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Abstract

We investigate the language alignment problem when there are multiple languages, and we
are interested in finding translation between all pairs of languages. The problem of language
alignment has long been an exciting topic for Natural Language Processing researchers. Cur-
rent methods for learning cross-domain correspondences at the word level rely on distributed
representations of words. Therefore, the recent development in the word computational lin-
guistics and neural language modeling has led to the development of the so-called zero-shot
learning paradigm. Many algorithms were proposed to solve the bilingual alignment problem
in supervised or unsupervised manners. One popular way to extend the bilingual alignment to
the multilingual setting is by picking one of the input languages as the pivot language and tran-
siting through that language. However, transiting through a pivot language degrades the quality
of translations, since it assumes transitive relations among all pairs of languages. It is often the
case that one does not enforce such transitive relations in the training process of bilingual tasks.
Therefore, transiting through an uninformed pivot language degrades the quality of translation.
Motivated by the observation that using information from other languages during the training
process helps improve translating language pairs, we propose a new algorithm for unsupervised
multilingual alignment, where we employ the barycenter of all language word embeddings as
a new pivot to imply translations. Instead of going through a pivot language, we propose to
align languages through their Wasserstein barycenter. Our motivation behind this is that we can
encapsulate information from all languages in the barycenter and facilitate bilingual alignment.
We evaluate our method on standard benchmarks and demonstrate that our method outperforms
state-of-the-art approaches. The barycenter is closely related to the joint mapping for all input
languages hence encapsulates all useful information for translation. Finally, we evaluate our
method by jointly aligning word vectors in 6 languages and demonstrating noticeable improve-
ment to current state-of-the-art.
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Chapter 1

Introduction

In this thesis, we focus on a critical sub-task in machine translation: lexicon translation for mul-
tiple languages. The language alignment problem, a long-standing problem in natural language
processing (NLP), has received revived interest recently due to new developments in word em-
beddings and neural approaches. Key inputs for lexicon alignment tasks consists of embedding
vectors for each word. Mikolov et al. (2013a) were the first to release their pre-trained model
and gave a distributed representation of words. After that, more software for training and using
word embeddings emerged.

The rise of continuous word embedding representations has revived research on the bilingual
lexicon alignment problem, originally initiated by Rapp (1995) and Fung (1995). Rapp and
Fung’s initial goal was to learn a small dictionary of a few hundred words by leveraging statistical
similarities between two languages. Mikolov et al. (2013a) formulated the problem of aligning
word embeddings for two different languages as a quadratic optimization problem with the goal
of learning an explicit map between word embeddings. The linear map in Mikolov’s formulation
aligns language spaces together and enables us to infer meanings for out-of-dictionary words.
Zhang et al. (2016), Dinu and Baroni (2015), and Mikolov et al. (2013a) have shown that we can
achieve high accuracy for aligning two languages with no parallel data.

Recently, researchers have been interested in extending language alignment to multiple lan-
guages with the goal of jointly learning all pairwise translations. One natural approach is to align
all languages to a central language. This naturally extends current bilingual alignment methods
to the multilingual case while using information from other languages to improve the perfor-
mance for any language pair. When solving the multilingual alignment problem, Smith et al.
(2017) made the assumption that English is a universal language, and treat English as a pivot to
transit all languages through. Recently, researchers have explored the possibility to train multi-
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ple languages together to achieve better results (Conneau et al., 2017; Taitelbaum et al., 2019a;
Nakashole and Flauger, 2017; Alaux et al., 2019).

In this work, we propose a new method for multilingual alignment that uses pre-trained
monolingual word embeddings and no other information. Our work uses the barycenter for
all languages as the pivot to enforce coherence among language spaces by enabling accurate
compositions between language mappings. We show that our approach achieves competitive
performance that exceeds the performance of current bilingual alignment methods.

1.1 Background

Many problems in machine learning fall into the category where we have limited training data
available to learn a general mapping from one domain to another domain of interest. After
training we can then apply the learned mapping to make new predictions. Solutions to such a
problem facilitate tasks ranging from machine translation to transfer learning.

One example that falls into this category is the machine translation problem, i.e., aligning
words with similar meanings in different languages. While the alignment problem is relatively
easy to solve with access to large amounts of parallel data, broader applicability relies on the
ability to do so with only monolingual data.

The recent active research on language alignment benefits from the development of word
embedding. Word embedding is a significant leap in advancing our ability to analyze words,
sentences, and paragraphs. For a long time, words are represented as one-hot vectors. However,
such representation makes it impossible for us to explore the similarity between words or predict
the context a word may appear in. Bengio et al. (2003) introduced the concept of word embed-
dings to predict the probability of a word given contexts in a sentence. Word embedding encodes
a semantic relationship among words and benefits tackling natural language processing (NLP)
problems. Afterward, Collobert et al. (2011) proposed the concept of a pre-trained model, which
decoupled the word vector training from downstream training. The proposal made linguistic
computation feasible with less computing power. However, this concept did not become popular
until the continuous Bag-of-Words model (Mikolov et al., 2013b) and the distributed Skip-gram
model (Mikolov et al., 2013a) were developed. These algorithms give rise to the hope that one
person can easily find focus words or predict context words with no further information. Mikolov
et al. (2013a) were the first to release their pre-trained model and give a distributed representa-
tion of words. After that, lots of other software for training and using word embedding emerged,
for example, GloVe (Pennington et al., 2014); AllenNLP's Elmo (Gardner et al., 2018); Apache's
Deeplearning4j (Team et al., 2016); and Facebook's fastText (Joulin et al., 2016).
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Development in computational linguistics and neural language modeling has shown that word
embedding can capture the context of a word, containing both semantic and syntactic information
(Dinu and Baroni, 2015). This led to the development of the zero-shot learning paradigm as a way
to address the manual annotation bottleneck in domains where other vector-based representations
must be associated with word labels. It is a fundamental step to make natural language processing
more accessible. Building on each other’s contributions, NLP researchers can now use pre-
trained language models to get those word embedding vectors as the representation for words in
machine translation tasks.

In this chapter, we first introduce some preliminary background for language alignment.
Then, we formally define the language alignment problem when there are only two languages
involved. Finally, we give a review of previous approaches to solving the bilingual alignment
problem, as well as current attempts to extend them into the more challenging multilingual set-
ting.

1.2 Language Alignment

Most language models follow the assumption Harris made in 1954: words occurring in similar
contexts tend to have similar meanings (Harris, 1954). In the FastText model released by Mikolov
et al., researchers discovered an even stronger trait: One can allow languages to be treated like
vector spaces with precise mathematical properties. One famous example is the following: King
�Man + Woman = Queen.

The rise of continuous word embedding representation has revived researches on the bilingual
alignment problem, this time, with a different goal of aligning embedding spaces. The work on
aligning bilingual lexicon was started by Rapp (1995) and Fung (1995). Their initial goal was
to learn a small dictionary of a few hundred words by leveraging statistical similarities between
two languages. We formally define the language alignment problem as follows:

Definition 1 (Bilingual Alignment) Let LX and LY represent two languages, each having n
words and m words in their vocabularies, VX = {wX

i }ni=1 and VY = {wY
j }mj=1, respectively.

With pre-trained word embeddings, we have vectors xi 2 Rdx , yj 2 Rdy corresponding to each
word wX

i , wY
j in the vocabulary VX and VY , respectively. Let X = [x1, . . . ,xn]> 2 Rn⇥dx and

Y = [y1, . . . ,ym]> 2 Rm⇥dy . Our goal is to learn an alignment or mapping T : Rdx ! Rdy

based on the two sets of word embeddings X and Y . In the following we assume dx = dy.

In short, the language alignment problem consists of finding an alignment or mapping T :
Rd1 ! Rd2 given word embeddings of dimensionalities d1 and d2 for the vocabularies V1 =
{w1

i }ni=1 and V2 = {w2
j}mj=1 of languages L1 and L2.
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Figure 1.1: Here X denotes the word embedding space for English, where each dot is a word
vector lying in that space; Y denotes the embedding space for Italian; and W is the alignment
matrix transforming word vectors in X to obtain the smallest distance to vectors in Y .

In one language, words with similar contexts and meanings lie close to each other. So, one
natural guess to find the translation for one word in the other language is to find the nearest
neighbor in the other language of that word. However, for each language, its word embedding
is trained independently on monolingual data, and therefore, lies in different language spaces.
Words that are close to each other are not necessarily synonyms.

Figure 1.1 from (Conneau et al., 2017) illustrates one toy example that reveals this issue.
Suppose X denotes the embedding space of English, whereas Y is the embedding space of
Italian. In this example, gatto is the Italian word for cat. However, gatto is not the closest
word to cat in the space of Y . After aligning the two language spaces, we can see gatto is the
closest word to cat in the newly transformed space. This toy example illustrates the need to first
align the word embedding space for both languages (Language Space Alignment) first. Then,
after aligning languages into the same word embedding space, we can align words with similar
meanings by finding its closest neighbor in the other language (Translation Inference).

Mikolov et al. (2013c) were the first one observed that there are similarities between monolin-
gual embedding space for different languages even though trained independently. Using a simple
linear mapping, Mikolov et al. (2013c) formulated the problem as a quadratic optimization prob-
lem learning an explicit map between word embeddings. Later, Xing et al. (2015) showed that
the results can be improved by restricting the linear mapping to be orthogonal. They further
compared the accuracy on the word translation task using a simple linear mapping against more
advanced strategies like multi-layer neural networks. Surprisingly, the linear mapping achieved
better results than the more advanced strategy. The rationale of having the orthogonal constraint
is that orthogonal maps preserve angles and distances. As per assumption, preserve the distances
between words is crucial to solving the word alignment problem.
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The bilingual alignment problem was formulated by Mikolov et al. (2013c) and Xing et al.
(2015) formulated as the following optimization problem:

Definition 2 (Unsupervised bilingual alignment) Given two sets of n word vectors X, Y 2
Rn⇥d in language LX and LY , find orthogonal matrix Q 2 Rd⇥d and alignment matrix P 2
Pn = Bn \ {0, 1}n⇥n where Bn = {P 2 Rn⇥n

+ , P1n = 1n, P T1n = 1n} such that

min
Q2Rd⇥d:QTQ=I

min
P2Pn

kXQ� PY k22 (1.1)

The problem admits a closed-form solution when we are provided with some aligned data.
Introducing supervision into the problem, the problem of aligning language space has the exact
form of the Orthogonal Procrustes Problem:

min
Q2Rd⇥d:Q>Q=I

kXQ� PY k2 (1.2)

We call the version of the language alignment problem Supervised Bilingual Alignment.
The problem was famous in point registration, a fundamental task in computer graphics.

When we have a large amount of parallel data during training, we can align the language spaces
using Procrustes Matching (Schönemann, 1966): Given Singular Value Decomposition (SVD)
U⌃V T of XY T , the solution to 1.2 is Q⇤ = UV T (Schönemann, 1966). Finding such SVD
decomposition takes O(n3). When there’s a new word with word embedding vector as vw in lan-
guage LX that we haven’t seen before, we can use the space alignment matrix Q to compute the
word vector in the language space of LY by multiplying the vector with the language alignment
matrix Q. To get the translation word for vw, we can find the word vector that is closest to vwQ
in the language space LY .

We can solve the supervised version of the language alignment problem efficiently. How-
ever, in some applications like in bio-informatics or ancient language translation, we do not have
enough parallel data to align language spaces. And that is the setting for unsupervised bilingual
alignment, where we need to learn word embedding mapping jointly with the space alignment
matrix. Research studies have shown that the need for parallel data supervision can be allevi-
ated with character-level information (Conneau et al., 2017; Alvarez-Melis and Jaakkola, 2018).
However, optimization becomes more complicated when we do not have parallel data, so we will
leave the current methods for unsupervised bilingual alignment to the next section.

1.3 Unsupervised Bilingual Alignment

In this section, we introduce several methods tackling the unsupervised version of the bilingual
alignment problem. There are three main categories for those solutions. First, one can try to relax
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and optimize the integer linear program in Definition 2 directly using a linear program solver.
The advantage is the solution is the most accurate; however, when the input for the problem
scale-up, linear program solver quickly becomes computationally inhibit. The second way is to
use Block Coordinate Relaxation. In other words, fix each variable and optimize over the other
iteratively. This was a popular approach explored by many researchers. However, the state-of-
the-art took another direction to solve the problem. We will explain all these different methods
in detail.

1.3.1 Direct Optimization

Solving Definition 2 is equivalent to solving the Procrustes matching (PM) problem, which is
a fundamental task in computer graphics to align two point clouds. Let 1n = [1, · · · , 1] be the
vector containing n ones. The PM problem can be formulated as the following linear program:

minimize kQXT � Y TPk2F
subject to P 2 {0, 1}n⇥n

P1n = 1n, P T1n = 1n

Q 2 Rd⇥d

QTQ = I

(1.3)

The state-of-the-art method to solve 1.3 exactly is maintained by Maron et al. (2016). They
relaxed the constraints for PM to be a semi-definite program (SDP-PM). It admits high accuracy
at the expense of high computation complexity.

Expanding the constraints in 1.3:

min
P,Q

kQXT � Y TPk2F
subject to P1n = 1n,1T

nP = 1T
n

PjP T
j = diag(Xj), j = 1...n

QQT = QTQ = I

(1.4)

We can see that all polynomials are quadratic in the entries of P and Q, we can define the
new variable matrix.

