 

1590.38 0.65 7.7 2.4 0.10 0.28 1.3 

1591.05 2.6 17 5.0 0.50 1.1 1.6 

1591.74 1.7 20 6.3 0.25 0.95 1.8 
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1592.37 1.6 27 7.2 0.58 0.92 1.7 

1593.27 1.2 27 6.8 0.19 0.65 1.3 

1593.44 1.7 27 7.8 0.36 0.80 1.4 

1594.00 1.9 17 5.3 0.48 0.91 NA 

1594.66 2.1 25 6.5 3.7 1.2 1.5 

1595.17 1.5 14 4.4 0.18 0.62 1.5 

1595.51 3.4 14 4.0 0.67 1.1 1.8 
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Appendix 4: Trace Metal Data 

NA = Not Analysed 

Depth (m) Mo (μg/g) V (μg/g) U (μg/g) Re (ng/g) Cd (μg/g) Hg (ng/g) 

1560.06 8.9 133 4.4 41 0.64 113 

1561.36 9.3 183 3.2 70 1.5 114 

1561.91 19 341 3.5 152 4.6 136 

1562.27 17 380 2.8 125 2.6 118 

1562.93 40 470 6.6 236 17 132 

1563.90 18 477 13 159 2.2 187 

1564.28 40 606 7.4 291 21 184 

1565.61 12 168 2.6 49 1.3 146 

1566.37 15 228 4.2 83 1.7 210 

1567.66 8.9 156 3.2 47 0.93 145 

1568.01 16 370 6.3 86 2.7 128 

1568.60 11 186 3.6 65 1.4 221 

1568.68 21 248 5.0 28 1.8 555 

1569.77 7.0 165 7.2 57 0.91 155 

1570.15 11 209 2.6 116 1.7 159 

1570.76 33 487 5.2 313 51 163 

1571.33 7.8 142 5.7 96 0.66 183 

1571.92 12 343 3.4 33 1.5 340 

1572.58 4.3 149 3.9 34 0.39 119 

1573.31 7.8 221 5.0 119 1.5 118 

1574.17 11 258 4.8 96 2.0 130 

1574.53 52 728 9.3 456 91 228 

1574.85 26 455 12 41 1.0 271 

1575.00 115 447 6.7 257 12 114 

1575.25 108 931 7.3 220 24 139 

1575.35 108 1191 9.3 261 22 143 

1575.46 104 1169 18 225 14 144 

1575.61 137 1684 18 220 13 152 

1575.82 86 884 15 283 17 91 

1575.93 76 1533 10 201 14 125 

1576.11 111 929 17 275 22 104 

1576.37 166 2166 14 458 32 194 

1576.41 108 1100 18 280 32 154 

1576.59 102 1210 16 307 21 134 

1576.82 54 912 10 184 19 122 

1576.91 48 950 17 196 28 135 

1577.11 30 609 9.1 166 3.0 120 

1577.24 48 940 7.4 169 39 152 

1577.36 51 1014 9.3 204 38 164 

1577.61 29 575 5.2 111 6.6 135 

1577.84 73 1527 10 428 39 149 

1578.34 103 1112 28 878 9.2 164 
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1578.93 14 199 5.2 124 1.6 138 

1579.06 33 381 6.7 245 8.9 138 

1579.10 29 392 7.1 288 7.9 142 

1579.32 10 201 5.0 99 1.3 139 

1579.61 14 262 8.8 108 1.4 132 

1579.93 12 257 11 140 8.2 117 

1580.09 15 387 10 111 1.8 133 

1580.27 44 461 12 373 16 160 

1580.51 33 624 18 239 4.4 169 

1580.62 15 331 9.4 96 5.9 102 

1580.76 16 222 9.1 188 2.8 127 

1580.94 36 199 33 190 2.4 117 

1581.17 18 708 13 144 3.1 201 

1581.33 53 289 29 287 2.8 566 

1581.52 27 228 14 268 3.3 114 

1581.71 10 232 13 73 1.4 228 

1581.85 12 100 19 152 1.0 135 

1582.10 3.9 78 6.8 83 0.39 82 

1582.23 7.3 118 10 119 0.9 77 

1582.55 18 178 17 189 2.3 94 

1583.08 30 199 11 180 3.7 100 

1583.08 25 219 10 190 3.7 85 

1583.89 12 100 4.5 61 0.90 247 

1584.23 40 104 11 123 1.8 NA 

1584.58 14 76 4.4 41 1.2 NA 

1584.95 295 1282 25 146 45 235 

1585.28 370 1984 36 241 40 270 

1585.35 128 846 22 126 6.2 119 

1585.46 189 1152 25 155 21 158 

1586.05 268 1415 23 211 40 202 

1586.36 231 1049 20 160 23 149 

1586.47 267 1168 20 353 26 171 

1586.60 87 626 13 236 5.3 108 

1586.84 247 1054 24 210 18 139 

1587.10 199 2237 14 238 19 103 

1587.64 21 262 3.5 54 1.3 26 

1587.99 59 540 7.2 90 8.5 104 

1588.47 127 864 14 21 26 97 

1589.32 76 481 10 149 16 NA 

1589.33 64 454 4.1 140 15 NA 

1589.34 64 508 10 133 13 70 

1589.35 82 540 7.3 176 17 86 

1589.52 292 2262 21 364 55 236 

1589.96 76 718 34 142 10 132 

1590.38 70 671 5.8 110 17 60 

1591.05 177 988 19 303 39 191 

1591.74 321 2188 27 390 45 149 
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1592.37 216 1591 36 261 32 139 

1593.27 186 1168 25 201 11 79 

1593.44 289 2757 27 267 33 130 

1594.00 122 1322 16 195 32 132 

1594.66 115 1295 19 239 8.7 115 

1595.17 217 1182 11 212 35 119 

1595.51 205 1128 19 325 50 201 

 


