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ABSTRACT 

Co-Cr alloys are widely used fabrication of removable partial dentures (RPDs), particularly as a dental 

framework. These alloys replaced noble metal alloys, due to better mechanical properties, corrosion 

resistance and lower cost. The oral cavity is a complex environment that frequently changes in response 

to the intake of food, beverages, and drugs. The use of mouthwashes is known as an effective method of 

preventing dental caries. Several studies have been carried out on the electrochemical corrosion and 

metallic ion releasing on titanium, titanium alloys, and Co-Cr alloys. However, studies related to the effect 

of mouthwash on electrochemical behavior of Co-Cr alloys are still limited. Even a wash with a mouthwash 

tooks approximately 30 seconds, the mouthwash is kept in the mouth during more time. Thus, the micro-

movements between the framework and the teeth or even some particles of food in contact with the 

framework can lead to wear. So, it is important to study the tribocorrosion behavior due to the combined 

action between the wear and corrosion with the presence of mouthwashes. 

Four different commercial mouthwashes were chosen and artificial saliva was used as control group in 

order to investigate the corrosion and tribocorrosion behavior of Co-Cr dental alloy. Results showed that 

there was no significant influence of the mouthwashes on the corrosion behavior of the Co-Cr dental alloy. 

However the tribocorrosion behavior of Co-Cr alloy in mouthwash containing solutions presented both 

higher open circuit potential values and lower coefficient of friction. Thus, it can be stated that the 

presence of mouthwashes did not affect negatively the tribocorrosion behavior of Co-Cr dental alloy.  

 

Key-words: Co-Cr dental alloy, Mouthwash, Corrosion, Tribocorrosion 
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RESUMO 

As ligas de Co-Cr são bastante usadas para produzir próteses parciais removíveis (PPRs) e 

especificamente no caso do framework dentário. Estas ligas vieram substituir ligas metálicas nobres, 

devido a apresentarem melhores propriedades mecânicas, resistência à corrosão e baixo custo. A 

cavidade oral é um ambiente complexo que frequentemente se altera devido à interação com alimentos, 

bebidas e medicamentos. O uso de elixires dentários é conhecido como sendo um método efetivo para 

a prevenção de cáries. Existem vários estudos relativos ao comportamento eletroquímico e à libertação 

de iões metálicos de titânio, ligas de titânio e ligas de Co-Cr. Contudo, estudos relativos ao efeito da 

presença de elixires dentários no comportamento à corrosão de ligas dentárias é ainda escasso. Mesmo 

que uma lavagem com um elixir dentário dure aproximadamente cerca de 30 segundos, o elixir dentário 

permanece na boca durante mais tempo. Assim, os micro-movimentos entre o framework e os dentes 

ou mesmo algumas partículas de comida em contacto com o framework poderão levar ao desgaste. 

Deste modo, é importante estudar o comportamento de tribocorrosão devido a uma ação combinada 

entre desgaste e corrosão com a presença de elixires dentários. 

Quatro elixires dentários disponíveis no mercado foram escolhidos e saliva artificial foi usada como grupo 

de controlo, de modo a estudar o efeito desses elixires no comportamento à corrosão e à tribocorrosão 

de uma liga de Co-Cr. Os resultados mostraram que não existe uma influência significativa da presença 

de elixires dentários no comportamento à corrosão da liga de Co-Cr. Contudo, sob ação mecânica o 

comportamento à tribocorrosão da liga de Co-Cr na presença dos elixires dentários apresentou valores 

de potencial de circuito aberto mais altos e valores de coeficiente de atrito mais baixos. Assim sendo, 

pode ser dito que a presença de elixires dentários não afeta negativamente o comportamento à 

tribocorrosão da liga de Co-Cr. 

 

Palavras-chave: Co-Cr, Elixires Dentários, Corrosão, Tribocorrosão  
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MOTIVATION 

Along the time, new materials have been developed in the dental materials field in order to increase the 

quality of dental restorations. Dental restorations are used to substitute or repair the lost or damaged 

teeth [1].  

A dental framework is a piece that supports the artificial teeth. In the beginning, gold was used for dental 

applications. However, the price of gold increased in the 70’s. Thus, other alternative materials appeared 

on the market. Co-Cr alloys are one of these solutions and are being used in prosthetic dentistry as 

removable partial denture frameworks as well as in implant structures. These alloys present good 

mechanical properties and low weight, having a good balance between strength, wear, and corrosion 

resistance. Therefore, these alloys have been used specifically in removal partial denture frameworks [2–

4]. 

In the dental healthcare field it is recommended the use of mouthwashes to prevent caries. Some studies 

[5–7] showed that flouride-containing solutions like toothpastes or mouthwashes are an acidic 

environment that may decrease the corrosion resistance of materials used in dental applications. 

However, most of the studies in the literature are related to the influence of fluorides on the corrosion 

behavior of Ti and its alloys. Rincic et al. [3] explained that the pH value of the fluids in contact with a Co-

Cr-Mo dental alloy may have a stronger effect on decreasing corrosion properties. On the other hand, 

Rezende et al. [8] showed that for titanium alloys the mouthwash type has a stronger influence on 

corrosion behavior than the composition or microstructure. Souza et al. [9] used electrochemical 

impedance spectroscopy technique to show that the corrosion resistance of titanium decreases with 

increasing of fluoride concentration in artificial saliva. 

Tribocorrosion is a process of degradation that involves a synergism between corrosion and wear 

phenomena. It has been reported that 20-30% material loss can be related to this synergism of corrosion 

and wear [10]. Thus, it is important to investigate the influence of mouthwashes on corrosion and 

tribocorrosion behavior of Co-Cr dental alloy used in removable partial dentures (RPDs). 

OBJECTIVE 

The main objective of this work is to study the effect of commercial mouthwashes on the corrosion and 

tribocorrosion behavior of a Co-Cr dental alloy. 
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1. FUNDAMENTAL ASPECTS OF DENTAL RESTORATIONS  

1.1. Human dentition 

Humans have two dentitions during their life: one during childhood, called the primary (deciduous) 

dentition, and a new one in adulthood, called the permanent dentition (also known as secondary 

dentition), being these two types of dentition showed in figure 1. The teeth in the upper jawbones 

collectively form an arch shape called the maxillary arch, and those teeth in the lower jawbone collectively 

are the mandibular arch. Each arch can be divided into the left and right halves (also known as left and 

right quadrants) [11,12]. 

 
Figure 1 Deciduous (primary) teeth and adult (permanent) teeth, with denominations of teeth and the age 

of eruption of each teeth [12]. 

 

Figure 2 are represents the constituents of a tooth. The enamel is the white and protective external surface 

layer of the anatomic crown. It is highly calcified or mineralized, and it is the hardest substance in the 

body. Its mineral content is 95% calcium hydroxyapatite (which is calcified) and the remaining substances 

include 5% water and enamel matrix [11]. 
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The cement is the dull yellow external layer of the tooth root. The cement is very thin, having only 50–

100 µm of thickness [11]. 

The dentine is the hard yellowish tissue underlying the enamel and cement, and makes up the major bulk 

of the inner portion of each tooth crown and root. It extends from the pulp cavity in the centre of the tooth 

external to the internal surface of the enamel (on the crown) or cement (on the root). Mature dentin is 

composed of about 70% calcium hydroxyapatite, 18% organic matter (collagen fibres), and 12% water 

[11]. 

The pulp is the soft (not calcified or mineralized) tissue in the cavity or space in the centre of the crown 

and root called the pulp cavity. The pulp cavity has a coronal portion (pulp chamber) and a root portion 

(pulp canal or root canal). The pulp cavity is surrounded by dentine, except at a hole (or holes) near the 

root tip. The pulp has as main functions: protection (by producing reparative dentine), nutrition (blood 

vessels transport nutrients from the bloodstream to cells of the pulp and the odontoblasts that produce 

dentin) and sensivity (the nerve endings relay the sense of pain caused from heat, cold, drilling, sweet 

foods, decay, trauma, or infection to the brain) [11]. 

 

 
Figure 2 Representation of a tooth [13]. 

1.2. Causes for the dentition lost 

There are different reasons related to dentation lost: diseases, age, diet, accidents, teeth quality, caries 

status, etc. It is important to avoid four types of possible interactions among dental restorative material 
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and biological environment: post-operative sensitivity, toxicity, corrosion and hypersensitivity or allergy. 

Between the diseases the most relevant are: cavities (caries), tooth decay, periodontitis, gingivitis, plaque, 

tartar, overbite, underbite, teeth grinding (bruxism), tooth sensitivity. Dental caries are still a major public 

health problem affecting 60-90% of school-aged children and the great majority of adults [1,13,14]. 

According to a report of the meeting convened at WHO HQ, Geneva, Switzerland, in 2009, the distribution 

and severity of dental caries changes in different parts of the world and within the same region or country 

[15]. 

In addition, along the time, the population is increasing drastically and the life time as well. Moreover, 

since 1960 it is estimated that in 2025, 70 million of people will be older than 65 year. Thus, the number 

of people that need a dental restorations is also increase due to the increasing of population and the life 

time of a natural tooth [16].  

1.3. Dental restorations 

1.3.1 Types of dental restorations 

There are many types of dental restorations that can be applied in different cases. The dental restorations 

can also restore a part or the entire tooth and they can be removable or fixed. The types of dental 

restorations are: 

 inlay (figure 3a) consists in cover centre of the crown damaged with a dental material and onlay 

(figure 3b) that is similar to inlay but covers a major area of the tooth [11,17–19]; 

 crowns (figure 3c and 3d) cover the entire natural tooth crown [11,17,19];  

 veneer (figure 3e) consists of bonding thin ceramic laminates onto the labial surfaces of affected 

teeth [11,17,19];  

 dental amalgam (figure 3f)that is a hard mass used for restorations on the chewing surfaces of 

posterior teeth and to restore posterior proximal contacts [11,15,18–20];  

 removable partial denture (RPD - figure 3g) is an artificial partial denture that can be removed 

and replaced in the mouth by the patient. The dental framework that is explained in item 1.3.2. is the 

metal part of the figure 3g [11,19,21,22];  

 bridge (figure 3h) that is a false tooth, called a pontic, are attached at two healthy teeth on either 

side of the gap must be ground down to anchor the bridge (the bridge covers the prepared teeth that are 

left after grinding and the pontic sits in the missing tooth space above the gum) [11,19,21,23–25]; 
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 dental implant (figure 3i) that replaces the root of a natural tooth that is the support of the new 

artificial tooth [11,19,21,25–28]. 