Zj =


Pj⇥
Q
⇤
� 

Pj⇥
Q
⇤
�T

=


PjP T

j QXT
j

PjQT QQT

�
=


Aj BT

j

Bj C

�
(1.5)

6



By expanding 1.4, we rewrite the objective function in terms of Zj for some constant matrices
Wj , since kQXT � Y TPk2F is linear in the entries of Zj:

kQXT � Y TPk2F =
X

j

kQXT
j � Y TPjk22 =

X

j

tr(WjZj) + const (1.6)

The relaxation for the PM problem, PM-SDP can be expressed as

min
Zj ,X,R

P
j tr(WjZj)

subject to X1 = 1,1TX = 1T

Aj = diag(Xj) j = 1...n
tr(HlC) + bl = 0 l = 1...2d2

Zj ⌫

Xj⇥
R
⇤
� 

Xj⇥
R
⇤
�T

j = 1...n

(1.7)

The relaxation 1.7 is equivalent to 1.3 by the theorem from (Grone et al., 1984). Furthermore,
we can further reduce the size of SDP constraint by setting Xij = 0 when we know Pi and Pj

should not correspond.

1.3.2 Block Coordinate Relaxation

PM-SDP is good for small size datasets. However, when the size of the dataset exceeds a couple
hundred, it becomes computationally unsolvable. So we need a different optimization approach
to tackle the problem.

The purpose of using semi-definite linear program is to relax the integer programming prob-
lem by removing its integer constraint. We can take advantage the relaxed formulation 1.4 and
proceed with different optimization methods. With the same setting as in Definition 2, linear
program 1.4 is equivalent as directly removing the integer constraints in the problem:

min
Q2Od

min
P2Bn

kXQ� PY k22 (1.8)

Even after we remove the integer constraint, we notice that the problem is still non-convex.
Neither the constraint sets for P or Q are convex.

For optimization problems like 1.8, a standard way is to iteratively optimizing over each
variable with other variables fixed. With the language mapping P fixed, minimizing Q can be
solved using Procrustes Analysis, as we discussed in the previous Section 1.2. However, knowing
the space alignment matrix, finding the word mapping is not as obvious. We introduce two
different ways to do that:
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Similarity function

After aligning words of different languages into the same language spaces, words in LX to LY are
in the same language space so that we can define distances between words with some similarity
score function. The similarity function sim(·, ·) takes two-word embedding vectors as input and
returns a similarity score. We can infer translations of input source word x 2 LX by finding the
word with maximum similarity score y 2 LY :

ŷ = arg max
y2LY

sim(x, y) (1.9)

Some common choices for similarity functions are consine function, Euclidean-norms etc. Word
embedding representations for languages with similar meanings are close to each other (Boluk-
basi et al., 2016). So a naive way is to find the translation for a word is to pick the word vector
with maximum similarity with the input word. Let’s call the word with maximum similarity
nearest neighbor with the input word. In this way, we can imply a permutation matrix indicating
translation pairs between LX and LY .

However, it is generally not true that the nearest neighbor relationship is commutative. If the
nearest neighbour for word wy in language Ly is wx in language Lx. The nearest neighbour for
wx in language Ly might not be wy. Therefore, picking the nearest neighbor will suffer from the
hubness problem: there will be words in one language that are close to many words, so there will
be some words that are not similar to any words. Those words are called the ”hubs”(Dinu and
Baroni, 2015).

One way to correct the hubness problem is to follow the globally-corrected (GC) approach
proposed by Dinu (Dinu and Baroni, 2015). To put it in simple words, instead of returning the
nearest neighbor of the source word as a solution, it returns the target element y, which has x
ranked highest. Let T denote the target space for translations, and Ranky,T (x) denote the rank
of an element x 2 T w.r.t. its similarity to y and assuming the query space T :

GC1(x, T ) = argmin
y2T

Ranky,T (x) (1.10)

The best way to effectively solve the hubness problem is by using the CSLS metric defined
as follows

CSLS(z, w) = 2 cos(z, w)� 1

n

X

z02Nz(w)

cos(z0, w)� 1

n

X

w02Nw(z)

cos(z, w0) (1.11)

where Nz(w) is the K-nearest neighbour associate with a word w in the target space, and Nw(z)
is the K-nearest neighbour associate with z in the source space. K can be chosen as a hyper-
parameter. CSLS expands the space where there is a high density of points, so the hubs become
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less close to other word vectors than they would otherwise. Conneau et al. (2017) has shown
experimentally CSLS achieves a competitive result higher than any other similarity function.

Optimal Transport (OT)

Another way to find translation mapping is by solving the Optimal Transport Problem trans-
porting the language distribution for LX to language distribution for LY (Alvarez-Melis and
Jaakkola, 2018).

The languages distribution for LX and LY are both distributions over their vocabulary word
embeddings:

µX =
nX

i=1

pi�x(i) µY =
mX

j=1

qj�y(i) (1.12)

where pi is the probability word wx
i occurs in language LX , usually frequency of word wx

i occur-
ring in its training documents; Similarly, qj is the probability word wy

j occurs in language LY .
and � is the one-hot function

�a(x) =

(
1, if x = a

0, otherwise
(1.13)

In the following sections, we call p, q the probability vectors for languages.

With the probability representation of languages, it is natural to adopt optimal transport to
find a mapping from LX to LY . For some cost function c(x, y) defining the effort of changing
from x to y. The correspondence between words in LX and words in LY is captured in the
transportation map T realizing

inf
T

Wp(µ, ⌫) = inf
T

nZ

X

c(x, T (x))dµX(x)
��� T#µX = µY

o1/p

(1.14)

The equation 1.14 is the definition for p-Wasserstein between distributions µ and ⌫.w

Here, # is the push forward operator defined as follows:

Definition 3 For a continuous map T : X ! Y , the push-forward operator T# : M(x) !
M(Y ) pushes one distribution to another. For discrete measures, push forward operation oper-
ates on support of the measure, updating positions of all points to T (xi), without changing its
probability weight.
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Formally, let ↵ be any discrete probability measure having weight ai at location xi, the push
forward measure is the probability

↵ =
X

i

ai�xi

push forward������! T#↵ =
X

i

ai�T (xi) (1.15)

When ↵ is a continuous random measure in space �, the push forward � = T#↵ 2 M(�) is
a random measure on space �. For any measurable set B ⇢ �, one has

�(B) = ↵({x 2 � : T (x) 2 B}) = ↵(T�1(B)) (1.16)

In the language alignment problem, the language distributions are discrete, because we have
finite words in a dictionary. The Optimal Transport(OT) plan between two discrete distributions
can be seen as a probability coupling � 2 Rn⇥m

+ , where �i,j denote similarity between wx
i and

wy
j . The coupling can be realized by minimizing the loss function:

min
�2⇧(p,q)

< �, C > (1.17)

where C is the cost matrix containing the cost of transporting words in LX to LY , i.e Cij =
dist(wx

i , w
y
j ) for some dist(·, ·); and � is the transport plan in the polytype �(p, q) = {� 2

Rn⇥m
+ |�1n = p,�T1n = q}

The entry at row i and column j in the optimal OT transport plan minimizing 1.17 can be
seen as the probability word wx

i map to wy
j . The method is simple, efficient, and theoretically

motivated. The advantage of using Wasserstein distance is that optimal transport gives a natural
geometry for probability measures supported on geometric space. When two words are close to
each other, we put more weight on them, mapping to each other to minimize the loss. Solving the
language alignment problem also benefit from the recent advance in optimal transport distance
computation: smooth the OT problem with a negative entropy, one can compute the optimum
efficiently with the Sinkhorn algorithm (Cuturi, 2013).

1.3.3 State-of-the-art

Alternatively optimizing over each variable gives a moderate result at the expense of intensive
computation.

The fundamental reason behind the need for iterative minimization is that classic OT requires
a distance between vectors from two different domains. Such a metric isn’t always possible
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when two spaces have different dimensions. However, the rise of Gromov-Wasserstein distance
gives hope for us to bypass the fuss of computing such alignment before computing translations.
The difference between Wasserstein distance and Gromov-Wasserstein distance is that classic
Wasserstein distance requires a distance between vectors across two domains; Whereas Gromov-
Wasserstein distance operates on distances between pairs of points calculated within each domain
and measures how these distances compare to those in the other domain.

Recently applied to the problem of cross-lingual word embedding alignment, Alvarez-Melis
and Jaakkola (2018) have shown that pure Gromov-Wasserstein approach leads to high-quality
solutions in practice (Vayer et al., 2018). It is currently the state-of-the-art method for the bilin-
gual alignment problem.

On each language, define a loss function on pairs of words: L : R ⇥ R ! R. Distance
between all pairs of words gives the within-domain similarity matrix C where Cij = c(wi, wj).
In two different languages, calculating within-domain similarity matrices and frequency vector
for each language and get (C, p) and (C 0, q).

Expressing the discrepancy between distances c(x(i), x(k)) and c0(y(j), y(l)) as a 4-th order
tensor L 2 Rn⇥n⇥m⇥m, where Xijkl = L(Cik, C 0

jl)

The Gromov-Wasserstein problem is defined as

GW (C,C 0, p, q) = min
�2⇧(p,q)

EC,C0(T ) (1.18)

where
EC,C0(T ) =< L(C,C 0)⌦ T, T >=

X

i,j,k,l

L(Ci,k, C
0

j,l)�ij�kl (1.19)

The transportation coupling �ij denote the likelihood two words are translations of each
other. Only when both (wx

i , wy
j ) and (wx

k , wy
l ) are translation pairs, will we add Xijkl into the

total loss in 1.19.

The problem is substantially harder than the original optimal transport problem 1.14, since
the second-order equation is non-linear and non-convex. If one were to solve the problem naively
with first-order methods, the complexity of solving is O(N2

1N
2
2 )

With some suitable choice of the distance metric L, Peyre has shown that solving 1.18 with
projected gradient descent yields an algorithm with O(N2

1N2 +N1N2
2 ) cost (Peyré et al., 2016):

Theorem 1.3.1 (Peyré et al., 2016) If the loss can be expressed as

L(a, b) = f1(a) + f2(b)� h1(a)h2(b) (1.20)
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for functions (f1, f2, h1, h2), then for any � 2 ⇧(p, q),

L(C,C 0)⌦ T = cC,C0 � h1(C)�h2(C
0)T (1.21)

where cC,C0 = f1(C)p1Tm + 1nqTf2(C 0)T

There are two special cases the author gave explicit decomposition (f1, f2, h1, h2) for: For
the case L = L2, 1.3.1 for f1(a) = a2, f2(b) = b2, h1(a) = a and h2(b) = 2b. And for the KL
loss satisfy 1.3.1 for f1(a) = alog(a)� a, f2(b) = b, h1(a) = a and h2(b) = log(b).

Consider the entropic approximation of GW formulation 1.3.1

GW✏(C,C
0, p, q) = min

�2⇧(p,q)
EC,C0(�)� ✏H(T ) (1.22)

After adding an entropic constraint, we can use the projected gradient descent to solve the
non-convex optimization problem.

Iterations for this algorithm is given by T  ProjKL
Cp,q

(T � e�⌧(rEC,C(T )�✏rH(T ))) with step
size ⌧ , and KL projectior for any matrix K defined by ProjKL

Cp,q
(K) = argminT 02Cp,q KL(T 0|K).

When we choose step size ⌧ = 1/✏, the iteration becomes T  ⌧(L(C,C 0) ⌦ �, p, q). So we
can rewrite the iteration to be a fix-point iteration in which each update of T involves a Sinkhorn
projection.

The Gromov-Wasserstein approach directly compares the distances between pairs of words
calculated in their own language spaces. It is a simple, one-step optimization requires none
supervision. However, the algorithm is only suitable to small-to-medium size vocabulary, since
optimization will become prohibitive for large size problems.

To scale up the algorithm for larger size problems, Melis proposes to use the GW approach to
map a small subset of the vocabulary and learn the orthogonal mapping of language spaces with
Procrustes Matching. Then use the iterative two-step optimization procedure similar to Conneau
et al. (2017).

1.4 Multilingual Alignment

In Section 1.2, we pointed out the general direction for aligning lexicons from two different
languages. Afterwards, in section 1.3, we gave a walk-through of different methods to do the
bilingual alignment in unsupervised fashion. In this section, we are going to introduce our main
problem: how to align multiple languages in an unsupervised way.
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To setup the stage, let {Li}mi=1 be m languages, each of which is represented by a vocabulary
Vi consisting of ni respective words.

Following Mikolov et al. (2013a) we assume a monolingual word embedding Xi = [xi,1, · · · ,xi,ni ]
T 2

Rni⇥di for each language Li has been trained independently on its own data. We are interested
in finding all pairwise mappings Ti!k : Rdi ! Rdk that translate a word xi,ji in language Li

to a corresponding word xk,jk = Ti!k(xi,ji) in language Lk. In the following, for the ease of
notation, we assume without loss of generality that ni ⌘ n and di ⌘ d. Note that we do not
have access to any parallel data, i.e., we are in the much more challenging unsupervised learning
regime.

