
Bruno Miguel Faria do Vale

Development of a coextrusion system of
multifunctional filaments for the
production of high performance ropes

Br
un

o 
M

igu
el 

Fa
ria

 d
o 

Va
le

julho de 2016UM
in

ho
 |

 2
01

6
De

ve
lo

pm
en

t o
f a

 c
oe

xt
ru

si
on

 s
ys

te
m

 o
f m

ul
tif

un
ct

io
na

l
fil

am
en

ts
 fo

r 
th

e 
pr

od
uc

tio
n 

of
 h

ig
h 

pe
rf

or
m

an
ce

 r
op

es

Universidade do Minho
Escola de Engenharia





julho de 2016

Dissertação de Mestrado
Ciclo de Estudos Integrados Conducentes ao
Grau de Mestre em Engenharia de Polímeros

Trabalho efetuado sob a orientação de
Professor Doutor João Miguel Nóbrega
Doutor Célio Bruno Pinto Fernandes
Mestre Fernando Eblagon

Bruno Miguel Faria do Vale

Development of a coextrusion system of
multifunctional filaments for the
production of high performance ropes

Universidade do Minho
Escola de Engenharia





Development of a coextrusion system of multifunctional filaments for the production of high performance ropes  

iii 

ACKNOWLEDGMENTS 

The execution of this MSc thesis was only possible due to the contribution and guidance 

of several people. 

Firstly, I want to sincerely express my gratitude to my advisers Professor Doctor João 

Miguel Nóbrega, Doctor Célio Fernandes and Master Fernando Eblagon. To Professor Doctor 

João Miguel Nóbrega and Master Fernando Eblagon I want to thank for the guidance and 

support during this project and for making available all the resources needed to perform this 

MSc project. I thank to Doctor Célio Fernandes for the patience demonstrated in help me 

solving all the many problems and challenges faced and for the knowledge provided regarding 

the OpenFOAM® framework computational library. 

I also want to thank to all the people in Lankhorst for the demonstrated sympathy and 

the knowledge provided. 

In addition, I like to thank all my co-workers in Polymer Engineering Department of the 

University of Minho for the support and friendship. I want to highlight Ananth Rajkumar for 

providing the tool required to simulate the extrusion process and to António Abreu for 

providing the experimental results needed to validate the solvers used.  

To my closest friends who accompanied me over these five years, especially to Miguel 

Coelho and Melisa Freitas, I am so grateful for all the support and friendship given to me. 

Lastly but not least, I would like to express my gratitude to my family. I thank to my 

father Fernando, my mother Joana and my brother Rui for the support that they give to me, for 

the patient and for always believe in me. I also want to dedicate this thesis to my grandmother 

Maria, who sadly passed away, but I know that she is very proud and she will always guide me 

wherever she is. 

To all a big thank you.



 

 

 



Development of a coextrusion system of multifunctional filaments for the production of high performance ropes  

v 

 

ABSTRACT 

Due to the increasingly demand on performance, several products that were in the past 

manufactured using just one material, are nowadays designed to incorporate more than one. 

This allows to take advantage of the specific properties of each material employed, like 

mechanical, barrier, chemical resistance, etc. However, the difficulties to anticipate the flow of 

several rheologically complex materials inside the production tools, are significantly increased 

when more than one material flows in the same channel.  

Based on the above, numerical modelling tools may play an important role to support 

the designer’s activity, especially when dealing with products for which there is no previous 

experience. This MSc project aims to evaluate the capability of using OpenFOAM® framework 

to support the design of coextrusion processing tools and to develop a new semi-industrial 

filament coextrusion die. The numerical code assessment was started with verification studies, 

where numerical results obtained with the OpenFOAM® framework code were compared with 

data available in the scientific literature. Subsequently the assessment was performed with two 

experimental case studies, corresponding to extrusion dies to produce simple and coextruded 

filaments. The results obtained show clearly that OpenFOAM® was able to capture several flow 

effects, namely the interface location, and thus seems to be adequate to support the design of 

coextrusion production tools. The final part of the work comprised the design of a semi-

industrial filament coextrusion die capable of produce filaments with different formulations, at 

a relative wide range of mass flow rates, which was done with the support of the OpenFOAM® 

computational library. 

Keywords 

Filament, Coextrusion, Coextrusion Die Design, OpenFOAM®, Verification, Experimental 

Assessment
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RESUMO 

Devido à crescente procura de melhores propriedades, muitos produtos que no passado 

eram produzidos só com um material, são nos dias de hoje projetados para serem constituídos 

por mais do que um material. Este facto permite tirar partido de propriedades específicas de 

cada material utilizado, como propriedades mecânicas, barreira, resistência química, etc. 

Contudo, as dificuldades em antecipar o fluxo de vários materiais reologicamente complexos 

dentro das ferramentas de produção são significativamente aumentadas quando mais do que um 

material fluí no mesmo canal.  

Baseado no anteriormente exposto, as ferramentas de modelação numérica podem 

desempenhar um papel importante no apoio à atividade do projetista, especialmente quando 

aplicadas em produtos nos quais não existe experiência prévia. Este projeto de mestrado 

pretende avaliar a capacidade em usar a libraria computacional OpenFOAM® no auxílio à 

conceção de ferramentas para o processo de coextrusão e em desenvolver uma nova cabeça de 

coextrusão de filamento semi-industrial. A avaliação do código numérico começou com estudos 

de verificação, conseguidos pela comparação de resultados obtidos através do OpenFOAM® 

com dados disponíveis na literatura cientifica. Subsequentemente a avaliação foi realizada para 

dois casos de estudo experimentais, correspondentes a cabeças de extrusão utilizadas para 

produzir filamentos simples e coextrudidos. Os resultados obtidos demonstram que a libraria 

computacional OpenFOAM® é capaz de capturar vários efeitos no fluxo, nomeadamente a 

localização da interface, parecendo assim adequado para auxiliar a conceção de ferramentas de 

coextrusão. A última tarefa do projeto consistiu na conceção de uma cabeça de coextrusão de 

filamentos semi-industrial capaz de produzir filamentos com diferentes formulações, numa 

relativa vasta gama de débitos mássicos, conseguida com a ajuda da libraria computacional 

OpenFOAM®. 

Palavras-Chave 

Filamento, Coextrusão, Conceção de Cabeças de Coextrusão, OpenFOAM®, Verificação, 

Avaliação Experimental 
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 INTRODUCTION 

1.1 State of the art 

1.1.1 Filament extrusion and coextrusion 

The extrusion process allows the production of products usually with constant 

cross section. This process is applied in the processing of a wide range of materials, e.g. 

metal, food, chemicals substances (pharmaceutic industry) and plastic products (pipes, 

profiles, films, among others) (Gonçalves, 2013; Rauwendaal, 2014).  

In the case of interest, which is the processing of polymeric materials, the 

extrusion can be subdivided in various sub techniques (pipe extrusion, profile extrusion, 

film extrusion and filament extrusion), which comprises specific post extrusion 

equipment, such as dies and calibrators (Gonçalves, 2013). The intrinsic properties of the 

polymers make them ideal to process by extrusion, because it is theoretically possible to 

obtain products with any cross section, at high production rates and quality. Thus they 

have been used to satisfy the constant demand of ever more complex products.  

Since the main topic of this MSc project is the production of filaments, only the 

filament extrusion processing technique is going to be described in detail. 

The filament extrusion technique is used to produce products that are employed 

to manufacture a wide range of objects that we use in our day life such as ropes, fishing 

lines, strings for racquets used in various sports, synthetic yarns, among several others 

(Giles, Wagner, & Mount, 2004). 

A typical filament extrusion line is generally composed by an extruder, an 

extrusion die (mounted at the extruder exit), a water bath, godet rolls, draw ovens 

(heaters) and optionally a winding storage rolls. Figure 1 illustrates a typical filament 

extrusion line. 
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In this process the polymer pellets are fed to a hopper which by the action of the 

gravity force feeds the extruder (Gonçalves, 2013). The extruder contains one or more 

screws (for instance a multiscrew extruder) which rotate permanently and are responsible 

for the mixing, pressuring and transport of the polymeric material inside the barrel flow 

channel (Gonçalves, 2013). A group of heaters mounted along the extruder barrel, along 

with the viscous dissipation phenomena that happens when polymeric material is 

subjected to shearing forces, are responsible for generating the heat required to melt the 

polymer pellets. At the extruder outlet, the material is forced to pass through the die which 

transforms the circular flow from the extruder outlet into a flow with the required cross 

section (Gonçalves, 2013).  

Frequently, between the extruder and the extrusion die a gear pump is used in 

order to provide a more controlled flow rate. Otherwise, due to the natural slight 

variations verified in processing conditions, the diameter of the filaments could vary and, 

thus affect negatively the product quality (Giles, Wagner, & Mount, 2004).  

Subsequently, the extruded filaments are forced into a cooling bath (Ferreira et 

al., 2011; Giles, Wagner, & Mount, 2004). Exiting the cooling bath, the filaments are 

dried and passed throw godet rolls (the number of godet rolls used depends of the required 

draw forces) which control the speed and the drying of the filaments from the die until 

that point in the extrusion line (Ferreira et al., 2011; Giles, Wagner, & Mount, 2004). 

Between the first set of godet rolls and the second set, there is a draw oven which heats 

the filaments, in order to promote mobility to the polymer chains which makes it easier 

to orientate and elongate by the action of the second set of godet rolls (Giles, Wagner, & 

Mount, 2004). The second godet rolls presented in Figure 1, runs at a higher linear speed 

Figure 1 - Scheme of a typical filament extrusion line adapted from (Giles, Wagner, & Mount, 2004). 

Hopper 
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than the first set, and this determines the stretch ratio developed inside the oven, which 

promotes the orientation of the polymer chains in the flow direction. The effectiveness of 

this orientation affects directly the filament mechanical strength (Ferreira et al., 2011; 

Giles, Wagner, & Mount, 2004). At the end of the extrusion line, the filaments are 

winded, using a method that varies with the product (for instance, textiles filaments are 

frequently winded in bobbins) (Giles, Wagner, & Mount, 2004).  

Sometimes the intrinsic properties, or cost, of the polymeric material are 

inadequate to satisfy the required specifications for a given application. In those cases, it 

is common to combine two or more different materials, or the same material with different 

formulations, in order to obtain products with better properties formed by well-bounded 

layers of those materials (Giles, Wagner, & Mount, 2004; Rauwendaal, 2014; Riquelme, 

1995). This variant of the extrusion technique is called coextrusion, and consists in 

extruding two or more materials simultaneously to obtain a product that combines the 

most favourable properties of its constituents.  

The driving force for the development of the coextrusion process it is the need of 

obtaining even more cheaper, appealing and resistant products (Giles, Wagner, & Mount, 

2004; Rauwendaal, 2014). In the case of the filament industry, this process has been 

applied in order to obtain filaments with more and more resistance (for instance, to 

manufacture high strength ropes), filaments with conductive properties (Glauß et al., 

2013; Martins et al., 2014), optical fibres, among others. 

The filament coextrusion line is quite similar to the filament extrusion line already 

illustrated in Figure 1, as it can be seen in Figure 2 that presents the filament coextrusion 

line (in this figure are missing the water bath and the draw oven, that most of filament 

coextrusion lines possess) used by Glauß and his co-workers (Glauß et al., 2013). In fact, 

the main differences between the extrusion and the coextrusion line, in almost all the 

known processes, are related to the die and to the fact that more than one extruder is used, 

as it can be verified when comparing a typical extrusion line with the experimental setups 

described in the works of Martins et al (Martins et al., 2014), Wang et al (Wang et al., 

2013), Dooley (Dooley, 2002) and Glauß et al (Glauß et al., 2013). 
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Figure 2 - Scheme of the filament coextrusion line used by Glauß and his co-workers (Glauß et al., 2013). 

1.1.2 Filament coextrusion die 

The filament coextrusion die is very similar to the most dies used for coating 

products like pipes, electric wires, among other products with circular cross section. Both 

of those dies allows the production of circular sheath-core products, where these are made 

of concentric layers of different materials and where only the polymer that forms the outer 

layer is in contact with the die walls, as it can be seen in Figure 3 (Martins et al., 2014; 

Giles, Wagner, & Mount, 2004; Riquelme, 1995). It is important to enhance that there are 

more types of filaments available on the market, but for the purpose of this MSc thesis 

only the coextrusion dies that produce sheath and core filaments are relevant. 
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The main difference between the two types of dies is that in the die used for 

coating, a semi-finished product (like electric wire, a pipe, among others) has to be 

inserted in the die and the molten polymer is used to coat the product (Giles, Wagner, & 

Mount, 2004), and in the coextrusion dies, there is no need to do that. In fact, in this type 

of dies, a first material is extruded and then in the same die it is possible to combine 

materials with different layout, to achieve the desired distribution (Glauß et al., 2013; 

Martins et al., 2014).  

 Figure 4 illustrates a typical filament coextrusion die used by Martins and his co-

workers to produce piezoelectric filaments, which is one of the very few cases of filament 

coextrusion documented in the literature (Martins et al., 2014). 

 

 

 

 

 

 

Figure 3 - Cross section of a sheath-core filament. 

Figure 4 - Monofilament coextrusion die used by Martins and his co-workers (Martins et al., 2014). 

Sheath 

Core 
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Through the analysis of Figure 4 we can see that both materials are being extruded 

at the same time (which means that two extruders are being used). The first extruder feeds 

the material represented by the blue streamlines and then the flow is divided in two sub 

flows, where one is used to form the core and the other is used to form the outer layer of 

the filament. The middle layer is composed by the material represented by the red 

streamlines and is being fed by a second extruder. Finally, for each material the flow 

channels are guided to the main channel in specific locations, called distributors, in order 

to produce the filament with the required configuration (Martins et al., 2014). More than 

one set of distributors can be used in order to produce more than one filament at once, 

thus obtaining a multifilament coextrusion die. 

The correct coextrusion die design is a challenging task to achieve due to the 

polymers complex rheological properties, therefore it is necessary to understand better 

the rheological defects and the interface distortion phenomena associated with the 

filament coextrusion, in order to design a suitable tool that produces products with the 

desired layer configuration. 

1.1.3 Rheological defects 

Shark skin 

The shark skin is a surface defect that increases the roughness and decreases the 

gloss of the extruded product surface (Carneiro & Nóbrega, 2012; Rauwendaal, 2014; 

Vlachopoulos & Strutt, 2003).  

This defect generally happens at the die parallel zone and/or in the die exit 

(Carneiro & Nóbrega, 2012; Rauwendaal, 2014; Vlachopoulos & Strutt, 2003). The main 

causes that are thought to lead to this defect are: the stick-slip phenomena at the flow 

channel wall, the high normal stresses induced at the die exit caused by the sudden 

acceleration of the melt, and coalescence of small voids promoted by negative pressures 

on the metal/polymer boundary or in the bulk (Carneiro & Nóbrega, 2012). 

The most acceptable cause to explain this defect is the high normal stresses 

induced at the die exit, as shown in the work of Agassant and co-workers (Agassant et 

al., 2006; Carneiro & Nóbrega, 2012). Figure 5 shows the rearrangement of the melt 
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velocity profile at the die exit, where the velocity of the outer layers passes from zero (if 

no slip at the wall is assumed) to the average extrusion speed, which causes a sudden 

extensional acceleration of the melt and give rise to the development of stresses in the 

melt, which starts the formation of the characteristics ridges of the shark skin defect 

(Carneiro & Nóbrega, 2012; Rauwendaal, 2014).   

Melt fracture 

The melt fracture is a severe defect that affects the bulk extrudate and can present 

itself in several forms, as illustrated in Figure 6 (Carneiro & Nóbrega, 2012; Rauwendaal, 

2014). 