According to a study made by Zitzmann et al. [22] approximately half of the adult population in almost all 

European countries have some type of dental restoration. In countries of lower income, restorations are 

less frequent, although it is assumed that the need for treatment is still high. 

 

 

Figure 3 Dental restorations types: a) inlay b) onlay c) golden crown d) ceramic crowns e) venner f) dental amalgam g) 

removable prosthesis h) Bridge i) Dental implant [11,23,29–34]. 

1.3.2. Metal frameworks 

In this master thesis a Co-Cr dental alloy used in removable dental frameworks was studied. A dental 

framework is the base that supports the prosthesis (removable restoration – metal part of figure 4a) or it 

can be supported by oral implants placed in the jawbone or by remaining teeth (fixed restoration - figure 

4b) [2,4]. 
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Figure 4 a) Scheme of a removable restoration b) scheme of a fixed restoration [35,36]. 

 

Nowadays full-cast and metal-ceramic restorations have been used together with the removable partial 

dentures. It is estimated that 90% of all removable partial dentures are now cast from non-precious alloys 

[37]. 

1.4. Dental materials 

In dental applications it is required that the use of biomaterials. Biomaterials can be synthetic or natural 

and they are used in contact with biological systems, commonly applied in Medicine. This type of materials 

has to be compatible with the living tissues and must have good physical properties, avoiding the 

corrosion in the tissue environment and having a good surface quality and low potential for eliciting 

inflammation or rejection response [28,38,39]. 

Metals and alloys have been used in dental industry for hundreds of years. Metals and alloys are more 

suitable for load-bearing applications compared with ceramics and polymers, combining high mechanical 

strength with higher fracture toughness [40,41]. 

Initially, noble metals and their alloys were used for dental applications as Pd-Ag alloy for prosthetic 

elements. These alloys have good mechanical, biological properties, and corrosion resistance. The high 

price of these metals and alloys limited their use and some cheaper alternatives appeared. The non-

precious metals and alloys rapidly replaced the precious or noble alloys in dentistry. In this way, base 

metal alloys have a good clinical performance due to high elastic modulus, hardness and low cost. 

Nowadays, several dental alloys are available on the market. One of the advantages of using these dental 

alloys for casting prostheses is the good combination between the properties: such as high hardness, 

strength and resistance to tarnish, low weight and also corrosion resistance [3,19,37,42–44] 
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At the beginning of the XX century, I. Gotman [45] showed that alloys as aluminium, copper, zinc, iron 

and carbon steels, silver, nickel and magnesium were tested for biomedical applications, being all of them 

too reactive in body and unsuitable for this application.  

Although some base alloys present lower corrosion resistance compared with noble alloys, they present 

better mechanical properties. Manaranche et al. [43] concluded that the Pd-based and Au-Pt-Pd dental 

alloys are the most resistant to corrosion, even higher than gold in a sodium chloride solution at 37ºC. 

However, most of the used metals in implants are stainless steel, Co-Cr alloys and Ti alloys. Titanium and 

its alloys are used for this application because of their biocompatibility and they have been used for the 

castings of metal-ceramic crowns. Viennot et al. [4] concluded that Co-Cr alloy has a much negative 

corrosion potential than Pd-Ag alloys in Fusayama artificial saliva, being less passive, but it is not 

significant. In addition, the palladium content can cause allergic reactions in patients. Titanium and its 

alloys have higher corrosion resistance. However, Ti and its alloys present lower mechanical properties 

than stainless steel or Co-Cr alloys [19,37,44,46]. 

Ni-Cr and Co-Cr alloys have been used in dental structures and orthopedic implants due to their corrosion 

behavior. These alloys have low cost of casting process, a coefficient of thermal expansion identical to 

ceramic used in the crown and good mechanical and tribological properties [47].  

However, Ni-Cr alloys are susceptible to corrosion and can cause allergies to the users. Thus, due to this 

fact, Co-Cr alloys have been used because of their good electrochemical properties. Another fact is the 

allergic properties of metal ions of Co-Cr based alloys, although they are still very popular for dental 

applications [40,42]. 

The table 1 shows the main properties of the most used biomedical alloys. The open circuit potential 

(OCP) and electrochemical breakdown potential of these alloys (in 0.17 M NaCl) are presented in table 

2. 
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Table 1 Comparison between the properties and applications of Co-Cr, Ti-6Al-4V and 316L SS [1,19,45,46,48,49]. 

Material Cast Co-Cr alloys Ti6-Al-4V alloys AISI 316L Stainless 
Steel 

Density (g/cm3) 8.3-9.2 4.5 7.9 
Tensile Strength (MPa) 690-1800 860-1100 650 
Yield Strength (MPa) 490 795-970 280 
Vickers Hardness 300-430 - 190 
Young’s Modulus (GPa) 210-248 110-121 211 
Fatigue Limit (GPa) 0.30 - 0.28 

Applications 

Cranial plates, 
orthopaedic fracture 

plates, dental implants, 
spinal rods, joint 

replacement 
prostheses, stents, 

catheters 

Orbit reconstruction, 
dental implants, 

orthopaedic fracture 
plates, heart valves, 

spinal rods, joint 
replacement 
prostheses 

Cranial plates, orbit 
reconstruction, 
maxillofacial 

reconstruction, dental 
implants, dental wires, 
orthopaedic fracture 

plates, joint 
replacement 

prostheses, ablation 
catheters 

 

Table 2 OCP and Breakdown Potential in deaerated 0.17 M NaCl [45]. 

Material OCP after 480h (V) Breakdown potential (V) 
AISI 316 stainless steel ≈0.30-0.50 0.40-0.48 
Cast Co-Cr alloy ≈0.50 0.87 
Typical titanium alloy 0.23 ≈25.00 

 

For AISI 316 both OCP and breakdown potential are in the same range of values, showing that this 

material may present pitting corrosion. Regarding Co-Cr alloy the breakdown potential is higher than OCP, 

so pitting corrosion or localized corrosion may occur just under exceptional conditions. For titanium and 

its alloys the differences between the two potentials is too high that it makes impossible to occur pitting 

or localized corrosion. Thus, titanium and its alloys present the best corrosion behavior. The OCP values 

from Co-Cr and 316 stainless steel are about the same which can be due to the presence of Cr in both 

that leads to form a passive protective layer. [45,50]. 

In non-precious alloys, chromium is added in the range of 15-30% in non-precious alloys to obtain the 

best balance between corrosion resistance and mechanical strength. Nickel addition also increases 

corrosion resistance and mechanical properties. In addition, molybdenum can increase the corrosion 

resistance of the alloy [37]. 

The addition of elements as Co, Cr and Ni increases the mechanical properties and it can improve the 

cast process into thinner shapes as crowns, bridges, fixed or removable partial dentures without 

compromising the rigidity [37]. 



Minho University - Effect of some mouthwashes on the  
triboelectrochemical behavior of a Co-Cr dental casting alloy  

 

8 
 

1.4.1. Co-Cr alloys 

Cobalt-Chromium alloys were introduced in the 30’s in order to substitute gold alloys (Type IV) in partial 

denture bases, and in the 70's  to substitute gold in crowns and bridges due to the their low cost [1,40].  

Cobalt-based alloys are widely used in biomedical applications because of their properties: good corrosion 

resistance and good mechanical properties as high ultimate tensile and fatigue strength combined with 

sufficient elongation at fracture [51,52]. 

Co-Cr alloys have a higher balance between its properties like strength and wear resistance compared to 

the other materials used for the same applications. However, the carbon content affects the hardness, 

strength and ductility. Co-Cr alloys can be high carbon (HC) (>0.15% weight) or low carbon (LC). The 

carbon forms carbides with any of the compounds and a high presence of these carbides lowers the 

ductility. The carbides precipitate in the interdendritic regions. The main difference is the existence of 

chromium carbides in the HC alloys, increasing the hardness. However, these carbides affect the 

corrosion stability by depleting the metal matrix in chromium. The high carbon alloys present higher wear 

resistance, as result the M23C6, M7C3 and M6C carbides are formed during the solidification. The distribution 

of carbides is also affected by the processing and it is favourable a discontinuous carbide formation to 

continuous carbide formation [1,14,19,53,54].  

Dobrzański et al. [41] concluded that the increase of Co content may increase the hardness. The cobalt 

and chromium form a solid solution for up to 30% chromium, which is the limit of solubility of chromium 

in cobalt; additional chromium would produce a highly brittle second phase. Molybdenum and beryllium 

can be added in order to refine the grain structure and improve the behavior during the casting. Co-Cr-

Mo alloys form on their surface a mix of cobalt, chromium and molybdenum oxides. This thin passive film 

(1-4nm) can be damaged due to mechanical loading, resulting from scratches and fretting. In this way, 

the oxide damage is caused by wear, exposing a reactive surface to contact with corrosive environment. 

In fact, Cr and Mo improve the corrosion behavior, forming a protective oxide film on the surface in a 

corrosive environment and in general, the higher the chromium content, the better the corrosion 

resistance of the alloy. It has the added benefit that produces a significant solid solution hardening effect, 

an effect shared by the addition of iron. Co-Cr-Mo alloys are susceptible to mechanical disruption of 

passive film in case of dental skeletal structures and orthopaedic implants as screws, pins and plates 

[1,19,40,55]. 

Alifui-Segbaya et al. [56] studied some Co-Cr alloys and concluded that the level of metallic ions releasing 

for Co, Cr and Mo is according to the ISO definition. 
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Co-Cr alloys can be processed by different routes leading to different microstructures, and consequently 

different properties [48]. 