Definition 4 (Multilingual Alignment) Given m input languages, {Li}mi=1, each of which is
represented by a vocabulary Vi consisting of ni respective words. With pre-trained word em-
beddings, we have monolingual word embedding Xi = [xi,1, · · · ,xi,ni ]

T 2 Rni⇥di for each
language Li. Our goal is to learn an alignment or mapping for all languages Ti!k : Rdi ! Rdk .

A simple way to generalize bilingual methods into the multilingual case is by choosing one
language as a pivot language and infer translations for language pairs by transiting through the
pivot language (Smith et al., 2017). Assuming English is the pivot language, we only need to
find language translation pairs involving English. In other words, finding permutation matrices
{Pi}mi=2 aligning word vectors and orthogonal matrices {Qi}mi=2 mapping language Li into the
language space of English. The objective function to simultaneously aligning all languages to
English looks like:

min
Qi2Od,Pi2Pn

X

i

l(XiQi, PiX0) (1.23)

This approach is a simple extension for current bilingual alignment methods. However, the
disadvantage is that the accuracy of indirect word translations between pairs of languages that do
not include the pivot is not guaranteed. Using English as a pivot language degenerate the quality
of indirect word translation obtained.

One possible reason for degrade for translation quality might be incoherence in language
mappings. Nakashole and Flauger (2017) showed that constraining coherent word alignments
between triplets of nearby languages improves the quality of induced bilingual lexicons. Lot
of researchers took the approach of aligning all languages into a coherence space and train lan-
guages jointly (Taitelbaum et al., 2019b; Chen and Cardie, 2018; Alaux et al., 2019).

Taitelbaum et al. (2019b) were one of the researchers motivated by the fact that borrowing
information from other languages during the training process will improve bilingual translation
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tasks. They extended Procrustes Matching to the multilingual case learning all mappings jointly.
Associating each language Li with an orthogonal matrix Qi, we transform all languages into a
shared potential space, which might be different from all language spaces.

In the bilingual case, given two language word embedding matrices X and Y , the Procrustes
Matching problem try to minimize on the loss:

S(Q) = min
Q
kXQ� Y k22 = min

Q

nX

t=1

kQxt � ytk2 (1.24)

where xt is the word embedding vector representing the tth word in language LX .

In the multilingual case, Taitelbaum et al. (2019b) proposed an extension of Procrustes
Matching: Assuming we have paralleled data (which might be results of last iteration train-
ing) across all languages. Let nij be the size of dictionary for language Li and language Lj . And
let (pij,t, pji,t)

nij

t=1 be translation pairs for language i and language j language.

Minimizing the following mean-square error, we can find orthogonal matrices Qi mapping
corresponding words from different languages into the shared vector space 1:

S(Q1, · · · , Qk) =
X

i<j

nijX

t=1

kQipij,t �Qjpji,tk2 (1.25)

One thing to notice is that there’s no closed form for equation 1.25. In their paper, Taitelbaum
et al. (2019b) proposed an efficient algorithm to optimize the cost. They decouple all orthogonal
matrices by computing the representation of pji,t in the underlying common space: yj,t = Tjpji,t.
After the decoupling, one can optimize the score 1.26 with respect to each mapping matrix Qi.

Rewrite the objective score in 1.25 to be a loss function depending on one variable Qi:

S(Qi) =
X

j 6=i

nijX

t=1

kQipij,t � yj,tk2 + const (1.26)

where yj,t = Qjpji,t is the representation of pji,t in the underlying space, calculated by

yt =
X

j 6=i

Qjpji,tp
T
ij,t (1.27)

Equation 1.26 is in the form of Orthogonal Procrustes Problem again, so Qi = UV T where
U⌃V T is the SVD of

1The notation (pij,t, pji,t) means the tth corresponding word in the dictionary in the i and j language
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Mi =
X

j 6=i

X

t

Qjpji,tp
T
ij,t =

X

j 6=i

Qj

X

t

pji,tp
T
ij,t

| {z }
precompute with Cij=CT

ji=
P

t pji,tp
T
ij,t

(1.28)

Putting all the above together, Taitelbaum et al. (2019b) proposed the Multi Pairwise Pro-
crustes Analysis (MPPA) algorithm. With the algorithm, the total loss for 1.25 decreases mono-
tonically and converges to a local minimum point.

The multilingual alignment problem has drawn more and more attention latesly. Besides
Smith et al. (2017) and Taitelbaum et al. (2019b), Chen and Cardie (2018) also tried to extend
the work of Conneau et al. (2017) into multilingual case using adversarial algorithms.

Our work is largely motivated by the current state-of-the-art framework for unsupervised
multilingual alignment proposed by Alaux et al. (2019), which we review below first. Along the
way we point out some crucial observations that motivated our further development.

For each language Li, Alaux et al. (2019) associate it with space alignment matrix Qi aligning
languages to the shared space, and language alignment matrices to all other languages Pj, 8j 6= i.

The objective function to achieve such target is:

min
Qi2Od,Pij2Pn

X

ij

↵ijl(XiQi, PijXjQj) (1.29)

where Qi 2 Od is a d⇥ d orthogonal matrix and Pik 2 Pn is an n⇥ n permutation matrix.

Notice that one way to enforce compositionality is by adding constraint on mapping matrices
to enforce coherence, i.e: Pij = Pik ⇤ Pkj, 8k 6= i and k 6= j. However, this will lead to an esti-
mation of O(N2) mappings. Instead, the framework leverage the fact that all vector are mapped
to a common space, and that enforced good alignments within the space. So Alaux et al. (2019)
introduced the weight ↵ij > 0 represents the importance of alignment quality between language i
and language j. Those weights can be chosen to reflect prior knowledge about relations between
languages.

Since Qi is orthogonal, this approach ensures transitivity among word embeddings: Qi maps
the i-th word embedding space Xi into a common space X , and conversely Q�1

i = QT
i maps

X back to Xi. Thus, QiQk
T maps Xi to Xk, and if we transit through an intermediate word

embedding space Xt, we still have the desired transitive property QiQT
t ·QtQT

k = QiQT
k .

One caveat is that the approach took by Smith et al. (2017) falls into the framework when the
loss function is Euclidean loss, and potential shared space is the language space of English.
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When using the Euclidean distance as loss function, the formulation 1.29 becomes:

min
Qi2Od,Pi2Pn

X

i,k

kPiXiQi � PkXkQkk2 (1.30)

which is easily seen to be equivalent to

min
Qi2Od,Pi2Pn

min
X2Rn⇥d

X

i

kPiXiQi �Xk2, (1.31)

where X clearly admits the closed-form solution:

X = X̄ :=
1

m

mX

i=1

PiXiQi. (1.32)

Thus, had we known the “mean” language X̄ beforehand, the joint alignment approach of Alaux
et al. (2019) would reduce to a separate alignment of each language Xi to the ’mean’ language
X̄ that serves as the pivot. An efficient optimization strategy would then consist of alternating
between separate alignment (i.e., computing Qi and Pi) and computing the pivot language (i.e.,
(1.32)).

The discovery connects with the approach took by Taitelbaum et al. (2019a), whom designed
a better representation for words using auxiliary translation information from other languages.
After aligning all languages to a potential shared space by associating each language Li with
an orthogonal matrix Qi, and an alignment matrix Pi, Taitelbaum et al. (2019a) introduced the
concept of an auxiliary translation.

Standard ways to imply assignment matrices are introduced in Section 1.3.2. At the infer-
ence step, we pick the word vector with maximum similarity score to the input word vector at
the inference step. Common choices for similarity functions are: sim(x, y) = cos(Qix,Qjy),
Inverted soft max (ISF) (Smith et al., 2017), and Cross-domain Similarity Local Scaling (CSLS)
(Conneau et al., 2017).

Current word translation methods take into account only the source and target languages.
Taitelbaum et al. (2019a) designed a better representation for the source word in the shared space
to imply translations in other languages. For each word x 2 Li to be translated to language
Lj ,Taitelbaum et al. (2019a) defined its auxiliary translation using information from all other
languages but Lj:

z =
1

k � 1

X

m 6=j

Qmym (1.33)
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where
ym = arg max

y2Lm

CSLS(Qix,Qmy) (1.34)

The closest word to x in language Lm is ym, so we use ym as the auxiliary information for word
x in Lm. The auxiliary translation in Equation 1.33 coincide with our “mean” language built in
Equation 1.32.

Besides a simple average, Taitelbaum et al. (2019a) also introduce several other ways to build
auxiliary translations:

NT (Nearest Translation) Averaging the source word with auxiliary translation in all lan-
guages but Lj , we build a better representation for x. To infer its translation in language j, we
find the closest word in Lj:

ŷ = argmax
y2Vj

CSLS(z,Qjy) (1.35)

The NT approach directly uses the representation in 1.33 to find a nearest neighbour target space
Lj .

The average across all auxiliary language may hurt the performance of some language pairs.
Generally, translations to auxiliary languages can yield words that are far from the source word
in the shared space, and therefore, lead to incorrect results.

CNT (Conditional Nearest Translation A simple way to mitigate the problem is by putting
an ”if” statement into the average. If the auxiliary information in one language is too far away
from x (the original source word), then we do not include the auxiliary information in that
language into the average for 1.33. In other words, a language Lm is selected as auxiliary
language only if the translated word ym is closer than target word yj to the source word x:
CSLS(Qix,Qmym) > CSLS(Qix,Qjyj)

CAT (Conditional All Translations Another way to mitigate the problem is by putting a
weight on auxiliary information. The weight Taitelbaum proposed is 1

2 on x, and even weight on
auxiliary information. Let S = {mkCSLS(Qix,Qmym) > CSLS(Qjyj)8m 6= i and m 6= j}

z  1

2
Qix+

1

2|S|
X

m2S

Qmym (1.36)

These are the three different ways to build the augmented representation for the source word.
Among them, CAT especially improves word translations, showing 1.7% improvement for all
translation pairs on average (Taitelbaum et al., 2019a).
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As we reviewed in this section, the most advanced multilingual algorithms we reviewed are
projecting all languages into a common space and build a “mean” languages to help inference.

However, there are some problems with the current formulation in Equation 1.29: First, a
permutation assignment is a 1-1 correspondence that completely ignores polymorphism in natu-
ral languages, that is, a word in language Li can correspond to multiple words in language Lk. To
address this, we propose to relax the permutation Pi into a coupling matrix that allows splitting
a word into different words. Second, the pivot language in (1.32), being a simple arithmetic av-
erage, may be statistically very different from any of the m given languages. Besides, intuitively
it is perhaps more reasonable to allow the pivot language to have a larger dictionary so that it
can capture all linguistic regularities in all m languages. To address this, we propose to use the
Wasserstein barycenter as the pivot language.
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Chapter 2

Barycenter

In Chapter 1, we defined the problem we are trying to solve in this thesis: the Unsupervised
Multilingual Alignment problem. We analyzed the shortcome of current methods and proposed
to use the Wasserstein barycenter as a pivot. We are going to propose our algorithms in Chapter
3. So in this chapter, we are going to explain the preliminaries: definition of the barycenter and
efficient algorithms to compute barycenters.

2.1 Barycenter Definition and Properties

Barycenter has been a fascinating topic in many areas: In physics, it denotes the center of mass;
In geometry, it is a synonym for centroid; In astrophysics, barycenter denotes the center of mass
of two or more bodies orbits each other. In mathematics, barycenter for input distributions on
given weights was defined by Agueh and Carlier. It naturally generalizes McCann’s interpolation
in the case of more than two distributions (Agueh and Carlier, 2011).

Definition 5 (Wasserstein Barycenter) For probability measures ⌫1, · · · , ⌫n defined on space
X , and positive barycentric coordinates �1, · · · ,�n summing to 1, we define the barycenter of
⌫1, · · · , ⌫n to be the solution of the minimization problem

inf
µ

nX

i=1

�iW
2
2 (⌫i, µ) (2.1)

where W 2
2 (⌫i, µ) denote the two-Wasserstein distance defined in 1.14 when p = 2.
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The Wasserstein Barycenter can be seen as a Fréchet mean of distributions over the Wasser-
stein metric. So it generalizes the problem of computing the mean in unsupervised learning. One
can see the k-means problem as a variational barycenter problem with constraint: when the input
probability measures ⌫1, · · · , ⌫n are supported on a discrete finite subset of X = Rd, and the
cost is squared Euclidean distance, constraining µ to be a discrete measure with k support in the
barycenter problem 2.1 is equivalent to the usual k-means problem.

Besides proposing the definition of barycenter, Agueh and Carlier also studied properties
of barycenters, established existence and uniqueness condition for solutions to 2.1. One thing
that makes barycenter particularly interesting is that it is related to the quadratic multi-marginal
optimal transport problem considered by Gangbo and Świech (1998). This means if we can solve
the multi-marginal problem, we also solve the barycenter problem.