There is no clear agreement in the mechanism that causes this defect and in fact 

some authors believe that it can depend on the polymer and/or the geometry of the flow 

channel (Carneiro & Nóbrega, 2012; Rauwendaal, 2014).  However, two mechanisms are 

usually refereed as being the cause of melt fracture: the slip-stick phenomena at the flow 

channel wall and the high extensional stresses experienced by the melt during the 

extensional flow developed (Carneiro & Nóbrega, 2012; Rauwendaal, 2014; 

Vlachopoulos & Strutt, 2003). According with some studies the second cause is the more 

plausible, in fact the work of Agassant and co-workers showed that the onset of this defect 

Figure 6 - The most frequent forms of melt fracture (Rauwendaal, 2014). 

Figure 5 - Scheme of the rearrangement of the velocity profile at the die exit (Carneiro & Nóbrega, 2012). 
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happens in the convergent flow zone of the die, where the melt is subjected to high 

extensional deformations (caused by high extensional stresses) (Agassant et al., 2006; 

Carneiro & Nóbrega, 2012). 

Die drool 

Die drool is a problem that affects most of the polymer processing techniques. In 

extrusion, this phenomenon leads to the progressive accumulation of material at the die 

exit, as illustrated in Figure 7. That material solidifies and may partially obstruct the flow 

of the extrudate and in severe cases, the aesthetics and the properties of the product can 

be affected (Carneiro & Nóbrega, 2012; Vlachopoulos & Strutt, 2003). 

Once this defect develops, the only way to remove the excess of material is by 

stopping the extrusion line and perform a cleaning operation, which obviously is a time 

consuming and expensive solution that should be avoided with a proper die design 

(Carneiro & Nóbrega, 2012; Vlachopoulos & Strutt, 2003). 

Several causes for this problem have been suggested, but some of these are still 

under research and debate (Carneiro & Nóbrega, 2012; Vlachopoulos & Strutt, 2003). 

The most frequently suggested causes are the following (Carneiro & Nóbrega, 2012): (a) 

low molecular weight polymer species; (b) volatiles present in the melt; (c) the presence 

of a filler; (d) poor dispersion of pigments; (e) high draw down rates; (f) the amount and 

rate of extrudate-swell; (g) die exit angles, land length and land entrance size; (h) 

Figure 7 - Illustration of die drool formation, accumulation and eventual removal by the extrudate (Carneiro & 

Nóbrega, 2012). 
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dissimilar component viscosities; (i) die condition (including cleanliness, presence of 

damage, defects, etc.); (j) pressure fluctuations in screw channel; and (k) inadequate melt 

temperature. 

The work of Zatloukal and co-workers helped to improve the characterization and 

understanding of the die drool phenomena. According to their experiments there are two 

types of die drool, the external die drool and the internal die drool (Carneiro & Nóbrega, 

2012).  

The external type occurs due to negative pressures that are a consequence of the 

elasticity of the melt and the streamline curvature, which leads to the generation of normal 

stresses that causes a local pressure decrease. This negative pressure may promote the 

accumulation and adhesion of material at the die exit and the migration and accumulation 

of low molecular weight species to the die exit surface (Carneiro & Nóbrega, 2012).  

The internal die drool results of molecular weight fragmentation induced by the 

flow before the die exit, which causes the accumulation of low molecular weight species 

to the die walls surface (Carneiro & Nóbrega, 2012). 

1.1.4 Interface distortions in coextrusion 

The rheological information of the polymers is a key piece of the coextrusion die 

design process (Dooley, 2002). In fact, polymers are non-Newtonian materials and their 

viscoelastic interactions and rheological properties (like viscosity, shear rate, among 

others) are highly dependent on the processing conditions (temperature, flow rate, etc.), 

on the die channel geometry and, in coextrusion, on the position and the thickness of the 

layers (a surface layer experiences higher shear rates than a core layer) (Dooley, 2002; 

Rauwendaal, 2014). 

In the following sections it will be discussed the four major causes of the interface 

distortion on the layers present in the coextrusion process. 

Interfacial distortions due to flow instabilities  

This type of interfacial distortions can cause variations on the thickness of the 

individual layers but the overall thickness of the product maintains constant, so it’s 
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possible to understand that this phenomenon can lead to uneven interfaces and in severe 

cases intermixing between two adjacent layers may happen (Dooley, 2002). 

At higher flow rates these instabilities are more noticeable, because a wave like 

structure begins to appear in the interface of the layers (Dooley, 2002). The main 

mechanism that causes this type of distortions has not been conclusively identified, but 

the work of Schrenk and Alfrey (Schrenk & Alfrey, 1978) showed that this type of 

instabilities can be correlated with critical interfacial shear stresses, being the skin-layer 

viscosity, the skin-to-core thickness ratio, the total extrusion rate and the die gap the main 

variables that influence this instability (Dooley, 2002). 

Interfacial distortions from viscosity mismatch 

When two materials with different viscosities are processed together, the material 

with the lower viscosity tends to flow to areas with higher shear rates, seeking the path 

of less resistance, thus tending to encapsulate the material with high viscosity, which 

promotes the formation of interface distortions (Dooley, 2002). In coextrusion of sheath 

and core filaments, this phenomenon constitutes a problem in cases where the sheath 

polymer is more viscous than the core polymer, since the last one tends to migrate to the 

walls, where the shear rate is higher, which modifies the filament cross section geometry. 

The main variables affecting the degree of distortion of the interface are the viscosity 

difference between the two materials, the shear rate and the residence time. Dooley made 

experiments with different materials in order to confirm the existence of interface 

distortion related to viscosity mismatch, and his results confirmed that phenomenon 

(Dooley, 2002). 

Interfacial distortions from viscoelasticity 

When two or more polymers with the same or similar viscosities are processed 

together, viscous encapsulation phenomena may be happening as Dooley showed 

(Dooley, 2002; Rauwendaal, 2014). With his experiments he linked this type of interfacial 

distortions to the development of second normal stresses in melt, as result of viscoelastic 

interactions (Dooley, 2002; Rauwendaal, 2014). Polymers with higher elastic 

components produce secondary flows that are normal to the primary flow direction, 

causing a greater interface distortion (Dooley, 2002). 
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Dooley (Dooley, 2002) conducted several experiments with different materials 

and die geometries and found out that this type of distortion is highly dependent of the 

die geometry. In circular die geometries, which is the case of the filament coextrusion 

die, this distortion is practically non-existent, because in this type of dies no secondary 

flows are observed and consequently no second normal stresses are developed in the melt. 

Interfacial distortions due to the geometrical 

encapsulation 

Another possible explanation for the interface distortion was proposed by 

Perdikoulias and his co-workers (Perdikoulias, Zatloukal, & Touré, 2004). They 

performed experiments with Newtonian fluids (the second normal stresses difference is 

null for this materials) wherein the viscosities were similar. They showed that interface 

distortions still happened in contrast with the expect results (Perdikoulias, Zatloukal, & 

Touré, 2004; Rauwendaal, 2014). 

They called this effect geometrical encapsulation and linked it to the parabolic 

velocity profiles that are developed in the die flow channels. Because the velocity is 

higher in the centre of the channel the thickness of this layer tends to increase in this 

region and decrease near the walls (where the velocity is smaller), in contrast with the 

outer layers (Perdikoulias, Zatloukal, & Touré, 2004; Rauwendaal, 2014). 

1.1.5 The importance of Computer Aided Engineering in die 

design  

As mentioned before, the main function of the extrusion die is to transform the 

circular flow of the material from the extruder outlet into the required cross section of the 

desired product at high rate and quality (Carneiro & Nóbrega, 2012; Gonçalves, 2013; 

Kostic & Reifschneider, 2006). Produce at high rate and quality is often proven to be very 

difficult, due to the intrinsic characteristics of the polymers, produce at higher rates causes 

a significant loss in the quality (Carneiro & Nóbrega, 2012).  

An approach to maximize the rate of production and the quality of the product is 

through the optimization of the process conditions and the tools involved in the process 

(Carneiro & Nóbrega, 2012). To perform that optimization, specifically in the dies, it 
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requires a deep knowledge of the polymers rheological behaviour and the phenomena that 

happens during the extrusion/coextrusion process (Gonçalves, 2013; Carneiro & 

Nóbrega, 2012; Kostic & Reifschneider, 2006). Thus, to achieve a proper tool design the 

following points have to be considered (Gonçalves, 2013): 

 the maximum flow rate above which shark skin occurs; 

 the maximum angle of convergence above which melt fracture in 

extension dominated flows occurs; 

 the correction of the cross-section of the parallel zone to anticipate post 

extrusion effects (stretching, swelling and shrinkage); 

 the control over both the total pressure drop and the appearance of hot 

spots (local increases in melt temperature) resulting from excessive 

viscous dissipation.  

Being dependent of the knowledge and experience of the designer as stated before, 

the die design process is more an art than a science (Rauwendaal, 2014; Carneiro & 

Nóbrega, 2012; Gonçalves, 2013), wherein the die is designed following an iterative 

methodology, requiring several trials until reach a design capable of manufacturing 

products with the required geometry and quality (Rauwendaal, 2014; Gonçalves, 2013). 

It is easy to understand that this methodology requires a huge amount of time and 

resources (both material and equipment), leading to higher development times and higher 

costs of the products. 

Advances in computational capabilities have made possible the appearance of an 

increasingly higher number of Computer Aided Engineering (CAE) software packages, 

which allows the designer to improve the design of the products/tools using computer 

simulations instead of experimental trials (Gonçalves, 2013; Kostic & Reifschneider, 

2006), save money (there is no excess of use of the available resources) and in most of 

the cases, time. These software packages can also supply data for all the domain in the 

simulated geometry and it is possible to obtain details in specific zones of the geometry 

and thus obtain more accurate values for that zones, which is impossible to achieve using 

experimental trials (Gonçalves, 2013).  

There is a wide range of CAE software products, but in die design the more 

relevant ones are those that allow users to make an analysis of systems where there is 
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fluid flow, heat transfer and other associated phenomena, and these are called 

Computational Fluid Dynamics (CFD) tools (Gonçalves, 2013; Kostic & Reifschneider, 

2006). The CFD software products can be divided in two subcategories, the commercial 

and the opensource software.  

Regarding the die design, mainly commercial software products like ANSYS, 

Polyflow, Dieflow, HyperXtrude, FLOW 2000 and PROFILECAD are being used by the 

designers to simulate the flow of the melt through the die in order to optimize the design 

(Gonçalves, 2013). Some opensource software, like the OpenFOAM®, have shown great 

potential to replace the commercial software already mentioned. It has proven to be 

effective and adequate to solve a wide range of problems in various fields, including 

polymer processing. Regarding to design of dies, the OpenFOAM® has been used by 

Ananth Rajkumar and his co-workers to help the design process of profile extrusion dies 

(Rajkumar, et al., Accepted for publishing). 

OpenFOAM® was used in all the simulations performed along this MSc thesis and 

it will be described in the next section. 

1.1.6 OpenFOAM® 

OpenFOAM® computational library stands for Open Source Field Operation and 

Manipulation and it was developed by Henry Weller and Hrvoje Jasak at the Imperial 

College in London in the early nineties (Wuthrich, 2007; Haider, 2013). Being 

OpenFOAM® a opensource software, the cost of the licenses are free (Stephens, 2016; 

Verhoeven, 2011), and it was available to the general public in 2004 under the GNU 

general public licence (Andersson, 2011; Wuthrich, 2007), which means that the user is 

free to use the source code of the software to build tools to suit his requirements and needs 

(Andersson, 2011; Haider, 2013; Stephens, 2016; Verhoeven, 2011) and to take 

advantage of all computational resources available (such as HPC units), by performing 

simultaneous (one in each processor) or parallel runs (Andersson, 2011; Stephens, 2016; 

Verhoeven, 2011). But as all opensource software, OpenFOAM® requires more 

specialized man power which can be a potential downside, due to the costs associated to 

the steep learning curve (Stephens, 2016). Ultimately, from a business point of view, the 

choice between the opensource and the commercial software is a cost/benefit/risk 
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analyses that considers the resources that the company possesses and the objectives to 

reach (Stephens, 2016). 

OpenFOAM® framework consists of a C++ library that contains a large range of 

solvers, based in the Finite Volume Method (FVM), and utilities used to solve continuum 

mechanics problems, which concerns the stress in solids, liquids and gases along their 

flow and deformation (Haider, 2013; Greenshields, 2015; Wuthrich, 2007). The solvers 

are, like the name suggests, routines used to solve equations that represent the physical 

reality of one given problem using the FVM, following these basic steps (Herreras & 

Izarra, 2013): 

 Integration of the governing equations over all the control volumes of the 

domain; 

 Conversion of the integral equations into a system of algebraic equations 

by means of discretization; 

 Solution of the algebraic equations. 

The utilities are applications designed to perform tasks that involve data 

manipulation (Greenshields, 2015). There are two types of utilities, the ones used in pre-

processing, which means that they are used in the case study setup and the ones used in 

post-processing, helping in the analyses of the results provided by the simulations 

(Greenshields, 2015; Wuthrich, 2007). The OpenFOAM® framework overall structure is 

represented in Figure 8. 

 

 

 

Figure 8 - Overall structure of OpenFOAM® (Greenshields, 2015). 
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1.2 Motivation 

The coextrusion process is a very important process in a wide range of industries, 

in particular in the rope industry, because it allows the products to be manufactured with 

improved properties combining two or more materials, instead of using only one material 

with the required properties, which is often more expensive. 

As seen in the state of the art, the filament coextrusion is a very complex process, 

that presents intricate challenges, which need to be overcome in order to design suitable 

tools, guarantee high quality in the manufactured products and to ensure a stable process. 

Regarding the design of the die, which is the main objective of this MSc thesis, there are 

two methodologies to optimize the design: the trial and error method, which presents a 

large number of limitations and disadvantages, and the numerical simulation of the 

process. Concerning the numerical simulation of the filament coextrusion, there are only 

a handful of tools that are capable of simulating the process, that demand complex cases 

verification to gain confidence on that tools, but they can provide a precious help to solve 

the inherent process problems and difficulties. 

Considering the previous experience using the computational library 

OpenFOAM® at Minho University and the fact that it has proven his ability to simulate 

processes of several fields, including the polymer processing field, it would be pertinent 

test it and apply it to coextrusion problems, namely filament coextrusion. 

1.3 Objectives 

The main objective of this MSc thesis is to design a multifilament coextrusion die 

for Lankhorst Euronete capable of coextruding a sheath and core filament and fulfil some 

specified requirements, with the support of a numerical code based on the OpenFOAM® 

framework. Prior to the design and to accomplish the main objective, some studies were 

performed: namely, perform a numerical simulation of a benchmark case study described 

in the literature, and compare the results obtained numerically for the extrusion and 

coextrusion (producing sheath and core filaments) of the blends with data collected in 

experimental studies. These preliminary studies were extremely important to verify if the 
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results provided by the OpenFOAM® computational library are accurate and thus gain 

confidence in the capabilities of the tool to simulate the filament coextrusion process. 

1.4 Thesis structure  

This MSc thesis is divided in five major Sections. The present one contains the 

state of the art regarding the main subjects covered on the present study, which helps to 

better understand the filament coextrusion process, the challenges faced in the process 

and the potential solutions available for its optimization. This section also presents the 

motivation and the main objectives of the work. Section 2 comprises the studies 

performed to setup the code verification using a benchmark case study described in the 

literature. Section 3 covers the experimental assessment performed to the numerical code, 

which starts with the methodology used to fit the rheological models of the two material 

blends used to produce the filaments, and is followed by the experimental assessment 

studies undertaken. Section 4 presents the work performed to design a semi-industrial 

multifilament coextrusion die, done with the support of the numerical code. The last 

Section presents the conclusions outlined throughout this MSc project and proposals for 

future work. 
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 VERIFICATION CASE – 2D COEXTRUSION 

This section presents a comparison between results available in the literature and 

computed with the OpenFOAM® framework for two incompressible, isothermal 

immiscible fluids using a volume of fluid (VOF) interface capturing approach. The solver 

used for this type of computations is called interFoam and more information about this 

solver can be obtained in the work of Herreras and Izarra (Herreras & Izarra, 2013). 