1.4.2. Titanium alloys 

Some of the most attractive properties of titanium alloys are: high strength with low density, excellent 

biocompatibility and corrosion resistance. The aluminium and vanadium increase the strength in small 

quantities, being α-stabiliser and β-stabiliser, respectively. The α-phase is relatively soft and ductile while 

the β-phase is harder by changing the proportion between α-phase and β-phase, it can be obtain different 

properties [1]. 

The biggest disadvantage of titanium and its alloys are related with the problems that happen during the 

processing. Titanium has a high melting point, which can lead to create cooling contraction. This kind of 

material is very reactive, thus, it is required a special equipment with high vacuum or inert atmosphere 

to process it. 

1.5. Processing methods for dental metal frameworks 

Saji et al. [47] concluded that there was a marginal influence on the variation of morphology by casting 

method in Co-Cr and Ni-Cr dental alloys on the overall corrosion rate. The possibilities to produce dental 

metal removable frameworks of Co-Cr are the following: 

1.5.1. Flame Casting 

Metals and non-noble alloys have being used in full-cast and metal-ceramic restorations in addition to 

removable partial dentures. Nowadays, approximately 90% of all removable partial dentures are now cast 

from non-precious alloys containing Co, Cr, Ni [37]. 

The casting process for dental alloys can be performed by flame (with gas/air) or electric current The 

technique with flame (figure 5a) is performed by directing the flame produced from the gas/oxygen 

combination at the dental alloy to be melted. In this way the heat produced from this flame is radiated in 

all the dental alloy. The alloy is melted by a torch flame in a glazed ceramic crucible attached to the 

"broken arm" of the casting machine [57,58]. 

The torch flame can be generated from a mixture of propane and air, natural gas and air, acetylene and 

air, or acetylene and oxygen [57]. 
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The flame can be divided in 4 zones (figure 5b): mixing zone (consists of unburnt gas), combustion zone 

(it is an oxidizing zone where a partial combustion takes place), reducing zone (that is the hottest area of 

the flame) and the oxidizing zone (the final combustion between the gas and the surrounding air occurs). 

The best area considered for melting an alloy is showed in figure 5b [58]. 

 

Figure 5 a) Flame Casting Technique b) zones of the flame from flame casting [58,59]. 

 

There are two types of casting machines: the first one uses the principle of centrifugal force being the 

metal accelerated outward by rapid spinning and it is called centrifugal casting machine (figure 6). When 

the metal is completely molten, the hot casting ring is placed behind the crucible that contains the molten 

alloy and the crucible-ring assembly is turned rapidly, which accelerates the entrance of the metal into 

the casting ring, by occupying the space previously occupied by the wax pattern. The other type of casting 

machine uses pressure over the molten alloy, called pressure/vacuum casting machine. The vacuum is 

applied to the bottom of the mold: the molten alloy is “pushed and sucked” simultaneously into the mold 

[58].  

 

 

Figure 6 Scheme of a centrifugal casting machine [58]. 
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Generally the flame casting is performed by centrifugal casting machines (figure 6) and the resistance 

melting and induction melting is done by centrifugal or vacuum/pressure casting machines [58]. 

Bauer et al. [60] stated that the mechanical properties of Ni-Cr-Mo and Co-Cr alloys were significantly 

improved when processed by flame casting compared with other casting techniques. Compared with 

laser sintering this process is simpler, it does not need high skilled human resources and expensive 

machines, being more economical. Furthermore, the impurities from the cast process in the alloy could 

lead to heterogeneity. Other problems from this process are porosity and shrinkage, that can lead to the 

initiation of corrosion [56,61].  

1.5.2. Laser sintering 

The laser sintering technique is able to generate complex 3D pieces controlled by computer from a CAD 

file, by consolidating successive layers of powder material, using thermal energy supplied by a focused 

and computer controlled laser beam, being a process used as rapid prototyping. Comparing with the cast 

process, the porosity is controlled [2,62]. 

This technique is also used for the processing of cobalt-chromium (Co-Cr) removable partial denture 

(RPD) frameworks [56]. A schematic representation of the operation of this machine is represented in 

figure 7. 
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Figure 7 Scheme of laser sintering process [63]. 

 

This process is suitable for dental applications due to the complex geometry that is always different from 

patient to patient and low production volume of pieces required in this process. Another advantage is the 

digital control and the final product is obtained just in one-step. However, no scientific data are available 

about the physical properties of laser-sintered dental metals [2,56,62]. 

Some disadvantages of this process are [64,65]:  

 the model may become too high and the time of the process may increase significantly; 

 the powder out removal must be previously designed, the non-sintered powder may remain inside 

and consequently the part will not become lightweight; 

 the complete powder compaction is rarely achieved and thus a post-treatment is often required, 

relatively small building area, few different material possibilities; 

 relatively high costs associated with the process. 
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2. THEORETICAL ASPECTS OF METALLIC DENTAL MATERIALS 

DEGRADATION 

2.1. Corrosion 

In dental alloys the corrosion reactions might exhibit biological, functional and aesthetics effects. Adverse 

biological reactions due to metallic ion releasing during the corrosion process are usually detected. 

Another problem is tarnish that is a surface discoloration due to the formation of hard and soft deposits. 

However it does not cause deteoration of material. Thus, it is needed to study the corrosion behavior of 

dental alloys once they can induce adverse biological reactions as gingival swelling and erythema, 

mucosal pain and lichenoid reactions. Oral cavity is an aggressive environment due to the humidity level, 

saliva and temperature and pH changes. Corrosion is defined as deteoration of materials by the 

aggressive action of environment. This process can lead to loss of some mechanical and physicochemical 

properties. The corrosion behavior can be an indicator of biocompatibility (being the biocompatibility the 

mutual coexistence between the biomaterials and the physiological environment). A dental material is 

daily exposed to degradation caused by humidity, temperature and pH changes [1,40,43,66–69]. 

Nonferrous metals and stainless steel materials usually have great corrosion resistance due to a protective 

passive layer formed on its surface [44]. 

The corrosion process decreases the free energy when metal reacts with an environment. It can happen 

oxidation reaction, occurring the dissolution of the metal as metallic ions at the anode [1,69]: 

𝑀 → 𝑀𝑛+ + 𝑛𝑒− (1) 

Being M a metal. 

Or it can occur a reduction of hydrogen ions to hydrogen gas at cathode, [1,69]: 

𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2𝑂 (2) 

When a metal or an alloy is in aqueous solutions, corrosion occurs on the surface as a result of 

electrochemical reactions, resulting in dissolution of metal and/or loss of ions [68]. 

The tendency to corrosion of metals is shown by standard electrochemical series of Nernst potentials 

(presented in table 3) [46]. 
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Table 3 Standard electrochemical series of Nernst potentials [46]. 

Reaction ∆E0 (V) 
Li  Li+ -3.05 
Na  Na+ -2.71 
Al  Al3+ -1.66 
Ti  Ti3+ -1.63 
Cr  Cr2+ -0.56 
Fe  Fe2+ -0.44 
Cu  Cu2+ -0.34 
Co  Co2+ -0.28 
Ni  Ni2+ -0.23 
H2  2H+ 0.00 
Ag  Ag+ +0.80 
Au  Au+ +1.68 

 

Noble metals have a higher potential than the standard hydrogen electrode and base metals have lower 

potentials. In this way, noble metals, as gold, are almost considered inert, and the metals that have a 

more negative potential difference as Co and Ti form on the surface oxide film for their corrosion 

resistance [46,69]. 

The corrosion of metals or alloys depend on the composition, surface roughness, temperature, pH, and 

presence of inhibitors. [70]. 

2.1.1. Types of corrosion 

There are different types of corrosion: 

 Uniform corrosion occurs on the whole surface of the metal, affecting all metals even though at 

different corrosion rates. It is the most common type of corrosion [71,72]; 

 Galvanic corrosion occurs due to the galvanic coupling of different metals involved. The less noble 

metal becomes anode and usually corrodes. For example, in dental applications, galvanic corrosion can 

occur when two dissimilar metals or alloys are joined for construct a bracket or a posted archwire. This 

can also occurs in removable prosthesis, when two metals or alloys are joined, and this situation is 

aggravated when this joint is welded [39,71,72]; 

 Crevice corrosion occurs in crevices on the material surface causing regions of stagnant solutions 

that will attack the material. An example of crevice corrosion happens on orthodontic wires or brackets in 

saliva due to their surfaces not being perfectly smooth and thus they can exhibit many crevices at 

microscopic level [39,71,72]; 
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 Pitting corrosion is a form of extremely localized corrosion resulting in small pits or holes. A 

consequence of this corrosion type is a low material loss until the failure occurs, which cannot be 

detected. For example, pitting corrosion can occur in an implant with a small surface pit placed in a 

solution [28,71,72]; 

 Intergranular corrosion due to more reactive nature of grain boundaries to some alloys and in 

particular environments. The stainless steel is particularly susceptible to intergranular corrosion in brazed 

and welded pieces [71,72]; 

 Erosion corrosion is the acceleration or increase in rate of deteoration or attack on a material due 

to the relative movement between a corrosive fluid and material surface [71];   

 Stress corrosion is caused by simultaneous presence of tensile and a specific corrosive 

environment. An example of stress corrosion is when an archwire is linked to orthodontic brackets 

increasing the reactivity of the metal alloy due to the loading in specific sites [71,72]. 

The pitting and the crevice corrosion increase the susceptibility to continue the corrosion process because 

of the accumulation of microorganisms that can cause reduction of pH and depletion of oxygen, which 

affects the passivation process (formation of the protective passive layer) [72]. 

2.2. Tribocorrosion 

Tribocorrosion is a material deteoration or transformation resulting from simultaneous action of wear 

(tribology) and corrosion. Tribology is the science of friction, wear and lubrication and corrosion is related 

to chemical aspects of material degradation [73]. 

There is a synergism of mechanical and environmental effects that results in degradation of materials 

and consequently loss of material can be much large than only one of two processes of degradation 

separately. The metals passivate in case of corrosion only due to their highly reactive nature. However, 

in a situation where wear occurs, the material loss due to mechanical action is much higher than the 

result of wear and corrosion separately [73,74]. 