The multimarginal optimal transport problem is defined as following:

Definition 6 (Multi-Marginal Optimal Transport Problem) For every x = (x1, · · · , xp) 2
(Rd)p, we define

T (x) =
pX

i=1

�ixi (2.2)

The multimarginal optimal transport problem seeks a probability measure on (Rd)p having
⌫1, · · · , ⌫p as marginals, minimizing

inf

⇢Z

(Rd)p
(

pX

i=1

�i

2
|xi � T (x)|2)d�(x1, · · · , xp), � 2 ⇧(⌫1, · · · , ⌫p)

�
(2.3)

The multi-marginal OT problem has a unique solution when all distributions are continu-
ous. The solution to multi-marginal OT problem 2.3 is the Gangbo-Świȩch map constructed
by Gangbo and Świȩch (Gangbo and Świech, 1998). The map � is constructed as following:
� = (T 1

1 , · · · , T 1
p )#⌫1 with T j

i = Ou⇤

i � Ouj being Gangbo-Świȩch maps between reference
measures vj and vi where ui are strictly convex potentials defined by

ui(x) =
�

2
|x|2 + gi(x)

�i
(2.4)

and (g1, · · · , gp) are convex potentials solves the dual of 2.3

inf

⇢ pX

i=1

Z

Rd

gid⌫i,
pX

i=1

gi(xi) �
X

1i<jp

�i�jxixj, 8x 2 (Rd)p
�

(2.5)

The relationship between multimarginal OT problem 6 and Barycenter problem 5 is capsuled
in the following theorem by Agueh and Carlier (Agueh and Carlier, 2011):
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Theorem 2.1.1 The multimarginal optimal transport problem reduces to the barycenter prob-
lem. The solution of 2.1 is given by µ = T#� where T is defined by 2.2 and � is the solution of
2.3.

From the relationship to multi-marginal optimal transport problem, one can induce the fol-
lowing characteristic of barycenter:

v =
� pX

i=1

�iT
1
i

�
#⌫1 =

� pX

i=1

�iT
j
i

�
#⌫j (2.6)

However, although theorem 2.1.1 is a beautiful theorem, it is not helpful when it comes to
solving the barycenter. One of the conditions for the uniqueness of the solution to 2.3 is that all
input distributions have to be continuous. However, in almost all applications, input distributions
are observation from real life, so naturally, they are discrete distributions. The Gangbo-Świȩch
map is only a theoretical formulation for the joint map. We lose the uniqueness property for the
solution to the multi-marginal mapping problem.

2.2 Computation of barycenter

In theory, the existence of barycenter is shown by constructing Gangbo-Swiech map and apply
2.1.1 to derive the barycenter. However, in practice, such maps are computationally infeasible
to compute. So to use barycenter for various tasks in computer vision, we need more practical
ways to compute the barycenter.

In simple cases, when the optimal transport marginals have closed-form distribution, for
example, elliptically contoured distributions, one can directly work with distribution and al-
gebraically find the representation of barycenter. Those cases happen when we can cast the
Wasserstein distance as a simpler distance between suitable representations of these distribu-
tions. However, in most applications, instead of a continuous model with closed-form distance,
one need to resort to a careful discretization. There are two categories for discretization meth-
ods: Eulerian and Lagrangian (Peyré, Cuturi, et al., 2019). The difference between Eulerian and
Lagrangian is that in Lagrangian representation 1

n

P
i �xi , the distribution has xi’s as its support

locations; whereas in Eulerian representation
P

i ai�xi , each xi represent a location in the whole
space, and ai is the weight on it. For the language model, the Lagrangian discretization method
is more suitable, since all word embedding vectors are lying in high dimensional spaces. So we
want to compute the barycenter with weights {ai}ni=1 on support locations xi’s. However, in the
chapter, we are going to discuss more general cases to compute the barycenter. So in section 2.4,
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we discuss method to solve for the Lagrangian case. In 2.3, we solve the problem in Eulerian
case.

2.3 Fix support barycenter

When measures are supported on low dimensional space or intrinsically discrete problems, one
takes the Eulerian discretization. When applied to problems where observations can take con-
tinuous values in high-dimensional spaces, a Lagrangian perspective is usually a more suitable
choice. The difference between the two approaches is that Eulerian suppose all distributions ↵ in
optimal transport problem to be supported on fixed n locations {�xi}ni=1. The parameterized mea-
sure ↵ is entirely represented through the weight vector a : ✓ ! a(✓) 2 ⌃n; whereas Lagrangian
allows free support locations {�x(✓)i}ni=1.

In this section, we assume input distributions are Eulerian discretized. In the following sec-
tion, we discuss the Lagrangian case.

Given probability measures ⌫1 = (Cn, p1), · · · , ⌫n = (Cn, pn) defined on space X , and
barycenter coordinates �1, · · · ,�n summing to 1, the fix-support barycenter problem try to find
the best weight vectors a = {}mi=1 for fixed support locations X = {xi}mi=1.

inf
a

X

i=1

�iW
2
2 (⌫i, X) (2.7)

One thing to notice is that the problem can be rewritten as a linear equation and use stan-
dard optimization methods to optimize it. This was the solution Cuturi and Doucet exploited in
2013 (Cuturi and Doucet, 2014). Benamou et al. also explored the approach of using iterative
Bregman projection to derive an iterative algorithm for fast computation of the barycenter (Jean-
David Benamou and Guillaume Carlier and Marco Cuturi and Luca Nenna and Gabriel Peyré,
2015). Besides devising algorithms that converge to the true barycenter, researchers also try to
approximate the barycenter with other definitions, such as sliced Wasserstein barycenter (Rabin
et al., 2011), convolutional Wasserstein barycenter (Solomon et al., 2015), etc. The following
subsections will discuss those different approaches in detail.

2.3.1 Sliced-Wasserstein Distance

The Wasserstein distance W (µ, ⌫) between two discrete measures µ = {xi}i2I ⇢ Rd and ⌫ =
{yi}i2I ⇢ Rd of the same size |I| = N can be expressed as
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W (⌫, µ)2 = min
P2PN

X

i,j2I2

Pi,jkxi � yjk2 (2.8)

In general, the Wasserstein distance 2.8 between two discrete measures can be solved in
O(N2.5 log(N) operations with standard linear programming algorithms. This could be compu-
tationally too demanding for tasks like image processing, where N could be quite large.

However, the barycenter problem is much easier to solve if all inputs are in one dimension.
By sorting input points to be in ascending order and take ordered pairs as coupling, we can obtain
an optimal coupling in O(N log(N)) operations.

Let �X and �Y be permutations that sort points in X in ascending sequence:

80  i < N � 1, X�X(i+1) andY⌃Y (i)  Y⌃Y (i+1) (2.9)

Then the optimal permutation �⇤ that minimizes 2.8 is

�⇤ = �Y � ��1
X (2.10)

The bottleneck of constructing such an algorithm lies in sorting points in X and Y so that the
assignment could be computed in O(N log(N)).

Rabin et al. (2011) took advantage of the computation in 1D and proposed to project the high
dimensional input onto a 1-dimensional space. Their main idea is to project Wasserstein distance
between distributions in high dimensional space to one dimension subspace, and approximate
the Wasserstein distance with a series of 1D optimal assignments.

They define an approximation of 2.8: sliced Wasserstein distance W̃ (µ, ⌫)

W̃ (µ, ⌫)2 =

Z

✓2⌦

W (µ✓, ⌫✓)
2d✓

where µ✓ = {< µi, ✓ >} ⇢ R and ⌦ = {✓ 2 Rd/|✓| = 1}
(2.11)

Generalizing this to the definition of barycenter, Rabin et al. (2011) stated that one way to
approximate the barycenter is through the sliced Wasserstein barycenter which minimizes the
following loss function Ẽ(X):

Ẽ(X) = inf
pX

i=1

�iW̃ (⌫i, µ)
2 =

Z

✓2⌦

pX

i=1

�iW (⌫i✓ , µ✓)
2d✓ (2.12)
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Computing the descent direction with the whole set of directions ✓ 2 ⌦ is too expensive, so
Rabin proposed a stochastic descent algorithm.

The descent update reads:

µ(k+1) = µ(k) � ⌘kH
+
k

X

✓2⌦k

OẼ✓(µ
(k)) (2.13)

where the hessian matrix read
H+

k =
X

✓2⌦k

✓✓T (2.14)

OẼ✓(X
(k))i = HkX

(k)
i ⇠

X

✓2⌦k

pX

i=1

�i < ⌫j
�✓j(i)

, ✓ > ✓ (2.15)

This algorithm is effective in lower dimensions. However, it may not be able to generalize to
non-Euclidean spaces or work for d � 4.

Recently, Wasserstein distance has drawn more attention, as it has many applications on
image processing, robust machine learning, etc. All those applications involve high dimensional
inputs, so one needs more robust algorithms. In the next subsections, we will discuss other
methods to approximate barycenter.

2.3.2 Bregman projection for Wasserstein distance

Another relaxation for problem 2.1 is to add an entropy regularizer (Jean-David Benamou and
Guillaume Carlier and Marco Cuturi and Luca Nenna and Gabriel Peyré, 2015; Cuturi and
Doucet, 2014): The entropy regulated version of Wasserstein 2 distance between µ0 and µ1:

W 2
2,✏(µ0, µ1) = inf

⇡2⇧

"Z Z

M⇥M

d(x, y)2⇡(x, y)dxdy � ✏H(⇡)

#
(2.16)

with entropy regularizer

H(⇡) = �
Z Z

M⇥M

⇡(x, y) ln ⇡(x, y)dxdy (2.17)

The Kullback-Leibler (KL) divergence between absolutely continuous meansure ⇡ 2 Prob(M⇥
M) and positive function K on M ⇥M as

KL(⇡|K) =

Z Z

M⇥M

⇡(x, y)

"
ln

⇡(x, y)

K(x, y)
� 1

#
dxdy (2.18)
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Associating distance function d(·, ·) to a kernel of the form K✏

K✏(x, y) = e�d(x,y)2/✏ (2.19)

Thus,
d(x, y)2 = �✏ lnK✏(x, y) (2.20)

Therefore,

W 2
2,✏(µ0, µ1) = inf

⇡2⇧

"Z Z

M⇥M

d(x, y)2⇡(x, y)dxdy � ✏H(⇡)

#

= inf
⇡2⇧

"Z Z

M⇥M

�✏ lnK✏(x, y)⇡(x, y)dxdy � ✏H(⇡)

#

= inf
⇡2⇧

"Z Z

M⇥M

✏(� lnK✏(x, y) + ln ⇡(x, y))⇡(x, y)dxdy

#

= inf
⇡2⇧

"Z Z

M⇥M

✏

"
ln

⇡(x, y)

K✏(x, y)
� 1

#
⇡(x, y)dxdy + ✏

#

= ✏

"
1 + min

⇡2⇧
KL(⇡|K✏)

#

(2.21)

After the algebraic transformation, we notice that computing the entropy-regularized Wasser-
stein distance is equivalent to computing the smallest KL divergence from a coupling ⇡ 2 ⇧ to
the kernel K✏. This gives a new interpretation for regularized transportation problem: the optimal
transport problem ⇡ is a projection of the distance-based kernel K✏ onto ⇧, enforcing marginals
while minimizing the loss of information quantified by KL divergence. The minimization is
convex; it shed light on a new class of efficient methods to approximate solutions to several gen-
eralized optimal transport problem. Jean-David Benamou and Guillaume Carlier and Marco Cu-
turi and Luca Nenna and Gabriel Peyré (2015) solved problems in the form of min�2C KL(�|⌘)
using iterative Bregman projection and Dykstra algorithms.

For problems of the form
min
�2C

KL(�|⇠) (2.22)

where ⇠ is a given point in RN⇥N
+ and C is a non-empty intersection of closed convex sets

C = \Ll=1Cl (2.23)
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• If convex set Cl are affine subspaces, it is possible to solve 2.22 with iterative Bregman
Projections.

Starting from �(0) = ⇠, one computes

8n > 0, �(n) = PKL
Cn

(�(n�1)) (2.24)

(Bregman, 1967) shows that �(n) converges to the unique solution of 2.22

�(n) ! PKL
C (⇠) as n! inf (2.25)

• In the case where Cl are not affine, Dykstra’s algorithm, extended to the KL setting, will
converge to the projection.

Initializing
�(0) = ⇠ and q(0) = q(�1) = · · · = q(�L+1) = 1 (2.26)

The series �(n) ! PKL
C (⇠) as n! inf(Bauschke and Lewis, 2000).

�(0) = PKL
Cn

(�n�1 � qn�L), and q(n) = q(n�L) � �(n�1)

�(n)
(2.27)

Using those two algorithms, Benamou et al. investigated in detail the application of the
two algorithms described above to the barycenter problem (Jean-David Benamou and Guillaume
Carlier and Marco Cuturi and Luca Nenna and Gabriel Peyré, 2015).

Discrete regularized transport W✏(p, q) = min⇡2⇧(p,q) < C, ⇡ > �✏H(⇡) can be rewritten as
a projection

W✏(µ0, µ1) = ✏ min
⇡2⇧(µ0,µ1)

KL(⇡|⇠) where ⇠ = e�
C
✏ (2.28)

The constraint � 2 ⇧(p, q) can be rewrite as two affine subsets of RN⇥N
+ :

C1 = {� 2 RN⇥N
+ ; �1 = p} and C2 = {� 2 RN⇥N

+ ; } (2.29)

Applying Bregman projection on discrete regularized transport problem

PKL
C1

(�̄) = diag(
p

�̄1
)�̄ and PKL

C2
(�̄) = �̄diag(

q

�̄T1
) (2.30)

Writing the Bregman projection as a fix point iteration algorithm, it is exactly the same algorithm
as the Sinkhorn algorithm (Cuturi, 2013).