The benchmark case study was selected from the paper of Hannachi and Mitsoulis 

(Hannachi & Mitsoulis, 1993) and describes the development of the interface location in 

two-dimensional sheet coextrusion. This paper contains studies describing the two-layer 

coextrusion of polymer solutions in isothermal conditions and the three-layer coextrusion 

in non-isothermal conditions (Hannachi & Mitsoulis, 1993). Only the first was chosen for 

the OpenFOAM® verification studies. 

The case of interest consists on the simulation of a two-dimensional sheet 

coextrusion of two polymer solutions, namely two polyisobutylene mixtures, considering 

incompressible and isothermal flow conditions (Hannachi & Mitsoulis, 1993). Figure 9 

represents schematically the geometry of the coextrusion die used by the authors of the 

paper in their numerical simulations of the sheet coextrusion process. 

Figure 9 - Schematic representation of the double-layer coextrusion die used by Hannachi and Mitsoulis (Hannachi 

& Mitsoulis, 1993) (all design measures are given in mm).   
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 In order to gain insight of the mesh generation tools available, and its impact on 

the results obtained, two alternative tools were used. These results were then compared 

with the results presented in the paper to study the OpenFOAM® solver accuracy and 

reliability.  

2.1 Geometry generation 

Two methodologies were used to obtain the double-layer coextrusion die 

geometry shown in Figure 9. These geometries will later be used to generate the 

computational mesh. 

The first methodology consisted of using the SolidWorks CAD software to 

generate the required geometry and save it in a STEP file. Figure 10 shows two views of 

the geometry created in the software, wherein the dimensions used are equal to the ones 

presented in Figure 9. 

 

 

 

 

After creating the geometry, it is necessary to define the geometry boundaries, 

which was done using the opensource CAD software Salome. For this case study, 

according to Figure 10, the two inlet and the outlet faces are defined with type patch, 

which means that the fluid can enter (inlet) or exit (outlet) the channel through those faces 

(Herreras & Izarra, 2013). The front face and the back face are defined with type empty, 

a boundary condition that instructs OpenFOAM® to solve the problem in 2D. The rest of 

the geometry faces are defined with type wall because, where null velocity is imposed to 

the fluid. Finally, the geometry and the boundaries are saved in a STL file because that’s 

the necessary type of file to generate the mesh in the OpenFOAM® utility called cfMesh 

(Juretić, 2015) (which will be described in the following section). 

Figure 10 - Geometry obtained with the SolidWorks CAD software: a) frontal view; b) isometric view. 

Inlet 1 

Outlet 

 
Inlet 2 

a) b) Front face 

Back face 
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The second mesh generation methodology consists in the division of the geometry 

in blocks, wherein each single block is defined by the coordinates of eight vertices points 

(Greenshields, 2015), as presented in Figure 11. Those coordinates, the boundaries of the 

geometry (the necessary faces are defined by the coordinates of the four vertices points) 

and the mesh features (which will be later explained) are then defined in a blockMeshDict 

file which will be used in the generation of the geometry by the OpenFOAM® utility 

blockMesh (Greenshields, 2015). The geometry boundaries are the same as in the first 

methodology. 

 

 

 

 

 

 

2.2 Mesh generation 

As mentioned before, the geometry created by the first methodology was used to 

generate a mesh by the OpenFOAM® mesh utility called cfMesh. In order to do that, a 

maximum cell size in a meshDict file must be defined, wherein the dimensions of each 

individual computational cell of the mesh cannot exceed the specified value. After that, 

using the cartesian2Dmesh command, a 2D mesh with the defined conditions is generated 

(Juretić, 2015). More information about the generation of meshes using cfMesh can be 

obtained through the cfMesh user guide (Juretić, 2015).  

In order to perform a mesh refinement study 3 meshes were generated, specifying 

for the initial one a maximum cell size of 0.5 mm, and dividing this value by 2 in each 

subsequent mesh. In this way, the coarser mesh (M1) has a maximum cell size of 0.5 𝑚𝑚 

and contains 922 mesh cells, and the more refined mesh (M4) has a maximum cell size 

of 0.0625 𝑚𝑚 and contains 53062 mesh cells. Figure 12 shows the coarser and the more 

refined meshes and Table 1 provides some data of the four meshes generated by the 

cfMesh utility, which was obtained with the checkMesh utility, included in the 

OpenFOAM® framework. 

Figure 11 - Example of the eight vertices points that define one single block of the geometry. 
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Table 1 - Relevant data for all the meshes generated with cfMesh. 

 Mesh 1 (M1) Mesh 2 (M2) Mesh 3 (M3) Mesh 4 (M4) 

Maximum cell 

size (mm) 
0.5 0.25 0.125 0.0625 

Number of 

points 
2054 7308 27692 107732 

Number of 

hexahedra 

cells 

922 3450 13442 53062 

Analysing Table 1 is possible to observe that at each refinement performed the 

number of cells increases circa 4 times, thus quadrupling the number of cells in the mesh. 

Another method used in the mesh generation was through the blockMesh utility. 

With this method it is possible to control the number of cells in each block edge. In order 

to keep the number of cells in each mesh similar to the number of cells of the meshes 

Figure 12 - Meshes created with cfMesh: (a) coarser mesh (M1) and (b) more refined mesh (M4). 

a 

b 
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created by the cfMesh utility, the length and height of each block that composes the 

geometry was divided by the maximum cell size defined for the correspondent cfMesh 

mesh, thus obtaining the number of cells in the x axis and in the y axis for each block, 

required by blockMesh. In the z axis direction de number of cells is equal to 1, so that the 

problem is solved in two dimensions. After setting the blockMeshDict file, the mesh is 

created executing the command blockMesh (Greenshields, 2015). As it was done with the 

previous meshes, the quality and some data regarding the mesh can be obtained through 

the application of the checkMesh utility. In Figure 13 it is represented the coarser mesh 

(M1) and the more refined mesh (M4) and in Table 2 it is represented some data of the 

four meshes created by the blockMesh utility.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 - Meshes created with blockMesh: (a) coarser mesh (M1) and (b) more refined mesh (M4). 

a 

b 
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Table 2 - Relevant data for all the meshes generated with blockMesh. 

 Mesh 1 (M1) Mesh 2 (M2) Mesh 3 (M3) Mesh 4 (M4) 

Number of 

points 
2098 7414 28906 114130 

Number of 

hexahedra 

cells 

952 3520 14080 56320 

Like the meshes created using cfMesh, analysing Table 2 it is possible to conclude 

that in each refinement, the number of cells in the mesh increases circa 4 times. 

Comparing the data in Table 1 and the data in Table 2, it is possible to see that the 

meshes created by the blockMesh utility have a little bit more cells than the respective 

meshes created by the cfMesh utility, despite the efforts to try to keep this number equal 

in both cases. However, the number of cells in both cases are of the same order of 

magnitude for each mesh refinement, which means that similar results are expected to be 

obtained on those similar meshes. 

In terms of quality, all the generated meshes passed the checkMesh utility tests, 

thus they are not expected to affect negatively the results accuracy. 

2.3 Properties of the polymeric blends 

As stated above, the two materials used in the performed simulations are two 

polyisobutylene blends (usually denominated as opannols), designated as P2 and P3 

(Hannachi & Mitsoulis, 1993). Being polymeric materials these blends present non 

Newtonian shear thinning behaviour, which means that the viscosity of the material 

decreases with the increase of the deformation rate. In Figure 14 the rheological curves 

of the materials are represented and analysing the figure is possible to understand that the 

P2 presents a much higher viscosity than the P3. 
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The paper authors used the Carreau model to fit the rheological data, whose 

analytical expression is provided in Equation 1 (Hannachi & Mitsoulis, 1993). 

 𝜂 = 𝜂0[1 + (𝜆�̇�)2]
𝑛−1

2  ( 1 ) 

where 𝜂 (𝑃𝑎. 𝑠) is the viscosity, 𝜂0 (𝑃𝑎. 𝑠) is the viscosity at zero shear rate, 𝜆 (𝑠) is the 

material relaxation time, 𝑛 is the Power Law index and �̇� (𝑠−1) is the shear rate. 

The value of rheological constants of the model are listed in Table 3, where the 

dynamic viscosity has to be converted into the kinematic viscosity because OpenFOAM® 

framework uses the kinematic viscosity for the simulation of incompressible flows. This 

conversion is performed according to Equation 2. 

 

 
𝜐 =

𝜂

𝜌
 ( 2 ) 

where 𝜐 is the kinematic viscosity, 𝜂 is the dynamic viscosity and 𝜌 is the density of the 

material. 

Figure 14 - Rheological curves of the polymer blend P2 and P3 (Hannachi & Mitsoulis, 1993). 
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Table 3 - Rheological constants and density of the materials for the Carreau model. 

 𝜼𝟎 (𝑷𝒂. 𝒔) 𝝊𝟎(𝒎𝟐/𝒔) 𝝀 (𝒔) 𝒏 𝝆(𝒌𝒈/𝒎𝟑) 

P2 1334.9 1.472 0.06520 0.458 907 

P3 102.2 0.112 0.01152 0.577 915 

Another parameter that has to be defined is the surface tension between the two 

materials. Since the paper does not define that value, the default value of interFoam solver 

tutorial which is equal to 0.07 𝑘𝑔/𝑠2 was used. 

2.4 Boundary conditions 

In terms of boundary conditions, the interFoam solver provided by the 

OpenFOAM® framework requires the user to set the velocities of the flow, pressures and 

material volume fraction in the geometry boundaries. 

 Regarding the velocities, in the paper three different cases are illustrated with 

different combinations of inlet mass flow rates. For the runs, these inlet mass flow rates 

had to be transformed in inlet velocities. With some geometrical measures obtained from 

Figure 9 and using Equations 3 and 4, it is possible to obtain the required velocities values. 

 𝑄 =
�̇�

𝜌
  ( 3 ) 

 
𝑣 =

𝑄

𝐴
  

( 4 ) 

where 𝑄 is the volumetric flow rate,  �̇� is the mass flow rate, 𝜌 is the density of the 

material, 𝑣 is the flow average velocity and 𝐴 is the section area of the inlet face. 

Table 4 provide the velocities values employed for each case study, which result 

from the application of the above equations to the mass flow rates given in the comparison 

paper (Hannachi & Mitsoulis, 1993).  
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Table 4 - Inlet velocities for the three cases documented in the paper. 

Case �̇�𝑷𝟑 (𝒈/𝒔) �̇�𝑷𝟐 (𝒈/𝒔) 𝒗𝑷𝟑 (𝒎/𝒔) 𝒗𝑷𝟐 (𝒎/𝒔) 

1 5.56 5.44 0.019 0.029 

2 2.77 15.28 0.01 0.081 

3 22.22 15.28 0.078 0.081 

According to the defined inlets, the velocity vector to be specified in each inlet, 

has only one non null component which is perpendicular to the boundary, which varies 

with the case and the material, in accordance with the information provided in Table 4. 

The outlet velocity is defined as zeroGradient, which means that the velocity gradient at 

the outlet is zero. At the walls the velocity is also defined as fixedValue but it is set to 

zero, due to the standard no slip condition of the fluid at the walls. 

Regarding the pressure field, since the velocity is fixed in the inlets and the walls, 

the dynamic pressure is set to zeroGradient, so that the gradient normal to the faces is 

zero, which enables the pressure to float as the velocity is fixed (Herreras & Izarra, 2013). 

At the outlet, the pressure is defined as being constant and null using the fixedValue 

boundary condition. 

2.5 Results and discussion 

In order to reduce the computational time of the simulations they were performed 

admitting that in the initial instant of the flow the die is already filled by the two materials, 

as illustrated in Figure 15. Then running the simulation with the conditions already stated, 

the flow tends to reach a steady state, where the velocity profiles are stable and it is 

possible to observe the interface developed between the two materials. 

Figure 15 - Initial domain distribution used for all the computational runs: the red field represents the P2 mixture and 

the blue field represents the P3 mixture. 
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After performing a test simulation in order to optimize some parameters required 

by the interFoam solver, by checking the results obtained it was observed that after three 

seconds the flow reached steady stated conditions. For that reason, all the simulations 

were performed for a maximum time of 3 𝑠 and the time step used (including the test 

simulation) was equal to 1 × 10−6 𝑠. Figure 16 shows the materials distribution when the 

equilibrium is reached for the three case studies, with the more refined mesh created using 

cfMesh (in the Appendix A are the results to the corresponding meshes created using 

blockMesh). 

 

 

 

 

 

 

 

 

 

Analysing Figure 16, it can be observed that the less viscous layer (P3 blend) is 

supressed by the one with the higher viscosity (P2 blend) in all the tested cases. In Case 

2, due to the difference between the velocity imposed to the P2 blend and the velocity 

imposed to the P3 blend, the suppression of the P3 mixture is more severe than in the 

other two cases, while in these two cases the suppression of the less viscous layer is more 

or less the same. This domain distribution is a direct outcome of the viscosity differences, 

since the flow domains arranged in order to have the same axial pressure gradient. Since 

P2 has a higher viscosity the layer must be thicker to reduce its velocity and, thus the 

axial pressure gradient, and the opposite occurs for P3. In this way the axial pressure 

gradient is balanced in both domains. 

Showing the location of the domain containing 50% of the both phases, it is 

possible to obtain the coordinates of the interface points and thus compare those with the 

Figure 16 - Steady state flow for 2D coextrusion case study, for the more refined mesh created using cfMesh in: a) 

Case 1; b) Case 2; c) Case 3. 

a) b) 

y 

x 
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interface points presented in the comparison paper (Hannachi & Mitsoulis, 1993). 

Attending to the fact that the paper only possesses a graphical representation of the 

interface points, it was necessary to obtain the coordinates of these points. Those 

calculations were made by the open source software Engauge Digitizer, where defining 

the coordinate system, the software generates the coordinates of a set of points belonging 

to the interface between the two materials. It is important to mention that the figures used 

from the paper are old and with poor resolution, which may lead to some inaccuracy of 

the results. Figures 17, 18 and 19 illustrate the graphics comparing the localization of the 

interface obtained with the OpenFOAM computational library with the results presented 

in the paper.  
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Figure 18 - Interface coordinates for Case 2 (mesh created using cfMesh). 

Figure 17 - Interface coordinates for Case 1 (mesh created using cfMesh). 
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From the previous figures it is possible to observe that in Case 1 and in Case 2, as 

the mesh is refined, the interface position tends to converge to the solution presented in 

the paper (benchmark). In Case 3, the results obtained are converging to a solution that is 

not the solution presented in the paper. This may be explained by an error in the mass 

flow rates provided in the paper.  

Regarding the results obtained with the meshes created by the blockMesh utility, 

they are more or less the same than those obtained for the meshes created with cfMesh, 

not having significant differences between them, as can be seen comparing Figure 17 with 

Figure 20 (in the Appendix B are the graphics for the other cases). 

Figure 19 - Interface coordinates for Case 3 (mesh created using cfMesh). 
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Figure 20 - Interface coordinates for Case 1 (mesh created using blockMesh). 
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In order to ascertain the error between the solution obtained with the 

OpenFOAM® computational library and the solution from the paper, in the cases studied, 

the 𝐿1 error was determined. This value measures the average error between an infinitely 

refined mesh and the real solution. 

The first step in this methodology is to apply the Richardson extrapolation 

technique for a set of points of three different meshes. Through Equation 5 the apparent 

order is computed. 

 

 
𝑝 =

|𝑙𝑛|(𝑇3 − 𝑇2)/(𝑇2 − 𝑇1)||

ln (𝑟)
 ( 5 ) 

where r is the refinement factor (equals to 2) and 𝑇𝑖 is the value of the property in mesh 

𝑖. 

Then, the value obtained for the apparent order of the method can be used to 

compute the extrapolated value of the property in study for an infinitely refined mesh, as 

defined by Equation 6.  