Tribocorrosion phenomenon occurs in large variety of applications leading to a material loss, durability 

loss, reliability loss, safety loss, worst performance, less energy efficiency, health harmful, etc.. Thus, 

some properties of a material, necessary to correspond to specific requirements, can be lost. 

Tribocorrosion is presented in living systems like metallic implants in human body such joints, plates, 

crews, dental and orthopaedic implants [73,74]. 
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The factors that affect tribocorrosion phenomena are: properties of the contacting materials, mechanics 

of the tribological contact and physicochemical properties of the environment, being these factors 

interrelated and correlated with synergism existing on tribological system. The microstructure, the 

presence of defects, the topography and the chemical composition of the surfaces in contact are critical 

factor on tribocorrosion behavior. The environment of tribocorrosion can also influence, due to some 

variables such as: phase state, viscosity, conductivity, pH, temperature, etc. [73].  

The corrosion resistance of many materials can lead to an oxide film formation on the surface, meaning 

that the material has a passive behavior. However, within the tribological contacts, this film can be 

removed by wear or impingement processes, increasing the mass loss of material [73]. 

The study of tribocorrosion in dentistry is important because in the masticatory process exists a 

phenomena of rubbing between teeth and food particles in presence of saliva. 

2.2.1. Contact modes of tribocorrosion 

A schematic representation of different tribological contacts is shown in figure 8.  

 Sliding is a two or three body contact between sliding surfaces the relative motion of the 

surfaces can be unidirectional or reciprocating [73,75]; 

 Fretting is a special type of tribological contact involving a reciprocating motion of small 

amplitude (a few micrometres) [73,75]. This phenomenon results of a combined effect at 

small scale of cyclic wear and corrosion. An example is the archwire/bracket-slot interface 

when a load is applied leading the two metals to undergo a process of cold welding from 

the pressure at the interface between them. Continuing this load, the protective oxide 

layers on the surface of the material can be damaged leading these metals or alloys to 

corrosion [39,55,72]. 

 Rolling contacts that is typical for ball bearings [73,75]; 

 Particle impingement can result in a combined mechanical and chemical attack of the 

material; a well-known example is erosion corrosion of pumps and pipes carrying slurries 

[73,75]. 
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Figure 8 Schematic representation of different types of tribological contacts involving simultaneous mechanical 

and chemical effects [75]. 
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3. STATE OF ART ON CORROSION AND TRIBOCORROSION OF DENTAL 

ALLOYS 

3.1. Corrosion  

Alves-Rezende et al. [70] studied the corrosion resistance of Ni-Cr with different compositions in 3 different 

commercial mouthwashes with different active ingredients. The authors concluded that the corrosion 

behavior of Ni-Cr alloys was more affected by their composition and microstructure than by mouthwash 

type. A spontaneously passive film was formed on Ni-Cr alloy surface independently of the mouthwash.  

In another study of Alves-Rezende et al. [8], the authors concluded that the chemical composition of the 

same three commercial mouthwashes affects more than the composition of the alloy in case of Ti alloys. 

Thus, the authors recommend that patients with Ti alloys restorations should use non-fluoridated 

mouthwashes due to the protective characteristics of passive film. 

Mareci et al. [40] studied the corrosion behavior of a Co-Cr-Mo alloy in artificial saliva. It was concluded 

that the Co-Cr-Mo alloy has a passive behavior and a high corrosion resistance, leading to a good 

biocompatibility of this alloy. On the other hand, Viennot et al. [42] compared the corrosion behavior of a 

noble alloy and a Co-Cr alloy and concluded that Pd-Ag alloy has more passive behavior than Co-Cr alloy 

in Fusayama artificial saliva. However, no significant differences on corrosion currents were found 

between Pd-Ag and Co-Cr alloys. Another study by Mareci et al. [76] compared the corrosion behavior of 

four different alloys (Ag-Pd, Ni-Cr, cp-Ti and Ti-12Mo-5Ta) in artificial saliva with Oral B solution. It was 

concluded that all the alloys have a good resistance to corrosion. However, Ag-Pd alloy did not show a 

passive behavior when compared with the other alloys for all electrolytes. 

Jaffer [67] studied the effect of different mouthwashes on the metallic ion releasing of Co-Cr alloy denture 

and it was concluded that Cr ion releasing was lower than Co ions. 

Schiff et al. [5] studied the corrosion resistance of three orthodontic brackets (Fe-Cr-Ni, Co-Cr and Ti 

alloys) on three fluoride mouthwashes. Regarding the Co-Cr alloy the corrosion behavior was not 

influenced by the different mouthwashes. However, the corrosion behavior of Fe-Cr-Ni and Ti alloy was 

affected by the mouthwashes. The authors stated that Elmex® and Ancorea® mouthwashes were the 

less corrosive environments compared with Meridol®. 
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Lassila et al. [77] concluded that the fatigue resistance of three Co-Cr dental alloys is reduced by testing 

in air, artificial saliva and distilled water and this can be due to of corrosion fatigue of the alloy. By 

Electrochemical Impedance Spectroscopy (EIS) tests, for Co-Cr, Ni-Cr and cp-Ti in artificial saliva was 

formed a stable passive film except Cu-Ni-Al, where porous film was formed in artificial saliva [37]. 

Souza et al. [9] studied the corrosion behavior of titanium in Fusayama artificial saliva with addition of 

different concentration of fluorides. The authors concluded that a compact passive film was formed in 

artificial saliva without fluorides presence and up to 227 ppm F-. In these solutions the OCP increased to 

more noble values that suggest the growth of a passive film. On the other hand, a decrease of the OCP 

values was noticed on immersion in artificial saliva containing 12,300 ppm F-. 

3.2. Tribocorrosion 

Some studies on tribocorrosion of biomaterials have been done. Contu et al. [78] enhanced the need and 

importance of a better understanding of the corrosion behavior of metallic implants of pure titanium, Ti-

6Al-4V, Ti-6Al-7Nb, and Co-Cr-Mo after mechanical disruption of both the passive film and the stability of 

the protecting oxide film when exposed to physiological solutions. The influence of fluorides in artificial 

saliva on the tribocorrosion behavior of cp Ti was investigated by Souza et al. [9]. Even though a decrease 

on COF was observed when the fluoride concentration increased and an increase on material loss was 

noticed by the higher concentration of fluorides. On the other hand, the presence of fluorides 

concentration on Ti can significantly influence the corrosion resistance. Thus, the degradation of the 

protective titanium oxide layer may lead to failures in dental implants and prostheses. This negative effect 

can also lead to inflammations and toxic effects on the human body. 

Vieira et al. [79] studied the influence of the pH and corrosion inhibitors in artificial saliva on the 

tribocorrosion behavior of cp Ti. It was concluded that the addition of citric acid or anodic inhibitor to 

artificial saliva results in a slight improvement of the tribocorrosion behaviour of Ti. Regarding the wear 

rate, no significant differences were observed. However, a lower wear volume loss was obtained, which 

can be due to the slightly lower corrosion rate detected in these solutions during the fretting tests. Ti had 

a lower wear volume loss in the AS containing citric acid, indicating that some protection was provided 

by the addition of citric acid to the solution. In solutions containing citric acid or anodic inhibitor generated 

protection due to the nature of the oxidation and reduction reactions occurring in the contact area during 

fretting test. Tribo-layers were formed in the contact region during the tribocorrosion test and become 

more stable after 7000 cycles in solutions with citric acid or anodic inhibitor, as noticed by a lower 
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coefficient of friction and a lower corrosion current. The addition of a cathodic or an organic inhibitor to 

artificial saliva, has a dangerous effect on the tribocorrosion behaviour of titanium. Both an increase in 

the wear volume loss and a significant higher corrosion rate during fretting test were noticed. 

It was not found more information about tribocorrosion on dental applications. However, it was done a 

review of some scientific information of in other biomedical applications. 

Yan et al. [80], in their work on tribocorrosion behavior of a HC Co-Cr-Mo, a LC Co-Cr-Mo and the 316L 

Stainless Steel in 3 different electrolytes (50% calf bovine serum, Dulbecco’s Modified Eagle’s Medium 

(DMEM) and 0.36% NaCl solution), at 37ºC, concluded that the influence of the corrosion was more 

significant than the wear. Another study from Yan et al. [81] using the same alloys in 50% bovine serum 

and 0.36% NaCl solutions, concluded that proteins and amino acids can influence the corrosion and 

tribocorrosion behavior, accelerating the corrosion rate and acting as lubricants enhancing the 

degradation due to the increase of corrosion behavior. In these two works it was concluded that the 

material with the best behavior was HC Co-Cr-Mo [80,81]. 

Doni et al. [10] studied the tribocorrosion behavior of Co-Cr-Mo alloy processed by casting and hot 

pressing and Ti-6Al-4V alloys used in orthopedic and dental implants in NaCl solution at 24 ± 2 ºC and 

37 ± 2 ºC. It was concluded that the temperature did not influence COF (coefficient of friction) and OCP 

(open circuit potential) values during the sliding in NaCl solution. Moreover, both Co-Cr-Mo alloys 

presented similar behavior in terms of worn surface features, COF, and OCP. However, Co-Cr-Mo samples 

presented lower tendency to corrosion under sliding compared with Ti-6Al-4V. The wear rates after 

tribocorrosion tests presented different values; while wear rates of Co-Cr-Mo samples presented similar 

values, wear rate of Ti6Al4V was found approximately 45 times higher than the both Co-Cr-Mo samples.  

Arenas et al. [82] showed that the Co-Cr-Mo alloy have a good corrosion behavior in a simulated 

physiological solution, PBS. A big decrease in the total wear volume loss was observed under anodic 

control when compared with the OCP condition. On the other hand, the wear volume loss under anodic 

control is nearly double in relation to that obtained under OCP. This result shows that the oxidizing 

conditions imposed during sliding greatly accelerate the overall tribocorrosion process of the Co-Cr-Mo 

alloy. The morphology results indicate that corrosion aggravates the wear of the Co-Cr-Mo alloy in PBS, 

generating an important increase of total wear volume.
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4. CORROSION AND TRIBOCORROSION TECHNIQUES 

4.1. Corrosion techniques 

4.1.1 Open circuit potential (OCP) 

By open-circuit potential technique it is possible to get information about the electrochemical state of a 

material. However, this method just provides limited information on the kinetics of the surface reactions. 