�(n) = diag(u(n))⇠diag(v(n)) (2.31)
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with
u(n) =

p

⇠v(n)
and v(n+1) =

q

⇠Tu(n)
(2.32)

For barycenter problem

inf
µ

(
pX

i=1

�iW✏(⌫i, µ)

)
(2.33)

it can be rewrite as the KL projection

min

(
KL�(�|⇠) =

pX

i=1

�iKL(�i|⇠i); � 2 C1 \ C2

)

where 8k, ⇠k = ⇠ = e�C/✏

(2.34)

with constraint sets defined by

C1 = {� = (�k)k 2 (⌃N)
K ; 8k, �T

k 1 = ⌫i}
and C2 = {� = (�k)k 2 (⌃N)

K ; 9µ 2 RN , 8k, �k1 = µ}
(2.35)

The projection �̄ = (�k)Kk=1 = PKL�
C2

(�̄) satisfies

8k, �k = diag
⇣ p

�̄k1

⌘
�̄k where p = ⇧K

r=1(�̄r1)
�r (2.36)

From this, we derive parallel fix point iteration �(n) = (�(n)
k )k which satisfy, for each k

�(n)
k = diag(u(n)

k )⇠diag(v(n)k ) (2.37)

computing with the iterations

u(n)
k =

p(n)

⌘v(n)k

and v(n+1)
k =

pk

⌘Tu(n)
k

(2.38)

where p(n) is the current estimate of the barycenter, computed as

p(n) = ⇧p
i=1

 
u(n)
k � (⇠v(n)k )

!�k

(2.39)
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2.3.3 Convolutional Wasserstein Distance

If one were to choose the heat kernel Ht(x, y) to associate with d(·, ·), and compute through
iterative kernel convolutions, one would get a new approximation of the Wasserstein distance
called convolutional Wasserstein distance (Solomon et al., 2015).

The heat kernel Ht(x, y) determines diffusion between x, y 2 M after time t. It solves the
heat equation @tft = 4ft with initial condition f0 through the map

ft(x) =

Z

M

f0(y)Ht(x, y)dy (2.40)

Based on Varadhan’s formulation, the distance d(x, y) can be recovered by transferring heat
from x to y over a short time interval:

d(x, y)2 = limt!0[�2t lnHt(x, y)] (2.41)

Setting t = ✏/2, we can approximate the kernel K✏ in 2.19 as

K�(x, y) ⇠ H✏/2(x, y) (2.42)

This indicates W2,H2
✏/2

is a diffusion-based approximation of W 2
2,✏

W 2
2,H✏/2

(µ0, µ1) = ✏
h
1 + min

⇡2⇧
KL(⇡|H✏/2)

i
(2.43)

Solving with Bregman projection, proposition 2 and 3 gives us a way to calculate the projec-
tion onto constraint sets (Solomon et al., 2015).

2.4 Free Support Barycenter

By observing the formulation of barycenter 2.1, one can see that computing barycenter requires
computing a series of Wasserstein distance between different distributions.

It is natural to formulate Wasserstein distance in the form of a linear program: Given that
µ =

Pn
i=1 ai�xi , ⌫ =

Pm
i=1 bi�yi and MXY = [D(xi, yj)p]ij 2 Rn⇥m, the Wasserstein distance

between µ and ⌫ can be expressed as the optimum of a parametric linear program p defined below

p(a, b,MXY ) = min
T2U(a,b)

< T,MXY > (2.44)
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Suppose the barycenter is a probability measure with weights {a}ni=1 at support locations
{xi}ni=1. The barycenter formulation can be rewritten as

f(a,X) =
NX

i=1

�i ⇤ p(a, bi,MXYi) (2.45)

A standard optimization approach to solve such a non-convex linear equation is to fix one
parameter and do minimization on the other one alternatively (Cuturi and Doucet, 2014).

Fixing supports, finding weights for 2.45 becomes the problem mina f(a,X). One of the
main results from sensitivity analysis of linear program tells us any optimum dual vector ↵⇤ of
the dual form is a subgradient of p(a, b,M) with respect to ↵.

The Kantorovich problem is a constrained convex minimization problem, so there exists a
natural dual problem for it. The Kantorovich problem admits the dual:

d(a, b,M) = max
(↵,�)2CM

↵Ta+ �T b where CM = {(↵, �) 2 Rn+m|↵i + �j  mij} (2.46)

Following sensitivity analysis in LP’s (Bertsimas and Tsitsiklis, 1997, Eq.7.10), when dual
optimal solution coincides with primal optimal solution d(a, b,M) = p(a, b,M). the map a !
p(a, b,M) is a polyhedral convex function, so any optimal dual vector ↵⇤ of d(a, b,M) is a
subgradient of p(a, b,M) with respect to a. Following the projected subgradient ↵ = ⌃N

i=1�i↵⇤

i ,
we minimize f with respect to a.

Now, optimizing over the support locations when fixing weights (i.e., minX f(a,X)) need
some more work:

Let pairwise squared-Euclidean distances between points in these sets x = diag(XTX) and
y = diag(Y TY ). Then we can use a compact matrix way to compute MXY :

MXY = x1Tm + 1ny
T � 2XTY 2 Rn⇥m (2.47)

Then, we can rewrite the Kantorovich problem in compact matrix form:

< T,MXY > =< T, x1Tm + 1ny
T � 2XTY >

= trT Tx1Td + trT T1dy
T � 2 < T,XTY >

= xTa+ yT b� 2 < T,XTY >

(2.48)
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Then the barycenter problem can be formulated as:

min
X

1

N

NX

i=1

min
T2U(a,b)

< T,MXY >

= min
X

1

N

NX

i=1

min
T2U(a,b)

xTa+ yT b� 2 < T,XTY >

disregarding constant terms in y and b

= min
X

1

N

NX

i=1

min
T2U(a,b)

xTa� 2 < T,XTY >

Suppose T ⇤ is the optimal solution for p(a, b,MXY )

=
1

N

NX

i=1

min
T2U(a,b)

|Xdiag(a1/2)� Y T ⇤Tdiag(a�1/2)|2 � |Y T ⇤Tdiag(a�1/2)|2

(2.49)

Minimizing a local quadratic approximation of p at X yield the Newton update X  Y T Tdiag(a�1).
Alternatively, minimize locations X and weights a until convergence, we obtain an approximate
minimizer of f(a,X) and conclude the algorithm Cuturi and Doucet. One could also add an en-
tropy regularizer to both primal and dual to speed up computation using the Sinkhorn algorithm.

Cuturi and Doucet are not the only ones who took the alternating optimization approach
to tackle the problem. Claici and his fellows also adopt a similar method. For fixed weights,
applying a single point iteration algorithm akin to Lloyd’s algorithm; For fixed-point positions,
they estimate gradients and optimize weights using stochastic gradient descent (Claici et al.,
2018).
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Chapter 3

Our Approach

We saw in Chapter 2, the Wasserstein Barycenter provides us with a natural geometry for proba-
bility measures supported on a geometric space. In the language alignment problem, we see the
barycenter of all language distributions as a universal language. In Chapter 1, we pointed out the
problems of existing methods. In this chapter, we are going to proposing a new framework that
improves the quality of translations by guarantee the coherence across all mappings.

We take the probabilistic approach, treating each language Li as a probability distribution
over its word embeddings:

⇡i =
niX

j=1

pj�xi
j

(3.1)

where pj is the probability of occurrence of the j-th word xi
j in language Li (often approximated

by the relative frequency of word xi
j in its training documents).

One way to guarantee coherence in mapping is to learn a joint mapping T : Li, · · · , Lm ! R.
The mapping takes a word in each language and returns the probability that all words align with
each other.

One caveat here is that not all languages are in the same language space, so we can either train
the language space alignment matrix alongside the mapping matrix, or we can use the framework
as a post-procedure for the existing bilingual method. After we have some initialization for the
space alignment matrix, we can train a joint distribution ⇡ for all transformed word embedding
distributions ⇡1, · · · , ⇡m.

Formally, we associate each language Li with a space alignment matrix Qi, transforming
word vectors {wLi

j }nj

j=1 to the common language space. To learn the joint probability map ⇡, we
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Figure 3.1: Each language will associate with a space alignment matrix projecting word vectors
into a common language space. From the potential space, multiplying the word vector with the
transpose of word vector matrix will transforming the word vector back to its language space

minimize the objective:

min
Qi2Od

min
⇡2�(⇡1,··· ,⇡m)

Z

⇡

c(Q1x1, · · · , Qmxm)d⇡(x1, · · · , xm) (3.2)

Equation 3.2 targets finding a joint probabilistic map which realizes the smallest cost trans-
porting all pairs of words. The cost function c(·, · · · , ·) is a cost function measuring the similarity
between words embedding vectors for words inputted. The more similar, the smaller value it re-
turns. For any cost function cost(·, ·) : Li ⇥ Lj ! R, we extend it to multiple inputs in the
manner: c(x1, . . . , xm) =

P
i

P
i 6=j cost(xi, xj). With such formulation, words that are close to

each other will have higher probability in the joint probability map ⇡.

Solving such a joint map is hard. Fixing the joint map, solving for translation alignment
matrices is equivalent to solving 1.25. This gives us hope to optimize 3.2 on joint distribution ⇡.
However, there’s no current algorithm for learning a joint mapping. Without information on the
correlation relationship, such a map is not unique. Not to mention, such a joint probability map
may not even exist in some cases.

Although we are not able to compute a joint map for all languages, we can take an alternative
method: use the barycenter as an encapsulation of all languages, and imply translations through
the barycenter. The concept of a barycenter is closely associated with joint mapping. From the
theorem proposed by Agueh and Carlier (2011), we know that the problem of calculating a joint
mapping reduce to the barycenter problem. One can quickly realize a barycenter for distributions
from the joint distribution for all language distributions.
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Such a barycenter should capture all information a joint probability map captures. Through
the barycenter, the inferred mapping maintains coherence over the entire space. We interpret
the barycenter as a potential ”universal” language representing the true meaning of words in all
word sets. After computing the barycenter, one can infer translations by calculating the mapping
from one language to the barycenter composite with the mapping from barycenter to the other
language. We claim that the barycenter is a better choice as the pivot for language alignment.

3.1 Barycenter Approach

When setting the joint cost c as the total sum of all pairwise costs:

c(x1, . . . , xm) =
X

i,k

kxi � xjk2. (3.3)

Interestingly, with this choice, we can significantly simplify the numerical computation of the
multi-marginal optimal transport.

We reduce the problem into a barycenter problem. Recall the definition of Wasserstein
Barycenter ⌫ of m given language distributions ⇡1, · · · , ⇡m. The barycenter ⌫ minimizes the
following loss function J(⌫):

inf
⌫
J(⌫) =

pX

i=0

�iW
2
2 (⌫, ⇡i) (3.4)

where � � 0 are the weights, and the (squared) Wasserstein distance W 2
2 is given as:

W 2
2 (⇡i, µ) = min

⇧i2�(⇡i,µ)

Z
kx� yk2d⇧i(x, y) (3.5)

The notation �(⇡i, µ) denotes all joint probability distribution (i.e. coupling) ⇧i with (fixed)
marginal distributions ⇡i and µ. As proven by Agueh and Carlier (2011), with the pairwise dis-
tance (3.3), the multi-marginal problem in (3.2) and the barycenter problem in (3.4) are formally
equivalent. Hence, from now on we will focus on the latter since efficient computational algo-
rithms for it exist. We use the push-forward notation (Qi)#⇡i to denote the distribution of Qixi

when xi follows the distribution ⇡i. Thus, we can write our approach succinctly as:

min
µ

min
Qi2Od

mX

i=1

�i ·W 2
2 [(Qi)#⇡i, µ], (3.6)
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where the barycenter µ serves as the pivot language in some common word embedding space.
Unlike the arithmetic average in (1.32), the Wasserstein barycenter can have a much larger sup-
port (dictionary size) than the m given language distributions.

We can again apply the alternating minimization strategy to solving (3.6): fixing all orthog-
onal matrices Qi, we find the Wasserstein barycenter using an existing algorithm of (Cuturi and
Doucet, 2014) or (Claici et al., 2018); fixing the Wasserstein barycenter µ, we solve each orthog-
onal matrix Qi separately:

min
Qi2Od

min
⇧i2�(⇡i,µ)

Z
kQix� yk2d⇧i(x, y) (3.7)

For fixed coupling ⇧i 2 Rn⇥s, where s is the dictionary size for the barycenter µ, the integral
can be simplified as:

X

jl

(⇧i)jlkQix
i
j � ylk2 ⌘ �hXT

i ⇧iY,Qii (3.8)

Thus, using the well-known theorem of Schönemann (1966), Qi is given by the closed-form
solution UiV T

i , where Ui⌃iV T
i = XT

i ⇧iY is the singular value decomposition.

Compare to using English as the pivot, transiting through the barycenter guarantee coherence
over the entire language space. Moreover, it is known that dealing with multiple languages simul-
taneously has been shown to improve performance on some bilingual tasks by using knowledge
learned from other languages. Therefore, this motivates us to devise algorithm 1:

In the following discussion, we use the following notation: Li denote the ith language in-
putted, and it contains two part: 1) word embedding matrix Ci with rows as word embedding
vectors for words in the vocabulary Vi; and 2) word frequency vector pi, each entry denote the
frequency the corresponding entry in Ci appear in its language. The barycenter will be denoted
as C with frequency weights p, and the Optimal transport mapping from the barycenter (C, p) to
the ith language (Ci, pi) will be denoted as Ti.