 

 
𝑇𝑒𝑥𝑡 =

(𝑟𝑝𝑇2 − 𝑇3)

(𝑟𝑝 − 1)
 ( 6 ) 

The second part of the methodology consists in finding the 𝐿1 error using Equation 

7, which requires the values calculated for an infinitely refined mesh and the values 

obtained from the paper (admitting those values as the real values), for a set of 100 points. 

 

 
𝐿1 =

∑|𝑇𝑟𝑒𝑎𝑙 − 𝑇𝑒𝑥𝑡|

𝑛𝑝𝑜𝑖𝑛𝑡𝑠
 ( 7 ) 

Table 5 contains the values of the 𝐿1 error for the two types of meshes used in the 

three case studies. 

Table 5 - 𝐿1 errors for the meshes created using cfMesh and blockMesh for the three case studies. 

 Case 1 Case 2 Case 3 

 cfMesh blockMesh cfMesh blockMesh cfMesh blockMesh 

𝑳𝟏 (𝒎𝒎) 0.082 0.092 0.41 0.18 1.34 1.35 
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Analysing the errors value for the three cases, it can be concluded that Case 3 has 

a higher error than the other two cases, which was expected due to the differences between 

the numerical solutions and the paper solutions. In addition, the numerical solutions 

obtained for Case 1 are the ones that are more close to the paper solutions. Regarding the 

differences between the meshes created using cfMesh and blockMesh, we can state that 

the difference between them is very small, so it can be concluded that both meshing 

methods produce very similar results.  

In order to compare the flowlines and confirm the interface results presented 

above, the streamlines of the flow field were assessed. Figures 21 illustrates the results 

achieved by the authors of the paper (Hannachi & Mitsoulis, 1993) and Figure 22 presents 

the results obtained in the more refined meshes generated by cfMesh for the three case 

studies (in Appendix C are the results for the corresponding meshes generated by 

blockMesh). 

 

 

 

 

Figure 21 - Streamlines obtained by Hannachi and Mitsoulis (Hannachi & Mitsoulis, 1993). 
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Analysing Figure 22, it is possible to observe that in the two inlets, due to the mass 

flow rates imposed, the velocity of the P2 blend is higher than the one of the P3 blend in 

Cases 1 and 2, while in Case 3 the velocities of the blends are quite similar. Afterwards, 

the two materials join each other in the die land, and it can be observed that only in Case 

3, where the suppression of the P3 blend is less severe, the parabolic velocity profile in 

this layer can fully develop, since there is a higher velocity near the centre than the 

boundaries of the layer (if the boundary is a wall, usually the velocity is considered null). 

In the other two cases, due to the suppression caused by the P2 blend, the full development 

of the velocity profile of the P3 layer is never completed, which means that at the interface 

between the two materials the velocity is higher. Regarding the velocity profile of the P2 

layer, in all the cases the last one does not develop completely, which as stated above, 

leads to the development of the higher velocity at the interface. 

a) 

b) 

c) 

Figure 22 - Representation of the streamlines (coloured according with the velocity intensity) for the more refined mesh 

created using cfMesh in: a) Case 1; b) Case 2; c) Case 3. 
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Comparing the streamlines in Figure 22 with the streamlines obtained by the 

authors of the paper (see Figure 21), it can be concluded that in Case 1 and 2 the results 

presented in Figure 22 are very similar to the results presented in the paper, shown in 

Figure 21, since the suppression of the less viscous layer is well predicted, the streamlines 

are very steady with very little instabilities and in Case 2 the presence of a recirculation 

region is obtained. As expected in Case 3 the streamlines are slightly different than the 

streamlines presented in the paper, possible due to the reasons stated above. 
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 OPENFOAM® EXPERIMENTAL ASSESSMENT  

In this Section the OpenFOAM® software is used to simulate the extrusion and 

coextrusion of the two blends, in order to produce one material and two material 

filaments, in this last case to obtain sheath and core filaments.  

 The conditions used in the simulations followed the ones employed António 

Abreu and described in his MSc thesis (Abreu, To be published), in order to assess 

experimentally the numerical results and gain more confidence in the simulation 

capabilities in complex processes of the OpenFOAM® framework. 

3.1 Rheological models and properties of the blends 

In order to perform the simulation of the processes mentioned before, it is 

necessary to obtain the rheological data and other physical properties of the blends. 

To obtain the blends flow curves, they were characterized using parallel plate, for 

low shear rates, and capillary rheometry, for high shear rates. Given the experimental 

procedures and results described in António Abreu MSc thesis (Abreu, To be published), 

the following step was to fit the experimental measurements to an adequate constitutive 

model.  

The time-temperature superposition principle was applied to extend the 

characterization window of the material, making possible to calculate the viscosity at any 

temperature from the viscosity at a reference temperature (Carneiro & Nóbrega, 2012).  

The models used to fit all the rheological data points were constituted by the 

Carreau model, and also for the data points at higher shear rates by the Power Law model 

(which will be used to compute the pressure drop in a missing zone of the geometry used 

in Section 3.3), in order to account the effect of the shear rate on viscosity, and the 

Arrhenius law to consider the temperature effect. Equation 8 states the Arrhenius law, 

and Equations 9 and 10 define the Carreau/Arrhenius and Power Law/Arrhenius model, 

respectively. 
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 𝑎𝑇 = 𝑒
𝐸
𝑅

(
1
𝑇

−
1

𝑇𝑅𝑒𝑓
)
 ( 8 ) 

where 𝐸 (𝐽/𝑚𝑜𝑙) is the material activation energy, 𝑅 (𝐽/𝐾. 𝑚𝑜𝑙) is the gas constant, 

𝑇 (𝐾) is the temperature and 𝑇𝑅𝑒𝑓 (𝐾) is the reference temperature. 

 

 

 

𝜂 = 𝜂0𝑎𝑇[1 + (𝜆𝑎𝑇�̇�)2]
𝑛−1

2  

( 9 ) 

where 𝜂 (𝑃𝑎. 𝑠) is the viscosity, 𝜂0 (𝑃𝑎. 𝑠) is the viscosity at zero shear rate, 𝜆 (𝑠) is the 

material relaxation time, 𝑛 is the Power Law index, 𝑎𝑇 is the shift factor and �̇� (𝑠−1) is 

the shear rate. 

 

 
𝜂 = 𝑘(𝑎𝑇�̇�)𝑛−1 ( 10 ) 

where 𝑘 (𝑃𝑎. 𝑠𝑛) is the consistency index. 

Using the Excel software, the equations mentioned above were applied to the 

rheological data points for each blend and for three temperatures (210℃, 230℃ which is 

the reference temperature and 260℃) as described in António Abreu MSc thesis (Abreu, 

To be published). The procedure used to obtain the models rheological constants consist 

in optimizing the rheological constants using the Excel tool Solver to minimize the 

differences between the viscosity values obtained experimentally and by the fitting 

models. To do so, the Solver algorithm was set to use evolutionary methods, thus 

providing the best possible results. Table 6 shows the rheological constants for the 

Carreau model of the blends and Table 7 the constants for the Power Law model. 

Table 6 - Rheological constants for the Carreau model. 

 𝜼𝟎 (𝑷𝒂. 𝒔) 𝝀 (𝒔) 𝒏 𝑬 (𝑱/𝒎𝒐𝒍) 

Blend A 14684.43 0.498 0.23 20690.09 

Blend B 9239.17 0.73 0.309 38734.86 
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Table 7 - Rheological constants for the Power Law model. 

 𝒌 (𝑷𝒂. 𝒔𝒏) 𝒏 𝑬 (𝑱/𝒎𝒐𝒍) 

Blend A 24998.16 0.23 20690.09 

Blend B 11416.38 0.31 38734.86 

The values obtained were used to plot the flow curves for the two blends. In 

Figures 23 and 24 are illustrated the flow curves using the Carreau/Arrhenius model for 

Blend A and Blend B, respectively. 

Plotting the viscosity curves of the two blends at the reference temperature 

(230℃), as shown in Figure 25, it is possible to confirm that the two blends have a slight 

viscosity mismatch between them, and that Blend A is more viscous than Blend B. 

However, the viscosity mismatch between the two blends is relatively small and it should 
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Figure 23 - Viscosity curves using the Carreau model for Blend A. 
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Figure 24 - Viscosity curves using the Carreau model for Blend B. 
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not cause significant instabilities in the coextrusion process, especially if Blend A is the 

inner material of the filament. 

 

Besides rheological data, the OpenFOAM® solvers also need some properties of 

the blends like density (𝜌), thermal conductivity (𝑘) and specific heat capacity (𝑐) to run 

the case. Because the materials in this study are blends of two polymers, the law of 

mixtures presented in Equation 11 can be applied in order to determine the required 

properties. 

 

 
𝑃𝑏 = 𝑥𝑃1 + (1 − 𝑥)𝑃2 ( 11 ) 

where 𝑃𝑏 is the property in study for the blend, P1 and P2 are the specific properties for 

material 1 and material 2 and 𝑥 is the relative content of material 1. 

Table 8 shows the percentages of each polymer that constitutes each blend and all 

the properties that have been calculated through Equation 11, using typical values of the 

properties for each polymer in study.  

Table 8 - Relative content of blend materials and the properties calculated using the law of mixtures. 

 % 𝑷𝟏 % 𝑷𝟐 𝝆 (𝒌𝒈/𝒎𝟑) 𝒌 (𝑾/𝑲. 𝒎) 𝒄 (𝑱/𝒌𝒈. 𝑲) 

Blend A 70 30 937.9 0.375 1980 

Blend B 30 70 919.1 0.275 1820 

Figure 25 - Viscosity curves using the Carreau model for Blend A and B at 230℃. 
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For the numerical runs, namely the extrusion case in Section 3.2, the solver needs 

some additional materials constants, that depend on the previous ones presented, namely 

the thermal diffusivity coefficient (𝐷𝑇) calculated using the values in Table 8 and alpha 

(𝛼) which is calculated using the activation energy of the materials presented in Table 6 

and the perfect gas constant (𝑅). Equations 12 and 13 defines, respectively, the thermal 

diffusivity coefficient and the alpha value.  

  

 

 
𝐷𝑇 =

𝑘

𝜌𝑐
 ( 12 ) 

 

 
𝛼 =

𝐸

𝑅
 ( 13 ) 

Table 9 presents the values computed for these constants for each blend used. 

Table 9 - Values of the thermal diffusivity coefficient and the alpha for the Blend A and B. 

 𝑫𝑻 (𝒎𝟐/𝒔) 𝜶 (𝑲) 

Blend A 2.019 ∗ 10−7 2489.782 

Blend B 1.64 ∗ 10−7 4661.235 

The viscosity model, the respective rheological constants of the model for the two 

blends, and the properties computed before were used to define the blends physical 

behaviour in the performed simulations.  

3.2 Extrusion of Monofilaments 

The extrusion of each blend was made in order to obtain one material filaments, 

later the same filaments were subject to mechanical tests to quantify their mechanical 

properties, as described in António Abreu MSc thesis (Abreu, To be published). For 

assessment purposes, the extrusion process was then simulated using a single phase 

solver, developed by Ananth Rajkumar et al. and it is described and explained in the 

respective paper (Rajkumar et al., Accepted for publishing).  
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3.2.1 Geometry and operating conditions 

The extrusion die used in the extrusion process was an existent extrusion die in 

the Polymer Engineering Department. The 3D geometry of the die is partially represented 

in Figure 26. 

Using the 3D model represented above in the CAD software SolidWorks it was 

possible to obtain the flow channel geometry, where the polymer flows, which is 

necessary to construct the modelling domain and the respective mesh. For that, the tool 

used was the Cavity tool provided by the SolidWorks software, which is able to create a 

negative of the channel in a previously created block, as illustrated in Figure 27. 

 

 

 

 

 

 

Figure 26 - 3D geometry of the extrusion die used in the extrusion process. 

Figure 27 - Geometry of the extrusion die flow channel. 
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The channel has a circular geometry, where the inlet diameter is equal to 30 𝑚𝑚, 

the outlet diameter is 1.1 𝑚𝑚 and the length of the channel is 99.32 𝑚𝑚. Analysing 

Figure 27, it is possible to observe that the channel has three constant section regions, 

intercalated by two convergent regions.  

Regarding to the operating conditions, the mass flow rate used in the experimental 

procedure was 94.32 𝑔/ℎ and the temperature of the heating bands was set to 230 ℃ , a 

temperature higher enough to allow the melting and flow of the two types of polymers 

that compose the employed blends. 

3.2.2 Mesh and boundary conditions 

Observing Figure 27, it is possible to understand that the channel is axi-

symmetrical. This fact can be used to simplify the computational mesh employed and 

thus reduce the simulation time. Thus, applying the right patches to the mesh 

(Greenshields, 2015), it is possible to simulate only one small slice of the geometry and 

still get results as if the whole geometry had been simulated. 

The mesh required for running the simulation was build using the blockMesh 

OpenFOAM® utility. A slice of 5° was used to represent the full flow channel. In Figure 

28 are presented two views of a slice of the channel used in the simulations and the 

boundary conditions defined. 

 

 

 

 

 

 

 

 

 

 



Development of a coextrusion system of multifunctional filaments for the production of high performance ropes 

40 

 

 

 

 

 

 

 

 

Finally, to create the mesh, the utility needs the number of cells that each block 

should contain in each of the three directions of the Cartesian coordinate system, and the 

patches of every outside face in each block.  

Regarding the number of cells, for the y axis the number was calculated 

considering the length of each block in order to obtain an equal ratio between the number 

of cells and the length, in the z axis the number of cells was kept constant in all the blocks 

and in the x axis all the blocks have only one cell, as required by an axisymmetric model.  

Concerning the boundary patches presented in Figure 28, the upper surface was 

defined as wall, the inlet (left surface with the higher diameter) and the outlet (right 

surface with the lower diameter) was defined as patch. The front and the back surface 

were defined as wedge and a symmetric axis was defined in order to define an axi-

symmetric geometry (Greenshields, 2015). 

  

Figure 28 - Slice of the flow channel used in the simulations: (a) frontal view and (b) isometric view. 
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For this case study the blockMesh utility was used to generate de mesh. Three 

meshes were created being the first mesh (M1) the coarsest mesh and the third mesh (M3) 

is the refined, both illustrated in Figure 29, comprising 1362, 5448 and 21792 

computational cells. The refinement performed was accomplish by doubling the number 

of cells in each direction (except in the x axis direction), thus quadrupling the number of 

cells in the computational mesh, as it can be concluded comparing the computational cell 

values mentioned above. 

Regarding to the boundary conditions, the solver requires to specify the velocity, 

the pressure and the temperature at all the different boundaries. In terms of velocity, 

considering the mass flow rate used in the experimental procedure, the diameter of the 

inlet and using Equations 3 and 4, it is possible to calculate the inlet velocities for both 

blend. Table 10 lists the inlet velocities obtained. 

Table 10 - Inlet velocities of the Blend A and B in the extrusion process. 

 Blend A Blend B 

Mass flow rate (𝒈/𝒉) 94.32 94.32 

Density (𝒌𝒈/𝒎𝟑) 937.9 919.1 

Inlet velocity (𝒎/𝒔) 3.95 × 10−5 4.03 × 10−5 

Thus, since this is again a steady state case study, the velocity at the inlet is set to 

fixedValue with the corresponding value presented in Table 10. The outlet velocity is 

defined as fully developed (zeroGradient), which means that the velocity gradient at the 

Figure 29 - Meshes used in the simulations of the extrusion of the filaments: (a) coarser mesh (M1) and (b) more refined 

mesh (M3). 

a 

b 
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outlet is zero and at the walls the velocity is also defined as fixedValue but it is set to zero, 

because it was admitted that there is no slip between the fluid and the die wall. 

In terms of pressure, since the velocity is fixed in the inlets and the walls, the 

pressure in this boundaries is set to zeroGradient and the outlet pressure is set as 

fixedValue and equal to zero. 