The potential of metal is measured with respect to a reference electrode, when no current flows. 

“Corrosion potential” is defined as the potential of a corroding surface in an electrolyte relative to a 

reference electrode. Open-circuit potential technique is appropriate for monitoring corrosion-wear of 

passive metals in a corrosive environment. However, the information of OCP is not sufficient to identify 

the corrosion-wear mechanisms for unknown corrosive wear systems. On the other hand, by monitoring 

the OCP of a metal it can be indicated whether a metal is undergoing a depassivation or a repassivation 

process [83].  

Figure 9 represents a typical behavior of the OCP evolution with time in physiological solutions (such as 

Hanks' or Ringer's solution) [45]. 

 

Figure 9 Evolution of potential with time: a) the material exhibits film breakdown after immersion, b) the material 

have an intact passive film, c) the material exhibits film breakdown after initial thickening [45]. 

 

The curve a) in figure 9 shows a sharp drop on potential at the beginning of the immersion and after 

some time the potential remains constant. This behavior indicates a complete film breakdown after 

immersion and shows that general corrosion is taking place. In the curve b) the potential rises and is 
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continuously increasing with time. This is a typical behavior of a passive metal. Regarding the curve c) 

fluctuations on potential evolution are observed, meaning that the metal is susceptible to the localized 

corrosion or pitting corrosion, in which small areas on the metal surface are rapidly attacked while the 

remainder of the surface remains passive and unaffected [45]. 

4.1.2. Potentiodynamic polarization (PD) 

Potentiodynamic polarization measurements can be used to derive the dependence of anodic or cathodic 

current, I, on the electrode potential, V, measured versus a reference electrode (figure 10). This technique 

is useful to determine the active/passive behavior of materials at different potentials [83]. 

When anodic current is equal to the cathodic current, the net current measured on the surface will be 

zero. The equilibrium potential at which this occurs is called corrosion potential (E(i=0)). The corrosion 

current density (icorr) is determined at the E(i=0). Then, the potential increases and the curve moves to active 

zone. In this zone, metal oxidation is the dominant reaction and general corrosion and sometimes pitting 

occurs. Above passivation potential, Ep, the applied potential increases and the current density is constant 

and, thus, passive current density (ipass) is achieved (passive zone). Once the potential reaches a sufficiently 

positive value (sometimes termed the breakdown potential Eb) the applied current rapidly increases 

forming a transpassive zone where pitting corrosion can occur. This increase may be due to a number of 

phenomena, depending on the alloy/solution combination. For some alloys, typically those with a very 

protective oxide, such as cobalt, the sudden increase in current is due to oxygen evolution [50,83–85]. 
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Figure 10 Representative polarization curve adapted from [86].  

 

icorr and E(i=0) are obtained by the interception of the anodic and cathodic Tafel branches on the polarization 

plot as it is shown in figure 11. 

 

Figure 11 Example of polarization plot, showing intersection of anodic and cathodic Tafel [87]. 

4.1.3. Electrochemical impedance spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) is a non-destructive technique for studying many chemical 

and physical processes, which is a result of a material in contact with an electrolyte. By applying a small 

AC voltage across the metal/electrolyte interface, EIS is able to examine the interfacial properties of a 
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metal in an electrolyte. By knowing the response of the system material/electrolyte to the applied 

potential, the interface is changed by adsorbed species onto the surface and/or metal dissolution can be 

studied [84]. 

The EIS measurements consists on applying an AC small amplitude signal, usually a voltage between 5 

to 50 mV,  to a specimen over a range of frequencies of 0.001 Hz to 100,000 Hz, recording the real 

(resistance) and imaginary (capacitance) components on impedance response of the system, resulting in 

two types of diagrams: the Nyquist diagram that is a graph of real and imaginary impedance amplitudes 

and the Bode diagram that is a graph with X-axis which contains logarithmic values of frequencies and 

two Y-axis: one contains logarithmic values of total impedance and the other the phase angle for resistance 

and capacitive resistance [85]. 

In order to understand the electrochemical system it is fitted an equivalent circuit model. This equivalent 

circuit model is constituted by electrical parameters (resistances and capacitors, for example) that 

represent the electrochemical properties of the system [85].  

4.2. Tribocorrosion techniques 

This kind of tests is important to understand the relationship between corrosion and mechanical damage 

of a material immersed in a corrosive solutions and simultaneously exposed to wear. 

The OCP of the system is measured up to achieve a stable potential. Then the sample is exposed to 

sliding and it is simultaneously measured the OCP. The results from this test can be presented as in the 

Figure 12. The potential decreases when the sliding happens and recovers when the applied force stops. 

 
Figure 12 Example of variation of the open circuit potential of a stainless steel disk immersed in 0.5M H2SO4 

before (e.g. areas 1 and 2), during (e.g. area 3), and after loading (e.g. area 4) against a corundum ball [83]. 
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Many factors can influence the tribocorrosion behavior. In case of local abrasion of passive film, it can 

lead to wear accelerated corrosion due to a rapid dissolution of the locally depassivated film, followed by 

repassivation. The repassivation is a film reforming process on the broken surface film as it showed in 

figure 13. The repassivation phenomenon occurs by a process of nucleation and growth of a passive film 

on the bare surface of an alloy, mechanisms proposed for the formation of a passive film can be applied 

to repassivation kinetics [88,89].  

 

Figure 13 Schematic illustration of the degradation mechanisms of passive metals subject to tribocorrosion 

[90]. 

 

After the end of sliding, when the mechanical damage is interrupted and the OCP value increases, the 

repassivation phenomenon occurs. The repassivation rate is calculating by OCP graph showed in figure 

14 and the logarithmic law showed in equation 3. 

 
Figure 14 Change in potential in titanium during and after abrasion [91]. 

 
∆𝐸 = 𝑘1 log 𝑡 + 𝑘2 (3) 
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Where ∆E is the potential in V, t is the time, k1 is the repassivation rate and k2 is log t when E=0 V, being 

a constant. k1 is calculated from the slop of ∆E. The considered time is the time after the abrasion 

interruption. High k1 values mean a larger increase of potential at the initial stage of repassivation and a 

high repassivation kinetics [91,92].



Minho University - Effect of some mouthwashes on the  
tribo-electrochemical behavior of a Co-Cr dental casting alloy  
 

29 
 

5. MATERIALS AND METHODS 

5.1. Materials 

The chemical composition of Co-Cr alloy (DFS, Ländenstrabe, Riedenburg, Germany) is given in table 4. 

Co-Cr tablets (Ø – 12 mm x 2 mm thickness) were processed using conventional flame fusion technique 

and injected by centrifugation. 

 

Table 4 Chemical composition (wt%) of Co-Cr alloy. 

Material Co Cr W Mo Nb Mn Si Fe Others 

CoCr alloy 61 24 8 2.5 1 1 1 1 0.5 

 

The samples were ground down to 2400 mesh size SiC paper followed by polishing with OP-S (0.04 μm) 

suspension. After polishing, samples were ultrasonic cleaned: 10 minutes in warm water, 10 minutes in 

propanol followed by 5 minutes in distillated water. Before each test the samples were kept in desiccator 

for 24 hours in order to homogenize the surfaces and obtain to similar surface conditions. 

5.2. Solutions 

Four different commercially available mouthwashes (Listerine® alcohol-free and Listerine® alcohol 

containing - Johnson & Johnson Limitada, Barcarena, Portugal; Colgate Plax® alcohol-free and Colgate 

Plax® alcohol-containing - Colgate-Palmolive Unipessoal Lda, Porto-Salvo, Portugal) were chosen and 

artificial saliva (Fusayama artificial saliva) was used as control.  

The chemical composition of artificial saliva is given in table 5. The solutions were prepared as followed:  

 AS: artificial saliva group – control: 100% artificial saliva; 

 LAF: Listerine (alcohol-free group: 50% vol. mouthwash + 50% vol. artificial saliva); 

 LAC: Listerine (alcohol-containing group: 50% vol. mouthwash + 50% vol. artificial saliva); 

 CAF: Colgate (50% vol. mouthwash + 50% vol. artificial saliva); 

 CAC: Colgate (50% vol. mouthwash + 50% vol. artificial saliva). 
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Table 5 Composition of artificial saliva Fusayama [9]. 

Compound g/L 

NaCl 0.4 

KCl 0.4 

CaCl22H2O 0.795 

Na2S9H2O 0.005 

NaH2PO42H2O 0.65 

Urea 1 

 

In table 6 is shown the pH of each solution. 

Table 6 pH of solutions. 

Solution pH 

AS 5.38 ± 0.30 

LAF 4.09 ± 0.03 

LAC 3.68 ± 0.06 

CAF 4.96 ± 0.05 

CAC 4.14 ± 0.12 

5.3. Corrosion tests 

All the corrosion tests were performed using a Gamry potentiostat/galvanostat (model Reference – 600). 

A standard three-electrode electrochemical cell (adapted from ASTM: G3-89) with an electrolyte volume 

of 200 ml was used for the corrosion measurements, where a saturated calomel electrode (SCE) was 

used as the reference electrode (RE), Pt electrode used as the counter electrode (CE), and samples having 

an exposed area of 0.38 cm2 used as the working electrode (WE) as presented in figure 15. The tests 

were carried out at body temperature (37 ± 2 ºC). 
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Figure 15 Schematic representation of electrochemical test, being CE the counter electrode, RE the reference 

electrode and WE the work electrode. 

 

The Open Circuit Potential (OCP) versus time was measured during 1 hour to determine the tendency to 

corrosion. 

In the Potentiodynamic Polarization (PD) test it was used an initial delay time at equilibrium state of 60 

min in order to stabilize the surface at OCP. These tests were carried out in the anodic direction starting 

at 0.25 V below the OCP up to 1.5 V, at a scan rate of 5 mV/s. Before and after PD tests the pH of each 

solution was measured (EUTECH Instruments pH 510).  