The current approach (Taitelbaum et al., 2019b) associates an orthogonal matrix Qi with each
language to align all languages to a potential language space. This might be a different space
than any language space. In our implementation, we are choosing the language space of the first
language L1 to be the potential language space to align all languages with. Note that choosing a
language space to be the potential space instead of learning a potential space to map all languages
into does not hurt performance. Since in the setting 1.29, there is an orthogonal constraint on the
space mapping matrices. Therefore, all distances and angles for word pairs are preserved, and
we can choose any language space to map languages into.
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Algorithm 1: barycenter alignment
Input: Language distribution Li = (Xi, pi)mi=1, p
Output: Translation for Lk and Lm

for i = 1; i < m; i = i+ 1 do
// Preprocess word embeddings ;
Xi  Xi �Xi.mean(axis = 0) ;
// Compute intra-distance matrices ;
Ci = cdist(Xi) ;
// Use gromov wasserstein to learn mapping for a small dictionary ;
Pi  GW (C1, Ci, p1, pi) ;
U⌃V T  SV D((PiXi)TX1) ;
Qi  UV T ;
X 0

i = XiQi ;

while not converged do
// Compute the barycenter for realigned languages ;
X, p barycenter ((X 0

1, p1), · · · , (X 0

m, pm)) ;
for i = 1; i < m; i = i+ 1 do

// Compute OT mapping from barycenter to each language ;
Ti = OT (X,X 0

i, p, pi) ;
// Recompute space alignment matrices ;
U⌃V T  SV D((TiXi)TX1) ;
Qi  UV T ;
// Realign word embedding matrices;
X 0

i  XiQi ;

Return T T
k ⇤ Tm

In algorithm 1, we take m language distributions as input {Li = (Ci, pi)}mi=1. For word
frequency pi, we can either use the Zipf law to predict word frequency (Xavier, 1999) or use the
uniform distribution for simplicity.

The main part of the algorithm 1 does iterative optimization on barycenter and language
alignment matrix {Qi}mi=1. To train barycenter, we alternatively optimizing on the distribution
support locations and the weights on each support point. For the support location, we used a
variant of the Lloyd’s algorithm; Calculating the optimal weights on the support locations is too
costly, so we used the Bregman iteration to compute an approximation of the weights. During
Bregman iteration, we save the mapping from the barycenter to each of the language word set
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{Ti}mi=1. Since the language distributions are discrete distribution, the optimal transport plan
between the barycenter C and language matrix Ci is a coupling matrix with one marginal as
the weights for C, and the other marginal as weights for Ci. The OT plan from the language
Ci to barycenter C is T T

i . To optimize on the space alignment matrix, we can use Procrustes
matching to update all language alignment matrix {Qi}mi=1, with existing language mapping T T

1 Ti

for language L1 and Li.

To fasten the computation, we took a similar approach as (Alaux et al., 2019), initialize with
the Gromov-Wasserstein approach applied to the first 5k vectors and a regularization parameter
✏ of 5e�5. We choose the first language L1 to be the language that all other languages align with.
After normalizing all language vectors with standard methods in (Dinu and Baroni, 2015), we
map all languages into the same language space by multiplying all language embedding vectors
with the space alignment matrix.

Algorithm 1 can be treated as a post-procedure for current methods for multilingual align-
ment. From our experiment, solely use the language alignment matrix already exceeds the bench-
mark result for state-of-the-art algorithms. However, if one were to use the algorithm to train
from scratch, the algorithm takes a while to converge.

3.2 Gromov-Wasserstein Barycenter

Inspired by the Gromov-Wasserstein alignment method (Alvarez-Melis and Jaakkola, 2018), we
are motivated to use the Gromov-Wasserstein (GW) barycenter as a pivot.

Recall that in the definition of the Gromov-Wasserstein mapping, we compare distances be-
tween words (intra-language distances) in one language to those intra-language distances in an-
other language. To extend the idea with our barycenter framework, we can use the Gromov-
Wasserstein barycenter as a pivot for comparing word distances between languages.

The Gromov-Wasserstein barycenter is well defined. Alongside with Gromov-Wasserstein
mapping, Peyré et al. (2016) proposed the notion of Gromov-Wasserstein (GW). It’s a natural
extension of the GW distance:

min
C2RN⇥N ,p2⌃N

X

s

�sGW✏(C,Cs, p, ps) (3.9)

where Cs is the intra-distance similarity matrix for each language.

The GW barycenter is a Fréchet mean for distances between all words in all languages. To
interpret the GW barycenter, we can see it as the desired distance between the meaning of all
words in any language.
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Algorithm 2: GW-barycenter alignment
Input: Language distribution Li = (Ci, pi)mi=1, p
Output: Translation for Lk and Lm

for i = 1; i < m; i = i+ 1 do
// Preprocess the word embeddings by normalizing and whitening ;
Ci  Ci �mean(Ci, axis = 0) ;
// Calculate the intra-distance matrice ;
Ci  cos(Ci, Ci)

// Calculate the Gromov-Wasserstein barycenter for distributions (Cs, ps)s, p ;
C  GW barycenter(C1, p1, · · · , Cm, pm) ;
for i = 1; i < m; i = i+ 1 do

// Compute Gromov Wassertein alignment from barycenter to each language ;
Ti = GW OT(C,C 0

i, p, pi) ;
Return T T

k ⇤ Tm

Notice that the problem is a non-convex optimization problem since the GW formulation is
non-convex by nature. One way to solve equation 3.9 is to solve the block coordinate relaxation
(Peyré et al., 2016). Reintroducing couplings into the reformulation, we can derive an equivalent
form for GW-barycenter as 3.9:

min
C,(Ts)s

X

s

�s(EC,CS(Ts)� ✏H(Ts)) (3.10)

where EC,CS(Ts) defined in 1.19.

With the reformulation above, one can solve the problem using block coordinate relaxation.
The iterative two-step minimization leads us to a stationary point for the Gromov-Wasserstein
barycenter. Optimizing concerning (Ts)s is fairly straight forward since one can decouple the
formulation as S independent GW✏ optimizations:

8s, min
Ts2Cp,ps

EC,Cs(Ts)� ✏H(Ts) (3.11)

After computing such (Ts)s, plugging in the values back into reformulation 1.19, and the mini-
mization with respect to C is

min
C

X

s

�s < L(C,Cs)⌦ T, T > (3.12)
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Using 1.3.1 in (Peyré et al., 2016) has shown that if the loss L can be expressed as and f 0

1/h
0

1

is invertible, then the solution to 3.12 reads

C =

 
f 0

1

h0

1

!�1 P
s �sT T

s h2(Cs)Ts

ppT

!
(3.13)

The intuition behind 3.13 is that Each T T
s h2(Cs)Ts is a realigned matrix where Ts acts as a

fuzzy permutation (optimal transportation coupling) of both rows and columns of the distance
matrix Cs. Then averaging those realigned metrics depending on a different definition of the loss
L.

The advantage of training the GW-barycenter as a pivot is that the algorithm converges
quickly and requires little to none parameter tuning. For m languages, the GW-barycenter con-
verges within 20 iterations. Therefore, we only need to compute O(20m) GW mappings during
training, which is far more efficient than training a mapping for all pairs of languages O(m2).
However, since the computation of GW-barycenter only brings us to a stationary point, there
is no guarantee that we can reach the global minimum. Hence its accuracy is not as good as
Algorithm 1.

3.3 Hierarchical Approach

When training one single Gromov-Wasserstein barycenter for all languages may hurt perfor-
mance for some language pairs because of the far distance of origins between the languages.
Italian, Spanish, Portuguese, and French are all originated from Latin, whereas German and En-
glish are Germanic languages. One way to optimize performance on bilingual translation tasks
is to introduce some prior knowledge about languages. The origin of languages is a well-studied
field in linguistic.

Figure 3.2 shows a historical view on the development of the language groups in the Indo-
European family. Training a barycenter captures shared information across languages so that
we can construct a language tree base on language origins. For each node that’s not a leaf, we
train on that node to be a barycenter for all its children. If we train such a language tree from
the bottom up and store mapping during training, mapping for language pairs can be implied by
traversing through the tree structure and multiplying all the mappings.

With information on the origin of languages, we can construct the hierarchical barycentric
tree 3.3. With the hierarchical tree, we propose a framework for training barycenter. Visiting
each node in a DFS manner, we train the nodes from a bottom-up manner. If the node represents
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Figure 3.2: Development of language family according to historic information

a language, we skip the training process. If the node is a barycenter (denoted with number in
3.3), then we use either algorithm 1 or algorithm 2 to compute each of barycenter node. At the
interpreting step, one can infer language mappings by multiplying the mapping matrices through
the edges.

Notice that we can decide the number of support locations for barycenter. In theory, the
number of support points for the optimal barycenter could be up to the sum of support points
for all distributions. In the experiment chapter 4, we are investigated on the number of support
points and found out that choosing the number of support points to be 2 times the average number
of support points of all input distributions is the best choice evaluating on the efficiency and
accuracy.

Notice that use Algorithm 1 fall into the framework since it’s just a single level language tree
with all languages under one common root node.
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Figure 3.3: Language Tree in a tree structure

Algorithm 3: GW-hierarchical barycenter alignment
Input: Language distribution (Ls, ps)s, p, root
Output: Translation for all pairs of languages

1 for each language Li do
2 Preprocess the word embeddings by normalizing and whitening ;
3 Calculate the intra-distance matrice Cs for Ls ;

4 Initialize a stack S ;
5 Perform a BFS on the lingual tree inputted root and put all nodes into S;
6 while S is not empty do
7 pop node q from stack S ;

if q is not a language node then
8 train the Gromov-Wasserstein barycenter for distributions of q0s child nodes

(Cs0 , ps0)s0 , p ;
9 Save the barycenter trained ;

During the training process, save the mapping from the barycenter to all languages
(Ts)s;

10 Imply translations with the mapping T T
i ⇤ Tj using CSLS
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Chapter 4

Experiments

In chapter 3, we proposed two different methods to align multiple languages. In chapter 2, we
have discussed the properties of barycenters and methods to compute efficiently. In this section,
we are going to compare their evaluation against previous methods in the literature.

Currently, there are two standard benchmarks for cross-lingual word embedding alignment
tasks: MUSE (Conneau et al., 2017) and Dinu (Dinu and Baroni, 2015). Before 2014, to evaluate
the word alignment method, one has to create some set of evaluation dictionary for translations.
Usually, those dictionaries are created using Google translate results or phrase tables of machine
translation systems. The problem with such dictionaries is that they do not take account of poly-
semy of words, and therefore, leading to wrong evaluation of the quality of word embeddings.

In 2018, Conneau et al. created and released their high-quality dictionary of up to 100k
pairs of words as part of MUSE library, (Conneau et al., 2017). The MUSE library is a high-
quality dictionary containing up to 100k pairs of words. It now becomes a standard benchmark
for language alignment problems. The Dinu dataset is another benchmark for evaluation, is a
relatively small dataset with only four language pairs (English to Finnish, English to German,
English to Spanish, and English to Italian). The Dinu dataset is not suitable to evaluate our
method, because the emphasis of this project shows an improvement in cross-lingual evaluation,
and the dataset does not have enough languages. Therefore, we conducted experiment on 6
European languages: English, French, Spanish, Italian, Portuguese, and German, and evaluate
our algorithm against the MUSE benchmark (Conneau et al., 2017). We choose to conduct
experiment on these 6 European languages because MUSE dataset contains a direct translation
for any pair of languages in this set.

We also conducted an experiment with the XLING dataset (Glavaš et al., 2019) with a more
diverse set of languages: Croatian (HR), English (EN), Finnish (FI), French (FR), German (DE),
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Italian (IT), Russian (RU), and Turkish (TR). In this set of languages, we have languages coming
from three different Indo-European branches, as well as two non-Indo-European languages (FI
from Uralic and TR from Turkic family). The results are captured in Table 4.8.

Baselines We are going to compare our results to the three baselines:

1. Using English as a pivot to translate languages

2. state-of-the-art bilingual alignment method: Gromov-Wasserstein alignment (Alvarez-Melis
and Jaakkola, 2018)

3. state-of-the-art multilingual alignment method (Alaux et al., 2019)

The hardness to beat for the baselines is the same as the sequence listed above. Transiting
through English suffers from the loss of information when the language pair we want to translate
does not involve English. The Gromov-Wasserstein bilingual alignment is the state-of-the-art
method for bilingual alignment, so it is harder to beat baseline. The state-of-art multilingual
alignment method is kept by (Taitelbaum et al., 2019b). It is a wide-know fact that one can
improve the performance of language translation using information from all languages.