The temperature was imposed in the inlet and in the boundary defined as wall (top 

surface of the geometry) in order to simulate the effect of heat provided by the heating 

bands in the flow and is set to 503.15 𝐾 (230 ℃), which is the temperature used in the 

extrusion process. At the outlet the temperature distribution is assumed to be fully 

developed, thus this boundary is set to zeroGradient.  

In all the boundary conditions mentioned before, the front and the back surface of 

geometry were defined as wedge and the symmetric axis, a face with null area that 

corresponds to a single edge, was defined as empty. 

3.2.3 Results and discussion 

In order to define the simulation time, it was performed a test simulation wherein 

the end time was defined as 2 seconds and was used a time step equal to 1 × 10−4 𝑠 

seconds. The residuals of the variables of this simulation were plotted to found out 

whether the time simulated is sufficient for the residuals (error in the solution obtained) 

stabilize at low values, thus ensuring an accurate solution. Figure 30 it shows the 

evolution of the simulation residuals for all the variables in study during the time 

simulated (each iteration corresponds to 1 × 10−4 𝑠). 

 

 

 

Figure 30 - Evolution of the residuals along the simulated time in the extrusion process. 
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Analysing the previous figure, it is possible to observe that after 0.2 𝑠 (2000 

iterations) the residuals tend to stabilize at low values, except the velocity along the x axis 

which stabilizes at higher residual values because the geometry used is a wedge geometry.  

To found out if the extrusion process reaches stable conditions, it was checked the 

evolution of the velocity, pressure and temperatures values along the simulated time in 

three different points of the domain, wherein Point 1 is near the inlet, Point 2 is at the 

middle of the channel and Point 3 is at the outlet, as presented in Table 11 (the temperature 

does not fluctuate in any instant of time, so its values were not presented in Table 11). 

Table 11 - Evolution of the velocity and pressure values in three different points along the simulated time. 

 

 

 

 

Analysing Table 11, it is possible to conclude that in all points tested the velocity 

and the pressure values stabilize at more or less 0.5 𝑠. 

Considering all that, the two seconds simulated is more than enough for the 

simulation to achieve stable conditions and to ensure a solution with a high degree of 

accuracy. Therefore, it was used an end time of 2 𝑠 and a time step of 1 × 10−4 𝑠 in all 

the simulations performed. 

The results obtained from the simulation for the pressure, the velocity and the 

temperature fields developed along the die for the two blends in study are presented in 

Figures 31, 32 and 33 using the mesh M3.  

 

 

 

 

 

 

 

 Point 1 Point 2 Point 3 

Time (s) U (m/s) P (MPa) U (m/s) P (MPa) U (m/s) P (MPa) 

0 0 0 0 0 0 0 

0.5 7.6 × 10−5 9.561 0.0002 9.559 0.04 0 

1 7.6 × 10−5 9.561 0.0002 9.559 0.04 0 

1.5 7.6 × 10−5 9.561 0.0002 9.559 0.04 0 

2 7.6 × 10−5 9.561 0.0002 9.559 0.04 0 
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Figure 31 - Pressure field predicted by the code along the die during the extrusion process of the Blend A (a) and Blend 

B (b). 

a 

b 

Figure 32 - Velocity field predicted by the code along the die during the extrusion process of the Blend A (a) and Blend 

B (b). 

b 

a 
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Regarding the pressure and velocity fields it is possible to observe that only in the 

parallel zone there is a significant change in the data values, due to the decrease in the die 

cross section area which causes an acceleration of the material, increasing the velocity 

and the pressure drop. Through the figures it can be pointed out that the total pressure 

drop in the die channel is circa 9.6 𝑀𝑃𝑎 for Blend A and 6.7 𝑀𝑃𝑎 for Blend B. The outlet 

velocity has a value more or less equal for the two blends which is 0.0405 𝑚/𝑠 

(2.43 𝑚/𝑚𝑖𝑛) for Blend A and 0.0441 𝑚/𝑠 (2.65 𝑚/𝑚𝑖𝑛) for Blend B. In terms of 

temperature distribution, analysing Figure 33, it is possible to conclude that there is no 

significant viscous dissipation during the flow, since the temperature remains almost 

constant along the domain in all cases. 

Using the pressure field results of each material obtained for each one of the three 

meshes, it’s possible to obtain the value of the pressure in the exact spot where the 

pressure sensor is located. The pressure values obtained numerically on the three meshes 

were used to obtain the pressure value for an infinitely refined mesh, by following the 

Richardson extrapolation technique. In addition, the experimentally measured pressure 

values were compared with the numerical values doing the relative error between them. 

The results for the processing cases studied are presented on Table 12.  

Figure 33 - Temperature field predicted by the code along the die during the extrusion process of the Blend A (a) and 

Blend B (b). 

a 

b 



Development of a coextrusion system of multifunctional filaments for the production of high performance ropes 

46 

Table 12 - Pressures obtained using the simulations and experimentally in the same spot and the error between them. 

 𝑷𝑴𝟏 (𝑴𝑷𝒂)  𝑷𝑴𝟐 (𝑴𝑷𝒂) 𝑷𝑴𝟑 (𝑴𝑷𝒂) 𝑷∞ (𝑴𝑷𝒂) 𝑷𝒓𝒆𝒂𝒍 (𝑴𝑷𝒂) 𝑬𝒓𝒓𝒐𝒓 (%) 

Blend 

A 
9.56 9.66 9.67 9.68 10.91 11.31 

Blend 

B 
6.67 6.72 6.73 6.73 9.24 27.2 

The difference between the pressure computed on the infinitely refined mesh (𝑃∞) 

and the one computed on the more refined mesh (𝑃𝑀3) is very small. In particular, for 

Blend B that difference is imperceptible due to the number of decimal places used for the 

values shown in Table 12. Thus, it can be concluded that the more refined mesh produces 

good results being very close to the ideal computational solution. 

The pressure measured experimentally (𝑃𝑟𝑒𝑎𝑙) presented in Table 12 for each 

blend is the average value computed using all the pressure data obtained. Beside the 

average values, it was also computed the standard deviation of each set values, obtaining 

a standard deviation of 0.38 𝑀𝑃𝑎 (4.1%) for Blend A and 0.12 𝑀𝑃𝑎 (1.8%) for Blend 

B. Comparing the computational solution for each blend with the respective experimental 

pressure, the relative error between the two values computed was 11.31% for Blend A 

and 27.2% for Blend B. Those two values are off the range of the experimental error 

obtained, which could be related to any mistake made in the experimental measurements, 

namely, in the pressure sensor calibration. 

3.3 Coextrusion of the blends 

In this Section it will be explained the simulations performed in order to describe 

the coextrusion process of the blends, whose main objective is to produce multifunctional 

filaments where Blend A is used to form the sheath and Blend B composes the core of 

the filaments. The simulations were performed using the multiphase solver interFoam 

which provides data about the pressure field, velocity field and interface between the 

materials and which was later compared with experimental results. All the experimental 

procedure and the experimental results achieved could be consulted in detail in António 

Abreu MSc (Abreu, To be published). 
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3.3.1 Geometry and operation conditions 

The coextrusion die used in the experimental procedure was the same that Martins 

and his co-workers (Martins et al., 2014) employed in their experiments. The 3D model 

of that coextrusion die inner modules is presented in Figure 34. 

The process that has been used to obtain the geometry of the flow channels 

contained in the die was the same process used to obtain the channels in the extrusion die 

described in Section 3.2.1. In Figure 35 it is possible to observe the flow channel of the 

original coextrusion die. 

 

 

 

 

 

 

 

 

The original setup of the coextrusion die allows the production of filaments with 

three layers, where the material that enters inlet 1 is used to form the core and the sheath 

Figure 34 - 3D model of the coextrusion die modules used to produce the multifunctional filaments. 

Figure 35 - Geometry of the flow channels of the original coextrusion die. 

Inlet 1 

Inlet 2 

Outlet 
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of the filament and the material that enters inlet 2 forms the intermediate layer, as can be 

seen from Figure 35. Taking advantage of the modular design of this die, some changes 

in the modules configuration were made in order to obtain a die setup capable to produce 

filaments with only two layers (sheath and core), without changing the diameter of the 

manufactured filaments which is 3 𝑚𝑚 and keeping the two inlets and the outlet as 

presented in Figure 35. Two configurations of the modules that allow to obtain the desired 

filaments were considered. Configuration 1 consists in blocking the flow of the outer 

layer, as it can be observed in Figure 36. 

 

 

While Configuration 2, the only modification made to the die was to redirect the 

sheath material to the second distributor (extending the channel), where the two materials 

will join, forming the filament, and the core material was directed to the central channel 

and to the first distributor, as illustrated in Figure 37. 

 

 

 

 

 

 
Figure 37 - Geometry of the coextrusion die flow channels using Configuration 2. 

Figure 36 - Geometry of the coextrusion die flow channels using Configuration 1. 
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The two configurations will be simulated in order to identify the configuration 

that allows a more stable process, thus producing filaments with the best possible 

properties and characteristics. 

Regarding to the operating conditions, the mass flow rate used in all the filament 

coextrusion simulations performed in this section was equal to the one used in the 

experimental procedure, which was 729.12 𝑔/ℎ. 

3.3.2 Mesh and boundary conditions 

The required meshes to run the simulations were created using the utility cfMesh, 

since the geometries used (Configuration 1 and Configuration 2) are quite complex. For 

that two STL file that contains the geometry data of the flow channel for each 

configuration, was generated with the help of SolidWorks. The subsequent step in the 

process was the definition the geometry boundaries using the opensource CAD software 

Salome.  

According to Figure 35, the two inlets and the outlet faces are defined with type 

patch, which means that the fluid can enter (inlet) or exit (outlet) the channel through 

those faces. The rest of the geometry faces are defined with type wall, in which a null 

velocity must be imposed. Those boundaries must be saved in a STL file that will be used 

by cfMesh to create the mesh. 

The maximum cell size defined for the first mesh (M1) created was 0.15 𝑚𝑚, 

then in order to perform a mesh refinement study, two more meshes were created applying 

a mesh refinement factor equal to 1.5. This means that at each refinement done the 

number of cells increases circa 3.2 times.  

In order to provide a visual information about the detail of the refinement of the 

created meshes, in Figures 38 are presented the coarsest and the more refined meshes of 

the Configuration 2 geometry. Table 13 provides some data about these three meshes, 

being possible to observe the maximum cell size used and the increase of mesh cells in 

each mesh refinement. 
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Figure 38 - Meshes created using Configuration 2 geometry: (a) coarser mesh (M1) and (b) more refined mesh (M3). 

a 

b 
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Table 13 - Relevant information about the meshes created using Configuration 2. 

 Mesh 1 (M1) Mesh 2 (M2) Mesh 3 (M3) 

Maximum cell 

size (mm) 
0.15 0.1 0.067 

Number of 

points 
663644 2072491 6477170 

Number of 

cells 
590961 1907738 6106561 

In terms of boundary conditions, the pressure and the velocity in all the different 

boundaries must be defined. Regarding the velocity, only in the two inlets is mandatory 

to compute de velocities, since it is assumed that there is null velocity at the walls and at 

the outlet the velocity is equal to the known velocity of the last mesh cell (zeroGradient). 

In order to compute the inlet velocity for each blend, Equations 3 and 4 were used with 

the respective inlet diameters (2.1 𝑚𝑚 for the Blend B inlet and 1.5 𝑚𝑚 for the Blend A 

inlet), the total mass flow rate and the percentage of each material in the filament (67% 

of Blend B and 33% of Blend A), which should be used to compute the mass flow rate 

of each individual blend. Table 14 summarizes the values obtained. 

Table 14 - Inlet velocities of the Blend A and B in the coextrusion process. 

 Inlet 1 (Blend B) Inlet 2 (Blend A) 

Total mass flow rate (𝒈/𝒉) 729.12 

Percentage (%) 67 33 

Mass flow rate (𝒈/𝒉) 488.51 240.61 

Density (𝒌𝒈/𝒎𝟑) 919.1 937.9 

Inlet velocity (𝒎𝒎/𝒔) 10.7 10.1 

In terms of pressures, since the velocity is fixed at the inlets and walls, the pressure 

in this boundaries is set to zeroGradient and the outlet pressure is set as fixedValue and 

has a value equal to 0. 
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3.3.3 Results and discussion 

Selection of the channels geometry configuration 

The two configurations described above were tested to identify the configuration 

that allows a more stable process thus producing filaments with a stable interface between 

the two materials. Only one simulation was performed for each configuration, using the 

coarser mesh (M1) parameters. The end time of the simulations was set to 9 seconds and 

with a time step equal to 1 × 10−4 seconds. The simulation was performed using the 

adjustable time step option, which as the name implies, adjusts the time step in order to 

obtain convergence as soon as possible, thus minimizing the computational time. So the 

time step used was approximately 6.4 × 10−4 seconds. 

Figure 39 shows the interface between the two materials at the exit of the die for 

two different simulation times, using Configuration 1. Figure 40 shows the flow of the 

materials along the coextrusion die using configuration 1. 

 

 

 

 

 

 

 

 

a b 

Figure 39 - Interface between the two materials at the die exit at (a) 7 seconds and at (b) 9 seconds for configuration 

1. 

Figure 40 - Flow along one transversal section of the coextrusion die using configuration 1. 
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From Figure 39 it can be observed that the interface between the sheath and the 

core material does not remain constant over time. The geometry used promotes prolonged 

contact between the two materials, which together with the viscosity difference between 

the two blends causes the appearance of a wave like flow in the die parallel zone, as it 

possible to observe in Figure 40, causing distortions in the interface. Considering the 

results achieved, it is possible to conclude that a geometry that promotes a less prolonged 

contact between the blends will be most suitable. 

The simulation results for the Configuration 2 are represented in Figures 41 and 

42, wherein in Figure 41 shows the interface between the two materials at the exit of the 

die for two different simulation times and in Figure 42 it is represented the flow of the 

materials along a transversal section of the die.  

 

 

 

 

 

 

 

 

 

 

The interface of the sheath and core is more stable than the interface developed 

using configuration 1, but still presents very small variations with the time as Figure 41 

shows. Analysing Figure 42 it is possible to observe that the flow is much more regular 

a b 

Figure 41 - Interface between the two materials at the die exit at (a) 7 seconds and at (b) 9 seconds for configuration 

2. 

Figure 42 - Flow along one transversal section of the coextrusion die using configuration 2. 
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and presents less instabilities, which contributes to achieving a more regular interface 

between the core and the sheath, and thus grants filaments with the best properties 

possible. Attending to this results, the Configuration 2 was used in all the filament 

coextrusion simulations hereafter.  

Selection of the minimum end time of the simulations 

Before run the remaining simulations, using the simulation of the Configuration 

2 presented in the previous point, it was assessed what is the minimum time to be 

simulated that ensure a stable process, which was mainly done to save computational 

effort (due to the high number of cells in the created meshes).  

Firstly, the residuals were plotted in order to find out whether the time simulated 

is sufficient for the same stabilize, thus achieving an accurate solution. Since the solver 

used (interFoam) primarily solves the pressure correction equation and then corrects the 

velocity field, the usual calculation of the momentum predictor, shown to be detrimental 

for convergence (Henry, 2005), thus only the residuals of the pressure are available for 

analysis. In Figure 43 the evolution on the simulation residuals during time can be 

observed. 

Through the analyses of Figure 43, it is possible to observe that after more or less 

0.64 𝑠 (1000 iterations) the pressure residuals tend to stabilize at low value, thus ensuring 

an accurate solution.  

Figure 43 - Evolution of the residuals along the simulated time in the coextrusion process. 
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But checking the interface geometry at the outlet, the pressure and the velocity 

along the simulated time it was observed that the interface and the pressure do not 

stabilize, presenting small changes over time. In Table 15 are presented the pressure and 

velocity values for four different points of the domain along the simulated time, whose 

locations are presented in Figure 44. 

Table 15 - Evolution of the velocity and pressure values in four different points along the simulated time. 