Electrochemical Impedance Spectroscopy (EIS) tests were carried out after monitoring OCP during 1 hour 

in equilibrium state. The impedance data acquisition was carried out by scanning a range of frequencies 

from 64 kHz until 10 mHz with 10 points per frequency decade and the amplitude of the sinusoidal signal 

was approximately 10 mV in order to guarantee linearity of the electrode response. 

All the tests were repeated at least three times in order to have repeatability. 

5.4. Tribocorrosion tests 

The electrochemical cell was installed on a ball-on-plate tribometer (CETR-UMT-2), as it showed in figure 

16, with the sample surface facing upwards, against the counter material (10mm diameter alumina ball, 

Goodfellow). The electrochemical measurements were carried out at body temperature using the same 
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three-electrode set-up. In 30 mL electrolyte OCP evolution with time was monitored using a Voltalab PGZ 

100 potentiostat. The OCP was measured before, during and after sliding. The sliding action started after 

reaching the stable OCP values for each test. The tribological parameters were: a frequency of 1 Hz, an 

amplitude of 5 mm, a load of 10 N and 1 hour of sliding. The maximum contact pressure was 4.2 GPa. 

After the test, the samples were ultrasonic cleaned with the following sequence: 15 minutes in warm 

water, 10 minutes in propanol and 5 minutes in distillated water. 

 

Figure 16 Example of modified tribocorrosion experimental setup with a reciprocating sliding tester [9]. 

 

All the tests were repeated at least three times in order to have repeatability. 

5.5. Characterization techniques 

It was performed a morphological, structural and chemical characterization of Co-Cr alloy, with the 

following characterization techniques: 

 Optical microscopy (Leica DM2500 Optical Microscope) to study the surfaces morphology before 

and after corrosion and tribocorrosion tests; 

 SEM/EDS FEI Nova 200 Field Emission Gun Scanning Electron Microscope (FEG-SEM) equipped 

with EDAX, energy dispersive X-ray spectroscopy (EDS). The SEM analysis were performed before and 

after the corrosion and tribocorrosion tests, and on the alumina balls after the tribocorrosion tests were 

also performed; 

 X-ray diffraction (XRD) (Cu Kα radiation, Bruker D8 Discover) was used before and after the 

corrosion tests in order to identify the phases present in Co-Cr; 
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 Hardness (EMCOTEST DURASCAN ), Vickers macro-hardness were determined by a mean of 5 

indentations per sample at a 5 kg load with dwelling time of 15 s; 

 Wear volume was calculated by profilometry (Veeco Dektak 150). This measurement was 

performed at the end of tribocorrosion each profile was taken with a scan rate of 0.185 µm/s. 

The wear volume loss is determined by following the wear track model in figure 17. For each wear track, 

five 2D profiles were obtained,  from the center of the wear track (lines b in Figure 17), and 1 and 2 mm 

away from the center for both sides (lines a1, a2, c1, and c2 in Figure 17) [10]. 

 

Figure 17 The estimated model used for calculating the wear loss volume. The lines a1, a2, b, c1 and c2 are indicating 

2D profile lines - adapted from [10]. 

 

For the calculation of wear loss volume, first, wear loss area for each 2D profile is calculated with the 

following equation: 

Aw = ∑ 0.5(Yi +
n
i=0 Yi+1)(Xi + Xi+1) (4) 

Where Aw is the wear loss area for each 2D profile in mm2, X is the width in mm, Y is the deepness in 

mm, and n is the number of counts. Then, average deepness values are calculated with the following 

equation: 

D̅ =
A̅w

W̅̅̅
 (5) 

Where D̅ is the average depth in mm, Āw is the average wear loss area of five 2D profiles for each wear 

track, and W̅ is the average width of each wear tracks measured for five 2D profiles. Finally, wear volume 

is calculated with the following equation: 

∆V = [
1

3
× π × D2̅̅̅̅ (3R − D̅)] + A̅w × l (6) 

where ∆V is the total volume loss for each wear track in mm3, R is the radius of the alumina ball, and l 

is the total stroke length. 
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6. RESULTS AND DISCUSSION 

6.1. Morphological and microstructural characterization of the surfaces 

6.1.1. Optical microscopy (OM) and porosity 

The morphology of the initial surface of Co-Cr alloy is shown on the low magnification OM images in figure 

18. The casting processes are known by presenting defects as uncontrolled porosity, chemical 

inhomogeneity, large grain size and microstructure with hard precipitates in the interdendritic zones 

[10,47,93,94]. As it can be observed in figure 18 there is some porosity as a consequence of casting 

process. However, it is important to state that the porosity level is low regarding the testing surfaces. 

Viennot et al. [61] observed those defects could behave as starting points of corrosion processes.  

 

Figure 18 OM image of Co-Cr dental alloy surface. 

6.1.2. XRD analysis 

The XRD spectrum of Co-Cr dental alloy is shown in figure 19. As it can be observed on the spectrum, γ 

phase was obtained as matrix phase of the alloy. On the other hand, σ phase was identified as a second 

phase. σ phase was identified with data available for σ Co-Cr [95]. The  phase has FCC structure and 

 phase has a tetragonal structures. 
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Figure 19 XRD spectrum of the Co-Cr dental alloy. 

6.1.3. SEM and EDS analysis 

In figure 20 is shown a SEM image of the microstructure of Co-Cr alloy. It can be distinguished the γ 

phase corresponding to matrix and a second phase σ corresponding to the eutectic. 

In addition, a third phase was detected which is mainly rich in W and Nb as shown in EDS spectrum. 

Viennot et al. [4] mentioned that the W, an intermetallic compound in the alloy, it helps to reduce the 

formation of Cr-depleted zones and increases the corrosion resistance. Diomidis et al. [96] stated that 

Nb present in σ phase as well as Zr and Ta as alloying elements tend to form dense surface oxides, 

increasing the stability of passive layer.
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Figure 20 BSE SEM image of Co-Cr dental alloy and the EDS spectra taken from the marked areas. 
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In tables 7 to 9 are shown the chemical composition of the different phases founded in Co-Cr Alloy. 

 

Table 7 Chemical composition of γ phase, obtained in Co-Cr Alloy by EDS technique. 

Element Weight (%) Atomic Mass (%) 

O 3.95 13.65 

Mo 2.97 1.71 

Cr 24.01 25.52 

Fe 1.60 1.58 

Co 58.46 54.83 

W 9.01 2.71 

 

Table 8 Chemical composition of σ phase, obtained in Co-Cr Alloy by EDS technique. 

Element Weight (%) Atomic Mass (%) 

O 3.73 13.89 

Nb 7.12 4.57 

Mo 5.94 3.69 

Cr 20.67 23.71 

Fe 1.15 1.23 

Co 47.94 48.53 

W 13.46 4.37 

 

Table 9 Chemical composition of W-Nb rich phase, obtained in Co-Cr Alloy by EDS technique. 

Element Weight (%) Atomic Mass (%) 

O 2.44 10.35 

Nb 14.52 10.60 

Mo 9.74 6.89 

Cr 15.09 19.69 

Fe 1.00 1.22 

Co 38.53 44.36 

W 18.67 6.89 
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6.1.4. Hardness 

The micro hardness tests show a value of 327 ± 11 HV5. Some authors [10,66,94,97–99] found similar 

values. 

6.2. Corrosion tests 

The corrosion tests were performed on the Co-Cr alloy on the 5 different solutions in order to study the 

influence of the commercial mouthwashes on the corrosion behavior of this alloy. 

6.2.1. Open circuit potential (OCP) 

In figure 21 is shown the evolution of OCP for Co-Cr alloy immersed in different solutions. OCP gives 

information about the tendency to corrosion of material on a specific solution. The alloy had a stable 

behavior immersed in artificial saliva (c.a. - 0.188 V), showing a more stable passive film that protects 

the alloy from corrosion. On the other hand, the results obtained in the mouthwashes containing solutions 

showed a relatively unstable behavior. Once the OCP evolution of Co-Cr alloy immersed in mouthwashes 

containing solutions shows fluctuations through the immersion time, modifications in the formed passive 

layer can be taking place. These kind of modifications can be related to the formation and destruction of 

the passive film along the immersion time. 

It was also observed that the Listerine containing solutions presented a higher instability, probably due to 

the more acidic environment of those solutions. However, some authors [5,8,76,100,101], who studied 

other commercial mouthwashes in contact with Co-Cr alloys at 37ºC, showed that the OCP values initially 

increasing in a short period of time and then stabilized, forming a passive oxide film. However, in order 

to get a better stabilization in mouthwashes containing solutions a longer immersion time will be needed. 

The mouthwash producers [102,103] advise to keep the mouthwashes in mouth for approximately 30 

seconds/use. In this way 1 hour of immersion was chosen to simulate a couple of days of use. 

Souza et al. [9] showed that the OCP measurement is an important source of information on chemical 

reactivity of a material immersed in an electrolyte but it is just a tendency to corrosion and it is important 

to analyze other corrosion parameters in order to get more conclusive information. 
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Figure 21 OCP evolution with the time for Co-Cr dental alloy in a) AS and Listerine containing solutions b) AS and Colgate 

containing solutions. 

6.2.2. Potentiodynamic polarization (PD) tests 

The PD method determines the kinectics of corrosion of a metal in contact with an electrolyte. Polarization 

curves of Co-Cr alloy in different solutions are presented in figure 22 and corrosion potential (E(i=0)), 

breakdown potential (Eb), corrosion current density (icorr), and passivation current density (ipass) values are 

listed in table 10. 

 

Figure 22 PD curves of Co-Cr dental in a) AS and Listerine containing solutions and b) AS and Colgate containing solutions. 

 

Table 10 E(i=0), ipass and Eb values of Co-Cr dental alloy in 5 different solutions.  