Implementation Detail As reported in (Conneau et al., 2017), using fastText embed-
dings trained on Wikipedia obtain a significant boost in performance for word translation tasks.
In all our experiments, we use fastText word embeddings to get a continuous vector represen-
tation for words in all languages. At preprocess step, we normalize all word embeddings for
different languages by centering all word embedding vectors around mean and potentially, scal-
ing them to have length 1. After using algorithm 1 or 2, we predict translations by finding the top
k values in the mapping matrix P for the row with the index of the source word. To speed up the
computation, we took a similar approach as Alaux et al. (2019) and initialized with the Gromov-
Wasserstein approach applied to the first 5k vectors and a regularization parameter ✏ of 5e�5;
whereas Alaux et al. (2019) used the first 2k vectors. The initial locations of barycenter support
points are sampled randomly from the standard normal distribution and the number of support
points is specified by the user. After normalizing all language vectors with standard methods
in Dinu and Baroni (2015), we map all languages into the same language space by multiplying
all language embedding vectors with the space alignment matrix. Evaluating results against the
MUSE dataset, we measure how many times one of the correct translations of a source word is
retrieved, and report precision@k for k = 1, 10. The precision@k accounts for a fraction of pairs
for which the correct translation of the source words is in the k-th nearest neighbors.

Gromov-Wasserstein Barycenter Analysis In this set of experiment, we are compar-
ing the accuracy for all pairs of languages for the cases when 1) we English as a pivot to translate
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languages; 2) with Gromov-Wasserstein of all languages as a pivot to infer language translation;
and 3) taking the hierarchical approach to compute Gromov-Wasserstein barycenter for language
trees. This set of evaluation runs We show results in Table 4. For each bilingual pair, the best
performance is highlighted with bold.

As we can see, the bilingual mapping achieved by transiting through Gromov-Wasserstein
barycenter is similar to transiting through English as a pivot. The advantage of the algorithm
2 is it is computationally cheaper. The notion of having a probability coupling indicating the
mapping between languages is convenient in the sense that we can multiply mappings to infer
translation when we have the mapping of languages with the same language L. In other words,
the mapping for language Li and language Lj is T T

i Tj where Ti is the mapping from L to Li and
mapping Tj is mapping from L to Lj .

Figure 4.1: The P@1 accuracy for each of language pair during GW-barycenter training. The
x-axis denotes the number of iteration the alternate minimization on 1.19

In Figure 4.1, we can see that the accuracy converges around the 10th iteration, and further
training does not improve the results anymore. This is true for any random initialization of the
GW-barycenter.

The resulting performance is not as good as expected, partially because the GW-barycenter
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Figure 4.2: The language tree of European languages. Nodes under the same tree node are from
less distant origins than those are not. This tree is a subtree trimmed from 3.3

algorithm may not converge to the global optimal. Another reason is that not all languages have
the same set of words with the same meanings. Next, we are going to show the performance of
the barycenter approach described in 1 as it does not suffer from these problems.

Ablation Study There are a few parameters to choose during barycenter computation.
One of the parameters is the number of support locations. In theory, the optimal barycenter
distribution could have support locations with the number up to the sum of the total number of
support locations of all input distributions.

In table 4, we show the impact on translation performance when we have a different number
of support locations. Let nj be the number of words we have in language Lj . We picked three
most representative cases: the average number of words avg =

Pm
j=1 nj/m, 2 times the average

number of words 2avg = 2
Pm

j=1 nj/m, and the total number mavg =
Pm

j=1 nj .

As we increase the number of support locations for barycenter distribution, we can see from
table 4 the performance for language translation improves. However, when we increase the
number of support for barycenter, the algorithm becomes more costly. Therefore, evaluating the
tradeoff between accuracy and computation power, we decided to choose the support location to
be 10000 (2 times the average number of words in all languages).

Next we compare the results of 1) barycenter approach with 2avg number of supports to the
2) baseline # 2 - Gromov Wasserstein alignment on two languages directly, 3) the case where we
do not optimize on support location points (Lloyd’s algorithm), and 4) hierarchical barycenter
on the language origin tree 4. With those different setups, we compare the accuracy to compare
The results are contained in table 4.4. The best result we achieved is to use Algorithm 1 with one
single barycenter tree node. The result tells us that using the information of all languages during
training any language pairs does help improve translation mapping.

We also conducted a set of experiments to determine whether the inclusion of distant lan-
guages increases bilingual translation accuracy. Excluding two non-Indo-European languages
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Figure 4.3: This graph shows the accuracy of bilingual translation pairs. The green lines indicate
translation accuracy going through the barycenter of all languages (HR, EN, FI, FR, DE, RU, IT,
TR), and the blue one is by going through the barycenter of (HR, EN, FR, DE, IT, RU).

Finnish and Turkish, we calculated the barycenter of Croatian (HR), English (EN), French (FR),
German (DE), and Italian (IT). Graph 4.3 contains results for common bilingual pairs. Green
lines show the bilingual translation accuracy when translating through the barycenter for all lan-
guages including Finnish and Turkish, whereas blue lines indicate the accuracy of translations
that use the barycenter of the five Indo-European languages.

Now we are going to compare the results with the third baseline: multilingual framework
by Alaux et al. We insert our results for Algorithm 1 into their results table 4.7. Looking at
results for all pairs of languages side by side, we can see that the performance of our algorithm
exceeds theirs in all cases except for pairs of languages involving English. Even when only com-
paring the pair of languages containing English, our barycenter approach has shown significant
improvement. We compare all pairs of languages from or to English to all current methods, both
unsupervised and supervised. Putting all results into one single table 4.6, we can see that our
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German Word English Translation GW Prediction BA Prediction
münchen munich london; dublin; oxford; birmingham; wellington cambridge; oxford; munich; london; birmingham

glasgow; edinburgh; cambridge; toronto; hamilton bristol; edinburgh; dublin; hampshire; baltimore
sollte should would; could; might; will; needs; would; could; will; supposed; should

supposed; put; willing; wanted; meant; might; meant; needs; expected; able
lassen let make; to; able; allow; find let; make; able; allow; to

seek; prove; encourage; identify; try continue; choose; give; encourage; decide
rahmen frame; framework joint; programs; aimed; panel; exercise programme; program; part; programmes; conducted

sponsored; conducted; program; initiative; launched framework; programme; part; joint; funded
dieser this another;whose;the; which;a the;of;whose;which; that

itself; having; that; of; thus another; this; one; latter;its

Table 4.1: German-to-English translation prediction comparing results by 1) using GW align-
ment to imply direct bilingual mapping and 2) using Barycenter Alignment method discribed in
Algorithm 1.

result exceeds current all unsupervised methods for most cases. On average, we see a 2 percent
bump in current methods. In the case of translating English to Russian, our method even exceeds
the supervised method.

Examples of Predicted Translation Our barycenter approach infers a ”potential uni-
versal language” from input languages. Transiting through that universal language, we infer
translation for all pairs of languages. From the experimental results, we can see that our approach
is clearly at an advantage. Our algorithm has a clear advantage over all other methods, benefiting
from using the information of all languages. Our method is capable of incorporating both the
semantic and syntactic information of one word. For example, the top ten of our predicted En-
glish translation for the German word münchen, are ”cambridge”,”oxford”,”munich”,”london”,
”birmingham”,”bristol”,”edinburgh”,”dublin”,”hampshire”,”baltimore”. In this case, we hit the
English translation ”munich”. What’s more important in this example is that all predicted En-
glish words are the name of some city. Therefore, our method is capable of implying münchen
is a city name. Another Example to show is German word sollte, which means ”should” in
English. The top ten translation predicted are ”would”, ”could”, ”will”, ”supposed”, ”should”,
”might”, ”meant”, ”needs”, ”expected”, ”able”. The top five words we predicted for sollte are
syntactically correct - ”would”, ”could”, ”will”, ”should”, ”might” are all modal verbs.

In table 4, we picked a couple of German to English results and compared the results by
Gromov-Wasserstein direct bilingual alignment, and using Algorithm 1.

46



Table 4.2: The table compares the translation pair accuracy when we 1) use the barycenter as a
pivot, 2) use GW-barycenter for all languages as a pivot to translate bilingual pairs (Algorithm 2),
and 3) infer translations through mappings on edges of a hierarchical barycenter tree described
in Algorithm 3

English pivot barycenter pivot Hierarchical barycenter pivot
P@1 P@10 P@1 P@10 P@1 P@10

pt-it 88.13 97.12 89.61 97.75 90.52 97.86
pt-es 95.51 99.11 95.59 99.17 95.54 99.05
pt-fr 88.54 97.19 90.03 97.43 89.52 97.13
pt-de 71.85 93.27 73.12 92.44 72.9 93.43
pt-en 81.14 94.17 80.56 93.86 80.23 93.75
it-pt 87.73 97.35 89.13 97.7 89.44 97.42
it-es 89.76 97.58 91.28 97.51 92.05 97.85
it-fr 90.87 97.82 91.67 97.89 91.59 97.93
it-de 72.53 93.01 72.85 92.26 72.85 93.23
it-en 80.38 93.3 78.74 92.81 78.74 92.65
es-pt 91.83 98.32 92.4 98.18 92.43 98.09
es-it 87.93 96.89 88.35 96.57 88.99 97.11
es-fr 90.48 98.14 91.37 98.21 91.0 97.84
es-de 74.65 92.96 75.16 92.45 74.65 92.45
es-en 81.52 94.79 81.27 94.27 81.47 94.52
fr-pt 85.79 96.63 87.25 96.85 87.35 96.66
fr-it 87.2 97.5 87.79 97.47 88.1 97.54
fr-es 88.78 97.9 90.41 98.12 90.07 97.64
fr-de 73.44 92.37 73.65 92.84 71.56 91.32
fr-en 82.2 94.19 80.55 93.96 79.87 93.56
de-pt 72.19 93.71 74.06 92.5 72.85 93.76
de-it 73.27 93.59 73.6 93.32 74.48 93.81
de-es 72.14 91.84 72.74 91.6 71.63 91.8
de-fr 75.08 93.45 76.61 93.4 72.91 92.19
de-en 72.85 91.06 71.71 89.81 72.34 90.98
en-pt 82.97 94.57 82.41 94.92 83.06 94.48
en-it 80.56 94.03 79.43 93.93 79.53 93.9
en-es 82.23 94.7 81.38 94.58 82.35 94.97
en-fr 81.76 94.15 81.33 94.37 81.15 93.87
en-de 71.67 90.55 69.56 89.87 71.15 90.55
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Table 4.3: This table contains accuracy for translation pairs with different number of support
locations for barycenter. The column names are the number of support locations used in exper-
iment. In our experiment setup, we have 5000 words in each language. The column 5000 is
average number of support for all language distributions; 10000 is 2times average; sum is the
sum of number of supports for all distributions.

5000 10000 sum
P@1 P@10 P@1 P@10 P@1 P@10

it-es 91.72 97.98 92.29 98.01 92.26 98.25
it-fr 92.43 98.07 92.43 98.14 92.32 98.25
it-pt 89.86 97.87 90.0 97.84 89.58 97.91
it-en 81.59 93.34 81.93 93.77 82.21 94.27
it-de 75.54 93.44 75.86 93.82 75.91 93.71
es-it 89.22 97.3 89.47 97.43 89.47 97.5
es-fr 92.08 98.21 91.63 98.33 91.89 98.33
es-pt 92.57 98.12 92.88 98.35 92.48 98.23
es-en 83.48 94.88 83.53 95.48 84.11 95.37
es-de 78.25 94.23 78.08 94.74 78.55 94.66
fr-it 88.52 97.71 88.28 97.71 88.31 97.64
fr-es 90.55 97.93 90.74 98.04 90.85 98.04
fr-pt 88.19 96.95 88.51 97.08 88.09 96.98
fr-en 82.66 94.68 82.63 94.42 83.14 94.85
fr-de 75.69 93.41 76.53 93.41 76.53 93.88
pt-it 90.77 97.93 90.77 97.96 90.38 97.96
pt-es 95.68 99.17 95.92 99.32 95.74 99.32
pt-fr 90.81 97.6 91.01 97.87 90.57 97.67
pt-en 83.14 94.39 83.0 94.64 83.19 94.61
pt-de 77.7 94.43 77.32 94.32 77.98 94.65
en-it 82.0 94.51 81.86 94.58 82.24 94.82
en-es 84.11 95.16 84.14 95.28 84.68 95.43
en-fr 83.03 94.4 82.94 94.67 83.44 94.83
en-pt 84.93 94.88 84.68 95.29 85.34 95.26
en-de 73.47 90.91 73.99 91.46 74.63 91.83
de-it 78.09 93.92 78.04 94.52 77.66 94.74
de-es 75.85 93.31 76.16 93.83 77.4 93.39
de-fr 78.09 93.88 79.09 93.77 79.25 94.56
de-pt 77.07 94.2 77.5 94.14 78.49 95.02
de-en 75.19 91.29 75.74 91.98 76.19 92.41
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Table 4.4: Accuracy results for translation pairs between all pairs of languages from all dif-
ferent methods we proposed in this thesis. The column GW-benchmark contain results from
Gromov-Wasserstein direct bilingual alignment. Unweighted is the barycenter approach without
optimizing on support location weights. Hierarchical contains results from traversaling through
edges and infer translation mapping through hierarchical barycenters. The weighted column is
what Algorithm 1 returns, optimizing both on support locations and weights on the support.