 Point 1 Point 2 Point 3 Point 4 

Time (s) U (m/s) P (MPa) U (m/s) P (MPa) U (m/s) P (MPa) U (m/s) P (MPa) 

0 0 0 0 0 0 0 0 0 

1 0.016 4.6 0.017 1.61 0.031 1.33 0.052 0.488 

2 0.016 4.63 0.017 1.63 0.031 1.34 0.052 0.49 

3 0.016 4.61 0.017 1.61 0.031 1.33 0.052 0.491 

4 0.016 4.62 0.017 1.62 0.031 1.33 0.052 0.49 

5 0.016 4.61 0.017 1.62 0.031 1.34 0.052 0.489 

6 0.016 4.59 0.017 1.6 0.031 1.32 0.052 0.486 

7 0.016 4.61 0.017 1.62 0.031 1.33 0.052 0.488 

8 0.016 4.62 0.017 1.61 0.031 1.33 0.052 0.49 

9 0.016 4.61 0.017 1.62 0.031 1.33 0.052 0.489 

Analysing Table 15, it is possible to observe that in all four points the velocity 

stabilizes at circa 1 𝑠 and although the pressure values are floating, the differences 

between these are not very significant.   

Regarding the interface, analysing the results was noticed that from 4.5 seconds 

the changes in the interface location were residual, as it can be observed through Figure 

45, that shows the interface location after 2.5, 4.5 and 5.5 seconds. 

 

 

 

Point 1 Point 2 

Point 3 

Point 4 

Figure 44 - Location of the four points of the domain used. 
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Considering all the facts stated above, the minimum time that permits to reach a 

steady process for the processing conditions simulated in the next case studies was 

defined as 4.5 𝑠. 

Assessment of the pressure drop prediction capabilities  

The first computational result to be compared with the experimental one was the 

pressure field. The pressure drop along the coextrusion die obtained with the more refined 

mesh is shown in Figure 46. 

Analysing Figure 46 it is possible to conclude that the pressure decreases 

smoothly and monotonically along the flow channel. 

In order to compare the pressure drop measured experimentally with the 

equivalent obtained using the simulations, it is necessary to obtain the pressure at the 

exact local where the sensor pressure was mounted. The sensor was mounted in the 

Figure 46 - Pressure drop along the coextrusion die obtained with the more refined mesh. 

Figure 45 - Interface location between the two materials at 2.5 seconds (a), at 4.5 seconds (b) and at 5.5 seconds (c). 

b a c 
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channel that transports the blend used to produce the core of the filament and in a section 

of the channel that was not represented in the 3D file of the die, thus it was not possible 

to include that section in the geometry used in the simulations presented in Figure 37. 

Hence, the presure drop in the missing channel region, which has a length of 40 𝑚𝑚, was 

computed through Equation 14 (Carneiro & Nóbrega, 2012), which represents the total 

pressure drop in a circular channel, using the Power Law constants for Blend B and that 

value was added to the pressure provided by the simulation for the last superior point in 

the inlet of the blend. 

 

 
∆𝑃 =

2𝑘𝐿

𝑅(3𝑛+1)
(

4𝑄

𝜋
)

𝑛

 ( 14 ) 

where ∆𝑃 (𝑀𝑃𝑎) is the pressure drop, 𝑘 (𝑃𝑎. 𝑠𝑛) is the consistency index, 𝐿 (𝑚) is the 

length of the channel, 𝑅 (𝑚) is the radius of the channel, 𝑛 is the Power Law index and 

𝑄 (𝑚3/𝑠) is the flow rate of the Blend B. 

The pressure values at the die inlet and the pressure drop corrected using Equation 

14 are given in Table 16. 

Table 16 - Values of pressure at the die inlet, in the missing section and the corrected pressure. 

 Mesh 1 (M1) Mesh 2 (M2) Mesh 3 (M3) 

Pressure drop at the 

inlet (𝑴𝑷𝒂) 
4.91 4.94 4.98 

Pressure drop in the 

additional region 

(𝑴𝑷𝒂) 

1.11 

Total pressure drop 

(𝑴𝑷𝒂) 
6.02 6.05 6.09 

Analysing the total pressure drop obtained in the three meshes, it is possible to 

observe that all the values are almost coincident, which means that the solutions are 

almost independent of the degree of refinement in the mesh. 

The values of the corrected pressure were plotted in a graph of pressure in function 

of the mesh cell size. The points were approximated with a quadratic function, where the 
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point that intercepts the y axis corresponds to the pressure value in an infinitely refined 

mesh. The graph in study is illustrated in Figure 47 (both axes are in logarithmic scale). 

Through the analysis of Figure 47, it is possible to conclude that the points 

represented fit perfectly to a quadratic function, wherein the determination coefficient 

(𝑅2) is 1 which means that the error between the function and the three points is null. 

Using the equation of the quadratic function shown in the graph, the interception of the 

function with the y axis represents an extrapolation of the value for a mesh with null cell 

size, a methodology similar to the Richardson extrapolation. In this way, the pressure 

drop value obtained in the infinitesimally refined mesh is 6.26 𝑀𝑃𝑎. 

The solver accuracy to predict the pressure drop value can be assessed by 

computing the relative error between the extrapolated pressure drop to the infinitely 

refined mesh and the experimental pressure value, which has a value of 6.19 𝑀𝑃𝑎.  The 

error obtained has a value of 1.13%, meaning that the solver gives a good prediction of 

the pressure drop along the die. 

Assessment of the interface prediction capabilities  

Regarding the interface location results, the methodology described and used in 

Section 1 to isolate the interface points was also applied in this case study, to identify the 

interface points coordinates at the outlet (the interface can be observed on Figure 45b). 

Those points were then plotted in a graph presented in Figure 48. 

 

y = 10 825 286,60x2 - 3 221,70x + 6,26
R² = 1,00

1

10

0,00001 0,0001 0,001

P
re

ss
u

re
 (

M
P

a)

Mesh cell size (mm)

Pressure vs Mesh cell size

Figure 47 - Pressure in function of the mesh cell size. 
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The interface locations obtained in the three meshes are almost coincident, which 

means that the solutions are almost independent of the degree of refinement in the mesh. 

In addition, it was found that the interface centre location is not equal to the centre of the 

channel. To quantify and study the centre and the eccentricity of the interface in the two 

blends, the interface points were fitted to the equation of an ellipse, given by Equation 

15, using the Solver tool provided with Microsoft Excel. 

 

 

 
(

𝑥 − ℎ

𝑎
)

2

+ (
𝑦 − 𝑘

𝑏
)

2

= 1 ( 15 ) 

where ℎ and 𝑘 are the ellipse centre coordinates, and 𝑎 and 𝑏 are the ellipse semi axis. 

Table 17 presents the values of the ellipse constants for the three meshes used, 

and also the extrapolated values using Richardson extrapolation, i.e., for an infinitely 

refined mesh.  
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Figure 48 - Interface location at the outlet in each mesh used. 
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Table 17 - Constants of the ellipse equation for all meshes and the ones calculated using the Richardson extrapolation. 

 Mesh 1 (M1) Mesh 2 (M2) Mesh 3 (M3) 
Richardson 

extrapolation 

𝒉 (𝒎𝒎) −0.11 −0.097 −0.0962 −0.0961 

𝒌 (𝒎𝒎) −0.1 −0.096 −0.093 −0.092 

𝒂 (𝒎𝒎) 1.04 1.02 1.01 1 

𝒃 (𝒎𝒎) 1 1.011 1.009 1.01 

As stated before it can be seen, from the results presented on Table 17, that the 

interface centre is slightly off the channel centre, since the ℎ and 𝑘 constants are not null. 

In addition, it was found that the interface centre is deviated circa 0.1 mm in the negative 

x-axis and y-axis in relation to the channel centre.  As the constants 𝑎 and 𝑏 are slightly 

different from each other it is possible to compute the ellipse eccentricity (e), through 

Equation 16. 

 

 

√𝑎2 − 𝑏2

𝑎
= 𝑒 ( 16 ) 

The value of 𝑒 computed, using the extrapolated constants values, is 0.14, which 

confirms that the interface is not a circumference, for which the 𝑒 value is 0. 

Using the constants calculated with the Richardson extrapolation it is possible to 

plot the equation of the ellipse in order to compare that interface with a picture of the 

filament cross section produced experimentally. Figure 49 represents the interface 

between the two blends through the equation of the ellipse calculated using the 

Richardson extrapolation and Figure 50 the microscopy picture of the filament. 
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Comparing the two figures it is possible to conclude that the simulation results are 

very similar to the filament microscopy picture, showing that the interface is not centred 

and the interface has an ellipse-like form, confirming all the results presented before, and 

causing an uneven thickness on the sheath layer.  

Considering the results relative to pressure and interface location, it can be 

concluded that interFoam solver showed to be suitable to simulate the filament 

coextrusion process, producing reliable and accurate results very similar to the reality. 

 

 

Figure 50 - Microscopy picture of the produced filaments (Abreu, To be published). 

Figure 49 - Interface shape obtained using the extrapolated parameters. 
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 DESIGN OF A SEMI INDUSTRIAL 

MULTIFILAMENT COEXTRUSION DIE 

The results presented in Sections 2 and 3 show that OpenFOAM® framework is 

an appropriate tool to simulate coextrusion processes, mainly due to the very good 

agreement obtained between numerical and experimental results. Thus, in this section that 

tool will be used to support design and the optimization of a semi industrial multifilament 

coextrusion die, in order to minimize the probability of possible instabilities that could 

occur during the actual coextrusion process.  

The die conceived had to meet some requirements that had been imposed by the 

company. Firstly, the die must be capable to coextrude two different materials (Blend A 

forms the sheath and Blend B forms the core of the filament) with several different 

percentages of each one, and with that should allow to modify the filament configurations 

depending on the specific application to be used. The second requirement is that the die 

must be capable to coextrude simultaneously 10 filaments with 1,1 𝑚𝑚 of diameter at 

the die exit. The die has also to be capable to coextrude filaments at a mass flow rate 

between 1,8 𝑘𝑔/ℎ and 2,4 𝑘𝑔/ℎ without flow instabilities, thus ensuring a good 

operative window. Lastly, in order to save time and resources, the global measures and 

the die connections have to be equal to a die that already exists at the Lankhorst company. 

This will allow the use of the same heater and connections to the extruders for both dies, 

the currently available and the new to be designed.  

4.1 Die constructive solution  

As already stated, there are a few specifications for the coextrusion die to be 

designed, being the most important, in terms of design, the fact that the new die need to 

have the same size and geometry as the die that Lankhorst owns. The “model” die has 

cylinder like geometry, with height and diameter, respectively, of 77 𝑚𝑚 and 110 𝑚𝑚. 

The complete die comprises three parts: the die frame, which has a diameter and height 

of 110 and 62.5 𝑚𝑚, respectively, the spinneret and the cover, that allows to secure the 

spinneret in the die frame and which has a diameter and height of 110 and 13.5 𝑚𝑚, 
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respectively. The die that will be developed must use the same cover and possess a die 

frame similar to the old one, containing the original geometry and measures. Figure 51 

shows the assembly that includes the die owned by Lankhorst and the respective heater, 

which gives an idea of the global measures and the final format of the tool. 

 

 

 

 

 

  

 

 

Regarding to die channels, attending to all the requirements and especially to the 

design requirement already explained, two different constructive solutions for die 

channels design were considered. In Figures 52 and 53 two preliminary 3D drawings that 

illustrate the two possible solutions are shown. 

 

 

 

 

 

 

Heater 

Die (die frame) Temperature sensor 

Connection to the extruder 

Figure 51 - Assembly of all the components that composes the die that Lankhorst owns. 

Figure 52 - Design of the multifilament coextrusion die channels for Solution 1. 
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The main difference between the two solutions is the way the sheath material, 

represented by the red channels, is guided to the distributor where the two materials are 

joined forming the filament with the required diameter and material distribution. In 

Solution 1 the sheath material enters the die and is guided to a circular channel that 

distributes the sheath material by ten individual channels which are connected to each 

distributor, while in Solution 2 when the material enters the die it is guided by two 

channels to the die centre where it is distributed by ten channels that lead to the individual 

distributors. In both solutions the core material, represented by the green channels, enters 

the die and the flow is divided in ten channels that leads to the distributors. 

The chosen solution was the Solution 2 due to its inherent balance, because 

whatever the path that the sheath material enters through, the distance travelled to the 

distributor is always the same, which does not happen in Solution 1, as it can be concluded 

by the analysis of Figures 52 and 53. That fact helps to reduce the probability of 

unconformities caused by uneven flow distribution. 

The channels and the distributors were dimensioned following an iterative 

methodology, in order to achieve a solution that produces a stable flow without 

instabilities. After that, two typical values for the angle defined between the distributor 

convergent channel and the outlet channel considered, which are 60° and 70°, will be 

tested using the simulations and the chosen value will be the one that will enable the 

production of a filament with an interface between the two materials as stable and centred 

Figure 53 - Design of the multifilament coextrusion die channels for Solution 2. 
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as possible, with the smallest pressure drop possible. The approaches followed in the 

dimensioning of the channels and the distributors and the results achieved will be 

presented more ahead in this section. 

Considering the design solution of the channels and the overall design 

requirements, a modular die was conceived where the modules (four) are inside the die 

frame and all these modules form the flow channels. That configuration was chosen in 

order to make it easier to manufacture the die, because due to the complexity of the flow 

channels geometry their machining in a single metal block would be impossible. Hence, 

with this solution it is possible to machine the channels in individual metal parts and then 

those parts could be assembled inside the die frame to construct the channels. The other 

advantage of this solution is the possibility to perform corrections of the channels without 

the need to make a new die, being only changed the module that contains the channel to 

be modified. In Figures 54(a) and 54(b) are presented the 3D model of the designed die 

and a down view of that model, respectively, where is possible to observe all components 

of the die and the modular solution adopted. 

 

Figure 54 - Overall view of the 3D model of the designed die (a) and bottom view of the 3D model of the designed die 

(b). 

a b 
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From Figure 54 it is possible to identify all the parts that compose the final design 

of the die. Besides the components that already have been mentioned before, two different 

sets of screws are needed (one is M5x55 and the other is M6x25) in order to fix the 

components that could move in the right place. Two pins, with diameter and length of 

5 𝑚𝑚 and 60 𝑚𝑚, respectively, are also needed in order to avoid the misplacement (by 

rotation) of the modules. In the die frame it is possible to notice some holes that are 

needed to mount and bolt the adaptors to make the connections between the die and the 

extruders, and a connection to mount a temperature sensor in order to provide a better 

control of the process to the user. 

4.2 Mesh and boundary conditions 

Regarding the geometry, attending to the complexity of the channel system 

designed, only the distributor together with the die exit will be simulated because in 

theory that is the only place that can promote uneven flow (notice the upstream regions 

are geometrically identical). This allows to reduce the effort of the calculations. In Figure 

55, it is illustrated the typical geometry of the distributor used to create the mesh. The 

methodology applied in the creation of the mesh was the same that has been used to create 

the mesh of the coextrusion die, which is described in Section 3. 

 

 

 

 

 

 

 

 
Figure 55 - Typical geometry of the distributor used to create the mesh. 

Inlet 1 

Inlet 2 

Outlet 
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During the dimensioning of the channels, the measures of the channels, namely 

the diameters of the inlets and the height of the circular channel, the geometry of the 

distributor, the thickness and the angle of the convergent channel were changed in order 

to attempt to reach a design that ensures a stable process, thus requiring the creation of a 

high number of meshes. 

The maximum cell size defined to create the required meshes was 0.11 𝑚𝑚 and, 

because that number was not sufficient to create the convergent channel in some of the 

meshes created, in that specific part of the geometry a factor of refinement equal to 2 was 

defined when necessary, which means that the maximum cell size in that region is equal 

to 0.055 𝑚𝑚. Due to the large number computational cells, the computational time 

needed to reach a solution could range from three days to two weeks (depending on the 

geometry and the mesh parameters used), so if more refinements were made to the mesh, 

the simulations of those meshes would take a huge computational time, in the range of 

months, and need a large amount of computational resources. Considering the previous 

facts and the high number of simulations that may be necessary to run, after careful 

consideration was decided that is not worth to perform those refinements to the original 

mesh, since the degree of refinement of the mesh is similar to the one adopted in the 

previous sections, therefore accurate results are expected. In Figure 56 is presented an 

example of the typical mesh created and used in the simulations and in Table 18 some 

data about that mesh is listed. 