 E(i=0) (V) ipass  

(µA.cm-2) 
Eb (V) 

AS -0.279 ± 0.016 2.00 ± 0.27 0.581 ± 0.034 
LAF -0.283 ± 0.023 2.38 ± 0.05 0.551 ± 0.015 
LAC -0.222 ± 0.032 2.69 ± 0.24 0.575 ± 0.030 
CAF -0.289 ± 0.015 2.74 ± 0.43 0.594 ± 0.058 
CAC -0.303 ± 0.046 2.40 ± 0.18 0.625 ± 0.008 
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From the polarization curves, in all solutions, four different domains can be observed. The cathodic zone 

includes potentials below - 0.22 V for LAC that is the solution with higher E(i=0) and - 0.30 V for CAC that 

is the solution with lower E(i=0). In this zone the current is determined by the reduction of water and, 

partially, of dissolved oxygen. In this zone Co-Cr dental alloy present different behavior dependently on 

the chemical composition of the solution. The zone between these last values and c.a. 0.28 V is 

characterized by the transition from cathodic to anodic current at the corrosion potential. A small 

passivation plateu was found between c.a. 0.28 V and c.a. 0.55 V, where the current density remained 

approximately constant. Finally, in the transpassive zone, an increase on current appears at c.a. 0.55 V 

till 1.5 V, related to transpassive oxidation (water oxidation and metallic oxide oxidation). 

Alves-Rezende et al. [70] studied the effect of commercial mouthwash on the corrosion behavior of Ni-Cr 

alloys. The authors stated that a passivation phenomenon was observed for the three mouthwashes, the 

main difference on the corrosion behavior of those alloys on the three mouthwashes was noticed on the 

ipass, and this behavior was associated to the changes in the film porosity and thickness in each mouthwash.  

In cathodic domain the current is determined by the reduction of water and, partially, of the dissolved 

oxygen. On the other hand, Alves-Rezende et al. [8] noticed that anodic branches show passive and 

transpassive regions. 

The E(i=0) is a parameter related with the thermodynamic of corrosion process and it can be observed that 

there are no significant differences between the solutions. These results are in accordance with the results 

obtained by OCP tests. 

Corrosion potential (Ei=0) values were calculated by Tafel extrapolation method. As it is shown in figure 22, 

a passive region is formed in all solutions, that means that it was formed a passive layer of oxide on the 

surface of Co-Cr alloy that protects it. Schiff et al. [5] studied the corrosion behavior of Fe-Cr-Ti, Co-Cr 

and Ti for three different mouthwashes. The authors showed that in the case of Co-Cr there was no major 

influence on the electrochemical behavior. Another study of Alves-Rezende et al. [8] showed that the 

corrosion behavior of Ti-10Mo and Cp-Ti in three different mouthwashes and also concluded  that these 

materials tend to become covered with and oxide film. 

From the values in table 10 it can be noticed that the E(i=0) values have a similar tendency to corrosion in 

all solutions. In addition, the ipass values, being the most important corrosion parameter to be considered 

in a material with passive behavior, is very similar in all cases. Thus, it can be assumed that there is no 

significant influence of the mouthwashes on the corrosion behavior of Co-Cr alloy, when compared with 

artificial saliva. 



Minho University - Effect of some mouthwashes on the  
triboelectrochemical behavior of a Co-Cr dental casting alloy  

 

42 
 

The pH values measured before and after corrosion tests are presented in table 11. There are some 

differences between the solutions, however there are not significant differences between the pH values 

before and after the corrosion tests. 

 

Table 11 The pH before and after the potentiodynamic tests. 

 pH before the test pH after the test 
AS 5.38 ± 0.30 5.70 ± 0.30 
LAF 4.09 ± 0.03 4.11 ± 0.06 
LAC 3.68 ± 0.06 3.67 ± 0.03 
CAF 4.96 ± 0.05 4.92 ± 0.06 
CAC 4.14 ± 0.12 4.12 ± 0.09 

6.2.3. Microstructural characterization of the corroded surfaces 

After PD test it was performed XRD for all the conditions. The γ and σ phases were identified as it was 

seen previously in a polished sample in figure 20. Figure 23 presents the SEM images of Co-Cr dental 

alloy before and after PD test for all solutions. It was shown the γ phase is the matrix and σ phase the 

second phase, presenting a dendritic structure. The differences on microstructure do not occur due to 

action of corrosion in the different electrolytes, but due to a heterogeneity of processing. 
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Figure 23 BSE SEM images of Co-Cr dental alloy a) polished and after PD in b) AS c) LAF d) LAC, e) CAF and f) CAC solutions. 
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Figure 24 shows the differences of the surface before and after the PD tests. It can be observed a 

preferential dissolution of the matrix. Doni et al. [95], also showed that the γ matrix corroded 

homogenously and the σ phase appears not be significantly affected by corrosion. 

 

Figure 24 SE SEM image of Co-Cr dental alloy a) before and b) after the PD test in LAC. 

 

There were no significant differences on the microstructure of Co-Cr alloy after corrosion tests when 

compared AS and mouthwashes containing solutions, meaning that the addition of these mouthwashes 

do not accelerate the corrosion process. 

6.2.4. Electrochemical impedance spectroscopy (EIS) 

The EIS test is important to understand the state of oxide film formed on the surface of a metal [9]. 

Figures 25 and 26 show the EIS spectra in the form of Nyquist and Bode diagrams, respectively for all 

conditions.  
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Figure 25 Nyquist diagrams of experimental data and fitted curves for Co-Cr dental alloy in 5 different solutions: a) 

comparison between AS, LAF and LAC b) comparison between AS, CAF and CAC. 

 

  

 

Figure 26 Bode diagrams of experimental data and fitted curves for Co-Cr dental alloy in 5 different solutions: a) 

comparison between AS, LF and LC b) comparison between AS, CF and CC. 

 

Nyquist diagram can be evaluated by comparing the diameters of the semi-circles. Thus, the larger is the 

diameter, the better is the corrosion resistance of the sample [104]. As it can be observed in figure 25, 

the AS solution presented a bigger diameter of the semi-circle when compared with mouthwashes 

containing solutions. 

The Bode diagram, observed in figure 26, shows constant values of |Z| in the high frequency range (100 

Hz to 100 kHz) where phase angle is nearly to 0°, which is the response of the electrolyte resistance. 

However, in low and middle frequency ranges, the phase angle presents values that approach -80°in all 

cases, being almost capacitive, which indicates a good quality of the passive layer formed on the surface 
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of Co-Cr dental alloy in all electrochemical solutions, especially in AS solution, in which the time constant 

is near to -90º during a larger range of low frequencies, showing a more stable passive film. 

Mareci et al. [40] showed for two Co-Cr-Mo alloys tested in AS the values between -80º and -70º in low 

and middle frequencies, having a slight lower quality of passive layer. In addition, high impedance values 

(up to 105 Ω cm2) from medium to low frequencies lead to a high corrosion resistance that is presented 

as well in the Bode diagrams for all the solutions. 

The figure 27 presents the equivalent circuit used to fit the experimental data representing a native oxide 

film formed on the surface in contact with the electrolyte. The equivalent circuit contains the electrolyte 

resistance, Re, the native oxide film resistance, Rox, and assumes a  non-ideal capacitance of the native 

oxide film, Qox, which is equivalent to a Phase Constant Element (CPE) replacing the ideal double layer 

capacitance. The proposed circuit has also been used by other authors  [82,105].  

 

 

Figure 27 Equivalent circuit, adapted from Ribeiro [105]. 

 

The impedance spectra for the all solutions were fitted to the equivalent circuits using a Gamry Echem 

Analyst version 5.61 software and the quality of the fitting was evaluated through their goodness of fitting 

values. The proposed models described adequately the behavior of Co-Cr alloy in all solutions, with 

goodness of fitting bellow of 10-4.  

The values for the different elements of the equivalent circuit are presented in Table 12. 
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Table 12 Resistance to polarization (Rox) and CPE capacitance (Qox) of Co-Cr dental alloy in 5 different solutions. 

 Rox (x 106 Ω.cm2) Qox (x10-5 sn. Ω-1.cm-2) 

AS 1.26 ± 0.46 3.21 ± 0.62 
LAF 0.79 ± 0.13 3.55 ± 0.14 
LAC 0.64 ± 0.24 3.65 ± 0.70 
CAF 0.77 ± 0.58 3.46 ± 0.80 
CAC 0.57 ± 0.17 3.38 ± 0.17 

 

Results of the native oxide film resistance show a slight better corrosion behavior in case of AS solution. 

The Rox is a parameter proportional to the corrosion resistance of the material. As Mareci et al. [76] 

showed, large values of Rox indicate the formation of a passive layer with high corrosion protection ability. 

Impedance is considered to be high with values up to 5 x 105 Ω.cm2, which was verified for all the cases, 

suggesting high corrosion resistance. However it is observed a slight higher value for AS, which means a 

slight higher quality of the passive layer. After PD tests and comparing the SEM images obtained before 

and after PD tests, it is possible to note that EIS is a more sensible technique to detect small variations 

on the quality of passive films. In fact, by EIS it was possible to notice that in case of mouthwashes 

containing solutions more time of OCP is needed to form the same stable passive layer. The Qox parameter 

is the constant phase element obtained in all solutions. As it can be seen the passive film formed in all 

solutions has a very similar behavior in terms of corrosion protection as proved by the very similar Qox 

values. 

The impedance of constant phase element (Qox) is defined as: 

𝑍𝐶𝑃𝐸 = [𝑌0(𝑗𝑤)
𝑛]−1 (7) 

Where -1 ≤ n ≤ 1, when n= 1, n= 0 and n= -1, the Qox responses correspond to those of a capacitor, a 

resistor or an inductor, respectively. When n≈ 1, a non-ideal capacitor may be described by this element 

the n value being influenced by the roughness and the heterogeneities of the surface. All solutions 

presented a range of n values between 0.90 and 0.94, approximately, indicating a non-ideal capacitor 

[106]. In addition the similar Qox values suggest a very similar insulating character of the passive layer 

formed on the surface of Co-Cr alloy immersed in all solutions. The corrosion behavior of Co-Cr dental 

alloy want not influenced by the presence of the mouthwashes. Thus, the tribocorrosion behaviour of Co-

Cr alloy was investigated only using the Listerine containing solutions. 
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6.3. Tribocorrosion test 

The tribocorrosion tests were performed on the Co-Cr alloy on 3 different solutions: AS and Listerine 

containing solutions (LAF and LAC) in order to study the combined action of wear and corrosion. Figure 

28 presents the evolution of OCP with time before, during and after sliding, together with COF evolution 

during the sliding. 
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Figure 28 Evolution of COF and OCP of Co-Cr dental alloy. 