GW benchmark unweighted hierarchical weighted
P@1 P@10 P@1 P@10 P@1 P@10 P@1 P@10

it-es 92.63 98.05 91.52 97.95 92.49 98.11 92.29 98.01
it-fr 91.78 98.11 91.27 97.89 92.61 98.14 92.43 98.14
it-pt 89.47 97.35 88.22 97.25 89.89 97.87 90.0 97.84
it-en 80.38 93.3 79.23 93.18 79.54 93.21 81.93 93.77
it-de 74.03 93.66 74.41 92.96 73.06 92.26 75.86 93.82
es-it 89.35 97.3 88.8 97.05 89.73 97.5 89.47 97.43
es-fr 91.78 98.21 91.34 98.03 91.74 98.29 91.63 98.33
es-pt 92.82 98.32 91.83 98.18 92.65 98.35 92.88 98.35
es-en 81.52 94.79 82.43 94.63 81.63 94.27 83.53 95.48
es-de 75.03 93.98 76.47 93.73 74.86 93.73 78.08 94.74
fr-it 88.0 97.5 87.55 97.19 88.35 97.64 88.28 97.71
fr-es 90.3 97.97 90.18 97.68 90.66 98.04 90.74 98.04
fr-pt 87.44 96.89 86.7 96.79 88.35 97.11 88.51 97.08
fr-en 82.2 94.19 81.26 94.25 80.89 94.13 82.63 94.42
fr-de 74.18 92.94 74.07 92.73 74.44 92.68 76.53 93.41
pt-it 90.62 97.61 89.36 97.75 90.59 98.17 90.77 97.96
pt-es 96.19 99.29 95.36 99.08 96.04 99.23 95.92 99.32
pt-fr 89.9 97.57 90.1 97.43 90.67 97.74 91.01 97.87
pt-en 81.14 94.17 81.42 94.14 81.42 93.86 83.0 94.64
pt-de 74.83 93.76 75.94 93.21 74.45 93.1 77.32 94.32
en-it 80.84 93.97 79.88 93.93 80.25 93.76 81.86 94.58
en-es 82.35 94.67 83.05 94.79 81.62 94.82 84.14 95.28
en-fr 81.67 94.24 81.86 94.33 81.42 93.99 82.94 94.67
en-pt 83.03 94.45 82.72 94.64 82.25 94.79 84.68 95.29
en-de 71.73 90.48 72.92 90.76 71.88 90.42 73.99 91.46
de-it 75.41 94.3 76.4 93.87 75.19 93.65 78.04 94.52
de-es 72.18 92.64 74.21 92.6 73.58 92.48 76.16 93.83
de-fr 77.14 93.29 77.93 93.61 77.14 93.51 79.09 93.77
de-pt 74.38 93.71 74.99 93.54 74.22 93.81 77.5 94.14
de-en 72.85 91.06 74.36 91.21 72.17 90.81 75.74 91.98

average 82.84 95.26 82.86 95.15 82.79 95.18 84.23 95.67
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Table 4.5: Pairs of languages in multilingual alignment problem results for English, German,
French, Spanish, Italian, and Portuguese. All reported results are precision@1 percentage. The
method achieving the highest precision for each bilingual pair is highlighted in bold. Methods
we are comparing to in the table are: Gromov-Wasserstein alignment (GW) (Alvarez-Melis and
Jaakkola, 2018); bilingual alignment with multilingual auxiliary information (MPPA) (Taitel-
baum et al., 2019a); Multilingual pseudosupervised refinement method (Chen and Cardie, 2018);
multilingual alignment method (UMH) (Alaux et al., 2019).

it-es it-fr it-pt it-en it-de es-it es-fr es-pt es-en es-de
GW 92.63 91.78 89.47 80.38 74.03 89.35 91.78 92.82 81.52 75.03
PA 87.3 87.1 81.0 76.9 67.5 83.5 85.8 87.3 82.9 68.3
MAT+MPPA 87.5 87.7 81.2 77.7 67.1 83.7 85.9 86.8 83.5 66.5
MAT+MPSR 88.2 88.1 82.3 77.4 69.5 84.5 86.9 87.8 83.7 69.0
UMH 87.0 86.7 80.4 79.9 67.5 83.3 85.1 86.3 85.3 68.7
BA 92.32 92.54 90.14 81.84 75.65 89.38 92.19 92.85 83.5 78.25

fr-it fr-es fr-pt fr-en fr-de pt-it pt-es pt-fr pt-en pt-de
GW 88.0 90.3 87.44 82.2 74.18 90.62 96.19 89.9 81.14 74.83
PA 83.2 82.6 78.1 82.4 69.5 81.1 91.5 84.3 80.3 63.7
MAT+MPPA 83.1 83.6 78.7 82.2 69.0 82.6 92.2 84.6 80.2 63.7
MAT+MPSR 83.5 83.9 79.3 81.8 71.2 82.6 92.7 86.3 79.9 65.7
UMH 82.5 82.7 77.5 83.1 69.8 81.1 91.7 83.6 82.1 64.4
BA 88.38 90.77 88.22 83.23 76.63 91.08 96.04 91.04 82.91 76.99

en-it en-es en-fr en-pt en-de de-it de-es de-fr de-pt de-en
GW 80.84 82.35 81.67 83.03 71.73 75.41 72.18 77.14 74.38 72.85
PA 77.3 81.4 81.1 79.9 73.5 69.5 67.7 73.3 59.1 72.4
MAT+MPPA 78.5 82.2 82.7 81.3 74.5 70.1 68.0 75.2 61.1 72.9
MAT+MPSR 78.8 82.5 82.4 81.5 74.8 72.0 69.6 76.7 63.2 72.9
UMH 78.9 82.5 82.7 82.0 75.1 68.7 67.2 73.5 59.0 75.5
BA 81.45 84.26 82.94 84.65 74.08 78.09 75.93 78.93 77.18 75.85
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Table 4.6: Accuracy for all current methods, both supervised and unsupervised, for bilingual
alignment evaluating on the MUSE benchmark. All approaches use a CSLS criterion. ”ref”
refers to the refinement method of Conneau et al. (Conneau et al., 2017). The results are directly
copied from (Alaux et al., 2019). The best overall accuracy is underlined, and in bold among
unsupervised methods.

en-es en-fr en-it en-de en-ru Avg.
!  !  !  !  !  

supervised, bilingual
Proc. 80.9 82.9 91.0 82.3 75.3 77.7 74.3 72.4 51.2 64.5 74.3

GeoMM 81.4 85.5 82.1 84.1 - - 74.7 76.7 51.3 67.6 -
RCSLS 84.1 86.3 83.3 84.1 79.3 81.5 79.1 76.3 57.9 67.2 77.9

unsupervised, bilingual
GW 81.7 80.4 81.3 78.9 78.9 75.2 71.9 72.8 45.1 43.7 71.0

Adv + ref 81.7 83.3 82.3 82.1 77.4 76.1 74.0 72.2 44.0 59.1 73.2
ICP + ref 82.1 84.1 82.3 82.9 77.9 77.5 74.7 73.0 47.5 61.8 74.4

W-Proc + ref 82.8 84.1 82.6 82.9 - - 75.4 73.3 43.7 59.1 -
UMH bil. 82.5 84.9 82.9 83.3 79.4 79.4 74.8 73.7 45.3 62.8 74.9

unsupervised, multilingual
MAT+MPSR 82.5 83.7 82.4 81.8 78.8 77.4 74.8 72.9 - - -
UMH multi. 82.4 85.1 82.7 83.4 78.1 79.3 75.5 74.4 45.8 64.9 75.2

BA 84.68 84.11 83.44 83.14 82.24 82.21 74.63 76.19 56.53 63.76 77.09

Table 4.7: Comparing the accuracy resulting from UMH with our results returned from the
barycenter algorithm 1 for all pairs of languages. UMH denote the result of Alaux et al. in
(Alaux et al., 2019), and BA is short for Barycenter Alignment
! en fr es it pt de

UMH BA UMH BA UMH BA UMH BA UMH BA UMH BA
en - - 82.7 82.94 82.5 84.14 78.9 81.86 82.0 84.68 75.1 73.99
fr 83.1 82.63 - - 82.7 90.74 82.5 88.28 77.5 88.51 69.8 76.53
es 85.3 83.53 85.1 91.63 - - 83.3 89.47 86.3 92.88 68.7 78.08
it 79.9 81.93 86.7 92.43 87.0 92.29 - - 80.4 90.0 67.5 75.86
pt 82.1 83.0 83.6 91.01 91.7 95.92 81.1 90.77 - - 64.4 77.32
de 75.5 75.74 73.5 79.09 67.2 76.16 68.7 78.04 59.0 77.5 - -
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Table 4.8: Evaluated on XLING dataset. Accuracy are measured with mean average precision
(MAP).

en-de it-fr hr-ru en-hr de-fi tr-fr ru-it fi-hr tr-hr tr-ru
PROC (1k) 0.458 0.615 0.269 0.225 0.264 0.215 0.360 0.187 0.148 0.168
PROC (5k) 0.544 0.669 0.372 0.336 0.359 0.338 0.474 0.294 0.259 0.290
PROC-B 0.521 0.665 0.348 0.296 0.354 0.305 0.466 0.263 0.210 0.230
RCSLS (1k)0.501 0.637 0.291 0.267 0.288 0.247 0.383 0.214 0.170 0.191
RCSLS (5k)0.580 0.682 0.404 0.375 0.395 0.375 0.491 0.321 0.285 0.324
GW 0.667 0.751 0.683 0.123 0.454 0.485 0.508 0.634 0.482 0.295
BA 0.683 0.799 0.667 0.646 0.508 0.513 0.512 0.601 0.481 0.355
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Chapter 5

Conclusion and Discussion

In this section, I summarize the contributions made in this thesis and discuss possible future
directions.

In the thesis, we are solving the unsupervised version of the multilingual alignment problem.
In Chapter 1, we gave a literature review on existing bilingual methods and introduced a couple
of multilingual framework researchers have devised to extend bilingual alignment to the multi-
lingual case. This is also the chapter where we formally defined the problem and pointed out the
shortcoming for some current methods.

Previous works have shown that using information from other languages improve bilingual
translations. The problem of the most existing multilingual framework is the lack of transitive
enforcement for pivot language. So we proposed a new pivot that guarantees coherence over the
language space where language word vectors for all languages are lying in. The algorithm we
are proposing trains all languages simultaneously and use intermediate result saved during the
training process to infer translations for all pairs of languages. At the core of our algorithm lies
the computation of barycenter for all languages. The barycenter we computed for all languages
can be interpreted as a potential universal language, capturing information of all languages. We
spared a chapter to introduce the concept of barycenter and existing algorithms to compute it
in Chapter 2. The algorithm we proposed beats the current state-of-the-art method for bilingual
alignment. We discuss the results and evaluation method in Chapter 4.

This work can be extended in several directions in the future. First, we notice that the
Gromov-Wasserstein barycenter algorithm relies heavily on its initialization. Current methods
only bring us to a stationary point instead of a global minimum. Devising a new convex relax-
ation will bring us a new algorithm that may converge to a global minimum.
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In the barycenter computation, we need to decide the weights we are going to put on each
input distribution. The other problem we are interested in investigating in is: whether a hierarchi-
cal barycenter is equivalent to the joint barycenter is an interesting question. Given a hierarchical
tree, can we assign different weights to different nodes and the root barycenter will be equal to
the joint barycenter? Simplify the question, given distributions (Xi, pi)mi=1 and a weights vector
{↵}mi=1, can we find two different vectors {�1}b1i=1, {�2}b2i=1, both summing to 1, where b1 + b2 =
m, and argminX

P
i ↵iW✏(X,Xi) = argminX(1/2 ⇤W✏(X, argminA

Pb1
i=1 �1iW✏(A,Xi)) +

1/2⇤W✏(X, argminB

Pb2
i=1 �2iW✏(B,Xi+b1))). If such a decomposition exists, a faster barycen-

ter algorithm may be possible.
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Jégou. “Word Translation Without Parallel Data”. In: 6th International Conference on
Learning Representations (ICLR). Vol. abs/1710.04087. 2017 (cit. on pp. 2, 4, 5, 9, 12,
15, 16, 41, 42, 51).

[8] Hagai Taitelbaum, Gal Chechik, and Jacob Goldberger. “Multilingual Word Translation
using Auxiliary Languages”. In: Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP). 2019 (cit. on pp. 2, 16, 17, 50).

[9] Ndapandula Nakashole and Raphael Flauger. “Knowledge Distillation for Bilingual Dic-
tionary Induction”. In: Proceedings of the 2017 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association for Computational Linguistics, Sept.
2017, pp. 2497–2506 (cit. on pp. 2, 13).

[10] Jean Alaux, Edouard Grave, Marco Cuturi, and Armand Joulin. “Unsupervised Hyper-
alignment for Multilingual Word Embeddings”. International Conference on Learning
Representations (ICLR) (2019) (cit. on pp. 2, 13, 15, 16, 36, 42, 50, 51).

59
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[32] Gabriel Peyré, Marco Cuturi, et al. “Computational optimal transport”. Foundations and
Trends® in Machine Learning, vol. 11, no. 5-6 (2019), pp. 355–607 (cit. on p. 21).

[33] Marco Cuturi and Arnaud Doucet. “Fast Computation of Wasserstein Barycenters”. In:
Proceedings of the 31st International Conference on Machine Learning (ICML). 2014,
pp. 685–693 (cit. on pp. 22, 24, 29, 34).

61



[34] Jean-David Benamou and Guillaume Carlier and Marco Cuturi and Luca Nenna and
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