 

 

 

 

 

 

 

 

Figure 56 - Example of a typical mesh used in the simulations. 
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Table 18 - Relevant information about the example of a typical mesh used in the simulations. 

 Mesh 1 (M1) 

Overall maximum cell size 

(mm) 
0.11 

Maximum cell size at the 

convergent channel (mm) 
0.055 

Number of points 1822924 

Number of cells 1407078 

The boundaries defined are also equal to the coextrusion case studied in Section 

3, where the two inlets and the outlet faces are defined with type patch, which means that 

the fluid can enter (inlet) or exit (outlet) the channel through those faces and the rest of 

the geometry faces are defined with type wall, in which a null velocity must be imposed. 

Concerning the boundary conditions, like in the previous coextrusion case, the 

velocity only has to be imposed at the inlets.  

Thus, to compute the velocities of each blend at the respective inlet, it is necessary 

to apply Equations 3 and 4 using the diameters of the inlets, the total mass flow rate (for 

one distributor) and the percentage of each material in the filament, which is used to 

compute the mass flow rate of each individual blend. Following the specifications of the 

die to be designed, the die has to work at different flow rates and with many different 

relative percentages of each blend. Hence, seven simulations were performed, in order to 

test the coextrusion die with different total and relative flowrates. The Reference case 

was defined based on the company indications, and was used for the most detailed design 

studies performed. Table 19 summarizes the conditions employed for all the cases in 

study. 
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Table 19 – Inlet velocities of the Blend A (inlet 2) and Blend B (inlet1) in the coextrusion process. 

 
Reference Case 1 Case 2 Case 3 Case 4 Case 5 

Core Sheath Core Sheath Core Sheath Core Sheath Core Sheath Core Sheath 

Total mass 

flow rate 

(𝒌𝒈/𝒉) 

0.24 0.18 0.24 

Percentage 

(%) 
74.5 25.5 74.5 25.5 90 10 80 20 70 30 60 40 

Mass flow 

rate (𝒈/𝒉) 
178.8 61.2 134.1 45.9 216 24 192 48 168 72 144 96 

Density 

(𝒌𝒈/𝒎𝟑) 
919.1 937.9 919.1 937.9 919.1 937.9 919.1 937.9 919.1 937.9 919.1 937.9 

Inlet 

velocity 

(𝒎𝒎/𝒔) 

5.7 5.5 4.2 4.3 6.9 2.2 6.1 4.3 5.3 6.5 4.6 8.7 

The pressure boundary conditions are the same as in the coextrusion case 

presented in Section 3. All the boundary conditions are defined in the same type of files 

that were mentioned in Section 3. 

4.3 Results and discussion 

Selection of the minimum end time of the simulations 

Initially, all the coextrusion simulations used to dimension the channels and the 

distributor were performed up to 9 seconds, using the adjustable time step option enabled, 

being the average time step used approximately 6 × 10−5 𝑠. However, due to the 

increased complexity of the geometries under study the computational meshes require a 

large number of cells (the more complex meshes contain a number of cells between 

1400000 and 1900000). Thus, the computational time required to obtain converged 

results increases, for instance, the last iteration took circa 2 weeks to run (in a 24 

processors parallel run). So in order to reduce the computational time, the range of time 

covered required to achieve fully developed conditions was studied in detail. 

Similarly to the methodology followed in Section 3, the residuals of the linear 

algebraic systems of equations were plotted and it was possible to find out whether the 

minimum time for the residuals stabilize at low values and consequently, ensure an 

accurate solution. Figure 57 shows the evolution on the simulation pressure residuals 

during the iteration time. 
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Although in Figure 57 is not represented the residuals for the whole simulated 

time, it is possible to note that at approximately 10000 iterations (0.6 𝑠) the pressure 

residuals tend to stabilize at low values, thus ensuring an accurate solution.  

In order to find out the minimum time required to reach steady state conditions, 

the evolution of velocity and pressure was monitored in four different points of the 

computational domain, as presented in Figure 58. The velocity and pressure data taken in 

those point along time is presented in Table 20. 

 

 

 

 

 

 

 

 

 

 

 

Point 1 

Point 2 
Point 3 

Point 4 

Figure 58 - Location of the four points of the domain used. 

Figure 57 - Evolution of the residuals along the simulated time in the coextrusion process. 
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Table 20 - Evolution of the velocity and pressure values in four different points along the simulated time. 

 Point 1 Point 2 Point 3 Point 4 

Time (s) U (m/s) P (MPa) U (m/s) P (MPa) U (m/s) P (MPa) U (m/s) P (MPa) 

0 0 0 0 0 0 0 0 0 

1 0.007 6.11 0.0021 2.31 0.033 2.2 0.121 0.41 

2 0.007 6.12 0.0026 2.31 0.033 2.2 0.121 0.41 

3 0.007 6.08 0.0028 2.3 0.032 2.2 0.121 0.41 

4 0.007 6.07 0.0029 2.3 0.032 2.2 0.121 0.41 

5 0.007 6.07 0.003 2.3 0.032 2.2 0.121 0.41 

6 0.007 6.06 0.003 2.3 0.032 2.2 0.121 0.41 

7 0.007 6.08 0.003 2.3 0.032 2.2 0.121 0.41 

8 0.007 6.1 0.003 2.3 0.032 2.2 0.121 0.41 

9 0.007 6.07 0.003 2.3 0.032 2.2 0.121 0.41 

Analysing the values given in Table 20, it is possible to conclude that the pressure 

in Point 1 presents small variations, the pressure and the velocity in Point 2 stabilize after 

circa 3 and circa 5 𝑠, respectively, and the velocity in Point 3 stabilizes after circa 3 𝑠, 

being the remaining values very stable. Considering these results, it is possible to 

conclude that to achieve fully developed conditions the simulation should cover up to 5 𝑠 

of the process evolution (since the variations of pressure in Point 1 are very small and 

they were neglected).   

Figures 59 and 60 present the phase distribution at four different times each. A 

visual analysis these results allows to conclude that after approximately 4.5 s steady state 

flow conditions are achieved, which further reinforces the results presented before. 

 

 

 

 

 

 

 

Figure 59 - Representation of the undeveloped flow at: (a) 1 second and (b) 4 seconds. 

a b 
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The conclusions of these studies were employed just for the case studies used to 

select the most adequate convergent angle and for the case studies with different total and 

relative flowrates (with the boundary conditions stated in Table 19), where the system 

evolution was studied just up to 6 𝑠. For the remaining, studies that were performed 

initially, the system evolution was computed up to 9 𝑠. 

Dimensioning of the channels and distributors 

In relation to the measures and geometry of the channels and distributors, several 

iterations were done in order to achieve a solution that produces a stable flow without 

instabilities. In the first iteration, the diameters values of the channel were settled with 

values that according with the previous experience seemed reasonable (3 𝑚𝑚 for the core 

channels and 1.8 𝑚𝑚 for the sheath channels), and the geometry of the distributor was 

kept circular and symmetric. In this solution the flow presented instabilities and there was 

an undesired rearrangement of the sheath and core materials, caused by an unbalanced 

flow in the distributor, as it is shown in the flow distribution presented in Figure 61.  

Figure 60 - Representation of the developed flow at: (a) 4.5 second and (b) 6 seconds. 

a b 
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In the following eleven iterations, the geometry of the distributor was changed in 

each iteration in order to attempt to compensate the unbalanced flow detected in the initial 

solution, which had a deficit of flow on the opposite site to the inlet 2, thus attempting to 

reach a stable solution, free of flow instabilities. In all the attempts, the flow presented 

the same problems as in the first iterations but the layer rearrangement was reduced, as 

Figure 62 shows. 

 

 

 

 

 

 

 

 

 

 

Another approach was followed, and it consisted in trying to match the areas of 

the channels according to the relative proportion of the blend that passes through them 

(the proportions are the same as the Reference case presented in Table 19). Firstly, the 

diameter of the channel where the Blend B enters was defined and is equal to 11 𝑚𝑚. 

Then with that value the respective cross section area was calculated. Using the value of 

the previous area, the area of the channel that transports the Blend A is calculated through 

a b 

Figure 61 - Distributor created in the first iteration: geometry (a) and flow of the blends in the distributor (b). 

a b 

Figure 62 - Distributor created in the sixth iteration: geometry (a) and flow of the blends in the distributor (b). 
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the relative percentages of the materials presented in the filament as represented in 

Equation 17. With that area value it is possible to determine the value of the diameter of 

those channels, which is 6.4 𝑚𝑚. 

 

 
𝐴𝑏𝑙𝑒𝑛𝑑 𝐴 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 =

𝐴𝑏𝑙𝑒𝑛𝑑 𝐵 𝑐ℎ𝑎𝑛𝑛𝑒𝑙

%𝑏𝑙𝑒𝑛𝑑 𝐵 
∗ %𝑏𝑙𝑒𝑛𝑑 𝐴  ( 17 ) 

To obtain the diameters of the branch channels of each blend, the respective area 

was divided by ten (because the main channel gives rise to 10 branch channels), and then 

with that value through the expression of the area of the circle it was possible to determine 

the diameter of the two types of branch channels. In Table 21, all the diameters of the 

channels for each blend are summarized. 

Table 21 - Diameters and areas of the channels for each blend. 

 Blend A Blend B 

Diameter of the main 

channel (𝒎𝒎) 
6.4 11 

Cross section area of the 

main channel(𝒎𝒎𝟐) 
32.53 95.03 

Cross section area of the 

branch channel(𝒎𝒎𝟐) 
3.253 9.503 

Diameter of the branch 

channel (𝒎𝒎) 
2.04 3.48 

After the dimensioning of the channels it is necessary to dimension the 

distributors. To accomplish that, the cross section area of the two types of branch channels 

were summed in order to discover the total area of material at the distributor. With that 

total area, through the expression of the area of the circle, it was possible to determine 

the diameter of the channel when the two blends are joined. Subtracting that value from 

the diameter of the branch channel for Blend B it is possible to determine the distance 

between the branch channel and the distributor wall, which is equal to 0.3 𝑚𝑚. In Figure 

63 is possible to observe a scheme of the distributor, where the distance calculated before 

is represented by 𝑥. 
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With this approach a stable solution was accomplished, where the layer 

rearrangement was improved significantly, as it can be observed in Figure 64.  

 

 

 

 

 

 

 

 

 

Regarding the angle 𝛼 presented in Figure 63, defined between the distributor 

convergent channel and the outlet channel, two typical values for that angle, 60° and 70° 

were considered. The chosen value of that angle will be the one that enables the 

production of a filament with an interface between the two materials as stable and centred 

as possible and with the smallest pressure drop. Thus, the efficiency of both angles was 

measured through the interface location between the two materials at the die exit (outlet) 

Figure 63 - Representation of the distributor used in the design of the die 

𝑥 

𝛼 

a b 

Figure 64 - Distributor created in the last iteration: geometry (a) and flow of the materials in the distributor (b). 
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and through the pressure drop obtained in the two cases. For the studied geometries the 

pressure drop in the distributor is manly affected by two factors, which are the length of 

the channel and the extensional deformation rate, both promoting a larger pressure drop 

when enlarged. Since the distributor with an angle of 60° possess a smaller length of the 

channel and a higher extensional deformation rate than the distributor with an angle of 

70°, it is not possible to anticipate which alternative promotes the smallest pressure drop, 

thus their effect was studied numerically. 

Figures 65 and 66 present the location of the interface between the two materials 

and the pressure distribution obtained for the two alternative designs, respectively. 
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Figure 65 - Interface location with an angle of 60° and 70° in the convergent channel of the die. 

a b 

Figure 66 - Pressure drop in the two distributors in study: (a) with an angle of 60° and (b) with an angle of 70° in the 

convergent channel. 
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Analysing Figure 65 it is possible to conclude that there is no major difference 

between a convergent channel with an angle of 60° or 70°, because the data points for 

70° are almost identical to the data points for 60°. Regarding the pressure drop, it is 

possible to conclude that the pressure drop is smaller in the distributor with an angle of 

60°, which means that the effect of the channel length prevails over the one of the 

extensional deformation rate. Therefore, the distributor with the 60º angle was select for 

the tool to be designed. As an additional advantage, this geometry requires a smaller 

quantity of computational cells and, thus, less computational time.   

But before this design is approved to run the remaining simulations, it was 

computed the shear rates (using Equations 18 and 19) and the respective shear stresses 

(using the rheological models of the blends) developed in each channel of the system 

using all the different processing conditions defined in Table 19, in order to verify if these 

values were not higher than the limit of the material can stand, thus overcoming the 

critical shear stress of the material. Equations 18 and 19 represent the shear rate in a 

circular channel and in an annular channel (used to calculated the shear rate in the 

distributor), respectively (Carneiro & Nóbrega, 2012), and in Table 22 are presented the 

shear rates and shear stresses computed. 

 

 
�̇� =

4𝑄

𝜋𝑅3

3𝑛 + 1

4𝑛
 ( 18 ) 

where �̇� (𝑠−1) is the shear rate, 𝑄 (𝑚3/𝑠) is the flow rate, 𝑅 (𝑚) is the radius of the 

channels and 𝑛 is the Power Law index. 

 

 
�̇� =

6𝑄

𝜋(𝑅𝑒 + 𝑅𝑖)(𝑅𝑒 − 𝑅𝑖)2

2𝑛 + 1

3𝑛
 ( 19 ) 

where 𝑅𝑒 (𝑚) is the external radius of the channels and 𝑅𝑖 (𝑚) is the internal radius of 

the channels. 
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Table 22 - Shear rates and shear stresses developed in each of channel in all the processing conditions considered. 

 
Reference Case 1 Case 2 Case 3 Case 4 Case 5 

�̇� (𝑠−1) 𝜏 (𝑀𝑃𝑎) �̇� (𝑠−1) 𝜏 (𝑀𝑃𝑎) �̇� (𝑠−1) 𝜏 (𝑀𝑃𝑎) �̇� (𝑠−1) 𝜏 (𝑀𝑃𝑎) �̇� (𝑠−1) 𝜏 (𝑀𝑃𝑎) �̇� (𝑠−1) 𝜏 (𝑀𝑃𝑎) 

Core main 
channel 

6.4 0.02 4.8 0.018 7.8 0.021 6.9 0.021 6.1 0.02 5.2 0.019 

Sheath 
main 

channel 
12.9 0.045 9.7 0.042 5.1 0.035 10.2 0.042 15.2 0.047 20.3 0.05 

Core 
branch 
channel 

20.4 0.029 15.3 0.027 24.6 0.031 21.9 0.03 19.1 0.029 16.4 0.027 

Sheath 
branch 
channel 

39.9 0.059 30 0.055 15.7 0.047 31.3 0.055 47 0.061 62.7 0.065 

Parallel 
zone 

1014.5 0.123 760.9 0.115 1017.6 0.123 1015.6 0.123 1013.6 0.123 1011.5 0.123 

Distributor 215.3 0.086 161.5 0.081 84.4 0.07 168.9 0.082 253.3 0.09 337.7 0.096 

Analysing the values presented in Table 22, it can be noticed that the highest shear 

rates develop in the parallel zone of the die, leading to shear stresses of circa 0.12 𝑀𝑃𝑎 

(computed using the rheological model of Blend A). As explained by Macosko (Macosko, 

1994), the typical critical shear stress of the polymeric materials is 0.1 𝑀𝑃𝑎, so it is 

possible to conclude that the die is operating in the limit of the material. However, since 

the diameter of this channel cannot be changed, the only way to fix this potential problem 

is to decrease the mass flow rate used. So, it will be performed a study to assess if the 

decrease in the flow rate used affects the process stability and the filament produced. 