 

Before the sliding OCP was stable at around -0.165 V, -0.06V, and -0.05V for AS, LAF, and LAC solutions 

respectively. It was noticed a sharp drop on OCP values when sliding started, which is due to the 

destruction of the passive film formed on the surface of the Co-Cr alloy (phenomenon known as 

depassivation) by the mechanical action. During the sliding action the OCP values remained almost stable 

for all solutions. However, the Listerine containing solutions presented always higher potential values 

under sliding, indicating a lower tendency to corrosion. In addition, the slight instability of OCP during 

sliding tests can be explained by the abrasive effect of the wear debris, destroying periodically the passive 

film on the wear track surface [9,10]. 



Minho University - Effect of some mouthwashes on the  
triboelectrochemical behavior of a Co-Cr dental casting alloy  
 

49 
 

The differences observed in the tribocorrosion response of Co-Cr in all electrolytes, during the sliding, can 

be explained by the oxidation and reduction reactions occurring in the contact area during sliding, which 

depends of the composition of different electrolytes [79]. So, as it can be observed in figure 31, the AS 

solution has a higher coefficient of friction and more negative potential during the sliding, so it can be 

stated that the Co-Cr has a worse tribocorrosion behavior in AS solution. It can be observed that the 

mouthwashes containing solutions may act as a lubricant, once that the COF presents lower values. 

It was noticed that the more acidic solution (pH=5.38±0.30 for AS, pH=4.09±0.03 for LAF and 

pH=3.68±0.06 for LAC) leads to a slight better tribocorrosion behavior, probably due to the nature of the 

oxidation and reduction reactions occurring in the contact area during the sliding, resulting in the 

formation of protective tribolayers that reduced the friction of coefficient as explained by Vieira et al. [79]. 

On the other hand, chemical composition changes in the mouthwashes in compounds as C12H25NaO4S 

and C12H19Cl3O8 for LAF and C18H9NNa2O8S2 and ethanol for LAC. Thus these different compounds and, 

other common compounds probably are increasing the lubricant effect of the mouthwashes solutions 

when compared with pure AS. 

Vieira et al. [79] showed that the potential of Ti in AS, AS + acid citric and AS + anodic inhibitor, after the 

sliding, recovers its original value. This behavior indicates that a new passive film was formed, after the 

removal of the naturally formed passive film when potential was stabilized in noble values before sliding 

action. This phenomenon is denominated repassivation. 

6.3.1. Microstructural characterization of the wear tracks  

Figure 29 shows the OM images of the wear tracks obtained after tribocorrosion tests. Important 

differences between the tests were observed. The samples in AS and LAF solutions exhibit higher 

degradation compared with LAC solution. The samples tested in this last solution presented smoother 

wear tracks, having less mechanical damage. This can be due to the lubricant effect in LAC and thus, 

this mouthwash can influence the tribocorrosion process, leading to a lower abrasion and consequently 

not so deep grooves. It is observed that the wear track of LAC presented lower width which confirms the 

lower degradation when compared with the other samples. 
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 Figure 29 OM of wear tracks of Co-Cr dental alloy in: a) AS, b) LAF and c) LAC. 

 

In figure 30 are shown the SEM images of the center of wear tracks for Co-Cr alloy in the three different 

solutions. Parallel sliding groves for all solutions were observed. The abrasive wear can be a result of the 

penetration of higher asperities of harder material, Al2O3 from the counter material [105].  



Minho University - Effect of some mouthwashes on the  
tribo-electrochemical behavior of a Co-Cr dental casting alloy  
 

51 
 

 

Figure 30 SEM images of the wear track of the Co-Cr dental alloy in a) AS, b) LAF and c) LAC. 
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Figure 31 presents the SEM images and EDS analysis of the Al2O3 ball slide against Co-Cr alloy in different 

solutions. As it can be observed on the images, an important amount of the alloy was transferred to the 

Al2O3 ball during the sliding, which indicates adhesive wear. It is observed that this degradation is lower 

in the case of LAC containing solution. Higher percentages of these two elements (Co and Cr) in AS can 

be observed. In the other two solutions Co and Cr contents are very small. These facts show a higher 

degradation in AS than in the other solutions. 
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Figure 31 SEM images of mating counter material and EDS spectra taken from the marked and for a) AS, b) LAF and c) LAC. 
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6.3.2. Repassivation rate 

At the end of sliding, the OCP increased progressively to achieve the OCP values recorded before the 

sliding. This behavior reveals a progressive repassivation of the wear track area according to Hawana et 

al. [91]. The evolution of the repassivation potential can be calculated using the following equation [91]: 

∆𝐸 = 𝑘1 log 𝑡 + 𝑘2 (8) 

Where ∆E is the potential in V, t is the time in s and k1 is the repassivation rate [91,92]. 
The values of the repassivation rate (k1) and ∆E for each solution are presented in table 10. Alves et al. 

[107] showed that higher values of k1 and ∆E show that the repassivation process proceeds to a stronger 

extension. As showed in table 13, the similar k1 and ∆E values in all solutions show that the recovering 

of the potential after sliding occurs almost at the same rate for the three solutions. There are no significant 

differences in ∆E parameter, which confirms that fact. Thus, it can be assumed that there is not a 

significant influence of the addition of mouthwashes on the repassivation rate of Co-Cr alloy. 

 

Table 13 Parameters k1 and ∆E in equation 4 for 3 different solutions. 

 k1 (V s-1) ∆E (V) 
AS 0.14 ± 0.02 0.44 ± 0.07 
LAF 0.12 ± 0.04 0.35 ± 0.04 
LAC 0.09 ± 0.06 0.28 ± 0.06 

 

6.3.3. Wear volume loss 

The wear volume loss was calculated through the 2D wear track profiles with profilometry analysis. Figure 

32 is shows the wear track profiles obtained for Co-Cr alloy in the three solutions. It was observed that 

the Co-Cr profile in AS solution is deeper and rougher than in mouthwashes containing solutions. 

Regarding the mouthwashes containing solutions smother wear tracks were observed. It can be observed 

a correlation between the wear volume loss results and the COF from figure 29. There is a higher COF 

for AS presenting rougher wear track (figure 32) and the other two solutions that present a smoother wear 

track, having a lower COF. 

By the OM, SEM images and wear loss, a better tribocorrosion behavior was noticed for LAC solution.  

The wear volume loss values are given in table 14. It can be noticed that AS solution presented the highest 

wear loss values. This result is in accordance with tribocorrosion tests in which a higher values of 

coefficient of friction were obtained in this solution. 
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Figure 32 Wear track profiles. 

 

Table 14 Wear volume from tribocorrosion test in 3 different solutions. 

 Wear Volume (µm3) 
AS 20.16 ± 0.98 
LAF 14.35 ± 1.55 
LAC 8.18 ± 0.39 
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CONCLUSION 

The followings can be concluded after studying the influence of commercial mouthwashes on corrosion 

and tribocorrosion behavior of Co-Cr dental alloy: 

 By potentiodynamic polarization tests it was possible to conclude that there is no significant 

influence of the mouthwashes containing solutions on the corrosion behavior of Co-Cr alloy when 

compared with artificial saliva. Once that,  E(i=0) and ipass presented similar values in  all tested solutions; 

 By EIS studies it was found that Co-Cr alloy immersed in artificial saliva shows a slightly higher 

resistance to corrosion and a constant behavior of phase angle close to -90º in middle and low frequencies 

range. That behavior is characteristic of metals and alloys that exhibit the formation of a very protective 

and stable passive layer on its surface when in contact with some electrolytes;  

 After PD tests the Co-Cr dental alloy microstructures were similar in mouthwashes containing 

solutions and artificial saliva. Thus, it is possible to conclude that the addition of these mouthwashes to 

saliva solution do not accelerate the corrosion process; 

 Regarding tribocorrosion tests, it was found that Co-Cr alloy the highest COF and a more negative 

OCP during the sliding test in artificial saliva; 

 The wear tracks of Co-Cr alloy in AS presented the deeper wear track and a higher wear volume; 

 Results obtained in the tribocorrosion tests lead to conclude that the presence of mouthwashes 

slightly improve the tribocorrosion behavior of Co-Cr Alloy. The slight decrease in the coefficient of friction 

and the increase on the corrosion potential can be explained by the formation of  protective tribolayers 

which confer a lubricant effect to the mouthwashes during the sliding process; 

 The wear mechanism of Co-Cr alloy in AS and a combination of abrasive and adhesion wear, 

while for the mouthwashes containing solutions was mainly abrasive wear; 

 A clear repassivation phenomena was detected in all tested solutions. Results obtained allowed 

to conclude that no significant influence on addition of mouthwashes to the artificial saliva in the recovery 

of passive oxide layer after sliding. 

 

Thus, the presence of mouthwashes in artificial saliva do not affect negatively neither the corrosion or 

tribocorrosion behavior Co-Cr dental alloy. 





Minho University - Effect of some mouthwashes on the  
tribo-electrochemical behavior of a Co-Cr dental casting alloy  
 

59 
 

FUTURE WORKS 

The work carried out during this thesis leads to the following suggestions in order to obtain a better 

understanding of the effect of mouthwashes on the corrosion and tribocorrosion behavior of Co-Cr dental 

alloys: 

 to perform longer immersion periods, in order to understand the effect of mouthwashes on the 

corrosion behavior of dental alloys after a long period of immersion; 

 to study the effect of mouthwashes on the metallic ion releasing ; 

 to study the influence of fluorides on electrochemical behavior of Co-Cr dental alloys; 

 to study the influence of mouthwashes on the corrosion and tribocorrosion behavior of Co-Cr 

dental alloys processed by other techniques. 
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