Effect of the mass flow rate used on the filaments produced 

Regarding the simulations using different mass flow rates, an approach similar to 

the one described in Section 3 was followed. The interface points obtained from the 

simulation were fitted using Excel to an ellipse equation (Equation 15) and to a 

circumference equation, presented in Equation 20, in order to evaluate the eccentricity 

and the centre of the filament interface. 

 

 
(𝑥 − 𝑐)2 + (𝑦 − 𝑑)2 = 𝑟2 ( 20 ) 

where 𝑐 and 𝑑 are the coordinates of the circumference centre and 𝑟 is the radius. 

 

 

 



Development of a coextrusion system of multifunctional filaments for the production of high performance ropes 

 80  

In Figures 67 and 68 it is possible to observe the graphical representation of the 

interface points and the ellipse and circumference equations for the Reference case and 

for Case 1, respectively, and in Table 23 are listed the constants of the two equations for 

both cases.  
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Figure 68 - Interface location and graphical representation of the equations for Case 1. 
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Figure 67 - Interface location and graphical representation of the equations for the Reference case. 
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Table 23 - Constants of the ellipse and the circumference equations for the Reference case and for Case 1. 

 Reference Case 1 

𝒉 (𝒎𝒎) −23.29 −23.29 

𝒌 (𝒎𝒎) 7.85 ∗ 10−4 1.21 ∗ 10−3 

𝒂 (𝒎𝒎) 0.4 0.4 

𝒃 (𝒎𝒎) 0.39 0.39 

𝒄 (𝒎𝒎) −23.29 −23.29 

𝒅 (𝒎𝒎) 1.66 ∗ 10−3 1.61 ∗ 10−3 

𝒓 (𝒎𝒎) 0.4 0.4 

According to Figures 67 and 68 and Table 23, both cases produce very similar 

results as the constants of the equations are almost identical in the two cases. In both cases 

the interface is a little bit off centre comparing with regards to the channel centre (which 

is 𝑥 equals to −23.26 𝑚𝑚 and y equals to 0 𝑚𝑚) as it can be noticed through the 

thickness of the sheath layer which is not constant.  

In terms of eccentricity, through the analysis of the ellipse constants equation it is 

possible to conclude that the interface has a small eccentricity, however that eccentricity 

is not very noticeable at the figures and can only be distinguished due to the difference 

between the two semi axis of the ellipse (the 𝑎 and 𝑏 constants). Applying Equation 16 

the eccentricity (𝑒) of the interface has a value of 0.22 for the Reference case and 0.24 

for Case 1, which are almost identical.   

To evaluate the quality of the produced filament, its minimum and maximum 

sheath thickness was also measured, and the values obtained are listed in Table 24 for the 

two studied cases. 

Table 24 - Minimum and maximum sheath thickness of the filament for the Reference case and for Case 1. 

 Reference Case 1 

Minimum thickness of the sheath (𝒎𝒎) 0.12 0.12 

Maximum thickness of the sheath (𝒎𝒎) 0.19 0.19 
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As it could be seen in Table 24 the minimum and the maximum sheath thickness 

are equal in both cases. When these values are compared with the circumference radius 

in the interface, the minimum thickness is 18% smaller than the radius and the maximum 

thickness is 30% bigger than the radius. 

Another parameter that was evaluated was the cilindricity of the filament 

interface, which gives an idea of the tolerance of the interface location. To assess that, 

the interface locations along the die parallel zone (the channel between the convergent 

channel and the die exit) were obtained and then the distance to the centre of the interface 

was computed. After that, the smallest and the highest values obtained were chosen and 

corresponded to the tolerance of the radius of two hypothetic cylinders where the interface 

has to be included between them. In Table 25 are listed the tolerances obtained for the 

interface location for both cases. 

Table 25 - Minimum and maximum tolerance (radius) of the interface location in Reference case and Case 1. 

 Reference Case 1 

Minimum radius (𝒎𝒎) 0.38 0.38 

Maximum radius (𝒎𝒎) 0.42 0.42 

Analysing the values presented in Table 25, it is possible to determine that the 

interface has to be contained between two cylinders with 0.42 𝑚𝑚 and 0.38 𝑚𝑚 in radius 

for both cases. 

Regarding the velocity and pressure profiles for the two cases, attending to the 

fact that different mass flow rates were used, the velocity at the die exit and the pressure 

drop have slightly different values for each case, wherein the Reference case present the 

higher values. Figures 69 and 70 represents, respectively, the velocity profile and the 

pressure drop along the distributor in the Reference case and Figures 71 and 72, the 

velocity profile and the pressure drop in Case 1. 
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Figure 69 - Velocity profile along the distributor in the Reference case. 

Figure 70 - Pressure field along the distributor in the Reference case. 

Figure 71 - Velocity profile along the distributor in Case 1. 
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Through the analyses of the previous figures, it is possible to conclude that for 

both cases studied the velocity profile presents an acceleration of the material at the die 

parallel zone, due to the small channel diameter and before that the velocity is much 

smaller than the one developed in the parallel zone. Regarding the pressure field, it is 

possible to conclude that the pressure decreases smoothly and monotonically along the 

flow channel. Therefore, no potential problems were identified in the velocity field and 

in the pressure drop of the die that could cause instabilities in the coextrusion process. 

Attending to all the results obtained it is possible to conclude that reducing the 

mass flow rate used, there is no big impact in the stability of the process and the filaments 

produced will be similar. So, as stated above the shear rates developed in the parallel zone 

may affect the quality of the filament, therefore if in the experimental trials the filaments 

present defects the mass flow rate used can be reduced, without affect the performance 

of the die, in order to fix these defects. 

Effect of blend percentage on the filaments produced 

Regarding the simulations using different percentages of blends, only Case 2 

shows a severe layer rearrangement, motivated by the higher proportion of core in relation 

to the sheath. That phenomenon appear in the die parallel zone and it is characterized by 

a rupture of the interface, as it can be observed in Figure 73.  

Figure 72 - Pressure field along the distributor in Case 1. 
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Therefore, only Cases 3, 4 and 5 will be subjected to an analysis equal to the one 

performed for the cases with different mass flow rates. Thus, following the same 

methodology, the interface points were fitted to an ellipse equation (Equation 15) and to 

a circumference equation (Equation 18). In Figures 74, 75 and 76 show the graphical 

representation of the interface points and the equations for all the cases, and in Table 26 

are listed the constants of the two equations for all the same cases. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 73 - Interface location in Case 2: (a) rupture of the interface and (b) instabilities in the die parallel zone. 
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Figure 74 - Interface location and graphical representation of the equations for Case 3. 
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Figure 75 - Interface location and graphical representation of the equations for Case 4. 

-8,00E-04

-4,00E-04

0,00E+00

4,00E-04

8,00E-04

-0,024 -0,0236 -0,0232 -0,0228 -0,0224

y 
(m

)

x (m)

Interface location for Case 5

Interface points

Channel boundary

Circumference

Ellipse

Figure 76 - Interface location and graphical representation of the equations for Case 5. 
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Table 26 - Constants for the ellipse and circumference equations for Cases 3, 4, and 5. 

 Case 3 Case 4 Case 5 

𝒉 (𝒎𝒎) −23.29 −23.29 −23.3 

𝒌 (𝒎𝒎) 1.78 ∗ 10−3 2.55 ∗ 10−3 1.35 ∗ 10−3 

𝒂 (𝒎𝒎) 0.42 0.39 0.36 

𝒃 (𝒎𝒎) 0.41 0.38 0.35 

𝒄 (𝒎𝒎) −23.29 −23.29 −23.3 

𝒅 (𝒎𝒎) 2.89 ∗ 10−3 1.98 ∗ 10−3 1.98 ∗ 10−3 

𝒓 (𝒎𝒎) 0.42 0.39 0.36 

  Just like in the previous two cases, in all the simulated cases the interface is 

slightly off centre with regards to channel centre. Regarding the axis values of the ellipse 

and the circumference, analysing Table 26 it is possible to observe that these values are 

decreasing from Case 3 to Case 5, motivated by the increase of the percentage of sheath 

material used in the composition of the filament. 

In terms of eccentricity, through the analyses of the ellipse equation constants it 

is possible to conclude that the interface possesses a very small eccentricity. Like in the 

Reference case and in Case 1, the eccentricity is not very noticeable at the figures and 

only can be distinguished due to the difference between the two semi axis of the ellipse 

(the 𝑎 and 𝑏 constants). Through Equation 16 is possible to compute the eccentricity (𝑒) 

of the interface and the values obtained were 0.22 for Case 3 and 4 and 0.23 for Case 5, 

being the values obtained very similar, as in the previous studies. 

With regards to the thickness of the sheath, in Table 27 are listed the minimum 

and the maximum distances of the interface points to the channel boundary, 

corresponding to the minimum and the maximum thickness of the filament sheath for 

Cases 3, 4 and 5. 

Table 27 - Minimum and maximum thickness of the filament sheath for Cases 3, 4 and 5. 

 Case 3 Case 4 Case 5 

Minimum thickness of the sheath (𝒎𝒎) 0.10 0.13 0.16 

Maximum thickness of the sheath (𝒎𝒎) 0.17 0.21 0.24 
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From the results of Table 27, it is possible to conclude that both the minimum and 

the maximum thickness of the sheath are increasing, wherein Case 3 has the smallest 

values and Case 5 has the highest values, which can be explained through the percentages 

of each blend in the filament for each case study. Comparing the interface circumference 

radius (last line of Table 26) with the thickness values presented in Table 27, it can be 

concluded that the minimum thickness is 22%, 19% and 20% smaller and the maximum 

thickness is 31%, 26% and 22% larger than the radius value for Cases 3, 4 and 5 

respectively. 

Finally, the interface cilindricity of the filament, which gives an idea of the 

tolerance of the interface location, was computed, being the results shown in Table 28. 

Table 28 - Minimum and maximum tolerance (radius) of the interface location in Cases 3, 4 and 5. 

 Case 3 Case 4 Case 5 

Minimum radius (𝒎𝒎) 0.4 0.37 0.33 

Maximum radius (𝒎𝒎) 0.44 0.4 0.37 

Analysing the values presented in Table 28, it is possible to conclude that the 

tolerance values are more or less constant, the minimum and maximum values are 

decreasing from Case 3 to Case 5, due to the increase of the percentage of the Blend A in 

the filament, which increases the thickness of the external layer, thus reducing the radius 

of the interface.  

The velocity field and the pressure drop in all the three cases are very similar to 

each other and to the same result computed for the Reference case presented in Figures 

69 and 70. In Appendix D are included the velocity field and the pressure fields for Cases 

3, 4 and 5. 

Considering the results obtained it is possible to conclude that the coextrusion die 

may be used to produce filaments in a range of formulations between Case 3 (20% of 

Blend A and 80% of Blend B) and Case 5 (40% of Blend A and 60% of Blend B) without 

instabilities in the process and the filaments fulfil all the requirements. 
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Attending to the results described during this section, it was established that the 

die designed meets the requirements imposed by the company, thus it can be 

manufactured. So in order to do that, the technical drawings of all the components of the 

die, which are required to help the manufacture process of the die, were made. These 

technical drawings are presented in Appendix E. 
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 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The work presented in this MSc Thesis had as main objective the design of a 

coextrusion system (die) for the production of multifunctional filaments, capable of 

producing simultaneously 10 filaments with different filament formulations.  

To achieve the main objective described in the last paragraph the OpenFOAM® 

framework was firstly used on a few verification/assessment cases studies, in order to 

evaluate the accuracy of the calculations. 

The first validation case consisted in the simulation of a 2D sheet coextrusion die, 

being the numerical predictions compared to results available on the literature. Regarding 

the interface development and the flow streamlines, two of the three cases studied were 

in agreement with the results presented in the literature, while the results for the third case 

presented an average error higher than the other two cases, which can be justified by an 

eventual error in the benchmark paper used to compare our results. In addition, the results 

provided by the two different meshing methodologies, using cfMesh and blockMesh 

utilities were very similar. 

The second and the third assessment case studies consisted in comparing the 

computational predictions with data collected in experimental studies of monofilament 

extrusion and coextrusion.  The comparison was made in terms of pressure drop and the 

interface shape of the coextruded filaments, being. the results obtained in these 

assessment case studies allowed to conclude that OpenFOAM® is suitable to model the 

extrusion/coextrusion process and thus able to support in the design of processing tools. 

Concerning the design of the filament coextrusion die, the devised die flow 

channel constructive solution was studied and detailed with the support of the open source 

computational library OpenFOAM®, which was used to simulate the flow of the blends 

(which compose the filaments) in the die channels. Thus, it was possible to observe if any 

instabilities in the flow were present, if the flow is balanced and if the die manage to 

produce sheath and core filaments as centred as possible.  
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In terms of design of the channels, initially two possible constructive solutions 

were considered, but ultimately it was selected the solution that promotes a uniform 

distribution of the flow before enter the distributor, wherein the sheath and core filament 

is formed. The channels of that solution were dimensioned using the simulations provided 

by the OpenFOAM®, in order achieve a solution that allow the production of filaments 

with the required specifications. 

The ability of the designed die to produce filaments at different mass flow rates 

and with different percentages of sheath and core were also tested. Regarding the 

simulations with different mass flow rates, the results showed that there is no major 

difference in using different mass flow rates, once the filaments produced have very 

similar characteristics. Concerning the ability of the die to produce filaments with 

different percentages of sheath and core, the results achieved suggested that the die can 

be used to produce filaments ranging from 20% of sheath and 80% of core to 40% of 

sheath and 60% of core. 

5.2 Future work 

During this MSc project it was assessed and confirmed the ability of the 

computational library OpenFOAM® in simulate the filament coextrusion process, which 

enabled the design of semi-industrial filament coextrusion die. 

From the promising results achieved in this project, it is suggested to advance with 

the designed die manufacturing and experimental testing, which would further assess the 

computational library employed in this kind of applications. 

If the results of the experimental trials suggested that the filaments produced are 

in accordance with the company expectations and standards, and if the production of 

filaments with this technology is profitable, then the process can be scaled to an industrial 

level (manufacturing and using a die capable of develop high production rates). 
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APPENDIXES 

Appendix A – Developed flow in the more refined mesh 

created using blockMesh 

Appendix B – Interface in cases with mesh created using 

blockMesh   

a) b) 

c) 

Figure 77 - Representation of the fully developed flow for the more refined mesh created using blockMesh in: a) Case 

1; b) Case 2; c) Case 3. 
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Figure 78 - Interface coordinates for Case 2 (mesh created using blockMesh). 
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Appendix C – Streamlines in cases with mesh created 

using blockMesh   

a) 

b) 

c) 

Figure 80 - Representation of the streamlines for the more refined mesh created using blockMesh in: a) Case 1; b) 

Case 2; c) Case 3. 

Figure 79 - Interface coordinates for Case 3 (mesh created using blockMesh). 
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Appendix D – Velocity profile and pressure field in 

Cases 3, 4 and 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 83 - Velocity profile along the distributor in Case 4. 

Figure 81 - Velocity profile along the distributor in Case 3. 

Figure 82 - Pressure field along the distributor in Case 3. 
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Figure 84 - Pressure field along the distributor in Case 4. 

Figure 85 - Velocity profile along the distributor in Case 5. 

Figure 86 - Pressure field along the distributor in Case 5. 
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Appendix E – 2D drawings of all components of the filament coextrusion die

Figure 87 - 2D drawing of the filament coextrusion die frame. 
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Figure 88 - 2D drawing of the module 1 of the filament coextrusion die. 
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Figure 89 - 2D drawing of the module 2 of the filament coextrusion die. 
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Figure 90 - 2D drawing of the module 3 of the filament coextrusion die. 
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Figure 91 - 2D drawing of the module 4 of the filament coextrusion die. 
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Figure 92 - 2D drawing of the seal module of the filament coextrusion die. 
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Figure 93 - 2D drawing of the filament coextrusion die cover. 


